Chapter 6 Sobolev Spaces

6.1 Weak Derivatives

Throughout this chapter, we denote by Ω an open subset of \mathbb{R}^N . We begin with an elementary computation.

Lemma 6.1.1 Let $1 \leq |\alpha| \leq m$ and let $f \in C^m(\Omega)$. Then for every $u \in C^m(\Omega) \cap \mathcal{K}(\Omega)$,

$$\int_{\Omega} f D^{\alpha} u \, dx = (-1)^{|\alpha|} \int_{\Omega} (D^{\alpha} f) u \, dx.$$

Proof We assume that $\alpha = (0, ..., 0, 1)$. Let $u \in C^1(\Omega) \cap \mathcal{K}(\Omega)$, and define

$$g(x) = f(x)u(x), x \in \Omega,$$

= 0, $x \in \mathbb{R}^N \setminus \Omega.$

The fundamental theorem of calculus implies that for every $x' \in \mathbb{R}^{N-1}$,

$$\int_{\mathbb{R}} D^{\alpha} g(x', x_N) dx_N = 0.$$

Fubini's theorem ensures that

$$\int_{\Omega} (f D^{\alpha} u + (D^{\alpha} f)u) dx = \int_{\mathbb{R}^N} D^{\alpha} g \, dx = \int_{\mathbb{R}^{N-1}} dx' \int_{\mathbb{R}} D^{\alpha} g \, dx_N = 0$$

When $|\alpha| = 1$, the proof is similar. It is easy to conclude the proof by induction.

Weak derivatives were defined by S.L. Sobolev in 1938.

© Springer Nature Switzerland AG 2022 M. Willem, *Functional Analysis*, Cornerstones, https://doi.org/10.1007/978-3-031-09149-0_6 **Definition 6.1.2** Let $\alpha \in \mathbb{N}^N$ and $f \in L^1_{loc}(\Omega)$. By definition, the weak derivative of order α of f exists if there is $g \in L^1_{loc}(\Omega)$ such that for every $u \in \mathcal{D}(\Omega)$,

$$\int_{\Omega} f D^{\alpha} u \, dx = (-1)^{|\alpha|} \int_{\Omega} g u \, dx.$$

The function g, if it exists, will be denoted by $\partial^{\alpha} f$.

By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3 Assume that $\partial^{\alpha} f$ exists. On

$$\Omega_n = \{ x \in \Omega : d(x, \partial \Omega) > 1/n \},\$$

we have that

$$D^{\alpha}(\rho_n * f) = \rho_n * \partial^{\alpha} f.$$

Proof We deduce from Proposition 4.3.6 and from the preceding definition that for every $x \in \Omega_n$,

$$D^{\alpha}(\rho_n * f)(x) = \int_{\Omega} D_x^{\alpha} \rho_n(x - y) f(y) dy$$

= $(-1)^{|\alpha|} \int_{\Omega} D_y^{\alpha} \rho_n(x - y) f(y) dy$
= $(-1)^{2|\alpha|} \int_{\Omega} \rho_n(x - y) \partial^{\alpha} f(y) dy$
= $\rho_n * \partial^{\alpha} f(x).$

Theorem 6.1.4 (du Bois–Reymond Lemma) Let $|\alpha| = 1$ and let $f \in C(\Omega)$ be such that $\partial^{\alpha} f \in C(\Omega)$. Then $D^{\alpha} f$ exists and $D^{\alpha} f = \partial^{\alpha} f$.

Proof By the preceding proposition, we have

$$D^{\alpha}(\rho_n * f) = \rho_n * \partial^{\alpha} f.$$

The fundamental theorem of calculus implies then that

$$\rho_n * f(x + \varepsilon \alpha) = \rho_n * f(x) + \int_0^{\varepsilon} \rho_n * \partial^{\alpha} f(x + t\alpha) dt.$$

By the regularization theorem,

$$\rho_n * f \to f, \quad \rho_n * \partial^\alpha f \to \partial^\alpha f$$

uniformly on every compact subset of Ω . Hence we obtain

$$f(x + \varepsilon \alpha) = f(x) + \int_0^{\varepsilon} \partial^{\alpha} f(x + t\alpha) dt,$$

so that $\partial^{\alpha} f = D^{\alpha} f$ by the fundamental theorem of calculus.

Notation From now on, the derivatives of a continuously differentiable function will also be denoted by ∂^{α} .

Let us prove the *closing lemma*. The *graph* of the weak derivative is closed in $L^1_{loc} \times L^1_{loc}$.

Lemma 6.1.5 Let $(f_n) \subset L^1_{loc}(\Omega)$ and let $\alpha \in \mathbb{N}^N$ be such that in $L^1_{loc}(\Omega)$,

$$f_n \to f, \quad \partial^\alpha f_n \to g$$

Then $g = \partial^{\alpha} f$. **Proof** For every $u \in \mathcal{D}(\Omega)$, we have by definition that

$$\int_{\Omega} f_n \partial^{\alpha} u \, dx = (-1)^{|\alpha|} \int_{\Omega} (\partial^{\alpha} f_n) u \, dx.$$

Since by assumption,

$$\left|\int_{\Omega} (f_n - f) \partial^{\alpha} u \, dx\right| \le ||\partial^{\alpha} u||_{\infty} \int_{\text{spt } u} |f_n - f| dx \to 0$$

and

$$\left|\int_{\Omega} (\partial^{\alpha} f_n - g) u \, dx\right| \leq ||u||_{\infty} \int_{\text{spt } u} |\partial^{\alpha} f_n - g| dx \to 0,$$

we obtain

$$\int_{\Omega} f \partial^{\alpha} u \, dx = (-1)^{|\alpha|} \int_{\Omega} g u \, dx.$$

Example (Weak Derivative) If $-N < \lambda \le 1$, the function $f(x) = |x|^{\lambda}$ is locally integrable on \mathbb{R}^N . We approximate f by

$$f_{\varepsilon}(x) = \left(|x|^2 + \varepsilon\right)^{\lambda/2}, \quad \varepsilon > 0.$$

Then $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^N)$ and

$$\partial_k f_{\varepsilon}(x) = \lambda x_k \left(|x|^2 + \varepsilon \right)^{\frac{\lambda - 2}{2}},$$
$$\left| \partial_k f_{\varepsilon}(x) \right| \le \lambda |x|^{\lambda - 1}.$$

If $\lambda > 1 - N$, we obtain in $L^1_{loc}(\mathbb{R}^N)$ that

$$f_{\varepsilon}(x) \to f(x) = |x|^{\lambda},$$

 $\partial_k f_{\varepsilon}(x) \to g(x) = \lambda x_k |x|^{\lambda - 2}.$

Hence $\partial_k f(x) = \lambda |x|^{\lambda - 2} x_k$.

Definition 6.1.6 The *gradient* of the (weakly) differentiable function u is defined by

$$\nabla u = (\partial_1 u, \ldots, \partial_N u).$$

The *divergence* of the (weakly) differentiable vector field $v = (v_1, \ldots, v_N)$ is defined by

div
$$v = \partial_1 v_1 + \ldots + \partial_N v_N$$
.

Let $1 \le p < \infty$ and $u \in L^1_{loc}(\Omega)$ be such that $\partial_j u \in L^p(\Omega)$, j = 1, ..., N. We define

$$||\nabla u||_{L^p(\Omega)} = \left(\int_{\Omega} |\nabla u|^p dx\right)^{1/p} = \left(\int_{\Omega} \left|\sum_{j=1}^N (\partial_j u)^2\right|^{p/2} dx\right)^{1/p}$$

Theorem 6.1.7 Let $1 and let <math>(u_n) \subset L^1_{loc}(\Omega)$ be such that

(a) $u_n \to u$ in $L^1_{loc}(\Omega)$; (b) for every $n, \nabla u_n \in L^p(\Omega; \mathbb{R}^N)$; (c) $c = \sup_n ||\nabla u_n||_p < \infty$.

Then $\nabla u \in L^p(\Omega; \mathbb{R}^N)$ and

$$||\nabla u||_p \leq \lim_{n \to \infty} ||\nabla u_n||_p.$$

Proof We define f on $\mathcal{D}(\Omega; \mathbb{R}^N)$ by

6.1 Weak Derivatives

$$\langle f, v \rangle = \int_{\Omega} u \operatorname{div} v \, dx.$$

We have that

$$\begin{split} |\langle f, v \rangle| &= \lim_{n \to \infty} |\int_{\Omega} u_n \operatorname{div} v \, dx| \\ &= \lim_{n \to \infty} |\int_{\Omega} \nabla u_n \cdot v \, dx| \\ &\leq \lim_{n \to \infty} ||\nabla u_n||_p \left(\int_{\Omega} |v|^{p'} dx \right)^{1/p'} \end{split}$$

Since $\mathcal{D}(\Omega)$ is dense in $L^{p'}(\Omega)$, Proposition 3.2.3 implies the existence of a continuous extension of f to $L^{p'}(\Omega; \mathbb{R}^N)$. By Riesz's representation theorem, there exists $g \in L^p(\Omega; \mathbb{R}^N)$ such that for every $v \in \mathcal{D}(\Omega; \mathbb{R}^N)$,

$$\int_{\Omega} g \cdot v \, dx = \langle f, v \rangle = \int_{\Omega} u \, \mathrm{div} \, v \, dx.$$

Hence $\nabla u = -g \in L^p(\Omega; \mathbb{R}^N)$. Choosing $v = |\nabla u|^{p-2} \nabla u$, we find that

$$\begin{split} \int_{\Omega} |\nabla u|^{p} dx &= \int_{\Omega} \nabla u \cdot v \, dx \leq \lim_{n \to \infty} ||\nabla u_{n}||_{p} \left(\int_{\Omega} |v|^{p'} dx \right)^{1/p'} \\ &= \lim_{n \to \infty} ||\nabla u_{n}||_{p} \left(\int_{\Omega} |\nabla u|^{p} dx \right)^{1-1/p}. \end{split}$$

Sobolev spaces are spaces of differentiable functions with integral norms. In order to define complete spaces, we use weak derivatives.

Definition 6.1.8 Let $k \ge 1$ and $1 \le p < \infty$. On the Sobolev space

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : \text{ for every } |\alpha| \le k, \, \partial^{\alpha} u \in L^p(\Omega) \},\$$

we define the norm

$$||u||_{W^{k,p}(\Omega)} = ||u||_{k,p} = \left(\sum_{|\alpha| \le k} \int_{\Omega} |\partial^{\alpha} u|^{p} dx\right)^{1/p}$$

On the space $H^k(\Omega) = W^{k,2}(\Omega)$, we define the scalar product

$$(u \mid v)_{H^{k}(\Omega)} = \sum_{|\alpha| \le k} (\partial^{\alpha} u \mid \partial^{\alpha} v)_{L^{2}(\Omega)}.$$

The Sobolev space $W_{loc}^{k,p}(\Omega)$ is defined by

$$W_{\text{loc}}^{k,p}(\Omega) = \{ u \in L_{\text{loc}}^p(\Omega) : \text{ for all } \omega \subset \Omega, u \Big|_{\omega} \in W^{k,p}(\omega) \}.$$

A sequence (u_n) converges to u in $W^{k,p}_{loc}(\Omega)$ if for every $\omega \subset \subset \Omega$,

$$|u_n - u||_{W^{k,p}(\omega)} \to 0, \quad n \to \infty.$$

The space $W_0^{k,p}(\Omega)$ is the closure of $\mathcal{D}(\Omega)$ in $W^{k,p}(\Omega)$. We denote by $H_0^k(\Omega)$ the space $W_0^{k,2}(\Omega)$.

Theorem 6.1.9 Let $k \ge 1$ and $1 \le p < \infty$. Then the spaces $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$ are complete and separable.

Proof Let $M = \sum_{|\alpha| \le k} 1$. The space $L^p(\Omega; \mathbb{R}^M)$ with the norm

$$||(v_{\alpha})||_{p} = \left(\sum_{|\alpha| \le k} \int_{\Omega} |v_{\alpha}|^{p} dx\right)^{1/p}$$

is complete and separable. The map

$$\Phi: W^{k,p}(\Omega) \to L^p(\Omega; \mathbb{R}^M) : u \mapsto (\partial^{\alpha} u)_{|\alpha| \le k}$$

is a linear isometry: $||\Phi(u)||_p = ||u||_{k,p}$. By the closing lemma, $\Phi(W^{k,p}(\Omega))$ is a closed subspace of $L^p(\Omega; \mathbb{R}^M)$. It follows that $W^{k,p}(\Omega)$ is complete and separable. Since $W_0^{k,p}(\Omega)$ is a closed subspace of $W^{k,p}(\Omega)$, it is also complete and separable.

Theorem 6.1.10 Let $1 \le p < \infty$. Then $W_0^{1,p}(\mathbb{R}^N) = W^{1,p}(\mathbb{R}^N)$.

Proof It suffices to prove that $\mathcal{D}(\mathbb{R}^N)$ is dense in $W^{1,p}(\mathbb{R}^N)$. We use regularization and truncation.

Regularization Let $u \in W^{1,p}(\mathbb{R}^N)$ and define $u_n = \rho_n * u$. By Proposition 4.3.6, $u_n \in C^{\infty}(\mathbb{R}^N)$. Proposition 4.3.14 implies that in $L^p(\mathbb{R}^N)$,

$$u_n \to u, \, \partial_k u_n = \rho_n * \partial_k u \to \partial_k u.$$

We conclude that $W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N)$ is dense in $W^{1,p}(\mathbb{R}^N)$.

Truncation Let $\theta \in C^{\infty}(\mathbb{R})$ be such that $0 \le \theta \le 1$ and

$$\begin{aligned} \theta(t) &= 1, \quad t \leq 1, \\ &= 0, \quad t \geq 2. \end{aligned}$$

We define the sequence

$$\theta_n(x) = \theta(|x|/n).$$

Let $u \in W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N)$. It is clear that $u_n = \theta_n u \in \mathcal{D}(\mathbb{R}^N)$. It follows easily from Lebesgue's dominated convergence theorem that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$. \Box

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of Variables) Let Ω and ω be open subsets of \mathbb{R}^N , $G: \omega \to \Omega$ a diffeomorphism, and $u \in W^{1,1}_{loc}(\Omega)$. Then $u \circ G \in W^{1,1}_{loc}(\omega)$ and

$$\frac{\partial}{\partial y_k}(u \circ G) = \sum_j \frac{\partial u}{\partial x_j} \circ G \quad \frac{\partial G_j}{\partial y_k}.$$

Proof Let $v \in \mathcal{D}(\omega)$ and $u_n = \rho_n * u$. By Lemma 6.1.1, for *n* large enough, we have

$$\int_{\omega} u_n \circ G(y) \ \frac{\partial v}{\partial y_k}(y) dy = -\int_{\omega} \sum_j \frac{\partial u_n}{\partial x_j} \circ G(y) \ \frac{\partial G_j}{\partial y_k}(y) \ v(y) dy. \tag{*}$$

It follows from Theorem 2.4.5 with $H = G^{-1}$ that

$$\int_{\Omega} u_n(x) \frac{\partial v}{\partial y_k} \circ H(x) |\det H'(x)| dx$$

= $-\int_{\Omega} \sum_j \frac{\partial u_n}{\partial x_j} (x) \frac{\partial G_j}{\partial y_k} \circ H(x) v \circ H(x) |\det H'(x)| dx.$ (**)

The regularization theorem implies that in $L^1_{loc}(\Omega)$,

$$u_n \to u, \quad \frac{\partial u_n}{\partial x_j} \to \frac{\partial u}{\partial x_j}.$$

Taking the limit, it is permitted to replace u_n by u in (**). But then it is also permitted to replace u_n by u in (*), and the proof is complete.

Proposition 6.1.12 (Derivative of a Product) Let $u \in W^{1,1}_{loc}(\Omega)$ and $f \in C^{1}(\Omega)$. Then $f u \in W^{1,1}_{loc}(\Omega)$ and

$$\partial_k(fu) = f \partial_k u + (\partial_k f) u$$

Proof Let $u_n = \rho_n * u$, so that by the classical rule of derivative of a product,

$$\partial_k(f u_n) = (\partial_k f) u_n + f \partial_k u_n$$

It follows from the regularization theorem that

$$f u_n \to f u, \partial_k (f u_n) \to (\partial_k f) u + f \partial_k u$$

in $L^1_{loc}(\Omega)$. We conclude by invoking the closing lemma.

Proposition 6.1.13 (Derivative of the Composition of Functions) Let $u \in W_{\text{loc}}^{1,1}(\Omega)$, and let $f \in C^1(\mathbb{R})$ be such that $c = \sup_{\mathbb{R}} |f'| < \infty$. Then $f \circ u \in W_{\text{loc}}^{1,1}(\Omega)$ and

$$\partial_k(f \circ u) = f' \circ u \ \partial_k u$$

Proof We define $u_n = \rho_n * u$, so that by the classical rule,

$$\partial_k(f \circ u_n) = f' \circ u_n \ \partial_k u_n.$$

We choose $\omega \subset \subset \Omega$. By the regularization theorem, we have in $L^1(\omega)$,

$$u_n \to u, \quad \partial_k u_n \to \partial_k u.$$

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that $u_n \rightarrow u$ almost everywhere on ω . We obtain

$$\int_{\omega} |f \circ u_n - f \circ u| dx \le c \int_{\omega} |u_n - u| dx \to 0,$$
$$\int_{\omega} |f' \circ u_n \partial_k u_n - f' \circ u \partial_k u| dx \le c \int_{\omega} |\partial_k u_n - \partial_k u| dx + \int_{\omega} |f' \circ u_n - f' \circ u| |\partial_k u| dx \to 0.$$

Hence in $L^1(\omega)$,

$$f \circ u_n \to f \circ u, \quad f' \circ u_n \ \partial_k u_n \to f' \circ u \ \partial_k u.$$

Since $\omega \subset \subset \Omega$ is arbitrary, we conclude the proof by invoking the closing lemma.

On \mathbb{R} , we define

6.1 Weak Derivatives

$$sgn(t) = t/|t|, \quad t \neq 0$$
$$= 0, \quad t = 0.$$

Corollary 6.1.14 Let $g : \mathbb{R} \to \mathbb{R}$ be such that $c = \sup_{\mathbb{R}} |g| < \infty$ and, for some sequence $(g_n) \subset C(\mathbb{R})$, $g(t) = \lim_{n \to \infty} g_n(t)$ everywhere on \mathbb{R} . Define

$$f(t) = \int_0^t g(s) ds.$$

Then, for every $u \in W^{1,1}_{loc}(\Omega)$, $f \circ u \in W^{1,1}_{loc}(\Omega)$ and

$$\nabla(f \circ u) = (g \circ u)\nabla u.$$

In particular u^+ , u^- , $|u| \in W^{1,1}_{loc}(\Omega)$ and

$$\nabla u^+ = \chi_{\{u>0\}} \nabla u, \, \nabla u^- = -\chi_{\{u<0\}} \nabla u, \, \chi_{\{u=0\}} \nabla u = 0, \, \nabla |u| = (\operatorname{sgn} u) \nabla u.$$

Proof We can assume that $\sup_{n \in \mathbb{R}} \sup_{n \in \mathbb{R}} |g_n| \le c$. We define $f_n(t) = \int_0^t g_n(s) ds$. The preceding proposition implies that

$$\nabla(f_n \circ u) = (g_n \circ u) \nabla u$$

Since, in $L^1_{loc}(\Omega)$, by Lebesgue's dominated convergence theorem,

$$f_n \circ u \to f \circ u, (g_n \circ u) \nabla u \to (g \circ u) \nabla u$$

the closing lemma implies that

$$\nabla(f \circ u) = (g \circ u)\nabla u.$$

Corollary 6.1.15 Let $1 \le p < \infty$ and let $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ be such that u = 0on $\partial \Omega$. Then $u \in W_0^{1,p}(\Omega)$.

Proof It is easy to prove by regularization that $W^{1,p}(\Omega) \cap \mathcal{K}(\Omega) \subset W_0^{1,p}(\Omega)$. Assume that spt *u* is bounded. Let $f \in C^1(\mathbb{R})$ be such that $|f(t)| \le |t|$ on \mathbb{R} ,

$$f(t) = 0, \quad |t| \le 1,$$

= t, $|t| \ge 2.$

Define $u_n = f(n u)/n$. Then $u_n \in \mathcal{K}(\Omega)$, and by the preceding proposition, $u_n \in W^{1,p}(\Omega)$. By Lebesgue's dominated convergence theorem, $u_n \to u$ in $W^{1,p}(\Omega)$, so that $u \in W_0^{1,p}(\Omega)$.

If spt *u* is unbounded, we define $u_n = \theta_n u$ where (θ_n) is defined in the proof of Theorem 6.1.10. Then spt u_n is bounded. By Lebesgue's dominated convergence theorem, $u_n \to u$ in $W^{1,p}(\Omega)$, so that $u \in W_0^{1,p}(\Omega)$.

Proposition 6.1.16 Let Ω be an open subset of \mathbb{R}^N . Then there exist a sequence (U_n) of open subsets of Ω and a sequence of functions $\psi_n \in \mathcal{D}(U_n)$ such that

- (a) for every $n, U_n \subset \Omega$ and $\psi_n \ge 0$; (b) $\sum_{n=1}^{\infty} \psi_n = 1 \text{ on } \Omega$;
- (c) for every $\omega \subset \subset \Omega$ there exists m_{ω} such that for $n > m_{\omega}$ we have $U_n \cap \omega = \phi$.

Proof Let us define $\omega_{-1} = \omega_0 = \phi$, and for $n \ge 1$,

$$\omega_n = \{ x \in \Omega : d(x, \partial \Omega) > 1/n \text{ and } |x| < n \},\$$

$$K_n = \overline{\omega_n} \setminus \omega_{n-1},\$$

$$U_n = \omega_{n+1} \setminus \overline{\omega_{n-2}}.$$

The theorem of partitions of unity implies the existence of $\varphi_n \in \mathcal{D}(U_n)$ such that $0 \le \varphi_n \le 1$ and $\varphi_n = 1$ on K_n . It suffices then to define

$$\psi_n = \varphi_n / \sum_{j=1}^{\infty} \varphi_j.$$

Theorem 6.1.17 (Hajłasz) Let $1 \le p < \infty$, $u \in W^{1,p}_{loc}(\Omega)$, and $\varepsilon > 0$. Then there exists $v \in C^{\infty}(\Omega)$ such that

(a) $v - u \in W_0^{1, p}(\Omega);$ (b) $||v - u||_{W^{1, p}(\Omega)} < \varepsilon.$

Proof Let (U_n) and (ψ_n) be given by the preceding proposition. For every $n \ge 1$, there exists k_n such that

$$v_n = \rho_{k_n} * (\psi_n u) \in \mathcal{D}(U_n)$$

and

$$||v_n - \psi_n u||_{1,p} < \varepsilon/2^n.$$

By Proposition 3.1.6, $\sum_{n=1}^{\infty} (v_n - \psi_n u)$ converges to w in $W_0^{1, p}(\Omega)$. On the other hand, we have on $\omega \subset \Omega$ that

$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{m_{\omega}} v_n \in C^{\infty}(\omega), \quad \sum_{n=1}^{\infty} \psi_n u = u.$$

Setting $v = \sum_{n=1}^{\infty} v_n$, we conclude that

$$||v - u||_{1,p} = ||w||_{1,p} \le \sum_{n=1}^{\infty} ||v_n - \psi_n u||_{1,p} < \varepsilon.$$

Corollary 6.1.18 (Deny–Lions) Let $1 \leq p < \infty$. Then $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ is dense in $W^{1,p}(\Omega)$.

6.2 Cylindrical Domains

Let U be an open subset of \mathbb{R}^{N-1} and $0 < r \leq \infty$. Define

$$\Omega = U \times] - r, r[, \quad \Omega_+ = U \times]0, r[.$$

The extension by reflection of a function in $W^{1,p}(\Omega_+)$ is a function in $W^{1,p}(\Omega)$.

For every $u : \Omega_+ \to \mathbb{R}$, we define on Ω :

$$\rho u(x', x_N) = u\left(x', |x_N|\right), \quad \sigma u(x', x_N) = (\operatorname{sgn} x_N)u\left(x', |x_N|\right).$$

Lemma 6.2.1 (Extension by Reflection) Let $1 \le p < \infty$ and $u \in W^{1,p}(\Omega_+)$. Then $\rho u \in W^{1,p}(\Omega)$, $\partial_k(\rho u) = \rho(\partial_k u)$, $1 \le k \le N - 1$, and $\partial_N(\rho u) = \sigma(\partial_N u)$, so that

$$||\rho u||_{L^{p}(\Omega)} = 2^{1/p} ||u||_{L^{p}(\Omega_{+})}, \quad ||\rho u||_{W^{1,p}(\Omega)} = 2^{1/p} ||u||_{W^{1,p}(\Omega_{+})}.$$

Proof Let $v \in \mathcal{D}(\Omega)$. Then by a change of variables,

$$\int_{\Omega} (\rho u) \partial_N v \, dx = \int_{\Omega_+} u \, \partial_N w \, dx, \qquad (*)$$

where

$$w(x', x_N) = v(x', x_N) - v(x', -x_N).$$

A truncation argument will be used. Let $\eta \in C^{\infty}(\mathbb{R})$ be such that

$$\eta(t) = 0, \quad t < 1/2,$$

= 1, $t > 1,$

and define η_n on Ω_+ by

$$\eta_n(x) = \eta(n x_N).$$

The definition of weak derivative ensures that

$$\int_{\Omega_+} u \,\partial_{_N}(\eta_n w) dx = -\int_{\Omega_+} (\partial_{_N} u) \eta_n w \,dx, \qquad (**)$$

where

$$\partial_N(\eta_n w) = \eta_n \partial_N w + n\eta'(n x_N) w.$$

Since w(x', 0) = 0, $w(x', x_N) = h(x', x_N)x_N$, where

$$h(x', x_N) = \int_0^1 \partial_N w(x', t x_N) dt.$$

Lebesgue's dominated convergence theorem implies that

$$\left| \int_{\Omega_+} n \eta'(n x_N) w \, u \, dx \right| = \left| \int_{U \times [0, 1/n[} n \eta'(n x_N) h x_N u \, dx \right|$$
$$\leq ||\eta'||_{\infty} \int_{U \times [0, 1/n[} |hu| dx \to 0, \quad n \to \infty.$$

Taking the limit in (**), we obtain

$$\int_{\Omega_+} u \, \partial_N w \, dx = -\int_{\Omega_+} (\partial_N u) w \, dx = -\int_{\Omega} \sigma(\partial_N u) v \, dx.$$

It follows from (*) that

$$\int_{\Omega} (\rho u) \partial_N v \, dx = -\int_{\Omega} \sigma(\partial_N u) v \, dx.$$

Since $v \in \mathcal{D}(\Omega)$ is arbitrary, $\partial_N(\rho u) = \sigma(\partial_N u)$. By a similar but simpler argument, $\partial_k(\rho u) = \rho(\partial_k u), 1 \le k \le N - 1$.

It makes no sense to define an L^p function on a set of measure zero. We will define the trace of a $W^{1,p}$ function on the boundary of a smooth domain. We first consider the case of \mathbb{R}^N_+ .

Notation We define

$$\mathcal{D}(\overline{\Omega}) = \{ u |_{\Omega} : u \in \mathcal{D}(\mathbb{R}^N) \},\$$

$$\mathbb{R}^{N}_{+} = \{ (x', x_{N}) : x' \in \mathbb{R}^{N-1}, x_{N} > 0 \}.$$

Lemma 6.2.2 (Trace Inequality) Let $1 \le p < \infty$. Then for every $u \in \mathcal{D}(\overline{\mathbb{R}^N_+})$,

$$\int_{\mathbb{R}^{N-1}} |u(x',0)|^p dx' \le p ||u||_{L^p(\mathbb{R}^N_+)}^{p-1} ||\partial_N u||_{L^p(\mathbb{R}^N_+)}^p$$

Proof The fundamental theorem of calculus implies that for all $x' \in \mathbb{R}^{N-1}$,

$$\left|u(x',0)\right|^{p} \leq p \int_{0}^{\infty} \left|u(x',x_{N})\right|^{p-1} \left|\partial_{N}u(x',x_{N})\right| dx_{N}.$$

When 1 , using Fubini's theorem and Hölder's inequality, we obtain

$$\begin{split} \int_{\mathbb{R}^{N-1}} \left| u(x',0) \right|^p dx' &\leq p \int_{\mathbb{R}^N_+} |u|^{p-1} |\partial_N u| dx \\ &\leq p \left(\int_{\mathbb{R}^N_+} |u|^{(p-1)p'} dx \right)^{1/p'} \left(\int_{\mathbb{R}^N_+} |\partial_N u|^p dx \right)^{1/p} \\ &= p \left(\int_{\mathbb{R}^N_+} |u|^p dx \right)^{1-1/p} \left(\int_{\mathbb{R}^N_+} |\partial_N u|^p dx \right)^{1/p}. \end{split}$$

The case p = 1 is similar.

Proposition 6.2.3 Let $1 \le p < \infty$. Then there exists one and only one continuous linear mapping $\gamma_0 : W^{1,p}(\mathbb{R}^N_+) \to L^p(\mathbb{R}^{N-1})$ such that for every $u \in \mathcal{D}(\mathbb{R}^N_+)$, $\gamma_0 u = u(., 0)$.

Proof Let $u \in \mathcal{D}(\overline{\mathbb{R}^N_+})$ and define $\gamma_0 u = u(., 0)$. The preceding lemma implies that

$$||\gamma_0 u||_{L^p(\mathbb{R}^{N-1})} \le p^{1/p} ||u||_{W^{1,p}(\mathbb{R}^N_+)}.$$

The space $\mathcal{D}(\overline{\mathbb{R}^N_+})$ is dense in $W^{1,p}(\mathbb{R}^N_+)$ by Theorem 6.1.10 and Lemma 6.2.1. By Proposition 3.2.3, γ_0 has a unique continuous linear extension to $W^{1,p}(\mathbb{R}^N_+)$.

Proposition 6.2.4 (Integration by Parts) Let $1 \le p < \infty$, $u \in W^{1,p}(\mathbb{R}^N_+)$, and $v \in \mathcal{D}(\overline{\mathbb{R}^N_+})$. Then

$$\int_{\mathbb{R}^N_+} v \,\partial_N u \,dx = -\int_{\mathbb{R}^N_+} (\partial_N v) u \,dx - \int_{\mathbb{R}^{N-1}} \gamma_0 v \,\gamma_0 u \,dx',$$

and

$$\int_{\mathbb{R}^N_+} v \partial_k u \, dx = -\int_{\mathbb{R}^N_+} (\partial_k v) u \, dx, \quad 1 \le k \le N-1.$$

Proof Assume, moreover, that $u \in \mathcal{D}(\overline{\mathbb{R}^N_+})$. Integrating by parts, we obtain for all $x' \in \mathbb{R}^{N-1}$,

$$\int_0^\infty v(x', x_N) \partial_N u(x', x_N) dx_N = -\int_0^\infty \partial_N v(x', x_N) u(x', x_N) dx_N - v(x', 0) u(x', 0).$$

Fubini's theorem implies that

$$\int_{\mathbb{R}^N_+} v \,\partial_N u \,dx = -\int_{\mathbb{R}^N_+} \partial_N v u \,dx - \int_{\mathbb{R}^{N-1}} v(x',0)u(x',0)dx'.$$

Let $u \in W^{1,p}(\mathbb{R}^N_+)$. Since $\mathcal{D}(\overline{\mathbb{R}^N_+})$ is dense in $W^{1,p}(\mathbb{R}^N_+)$, there exists a sequence $(u_n) \subset \mathcal{D}(\overline{\mathbb{R}^N_+})$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N_+)$. By the preceding lemma, $\gamma_0 u_n \to \gamma_0 u$ in $L^p(\mathbb{R}^{N-1})$. It is easy to finish the proof.

The proof of the last formulas is similar.

Notation For every $u : \mathbb{R}^N_+ \to \mathbb{R}$, we define \overline{u} on \mathbb{R}^N by

$$\overline{u}(x', x_N) = u(x', x_N), \quad x_N > 0,$$

= 0,
$$x_N \le 0.$$

Proposition 6.2.5 Let $1 \le p < \infty$ and $u \in W^{1,p}(\mathbb{R}^N_+)$. The following properties are equivalent:

(a) $u \in W_0^{1,p}(\mathbb{R}^N_+);$ (b) $\gamma_0 u = 0;$ (c) $\overline{u} \in W^{1,p}(\mathbb{R}^N)$ and $\partial_k \overline{u} = \overline{\partial_k u}, 1 \le k \le N.$

Proof If $u \in W_0^{1,p}(\mathbb{R}^N_+)$, there exists $(u_n) \subset \mathcal{D}(\mathbb{R}^N_+)$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N_+)$. Hence $\gamma_0 u_n = 0$ and $\gamma_0 u_n \to \gamma_0 u$ in $L^p(\mathbb{R}^{N-1})$, so that $\gamma_0 u = 0$.

If $\gamma_0 u = 0$, it follows from the preceding proposition that for every $v \in \mathcal{D}(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} v \ \overline{\partial_k u} \ dx = -\int_{\mathbb{R}^N} \partial_k v \ \overline{u} \ dx, \quad 1 \le k \le N.$$

We conclude that (c) is satisfied.

Assume that (c) is satisfied. We define $u_n = \theta_n \overline{u}$, where (θ_n) is defined in the proof of Theorem 6.1.10. It is clear that $u_n \to \overline{u}$ in $W^{1,p}(\mathbb{R}^N)$ and spt $u_n \subset B[0, 2n] \cap \overline{\mathbb{R}^N_+}$.

We can assume that spt u_n is a compact subset of $\overline{\mathbb{R}^N_+}$. We define $y_n = (0, \ldots, 0, 1/n)$ and $v_n = \tau_{y_n} \overline{u}$. Since $\partial_k v_n = \tau_{y_n} \partial_k \overline{u}$, the lemma of continuity of translations implies that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N_+)$.

We can assume that spt u is a compact subset of \mathbb{R}^N_+ . For n large enough, $\rho_n * u \in \mathcal{D}(\mathbb{R}^N_+)$. Since $\rho_n * u \to u$ is in $W^{1,p}(\mathbb{R}^N)$, we conclude that $u \in W_0^{1,p}(\mathbb{R}^N)$. \Box

6.3 Smooth Domains

In this section we consider an open subset $\Omega = \{\varphi < 0\}$ of \mathbb{R}^N of class C^1 with a bounded boundary Γ . We use the notations of Definition 9.4.1.

Let $\gamma \in \Gamma$. Since $\nabla \varphi(\gamma) \neq 0$, we can assume that, after a permutation of variables, $\partial_N \varphi(\gamma) \neq 0$. By Theorem 9.1.1 there exist r > 0, R > 0, and

$$\beta \in C^1(B(\gamma', R) \times] - r, r[)$$

such that, for $|x' - \gamma'| < R$ and |t| < r, we have

$$\varphi(x', x_N) = t \quad \Leftrightarrow \quad x_N = \beta(x', t)$$

and the set

$$U_{\gamma} = \left\{ \left(x', \beta(x', t) \right) \colon |x' - \gamma'| < R, |t| < r \right\}$$

is an open neighborhood of γ . Moreover

$$\Omega \cap U_{\gamma} = \left\{ \left(x', \beta(x', t) \right) \colon |x' - \gamma'| < R, -r < t < 0 \right\}$$

and

$$\Gamma \cap U_{\gamma} = \Big\{ \big(x', \beta(x', 0) \big) \colon |x' - \gamma'| < R \Big\}.$$

The Borel-Lebesgue theorem implies the existence of a finite covering U_1, \ldots, U_k of Γ by open subsets satisfying the above properties. There exists a partition of unity ψ_1, \ldots, ψ_k subordinate to this covering.

Theorem 6.3.1 (Extension Theorem) Let $1 \leq p < \infty$ and let Ω be an open subset of \mathbb{R}^N of class C^1 with a bounded boundary or the product of N open intervals. Then there exists a continuous linear mapping

$$P: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)$$

such that $Pu|_{\Omega} = u$.

Proof Let Ω be an open subset of \mathbb{R}^N of class C^1 with a bounded boundary, and let $u \in W^{1,p}(\Omega)$. Proposition 6.1.11 and Lemma 6.2.1 imply that

$$P_U u(x) = u(x', \beta(x', -|\varphi(x', x_N)|)) \in W^{1, p}(U).$$

Moreover,

$$||P_U u||_{W^{1,p}(U)} \le a_U ||u||_{W^{1,p}(\Omega)}.$$
(*)

We define $\psi_0 = 1 - \sum_{j=1}^k \psi_j$,

$$u_0 = \psi_0 u, \quad x \in \Omega, = 0, \qquad x \in \mathbb{R}^N \setminus \Omega,$$

and for $1 \le j \le k$,

$$u_j = P_{U_j}(\psi_j u), \quad x \in U_j, \\ = 0, \qquad x \in \mathbb{R}^N \setminus U_j.$$

Formula (*) and Proposition 6.1.12 ensure that for $0 \le j \le k$,

$$||u_j||_{W^{1,p}(\mathbb{R}^N)} \leq b_j||u||_{W^{1,p}(\Omega)}.$$

(The support of $\nabla \psi_0$ is compact!) Hence

$$Pu = \sum_{j=0}^{k} u_j \in W^{1,p}(\mathbb{R}^N), \quad ||Pu||_{W^{1,p}(\mathbb{R}^N)} \le c||u||_{W^{1,p}(\Omega)},$$

and for all $x \in \Omega$,

$$Pu(x) = \sum_{j=0}^{k} \psi_j(x)u(x) = u(x).$$

If Ω is the product of N open intervals, it suffices to use a finite number of extensions by reflections and a truncation.

Theorem 6.3.2 (Density Theorem in Sobolev Spaces) Let $1 \le p < \infty$ and let Ω be an open subset of \mathbb{R}^N of class C^1 with a bounded boundary or the product of N open intervals. Then the space $\mathcal{D}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.

Proof Let $u \in W^{1,p}(\Omega)$. Theorem 6.1.10 implies the existence of a sequence $(v_n) \subset \mathcal{D}(\mathbb{R}^N)$ converging to Pu in $W^{1,p}(\mathbb{R}^N)$. Hence $u_n = v_n|_{\Omega}$ converges to u in $W^{1,p}(\Omega)$.

Theorem 6.3.3 (Trace Inequality) Let Ω be an open subset of \mathbb{R}^N of class C^1 with a bounded boundary Γ . Then there exist a > 0 and b > 0 such that, for $1 \le p < \infty$ and for every $u \in \mathcal{D}(\overline{\Omega})$,

$$\int_{\Gamma} |u|^p d\gamma \le a \|u\|_{L^p(\Omega)}^p + bp\|u\|_{L^p(\Omega)}^{p-1} \|\nabla u\|_{L^p(\Omega)}$$

Proof Let $1 , <math>u \in \mathcal{D}(\overline{\Omega})$, and $v \in C^{\infty}(\mathbb{R}^N; \mathbb{R}^N)$. Since

$$\operatorname{div}|u|^{p}v = |u|^{p}\operatorname{div}v + pu|u|^{p-2}\nabla u \cdot v$$

the divergence theorem implies that

$$\int_{\Gamma} |u|^{p} v \cdot n d\gamma = \int_{\Omega} \left[|u|^{p} \operatorname{div} v + p u |u|^{p-2} \nabla u \cdot v \right] dx.$$

Assume that $1 \le v \cdot n$ on Γ . Using Hölder's inequality, we obtain that, for 1 ,

$$\begin{split} \int_{\Gamma} |u|^{p} d\gamma &\leq \int_{\Gamma} |u|^{p} v \cdot n d\gamma \leq a \int_{\Omega} |u|^{p} dx + bp \int_{\Omega} |u|^{p-1} |\nabla u| dx \\ &\leq a \int_{\Omega} |u|^{p} dx + bp \left(\int_{\Omega} |u|^{(p-1)p'} dx \right)^{1/p'} \left(\int_{\Omega} |\nabla u|^{p} dx \right)^{1/p} \\ &= a \int_{\Omega} |u|^{p} dx + bp \left(\int_{\Omega} |u|^{p} dx \right)^{1-1/p} \left(\int_{\Omega} |\nabla u|^{p} dx \right)^{1/p}, \end{split}$$

where $a = \|\operatorname{div} v\|_{\infty}$ and $b = \|v\|_{\infty}$.

When $p \downarrow 1$, it follows from Lebesgue's dominated convergence theorem that

$$\int_{\Gamma} |u| d\gamma \le a \int_{\Omega} |u| dx + b \int_{\Omega} |\nabla u| dx.$$

Let us construct an admissible vector field v. Let $U = \{x \in \mathbb{R}^N : \nabla \varphi(x) \neq 0\}$. The theorem of partition of unity implies the existence of $\psi \in \mathcal{D}(U)$ such that $\psi = 1$ on Γ . We define the vector field w by

$$w(x) = \psi(x) \frac{\nabla \varphi(x)}{|\nabla \varphi(x)|}, \quad x \in U$$
$$= 0, \qquad x \in \mathbb{R}^N \setminus U$$

For *n* large enough, the C^{∞} vector field $\nu = 2\rho_n * w$ is such that $1 \le \nu \cdot n$ on Γ .

Theorem 6.3.4 Under the assumptions of Theorem 6.3.3, there exists one and only one continuous linear mapping

$$\gamma: W^{1,p}(\Omega) \to L^p(\Gamma)$$

such that for all $u \in \mathcal{D}(\bar{\Omega}), \gamma_0 u = u \Big|_{\Gamma}$.

Proof It suffices to use the trace inequality, Proposition 3.2.3, and the density theorem in Sobolev spaces. \Box

Theorem 6.3.5 (Divergence Theorem) Let Ω be an open subset of \mathbb{R}^N of class C^1 with a bounded boundary Γ and $\nu \in W^{1,1}(\Omega; \mathbb{R}^N)$. Then

$$\int_{\Omega} \operatorname{div} \nu dx = \int_{\Gamma} \gamma_0 \nu \cdot n d\gamma$$

Proof When $\nu \in \mathcal{D}(\overline{\Omega}; \mathbb{R}^N)$, the proof is given in Section 9.4. In the general case, it suffices to use the density theorem in Sobolev spaces and the trace theorem. \Box

6.4 Embeddings

Let $1 \le p, q < \infty$. If there exists c > 0 such that for every $u \in \mathcal{D}(\mathbb{R}^N)$,

$$||u||_{L^q(\mathbb{R}^N)} \le c||\nabla u||_{L^p(\mathbb{R}^N)},$$

then necessarily

$$q = p^* = Np/(N-p).$$

Indeed, replacing u(x) by $u_{\lambda}(x) = u(\lambda x)$, $\lambda > 0$, we find that

$$||u||_{L^q(\mathbb{R}^N)} \le c\lambda^{\left(1+\frac{N}{q}-\frac{N}{p}\right)} ||\nabla u||_{L^p(\mathbb{R}^N)},$$

so that $q = p^*$.

We define for $1 \le j \le N$ and $x \in \mathbb{R}^N$,

$$\widehat{x_j} = (x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_N).$$

Lemma 6.4.1 (Gagliardo's Inequality) Let $N \ge 2$ and $f_1, \ldots, f_N \in L^{N-1}(\mathbb{R}^{N-1})$. Then $f(x) = \prod_{j=1}^N f_j(\widehat{x_j}) \in L^1(\mathbb{R}^N)$ and $||f||_{L^1(\mathbb{R}^N)} \le \prod_{j=1}^N ||f_j||_{L^{N-1}(\mathbb{R}^{N-1})}.$

Proof We use induction. When N = 2, the inequality is clear. Assume that the inequality holds for $N \ge 2$. Let $f_1, \ldots, f_{N+1} \in L^N(\mathbb{R}^N)$ and

$$f(x, x_{N+1}) = \prod_{j=1}^{N} f_j(\widehat{x_j}, x_{N+1}) f_{N+1}(x).$$

It follows from Hölder's inequality that for almost every $x_{N+1} \in \mathbb{R}$,

$$\begin{split} \int_{\mathbb{R}^N} |f(x, x_{N+1})| dx &\leq \left[\int_{\mathbb{R}^N} \prod_{j=1}^N |f_j(\widehat{x_j}, x_{N+1})|^{N'} dx \right]^{1/N'} ||f_{N+1}||_{L^N(\mathbb{R}^N)} \\ &\leq \prod_{j=1}^N \left[\int_{\mathbb{R}^{N-1}} |f_j(\widehat{x_j}, x_{N+1})|^N d\widehat{x_j} \right]^{1/N} ||f_{N+1}||_{L^N(\mathbb{R}^N)}. \end{split}$$

The generalized Hölder inequality implies that

$$\begin{split} ||f||_{L^{1}(\mathbb{R}^{N+1})} &\leq \prod_{j=1}^{N} \left[\int_{\mathbb{R}^{N}} \left| f_{j}(\widehat{x_{j}}, x_{N+1}) \right|^{N} d\widehat{x_{j}} dx_{N+1} \right]^{1/N} ||f_{N+1}||_{L^{N}(\mathbb{R}^{N})} \\ &= \prod_{j=1}^{N+1} ||f_{j}||_{L^{N}(\mathbb{R}^{N})}. \end{split}$$

Lemma 6.4.2 (Sobolev's Inequalities) Let $1 \le p < N$. Then there exists a constant c = c(p, N) such that for every $u \in \mathcal{D}(\mathbb{R}^N)$,

$$||u||_{L^{p^*}(\mathbb{R}^N)} \leq c||\nabla u||_{L^p(\mathbb{R}^N)}.$$

Proof Let $u \in C^1(\mathbb{R}^N)$ be such that spt u is compact. It follows from the fundamental theorem of calculus that for $1 \le j \le N$ and $x \in \mathbb{R}^N$,

$$|u(x)| \leq \frac{1}{2} \int_{\mathbb{R}} |\partial_j u(x)| dx_j.$$

By the preceding lemma,

$$\int_{\mathbb{R}^N} |u(x)|^{N/(N-1)} dx \leq \prod_{j=1}^N \left[\frac{1}{2} \int_{\mathbb{R}^N} |\partial_j u(x)| dx \right]^{1/(N-1)}$$

Hence we obtain

$$||u||_{N/(N-1)} \le \frac{1}{2} \prod_{j=1}^{N} ||\partial_j u||_1^{1/N} \le c_N^{-1} ||\nabla u||_1.$$

For p > 1, we define $q = (N - 1)p^*/N > 1$. Let $u \in \mathcal{D}(\mathbb{R}^N)$. The preceding inequality applied to $|u|^q$ and Hölder's inequality imply that

$$\left(\int |u|^{p^*} dx\right)^{\frac{N-1}{N}} \le q \ c_N \int_{\mathbb{R}^N} |u|^{q-1} |\nabla u| dx$$
$$\le q \ c_N \left(\int_{\mathbb{R}^N} |u|^{(q-1)p'} dx\right)^{1/p'} \left(\int_{\mathbb{R}^N} |\nabla u|^p dx\right)^{1/p}.$$

It is easy to conclude the proof.

Lemma 6.4.3 (Morrey's Inequalities) Let $N and <math>\lambda = 1 - N/p$. Then there exists a constant c = c(p, N) such that for every $u \in \mathcal{D}(\mathbb{R}^N)$ and every $x, y \in \mathbb{R}^N$,

$$|u(x) - u(y)| \le c|x - y|^{\lambda} ||\nabla u||_{L^p(\mathbb{R}^N)},$$
$$||u||_{\infty} \le c||u||_{W^{1,p}(\mathbb{R}^N)}.$$

Proof Let $u \in \mathcal{D}(\mathbb{R}^N)$, and let us define $B = B(a, r), a \in \mathbb{R}^N, r > 0$, and

$$\int u = \frac{1}{m(B)} \int_B u \, dx.$$

We assume that $0 \in \overline{B}$. It follows from the fundamental theorem of calculus and Fubini's theorem that

$$\begin{split} \left| \int u - u(0) \right| &\leq \frac{1}{m(B)} \int_{B} \left| u(x) - u(0) \right| dx \\ &\leq \frac{1}{m(B)} \int_{B} dx \int_{0}^{1} \left| \nabla u(tx) \right| \left| x \right| dt \\ &\leq \frac{2r}{m(B)} \int_{0}^{1} dt \int_{B} \left| \nabla u(tx) \right| dx \\ &= \frac{2r}{m(B)} \int_{0}^{1} \frac{dt}{t^{N}} \int_{B(ta,tr)} \left| \nabla u(y) \right| dy. \end{split}$$

Hölder's inequality implies that

$$\left| \int u - u(0) \right| \le \frac{2r}{m(B)} \int_0^1 m \left(B(ta, tr) \right)^{1/p'} \frac{dt}{t^N} \| \nabla u \|_{L^p(B)} = \frac{2}{\lambda V_N^{1/p}} r^\lambda \| \nabla u \|_{L^p(B)}.$$

After a translation, we obtain that, for every $x \in B[a, r]$,

$$\left|\int u - u(x)\right| \le c_{\lambda} r^{\lambda} \|\nabla u\|_{L^{p}(B)}$$

Let $x \in \mathbb{R}^N$. Choosing a = x and r = 1, we find

$$|u(x)| \leq |\int u| + c_{\lambda} ||\nabla u||_{L^{p}(B)} \leq c (||u||_{L^{p}(B)} + ||\nabla u||_{L^{p}(B)}).$$

Let $x, y \in \mathbb{R}^N$. Choosing a = (x + y)/2 and r = |x - y|/2, we obtain

$$|u(x) - u(y)| \le 2^{1-\lambda} c_{\lambda} |x - y|^{\lambda} \|\nabla u\|_{L^{p}(B)}.$$

Notation We define

$$C_0(\overline{\Omega}) = \{u|_{\Omega} : u \in C_0(\mathbb{R}^N)\}.$$

Theorem 6.4.4 (Sobolev's Embedding Theorem, 1936–1938) Let Ω be an open subset of \mathbb{R}^N of class C^1 with a bounded boundary or the product of N open intervals.

- (a) If $1 \le p < N$ and if $p \le q \le p^*$, then $W^{1,p}(\Omega) \subset L^q(\Omega)$, and the canonical injection is continuous.
- (b) If $N and <math>\lambda = 1 N/p$, then $W^{1,p}(\Omega) \subset C_0(\overline{\Omega})$, the canonical injection is continuous, and there exists $c = c(p, \Omega)$ such that for every $u \in W^{1,p}(\Omega)$ and all $x, y \in \Omega$,

$$|u(x) - u(y)| \le c ||u||_{W^{1,p}(\Omega)} |x - y|^{\lambda}.$$

Proof Let $1 \leq p < N$ and $u \in W^{1,p}(\mathbb{R}^N)$. By Theorem 6.1.10, there exists a sequence $(u_n) \subset \mathcal{D}(\mathbb{R}^N)$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$.

We can assume that $u_n \to u$ almost everywhere on \mathbb{R}^N . It follows from Fatou's lemma and Sobolev's inequality that

$$||u||_{L^{p^*}(\mathbb{R}^N)} \leq \lim_{n \to \infty} ||u_n||_{L^{p^*}(\mathbb{R}^N)} \leq c \lim_{n \to \infty} ||\nabla u_n||_{L^p(\mathbb{R}^N)} = c ||\nabla u||_{L^p(\mathbb{R}^N)}.$$

Let P be the extension operator corresponding to Ω and $v \in W^{1,p}(\Omega)$. We have

$$||v||_{L^{p^{*}}(\Omega)} \leq ||Pv||_{L^{p^{*}}(\mathbb{R}^{N})} \leq c||\nabla Pv||_{L^{p}(\mathbb{R}^{N})} \leq c_{1}||v||_{W^{1,p}(\Omega)}.$$

If $p \le q \le p^*$, we define $0 \le \lambda \le 1$ by

$$\frac{1}{q} = \frac{1-\lambda}{p} + \frac{\lambda}{p^*},$$

and we infer from the interpolation inequality that

$$||v||_{L^{q}(\Omega)} \leq ||v||_{L^{p}(\Omega)}^{1-\lambda} ||v||_{L^{p^{*}}(\Omega)}^{\lambda} \leq c_{1}^{\lambda} ||v||_{W^{1,p}(\Omega)}.$$

The case p > N follows from Morrey's inequalities.

Lemma 6.4.5 Let Ω be an open subset of \mathbb{R}^N such that $m(\Omega) < +\infty$, and let $1 \leq p \leq r < +\infty$. Assume that X is a closed subspace of $W^{1,p}(\Omega)$ such that $X \subset L^r(\Omega)$. Then, for every $1 \leq q < r, X \subset L^q(\Omega)$ and the canonical injection is compact.

Proof The closed graph theorem implies the existence of c > 0 such that, for every $u \in X$,

$$||u||_{L^{r}(\Omega)} \leq c ||u||_{W^{1,p}(\Omega)}.$$

Our goal is to prove that

$$S = \{u \in X : ||u||_{W^{1,p}(\Omega)} \le 1\}$$

is precompact in $L^q(\Omega)$ for $1 \le q < r$. Let $1/q = 1 - \lambda + \lambda/r$. By the interpolation inequality, for every $u \in S$,

$$\|u\|_{L^{q}(\Omega)} \leq \|u\|_{L^{r}(\Omega)}^{\lambda} \|u\|_{L^{1}(\Omega)}^{1-\lambda} \leq c^{\lambda} \|u\|_{L^{1}(\Omega)}^{1-\lambda}.$$

Hence it suffices to prove that S is precompact in $L^1(\Omega)$.

Let us verify that S satisfies the assumptions of M. Riesz's theorem in $L^1(\Omega)$:

(a) It follows from Hölder's inequality that, for every $u \in S$,

$$||u||_{L^{1}(\Omega)} \leq ||u||_{L^{r}(\Omega)} m(\Omega)^{1-1/r} \leq cm(\Omega)^{1-1/r}.$$

(b) Similarly, we have that, for every $u \in S$,

$$\int_{\Omega\setminus\omega_k} |u|dx \le \|u\|_{L^r(\Omega)} m(\Omega\setminus\omega_k)^{1-1/r} \le cm(\Omega\setminus\omega_k)^{1-1/r}$$

where

$$\omega_k = \{ x \in \Omega : d(x, \partial \Omega) > 1/k \}.$$

Lebesgue's dominated convergence theorem implies that

$$\lim_{k\to\infty}m(\Omega\setminus\omega_k)=0.$$

(c) Let $\omega \subset \subset \Omega$. Assume that $|y| < d(\omega, \partial \Omega)$ and $u \in C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$. Since, by the fundamental theorem of calculus,

$$\left|\tau_{y}u(x)-u(x)\right| = \left|\int_{0}^{1} y \cdot \nabla u(x-ty)dt\right| \le |y| \int_{0}^{1} \left|\nabla u(x-ty)\right|dt,$$

we obtain

$$\begin{aligned} \|\tau_{y}u - u\|_{L^{1}(\omega)} &\leq |y| \int_{\omega} dx \int_{0}^{1} \left| \nabla u(x - ty) \right| dt \\ &= |y| \int_{0}^{1} dt \int_{\omega} \left| \nabla u(x - ty) \right| dx \\ &= |y| \int_{0}^{1} dt \int_{\omega - ty} \left| \nabla u(z) \right| dz \leq |y| \, \|\nabla u\|_{L^{1}(\Omega)} \end{aligned}$$

Using Corollary 6.1.18, we conclude by density that, for every $u \in S$,

$$\|\tau_{y}u - u\|_{L^{1}(\omega)} \le \|\nabla u\|_{L^{1}(\Omega)} |y| \le \|\nabla u\|_{L^{p}(\Omega)} m(\Omega)^{1-1/p} |y| \le c_{1} |y|. \quad \Box$$

1 1/

Theorem 6.4.6 (Rellich–Kondrachov Embedding Theorem) Let Ω be a bounded open subset of \mathbb{R}^N of class C^1 or the product of N bounded open intervals:

- (a) If $1 \le p < N$ and $1 \le q < p^*$, then $W^{1,p}(\Omega) \subset L^q(\Omega)$, and the canonical injection is compact.
- (b) If $N , then <math>W^{1,p} \subset C_0(\overline{\Omega})$, and the canonical injection is compact.

Proof Let $1 \le p < N, 1 \le q < p^*$. It suffices to use Sobolev's embedding theorem and the preceding lemma.

The case p > N follows from Ascoli's theorem and Sobolev's embedding theorem. \Box

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré's Inequality in $W_0^{1,p}$) Let $1 \le p < \infty$, and let Ω be an open subset of \mathbb{R}^N such that $\Omega \subset \mathbb{R}^{N-1} \times]0, a[$. Then for every $u \in W_0^{1,p}(\Omega)$,

$$||u||_{L^p(\Omega)} \leq \frac{a}{2} ||\nabla u||_{L^p(\Omega)}.$$

Proof Let $1 and <math>v \in \mathcal{D}(]0, a[)$. The fundamental theorem of calculus and Hölder's inequality imply that for 0 < x < a,

$$|v(x)| \le \frac{1}{2} \int_0^a |v'(t)| dt \le \frac{a^{1/p'}}{2} \Big| \int_0^a |v'(t)|^p dt \Big|^{1/p}.$$

Hence we obtain

$$\int_0^a |v(x)|^p dx \le \frac{a^{p/p'}}{2^p} a \int_0^a |v'(x)|^p dx = \frac{a^p}{2^p} \int_0^a |v'(x)|^p dx.$$

If $u \in \mathcal{D}(\Omega)$, we infer from the preceding inequality and from Fubini's theorem that

$$\begin{split} \int_{\Omega} |u|^p dx &= \int_{\mathbb{R}^{N-1}} dx' \int_0^a \left| u(x', x_N) \right|^p dx_N \\ &\leq \frac{a^p}{2^p} \int_{\mathbb{R}^{N-1}} dx' \int_0^a \left| \partial_N u(x', x_N) \right|^p dx_N \\ &= \frac{a^p}{2^p} \int_{\Omega} |\partial_N u|^p dx. \end{split}$$

It is easy to conclude by density. The case p = 1 is similar.

Definition 6.4.8 A metric space is connected if the only open and closed subsets of X are ϕ and X.

Theorem 6.4.9 (Poincaré's Inequality in $W^{1,p}$) Let $1 \le p < \infty$, and let Ω be a bounded open connected subset of \mathbb{R}^N . Assume that Ω is of class C^1 . Then there exists $c = c(p, \Omega)$, such that, for every $u \in W^{1,p}(\Omega)$,

$$\left\|u-\int u\right\|_{L^p(\Omega)}\leq c\|\nabla u\|_{L^p(\Omega)},$$

where

$$\int u = \frac{1}{m(\Omega)} \int_{\Omega} u \, dx.$$

Assume that Ω is convex. Then, for every $u \in W^{1,p}(\Omega)$,

$$\left\|u-\int u\right\|_{L^p(\Omega)}\leq 2^{N/p}\ d\ \|\nabla u\|_{L^p(\Omega)},$$

where $d = \sup_{x,y \in \Omega} |x - y|$.

Proof Assume that Ω is of class C^1 . It suffices to prove that

$$\lambda = \inf \left\{ \|\nabla u\|_p \colon u \in W^{1,p}(\Omega), \ \int u = 0, \ \|u\|_p = 1 \right\} > 0.$$

Let $(u_n) \subset W^{1,p}(\Omega)$ be a minimizing sequence :

$$||u_n||_p = 1, \quad \int u_n = 0, \quad ||\nabla u_n||_p \to \lambda.$$

By the Rellich–Kondrachov theorem, we can assume that $u_n \to u$ in $L^p(\Omega)$. Hence $||u||_p = 1$ and $\int u = 0$. If $\lambda = 0$, then, by the closing lemma, $\nabla u = 0$. Since Ω is connected, $u = \int u = 0$. This is a contradiction.

Assume now that Ω is convex and that $u \in C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$. Hölder's inequality implies that

$$\int_{\Omega} \left| u(y) - \int u \right|^{p} dy \leq \int_{\Omega} dy \left[\int_{\Omega} \frac{|u(x) - u(y)|}{m(\Omega)} dx \right]^{p} \\ \leq \frac{1}{m(\Omega)} \int_{\Omega} dy \int_{\Omega} \left| u(x) - u(y) \right|^{p} dx.$$

It follows from the fundamental theorem of calculus and Hölder's inequality that

$$\begin{split} \int_{\Omega} dy \int_{\Omega} \left| u(x) - u(y) \right|^{p} dx &\leq d^{p} \int_{\Omega} dy \int_{\Omega} dx \left[\int_{0}^{1} \left| \nabla u((1-t)x + ty) \right| dt \right]^{p} \\ &\leq d^{p} \int_{\Omega} dy \int_{\Omega} dx \int_{0}^{1} \left| \nabla u((1-t)x + ty) \right|^{p} dt \\ &= 2d^{p} \int_{\Omega} dy \int_{\Omega} dx \int_{0}^{1/2} \left| \nabla u((1-t)x + ty) \right|^{p} dt \\ &= 2d^{p} \int_{\Omega} dy \int_{0}^{1/2} dt \int_{\Omega} \left| \nabla u((1-t)x + ty) \right|^{p} dx \\ &\leq 2^{N} d^{p} \int_{\Omega} dy \int_{\Omega} dy \int_{\Omega} \left| \nabla u(z) \right|^{p} dz. \end{split}$$

We obtain that

$$\int_{\Omega} \left| u(y) - \int u \right|^{p} dy \leq 2^{N} d^{p} \int_{\Omega} \left| \nabla u(y) \right|^{p} dy$$

We conclude by density, using Corollary 6.1.18.

Theorem 6.4.10 (Hardy's Inequality) Let $1 . Then for every <math>u \in W^{1,p}(\mathbb{R}^N)$, $u/|x| \in L^p(\mathbb{R}^N)$ and

$$||u/|x|||_{L^p(\mathbb{R}^N)} \le \frac{p}{N-p} ||\nabla u||_{L^p(\mathbb{R}^N)}$$

Proof Let $u \in \mathcal{D}(\mathbb{R}^N)$ and $v \in \mathcal{D}(\mathbb{R}^N; \mathbb{R}^N)$. We infer from Lemma 6.1.1 that

$$\int_{\mathbb{R}^N} |u|^p \operatorname{div} v \, dx = -p \int_{\mathbb{R}^N} |u|^{p-2} u \nabla u \cdot v \, dx.$$

Approximating $v(x) = x/|x|^p$ by $v_{\varepsilon}(x) = x/(|x|^2 + \varepsilon)^{p/2}$, we obtain

$$(N-p)\int_{\mathbb{R}^N}|u|^p/|x|^pdx=-p\int_{\mathbb{R}^N}|u|^{p-2}u\nabla u\cdot x/|x|^pdx.$$

Hölder's inequality implies that

$$\begin{split} \int_{\mathbb{R}^{N}} |u|^{p} / |x|^{p} dx &\leq \frac{p}{N-p} \left(\int_{\mathbb{R}^{N}} |u|^{(p-1)p'} / |x|^{p} dx \right)^{1/p'} \left(\int_{\mathbb{R}^{N}} |\nabla u|^{p} dx \right)^{1/p} \\ &= \frac{p}{N-p} \left(\int_{\mathbb{R}^{N}} |u|^{p} / |x|^{p} dx \right)^{1-1/p} \left(\int_{\mathbb{R}^{N}} |\nabla u|^{p} dx \right)^{1/p}. \end{split}$$

We have thus proved Hardy's inequality in $\mathcal{D}(\mathbb{R}^N)$. Let $u \in W^{1,p}(\mathbb{R}^N)$. Theorem 6.1.10 ensures the existence of a sequence $(u_n) \subset \mathcal{D}(\mathbb{R}^N)$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$. We can assume that $u_n \to u$ almost everywhere on \mathbb{R}^N . We conclude using Fatou's lemma that

$$||u/|x|||_p \le \lim_{n \to \infty} ||u_n/|x|||_p \le \frac{p}{N-p} \lim_{n \to \infty} ||\nabla u_n||_p = \frac{p}{N-p} ||\nabla u||_p. \quad \Box$$

Fractional Sobolev spaces are interpolation spaces between $L^p(\Omega)$ and $W^{1,p}(\Omega)$.

Definition 6.4.11 Let $1 \le p < \infty$, 0 < s < 1, and $u \in L^p(\Omega)$. We define

$$|u|_{W^{s,p}(\Omega)} = |u|_{s,p} = \left(\int_{\Omega}\int_{\Omega}\frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}}dxdy\right)^{1/p} \le +\infty.$$

On the fractional Sobolev space

$$W^{s,p}(\Omega) = \{ u \in L^p(\Omega) : |u|_{W^{s,p}(\Omega)} < +\infty \},\$$

we define the norm

$$||u||_{W^{s,p}(\Omega)} = ||u||_{s,p} = ||u||_{L^{p}(\Omega)} + |u|_{W^{s,p}(\Omega)}$$

We give, without proof, the characterization of traces due to Gagliardo [26].

Theorem 6.4.12 *Let* 1 .

- (a) For every $u \in W^{1,p}(\mathbb{R}^N)$, $\gamma_0 u \in W^{1-1/p,p}(\mathbb{R}^{N-1})$. (b) The mapping $\gamma_0 : W^{1,p}(\mathbb{R}^N) \to W^{1-1/p,p}(\mathbb{R}^{N-1})$ is continuous and surjective.
- (c) The mapping $\gamma_0: W^{1,1}(\mathbb{R}^N) \to L^1(\mathbb{R}^{N-1})$ is continuous and surjective.

6.5 Comments

The main references on Sobolev spaces are the books:

- R. Adams and J. Fournier, Sobolev spaces [1]
- H. Brezis, Analyse fonctionnelle, théorie et applications [8]
- V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations [51]

Our proof of the trace inequality follows closely:

 A.C. Ponce, *Elliptic PDEs, measures, and capacities*, European Mathematical Society, 2016

The theory of partial differential equations was at the origin of Sobolev spaces. We recommend [9] on the history of partial differential equations and [55] on the prehistory of Sobolev spaces.

Because of Poincaré's inequalities, for every smooth, bounded open connected set Ω , we have that

$$\begin{split} \lambda_1(\Omega) &= \inf\left\{\int_{\Omega} |\nabla u|^2 dx : u \in H_0^1(\Omega), \int_{\Omega} u^2 dx = 1\right\} > 0, \\ \mu_2(\Omega) &= \inf\left\{\int_{\Omega} |\nabla u|^2 dx : u \in H^1(\Omega), \int_{\Omega} u^2 dx = 1, \int_{\Omega} u dx = 0\right\} > 0. \end{split}$$

Hence the first eigenvalue $\lambda_1(\Omega)$ of Dirichlet's problem

$$\begin{cases} -\Delta u = \lambda u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

and the second eigenvalue $\mu_2(\Omega)$ of the Neumann problem

$$\begin{cases} -\Delta u = \lambda u & \text{in } \Omega, \\ n \cdot \nabla u = 0 & \text{on } \partial \Omega, \end{cases}$$

are strictly positive. Let us denote by B an open ball such that $m(B) = m(\Omega)$. Then

$$\lambda_1(B) \le \lambda_1(\Omega) \quad \text{(Faber-Krahn inequality)},\\ \mu_2(\Omega) \le \mu_2(B) \quad \text{(Weinberger, 1956)}.$$

Moreover, if Ω is convex with diameter d, then

$$\pi^2/d^2 \le \mu_2(\Omega)$$
 (Payne–Weinberger, 1960).

We prove in Theorem 6.4.9 the weaker estimate

$$1/(2^N d^2) \le \mu_2(\Omega).$$

There exists a bounded, connected open set $\Omega \subset \mathbb{R}^2$ such that $\mu_2(\Omega) = 0$. Consider on two sides of a square Q, two infinite sequences of small squares connected to Qby very thin pipes.

6.6 Exercises for Chap. 6

1. Let $\Omega = B(0, 1) \subset \mathbb{R}^N$. Then for $\lambda \neq 0$,

$$\begin{split} (\lambda - 1)p + N &> 0 \Longleftrightarrow |x|^{\lambda} \in W^{1,p}(\Omega), \\ \lambda p + N &< 0 \Longleftrightarrow |x|^{\lambda} \in W^{1,p}(\mathbb{R}^{N} \setminus \overline{\Omega}), \\ p &< N \Longleftrightarrow \frac{x}{|x|} \in W^{1,p}(\Omega; \mathbb{R}^{N}). \end{split}$$

- 2. Let $1 and <math>u \in L^p(\Omega)$. The following properties are equivalent:
 - (a) $u \in W^{1,p}(\Omega);$
 - (b) $\sup\left\{\int_{\Omega} u \operatorname{div} v \, dx : v \in \mathcal{D}(\Omega, \mathbb{R}^N), ||v||_{L^{p'}(\Omega)} = 1\right\} < \infty;$
 - (c) there exists c > 0 such that for every $\omega \subset \subset \Omega$ and for every $y \in \mathbb{R}^N$ such that $|y| < d(\omega, \partial \Omega)$,

$$||\tau_{\mathbf{y}}u - u||_{L^{p}(\omega)} \le c|\mathbf{y}|.$$

3. Let $1 \le p < N$ and let Ω be an open subset of \mathbb{R}^N . Define

$$S(\Omega) = \inf_{\substack{u \in \mathcal{D}(\Omega) \\ ||u||_{L^{p^*}(\Omega)} = 1}} ||\nabla u||_{L^p(\Omega)}.$$

Then $S(\Omega) = S(\mathbb{R}^N)$. 4. Let $1 \le p < N$. Then

$$\frac{1}{2^N}S(\mathbb{R}^N) = \inf\left\{ ||\nabla u||_{L^p(\mathbb{R}^N_+)}/||u||_{L^{p^*}(\mathbb{R}^N_+)} : u \in H^1(\mathbb{R}^N_+) \setminus \{0\} \right\}.$$

- 5. Poincaré-Sobolev inequality.
 - (a) Let $1 , and let <math>\Omega$ be an open bounded connected subset of \mathbb{R}^N of class C^1 . Then there exists c > 0 such that for every $u \in W^{1,p}(\Omega)$,

$$\left\| \left| u - \int u \right| \right\|_{L^{p^*}(\Omega)} \le c ||\nabla u||_{L^p(\Omega)},$$

where $\int u = \frac{1}{m(\Omega)} \int_{\Omega} u \, dx$. *Hint*: Apply Theorem 6.4.4 to $u - \int u$. (b) Let $A = \{u = 0\}$ and assume that m(A) > 0. Then

$$\|u\|_{L^{p^*}(\Omega)} \leq c \left(1 + \left[\frac{m(\Omega)}{m(A)}\right]^{1/p^*}\right) \|\nabla u\|_{L^p(\Omega)}.$$

Hint:

$$\left|\int u \left| m(A)^{1/p^*} \le \| u - \int u \|_{L^{p^*}(\Omega)} \right| \right|$$

6. Nash's inequality. Let $N \ge 3$. Then for every $u \in \mathcal{D}(\mathbb{R}^N)$,

$$||u||_2^{2+4/N} \le c||u||_1^{4/N} ||\nabla u||_2^2.$$

Hint: Use the interpolation inequality.

7. Let $1 \le p < N$ and q = p(N-1)/(N-p). Then for every $u \in \mathcal{D}(\mathbb{R}^N_+)$,

$$\int_{\mathbb{R}^{N-1}} |u(x',0)|^q dx' \le q ||u||_{L^{p^*}(\mathbb{R}^N_+)}^{q-1} ||\partial_N u||_{L^p(\mathbb{R}^N_+)}^{p-1}.$$

8. Verify that Hardy's inequality is optimal using the family

$$u_{\varepsilon}(x) = 1, \qquad |x| \le 1,$$
$$= |x|^{\frac{p-N}{p}-\varepsilon}, \quad |x| > 1.$$

- 9. Let $1 \le p < N$. Then $\mathcal{D}(\mathbb{R}^N \setminus \{0\})$ is dense in $W^{1,p}(\mathbb{R}^N)$.
- 10. Let $2 \le N . Then for every <math>u \in W_0^{1,p}(\mathbb{R}^N \setminus \{0\}), u/|x| \in L^p(\mathbb{R}^N)$ and

$$||u/|x|||_{L^p(\mathbb{R}^N)} \le \frac{p}{p-N} ||\nabla u||_{L^p(\mathbb{R}^N)}.$$

- 11. Let $1 \leq p < \infty$. Verify that the embedding $W^{1,p}(\mathbb{R}^N) \subset L^p(\mathbb{R}^N)$ is not compact. Let $1 \leq p < N$. Verify that the embedding $W_0^{1,p}(B(0,1)) \subset L^{p^*}(B(0,1))$ is not compact.
- 12. Let us denote by $\mathcal{D}_r(\mathbb{R}^{\hat{N}})$ the space of radial functions in $\mathcal{D}(\mathbb{R}^N)$. Let $N \ge 2$ and $1 \le p < \infty$. Then there exists c(N, p) > 0 such that for every $u \in \mathcal{D}_r(\mathbb{R}^N)$,

$$|u(x)| \le c(N, p)||u||_p^{1/p'}||\nabla u||_p^{1/p}|x|^{(1-N)/p}.$$

Let $1 \leq p < N$. Then there exists d(N, p) > 0 such that for every $u \in \mathcal{D}_r(\mathbb{R}^N)$,

$$|u(x)| \le d(N, p) ||\nabla u||_p |x|^{(p-N)/p}$$

Hint: Let us write u(x) = u(r), r = |x|, so that

$$r^{N-1} |u(r)|^p \le p \int_r^\infty |u(s)|^{p-1} \left| \frac{du}{dr}(s) \right| s^{N-1} ds$$
$$|u(r)| \le \int_r^\infty \left| \frac{du}{dr}(s) \right| ds.$$

- 13. Let us denote by $W_r^{1,p}(\mathbb{R}^N)$ the space of radial functions in $W^{1,p}(\mathbb{R}^N)$. Verify that the space $\mathcal{D}_r(\mathbb{R}^N)$ is dense in $W_r^{1,p}(\mathbb{R}^N)$.
- 14. Let $1 \leq p < N$ and $p < q < p^*$. Verify that the embedding $W_r^{1,p}(\mathbb{R}^N) \subset L^q(\mathbb{R}^N)$ is compact. Verify also that the embedding $W_r^{1,p}(\mathbb{R}^N) \subset L^p(\mathbb{R}^N)$ is not compact.
- 15. Let $1 \leq p < \infty$ and let Ω be an open subset of \mathbb{R}^N . Prove that the map

$$W^{1,p}(\Omega) \to W^{1,p}(\Omega) : u \mapsto u^+$$

is continuous. *Hint*: $\nabla u^+ = H(u)\nabla u$, where

$$H(t) = 1, \quad t > 0,$$

= 0, $t \le 0.$

16. Sobolev implies Poincaré. Let Ω be an open subset of \mathbb{R}^N $(N \ge 2)$ such that $m(\Omega) < +\infty$, and let $1 \le p < +\infty$. Then there exists c = c(p, N) such that, for every $u \in W_0^{1,p}(\Omega)$,

$$\|u\|_p \le c \ m(\Omega)^{1/N} \|\nabla u\|_p.$$

Hint. (a) If $1 \le p < N$, then

$$||u||_p \le m(\Omega)^{1/N} ||u||_{p^*} \le c m(\Omega)^{1/N} ||\nabla u||_p.$$

(b) If $p \ge N$, then

$$||u||_p = ||u||_{q^*} \le c ||\nabla u||_q \le c m(\Omega)^{1/N} ||\nabla u||_p$$

17. Let Ω be an open bounded convex subset of $\mathbb{R}^N, N \geq 2$, and $u \in C^1(\Omega) \bigcap W^{1,1}(\Omega)$. Then, for every $x \in \Omega$,

$$\left| u(x) - \int u \right| \le \frac{1}{N} \frac{d^N}{m(\Omega)} \int_{\Omega} \frac{|\nabla u(y)|}{|y - x|^{N-1}} dy,$$

where $\int u = \frac{1}{m(\Omega)} \int_{\Omega} u(x) dx$ and $d = \sup_{x,y \in \Omega} |y - x|$. *Hint*. Define

$$v(y) = |\nabla u(y)| \quad , y \in \Omega,$$
$$= 0 \qquad , y \in \mathbb{R}^N \setminus \Omega.$$

(a)
$$u(x) - u(y) = \int_0^{|y-x|} \nabla u(x+r\sigma) \cdot \sigma dr, \ \sigma = \frac{y-x}{|y-x|}.$$

(b)

$$\begin{split} m(\Omega) \Big| u(x) - \int u \Big| &\leq \int_{\Omega} dy \int_{0}^{|y-x|} v(x+r\sigma) dr \\ &= \int_{\omega-x} dz \int_{0}^{|z|} v\left(x+r\frac{z}{|z|}\right) dr \\ &\leq \int_{\mathbb{S}^{N-1}} d\sigma \int_{0}^{d} \rho^{N-1} d\rho \int_{0}^{\infty} v(x+r\sigma) dr \\ &= \frac{d^{N}}{N} \int_{\mathbb{R}^{N}} \frac{v(x+z)}{|z|^{N-1}} dz. \end{split}$$

18. Let us define, for every bounded connected open subset Ω of \mathbb{R}^N , and for $1 \le p < \infty$,

$$\lambda(p,\Omega) = \inf \left\{ \|\nabla u\|_p \colon u \in W^{1,p}(\Omega), \ \int u = 0, \ \|u\|_p = 1 \right\}.$$

For every $1 \le p < \infty$, there exists a bounded connected open subset Ω of \mathbb{R}^2 such that $\lambda(p, \Omega) = 0$.

Hint. Consider on two sides of a square Q two infinite sequences of small squares connected to Q by very thin pipes.

19. Prove that, for every $1 \le p < \infty$,

 $\inf \left\{ \lambda(p, \Omega) \colon \Omega \text{ is a smooth bounded connected open subset of } \mathbb{R}^2, m(\Omega) = 1 \right\} = 0.$

Hint. Consider a sequence of pairs of disks smoothly connected by very thin pipes.

20. Generalized Poincaré's inequality. Let $1 \le p < \infty$, let Ω be a smooth bounded connected open subset of \mathbb{R}^N , and let $f \in [W^{1,p}(\Omega)]^*$ be such that

$$< f, 1 > = 1.$$

Then there exists c > 0 such that, for every $u \in W^{1,p}(\Omega)$,

$$||u - \langle f, u \rangle||_p \le c ||\nabla u||_p.$$