
Chapter 6
Sobolev Spaces

6.1 Weak Derivatives

Throughout this chapter, we denote by Ω an open subset of RN . We begin with an
elementary computation.

Lemma 6.1.1 Let 1 ≤ |α| ≤ m and let f ∈ Cm(Ω). Then for every u ∈ Cm(Ω) ∩
K(Ω),

∫
Ω

f Dαu dx = (−1)|α|
∫

Ω

(Dαf )u dx.

Proof We assume that α = (0, . . . , 0, 1). Let u ∈ C1(Ω) ∩ K(Ω), and define

g(x) = f (x)u(x), x ∈ Ω,

= 0, x ∈ R
N \ Ω.

The fundamental theorem of calculus implies that for every x′ ∈ R
N−1,

∫
R

Dαg(x′, x
N
)dx

N
= 0.

Fubini’s theorem ensures that
∫

Ω

(f Dαu + (Dαf )u)dx =
∫
RN

Dαg dx =
∫
RN−1

dx′
∫
R

Dαg dx
N

= 0.

When |α| = 1, the proof is similar. It is easy to conclude the proof by induction.
��

Weak derivatives were defined by S.L. Sobolev in 1938.
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132 6 Sobolev Spaces

Definition 6.1.2 Let α ∈ N
N and f ∈ L1

loc(Ω). By definition, the weak derivative
of order α of f exists if there is g ∈ L1

loc(Ω) such that for every u ∈ D(Ω),

∫
Ω

f Dαu dx = (−1)|α|
∫

Ω

gu dx.

The function g, if it exists, will be denoted by ∂αf .

By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3 Assume that ∂αf exists. On

Ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n},

we have that

Dα(ρn ∗ f ) = ρn ∗ ∂αf.

Proof We deduce from Proposition 4.3.6 and from the preceding definition that for
every x ∈ Ωn,

Dα(ρn ∗ f )(x) =
∫

Ω

Dα
x ρn(x − y)f (y)dy

= (−1)|α|
∫

Ω

Dα
y ρn(x − y)f (y)dy

= (−1)2|α|
∫

Ω

ρn(x − y)∂αf (y)dy

= ρn ∗ ∂αf (x). ��

Theorem 6.1.4 (du Bois–Reymond Lemma) Let |α| = 1 and let f ∈ C(Ω) be
such that ∂αf ∈ C(Ω). Then Dαf exists and Dαf = ∂αf .

Proof By the preceding proposition, we have

Dα(ρn ∗ f ) = ρn ∗ ∂αf.

The fundamental theorem of calculus implies then that

ρn ∗ f (x + εα) = ρn ∗ f (x) +
∫ ε

0
ρn ∗ ∂αf (x + tα)dt.

By the regularization theorem,

ρn ∗ f → f, ρn ∗ ∂αf → ∂αf
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uniformly on every compact subset of Ω . Hence we obtain

f (x + εα) = f (x) +
∫ ε

0
∂αf (x + tα)dt,

so that ∂αf = Dαf by the fundamental theorem of calculus. ��

Notation From now on, the derivatives of a continuously differentiable function will
also be denoted by ∂α .

Let us prove the closing lemma. The graph of the weak derivative is closed in
L1
loc × L1

loc.

Lemma 6.1.5 Let (fn) ⊂ L1
loc(Ω) and let α ∈ N

N be such that in L1
loc(Ω),

fn → f, ∂αfn → g.

Then g = ∂αf .
Proof For every u ∈ D(Ω), we have by definition that

∫
Ω

fn∂
αu dx = (−1)|α|

∫
Ω

(∂αfn)u dx.

Since by assumption,

∣∣∣∣
∫

Ω

(fn − f )∂αu dx

∣∣∣∣ ≤ ||∂αu||∞
∫
spt u

|fn − f |dx → 0

and
∣∣∣∣
∫

Ω

(∂αfn − g)u dx

∣∣∣∣ ≤ ||u||∞
∫
spt u

|∂αfn − g|dx → 0,

we obtain
∫

Ω

f ∂αu dx = (−1)|α|
∫

Ω

gu dx. ��

Example (Weak Derivative) If −N < λ ≤ 1, the function f (x) = |x|λ is locally
integrable on R

N . We approximate f by

fε(x) =
(
|x|2 + ε

)λ/2
, ε > 0.

Then fε ∈ C∞(RN) and
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∂kfε(x) = λ xk

(
|x|2 + ε

) λ−2
2

,

∣∣∂kfε(x)
∣∣ ≤ λ|x|λ−1.

If λ > 1 − N , we obtain in L1
loc(R

N) that

fε(x) → f (x) = |x|λ,
∂kfε(x) → g(x) = λ xk|x|λ−2.

Hence ∂kf (x) = λ |x|λ−2xk .

Definition 6.1.6 The gradient of the (weakly) differentiable function u is
defined by

∇u = (∂1u, . . . , ∂
N
u).

The divergence of the (weakly) differentiable vector field v = (v1, . . . , v
N
) is

defined by

div v = ∂1v1 + . . . + ∂
N
v
N
.

Let 1 ≤ p < ∞ and u ∈ L1
loc(Ω) be such that ∂ju ∈ Lp(Ω), j = 1, . . . , N . We

define

||∇u||Lp(Ω) =
(∫

Ω

|∇u|pdx

)1/p
=
⎛
⎜⎝
∫

Ω

∣∣∣∣∣∣
N∑

j=1

(∂ju)2

∣∣∣∣∣∣
p/2

dx

⎞
⎟⎠

1/p

.

Theorem 6.1.7 Let 1 < p < ∞ and let (un) ⊂ L1
loc(Ω) be such that

(a) un → u in L1
loc(Ω);

(b) for every n, ∇un ∈ Lp(Ω;RN);
(c) c = sup

n
||∇un||p < ∞.

Then ∇u ∈ Lp(Ω;RN) and

||∇u||p ≤ lim
n→∞ ||∇un||p.

Proof We define f on D(Ω;RN) by
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〈f, v〉 =
∫

Ω

u div v dx.

We have that

|〈f, v〉| = lim
n→∞ |

∫
Ω

un div v dx|

= lim
n→∞ |

∫
Ω

∇un · v dx|

≤ lim
n→∞ ||∇un||p

(∫
Ω

|v|p′
dx

)1/p′

.

Since D(Ω) is dense in Lp′
(Ω), Proposition 3.2.3 implies the existence of a

continuous extension of f to Lp′
(Ω;RN). By Riesz’s representation theorem, there

exists g ∈ Lp(Ω;RN) such that for every v ∈ D(Ω;RN),

∫
Ω

g · v dx = 〈f, v〉 =
∫

Ω

u div v dx.

Hence ∇u = −g ∈ Lp(Ω;RN). Choosing v = |∇u|p−2∇u, we find that

∫
Ω

|∇u|pdx =
∫

Ω

∇u · v dx ≤ lim
n→∞ ||∇un||p

(∫
Ω

|v|p′
dx

)1/p′

= lim
n→∞ ||∇un||p

(∫
Ω

|∇u|pdx

)1−1/p

.

��
Sobolev spaces are spaces of differentiable functions with integral norms. In

order to define complete spaces, we use weak derivatives.

Definition 6.1.8 Let k ≥ 1 and 1 ≤ p < ∞. On the Sobolev space

Wk,p(Ω) = {u ∈ Lp(Ω) : for every |α| ≤ k, ∂αu ∈ Lp(Ω)},

we define the norm

||u||Wk,p(Ω) = ||u||k,p =
⎛
⎝∑

|α|≤k

∫
Ω

|∂αu|pdx

⎞
⎠

1/p

.

On the space Hk(Ω) = Wk,2(Ω), we define the scalar product
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(u | v)Hk(Ω) =
∑
|α|≤k

(∂αu | ∂αv)L2(Ω).

The Sobolev space W
k,p

loc (Ω) is defined by

W
k,p

loc (Ω) = {u ∈ L
p

loc(Ω) : for all ω ⊂⊂ Ω,u

∣∣∣
ω

∈ Wk,p(ω)}.

A sequence (un) converges to u in W
k,p

loc (Ω) if for every ω ⊂⊂ Ω ,

||un − u||Wk,p(ω) → 0, n → ∞.

The space W
k,p

0 (Ω) is the closure of D(Ω) in Wk,p(Ω). We denote by Hk
0 (Ω) the

space W
k,2
0 (Ω).

Theorem 6.1.9 Let k ≥ 1 and 1 ≤ p < ∞. Then the spaces Wk,p(Ω) and
W

k,p

0 (Ω) are complete and separable.

Proof Let M =
∑
|α|≤k

1. The space Lp(Ω;RM) with the norm

||(vα)||p =
⎛
⎝∑

|α|≤k

∫
Ω

|vα|pdx

⎞
⎠

1/p

is complete and separable. The map

Φ : Wk,p(Ω) → Lp(Ω;RM) : u �→ (∂αu)|α|≤k

is a linear isometry: ||Φ(u)||p = ||u||k,p. By the closing lemma, Φ(Wk,p(Ω)) is a
closed subspace of Lp(Ω;RM). It follows that Wk,p(Ω) is complete and separable.
Since W

k,p

0 (Ω) is a closed subspace of Wk,p(Ω), it is also complete and separable.
��

Theorem 6.1.10 Let 1 ≤ p < ∞. Then W
1,p
0 (RN) = W 1,p(RN).

Proof It suffices to prove thatD(RN) is dense in W 1,p(RN). We use regularization
and truncation.

Regularization Let u ∈ W 1,p(RN) and define un = ρn ∗ u. By Proposition 4.3.6,
un ∈ C∞(RN). Proposition 4.3.14 implies that in Lp(RN),

un → u, ∂kun = ρn ∗ ∂ku → ∂ku.

We conclude that W 1,p(RN) ∩ C∞(RN) is dense in W 1,p(RN).
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Truncation Let θ ∈ C∞(R) be such that 0 ≤ θ ≤ 1 and

θ(t) = 1, t ≤ 1,
= 0, t ≥ 2.

We define the sequence

θn(x) = θ(|x|/n).

Let u ∈ W 1,p(RN)∩C∞(RN). It is clear that un = θnu ∈ D(RN). It follows easily
from Lebesgue’s dominated convergence theorem that un → u in W 1,p(RN). ��

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of Variables) Let Ω and ω be open subsets of RN ,
G : ω → Ω a diffeomorphism, and u ∈ W

1,1
loc (Ω). Then u ◦ G ∈ W

1,1
loc (ω) and

∂

∂yk

(u ◦ G) =
∑
j

∂u

∂xj

◦ G
∂Gj

∂yk

.

Proof Let v ∈ D(ω) and un = ρn ∗ u. By Lemma 6.1.1, for n large enough, we
have
∫

ω

un ◦ G(y)
∂v

∂yk

(y)dy = −
∫

ω

∑
j

∂un

∂xj

◦ G(y)
∂Gj

∂yk

(y) v(y)dy. (∗)

It follows from Theorem 2.4.5 with H = G−1 that
∫

Ω

un(x)
∂v

∂yk

◦ H(x)| detH ′(x)|dx

= −
∫

Ω

∑
j

∂un

∂xj

(x)
∂Gj

∂yk

◦ H(x)v ◦ H(x)| detH ′(x)|dx. (∗∗)

The regularization theorem implies that in L1
loc(Ω),

un → u,
∂un

∂xj

→ ∂u

∂xj

.

Taking the limit, it is permitted to replace un by u in (∗∗). But then it is also
permitted to replace un by u in (∗), and the proof is complete. ��

Proposition 6.1.12 (Derivative of a Product) Let u ∈ W
1,1
loc (Ω) and f ∈ C1(Ω).

Then f u ∈ W
1,1
loc (Ω) and
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∂k(f u) = f ∂ku + (∂kf )u.

Proof Let un = ρn ∗ u, so that by the classical rule of derivative of a product,

∂k(f un) = (∂kf )un + f ∂kun.

It follows from the regularization theorem that

f un → f u, ∂k(f un) → (∂kf )u + f ∂ku

in L1
loc(Ω). We conclude by invoking the closing lemma. ��

Proposition 6.1.13 (Derivative of the Composition of Functions) Let u ∈
W

1,1
loc (Ω), and let f ∈ C1(R) be such that c = sup

R

|f ′| < ∞. Then f ◦u ∈ W
1,1
loc (Ω)

and

∂k(f ◦ u) = f ′ ◦ u ∂ku.

Proof We define un = ρn ∗ u, so that by the classical rule,

∂k(f ◦ un) = f ′ ◦ un ∂kun.

We choose ω ⊂⊂ Ω . By the regularization theorem, we have in L1(ω),

un → u, ∂kun → ∂ku.

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that
un → u almost everywhere on ω. We obtain

∫
ω

|f ◦ un − f ◦ u|dx ≤ c

∫
ω

|un − u|dx → 0,

∫
ω

|f ′◦un ∂kun−f ′◦u ∂ku|dx ≤ c

∫
ω

|∂kun−∂ku|dx+
∫

ω

|f ′◦un−f ′◦u| |∂ku|dx → 0.

Hence in L1(ω),

f ◦ un → f ◦ u, f ′ ◦ un ∂kun → f ′ ◦ u ∂ku.

Since ω ⊂⊂ Ω is arbitrary, we conclude the proof by invoking the closing lemma.
��

On R, we define
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sgn(t) = t/|t |, t �= 0
= 0, t = 0.

Corollary 6.1.14 Let g : R → R be such that c = supR |g| < ∞ and, for some
sequence (gn) ⊂ C(R), g(t) = lim

n→∞ gn(t) everywhere on R. Define

f (t) =
∫ t

0
g(s)ds.

Then, for every u ∈ W
1,1
loc (Ω), f ◦ u ∈ W

1,1
loc (Ω) and

∇(f ◦ u) = (g ◦ u)∇u.

In particular u+, u−, |u| ∈ W
1,1
loc (Ω) and

∇u+ = χ {u>0}∇u,∇u− = −χ {u<0}∇u, χ {u=0}∇u = 0,∇|u| = (sgn u)∇u.

Proof We can assume that sup
n

sup
R

|gn| ≤ c. We define fn(t) =
∫ t

0
gn(s)ds. The

preceding proposition implies that

∇(fn ◦ u) = (gn ◦ u)∇u.

Since, in L1
loc(Ω), by Lebesgue’s dominated convergence theorem,

fn ◦ u → f ◦ u, (gn ◦ u)∇u → (g ◦ u)∇u,

the closing lemma implies that

∇(f ◦ u) = (g ◦ u)∇u.

��

Corollary 6.1.15 Let 1 ≤ p < ∞ and let u ∈ W 1,p(Ω)∩C(Ω) be such that u = 0
on ∂Ω . Then u ∈ W

1,p
0 (Ω).

Proof It is easy to prove by regularization that W 1,p(Ω) ∩ K(Ω) ⊂ W
1,p
0 (Ω).

Assume that spt u is bounded. Let f ∈ C1(R) be such that |f (t)| ≤ |t | on R,

f (t) = 0, |t | ≤ 1,
= t, |t | ≥ 2.
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Define un = f (n u)/n. Then un ∈ K(Ω), and by the preceding proposition, un ∈
W 1,p(Ω). By Lebesgue’s dominated convergence theorem, un → u in W 1,p(Ω),
so that u ∈ W

1,p
0 (Ω).

If spt u is unbounded, we define un = θnu where (θn) is defined in the proof
of Theorem 6.1.10. Then spt un is bounded. By Lebesgue’s dominated convergence
theorem, un → u in W 1,p(Ω), so that u ∈ W

1,p
0 (Ω). ��

Proposition 6.1.16 Let Ω be an open subset of RN . Then there exist a sequence
(Un) of open subsets of Ω and a sequence of functions ψn ∈ D(Un) such that

(a) for every n, Un ⊂⊂ Ω and ψn ≥ 0;

(b)
∞∑

n=1

ψn = 1 on Ω;

(c) for every ω ⊂⊂ Ω there exists mω such that for n > mω we have Un ∩ ω = φ.

Proof Let us define ω−1 = ω0 = φ, and for n ≥ 1,

ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n and |x| < n},
Kn = ωn \ ωn−1,

Un = ωn+1 \ ωn−2.

The theorem of partitions of unity implies the existence of ϕn ∈ D(Un) such that
0 ≤ ϕn ≤ 1 and ϕn = 1 on Kn. It suffices then to define

ψn = ϕn/

∞∑
j=1

ϕj . ��

Theorem 6.1.17 (Hajłasz) Let 1≤ p < ∞, u ∈ W
1,p
loc (Ω), and ε > 0. Then there

exists v ∈ C∞(Ω) such that

(a) v − u ∈ W
1,p
0 (Ω);

(b) ||v − u||W 1,p(Ω) < ε.

Proof Let (Un) and (ψn) be given by the preceding proposition. For every n ≥ 1,
there exists kn such that

vn = ρkn ∗ (ψnu) ∈ D(Un)

and

||vn − ψnu||1,p < ε/2n.
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By Proposition 3.1.6,
∞∑

n=1

(vn−ψnu) converges tow inW
1,p
0 (Ω). On the other hand,

we have on ω ⊂⊂ Ω that

∞∑
n=1

vn =
mω∑
n=1

vn ∈ C∞(ω),

∞∑
n=1

ψnu = u.

Setting v =
∞∑

n=1

vn, we conclude that

||v − u||1,p = ||w||1,p ≤
∞∑

n=1

||vn − ψnu||1,p < ε. ��

Corollary 6.1.18 (Deny–Lions) Let 1 ≤ p < ∞. Then C∞(Ω) ∩ W 1,p(Ω) is
dense in W 1,p(Ω).

6.2 Cylindrical Domains

Let U be an open subset of RN−1 and 0 < r ≤ ∞. Define

Ω = U× ]− r, r[, Ω+ = U× ]0, r[.

The extension by reflection of a function in W 1,p(Ω+) is a function in W 1,p(Ω).
For every u : Ω+ → R, we define on Ω:

ρu(x′, x
N
) = u

(
x′, |x

N
|
)
, σu(x′, x

N
) = (sgn x

N
)u
(
x′, |x

N
|
)
.

Lemma 6.2.1 (Extension by Reflection) Let 1 ≤ p < ∞ and u ∈ W 1,p(Ω+).
Then ρu ∈ W 1,p(Ω), ∂k(ρu) = ρ(∂ku), 1 ≤ k ≤ N − 1, and ∂

N
(ρu) = σ(∂

N
u), so

that

||ρu||Lp(Ω) = 21/p||u||Lp(Ω+), ||ρu||W 1,p(Ω) = 21/p||u||W 1,p(Ω+).

Proof Let v ∈ D(Ω). Then by a change of variables,

∫
Ω

(ρu)∂
N
v dx =

∫
Ω+

u ∂
N
w dx, (∗)
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where

w(x′, x
N
) = v(x′, x

N
) − v(x′,−x

N
).

A truncation argument will be used. Let η ∈ C∞(R) be such that

η(t) = 0, t < 1/2,
= 1, t > 1,

and define ηn on Ω+ by

ηn(x) = η(n x
N
).

The definition of weak derivative ensures that
∫

Ω+
u ∂

N
(ηnw)dx = −

∫
Ω+

(∂
N
u)ηnw dx, (∗∗)

where

∂
N
(ηnw) = ηn∂

N
w + nη′(n x

N
)w.

Since w(x′, 0) = 0, w(x′, x
N
) = h(x′, x

N
)x

N
, where

h(x′, x
N
) =
∫ 1

0
∂
N
w(x′, t x

N
)dt.

Lebesgue’s dominated convergence theorem implies that

∣∣∣∣
∫

Ω+
n η′(n x

N
)w u dx

∣∣∣∣ =
∣∣∣∣
∫

U× ]0,1/n[
n η′(n x

N
)h x

N
u dx

∣∣∣∣
≤ ||η′||∞

∫
U× ]0,1/n[

|hu|dx → 0, n → ∞.

Taking the limit in (∗∗), we obtain

∫
Ω+

u ∂
N
w dx = −

∫
Ω+

(∂
N
u)w dx = −

∫
Ω

σ(∂
N
u)v dx.

It follows from (∗) that

∫
Ω

(ρu)∂
N
v dx = −

∫
Ω

σ(∂
N
u)v dx.



6.2 Cylindrical Domains 143

Since v ∈ D(Ω) is arbitrary, ∂
N
(ρu) = σ(∂

N
u). By a similar but simpler argument,

∂k(ρu) = ρ(∂ku), 1 ≤ k ≤ N − 1. ��
It makes no sense to define an Lp function on a set of measure zero. We will

define the trace of a W 1,p function on the boundary of a smooth domain. We first
consider the case of RN+ .

Notation We define

D(Ω) = {u|Ω : u ∈ D(RN)},

R
N+ = {(x′, x

N
) : x′ ∈ R

N−1, x
N

> 0}.

Lemma 6.2.2 (Trace Inequality) Let 1 ≤ p < ∞. Then for every u ∈ D(RN+),

∫
RN−1

∣∣u(x′, 0)
∣∣pdx′ ≤ p||u||p−1

Lp(RN+ )
||∂

N
u||Lp

(RN+ )

.

Proof The fundamental theorem of calculus implies that for all x′ ∈ R
N−1,

∣∣u(x′, 0)
∣∣p ≤ p

∫ ∞

0

∣∣u(x′, x
N
)
∣∣p−1∣∣∂

N
u(x′, x

N
)
∣∣dx

N
.

When 1 < p < ∞, using Fubini’s theorem and Hölder’s inequality, we obtain

∫
RN−1

∣∣u(x′, 0)
∣∣pdx′ ≤ p

∫
R

N+
|u|p−1|∂

N
u|dx

≤ p

(∫
R

N+
|u|(p−1)p′

dx

)1/p′ (∫
R

N+
|∂

N
u|pdx

)1/p

= p

(∫
R

N+
|u|pdx

)1−1/p (∫
R

N+
|∂

N
u|pdx

)1/p
.

The case p = 1 is similar. ��

Proposition 6.2.3 Let 1 ≤ p < ∞. Then there exists one and only one continuous
linear mapping γ0 : W 1,p(RN+) → Lp(RN−1) such that for every u ∈ D(RN+),
γ0u = u(., 0).

Proof Let u ∈ D(RN+) and define γ0u = u(., 0). The preceding lemma implies that

||γ0u||Lp(RN−1) ≤ p1/p||u||W 1,p(RN+ ).



144 6 Sobolev Spaces

The space D(RN+) is dense in W 1,p(RN+) by Theorem 6.1.10 and Lemma 6.2.1. By
Proposition 3.2.3, γ0 has a unique continuous linear extension to W 1,p(RN+). ��

Proposition 6.2.4 (Integration by Parts) Let 1 ≤ p < ∞, u ∈ W 1,p(RN+), and

v ∈ D(RN+). Then

∫
R

N+
v ∂

N
u dx = −

∫
R

N+
(∂

N
v)u dx −

∫
RN−1

γ0v γ0u dx′,

and
∫
R

N+
v∂ku dx = −

∫
R

N+
(∂kv)u dx, 1 ≤ k ≤ N − 1.

Proof Assume, moreover, that u ∈ D(RN+). Integrating by parts, we obtain for all
x′ ∈ R

N−1,

∫ ∞

0
v(x′, x

N
)∂

N
u(x′, x

N
)dx

N
= −

∫ ∞

0
∂
N
v(x′, x

N
)u(x′, x

N
)dx

N
− v(x′, 0)u(x′, 0).

Fubini’s theorem implies that

∫
R

N+
v ∂

N
u dx = −

∫
R

N+
∂
N
vu dx −

∫
RN−1

v(x′, 0)u(x′, 0)dx′.

Let u ∈ W 1,p(RN+). Since D(RN+) is dense in W 1,p(RN+), there exists a sequence

(un) ⊂ D(RN+) such that un → u in W 1,p(RN+). By the preceding lemma, γ0un →
γ0u in Lp(RN−1). It is easy to finish the proof.

The proof of the last formulas is similar. ��

Notation For every u : RN+ → R, we define u on R
N by

u(x′, x
N
) = u(x′, x

N
), x

N
> 0,

= 0, x
N

≤ 0.

Proposition 6.2.5 Let 1 ≤ p < ∞ and u ∈ W 1,p(RN+). The following properties
are equivalent:

(a) u ∈ W
1,p
0 (RN+);

(b) γ0u = 0;
(c) u ∈ W 1,p(RN) and ∂ku = ∂ku, 1 ≤ k ≤ N .
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Proof If u ∈ W
1,p
0 (RN+), there exists (un) ⊂ D(RN+) such that un → u in

W 1,p(RN+). Hence γ0un = 0 and γ0un → γ0u in Lp(RN−1), so that γ0u = 0.
If γ0u = 0, it follows from the preceding proposition that for every v ∈ D(RN),

∫
RN

v ∂ku dx = −
∫
RN

∂kv u dx, 1 ≤ k ≤ N.

We conclude that (c) is satisfied.
Assume that (c) is satisfied. We define un = θnu, where (θn) is defined in

the proof of Theorem 6.1.10. It is clear that un → u in W 1,p(RN) and spt

un ⊂ B[0, 2n] ∩ R
N+ .

We can assume that spt un is a compact subset of R
N+ . We define yn =

(0, . . . , 0, 1/n) and vn = τynu. Since ∂kvn = τyn∂ku, the lemma of continuity
of translations implies that un → u in W 1,p(RN+).

We can assume that spt u is a compact subset ofRN+ . For n large enough, ρn∗u ∈
D(RN+). Since ρn ∗ u → u is in W 1,p(RN), we conclude that u ∈ W

1,p
0 (RN). ��

6.3 Smooth Domains

In this section we consider an open subset Ω = {ϕ < 0} of RN of class C1 with a
bounded boundary Γ . We use the notations of Definition 9.4.1.

Let γ ∈ Γ . Since ∇ϕ(γ ) �= 0, we can assume that, after a permutation of
variables, ∂Nϕ(γ ) �= 0. By Theorem 9.1.1 there exist r > 0, R > 0, and

β ∈ C1(B(γ ′, R)×] − r, r[ )

such that, for |x′ − γ ′| < R and |t | < r , we have

ϕ(x′, xN) = t ⇔ xN = β(x′, t)

and the set

Uγ =
{(

x′, β(x′, t)
) : |x′ − γ ′| < R, |t | < r

}

is an open neighborhood of γ . Moreover

Ω ∩ Uγ =
{(

x′, β(x′, t)
) : |x′ − γ ′| < R,−r < t < 0

}

and
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Γ ∩ Uγ =
{(

x′, β(x′, 0)
) : |x′ − γ ′| < R

}
.

The Borel–Lebesgue theorem implies the existence of a finite covering
U1, . . . , Uk of Γ by open subsets satisfying the above properties. There exists
a partition of unity ψ1, . . . , ψk subordinate to this covering.

Theorem 6.3.1 (Extension Theorem) Let 1 ≤ p < ∞ and let Ω be an open
subset of RN of class C1 with a bounded boundary or the product of N open
intervals. Then there exists a continuous linear mapping

P : W 1,p(Ω) → W 1,p(RN)

such that Pu
∣∣
Ω

= u.

Proof Let Ω be an open subset of RN of class C1 with a bounded boundary, and let
u ∈ W 1,p(Ω). Proposition 6.1.11 and Lemma 6.2.1 imply that

PUu(x) = u(x′, β(x′,−|ϕ(x′, x
N
)|)) ∈ W 1,p(U).

Moreover,

||PUu||W 1,p(U) ≤ aU ||u||W 1,p(Ω). (∗)

We define ψ0 = 1 −
k∑

j=1

ψj ,

u0 = ψ0u, x ∈ Ω,

= 0, x ∈ R
N \ Ω,

and for 1 ≤ j ≤ k,

uj = PUj
(ψju), x ∈ Uj ,

= 0, x ∈ R
N \ Uj .

Formula (∗) and Proposition 6.1.12 ensure that for 0 ≤ j ≤ k,

||uj ||W 1,p(RN) ≤ bj ||u||W 1,p(Ω).

(The support of ∇ψ0 is compact!) Hence

Pu =
k∑

j=0

uj ∈ W 1,p(RN), ||Pu||W 1,p(RN) ≤ c||u||W 1,p(Ω),
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and for all x ∈ Ω ,

Pu(x) =
k∑

j=0

ψj (x)u(x) = u(x).

If Ω is the product of N open intervals, it suffices to use a finite number of
extensions by reflections and a truncation. ��

Theorem 6.3.2 (Density Theorem in Sobolev Spaces) Let 1 ≤ p < ∞ and let Ω
be an open subset of RN of class C1 with a bounded boundary or the product of N

open intervals. Then the space D(Ω) is dense in W 1,p(Ω).

Proof Let u ∈ W 1,p(Ω). Theorem 6.1.10 implies the existence of a sequence
(vn) ⊂ D(RN) converging to Pu in W 1,p(RN). Hence un = vn

∣∣
Ω

converges to
u in W 1,p(Ω). ��

Theorem 6.3.3 (Trace Inequality) LetΩ be an open subset ofRN of class C1 with
a bounded boundary Γ . Then there exist a > 0 and b > 0 such that, for 1 ≤ p < ∞
and for every u ∈ D(Ω̄),

∫
Γ

|u|pdγ ≤ a‖u‖p

Lp(Ω) + bp‖u‖p−1
Lp(Ω)‖∇u‖Lp(Ω).

Proof Let 1 < p < ∞, u ∈ D(Ω̄), and ν ∈ C∞(RN ;RN).
Since

div|u|pν = |u|p divν + pu|u|p−2∇u · ν,

the divergence theorem implies that

∫
Γ

|u|pν · ndγ =
∫

Ω

[
|u|p divν + pu|u|p−2∇u · ν

]
dx.

Assume that 1 ≤ ν · n on Γ . Using Hölder’s inequality, we obtain that, for 1 < p <

∞,

∫
Γ

|u|pdγ ≤
∫

Γ

|u|pν · ndγ ≤ a

∫
Ω

|u|pdx + bp

∫
Ω

|u|p−1|∇u|dx

≤ a

∫
Ω

|u|pdx + bp

(∫
Ω

|u|(p−1)p′
dx

)1/p′ (∫
Ω

|∇u|pdx

)1/p

= a

∫
Ω

|u|pdx + bp

(∫
Ω

|u|pdx

)1−1/p (∫
Ω

|∇u|pdx

)1/p
,

where a = ‖divν‖∞ and b = ‖ν‖∞.
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When p ↓ 1, it follows from Lebesgue’s dominated convergence theorem that

∫
Γ

|u|dγ ≤ a

∫
Ω

|u|dx + b

∫
Ω

|∇u|dx.

Let us construct an admissible vector field ν. Let U = {x ∈ R
N : ∇ϕ(x) �= 0}.

The theorem of partition of unity implies the existence of ψ ∈ D(U) such that
ψ = 1 on Γ . We define the vector field w by

w(x) = ψ(x)
∇ϕ(x)

|∇ϕ(x)| , x ∈ U

= 0, x ∈ R
N\U.

For n large enough, the C∞ vector field ν = 2ρn ∗ w is such that 1 ≤ ν · n on Γ .
��

Theorem 6.3.4 Under the assumptions of Theorem 6.3.3, there exists one and only
one continuous linear mapping

γ : W 1,p(Ω) → Lp(Γ )

such that for all u ∈ D(Ω̄), γ0u = u

∣∣∣
Γ
.

Proof It suffices to use the trace inequality, Proposition 3.2.3, and the density
theorem in Sobolev spaces. ��

Theorem 6.3.5 (Divergence Theorem) Let Ω be an open subset ofRN of class C1

with a bounded boundary Γ and ν ∈ W 1,1(Ω;RN). Then∫
Ω

div νdx =
∫

Γ

γ0ν · ndγ.

Proof When ν ∈ D(Ω̄;RN), the proof is given in Section 9.4. In the general case,
it suffices to use the density theorem in Sobolev spaces and the trace theorem. ��

6.4 Embeddings

Let 1 ≤ p, q < ∞. If there exists c > 0 such that for every u ∈ D(RN),

||u||Lq(RN) ≤ c||∇u||Lp(RN),
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then necessarily

q = p∗ = Np/(N − p).

Indeed, replacing u(x) by uλ(x) = u(λx), λ > 0, we find that

||u||Lq(RN) ≤ cλ

(
1+ N

q
− N

p

)
||∇u||Lp(RN),

so that q = p∗.
We define for 1 ≤ j ≤ N and x ∈ R

N ,

x̂j = (x1, . . . , xj−1, xj+1, . . . , x
N
).

Lemma 6.4.1 (Gagliardo’s Inequality) Let N ≥ 2 and f1, . . . , f
N

∈

LN−1(RN−1). Then f (x) =
N∏

j=1

fj (x̂j ) ∈ L1(RN) and

||f ||L1(RN) ≤
N∏

j=1

||fj ||LN−1(RN−1).

Proof We use induction. When N = 2, the inequality is clear. Assume that the
inequality holds for N ≥ 2. Let f1, . . . , fN+1 ∈ LN(RN) and

f (x, xN+1) =
N∏

j=1

fj (x̂j , xN+1)fN+1(x).

It follows from Hölder’s inequality that for almost every xN+1 ∈ R,

∫
RN

∣∣f (x, xN+1)
∣∣dx ≤

⎡
⎣
∫
RN

N∏
j=1

∣∣fj (x̂j , xN+1)
∣∣N ′

dx

⎤
⎦
1/N ′

||fN+1||LN(RN)

≤
N∏

j=1

[∫
RN−1

∣∣fj (x̂j , xN+1)
∣∣Ndx̂j

]1/N
||fN+1||LN(RN).

The generalized Hölder inequality implies that
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||f ||L1(RN+1) ≤
N∏

j=1

[∫
RN

∣∣fj (x̂j , xN+1)
∣∣Ndx̂j dxN+1

]1/N
||fN+1||LN(RN)

=
N+1∏
j=1

||fj ||LN(RN). ��

Lemma 6.4.2 (Sobolev’s Inequalities) Let 1 ≤ p < N . Then there exists a
constant c = c(p,N) such that for every u ∈ D(RN),

||u||Lp∗
(RN) ≤ c||∇u||Lp(RN).

Proof Let u ∈ C1(RN) be such that spt u is compact. It follows from the
fundamental theorem of calculus that for 1 ≤ j ≤ N and x ∈ R

N ,

∣∣u(x)
∣∣ ≤ 1

2

∫
R

∣∣∂ju(x)
∣∣dxj .

By the preceding lemma,

∫
RN

∣∣u(x)
∣∣N/(N−1)

dx ≤
N∏

j=1

[
1

2

∫
RN

∣∣∂ju(x)
∣∣dx

]1/(N−1)

.

Hence we obtain

||u||N/(N−1) ≤ 1

2

N∏
j=1

||∂ju||1/N1 ≤ c
N
||∇u||1.

For p > 1, we define q = (N − 1)p∗/N > 1. Let u ∈ D(RN). The preceding
inequality applied to |u|q and Hölder’s inequality imply that

(∫
|u|p∗

dx

)N−1
N ≤ q c

N

∫
RN

|u|q−1|∇u|dx

≤ q c
N

(∫
RN

|u|(q−1)p′
dx

)1/p′ (∫
RN

|∇u|pdx

)1/p
.

It is easy to conclude the proof. ��

Lemma 6.4.3 (Morrey’s Inequalities) Let N < p < ∞ and λ = 1 − N/p. Then
there exists a constant c = c(p,N) such that for every u ∈ D(RN) and every
x, y ∈ R

N ,
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∣∣u(x) − u(y)
∣∣ ≤ c|x − y|λ‖∇u‖Lp(RN),

‖u‖∞ ≤ c‖u‖W 1,p(RN).

Proof Let u ∈ D(RN), and let us define B = B(a, r), a ∈ R
N, r > 0, and

�
u = 1

m(B)

∫
B

u dx.

We assume that 0 ∈ B̄. It follows from the fundamental theorem of calculus and
Fubini’s theorem that

∣∣∣∣
�

u − u(0)

∣∣∣∣ ≤ 1

m(B)

∫
B

∣∣u(x) − u(0)
∣∣dx

≤ 1

m(B)

∫
B

dx

∫ 1

0

∣∣∇u(tx)
∣∣ |x|dt

≤ 2r

m(B)

∫ 1

0
dt

∫
B

∣∣∇u(tx)
∣∣dx

= 2r

m(B)

∫ 1

0

dt

tN

∫
B(ta,tr)

∣∣∇u(y)
∣∣dy.

Hölder’s inequality implies that

∣∣∣∣
�

u − u(0)

∣∣∣∣ ≤ 2r

m(B)

∫ 1

0
m
(
B(ta, tr)

)1/p′ dt

tN
‖∇u‖Lp(B) = 2

λV
1/p
N

rλ‖∇u‖Lp(B).

After a translation, we obtain that, for every x ∈ B[a, r],
∣∣∣∣
�

u − u(x)

∣∣∣∣ ≤ cλr
λ‖∇u‖Lp(B).

Let x ∈ R
N . Choosing a = x and r = 1, we find

|u(x)| ≤
∣∣∣∣
�

u

∣∣∣∣+ cλ‖∇u‖Lp(B) ≤ c
(‖u‖Lp(B) + ‖∇u‖Lp(B)

)
.

Let x, y ∈ R
N . Choosing a = (x + y)/2 and r = |x − y|/2, we obtain

|u(x) − u(y)| ≤ 21−λcλ|x − y|λ‖∇u‖Lp(B). ��
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Notation We define

C0(Ω) = {u∣∣
Ω

: u ∈ C0(R
N)}.

Theorem 6.4.4 (Sobolev’s Embedding Theorem, 1936–1938) Let Ω be an open
subset of RN of class C1 with a bounded boundary or the product of N open
intervals.

(a) If 1 ≤ p < N and if p ≤ q ≤ p∗, then W 1,p(Ω) ⊂ Lq(Ω), and the canonical
injection is continuous.

(b) If N < p < ∞ and λ = 1 − N/p, then W 1,p(Ω) ⊂ C0(Ω), the canonical
injection is continuous, and there exists c = c(p,Ω) such that for every u ∈
W 1,p(Ω) and all x, y ∈ Ω ,

∣∣u(x) − u(y)
∣∣ ≤ c||u||W 1,p(Ω)|x − y|λ.

Proof Let 1 ≤ p < N and u ∈ W 1,p(RN). By Theorem 6.1.10, there exists a
sequence (un) ⊂ D(RN) such that un → u in W 1,p(RN).

We can assume that un → u almost everywhere on R
N . It follows from Fatou’s

lemma and Sobolev’s inequality that

||u||Lp∗
(RN) ≤ lim

n→∞ ||un||Lp∗
(RN) ≤ c lim

n→∞ ||∇un||Lp(RN) = c||∇u||Lp(RN).

Let P be the extension operator corresponding to Ω and v ∈ W 1,p(Ω). We have

||v||Lp∗
(Ω) ≤ ||Pv||Lp∗

(RN) ≤ c||∇Pv||Lp(RN) ≤ c1||v||W 1,p(Ω).

If p ≤ q ≤ p∗, we define 0 ≤ λ ≤ 1 by

1

q
= 1 − λ

p
+ λ

p∗ ,

and we infer from the interpolation inequality that

||v||Lq(Ω) ≤ ||v||1−λ
Lp(Ω)||v||λ

Lp∗
(Ω)

≤ cλ
1 ||v||W 1,p(Ω).

The case p > N follows from Morrey’s inequalities. ��

Lemma 6.4.5 Let Ω be an open subset of RN such that m(Ω) < +∞, and let
1 ≤ p ≤ r < +∞. Assume that X is a closed subspace of W 1,p(Ω) such that
X ⊂ Lr(Ω). Then, for every 1 ≤ q < r,X ⊂ Lq(Ω) and the canonical injection is
compact.
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Proof The closed graph theorem implies the existence of c > 0 such that, for every
u ∈ X,

‖u‖Lr(Ω) ≤ c‖u‖W 1,p(Ω).

Our goal is to prove that

S = {u ∈ X : ‖u‖W 1,p(Ω) ≤ 1}

is precompact in Lq(Ω) for 1 ≤ q < r . Let 1/q = 1−λ+λ/r . By the interpolation
inequality, for every u ∈ S,

‖u‖Lq(Ω) ≤ ‖u‖λ
Lr (Ω)‖u‖1−λ

L1(Ω)
≤ cλ‖u‖1−λ

L1(Ω)
.

Hence it suffices to prove that S is precompact in L1(Ω).
Let us verify that S satisfies the assumptions of M. Riesz’s theorem in L1(Ω):

(a) It follows from Hölder’s inequality that, for every u ∈ S,

‖u‖L1(Ω) ≤ ‖u‖Lr(Ω)m(Ω)1−1/r ≤ cm(Ω)1−1/r .

(b) Similarly, we have that, for every u ∈ S,

∫
Ω\ωk

|u|dx ≤ ‖u‖Lr(Ω)m(Ω\ωk)
1−1/r ≤ cm(Ω\ωk)

1−1/r

where

ωk = {x ∈ Ω : d(x, ∂Ω) > 1/k}.

Lebesgue’s dominated convergence theorem implies that

lim
k→∞ m(Ω\ωk) = 0.

(c) Let ω ⊂⊂ Ω . Assume that |y| < d(ω, ∂Ω) and u ∈ C∞(Ω) ∩ W 1,p(Ω).

Since, by the fundamental theorem of calculus,

∣∣∣τyu(x) − u(x)

∣∣∣ =
∣∣∣∣
∫ 1

0
y · ∇u(x − ty)dt

∣∣∣∣ ≤ |y|
∫ 1

0

∣∣∣∇u(x − ty)

∣∣∣dt,

we obtain
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‖τyu − u‖L1(ω) ≤ |y|
∫

ω

dx

∫ 1

0

∣∣∣∇u(x − ty)

∣∣∣dt

= |y|
∫ 1

0
dt

∫
ω

∣∣∣∇u(x − ty)

∣∣∣dx

= |y|
∫ 1

0
dt

∫
ω−ty

∣∣∣∇u(z)

∣∣∣dz ≤ |y| ‖∇u‖L1(Ω).

Using Corollary 6.1.18, we conclude by density that, for every u ∈ S,

‖τyu − u‖L1(ω) ≤ ‖∇u‖L1(Ω)|y| ≤ ‖∇u‖Lp(Ω)m(Ω)1−1/p|y| ≤ c1|y|. ��

Theorem 6.4.6 (Rellich–Kondrachov Embedding Theorem) Let Ω be a
bounded open subset of RN of class C1 or the product of N bounded open intervals:

(a) If 1 ≤ p < N and 1 ≤ q < p∗, then W 1,p(Ω) ⊂ Lq(Ω), and the canonical
injection is compact.

(b) If N < p < ∞, then W 1,p ⊂ C0(Ω̄), and the canonical injection is compact.

Proof Let 1 ≤ p < N, 1 ≤ q < p∗. It suffices to use Sobolev’s embedding
theorem and the preceding lemma.

The case p > N follows from Ascoli’s theorem and Sobolev’s embedding
theorem. ��

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré’s Inequality in W
1,p
0 ) Let 1 ≤ p < ∞, and let Ω be an

open subset of RN such that Ω ⊂ R
N−1×]0, a[. Then for every u ∈ W

1,p
0 (Ω),

||u||Lp(Ω) ≤ a

2
||∇u||Lp(Ω).

Proof Let 1<p<∞ and v ∈ D(]0, a[). The fundamental theorem of calculus and
Hölder’s inequality imply that for 0 < x < a,

∣∣v(x)
∣∣ ≤ 1

2

∫ a

0

∣∣v′(t)
∣∣dt ≤ a1/p

′

2

∣∣∣
∫ a

0

∣∣v′(t)
∣∣pdt

∣∣∣1/p.

Hence we obtain

∫ a

0

∣∣v(x)
∣∣pdx ≤ ap/p′

2p
a

∫ a

0

∣∣v′(x)
∣∣pdx = ap

2p

∫ a

0

∣∣v′(x)
∣∣pdx.
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If u ∈ D(Ω), we infer from the preceding inequality and from Fubini’s theorem
that

∫
Ω

|u|pdx =
∫
RN−1

dx′
∫ a

0

∣∣u(x′, x
N
)
∣∣pdx

N

≤ ap

2p

∫
RN−1

dx′
∫ a

0

∣∣∂
N
u(x′, x

N
)
∣∣pdx

N

= ap

2p

∫
Ω

|∂
N
u|pdx.

It is easy to conclude by density. The case p = 1 is similar. ��

Definition 6.4.8 A metric space is connected if the only open and closed subsets of
X are φ and X.

Theorem 6.4.9 (Poincaré’s Inequality in W 1,p) Let 1 ≤ p < ∞, and let Ω be
a bounded open connected subset of RN . Assume that Ω is of class C1. Then there
exists c = c(p,Ω), such that, for every u ∈ W 1,p(Ω),

∥∥∥u −
�

u

∥∥∥
Lp(Ω)

≤ c‖∇u‖Lp(Ω),

where
�

u = 1

m(Ω)

∫
Ω

u dx.

Assume that Ω is convex. Then, for every u ∈ W 1,p(Ω),

∥∥∥u −
�

u

∥∥∥
Lp(Ω)

≤ 2N/p d ‖∇u‖Lp(Ω),

where d = sup
x,y∈Ω

|x − y|.

Proof Assume that Ω is of class C1. It suffices to prove that

λ = inf
{
‖∇u‖p : u ∈ W 1,p(Ω),

�
u = 0, ‖u‖p = 1

}
> 0.

Let (un) ⊂ W 1,p(Ω) be a minimizing sequence :

‖un‖p = 1,
�

un = 0, ‖∇un‖p → λ.
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By the Rellich–Kondrachov theorem, we can assume that un → u in Lp(Ω). Hence
‖u‖p = 1 and

�
u = 0. If λ = 0, then, by the closing lemma, ∇u = 0. Since Ω is

connected, u = � u = 0. This is a contradiction.
Assume now that Ω is convex and that u ∈ C∞(Ω)

⋂
W 1,p(Ω). Hölder’s

inequality implies that

∫
Ω

∣∣∣u(y) −
�

u

∣∣∣pdy ≤
∫

Ω

dy

[∫
Ω

|u(x) − u(y)|
m(Ω)

dx

]p

≤ 1

m(Ω)

∫
Ω

dy

∫
Ω

∣∣∣u(x) − u(y)

∣∣∣pdx.

It follows from the fundamental theorem of calculus and Hölder’s inequality that

∫
Ω

dy

∫
Ω

∣∣∣u(x) − u(y)

∣∣∣pdx ≤ dp

∫
Ω

dy

∫
Ω

dx

[∫ 1

0

∣∣∣∇u((1 − t)x + ty)

∣∣∣dt

]p

≤ dp

∫
Ω

dy

∫
Ω

dx

∫ 1

0

∣∣∣∇u((1 − t)x + ty)

∣∣∣pdt

= 2dp

∫
Ω

dy

∫
Ω

dx

∫ 1/2

0

∣∣∣∇u((1 − t)x + ty)

∣∣∣pdt

= 2dp

∫
Ω

dy

∫ 1/2

0
dt

∫
Ω

∣∣∣∇u((1 − t)x + ty)

∣∣∣pdx

≤ 2Ndp

∫
Ω

dy

∫
Ω

∣∣∣∇u(z)

∣∣∣pdz.

We obtain that
∫

Ω

∣∣∣u(y) −
�

u

∣∣∣pdy ≤ 2Ndp

∫
Ω

∣∣∣∇u(y)

∣∣∣pdy.

We conclude by density, using Corollary 6.1.18. ��

Theorem 6.4.10 (Hardy’s Inequality) Let 1 < p < N . Then for every u ∈
W 1,p(RN), u/|x| ∈ Lp(RN) and

||u/|x|||Lp(RN) ≤ p

N − p
||∇u||Lp(RN).

Proof Let u ∈ D(RN) and v ∈ D(RN ;RN). We infer from Lemma 6.1.1 that

∫
RN

|u|pdiv v dx = −p

∫
RN

|u|p−2u∇u · v dx.

Approximating v(x) = x/|x|p by vε(x) = x/(|x|2 + ε)p/2, we obtain
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(N − p)

∫
RN

|u|p/|x|pdx = −p

∫
RN

|u|p−2u∇u · x/|x|pdx.

Hölder’s inequality implies that

∫
RN

|u|p/|x|pdx ≤ p

N − p

(∫
RN

|u|(p−1)p′
/|x|pdx

)1/p′ (∫
RN

|∇u|pdx

)1/p

= p

N − p

(∫
RN

|u|p/|x|pdx

)1−1/p (∫
RN

|∇u|pdx

)1/p
.

We have thus proved Hardy’s inequality in D(RN). Let u ∈ W 1,p(RN). Theo-
rem 6.1.10 ensures the existence of a sequence (un) ⊂ D(RN) such that un → u in
W 1,p(RN). We can assume that un → u almost everywhere on R

N . We conclude
using Fatou’s lemma that

||u/|x|||p ≤ lim
n→∞ ||un/|x|||p ≤ p

N − p
lim

n→∞ ||∇un||p = p

N − p
||∇u||p. ��

Fractional Sobolev spaces are interpolation spaces between Lp(Ω) and W 1,p(Ω).

Definition 6.4.11 Let 1 ≤ p < ∞, 0 < s < 1, and u ∈ Lp(Ω). We define

|u|Ws,p(Ω) = |u|s,p =
(∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p
≤ +∞.

On the fractional Sobolev space

Ws,p(Ω) = {u ∈ Lp(Ω) : |u|Ws,p(Ω) < +∞},

we define the norm

||u||Ws,p(Ω) = ||u||s,p = ||u||Lp(Ω) + |u|Ws,p(Ω).

We give, without proof, the characterization of traces due to Gagliardo [26].

Theorem 6.4.12 Let 1 < p < ∞.

(a) For every u ∈ W 1,p(RN), γ0u ∈ W 1−1/p,p(RN−1).
(b) The mapping γ0 : W 1,p(RN) → W 1−1/p,p(RN−1) is continuous and

surjective.
(c) The mapping γ0 : W 1,1(RN) → L1(RN−1) is continuous and surjective.
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6.5 Comments

The main references on Sobolev spaces are the books:

– R. Adams and J. Fournier, Sobolev spaces [1]
– H. Brezis, Analyse fonctionnelle, théorie et applications [8]
– V. Maz’ya, Sobolev spaces with applications to elliptic partial differential

equations [51]

Our proof of the trace inequality follows closely:

– A.C. Ponce, Elliptic PDEs, measures, and capacities, European Mathematical
Society, 2016

The theory of partial differential equations was at the origin of Sobolev spaces.
We recommend [9] on the history of partial differential equations and [55] on the
prehistory of Sobolev spaces.

Because of Poincaré’s inequalities, for every smooth, bounded open connected
set Ω , we have that

λ1(Ω) = inf

{∫
Ω

|∇u|2dx : u ∈ H 1
0 (Ω),

∫
Ω

u2dx = 1

}
> 0,

μ2(Ω) = inf

{∫
Ω

|∇u|2dx : u ∈ H 1(Ω),

∫
Ω

u2dx = 1,
∫

Ω

udx = 0

}
> 0.

Hence the first eigenvalue λ1(Ω) of Dirichlet’s problem

{−Δu = λu in Ω,

u = 0 on ∂Ω,

and the second eigenvalue μ2(Ω) of the Neumann problem

{ −Δu = λu in Ω,

n · ∇u = 0 on ∂Ω,

are strictly positive. Let us denote by B an open ball such that m(B) = m(Ω). Then

λ1(B) ≤ λ1(Ω) (Faber–Krahn inequality),
μ2(Ω) ≤ μ2(B) (Weinberger, 1956).

Moreover, if Ω is convex with diameter d, then

π2/d2 ≤ μ2(Ω) (Payne–Weinberger, 1960).

We prove in Theorem 6.4.9 the weaker estimate
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1/(2Nd2) ≤ μ2(Ω).

There exists a bounded, connected open setΩ ⊂ R
2 such that μ2(Ω) = 0. Consider

on two sides of a square Q, two infinite sequences of small squares connected to Q

by very thin pipes.

6.6 Exercises for Chap. 6

1. Let Ω = B(0, 1) ⊂ R
N . Then for λ �= 0,

(λ − 1)p + N > 0 ⇐⇒ |x|λ ∈ W 1,p(Ω),

λp + N < 0 ⇐⇒ |x|λ ∈ W 1,p(RN \ Ω),

p < N ⇐⇒ x

|x| ∈ W 1,p(Ω;RN).

2. Let 1 < p < ∞ and u ∈ Lp(Ω). The following properties are equivalent:

(a) u ∈ W 1,p(Ω);

(b) sup

{∫
Ω

u div v dx : v ∈ D(Ω,RN), ||v||
Lp′

(Ω)
= 1

}
< ∞;

(c) there exists c > 0 such that for every ω ⊂⊂ Ω and for every y ∈ R
N such

that |y| < d(ω, ∂Ω),

||τyu − u||Lp(ω) ≤ c|y|.

3. Let 1 ≤ p < N and let Ω be an open subset of RN . Define

S(Ω) = inf
u ∈ D(Ω)

||u||Lp∗
(Ω) = 1

||∇u||Lp(Ω).

Then S(Ω) = S(RN).
4. Let 1 ≤ p < N . Then

1

2N
S(RN) = inf

{
||∇u||Lp(RN+ )/||u||Lp∗

(RN+ ) : u ∈ H 1(RN+) \ {0}
}

.

5. Poincaré–Sobolev inequality.

(a) Let 1 < p < N , and let Ω be an open bounded connected subset of RN of
class C1. Then there exists c > 0 such that for every u ∈ W 1,p(Ω),
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∣∣∣∣
∣∣∣∣u − �

∫
u

∣∣∣∣
∣∣∣∣
Lp∗

(Ω)

≤ c||∇u||Lp(Ω),

where �
∫

u = 1

m(Ω)

∫
Ω

u dx. Hint: Apply Theorem 6.4.4 to u − �

∫
u.

(b) Let A = {u = 0} and assume that m(A) > 0. Then

‖u‖Lp∗
(Ω) ≤ c

(
1 +
[m(Ω)

m(A)

]1/p∗)
‖∇u‖Lp(Ω).

Hint:

∣∣∣�
∫

u

∣∣∣m(A)1/p
∗ ≤ ‖u − �

∫
u‖Lp∗

(Ω).

6. Nash’s inequality. Let N ≥ 3. Then for every u ∈ D(RN),

||u||2+4/N
2 ≤ c||u||4/N1 ||∇u||22.

Hint: Use the interpolation inequality.

7. Let 1 ≤ p < N and q = p(N − 1)/(N − p). Then for every u ∈ D(RN+),

∫
RN−1

∣∣u(x′, 0)
∣∣qdx′ ≤ q||u||q−1

Lp∗
(RN+ )

||∂
N
u||Lp(RN+ ).

8. Verify that Hardy’s inequality is optimal using the family

uε(x) = 1, |x| ≤ 1,

= |x| p−N
p

−ε
, |x| > 1.

9. Let 1 ≤ p < N . Then D(RN \ {0}) is dense in W 1,p(RN).
10. Let 2 ≤ N < p < ∞. Then for every u ∈ W

1,p
0 (RN \ {0}), u/|x| ∈ Lp(RN)

and

||u/|x|||Lp(RN) ≤ p

p − N
||∇u||Lp(RN).

11. Let 1 ≤ p < ∞. Verify that the embedding W 1,p(RN) ⊂ Lp(RN) is not
compact. Let 1 ≤ p < N . Verify that the embedding W

1,p
0 (B(0, 1)) ⊂

Lp∗
(B(0, 1)) is not compact.

12. Let us denote by Dr (R
N) the space of radial functions in D(RN). Let N ≥ 2

and 1 ≤ p < ∞. Then there exists c(N, p) > 0 such that for every u ∈
Dr (R

N),
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∣∣u(x)
∣∣ ≤ c(N, p)||u||1/p′

p ||∇u||1/pp |x|(1−N)/p.

Let 1 ≤ p < N . Then there exists d(N, p) > 0 such that for every u ∈
Dr (R

N),

∣∣u(x)
∣∣ ≤ d(N, p)||∇u||p|x|(p−N)/p.

Hint: Let us write u(x) = u(r), r = |x|, so that

rN−1
∣∣u(r)

∣∣p ≤ p

∫ ∞

r

∣∣u(s)
∣∣p−1∣∣du

dr
(s)
∣∣sN−1ds,

∣∣u(r)
∣∣ ≤
∫ ∞

r

∣∣∣du

dr
(s)

∣∣∣ds.

13. Let us denote by W
1,p
r (RN) the space of radial functions in W 1,p(RN). Verify

that the space Dr (R
N) is dense in W

1,p
r (RN).

14. Let 1 ≤ p < N and p < q < p∗. Verify that the embedding W
1,p
r (RN) ⊂

Lq(RN) is compact. Verify also that the embedding W
1,p
r (RN) ⊂ Lp(RN) is

not compact.
15. Let 1 ≤ p < ∞ and let Ω be an open subset of RN . Prove that the map

W 1,p(Ω) → W 1,p(Ω) : u �→ u+

is continuous. Hint: ∇u+ = H(u)∇u, where

H(t) = 1, t > 0,
= 0, t ≤ 0.

16. Sobolev implies Poincaré. Let Ω be an open subset of RN (N ≥ 2) such that
m(Ω) < +∞, and let 1 ≤ p < +∞. Then there exists c = c(p,N) such that,
for every u ∈ W

1,p
0 (Ω),

‖u‖p ≤ c m(Ω)1/N‖∇u‖p.

Hint. (a) If 1 ≤ p < N , then

‖u‖p ≤ m(Ω)1/N‖u‖p∗ ≤ c m(Ω)1/N‖∇u‖p.

(b) If p ≥ N , then

‖u‖p = ‖u‖q∗ ≤ c‖∇u‖q ≤ c m(Ω)1/N‖∇u‖p.
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17. Let Ω be an open bounded convex subset of R
N,N ≥ 2, and u ∈

C1(Ω)
⋂

W 1,1(Ω). Then, for every x ∈ Ω ,

∣∣∣∣u(x) −
�

u

∣∣∣∣ ≤ 1

N

dN

m(Ω)

∫
Ω

|∇u(y)|
|y − x|N−1 dy,

where
�

u = 1

m(Ω)

∫
Ω

u(x)dx and d = sup
x,y ∈ Ω

|y − x|.
Hint. Define

v(y) = |∇u(y)| , y ∈ Ω,

= 0 , y ∈ R
N\Ω.

(a) u(x) − u(y) =
∫ |y−x|

0
∇u(x + rσ ) · σdr, σ = y − x

|y − x| .
(b)

m(Ω)

∣∣∣u(x) −
�

u

∣∣∣ ≤
∫

Ω

dy

∫ |y−x|

0
v(x + rσ )dr

=
∫

ω−x

dz

∫ |z|

0
v

(
x + r

z

|z|
)

dr

≤
∫
SN−1

dσ

∫ d

0
ρN−1dρ

∫ ∞

0
v(x + rσ )dr

= dN

N

∫
RN

v(x + z)

|z|N−1
dz.

18. Let us define, for every bounded connected open subset Ω of RN , and for 1 ≤
p < ∞,

λ(p,Ω) = inf

{
‖∇u‖p : u ∈ W 1,p(Ω),

�
u = 0, ‖u‖p = 1

}
.

For every 1 ≤ p < ∞, there exists a bounded connected open subset Ω of R2

such that λ(p,Ω) = 0.
Hint. Consider on two sides of a square Q two infinite sequences of small
squares connected to Q by very thin pipes.

19. Prove that, for every 1 ≤ p < ∞,

inf
{
λ(p,Ω) : Ω is a smooth bounded connected open subset of R

2, m(Ω) = 1
}

= 0.
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Hint. Consider a sequence of pairs of disks smoothly connected by very thin
pipes.

20. Generalized Poincaré’s inequality. Let 1 ≤ p < ∞, let Ω be a smooth bounded
connected open subset of RN , and let f ∈ [W 1,p(Ω)]∗ be such that

< f, 1 >= 1.

Then there exists c > 0 such that, for every u ∈ W 1,p(Ω),

‖u− < f, u > ‖p ≤ c‖∇u‖p.
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