Chapter 6 Sobolev Spaces

6.1 Weak Derivatives

Throughout this chapter, we denote by Ω an open subset of \mathbb{R}^N . We begin with an elementary computation.

Lemma 6.1.1 *Let* $1 \leq |\alpha| \leq m$ *and let* $f \in C^m(\Omega)$ *. Then for every* $u \in C^m(\Omega)$ ∩ $\mathcal{K}(\Omega)$,

$$
\int_{\Omega} f D^{\alpha} u \, dx = (-1)^{|\alpha|} \int_{\Omega} (D^{\alpha} f) u \, dx.
$$

Proof We assume that $\alpha = (0, \ldots, 0, 1)$. Let $u \in C^1(\Omega) \cap \mathcal{K}(\Omega)$, and define

$$
g(x) = f(x)u(x), x \in \Omega,
$$

= 0, $x \in \mathbb{R}^N \setminus \Omega.$

The fundamental theorem of calculus implies that for every $x' \in \mathbb{R}^{N-1}$,

$$
\int_{\mathbb{R}} D^{\alpha} g(x', x_{N}) dx_{N} = 0.
$$

Fubini's theorem ensures that

$$
\int_{\Omega} (f D^{\alpha} u + (D^{\alpha} f) u) dx = \int_{\mathbb{R}^N} D^{\alpha} g dx = \int_{\mathbb{R}^{N-1}} dx' \int_{\mathbb{R}} D^{\alpha} g dx_{N} = 0.
$$

When $|\alpha| = 1$, the proof is similar. It is easy to conclude the proof by induction. \Box

Weak derivatives were defined by S.L. Sobolev in 1938.

© Springer Nature Switzerland AG 2022 M. Willem, *Functional Analysis*, Cornerstones, https://doi.org/10.1007/978-3-031-09149-0_6

Definition 6.1.2 Let $\alpha \in \mathbb{N}^N$ and $f \in L^1_{loc}(\Omega)$. By definition, the weak derivative of order α of f exists if there is $g \in L^1_{loc}(\Omega)$ such that for every $u \in \mathcal{D}(\Omega)$,

$$
\int_{\Omega} f D^{\alpha} u \, dx = (-1)^{|\alpha|} \int_{\Omega} g u \, dx.
$$

The function g, if it exists, will be denoted by $\partial^{\alpha} f$.

By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3 *Assume that* $\partial^{\alpha} f$ *exists. On*

$$
\Omega_n = \{x \in \Omega : d(x, \partial \Omega) > 1/n\},\
$$

we have that

$$
D^{\alpha}(\rho_n * f) = \rho_n * \partial^{\alpha} f.
$$

Proof We deduce from Proposition 4.3.6 and from the preceding definition that for every $x \in \Omega_n$,

$$
D^{\alpha}(\rho_n * f)(x) = \int_{\Omega} D_x^{\alpha} \rho_n(x - y) f(y) dy
$$

= $(-1)^{|\alpha|} \int_{\Omega} D_y^{\alpha} \rho_n(x - y) f(y) dy$
= $(-1)^{2|\alpha|} \int_{\Omega} \rho_n(x - y) \partial^{\alpha} f(y) dy$
= $\rho_n * \partial^{\alpha} f(x).$

Theorem 6.1.4 (du Bois–Reymond Lemma) *Let* $|\alpha| = 1$ *and let* $f \in C(\Omega)$ *be such that* $\partial^{\alpha} f \in C(\Omega)$ *. Then* $D^{\alpha} f$ *exists and* $D^{\alpha} f = \partial^{\alpha} f$ *.*

Proof By the preceding proposition, we have

$$
D^{\alpha}(\rho_n * f) = \rho_n * \partial^{\alpha} f.
$$

The fundamental theorem of calculus implies then that

$$
\rho_n * f(x + \varepsilon \alpha) = \rho_n * f(x) + \int_0^{\varepsilon} \rho_n * \partial^{\alpha} f(x + t \alpha) dt.
$$

By the regularization theorem,

$$
\rho_n * f \to f, \quad \rho_n * \partial^{\alpha} f \to \partial^{\alpha} f
$$

uniformly on every compact subset of Ω . Hence we obtain

$$
f(x + \varepsilon \alpha) = f(x) + \int_0^{\varepsilon} \partial^{\alpha} f(x + t \alpha) dt,
$$

so that $\partial^{\alpha} f = D^{\alpha} f$ by the fundamental theorem of calculus.

Notation From now on, the derivatives of a continuously differentiable function will also be denoted by ∂^{α} .

Let us prove the *closing lemma*. The *graph* of the weak derivative is closed in $L^1_{\text{loc}} \times L^1_{\text{loc}}.$

Lemma 6.1.5 *Let* $(f_n) \subset L^1_{loc}(\Omega)$ *and let* $\alpha \in \mathbb{N}^N$ *be such that in* $L^1_{loc}(\Omega)$ *,*

$$
f_n \to f, \quad \partial^\alpha f_n \to g.
$$

Then $g = \partial^{\alpha} f$. *Proof* For every $u \in \mathcal{D}(\Omega)$, we have by definition that

$$
\int_{\Omega} f_n \partial^{\alpha} u \, dx = (-1)^{|\alpha|} \int_{\Omega} (\partial^{\alpha} f_n) u \, dx.
$$

Since by assumption,

$$
\left| \int_{\Omega} (f_n - f) \partial^{\alpha} u \, dx \right| \leq ||\partial^{\alpha} u||_{\infty} \int_{\text{spt } u} |f_n - f| dx \to 0
$$

and

$$
\left| \int_{\Omega} (\partial^{\alpha} f_n - g) u \, dx \right| \le ||u||_{\infty} \int_{\text{spt } u} |\partial^{\alpha} f_n - g| dx \to 0,
$$

we obtain

$$
\int_{\Omega} f \partial^{\alpha} u \, dx = (-1)^{|\alpha|} \int_{\Omega} gu \, dx. \qquad \Box
$$

Example (Weak Derivative) If $-N < \lambda \leq 1$, the function $f(x) = |x|^{\lambda}$ is locally integrable on \mathbb{R}^N . We approximate f by

$$
f_{\varepsilon}(x) = \left(|x|^2 + \varepsilon\right)^{\lambda/2}, \quad \varepsilon > 0.
$$

Then $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^{N})$ and

.

$$
\partial_k f_{\varepsilon}(x) = \lambda x_k \left(|x|^2 + \varepsilon \right)^{\frac{\lambda - 2}{2}},
$$

$$
|\partial_k f_{\varepsilon}(x)| \le \lambda |x|^{\lambda - 1}.
$$

If $\lambda > 1 - N$, we obtain in $L_{loc}^1(\mathbb{R}^N)$ that

$$
f_{\varepsilon}(x) \to f(x) = |x|^{\lambda},
$$

$$
\partial_k f_{\varepsilon}(x) \to g(x) = \lambda x_k |x|^{\lambda - 2}.
$$

Hence $\partial_k f(x) = \lambda |x|^{ \lambda - 2} x_k$.

Definition 6.1.6 The *gradient* of the (weakly) differentiable function u is defined by

$$
\nabla u = (\partial_1 u, \ldots, \partial_N u).
$$

The *divergence* of the (weakly) differentiable vector field $v = (v_1, \ldots, v_n)$ is defined by

$$
\operatorname{div} v = \partial_1 v_1 + \ldots + \partial_N v_N.
$$

Let $1 \le p < \infty$ and $u \in L^1_{loc}(\Omega)$ be such that $\partial_j u \in L^p(\Omega)$, $j = 1, ..., N$. We define

$$
||\nabla u||_{L^p(\Omega)} = \left(\int_{\Omega} |\nabla u|^p dx\right)^{1/p} = \left(\int_{\Omega} \left|\sum_{j=1}^N (\partial_j u)^2\right|^{p/2} dx\right)^{1/p}
$$

Theorem 6.1.7 *Let* $1 < p < \infty$ *and let* $(u_n) \subset L^1_{loc}(\Omega)$ *be such that*

(a) $u_n \to u$ in $L^1_{loc}(\Omega)$; *(b) for every* $n, \overline{\nabla u}_n \in L^p(\Omega; \mathbb{R}^N)$; (c) $c = \sup ||\nabla u_n||_p < \infty$. n

Then $\nabla u \in L^p(\Omega; \mathbb{R}^N)$ *and*

$$
||\nabla u||_p \leq \lim_{n \to \infty} ||\nabla u_n||_p.
$$

Proof We define f on $\mathcal{D}(\Omega; \mathbb{R}^N)$ by

6.1 Weak Derivatives 135

$$
\langle f, v \rangle = \int_{\Omega} u \, \text{div } v \, dx.
$$

We have that

$$
|\langle f, v \rangle| = \lim_{n \to \infty} |\int_{\Omega} u_n \text{ div } v \, dx|
$$

=
$$
\lim_{n \to \infty} |\int_{\Omega} \nabla u_n \cdot v \, dx|
$$

$$
\leq \lim_{n \to \infty} ||\nabla u_n||_p \left(\int_{\Omega} |v|^{p'} dx \right)^{1/p'}
$$

.

.

Since $\mathcal{D}(\Omega)$ is dense in $L^{p'}(\Omega)$, Proposition 3.2.3 implies the existence of a continuous extension of f to $L^{p'}(\Omega; \mathbb{R}^N)$. By Riesz's representation theorem, there exists $g \in L^p(\Omega; \mathbb{R}^N)$ such that for every $v \in \mathcal{D}(\Omega; \mathbb{R}^N)$,

$$
\int_{\Omega} g \cdot v \, dx = \langle f, v \rangle = \int_{\Omega} u \, \text{div } v \, dx.
$$

Hence $\nabla u = -g \in L^p(\Omega; \mathbb{R}^N)$. Choosing $v = |\nabla u|^{p-2} \nabla u$, we find that

$$
\int_{\Omega} |\nabla u|^p dx = \int_{\Omega} \nabla u \cdot v dx \le \lim_{n \to \infty} ||\nabla u_n||_p \left(\int_{\Omega} |v|^{p'} dx \right)^{1/p'}
$$

$$
= \lim_{n \to \infty} ||\nabla u_n||_p \left(\int_{\Omega} |\nabla u|^p dx \right)^{1-1/p}.
$$

Sobolev spaces are spaces of differentiable functions with integral norms. In order to define complete spaces, we use weak derivatives.

Definition 6.1.8 Let $k \ge 1$ and $1 \le p < \infty$. On the Sobolev space

$$
W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : \text{ for every } |\alpha| \le k, \partial^\alpha u \in L^p(\Omega) \},
$$

we define the norm

$$
||u||_{W^{k,p}(\Omega)} = ||u||_{k,p} = \left(\sum_{|\alpha| \le k} \int_{\Omega} |\partial^{\alpha} u|^p dx\right)^{1/p}
$$

On the space $H^k(\Omega) = W^{k,2}(\Omega)$, we define the scalar product

 \Box

$$
(u \mid v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} (\partial^\alpha u \mid \partial^\alpha v)_{L^2(\Omega)}.
$$

The Sobolev space $W^{k,p}_{\text{loc}}(\Omega)$ is defined by

$$
W^{k,p}_{loc}(\Omega) = \{ u \in L^p_{loc}(\Omega) : \text{ for all } \omega \subset \subset \Omega, u \Big|_{\omega} \in W^{k,p}(\omega) \}.
$$

A sequence (u_n) converges to u in $W^{k,p}_{loc}(\Omega)$ if for every $\omega \subset \subset \Omega$,

$$
||u_n - u||_{W^{k,p}(\omega)} \to 0, \quad n \to \infty.
$$

The space $W_0^{k,p}(\Omega)$ is the closure of $\mathcal{D}(\Omega)$ in $W^{k,p}(\Omega)$. We denote by $H_0^k(\Omega)$ the space $W_0^{k,2}(\Omega)$.

Theorem 6.1.9 *Let* $k \ge 1$ *and* $1 \le p < \infty$ *. Then the spaces* $W^{k,p}(\Omega)$ *and* $W_0^{k,p}(\Omega)$ are complete and separable.

Proof Let $M = \sum$ $|\alpha|\leq k$ 1. The space $L^p(\Omega; \mathbb{R}^M)$ with the norm

$$
||(v_{\alpha})||_{p} = \left(\sum_{|\alpha| \leq k} \int_{\Omega} |v_{\alpha}|^{p} dx\right)^{1/p}
$$

is complete and separable. The map

$$
\Phi: W^{k,p}(\Omega) \to L^p(\Omega; \mathbb{R}^M): u \mapsto (\partial^\alpha u)_{|\alpha| \leq k}
$$

is a linear isometry: $||\Phi(u)||_p = ||u||_{k,p}$. By the closing lemma, $\Phi(W^{k,p}(\Omega))$ is a closed subspace of $L^p(\Omega; \mathbb{R}^M)$. It follows that $W^{k,p}(\Omega)$ is complete and separable. Since $W_0^{k,p}(\Omega)$ is a closed subspace of $W^{k,p}(\Omega)$, it is also complete and separable. \Box

Theorem 6.1.10 *Let* $1 \leq p < \infty$ *. Then* $W_0^{1,p}(\mathbb{R}^N) = W^{1,p}(\mathbb{R}^N)$ *.*

Proof It suffices to prove that $\mathcal{D}(\mathbb{R}^N)$ is dense in $W^{1,p}(\mathbb{R}^N)$. We use regularization and truncation.

Regularization Let $u \in W^{1,p}(\mathbb{R}^N)$ and define $u_n = \rho_n * u$. By Proposition 4.3.6, $u_n \in C^{\infty}(\mathbb{R}^N)$. Proposition 4.3.14 implies that in $L^p(\mathbb{R}^N)$,

$$
u_n \to u, \, \partial_k u_n = \rho_n * \partial_k u \to \partial_k u.
$$

We conclude that $W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N)$ is dense in $W^{1,p}(\mathbb{R}^N)$.

Truncation Let $\theta \in C^{\infty}(\mathbb{R})$ be such that $0 \le \theta \le 1$ and

$$
\begin{aligned} \theta(t) &= 1, \quad t \le 1, \\ &= 0, \quad t \ge 2. \end{aligned}
$$

We define the sequence

$$
\theta_n(x) = \theta(|x|/n).
$$

Let $u \in W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N)$. It is clear that $u_n = \theta_n u \in \mathcal{D}(\mathbb{R}^N)$. It follows easily from Lebesgue's dominated convergence theorem that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$. □ from Lebesgue's dominated convergence theorem that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$.

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of Variables) *Let* Ω *and* ω *be open subsets of* \mathbb{R}^N *,* $G: \omega \to \Omega$ a diffeomorphism, and $u \in W^{1,1}_{loc}(\Omega)$. Then $u \circ G \in W^{1,1}_{loc}(\omega)$ and

$$
\frac{\partial}{\partial y_k}(u \circ G) = \sum_j \frac{\partial u}{\partial x_j} \circ G \frac{\partial G_j}{\partial y_k}.
$$

Proof Let $v \in \mathcal{D}(\omega)$ and $u_n = \rho_n * u$. By Lemma [6.1.1](#page-0-0), for *n* large enough, we have

$$
\int_{\omega} u_n \circ G(y) \frac{\partial v}{\partial y_k}(y) dy = -\int_{\omega} \sum_j \frac{\partial u_n}{\partial x_j} \circ G(y) \frac{\partial G_j}{\partial y_k}(y) v(y) dy.
$$
 (*)

It follows from Theorem 2.4.5 with $H = G^{-1}$ that

$$
\int_{\Omega} u_n(x) \frac{\partial v}{\partial y_k} \circ H(x) |\det H'(x)| dx
$$
\n
$$
= - \int_{\Omega} \sum_{j} \frac{\partial u_n}{\partial x_j}(x) \frac{\partial G_j}{\partial y_k} \circ H(x) v \circ H(x) |\det H'(x)| dx. \tag{**}
$$

The regularization theorem implies that in $L^1_{loc}(\Omega)$,

$$
u_n \to u, \quad \frac{\partial u_n}{\partial x_j} \to \frac{\partial u}{\partial x_j}.
$$

Taking the limit, it is permitted to replace u_n by u in (**). But then it is also permitted to replace u_n by u in (*), and the proof is complete. permitted to replace u_n by u in (*), and the proof is complete.

Proposition 6.1.12 (Derivative of a Product) *Let* $u \in W_{loc}^{1,1}(\Omega)$ *and* $f \in C^1(\Omega)$ *. Then* $fu \in W^{1,1}_{loc}(\Omega)$ *and*

$$
\partial_k(fu)=f\partial_k u+(\partial_k f)u.
$$

Proof Let $u_n = \rho_n * u$, so that by the classical rule of derivative of a product,

$$
\partial_k(fu_n)=(\partial_k f)u_n+f\partial_k u_n.
$$

It follows from the regularization theorem that

$$
fu_n \to fu, \partial_k(fu_n) \to (\partial_k f)u + f\partial_k u
$$

in $L^1_{loc}(\Omega)$. We conclude by invoking the closing lemma. □

Proposition 6.1.13 (Derivative of the Composition of Functions) *Let* u ∈ $W^{1,1}_{loc}(\Omega)$ *, and let* $f \in C^1(\mathbb{R})$ *be such that* $c = \sup_{\mathbb{R}} |f'| < \infty$ *. Then* $f \circ u \in W^{1,1}_{loc}(\Omega)$ *and*

$$
\partial_k(f\circ u)=f'\circ u\;\partial_k u.
$$

Proof We define $u_n = \rho_n * u$, so that by the classical rule,

$$
\partial_k(f\circ u_n)=f'\circ u_n\;\partial_ku_n.
$$

We choose $\omega \subset \subset \Omega$. By the regularization theorem, we have in $L^1(\omega)$,

$$
u_n \to u, \quad \partial_k u_n \to \partial_k u.
$$

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that $u_n \to u$ almost everywhere on ω . We obtain

$$
\int_{\omega} |f \circ u_n - f \circ u| dx \leq c \int_{\omega} |u_n - u| dx \to 0,
$$

$$
\int_{\omega} |f' \circ u_n \partial_k u_n - f' \circ u \partial_k u| dx \leq c \int_{\omega} |\partial_k u_n - \partial_k u| dx + \int_{\omega} |f' \circ u_n - f' \circ u| |\partial_k u| dx \to 0.
$$

Hence in $L^1(\omega)$,

 $f \circ u_n \to f \circ u$, $f' \circ u_n \partial_k u_n \to f' \circ u \partial_k u$.

Since $\omega \subset\subset \Omega$ is arbitrary, we conclude the proof by invoking the closing lemma.

 \Box

On R, we define

6.1 Weak Derivatives 139

$$
sgn(t) = t/|t|, \quad t \neq 0
$$

= 0, \quad t = 0.

Corollary 6.1.14 *Let* $g : \mathbb{R} \to \mathbb{R}$ *be such that* $c = \sup_{\mathbb{R}} |g| < \infty$ *and, for some sequence* $(g_n) \subset C(\mathbb{R})$, $g(t) = \lim_{n \to \infty} g_n(t)$ *everywhere on* \mathbb{R} *. Define*

$$
f(t) = \int_0^t g(s)ds.
$$

Then, for every $u \in W_{loc}^{1,1}(\Omega)$, $f \circ u \in W_{loc}^{1,1}(\Omega)$ and

$$
\nabla(f\circ u)=(g\circ u)\nabla u.
$$

In particular $u^+, u^-, |u| \in W^{1,1}_{loc}(\Omega)$ and

$$
\nabla u^{+} = \chi_{\{u>0\}} \nabla u, \nabla u^{-} = -\chi_{\{u<0\}} \nabla u, \chi_{\{u=0\}} \nabla u = 0, \nabla |u| = (\text{sgn } u) \nabla u.
$$

Proof We can assume that $\sup_n \sup_{\mathbb{R}} |g_n| \leq c$. We define $f_n(t) = \int_0^t$ $\int_{0}^{1} g_n(s)ds$. The preceding proposition implies that

$$
\nabla(f_n \circ u) = (g_n \circ u) \nabla u.
$$

Since, in $L^1_{loc}(\Omega)$, by Lebesgue's dominated convergence theorem,

$$
f_n \circ u \to f \circ u, (g_n \circ u) \nabla u \to (g \circ u) \nabla u,
$$

the closing lemma implies that

$$
\nabla(f\circ u)=(g\circ u)\nabla u.
$$

 \Box

Corollary 6.1.15 *Let* $1 \leq p < \infty$ *and let* $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ *be such that* $u = 0$ $\textit{on } ∂\Omega$ *. Then* $u \in W_0^{1,p}(\Omega)$ *.*

Proof It is easy to prove by regularization that $W^{1,p}(\Omega) \cap \mathcal{K}(\Omega) \subset W_0^{1,p}(\Omega)$. Assume that spt u is bounded. Let $f \in C^1(\mathbb{R})$ be such that $|f(t)| \le |t|$ on \mathbb{R} ,

$$
f(t) = 0, \quad |t| \le 1,
$$

$$
= t, \quad |t| \ge 2.
$$

Define $u_n = f(nu)/n$. Then $u_n \in \mathcal{K}(\Omega)$, and by the preceding proposition, $u_n \in$ $W^{1,p}(\Omega)$. By Lebesgue's dominated convergence theorem, $u_n \to u$ in $W^{1,p}(\Omega)$, so that $u \in W_0^{1,p}(\Omega)$.

If spt u is unbounded, we define $u_n = \theta_n u$ where (θ_n) is defined in the proof of Theorem [6.1.10.](#page-5-0) Then spt u_n is bounded. By Lebesgue's dominated convergence theorem, $u_n \to u$ in $W^{1,p}(\Omega)$, so that $u \in W_0^{1,p}(\Omega)$.

Proposition 6.1.16 *Let* Ω *be an open subset of* \mathbb{R}^N *. Then there exist a sequence* (U_n) *of open subsets of* Ω *and a sequence of functions* $\psi_n \in \mathcal{D}(U_n)$ *such that*

- *(a) for every n*, $U_n \subset \subset \Omega$ *and* $\psi_n \geq 0$ *; (b)* $\sum_{n=1}^{\infty} \psi_n = 1$ *on* Ω ;
- $n=1$ *(c) for every* $ω ⊂ ⊂ Ω$ *there exists* $m_ω$ *such that for* $n > m_ω$ *we have* $U_n ∩ ω = φ$ *.*

Proof Let us define $\omega_{-1} = \omega_0 = \phi$, and for $n \ge 1$,

$$
\omega_n = \{x \in \Omega : d(x, \partial \Omega) > 1/n \text{ and } |x| < n\},\
$$

\n
$$
K_n = \overline{\omega_n} \setminus \omega_{n-1},
$$

\n
$$
U_n = \omega_{n+1} \setminus \overline{\omega_{n-2}}.
$$

The theorem of partitions of unity implies the existence of $\varphi_n \in \mathcal{D}(U_n)$ such that $0 \leq \varphi_n \leq 1$ and $\varphi_n = 1$ on K_n . It suffices then to define

$$
\psi_n = \varphi_n / \sum_{j=1}^{\infty} \varphi_j.
$$

Theorem 6.1.17 (Hajłasz) *Let* $1 \leq p < \infty$, $u \in W^{1,p}_{loc}(\Omega)$, and $\varepsilon > 0$. Then there *exists* $v \in C^{\infty}(\Omega)$ *such that*

 (a) *v* − *u* ∈ $W_0^{1,p}(\Omega)$; *(b)* $||v - u||_{W^{1,p}(\Omega)} < \varepsilon$.

Proof Let (U_n) and (ψ_n) be given by the preceding proposition. For every $n \geq 1$, there exists k_n such that

$$
v_n = \rho_{k_n} * (\psi_n u) \in \mathcal{D}(U_n)
$$

and

$$
||v_n - \psi_n u||_{1,p} < \varepsilon/2^n.
$$

By Proposition 3.1.6, $\sum_{n=-\infty}^{\infty} (v_n - \psi_n u)$ converges to w in $W_0^{1,p}(\Omega)$. On the other hand, we have on $\omega \subset\subset \Omega$ that

$$
\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{m_{\omega}} v_n \in C^{\infty}(\omega), \quad \sum_{n=1}^{\infty} \psi_n u = u.
$$

Setting $v = \sum^{\infty}$ $n=1$ v_n , we conclude that

$$
||v - u||_{1,p} = ||w||_{1,p} \le \sum_{n=1}^{\infty} ||v_n - \psi_n u||_{1,p} < \varepsilon.
$$

Corollary 6.1.18 (Deny–Lions) *Let* $1 \leq p \leq \infty$ *. Then* $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ *is dense in* $W^{1,p}(\Omega)$ *.*

6.2 Cylindrical Domains

Let *U* be an open subset of \mathbb{R}^{N-1} and $0 < r \leq \infty$. Define

$$
\Omega = U \times]-r, r[, \quad \Omega_+ = U \times]0, r[.
$$

The extension by reflection of a function in $W^{1,p}(\Omega_+)$ is a function in $W^{1,p}(\Omega)$.

For every $u : \Omega_+ \to \mathbb{R}$, we define on Ω :

$$
\rho u(x', x_{N}) = u(x', |x_{N}|), \quad \sigma u(x', x_{N}) = (\text{sgn } x_{N}) u(x', |x_{N}|).
$$

Lemma 6.2.1 (Extension by Reflection) *Let* $1 \leq p < \infty$ *and* $u \in W^{1,p}(\Omega_+)$ *. Then* $\rho u \in W^{1,p}(\Omega)$, $\partial_k(\rho u) = \rho(\partial_k u)$, $1 \leq k \leq N-1$, and $\partial_N(\rho u) = \sigma(\partial_N u)$, so *that*

$$
||\rho u||_{L^p(\Omega)} = 2^{1/p}||u||_{L^p(\Omega_+)}, \quad ||\rho u||_{W^{1,p}(\Omega)} = 2^{1/p}||u||_{W^{1,p}(\Omega_+)}.
$$

Proof Let $v \in \mathcal{D}(\Omega)$. Then by a change of variables,

$$
\int_{\Omega} (\rho u) \partial_{N} v \, dx = \int_{\Omega_{+}} u \partial_{N} w \, dx, \tag{*}
$$

where

$$
w(x', x'_{N}) = v(x', x'_{N}) - v(x', -x'_{N}).
$$

A truncation argument will be used. Let $\eta \in C^{\infty}(\mathbb{R})$ be such that

$$
\eta(t) = 0,
$$
 $t < 1/2,$
= 1, $t > 1,$

and define η_n on Ω_+ by

$$
\eta_n(x) = \eta(n x_N).
$$

The definition of weak derivative ensures that

$$
\int_{\Omega_+} u \, \partial_N (\eta_n w) dx = - \int_{\Omega_+} (\partial_N u) \eta_n w dx, \tag{**}
$$

where

$$
\partial_{N}(\eta_n w) = \eta_n \partial_{N} w + n \eta'(n x_N) w.
$$

Since $w(x', 0) = 0$, $w(x', x_{N}) = h(x', x_{N})x_{N}$, where

$$
h(x', x_{N}) = \int_0^1 \partial_N w(x', t x_N) dt.
$$

Lebesgue's dominated convergence theorem implies that

$$
\left| \int_{\Omega_+} n \; \eta'(n \; x_N) w \; u \; dx \right| = \left| \int_{U \times [0, 1/n[} n \; \eta'(n \; x_N) h \; x_N u \; dx \right|
$$

$$
\leq ||\eta'||_{\infty} \int_{U \times [0, 1/n[} |hu| dx \to 0, \quad n \to \infty.
$$

Taking the limit in (∗∗), we obtain

$$
\int_{\Omega_+} u \, \partial_N w \, dx = - \int_{\Omega_+} (\partial_N u) w \, dx = - \int_{\Omega} \sigma (\partial_N u) v \, dx.
$$

It follows from (∗) that

$$
\int_{\Omega} (\rho u) \partial_{N} v \, dx = - \int_{\Omega} \sigma (\partial_{N} u) v \, dx.
$$

Since $v \in \mathcal{D}(\Omega)$ is arbitrary, $\frac{\partial}{\partial u}(\rho u) = \sigma(\frac{\partial}{\partial u}u)$. By a similar but simpler argument, $\partial_k(\rho u) = \rho(\partial_k u), 1 \leq k \leq N-1.$

It makes no sense to define an L^p function on a set of measure zero. We will define the trace of a $W^{1,p}$ function on the boundary of a smooth domain. We first consider the case of \mathbb{R}^N_+ .

Notation We define

$$
\mathcal{D}(\overline{\Omega}) = \{u|_{\Omega} : u \in \mathcal{D}(\mathbb{R}^N)\},\
$$

$$
\mathbb{R}^N_+ = \{ (x', x_{N}) : x' \in \mathbb{R}^{N-1}, x_{N} > 0 \}.
$$

Lemma 6.2.2 (Trace Inequality) *Let* $1 \leq p < \infty$ *. Then for every* $u \in \mathcal{D}(\mathbb{R}^N_+)$ *,*

$$
\int_{\mathbb{R}^{N-1}} |u(x',0)|^p dx' \leq p ||u||_{L^p(\mathbb{R}^N_+)}^{p-1} ||\partial_{N} u||_{L^p(\mathbb{R}^N_+)}.
$$

Proof The fundamental theorem of calculus implies that for all $x' \in \mathbb{R}^{N-1}$,

$$
|u(x', 0)|^{p} \le p \int_{0}^{\infty} |u(x', x_{N})|^{p-1} |\partial_{N} u(x', x_{N})| dx_{N}.
$$

When $1 < p < \infty$, using Fubini's theorem and Hölder's inequality, we obtain

$$
\int_{\mathbb{R}^{N-1}} |u(x',0)|^p dx' \le p \int_{\mathbb{R}^N_+} |u|^{p-1} |\partial_y u| dx
$$

\n
$$
\le p \left(\int_{\mathbb{R}^N_+} |u|^{(p-1)p'} dx \right)^{1/p'} \left(\int_{\mathbb{R}^N_+} |\partial_y u|^p dx \right)^{1/p}
$$

\n
$$
= p \left(\int_{\mathbb{R}^N_+} |u|^p dx \right)^{1-p} \left(\int_{\mathbb{R}^N_+} |\partial_y u|^p dx \right)^{1/p}.
$$

The case $p = 1$ is similar.

Proposition 6.2.3 *Let* $1 \leq p < \infty$ *. Then there exists one and only one continuous linear mapping* $\gamma_0: W^{1,p}(\mathbb{R}^N_+) \to L^p(\mathbb{R}^{N-1})$ *such that for every* $u \in \mathcal{D}(\mathbb{R}^N_+)$, $\gamma_0 u = u(., 0).$

Proof Let $u \in \mathcal{D}(\mathbb{R}^N_+)$ and define $\gamma_0 u = u(., 0)$. The preceding lemma implies that

$$
||\gamma_0 u||_{L^p(\mathbb{R}^{N-1})} \leq p^{1/p}||u||_{W^{1,p}(\mathbb{R}^N_+)}.
$$

The space $\mathcal{D}(\mathbb{R}^N_+)$ is dense in $W^{1,p}(\mathbb{R}^N_+)$ by Theorem [6.1.10](#page-5-0) and Lemma [6.2.1.](#page-10-0) By Proposition 3.2.3, γ_0 has a unique continuous linear extension to $W^{1,p}(\mathbb{R}^N_+)$. \Box

Proposition 6.2.4 (Integration by Parts) *Let* $1 \leq p < \infty$ *,* $u \in W^{1,p}(\mathbb{R}^N_+)$ *<i>, and* $v \in \mathcal{D}(\mathbb{R}^N_+)$. Then

$$
\int_{\mathbb{R}^N_+} v \, \partial_N u \, dx = - \int_{\mathbb{R}^N_+} (\partial_N v) u \, dx - \int_{\mathbb{R}^{N-1}} \gamma_0 v \, \gamma_0 u \, dx',
$$

and

$$
\int_{\mathbb{R}^N_+} v \partial_k u \, dx = - \int_{\mathbb{R}^N_+} (\partial_k v) u \, dx, \quad 1 \le k \le N - 1.
$$

Proof Assume, moreover, that $u \in \mathcal{D}(\mathbb{R}^N_+)$. Integrating by parts, we obtain for all $x' \in \mathbb{R}^{N-1}$.

$$
\int_0^{\infty} v(x', x_{N}) \partial_N u(x', x_{N}) dx_N = -\int_0^{\infty} \partial_N v(x', x_{N}) u(x', x_{N}) dx_N - v(x', 0) u(x', 0).
$$

Fubini's theorem implies that

$$
\int_{\mathbb{R}^N_+} v \, \partial_{N} u \, dx = - \int_{\mathbb{R}^N_+} \partial_{N} v u \, dx - \int_{\mathbb{R}^{N-1}} v(x',0) u(x',0) dx'.
$$

Let $u \in W^{1,p}_+(\mathbb{R}^N_+)$. Since $\mathcal{D}(\mathbb{R}^N_+)$ is dense in $W^{1,p}_+(\mathbb{R}^N_+)$, there exists a sequence $(u_n) \subset \mathcal{D}(\mathbb{R}^N_+)$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N_+)$. By the preceding lemma, $\gamma_0 u_n \to \gamma_n v_{n-1}$ $\gamma_0 u$ in $L^p(\mathbb{R}^{N-1})$. It is easy to finish the proof.

The proof of the last formulas is similar.

Notation For every $u : \mathbb{R}_+^N \to \mathbb{R}$, we define \overline{u} on \mathbb{R}^N by

$$
\overline{u}(x', x_{N}) = u(x', x_{N}), \quad x_{N} > 0,
$$

= 0, \quad x_{N} \le 0.

Proposition 6.2.5 *Let* $1 \leq p < \infty$ *and* $u \in W^{1,p}(\mathbb{R}^N_+)$ *. The following properties are equivalent:*

(a) u ∈ $W_0^{1,p}(\mathbb{R}^N_+);$ *(b)* $\gamma_0 u = 0$; *(c)* $\overline{u} \in W^{1,p}(\mathbb{R}^N)$ *and* $\partial_k \overline{u} = \overline{\partial_k u}$, $1 \leq k \leq N$.

Proof If $u \in W_0^{1,p}(\mathbb{R}^N_+)$, there exists $(u_n) \subset \mathcal{D}(\mathbb{R}^N_+)$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N_+)$. Hence $\gamma_0 u_n = 0$ and $\gamma_0 u_n \to \gamma_0 u$ in $L^p(\mathbb{R}^{N-1})$, so that $\gamma_0 u = 0$.

If $\gamma_0 u = 0$, it follows from the preceding proposition that for every $v \in \mathcal{D}(\mathbb{R}^N)$,

$$
\int_{\mathbb{R}^N} v \, \overline{\partial_k u} \, dx = - \int_{\mathbb{R}^N} \partial_k v \, \overline{u} \, dx, \quad 1 \leq k \leq N.
$$

We conclude that (c) is satisfied.

Assume that (c) is satisfied. We define $u_n = \theta_n \overline{u}$, where (θ_n) is defined in the proof of Theorem [6.1.10.](#page-5-0) It is clear that $u_n \to \overline{u}$ in $W^{1,p}(\mathbb{R}^N)$ and spt $u_n \subset B[0, 2n] \cap \mathbb{R}^N_+.$

We can assume that spt u_n is a compact subset of \mathbb{R}^N_+ . We define $y_n =$ $(0,\ldots, 0, 1/n)$ and $v_n = \tau_{y_n}\overline{u}$. Since $\partial_k v_n = \tau_{y_n}\partial_k\overline{u}$, the lemma of continuity of translations implies that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N_+).$

We can assume that spt u is a compact subset of \mathbb{R}^N_+ . For n large enough, $\rho_n * u \in$ $\mathcal{D}(\mathbb{R}^N_+)$. Since $\rho_n * u \to u$ is in $W^{1,p}(\mathbb{R}^N)$, we conclude that $u \in W_0^{1,p}(\mathbb{R}^N)$. \square

6.3 Smooth Domains

In this section we consider an open subset $\Omega = \{ \varphi < 0 \}$ of \mathbb{R}^N of class C^1 with a bounded boundary Γ . We use the notations of Definition 9.4.1.

Let $\gamma \in \Gamma$. Since $\nabla \varphi(\gamma) \neq 0$, we can assume that, after a permutation of variables, $\partial_N \varphi(\gamma) \neq 0$. By Theorem 9.1.1 there exist $r > 0$, $R > 0$, and

$$
\beta \in C^1(B(\gamma', R) \times]-r, r[)
$$

such that, for $|x' - \gamma'| < R$ and $|t| < r$, we have

$$
\varphi(x', x_N) = t \quad \Leftrightarrow \quad x_N = \beta(x', t)
$$

and the set

$$
U_{\gamma} = \left\{ (x', \beta(x', t)) : |x' - \gamma'| < R, |t| < r \right\}
$$

is an open neighborhood of γ . Moreover

$$
\Omega \cap U_{\gamma} = \left\{ \left(x', \beta(x', t) \right) : \left| x' - \gamma' \right| < R, -r < t < 0 \right\}
$$

and

$$
\Gamma \cap U_{\gamma} = \Big\{ \big(x', \beta(x', 0)\big) \colon |x' - \gamma'| < R \Big\}.
$$

The Borel–Lebesgue theorem implies the existence of a finite covering U_1, \ldots, U_k of Γ by open subsets satisfying the above properties. There exists a partition of unity ψ_1, \ldots, ψ_k subordinate to this covering.

Theorem 6.3.1 (Extension Theorem) *Let* $1 \leq p \leq \infty$ *and let* Ω *be an open subset of* \mathbb{R}^N *of class* C^1 *with a bounded boundary or the product of* N *open intervals. Then there exists a continuous linear mapping*

$$
P:W^{1,p}(\Omega)\to W^{1,p}(\mathbb{R}^N)
$$

such that $Pu|_{\Omega} = u$.

Proof Let Ω be an open subset of \mathbb{R}^N of class C^1 with a bounded boundary, and let $u \in W^{1,p}(\Omega)$. Proposition [6.1.11](#page-6-0) and Lemma [6.2.1](#page-10-0) imply that

$$
P_U u(x) = u(x', \beta(x', -|\varphi(x', x_{N}^{\prime})|)) \in W^{1, p}(U).
$$

Moreover,

$$
||P_Uu||_{W^{1,p}(U)} \le a_U ||u||_{W^{1,p}(\Omega)}.
$$
 (*)

We define $\psi_0 = 1 - \sum$ k $j=1$ ψ_j ,

$$
u_0 = \psi_0 u, \quad x \in \Omega, = 0, \quad x \in \mathbb{R}^N \setminus \Omega,
$$

and for $1 \leq j \leq k$,

$$
u_j = P_{U_j}(\psi_j u), \quad x \in U_j, = 0, \quad x \in \mathbb{R}^N \setminus U_j.
$$

Formula (*) and Proposition [6.1.12](#page-6-1) ensure that for $0 \le j \le k$,

$$
||u_j||_{W^{1,p}(\mathbb{R}^N)} \le b_j||u||_{W^{1,p}(\Omega)}.
$$

(The support of $\nabla \psi_0$ is compact!) Hence

$$
Pu = \sum_{j=0}^{k} u_j \in W^{1,p}(\mathbb{R}^N), \quad ||Pu||_{W^{1,p}(\mathbb{R}^N)} \le c||u||_{W^{1,p}(\Omega)},
$$

and for all $x \in \Omega$.

$$
Pu(x) = \sum_{j=0}^{k} \psi_j(x)u(x) = u(x).
$$

If Ω is the product of N open intervals, it suffices to use a finite number of extensions by reflections and a truncation.

Theorem 6.3.2 (Density Theorem in Sobolev Spaces) *Let* $1 \leq p < \infty$ *and let* Ω *be an open subset of* \mathbb{R}^N *of class* C^1 *with a bounded boundary or the product of* N *open intervals. Then the space* $\mathcal{D}(\overline{\Omega})$ *is dense in* $W^{1,p}(\Omega)$ *.*

Proof Let $u \in W^{1,p}(\Omega)$. Theorem [6.1.10](#page-5-0) implies the existence of a sequence (v_n) ⊂ $\mathcal{D}(\mathbb{R}^N)$ converging to Pu in $W^{1,p}(\mathbb{R}^N)$. Hence $u_n = v_n|_{\Omega}$ converges to u in $W^{1,p}(\Omega)$.

Theorem 6.3.3 (Trace Inequality) *Let* Ω *be an open subset of* \mathbb{R}^N *of class* C^1 *with a bounded boundary* Γ *. Then there exist* $a > 0$ *and* $b > 0$ *such that, for* $1 \leq p \leq \infty$ *and for every* $u \in \mathcal{D}(\bar{\Omega})$,

$$
\int_{\Gamma} |u|^p d\gamma \leq a \|u\|_{L^p(\Omega)}^p + b p \|u\|_{L^p(\Omega)}^{p-1} \|\nabla u\|_{L^p(\Omega)}.
$$

Proof Let $1 < p < \infty$, $u \in \mathcal{D}(\bar{\Omega})$, and $v \in C^{\infty}(\mathbb{R}^N; \mathbb{R}^N)$. Since

$$
\operatorname{div}|u|^p v = |u|^p \operatorname{div} v + pu|u|^{p-2} \nabla u \cdot v,
$$

the divergence theorem implies that

$$
\int_{\Gamma} |u|^p v \cdot n d\gamma = \int_{\Omega} \left[|u|^p \operatorname{div} v + p u |u|^{p-2} \nabla u \cdot v \right] dx.
$$

Assume that $1 \le v \cdot n$ on Γ . Using Hölder's inequality, we obtain that, for $1 < p <$ ∞,

$$
\int_{\Gamma} |u|^p dy \le \int_{\Gamma} |u|^p v \cdot n dy \le a \int_{\Omega} |u|^p dx + bp \int_{\Omega} |u|^{p-1} |\nabla u| dx
$$

$$
\le a \int_{\Omega} |u|^p dx + bp \left(\int_{\Omega} |u|^{(p-1)p'} dx \right)^{1/p'} \left(\int_{\Omega} |\nabla u|^p dx \right)^{1/p}
$$

$$
= a \int_{\Omega} |u|^p dx + bp \left(\int_{\Omega} |u|^p dx \right)^{1-1/p} \left(\int_{\Omega} |\nabla u|^p dx \right)^{1/p},
$$

where $a = ||divv||_{\infty}$ and $b = ||v||_{\infty}$.

When $p \downarrow 1$, it follows from Lebesgue's dominated convergence theorem that

$$
\int_{\Gamma} |u| d\gamma \le a \int_{\Omega} |u| dx + b \int_{\Omega} |\nabla u| dx.
$$

Let us construct an admissible vector field v. Let $U = \{x \in \mathbb{R}^N : \nabla \varphi(x) \neq 0\}.$ The theorem of partition of unity implies the existence of $\psi \in \mathcal{D}(U)$ such that $\psi = 1$ on Γ . We define the vector field w by

$$
w(x) = \psi(x) \frac{\nabla \varphi(x)}{|\nabla \varphi(x)|}, \quad x \in U
$$

= 0,
$$
x \in \mathbb{R}^N \backslash U.
$$

For *n* large enough, the C^{∞} vector field $v = 2\rho_n * w$ is such that $1 \le v \cdot n$ on Γ . \Box

Theorem 6.3.4 *Under the assumptions of Theorem [6.3.3](#page-16-0), there exists one and only one continuous linear mapping*

$$
\gamma: W^{1,p}(\Omega) \to L^p(\Gamma)
$$

such that for all $u \in \mathcal{D}(\bar{\Omega})$, $\gamma_0 u = u \Big|_{\Gamma}$.

Proof It suffices to use the trace inequality, Proposition 3.2.3, and the density theorem in Sobolev spaces.

Theorem 6.3.5 (Divergence Theorem) *Let* Ω *be an open subset of* \mathbb{R}^N *of class* C^1 *with a bounded boundary* Γ *and* $\nu \in W^{1,1}(\Omega; \mathbb{R}^N)$ *. Then*

$$
\int_{\Omega} \operatorname{div} \nu dx = \int_{\Gamma} \gamma_0 \nu \cdot n d\gamma.
$$

Proof When $v \in \mathcal{D}(\bar{\Omega}; \mathbb{R}^N)$, the proof is given in Section 9.4. In the general case, it suffices to use the density theorem in Sobolev spaces and the trace theorem. \Box it suffices to use the density theorem in Sobolev spaces and the trace theorem.

6.4 Embeddings

Let $1 \le p, q < \infty$. If there exists $c > 0$ such that for every $u \in \mathcal{D}(\mathbb{R}^N)$,

$$
||u||_{L^q(\mathbb{R}^N)} \leq c||\nabla u||_{L^p(\mathbb{R}^N)},
$$

then necessarily

$$
q = p^* = Np/(N - p).
$$

Indeed, replacing $u(x)$ by $u_\lambda(x) = u(\lambda x)$, $\lambda > 0$, we find that

$$
||u||_{L^q(\mathbb{R}^N)} \le c\lambda^{\left(1+\frac{N}{q}-\frac{N}{p}\right)}||\nabla u||_{L^p(\mathbb{R}^N)},
$$

so that $q = p^*$.

We define for $1 \leq j \leq N$ and $x \in \mathbb{R}^N$,

$$
\widehat{x_j} = (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{N}).
$$

Lemma 6.4.1 (Gagliardo's Inequality) *Let* $N \geq 2$ *and* f_1, \ldots, f_N ∈ $L^{N-1}(\mathbb{R}^{N-1})$ *. Then* $f(x) = \prod$ N $\prod_{j=1} f_j(\widehat{x}_j) \in L^1(\mathbb{R}^N)$ and $||f||_{L^1(\mathbb{R}^N)} \leq \prod$ N $j=1$ $||f_j||_{L^{N-1}(\mathbb{R}^{N-1})}$.

Proof We use induction. When $N = 2$, the inequality is clear. Assume that the inequality holds for $N \geq 2$. Let $f_1, \ldots, f_{N+1} \in L^N(\mathbb{R}^N)$ and

$$
f(x, x_{N+1}) = \prod_{j=1}^{N} f_j(\widehat{x_j}, x_{N+1}) f_{N+1}(x).
$$

It follows from Hölder's inequality that for almost every $x_{N+1} \in \mathbb{R}$,

$$
\int_{\mathbb{R}^N} |f(x, x_{N+1})| dx \leq \left[\int_{\mathbb{R}^N} \prod_{j=1}^N |f_j(\hat{x_j}, x_{N+1})|^{N'} dx \right]^{1/N'} ||f_{N+1}||_{L^N(\mathbb{R}^N)} \n\leq \prod_{j=1}^N \left[\int_{\mathbb{R}^{N-1}} |f_j(\hat{x_j}, x_{N+1})|^{N} d\hat{x_j} \right]^{1/N} ||f_{N+1}||_{L^N(\mathbb{R}^N)}.
$$

The generalized Hölder inequality implies that

.

$$
||f||_{L^{1}(\mathbb{R}^{N+1})} \leq \prod_{j=1}^{N} \left[\int_{\mathbb{R}^{N}} |f_{j}(\widehat{x}_{j}, x_{N+1})|^{N} d\widehat{x}_{j} dx_{N+1} \right]^{1/N} ||f_{N+1}||_{L^{N}(\mathbb{R}^{N})}
$$

=
$$
\prod_{j=1}^{N+1} ||f_{j}||_{L^{N}(\mathbb{R}^{N})}.
$$

Lemma 6.4.2 (Sobolev's Inequalities) *Let* $1 \leq p \leq N$ *. Then there exists a constant* $c = c(p, N)$ *such that for every* $u \in \mathcal{D}(\mathbb{R}^N)$ *,*

$$
||u||_{L^{p^*}(\mathbb{R}^N)} \leq c||\nabla u||_{L^p(\mathbb{R}^N)}.
$$

Proof Let $u \in C^1(\mathbb{R}^N)$ be such that spt u is compact. It follows from the fundamental theorem of calculus that for $1 \le j \le N$ and $x \in \mathbb{R}^N$,

$$
|u(x)| \leq \frac{1}{2} \int_{\mathbb{R}} |\partial_j u(x)| dx_j.
$$

By the preceding lemma,

$$
\int_{\mathbb{R}^N} |u(x)|^{N/(N-1)} dx \le \prod_{j=1}^N \left[\frac{1}{2} \int_{\mathbb{R}^N} |\partial_j u(x)| dx \right]^{1/(N-1)}
$$

Hence we obtain

$$
||u||_{N/(N-1)} \leq \frac{1}{2} \prod_{j=1}^N ||\partial_j u||_1^{1/N} \leq c_N ||\nabla u||_1.
$$

For $p > 1$, we define $q = (N - 1)p^*/N > 1$. Let $u \in \mathcal{D}(\mathbb{R}^N)$. The preceding inequality applied to $|u|^q$ and Hölder's inequality imply that

$$
\left(\int |u|^{p^*} dx\right)^{\frac{N-1}{N}} \leq q c_N \int_{\mathbb{R}^N} |u|^{q-1} |\nabla u| dx
$$

$$
\leq q c_N \left(\int_{\mathbb{R}^N} |u|^{(q-1)p'} dx\right)^{1/p'} \left(\int_{\mathbb{R}^N} |\nabla u|^p dx\right)^{1/p}.
$$

It is easy to conclude the proof.

Lemma 6.4.3 (Morrey's Inequalities) *Let* $N < p < \infty$ *and* $\lambda = 1 - N/p$ *. Then there exists a constant* $c = c(p, N)$ *such that for every* $u \in \mathcal{D}(\mathbb{R}^N)$ *and every* $x, y \in \mathbb{R}^N$,

$$
\left|u(x) - u(y)\right| \le c|x - y|^{\lambda} \|\nabla u\|_{L^p(\mathbb{R}^N)},
$$

$$
\|u\|_{\infty} \le c \|u\|_{W^{1,p}(\mathbb{R}^N)}.
$$

Proof Let $u \in \mathcal{D}(\mathbb{R}^N)$, and let us define $B = B(a, r)$, $a \in \mathbb{R}^N$, $r > 0$, and

$$
\oint u = \frac{1}{m(B)} \int_B u \, dx.
$$

We assume that $0 \in \overline{B}$. It follows from the fundamental theorem of calculus and Fubini's theorem that

$$
\left| \oint u - u(0) \right| \leq \frac{1}{m(B)} \int_B |u(x) - u(0)| dx
$$

\n
$$
\leq \frac{1}{m(B)} \int_B dx \int_0^1 |\nabla u(tx)| |x| dt
$$

\n
$$
\leq \frac{2r}{m(B)} \int_0^1 dt \int_B |\nabla u(tx)| dx
$$

\n
$$
= \frac{2r}{m(B)} \int_0^1 \frac{dt}{t^N} \int_{B(ta, tr)} |\nabla u(y)| dy.
$$

Hölder's inequality implies that

$$
\left| \int u - u(0) \right| \leq \frac{2r}{m(B)} \int_0^1 m\big(B(ta, tr)\big)^{1/p'} \frac{dt}{t^N} \|\nabla u\|_{L^p(B)} = \frac{2}{\lambda V_N^{1/p}} r^{\lambda} \|\nabla u\|_{L^p(B)}.
$$

After a translation, we obtain that, for every $x \in B[a, r]$,

$$
\left|\int u - u(x)\right| \leq c_{\lambda} r^{\lambda} \|\nabla u\|_{L^p(B)}.
$$

Let $x \in \mathbb{R}^N$. Choosing $a = x$ and $r = 1$, we find

$$
|u(x)| \leq \left| \int u \right| + c_{\lambda} \|\nabla u\|_{L^p(B)} \leq c \big(\|u\|_{L^p(B)} + \|\nabla u\|_{L^p(B)} \big).
$$

Let $x, y \in \mathbb{R}^N$. Choosing $a = (x + y)/2$ and $r = |x - y|/2$, we obtain

$$
|u(x) - u(y)| \le 2^{1-\lambda} c_{\lambda} |x - y|^{\lambda} ||\nabla u||_{L^p(B)}.
$$

Notation We define

$$
C_0(\overline{\Omega}) = \{u\big|_{\Omega} : u \in C_0(\mathbb{R}^N)\}.
$$

Theorem 6.4.4 (Sobolev's Embedding Theorem, 1936–1938) *Let* Ω *be an open subset of* \mathbb{R}^N *of class* C^1 *with a bounded boundary or the product of* N *open intervals.*

- *(a) If* $1 \leq p \leq N$ *and if* $p \leq q \leq p^*$ *, then* $W^{1,p}(\Omega) \subset L^q(\Omega)$ *, and the canonical injection is continuous.*
- *(b) If* $N < p < \infty$ *and* $\lambda = 1 N/p$ *, then* $W^{1,p}(\Omega) \subset C_0(\overline{\Omega})$ *, the canonical injection is continuous, and there exists* $c = c(p, \Omega)$ *such that for every* $u \in$ $W^{1,p}(\Omega)$ *and all* $x, y \in \Omega$,

$$
|u(x) - u(y)| \le c ||u||_{W^{1,p}(\Omega)} |x - y|^{\lambda}.
$$

Proof Let $1 \leq p \leq N$ and $u \in W^{1,p}(\mathbb{R}^N)$. By Theorem [6.1.10](#page-5-0), there exists a sequence $(u_n) \subset \mathcal{D}(\mathbb{R}^N)$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$.

We can assume that $u_n \to u$ almost everywhere on \mathbb{R}^N . It follows from Fatou's lemma and Sobolev's inequality that

$$
||u||_{L^{p^*}(\mathbb{R}^N)} \leq \lim_{n \to \infty} ||u_n||_{L^{p^*}(\mathbb{R}^N)} \leq c \lim_{n \to \infty} ||\nabla u_n||_{L^p(\mathbb{R}^N)} = c||\nabla u||_{L^p(\mathbb{R}^N)}.
$$

Let P be the extension operator corresponding to Ω and $v \in W^{1,p}(\Omega)$. We have

$$
||v||_{L^{p^*}(\Omega)} \leq ||Pv||_{L^{p^*}(\mathbb{R}^N)} \leq c||\nabla Pv||_{L^p(\mathbb{R}^N)} \leq c_1||v||_{W^{1,p}(\Omega)}.
$$

If $p \le q \le p^*$, we define $0 \le \lambda \le 1$ by

$$
\frac{1}{q} = \frac{1-\lambda}{p} + \frac{\lambda}{p^*},
$$

and we infer from the interpolation inequality that

$$
||v||_{L^{q}(\Omega)} \leq ||v||_{L^{p}(\Omega)}^{1-\lambda} ||v||_{L^{p^{*}}(\Omega)}^{\lambda} \leq c_1^{\lambda} ||v||_{W^{1,p}(\Omega)}.
$$

The case $p > N$ follows from Morrey's inequalities.

Lemma 6.4.5 *Let* Ω *be an open subset of* \mathbb{R}^N *such that* $m(\Omega) < +\infty$ *, and let* $1 \leq p \leq r \leq +\infty$ *. Assume that* X *is a closed subspace of* $W^{1,p}(\Omega)$ *such that* $X ⊂ L^r(Ω)$ *. Then, for every* $1 ≤ q < r$, $X ⊂ L^q(Ω)$ *and the canonical injection is compact.*

Proof The closed graph theorem implies the existence of $c > 0$ such that, for every $u \in X$.

$$
||u||_{L^r(\Omega)} \leq c||u||_{W^{1,p}(\Omega)}.
$$

Our goal is to prove that

$$
S = \{ u \in X : ||u||_{W^{1,p}(\Omega)} \le 1 \}
$$

is precompact in $L^q(\Omega)$ for $1 \leq q < r$. Let $1/q = 1 - \lambda + \lambda/r$. By the interpolation inequality, for every $u \in S$,

$$
||u||_{L^{q}(\Omega)} \leq ||u||_{L^{r}(\Omega)}^{\lambda} ||u||_{L^{1}(\Omega)}^{1-\lambda} \leq c^{\lambda} ||u||_{L^{1}(\Omega)}^{1-\lambda}.
$$

Hence it suffices to prove that S is precompact in $L^1(\Omega)$.

Let us verify that S satisfies the assumptions of M. Riesz's theorem in $L^1(\Omega)$:

(a) It follows from Hölder's inequality that, for every $u \in S$,

$$
||u||_{L^1(\Omega)} \le ||u||_{L^r(\Omega)} m(\Omega)^{1-1/r} \le cm(\Omega)^{1-1/r}.
$$

(b) Similarly, we have that, for every $u \in S$,

$$
\int_{\Omega\setminus\omega_k}|u|dx\leq\|u\|_{L^r(\Omega)}m(\Omega\setminus\omega_k)^{1-1/r}\leq cm(\Omega\setminus\omega_k)^{1-1/r}
$$

where

$$
\omega_k = \{x \in \Omega : d(x, \partial \Omega) > 1/k\}.
$$

Lebesgue's dominated convergence theorem implies that

$$
\lim_{k\to\infty} m(\Omega\backslash\omega_k) = 0.
$$

(c) Let $\omega \subset \Omega$. Assume that $|y| < d(\omega, \partial \Omega)$ and $u \in C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$. Since, by the fundamental theorem of calculus,

$$
\left|\tau_y u(x) - u(x)\right| = \left|\int_0^1 y \cdot \nabla u(x - ty) dt\right| \le |y| \int_0^1 \left|\nabla u(x - ty)\right| dt,
$$

we obtain

$$
\|\tau_y u - u\|_{L^1(\omega)} \le |y| \int_{\omega} dx \int_0^1 \left| \nabla u(x - ty) \right| dt
$$

$$
= |y| \int_0^1 dt \int_{\omega} \left| \nabla u(x - ty) \right| dx
$$

$$
= |y| \int_0^1 dt \int_{\omega - ty} \left| \nabla u(z) \right| dz \le |y| \left\| \nabla u \right\|_{L^1(\Omega)}.
$$

Using Corollary [6.1.18,](#page-10-1) we conclude by density that, for every $u \in S$,

$$
\|\tau_y u - u\|_{L^1(\omega)} \le \|\nabla u\|_{L^1(\Omega)} |y| \le \|\nabla u\|_{L^p(\Omega)} m(\Omega)^{1-1/p} |y| \le c_1 |y|.
$$

Theorem 6.4.6 (Rellich–Kondrachov Embedding Theorem) *Let* Ω *be a bounded open subset of* \mathbb{R}^N *of class* C^1 *or the product of* N *bounded open intervals:*

- *(a) If* $1 \leq p \leq N$ *and* $1 \leq q \leq p^*$ *, then* $W^{1,p}(\Omega) \subset L^q(\Omega)$ *, and the canonical injection is compact.*
- *(b) If* $N < p < \infty$, then $W^{1,p} \subset C_0(\overline{\Omega})$, and the canonical injection is compact.

Proof Let $1 \leq p \leq N$, $1 \leq q \leq p^*$. It suffices to use Sobolev's embedding theorem and the preceding lemma.

The case $p > N$ follows from Ascoli's theorem and Sobolev's embedding theorem.

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré's Inequality in $W_0^{1,p}$) Let $1 \leq p < \infty$, and let Ω be an *open subset of* \mathbb{R}^N *such that* $\Omega \subset \mathbb{R}^{N-1} \times]0$, a[. Then for every $u \in W_0^{1,p}(\Omega)$,

$$
||u||_{L^p(\Omega)} \leq \frac{a}{2}||\nabla u||_{L^p(\Omega)}.
$$

Proof Let $1 < p < \infty$ and $v \in \mathcal{D}(0, a)$. The fundamental theorem of calculus and Hölder's inequality imply that for $0 < x < a$,

$$
|v(x)| \leq \frac{1}{2} \int_0^a |v'(t)| dt \leq \frac{a^{1/p'}}{2} \Big| \int_0^a |v'(t)|^p dt \Big|^{1/p}.
$$

Hence we obtain

$$
\int_0^a |v(x)|^p dx \leq \frac{a^{p/p'}}{2^p} a \int_0^a |v'(x)|^p dx = \frac{a^p}{2^p} \int_0^a |v'(x)|^p dx.
$$

If $u \in \mathcal{D}(\Omega)$, we infer from the preceding inequality and from Fubini's theorem that

$$
\int_{\Omega} |u|^p dx = \int_{\mathbb{R}^{N-1}} dx' \int_0^a |u(x', x_N)|^p dx_N
$$

\n
$$
\leq \frac{a^p}{2^p} \int_{\mathbb{R}^{N-1}} dx' \int_0^a |\partial_u u(x', x_N)|^p dx_N
$$

\n
$$
= \frac{a^p}{2^p} \int_{\Omega} |\partial_u u|^p dx.
$$

It is easy to conclude by density. The case $p = 1$ is similar.

Definition 6.4.8 A metric space is connected if the only open and closed subsets of X are ϕ and X.

Theorem 6.4.9 (Poincaré's Inequality in $W^{1,p}$) *Let* $1 \leq p < \infty$ *, and let* Ω *be a bounded open connected subset of* \mathbb{R}^N . Assume that Ω *is of class* C^1 . Then there *exists* $c = c(p, \Omega)$ *, such that, for every* $u \in W^{1,p}(\Omega)$ *,*

$$
\|u-\mathop{\rlap{\hskip2.5pt---}\int}\nolimits u\|_{L^p(\varOmega)}\leq c\|\nabla u\|_{L^p(\varOmega)},
$$

where

$$
\oint u = \frac{1}{m(\Omega)} \int_{\Omega} u \, dx.
$$

Assume that Ω *is convex. Then, for every* $u \in W^{1,p}(\Omega)$ *,*

$$
\|u-\mathop{\rlap{\hskip2.5pt---}\int}\nolimits u\|_{L^p(\varOmega)}\leq 2^{N/p}\,d\,\|\nabla u\|_{L^p(\varOmega)},
$$

where $d = \sup_{\Omega} |x - y|$ *.* $x, y \in \Omega$

Proof Assume that Ω is of class C^1 . It suffices to prove that

$$
\lambda = \inf \left\{ \|\nabla u\|_p : u \in W^{1,p}(\Omega), \int u = 0, \|u\|_p = 1 \right\} > 0.
$$

Let $(u_n) \subset W^{1,p}(\Omega)$ be a minimizing sequence :

$$
||u_n||_p = 1, \quad \int u_n = 0, \quad ||\nabla u_n||_p \to \lambda.
$$

By the Rellich–Kondrachov theorem, we can assume that $u_n \to u$ in $L^p(\Omega)$. Hence $||u||_p = 1$ and $\int u = 0$. If $\lambda = 0$, then, by the closing lemma, $\nabla u = 0$. Since Ω is connected, $u = \int u = 0$. This is a contradiction.

Assume now that Ω is convex and that $u \in C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$. Hölder's inequality implies that

$$
\int_{\Omega} \left| u(y) - \int u \right|^{p} dy \le \int_{\Omega} dy \left[\int_{\Omega} \frac{|u(x) - u(y)|}{m(\Omega)} dx \right]^{p}
$$

$$
\le \frac{1}{m(\Omega)} \int_{\Omega} dy \int_{\Omega} \left| u(x) - u(y) \right|^{p} dx.
$$

It follows from the fundamental theorem of calculus and Hölder's inequality that

$$
\int_{\Omega} dy \int_{\Omega} \left| u(x) - u(y) \right|^{p} dx \le d^{p} \int_{\Omega} dy \int_{\Omega} dx \left[\int_{0}^{1} \left| \nabla u((1-t)x + ty) \right| dt \right]^{p}
$$

\n
$$
\le d^{p} \int_{\Omega} dy \int_{\Omega} dx \int_{0}^{1} \left| \nabla u((1-t)x + ty) \right|^{p} dt
$$

\n
$$
= 2d^{p} \int_{\Omega} dy \int_{\Omega} dx \int_{0}^{1/2} \left| \nabla u((1-t)x + ty) \right|^{p} dt
$$

\n
$$
= 2d^{p} \int_{\Omega} dy \int_{0}^{1/2} dt \int_{\Omega} \left| \nabla u((1-t)x + ty) \right|^{p} dx
$$

\n
$$
\le 2^{N} d^{p} \int_{\Omega} dy \int_{\Omega} \left| \nabla u(z) \right|^{p} dz.
$$

We obtain that

$$
\int_{\Omega} \left| u(y) - \int u \right|^p dy \le 2^N d^p \int_{\Omega} \left| \nabla u(y) \right|^p dy.
$$

We conclude by density, using Corollary $6.1.18$.

Theorem 6.4.10 (Hardy's Inequality) *Let* $1 < p < N$ *. Then for every* $u \in$ $W^{1,p}(\mathbb{R}^N)$ *, u*/|x| $\in L^p(\mathbb{R}^N)$ *and*

$$
||u/|x|||_{L^p(\mathbb{R}^N)} \leq \frac{p}{N-p}||\nabla u||_{L^p(\mathbb{R}^N)}.
$$

Proof Let $u \in \mathcal{D}(\mathbb{R}^N)$ and $v \in \mathcal{D}(\mathbb{R}^N; \mathbb{R}^N)$. We infer from Lemma [6.1.1](#page-0-0) that

$$
\int_{\mathbb{R}^N} |u|^p \mathrm{div} \, v \, dx = -p \int_{\mathbb{R}^N} |u|^{p-2} u \nabla u \cdot v \, dx.
$$

Approximating $v(x) = x/|x|^p$ by $v_{\varepsilon}(x) = x/(|x|^2 + \varepsilon)^{p/2}$, we obtain

$$
(N-p)\int_{\mathbb{R}^N}|u|^p/|x|^pdx=-p\int_{\mathbb{R}^N}|u|^{p-2}u\nabla u\cdot x/|x|^pdx.
$$

Hölder's inequality implies that

$$
\int_{\mathbb{R}^N} |u|^p / |x|^p dx \leq \frac{p}{N-p} \left(\int_{\mathbb{R}^N} |u|^{(p-1)p'}/|x|^p dx \right)^{1/p'} \left(\int_{\mathbb{R}^N} |\nabla u|^p dx \right)^{1/p} \n= \frac{p}{N-p} \left(\int_{\mathbb{R}^N} |u|^p / |x|^p dx \right)^{1-1/p} \left(\int_{\mathbb{R}^N} |\nabla u|^p dx \right)^{1/p}.
$$

We have thus proved Hardy's inequality in $\mathcal{D}(\mathbb{R}^N)$. Let $u \in W^{1,p}(\mathbb{R}^N)$. Theo-rem [6.1.10](#page-5-0) ensures the existence of a sequence $(u_n) \subset \mathcal{D}(\mathbb{R}^N)$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$. We can assume that $u_n \to u$ almost everywhere on \mathbb{R}^N . We conclude using Fatou's lemma that

$$
||u/|x|||_p \le \lim_{n \to \infty} ||u_n/|x|||_p \le \frac{p}{N-p} \lim_{n \to \infty} ||\nabla u_n||_p = \frac{p}{N-p} ||\nabla u||_p. \quad \Box
$$

Fractional Sobolev spaces are interpolation spaces between $L^p(\Omega)$ and $W^{1,p}(\Omega)$.

Definition 6.4.11 Let $1 \leq p \leq \infty$, $0 \leq s \leq 1$, and $u \in L^p(\Omega)$. We define

$$
|u|_{W^{s,p}(\Omega)}=|u|_{s,p}=\left(\int_{\Omega}\int_{\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}}dxdy\right)^{1/p}\leq+\infty.
$$

On the fractional Sobolev space

$$
W^{s,p}(\Omega) = \{u \in L^p(\Omega) : |u|_{W^{s,p}(\Omega)} < +\infty\},\
$$

we define the norm

$$
||u||_{W^{s,p}(\Omega)}=||u||_{s,p}=||u||_{L^p(\Omega)}+|u|_{W^{s,p}(\Omega)}.
$$

We give, without proof, the characterization of traces due to Gagliardo [26].

Theorem 6.4.12 *Let* $1 < p < \infty$ *.*

- *(a) For every* $u \in W^{1,p}(\mathbb{R}^N)$ *,* $\gamma_0 u \in W^{1-1/p,p}(\mathbb{R}^{N-1})$ *.*
- *(b) The mapping* γ_0 : $W^{1,p}(\mathbb{R}^N) \rightarrow W^{1-1/p,p}(\mathbb{R}^{N-1})$ *is continuous and surjective.*
- *(c) The mapping* $\gamma_0: W^{1,1}(\mathbb{R}^N) \to L^1(\mathbb{R}^{N-1})$ *is continuous and surjective.*

6.5 Comments

The main references on Sobolev spaces are the books:

- R. Adams and J. Fournier, *Sobolev spaces* [1]
- H. Brezis, *Analyse fonctionnelle, théorie et applications* [8]
- V. Maz'ya, *Sobolev spaces with applications to elliptic partial differential equations* [51]

Our proof of the *trace inequality* follows closely:

– A.C. Ponce, *Elliptic PDEs, measures, and capacities*, European Mathematical Society, 2016

The theory of partial differential equations was at the origin of Sobolev spaces. We recommend [9] on the history of partial differential equations and [55] on the prehistory of Sobolev spaces.

Because of Poincaré's inequalities, for every smooth, bounded open connected set Ω , we have that

$$
\lambda_1(\Omega) = \inf \left\{ \int_{\Omega} |\nabla u|^2 dx : u \in H_0^1(\Omega), \int_{\Omega} u^2 dx = 1 \right\} > 0,
$$

$$
\mu_2(\Omega) = \inf \left\{ \int_{\Omega} |\nabla u|^2 dx : u \in H^1(\Omega), \int_{\Omega} u^2 dx = 1, \int_{\Omega} u dx = 0 \right\} > 0.
$$

Hence the first eigenvalue $\lambda_1(\Omega)$ of Dirichlet's problem

$$
\begin{cases}\n-\Delta u = \lambda u & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$

and the second eigenvalue $\mu_2(\Omega)$ of the Neumann problem

$$
\begin{cases}\n-\Delta u = \lambda u & \text{in } \Omega, \\
n \cdot \nabla u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$

are strictly positive. Let us denote by B an open ball such that $m(B) = m(\Omega)$. Then

$$
\lambda_1(B) \le \lambda_1(\Omega) \qquad \text{(Faber–Krahn inequality)},
$$

$$
\mu_2(\Omega) \le \mu_2(B) \qquad \text{(Weinberger, 1956)}.
$$

Moreover, if Ω is convex with diameter d, then

$$
\pi^2/d^2 \le \mu_2(\Omega) \quad \text{(Payne-Weinberger, 1960)}.
$$

We prove in Theorem [6.4.9](#page-24-0) the weaker estimate

$$
1/(2^N d^2) \leq \mu_2(\Omega).
$$

There exists a bounded, connected open set $\Omega \subset \mathbb{R}^2$ such that $\mu_2(\Omega) = 0$. Consider on two sides of a square Q , two infinite sequences of small squares connected to Q by very thin pipes.

6.6 Exercises for Chap. [6](#page-0-1)

- 1. Let $\Omega = B(0, 1) \subset \mathbb{R}^N$. Then for $\lambda \neq 0$, $(\lambda - 1)p + N > 0 \Longleftrightarrow |x|^{\lambda} \in W^{1, p}(\Omega),$ $\lambda p + N < 0 \Longleftrightarrow |x|^{\lambda} \in W^{1,p}(\mathbb{R}^N \setminus \overline{\Omega}),$ $p < N \Longleftrightarrow \frac{x}{|x|} \in W^{1,p}(\Omega; \mathbb{R}^N).$
- 2. Let $1 < p < \infty$ and $u \in L^p(\Omega)$. The following properties are equivalent:
	- (a) $u \in W^{1,p}(\Omega)$; (b) $\sup \left\{ \int_{\Omega} u \, \text{div } v \, dx : v \in \mathcal{D}(\Omega, \mathbb{R}^N), ||v||_{L^{p'}(\Omega)} = 1 \right\} < \infty;$
	- (c) there exists $c > 0$ such that for every $\omega \subset \subset \Omega$ and for every $y \in \mathbb{R}^N$ such that $|y| < d(\omega, \partial \Omega)$,

$$
||\tau_y u - u||_{L^p(\omega)} \le c|y|.
$$

3. Let $1 \le p \le N$ and let Ω be an open subset of \mathbb{R}^N . Define

$$
S(\Omega) = \inf_{\substack{u \in \mathcal{D}(\Omega) \\ ||u||_{L^{p^*}(\Omega)} = 1}} ||\nabla u||_{L^p(\Omega)}.
$$

Then $S(\Omega) = S(\mathbb{R}^N)$. 4. Let $1 \leq p \leq N$. Then

$$
\frac{1}{2^N}S(\mathbb{R}^N)=\inf\left\{||\nabla u||_{L^p(\mathbb{R}^N_+)}/||u||_{L^{p^*}(\mathbb{R}^N_+)}:u\in H^1(\mathbb{R}^N_+)\setminus\{0\}\right\}.
$$

- 5. Poincaré–Sobolev inequality.
	- (a) Let $1 < p < N$, and let Ω be an open bounded connected subset of \mathbb{R}^N of class C^1 . Then there exists $c > 0$ such that for every $u \in W^{1,p}(\Omega)$,

$$
\left|\left|u-\int u\right|\right|_{L^{p^*}(\Omega)} \leq c||\nabla u||_{L^p(\Omega)},
$$

where $\oint u = \frac{1}{m(\Omega)}$ $\int_{\Omega} u \, dx$. *Hint*: Apply Theorem [6.4.4](#page-21-0) to $u - \oint u$. (b) Let $A = \{u = 0\}$ and assume that $m(A) > 0$. Then

$$
||u||_{L^{p^*}(\Omega)} \leq c \left(1 + \left[\frac{m(\Omega)}{m(A)}\right]^{1/p^*}\right) ||\nabla u||_{L^p(\Omega)}.
$$

Hint:

$$
\left|\int u\right|m(A)^{1/p^*} \leq \|u-\int u\|_{L^{p^*}(\Omega)}.
$$

6. Nash's inequality. Let $N \geq 3$. Then for every $u \in \mathcal{D}(\mathbb{R}^N)$,

$$
||u||_2^{2+4/N} \le c||u||_1^{4/N}||\nabla u||_2^2.
$$

Hint: Use the interpolation inequality.

7. Let $1 \le p < N$ and $q = p(N-1)/(N-p)$. Then for every $u \in \mathcal{D}(\mathbb{R}^N_+)$,

$$
\int_{\mathbb{R}^{N-1}} |u(x',0)|^q dx' \leq q ||u||_{L^{p^*}(\mathbb{R}^N_+)}^{q-1} ||\partial_{N} u||_{L^p(\mathbb{R}^N_+)}.
$$

8. Verify that Hardy's inequality is optimal using the family

$$
u_{\varepsilon}(x) = 1,
$$

= $|x| \frac{p-N}{p} - \varepsilon$, $|x| > 1$.

- 9. Let $1 \le p \le N$. Then $\mathcal{D}(\mathbb{R}^N \setminus \{0\})$ is dense in $W^{1,p}(\mathbb{R}^N)$.
- 10. Let $2 \leq N < p < \infty$. Then for every $u \in W_0^{1,p}(\mathbb{R}^N \setminus \{0\}), u/|x| \in L^p(\mathbb{R}^N)$ and

$$
||u/|x|||_{L^p(\mathbb{R}^N)} \leq \frac{p}{p-N}||\nabla u||_{L^p(\mathbb{R}^N)}.
$$

- 11. Let $1 \leq p < \infty$. Verify that the embedding $W^{1,p}(\mathbb{R}^N) \subset L^p(\mathbb{R}^N)$ is not compact. Let $1 \leq p \leq N$. Verify that the embedding $W_0^{1,p}(B(0, 1)) \subset$ $L^{p^*}(B(0, 1))$ is not compact.
- 12. Let us denote by $\mathcal{D}_r(\mathbb{R}^N)$ the space of radial functions in $\mathcal{D}(\mathbb{R}^N)$. Let $N \geq 2$ and $1 \leq p \leq \infty$. Then there exists $c(N, p) > 0$ such that for every $u \in$ $\mathcal{D}_r(\mathbb{R}^N)$.

$$
|u(x)| \le c(N, p)||u||_p^{1/p'}||\nabla u||_p^{1/p}|x|^{(1-N)/p}.
$$

Let $1 \leq p \leq N$. Then there exists $d(N, p) > 0$ such that for every $u \in$ $\mathcal{D}_r(\mathbb{R}^{N})$.

$$
|u(x)| \le d(N, p)||\nabla u||_p|x|^{(p-N)/p}.
$$

Hint: Let us write $u(x) = u(r)$, $r = |x|$, so that

$$
r^{N-1}|u(r)|^p \le p \int_r^{\infty} |u(s)|^{p-1} \left| \frac{du}{dr}(s) \right| s^{N-1} ds,
$$

$$
|u(r)| \le \int_r^{\infty} \left| \frac{du}{dr}(s) \right| ds.
$$

- 13. Let us denote by $W_r^{1,p}(\mathbb{R}^N)$ the space of radial functions in $W^{1,p}(\mathbb{R}^N)$. Verify that the space $\mathcal{D}_r(\mathbb{R}^N)$ is dense in $W_r^{1,p}(\mathbb{R}^N)$.
- 14. Let $1 \leq p < N$ and $p < q < p^*$. Verify that the embedding $W_r^{1,p}(\mathbb{R}^N) \subset$ $L^q(\mathbb{R}^N)$ is compact. Verify also that the embedding $W_r^{1,p}(\mathbb{R}^N) \subset L^p(\mathbb{R}^N)$ is not compact.
- 15. Let $1 \leq p \leq \infty$ and let Ω be an open subset of \mathbb{R}^N . Prove that the map

$$
W^{1,p}(\Omega) \to W^{1,p}(\Omega) : u \mapsto u^+
$$

is continuous. *Hint*: $\nabla u^+ = H(u)\nabla u$, where

$$
H(t) = 1, \quad t > 0,
$$

$$
= 0, \quad t \le 0.
$$

16. Sobolev implies Poincaré. Let Ω be an open subset of \mathbb{R}^N ($N > 2$) such that $m(\Omega) < +\infty$, and let $1 \le p < +\infty$. Then there exists $c = c(p, N)$ such that, for every $u \in W_0^{1,p}(\Omega)$,

$$
||u||_p \leq c m(\Omega)^{1/N} ||\nabla u||_p.
$$

Hint. (a) If $1 \leq p \leq N$, then

$$
||u||_p \le m(\Omega)^{1/N} ||u||_{p^*} \le c \, m(\Omega)^{1/N} ||\nabla u||_p.
$$

(b) If $p \geq N$, then

$$
||u||_p = ||u||_{q^*} \le c||\nabla u||_q \le c m(\Omega)^{1/N}||\nabla u||_p.
$$

17. Let Ω be an open bounded convex subset of \mathbb{R}^N , $N \geq 2$, and $u \in$ $C^1(\Omega) \bigcap W^{1,1}(\Omega)$. Then, for every $x \in \Omega$,

$$
\left| u(x) - \int u \right| \le \frac{1}{N} \frac{d^N}{m(\Omega)} \int_{\Omega} \frac{|\nabla u(y)|}{|y - x|^{N-1}} dy,
$$

where
$$
\int u = \frac{1}{m(\Omega)} \int_{\Omega} u(x) dx \text{ and } d = \sup_{x,y \in \Omega} |y - x|.
$$

Hint. Define

$$
v(y) = |\nabla u(y)|, y \in \Omega,
$$

= 0, y \in \mathbb{R}^N \backslash \Omega.

(a)
$$
u(x) - u(y) = \int_0^{|y-x|} \nabla u(x + r\sigma) \cdot \sigma dr, \ \sigma = \frac{y-x}{|y-x|}.
$$

(b)

$$
m(\Omega) |u(x) - \int u| \le \int_{\Omega} dy \int_0^{|y-x|} v(x + r\sigma) dr
$$

$$
= \int_{\omega - x} dz \int_0^{|z|} v\left(x + r\frac{z}{|z|}\right) dr
$$

$$
\le \int_{\mathbb{S}^{N-1}} d\sigma \int_0^d \rho^{N-1} d\rho \int_0^\infty v(x + r\sigma) dr
$$

$$
= \frac{d^N}{N} \int_{\mathbb{R}^N} \frac{v(x + z)}{|z|^{N-1}} dz.
$$

18. Let us define, for every bounded connected open subset Ω of \mathbb{R}^N , and for $1 \leq$ $p < \infty$,

$$
\lambda(p, \Omega) = \inf \left\{ \|\nabla u\|_p : u \in W^{1, p}(\Omega), \int u = 0, \|u\|_p = 1 \right\}.
$$

For every $1 \le p < \infty$, there exists a bounded connected open subset Ω of \mathbb{R}^2 such that $\lambda(p, \Omega) = 0$.

Hint. Consider on two sides of a square Q two infinite sequences of small squares connected to Q by very thin pipes.

19. Prove that, for every $1 \le p < \infty$,

$$
\inf \left\{ \lambda(p, \Omega) \colon \Omega \text{ is a smooth bounded connected open subset of } \mathbb{R}^2, m(\Omega) = 1 \right\} = 0.
$$

Hint. Consider a sequence of pairs of disks smoothly connected by very thin pipes.

20. Generalized Poincaré's inequality. Let $1 \le p < \infty$, let Ω be a smooth bounded connected open subset of \mathbb{R}^N , and let $f \in [W^{1,p}(\Omega)]^*$ be such that

$$
\langle f, 1 \rangle = 1.
$$

Then there exists $c > 0$ such that, for every $u \in W^{1,p}(\Omega)$,

$$
||u-||_p\leq c||\nabla u||_p.
$$