Chapter 6 )
Sobolev Spaces e

6.1 Weak Derivatives

Throughout this chapter, we denote by £2 an open subset of RY. We begin with an
elementary computation.

Lemma 6.1.1 Let 1 < |¢| < m and let f € C"(82). Then for every u € C™(£2) N
K($2),

f f D% dx = (=)l f (D% f)u dx.
2 2

Proof We assume that @ = (0, ..., 0, 1). Let u € C'(£2) N K(£2), and define

g(x) = fux), x € £2,
=0, x e RV\ 2.

The fundamental theorem of calculus implies that for every x’ € RV~1,
o / _
/IRD glx ,xN)de =0.

Fubini’s theorem ensures that

/(fD”‘u—l—(D“f)u)dx:/ D“gdx:/ dx//D"‘gdx =0.
2 RN RN-1 R N

When || = 1, the proof is similar. It is easy to conclude the proof by induction.
O

Weak derivatives were defined by S.L. Sobolev in 1938.
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132 6 Sobolev Spaces

Definition 6.1.2 Leto € NV and f € L] (£2). By definition, the weak derivative
of order « of f exists if there is g € L! (£2) such that for every u € D(S2),

loc

/ f D%udx = (—1)'““/ gudx.
2 2

The function g, if it exists, will be denoted by 9% f.
By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3 Assume that 0% f exists. On
2, ={xe€R:dx,02) > 1/n},
we have that
D*(pn * f) = pn % 3° f.

Proof We deduce from Proposition 4.3.6 and from the preceding definition that for
every x € §2,,

D% (py * f)(x) = /Q DY pn(x — y) f(y)dy
= (D)« /g D% pu(x — ) F(Y)dy

= (1) /Q on(x — )% f(y)dy

= pn * 0% f (x). 0

Theorem 6.1.4 (du Bois—Reymond Lemma) Let || = 1 and let f € C(§2) be
such that 3% f € C(82). Then D* f exists and D* f = 3% f.

Proof By the preceding proposition, we have
Da(pn * f) = Pn * aaf-
The fundamental theorem of calculus implies then that

pu % F &+ £0) = pu ¥ f (1) +f pn % 0% f (x + ta)d.
0

By the regularization theorem,

on*xf— f, pu*xd*f —>0%f
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uniformly on every compact subset of 2. Hence we obtain

f(x—i—ea):f(x)—i—/ 9% f (x + ta)dr,
0

so that 3% f = D f by the fundamental theorem of calculus. O

Notation From now on, the derivatives of a continuously differentiable function will
also be denoted by 9.

Let us prove the closing lemma. The graph of the weak derivative is closed in
x L}

loc*

Ll

loc

Lemma 6.1.5 Let (f,) C L (£2) and let « € NN be such that in L}_(£2),

loc loc

fo— f % fu— g

Then g = 93°f.
Proof For every u € D(82), we have by definition that

/ fnd%u dx = (—1)'”"/ (0% f)u dx.
2 2

Since by assumption,

'/ (o — )8 dx s||a°‘u||oo/ \fo — fldx — 0
2 spt u

and

‘/ (3% f — g)u dx §||u||oo/ 9% f, — gldx — 0,
2 spt u

we obtain

/fi)“udx:(—l)l“l/ gudx. O
2 2

Example (Weak Derivative) If —N < A < 1, the function f(x) = |x|* is locally
integrable on R". We approximate f by

fw = (2 +6) " e

Then f, € C*(RY) and
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A=2

2

o fox) = hn (e +e) T

|9k fe ()] < Alx ML

If » > 1 — N, we obtain in LL_(R¥) that

loc

fo(x) = fx) = |x|*,
O fe(x) = g(x) = A xelx| 2.

Hence 0 f(x) = A |x|A_2xk.

Definition 6.1.6 The gradient of the (weakly) differentiable function u is
defined by

Vu = (0u, ..., 8Nu).

The divergence of the (weakly) differentiable vector field v = (v, ..., vN) is
defined by

divv=09jv1+...+0 v .
NN

Letl < p<ooandu € LIIOC(Q) be such that 9ju € LP(£2), j =1,...,N. We
define

p2 \ P

1/p N
IVullLre) = (/ |Vu|de) = / Z(aju)2 dx
2 (o et

Theorem 6.1.7 Let | < p < oo and let (u,) C L} (£2) be such that

loc

(a) uy — win Ll (2);

(b) foreveryn, Vu, € LP(£2; RN);
(c) ¢ =sup||Vul|, < .
n

Then Vu € L?($2; RN) and

[[Vullp = lim [[Vuyllp.
n—00

Proof We define f on D(£2; RV) by
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(f,v):f u divoudx.
Q

We have that

[{f,v)| = lim | | u, divvdx|

n—oo (9]

= lim | | Vu, -vdx]|
n—oo Q

o\
fim ([Vita]l, (/ |v|"dx> .
n—oo Q

Since D(£2) is dense in LP/(.Q), Proposition 3.2.3 implies the existence of a
continuous extension of f to L? (§2; RM). By Riesz’s representation theorem, there
exists g € LP(£2; RV) such that for every v € D(£2; RV),

fg~vdx=(f,v)=/ u div v dx.
2 2

Hence Vu = —g € LP(£2; RV). Choosing v = |Vu|P~>Vu, we find that

N
/|Vu|”dx=/ Vu-vdx Lim [|Vu,llp </ |v|'"dx)

1-1/p
= lm [[Vuullp </ IWI”dx> .
n—00 Q

Sobolev spaces are spaces of differentiable functions with integral norms. In
order to define complete spaces, we use weak derivatives.

IA

IA

O

Definition 6.1.8 Letk > 1 and 1 < p < 00. On the Sobolev space
WkP(2) = {u € LP(2) : forevery |a| < k, 3%u € LP(£2)},
we define the norm

1/p

el lwrn gy = lulle,p = Z/ |0%u|Pdx
2

lo| <k

On the space HX(§2) = W*2(£2), we define the scalar product
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(M | U)Hk(.Q) = Z (aau | aaU)LZ(_Q).

|| <k
The Sobolev space Wllf)’cp (£2) is defined by

W1]f;cp(9) ={ue Lﬁ)C(Q) s forallw CC 2,u| € WP (w)}.
w

A sequence (u,) converges to u in WII;’CP (£2) if for every o CC £2,

||un — M”Wk,p(a)) —> O, n — oQ.

The space Wg’p(s?) is the closure of D(§2) in WK-P(§2). We denote by Hé‘(.Q) the
k.2
space Wy~ (£2).

Theorem 6.1.9 Let k > 1 and 1 < p < oo. Then the spaces WkP(2) and
Wg P (§2) are complete and separable.

Proof Let M = Z 1. The space L”(£2; RM) with the norm

loe| <k

1/p

1wl = Z/Qwawdx

| <k
is complete and separable. The map
@ WhP(2) = LP(2:RM) s u > (0%) o)<k

is a linear isometry: ||@ (u)||, = ||u||«,p. By the closing lemma, d(WhP(2))isa
closed subspace of L?(£2; RM)_ 1t follows that W57 (£2) is complete and separable.

Since Wg "P(£2) is a closed subspace of WX P (£2), it is also complete and separable.
]

Theorem 6.1.10 Let 1 < p < oo. Then Wy’ (RN) = WP (RV),

Proof 1t suffices to prove that DRY) is dense in WP (RN). We use regularization
and truncation.

Regularization Letu € wLP(RN) and define u,, = pn * u. By Proposition 4.3.6,
u, € C®(RN). Proposition 4.3.14 implies that in L? (R"),

Up = U, Oy = Py * OpU — OU.

We conclude that W7 (RV) N C®(RYN) is dense in W7 (RN).
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Truncation Letd € C*°(R) be such that0 < 6 < 1 and

o) =1, <1,
=0, t>2.

We define the sequence

On(x) = 0(|x|/n).
Letu € WHP(RY)NC®(RN). It is clear that u,, = 6,u € DRN). It follows easily
from Lebesgue’s dominated convergence theorem that u,, — u in W-?(RN). O

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of Varlables) Let £2 and w be open subsets of RV,
G : w — $2 a diffeomorphism, and u € W1 (.Q) ThenuoG e W (a)) and

loc

0 0 G
L woG) =Y oG L
Yk ; 0x; Oy

Proof Let v € D(w) and u, = p, * u. By Lemma 6.1.1, for n large enough, we
have

v _ ouy, . ﬁ
fw 10 G0) o (dy = /w ;ax,- GO T vy

It follows from Theorem 2.4.5 with H = G ! that

/ un(x)a—v o H(x)|det H (x)|dx
2 Yk

f Z Oun 955 | iy o Hx)|det H'()ldox. (%)

ij

The regularization theorem implies that in Llloc(.Q),

ouy ou
- —.
8)(]' 8)6]'

U, — Uu,

Taking the limit, it is permitted to replace u, by u in (xx). But then it is also
permitted to replace u, by u in (x), and the proof is complete. O

Proposition 6. 1 12 (Derivative of a Product) Leru € Wl1 Cl (2) and f € CY(2).
Then fu € W (.Q) and
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I (fu) = fou + (0 fHu.
Proof Let u, = p, * u, so that by the classical rule of derivative of a product,
O (fun) = Ok flun + fOxun.
It follows from the regularization theorem that
fun = fu, (fun) = O flu+ foxu

in L1

loc (§2). We conclude by invoking the closing lemma. O

Proposition 6.1.13 (Derivative of the Composition of Functions) Let u €
Wll(2), and let £ € CY(R) be such that ¢ = sup| f'| < co. Then fou € Wlh’cl(.Q)
R

loc

and
Ww(fou) = f ou dgu.
Proof We define u,, = p, * u, so that by the classical rule,
W (f oup) = f"oup duy.
We choose w CC 2. By the regularization theorem, we have in L! (w),
Uy, —> u, Oxup —> ou.

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that
u, — u almost everywhere on w. We obtain

/|foun—fou|dx§c/|u,,—u|dx—>0,
w

w

/ | f ouy Oxun— f ou dpuldx < c/
w

0]

|8ku,,—3ku|dx+/ | f oun— f ou| |dculdx — 0.
w

Hence in L! (),
fou,— fou, fou,du, — [ oudu.

Since w CC §2 is arbitrary, we conclude the proof by invoking the closing lemma.
0

On R, we define
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sen(t) =t/lt], t#0
=0, t=0.

Corollary 6.1.14 Let g : R — R be such that ¢ = supp |g| < 0o and, for some
sequence (g,) C C(R), g(¢t) = lim g,(¢) everywhere on R. Define
n—>oo

t
f) = /0 g(s)ds.

Then, for every u € WIL’Cl(.Q), foue WZL’Cl(.Q) and
V(fou)=(gou)Vu.
In particular u™, u™, |u| € WZL’Cl(.Q) and

Vut = XusoyVu, Vu™ = =Xy« Vu, X(y=0yVu = 0, V|u| = (sgn u)Vu.

t
Proof We can assume that supsup |g,| < c. We define f,(r) = / gn(s)ds. The
n R 0

preceding proposition implies that

V(foou)=(gnou)Vu.

1

Since, in L]Oc

(£2), by Lebesgue’s dominated convergence theorem,
foou— fou,(gnou)Vu — (gou)Vu,

the closing lemma implies that

V(fou)=(gou)Vu.

O

Corollary 6.1.15 Let1 < p < coandletu € WP (2)NC(82) be such that u = 0
on d82. Thenu € Wol’p(.Q).

Proof 1t is easy to prove by regularization that W7 (£2) N K(£2) C Wol’p(.Q).
Assume that spt « is bounded. Let f € C'(R) be such that | f(r)| < |¢| on R,

f@&)y=0, [t[=<1,
=1, |t =2
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Define u, = f(n u)/n. Then u,, € K(£2), and by the preceding proposition, u, €
WP (£2). By Lebesgue’s dominated convergence theorem, u, — u in W7 (£2),

so that u € W, (82).
If spt u is unbounded, we define u, = 6,u where (6,) is defined in the proof
of Theorem 6.1.10. Then spt u,, is bounded. By Lebesgue’s dominated convergence

theorem, u,, — u in W7 (£2), so that u € W(}’p(ﬂ). m|
Proposition 6.1.16 Let 2 be an open subset of RN. Then there exist a sequence
(Un) of open subsets of §2 and a sequence of functions Y, € D(Uy) such that
(a) foreveryn, U, CC 2 and {,, = 0;

o0

(b) > W =10n82;
n=1
(c) forevery w CC §2 there exists mg, such that for n > mg, we have U, N w = ¢.

Proof Let us define w—_1 = wg = ¢, and forn > 1,
wp ={x €2 :d(x,08) > 1/nand |x| < n},

Ky, =, \ wp-1,
Un = opy1 \ ©p—2.

The theorem of partitions of unity implies the existence of ¢, € D(U,) such that
0 < ¢, <1and ¢, = 1 on K,. It suffices then to define

oo
Vn =§0n/2‘pj- |
j=1

Theorem 6.1.17 (Hajlasz) Let 1 <p <oo, u € WIL’Cp (£2), and ¢ > 0. Then there
exists v € C*°(82) such that

(@) v—ue W' @)
(b) ||U - u||W1«P(Q) < €.

Proof Let (U,) and (¥,,) be given by the preceding proposition. For every n > 1,
there exists k;, such that

Vp = P, * (Ypu) € DU,)
and

[lvn — Ipn““l,p <eg/2".
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o0
By Proposition 3.1.6, Z(v,, —Y,u) converges to w in Wol’p (£2). On the other hand,
n=1

we have on w CC §2 that

Mgy

Z Z € C®(w), anu =u.

n=1 n=1

o
Setting v = Zvn, we conclude that

n=1

o0
o —ullip =i, <Y llve — Yaullip <& o

n=1

Corollary 6.1.18 (Deny-Lions) Let 1 < p < oo. Then C®(2) N WhP(2) is
dense in WHP(2).

6.2 Cylindrical Domains

Let U be an open subset of R¥Y~! and 0 < r < co. Define
L=Ux]-rr[, £24=Ux]0,r[.

The extension by reflection of a function in wlp (£24) is a function in whr().
For every u : 24 — R, we define on £2:

/ _ / / _ !
pu(x ,xN) = u(x , IxN|), ou(x ,xN) = (sgn xN)u<x , |xN|).

Lemma 6.2.1 (Extension by Reflection) Let 1 < p < oo and u € WhHP(824).
Then pu € WV-P(£2), 8 (pu) = p(du), 1 <k < N — 1, and 8N(pu) = a(aNu), SO
that

1 1
lpullLey = 2YPllullrey.  loullwioy =27 llullyisg,)-

Proof Letv € D(£2). Then by a change of variables,

(pu)d vdx = / ud wdx, (%)
/;2 N 2, N
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where
/ — / _ ! _
w(x ,xN) =v(x ,xN) v(x’, xN).
A truncation argument will be used. Let n € C*°(R) be such that

n)=0, t<1/2,
=1, t>1,

and define 1, on 2 by

() = n(n x ).
The definition of weak derivative ensures that

/ ud (mpw)dx = — (@ wyn,w dx, (k)
2, N o2, N
where
_ ’
d (naw) = 1ud w+n(nx Jw.

. ’ _ / _ /
Since w(x’,0) =0, w(x ,xN) =h(x ,xN)xN, where
1
/ _ /
h(x ,xN) = /0 BNw(x ,th)dt.

Lebesgue’s dominated convergence theorem implies that

! ’
nn(mx ) )wudx / nn(mx )hx udx
/9+ N Ux 10.1/n[ NTUON
< ||n/||oo/ lhuldx — 0, n — oo.
Ux 10,1/n[
Taking the limit in (), we obtain

/ uo wdx =— (Bu)wdxz—/a(au)vdx.
o, N 2, N o N

It follows from (%) that

/9(/0”)31\]1) dx = —/QO‘(aNM)U dx.
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Since v € D(£2) is arbitrary, BN (pu) = a(aNu). By a similar but simpler argument,
O(pu) = p(Oku), 1 <k <N —1. O

It makes no sense to define an L? function on a set of measure zero. We will
define the trace of a W!? function on the boundary of a smooth domain. We first
consider the case of Rﬁ .

Notation We define

D(2) = {ulg : u € DRY)},
RY ={(',x) :x" e RM L x > 0).

Lemma 6.2.2 (Trace Inequality) Let 1 < p < oo. Then for every u € D(@),
/ P < p—1
/RN*I ', O dx" < pllully, gy 1O ulzr
Proof The fundamental theorem of calculus implies that for all x” € RV~1,
P * p—1
/ / - !/
|u(x ,O)| < p/o |u(x ,xN)| |3Nu(x ,xN)’de.

When 1 < p < oo, using Fubini’s theorem and Holder’s inequality, we obtain

/ lu(x’, 0)|"dx’ < pf lulP~119 u|dx
RN-1 RN N

+

1/p 1/p
<p / |u| PP dx / 10 ulPdx
RY RY N

y

1-1/p 1/p

=p / lu|Pdx / |0 u|Pdx .
< RY RY N

The case p = 1 is similar. m|

Proposition 6.2.3 Let 1 < p < oo. Then there exists one and only one continuous
linear mapping yo : Wl’p(Rﬁ) — LP(RN™Y such that for every u € Z)(Rf),
you = u(., 0).

Proof Letu € D(@) and define you = u(., 0). The preceding lemma implies that

1
lvoullp@v-1y < p /p||“||w1vﬂ<M>-
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The space @(@) is dense in Wl'p(]Rﬂ\_’) by Theorem 6.1.10 and Lemma 6.2.1. By
Proposition 3.2.3, yp has a unique continuous linear extension to wlp (Rﬁ ). O

Proposition 6.2.4 (Integration by Parts) Let 1 < p < oo, u € Wl’P(Rﬁ ), and
v e DRY). Then

dudx =— d vudx — dx’,
/IRQ’U ) udx /Rﬁ(Nv)u X /RN_lyovyou X

and

/vakudxz—/ Orv)udx, 1<k<N-1.
RY RY

+

Proof Assume, moreover, that u € D(@). Integrating by parts, we obtain for all
x e RVN-1

o0 o
l ’ _ ’ l _ ’ ’
/O v(x ,xN)BNu(x ,xN)de = /0 BNU(x ,xN)u(x ,xN)de v(x", Ou(x’, 0).

Fubini’s theorem implies that

/ v udx = —f 9 vu dx —/ v(x’, 0)u(x’, 0)dx'.
Ry N RY V RN-1

Letu ¢ whr (Rﬁ ). Since D(M) is dense in W (Rﬁ ), there exists a sequence

(uy) C D(@) such that u,, — u in Wl’p(Rﬁ). By the preceding lemma, you, —
you in LP (RN=1) It is easy to finish the proof.
The proof of the last formulas is similar. O

Notation For every u : RY — R, we define @ on RY by

ulx’, xN) = u(x’,xN), x, > 0,
=0, x <0.
N

Proposition 6.2.5 Let 1 < p < ocoandu € WLP(Rf). The following properties
are equivalent:

1,
(a) ue Wy RY);

(b) you =0; o
(c) we WhPRNY and 9yt = ogu, 1 <k < N.
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Proof 1f u € Wy”(RY), there exists (u,) C D(RY) such that u, — u in
wi-P(RY). Hence you, = 0 and you, — you in L? (RN=1), so that you = 0.
If you = 0, it follows from the preceding proposition that for every v € D(RY),

/vak_udxz—/ wvudx, 1<k<N.
RN RN

We conclude that (c) is satisfied.
Assume that (c) is satisfied. We define u,, = 6,u, where (6,) is defined in
the proof of Theo_rem 6.1.10. 1t is clear that u, — u in WLP(RY) and spt

up C B[0,2n] NRY.

We can assume that spt u, is a compact subset of Rf . We define y, =
,...,0,1/n) and v, = t,,u. Since v, = Ty,0¢u, the lemma of continuity
of translations implies that u,, — u in wlp (Rﬁ ).

We can assume that spt u is a compact subset of Rﬁ. For n large enough, p, xu €

DRY). Since p, * u — u is in WP (RY), we conclude that u € Wé’p(RN). O

6.3 Smooth Domains

In this section we consider an open subset £2 = {¢ < 0} of RY of class C U with a
bounded boundary I". We use the notations of Definition 9.4.1.

Let y € I'. Since Vp(y) # 0, we can assume that, after a permutation of
variables, dy¢(y) # 0. By Theorem 9.1.1 there exist r > 0, R > 0, and

B eC (B R)x1—rr[)
such that, for |[x" — y’| < R and |t| < r, we have
e xn) =t & ay=pW, 1)
and the set
U, = {(x/,ﬂ(x/,z)): X' — '] <R, 1] < r}

is an open neighborhood of y. Moreover

£2NUy = [(x/,,B(x’,t)): Ix"—y'| <R,—r <t<0}

and
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rnu, = {(x’,,B(x’,O)): I — '] < R}.

The Borel-Lebesgue theorem implies the existence of a finite covering
Ui, ..., U of I' by open subsets satisfying the above properties. There exists
a partition of unity 1, . .., ¥ subordinate to this covering.

Theorem 6.3.1 (Extension Theorem) Let 1 < p < oo and let 2 be an open
subset of RN of class C' with a bounded boundary or the product of N open
intervals. Then there exists a continuous linear mapping

P:whr(2) > whr®RN)

such that Pu\Q = u.

Proof Let £2 be an open subset of RV of class C! with a bounded boundary, and let
u € WHP(£2). Proposition 6.1.11 and Lemma 6.2.1 imply that

Pyu(x) = u(x', B, —lp@’, x D)) € WHP(U).
Moreover,
I Pyullwirwy < avllullwip(g)- ()
k
We define Yo = 1 — Zlﬂj,
j=1

ug = You, x €S2,
=0, x e RV \ 2,

andfor1 < j <k,

uj = Py;(Yju), xeUj,
=0, x e RN\ U;.

Formula (*) and Proposition 6.1.12 ensure that for 0 < j <k,

e jllwro@yy < bjllullwir ).
(The support of Vg is compact!) Hence

k
Pu=> uje WPRN), ||Pullyiogy, < cllullyiog)
j=0
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and for all x € £2,
k
Pu(x) =Y ¢j(x)u(x) = u(x).
j=0

If £2 is the product of N open intervals, it suffices to use a finite number of
extensions by reflections and a truncation. O

Theorem 6.3.2 (Density Theorem in Sobolev Spaces) Ler 1 < p < co and let 2

be an open subset of RN of class C_1 with a bounded boundary or the product of N
open intervals. Then the space D(S2) is dense in whr().

Proof Let u € WP (£2). Theorem 6.1.10 implies the existence of a sequence
() € DRY) converging to Pu in Wl'p(]RN). Hence u,, = vn|9 converges to
uin WhP(92). O
Theorem 6.3.3 (Trace Inequality) Let 2 be an open subset of RN of class C' with

a bounded boundary I'. Then there exista > 0 and b > 0 such that, for 1 < p < oo
and for every u € D(2),

-1
/F ulPdy < alull} o) + bplul}y o) IVul o).

Proof Let1 < p < oo, u € D(2), and v € C*RN; RN).
Since

diviu|Pv = |u|? divv + pulu|?~*Vu - v,

the divergence theorem implies that

/ [u|Pv - ndy = / [|u|p divv + pulu|P~>Vu - v] dx.
r Q

Assume that 1 < v-n on I'. Using Holder’s inequality, we obtain that, for 1 < p <

m’
/ lu|Pdy 5/ [u|Pv - ndy 551/ |u|”dx+bp/ lu)?~ V| Vuldx
r r fol 2
, 1/p 1/p
ga/ lu|Pdx + bp (/ lu|P—Dp dx) (/ \Vul”dx)
fo} fo} 2
1-1/p 1/p
:a/ lu|?dx + bp (/ Iulpa'x) (/ \Vulpdx> ,
fo} o} fo}

where a = ||divv|so and b = ||V]|co-
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When p | 1, it follows from Lebesgue’s dominated convergence theorem that

/|u|dy§af |u|dx+bf |Vuldx.
r 2 2

Let us construct an admissible vector field v. Let U = {x € RY : Vo(x) # 0}.
The theorem of partition of unity implies the existence of ¥ € D(U) such that
¥ = 1 on I". We define the vector field w by

B Vo(x)
w(x) = ‘“’“)—wm)r
=0, x e RM\U.

For n large enough, the C*° vector field v = 2p, * wissuchthat 1 <v-non I'.
O

Theorem 6.3.4 Under the assumptions of Theorem 6.3.3, there exists one and only
one continuous linear mapping

y : WhP(2) > LP(I)

such that for allu € D(2), you = u -

Proof 1t suffices to use the trace inequality, Proposition 3.2.3, and the density
theorem in Sobolev spaces. O

Theorem 6.3.5 (Divergence Theorem) Let §2 be an open subset of RN of class C!
with a bounded boundary I" and v € W'1(2; RN). Then

/ div vdx:/ YoV - ndy.
Q r

Proof When v € D(£2; RY), the proof is given in Section 9.4. In the general case,
it suffices to use the density theorem in Sobolev spaces and the trace theorem. O

6.4 Embeddings

Let 1 < p, g < oo. If there exists ¢ > 0 such that for every u € DERM),

ullpa@yy < cllVullpp gy,
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then necessarily
q=p"=Np/(N—p).

Indeed, replacing u(x) by u; (x) = u(Ax), A > 0, we find that

1422
||”||Lq(RN)§C)\( ¢ P>||Vu||Lp(RN),

so that ¢ = p*.
We define for 1 < j < N and x € RV,

X; = (Xl,~-.,xj—17xj+1,-~,XN)-

Lemma 6.4.1 (Gagliardo’s Inequality) Ler N > 2 and f],...,]jv €

N
LN=YRN=Y). Then f(x) = [ [ f; (%)) € L'RY) and
j=1

N
A vy < [T w1 vy
j=1

Proof We use induction. When N = 2, the inequality is clear. Assume that the
inequality holds for N > 2. Let fi, ..., fv+1 € LN (R") and

N
[, xngn) = 1_[ fi(, xne) [ (x).

Jj=1
It follows from Holder’s inequality that for almost every xy+1 € R,

1/N’

N
. N
fRN | (e, xn41)|dx < /RN H |fi (55, xn40)| " dx N1l Ly wwy
j=1

N N 1/N
< H[/ﬂw | £ (5 xn0)| dx?] 1 fn+illv )
j=1

The generalized Holder inequality implies that
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IA
1=

1/N
—~ N ; ~
1Lyt [/RN | fi (55, xn4D)] dxjdeH] N1l v @y

>
£ L

= Nl Ly @wy- O

~.
Il
—_

Lemma 6.4.2 (Sobolev’s Inequalities) Let 1 < p < N. Then there exists a
constant ¢ = c(p, N) such that for every u € D(RN),

||M||LP*(RN) < C||VM||L/)(]RN).

Proof Let u € C'(RV) be such that spt u is compact. It follows from the
fundamental theorem of calculus thatfor 1 < j < N and x € RN,

1
lu(x)| < 5/ |0ju(x)|dx;.
R

By the preceding lemma,

/ |u(x)|N/(N—l)dx < ﬁ [lf |a'“(x)\dx}l/wl)
RN _j=l 2 ]RN ] ’

Hence we obtain

N
1 /N
lellvyov—n = 5 [T18jul™ < ¢ [1Vullr.

j=1

For p > 1, we define ¢ = (N — 1)p*/N > 1. Letu € D(RY). The preceding
inequality applied to |u|? and Holder’s inequality imply that

N—-1

. ~
</|u|p dx) <gqgc / lu)9™ Y Vu|dx
N RN
, 1/p' 1/p
<gqgc (/ lu|@—Dr dx) (/ |Vu|pdx> .
N RN RN

It is easy to conclude the proof. O

Lemma 6.4.3 (Morrey’s Inequalities) Let N < p < ocoand . =1 — N/p. Then
there exists a constant ¢ = c(p, N) such that for every u € DM®RN) and every
x,y € RV,
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lu(x) —u)| < clx — yMIVull Loy,
lulloo < cllullyrp@ny-

Proof Letu € Z)(RN), and let us define B = B(a,r),a € RY.r > 0, and

fuz;/udx.
m(B) Jg

We assume that 0 € B. It follows from the fundamental theorem of calculus and
Fubini’s theorem that

‘fu—u(O)‘

e / |u(x) — u(0)|dx

1
W/ dx/ |Vu(tx)| |x|dt

< m(B)/ d;/ |Vu(tx)|dx

2r /
Vu(y)|dy.
m(B) Jo ¥ B(ta, tr)| |

IA

Holder’s inequality implies that

‘fu—u(O)

After a translation, we obtain that, for every x € Bla, r],

‘fu—u(x)

Letx € RV. Choosing a = x and r = 1, we find

fu

Let x, y € RY. Choosing a = (x + y)/2 and r = |x — y|/2, we obtain

1

2 s dt 2
<= m(B(a, ”))l/p — IVullLrs) = —7r* 1 Vull Lo ).
m(B) t )LVN/P

A
< cr*|VullLr(py-

lu(x)| < + allVullzrsy < c(llullrs) + IVullLrs))-

lu(x) —u(y)| < 2" cxlx — y|* | VullLr(s). O
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Notation We define

Co(£2) = {u|, : u € CoRM)}.

Theorem 6.4.4 (Sobolev’s Embedding Theorem, 1936-1938) Let $2 be an open
subset of RN of class C' with a bounded boundary or the product of N open
intervals.

(a) If1 < p < Nandif p<q < p*, then W'-P(2) C L4(82), and the canonical
injection is continuous.

(b) IfN < p <ooand » =1 — N/p, then WHP(2) C Co(R2), the canonical
injection is continuous, and there exists ¢ = c(p, §2) such that for every u €
WLrP(2)andallx,y € 2,

|u(x) — u)| < cllullyrp@)lx — v
Proof Let1 < p < N and u € WHP(RY). By Theorem 6.1.10, there exists a
sequence (u,) C D(RY) such that u,, — u in WP (RN).

We can assume that u,, — u almost everywhere on R¥ . It follows from Fatou’s
lemma and Sobolev’s inequality that

ully p < lim ||u <c¢ lim |[|Vu =c||Vu .
I ||Lp RNy = n_)_OO“ n||Lp*(RN) = n_>oo|| n”LI’(RN) I ||LP(RN)

Let P be the extension operator corresponding to £2 and v € W7 (£2). We have

||U||Lp*(9) = ||PU||LP*(RN) =< C||VPU||LP(RN) =< C1||U||W1<P(Q)-
If p <g < p*, wedefine0 <A <1by

I 1—x A

q p p*

and we infer from the interpolation inequality that
Wllza) < 0l iy 011 e gy < cHllvlig
) = LP(2) Lrre) = 1 Wlr(R):
The case p > N follows from Morrey’s inequalities. O
Lemma 6.4.5 Let 2 be an open subset of RN such that m(2) < oo, and let
1 < p <r < 4oo. Assume that X is a closed subspace of WP (§2) such that

X C L"(82). Then, for every 1 < q < r, X C L91(82) and the canonical injection is
compact.
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Proof The closed graph theorem implies the existence of ¢ > 0 such that, for every
uelX,

lullzr oy < cllullwire)-
Our goal is to prove that
S = {M e X: ||Mllwlp(_(2) < 1}

is precompact in L9(£2) for 1 < g < r.Let1/q = 1 —A+A/r. By the interpolation
inequality, for every u € S,

2 1-2 P Y
lullza(2)y = Iullzr@)lull i gy = ¢ lull o)

Hence it suffices to prove that S is precompact in L!(£2).
Let us verify that S satisfies the assumptions of M. Riesz’s theorem in L!(£2):

(a) It follows from Holder’s inequality that, for every u € S,
lullpr@) = lull Lreym(2)' Y7 < em(s2)! =17

(b) Similarly, we have that, for every u € S,
f luldx < Jlullr@ym(@2\wr)' " < em(2\op)' 71"
2\wk
where
oy =1{x € 2:d(x,08) > 1/k}.

Lebesgue’s dominated convergence theorem implies that
lim m(£2\wi) = 0.
k— 00

(c) Letw CC £2. Assume that |y| < d(w, 382) and u € C®(2) N WP (£2).

Since, by the fundamental theorem of calculus,

1 1
Tyu(x) — u(x)‘ = ’/0 y-Vu(x —ty)dt| < |y|/0 ‘Vu(x — ty)‘dt,

we obtain
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1
lTyu —ullpw < IyI/dx/ ‘Vu(x—ty)‘dt
® 0

1
=|y|/ dt/ ‘Vu(x—ty)‘dx
0 w
1
= IyI/ dt/
0 w—ty

Using Corollary 6.1.18, we conclude by density that, for every u € S,

Vu(z)‘dz < yHIVullprgy-

Ity — ull 1) < IVullpi@)lyl < IVullr@ym(2)' Pyl <cllyl. o

Theorem 6.4.6 (Rellich-Kondrachov Embedding Theorem) Let 2 be a
bounded open subset of RN of class C' or the product of N bounded open intervals:

(a) If1 < p < Nandl < q < p* then W-P(2) C LY(2), and the canonical
injection is compact. _
(b) If N < p < oo, then WLP c Cy(2), and the canonical injection is compact.

Proof Let 1 < p < N,1 < g < p*. It suffices to use Sobolev’s embedding
theorem and the preceding lemma.

The case p > N follows from Ascoli’s theorem and Sobolev’s embedding
theorem. O

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré’s Inequality in W(;’p ) Let1 < p < oo, and let §2 be an
open subset ofRN such that 2 c RN=1x]0, al. Then for every u € Wol’p(.Q),

a
ullr(ey < §||V’4||LI’(Q)~

Proof Let 1 <p <ooandv € D(]0, a[). The fundamental theorem of calculus and
Holder’s inequality imply that for 0 < x < a,

1 a 1/p' a 1/
lv@)| < 5/ |v'()]dr < aT’/ |v/(t)|Pdt‘ "
0 0

Hence we obtain

¢ Pd <ap/17/ “ / Pd _ap “ / Pd
/0|v(x)| x < 7 a/o |v(x)| x—z—p/O |v(x)| X.
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If u € D(§2), we infer from the preceding inequality and from Fubini’s theorem

that
a
/ lu|Pdx :/ dx’/ lu(x’, x )|pdx
2 RV-1 0 N N
a? [ / p
< — dx |8 u(x,x)| dx
2p RN-1 0 N N N
P
- a—/ 19 u|Pdx.
2P Jo N
It is easy to conclude by density. The case p = 1 is similar. O

Definition 6.4.8 A metric space is connected if the only open and closed subsets of
X are ¢ and X.

Theorem 6.4.9 (Poincaré’s Inequality in W'?) Let 1 < p < oo, and let 2 be

a bounded open connected subset of RN. Assume that 2 is of class C'. Then there
exists ¢ = c(p, §2), such that, for every u € wlpr(),

o
1
U=——- udx.
JC m(Q)/rz

Assume that §2 is convex. Then, for every u € wlr (£2),

- £+

whered = sup |x —y|.
X,yES

<c||Vu ,
@ = VullLr(2)

where

< 2NP @ |\Vullr (@),
LP($2)

Proof Assume that §2 is of class C!. It suffices to prove that
A= inf{nwu,,: ue whr (), JCM =0, |lull, = 1} > 0.
Let (u,) C WhP(2) bea minimizing sequence :

lially = 1, fu —0, [ Vunllp — 2.
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By the Rellich-Kondrachov theorem, we can assume that u,, — u in L?(§2). Hence
lull, =1 and fu = 0. If A = 0, then, by the closing lemma, Vu = 0. Since 2 is

connected, u = f u = 0. This is a contradiction.

Assume now that £2 is convex and that u € C®(£2)() W1-P(£2). Holder’

inequality implies that

/ u(y)—fu
2

_ p
pdyS/dy[ e (x) M(y)ldx}
2 Q m($2)
<

1 P
< m(m/gdyfg\uu)—u(y)\ dx.

It follows from the fundamental theorem of calculus and Holder’s inequality that

1 14
/dy/ ‘u(x)—u(y)‘pdxgdp/ dy/ dx U )vu((l—t)xﬂy)(dt]
2 2 2 2 ?
§dl’f dy/ dx/ ‘Vu((l—t)x+ty)‘pdt
2 2 0
172 »
=2d”f dyf dx/ ‘Vu((l—t)x—i—ly)‘ dr
2 2 0
1,2 »
:2dP/ dy/ dtf ‘Vu((l—t)x+ty)) dx
2 0 2

14
§2Nd”/ dy/ ’Vu(z)‘ dz.
2 2

/ \u(y)—fu}"dy < 2Nd1’/ V| dy.
2 2

We conclude by density, using Corollary 6.1.18.

We obtain that

Theorem 6.4.10 (Hardy’s Inequality) Ler 1 < p < N. Then for every u
wbhr@®RN), u/|x| € LP(RN) and

p
lu/1x W Lr@yy = 5 IIVullLo@m).-

- P

Proof Letu € D(RV) and v € D(RY; RY). We infer from Lemma 6.1.1 that

/|u|pdivvdx=—p/ [u|?2uVu - v dx.
RN RN

Approximating v(x) = x/|x|? by ve(x) = x/(|x|> 4+ &)P/?, we obtain

S

O

S
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(N—p)f lul?/1x|Pdx = —pf lulP"2uVu - x/|x|Pdx.
RN RN

Holder’s inequality implies that

, /v 1/p
f L —- (/ Iul(”_l)p/|x|pdx) (/ |Vu|”dx)
RN N —p \Jr~ RV
)4 1-1/p 1/p
- (/ |u|P/|x|de> (/ IVulpdx> |
N—p RN RN

We have thus proved Hardy’s inequality in D(RY). Let u € WL?(RN). Theo-
rem 6.1.10 ensures the existence of a sequence (u,) C D(RN) such that u, — u in
wLP(RN). We can assume that u, — u almost everywhere on RY. We conclude
using Fatou’s lemma that

A

p
-p

. 14 .
u/lx < lim ||u,/|x < lim ||Vu = Vull,. 0O
u/lxllp < n—>_oo|| a1y = N ,HOOII nllp [Vullp

Fractional Sobolev spaces are interpolation spaces between L” (£2) and W7 (£2).

Definition 6.4.11 Let1 < p < 00,0 <s < 1,andu € LP(§2). We define

u(x) — u(y)|P e
wlwspion = lule = ————dxd =< +o00.
| |W P($2) | |s,p </Q o |x_y|N+sP Y -

On the fractional Sobolev space
Ws,p(g) = {Li € L[’(Q) : |u|WS,p(_Q) < +OO},
we define the norm

[ullws.pe2y = lulls,p = lullLr@) + lulws.p2).

We give, without proof, the characterization of traces due to Gagliardo [26].
Theorem 6.4.12 Let 1 < p < o0.

(a) Foreveryu € WHP(RN), you € W1=1/P.P (RN,

(b) The mapping yo : WLHP@RN) — wW!I=V/rP@RN=YY s continuous and
surjective.

(c¢) The mapping vy : whl RNy - L! (RN’I) is continuous and surjective.
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6.5 Comments

The main references on Sobolev spaces are the books:

— R. Adams and J. Fournier, Sobolev spaces [1]

— H. Brezis, Analyse fonctionnelle, théorie et applications [8]

— V. Maz’ya, Sobolev spaces with applications to elliptic partial differential
equations [51]

Our proof of the trace inequality follows closely:

— A.C. Ponce, Elliptic PDEs, measures, and capacities, European Mathematical
Society, 2016

The theory of partial differential equations was at the origin of Sobolev spaces.
We recommend [9] on the history of partial differential equations and [55] on the
prehistory of Sobolev spaces.

Because of Poincaré’s inequalities, for every smooth, bounded open connected
set §2, we have that

A1(82) =inf{/ IVul?dx :u € Hol(.Q),/ uldx = 1} >0,
2 2

w2 (2) = inf{f |Vul®dx :u € Hl(:z),/ uldx = 1,f udx = 0} > 0.
2 2 2
Hence the first eigenvalue A1 (§2) of Dirichlet’s problem

—Au =Au in $2,
u=0 onds2,

and the second eigenvalue w,(§2) of the Neumann problem

—Au =Au in $2,
n-Vu=0 onads2,

are strictly positive. Let us denote by B an open ball such that m(B) = m(§2). Then

M(B) < M(£2) (Faber—Krahn inequality),
w2(82) < ur(B)  (Weinberger, 1956).

Moreover, if §2 is convex with diameter d, then
72 /d2 < u2(82) (Payne—Weinberger, 1960).

We prove in Theorem 6.4.9 the weaker estimate
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1/2Nd?) < ua(2).

There exists a bounded, connected open set £2 C RR? such that i»(§2) = 0. Consider
on two sides of a square Q, two infinite sequences of small squares connected to Q
by very thin pipes.

6.6 Exercises for Chap. 6

1. Let £2 = B(0, 1) € RN, Then for A # 0,
A=Dp+N>0 x* e WP (),
WwH+N <0 |x|* e WPRN\ 2),

p <N |x—| e Whr(2: RY).
X

2. Letl < p <ooandu € LP(§2). The following properties are equivalent:
(@) ue Whr);
(b) sup{/ udivvdx :v e Z)(.Q,RN), ||v||Lpr(_Q) = 1} < 00;
2

(c) there exists ¢ > 0 such that for every w CC £2 and for every y € R" such
that |y| < d(w, 082),

llTyu —ullpr@w) < clyl.

3. Let1 < p < N and let £2 be an open subset of RY . Define

S(82) = inf IVullpr (o).
u € D()

||14||Lp*(_(2):1

Then S(£2) = S(RM).
4, Letl < p < N.Then

1 |
S S®Y) = inf {19l gy /lull o ey € H' @)\ (0}

5. Poincaré—Sobolev inequality.

(@) Let 1 < p < N, and let £2 be an open bounded connected subset of RV of
class C!. Then there exists ¢ > 0 such that for every u € W"p(.Q),
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u—fu

1
Wherefu = —/ u dx. Hint: Apply Theorem 6.4.4 to u —fu.
m($2) Jo
(b) Let A = {u = 0} and assume that m(A) > 0. Then

m($2)71/p*
Il oy < e (1425 ) IVul@).

< c||Vullpr ),
LP* ()

Hint:
‘f“‘m(A)l/p* < lu _fu”LP*(_Q)'

6. Nash’s inequality. Let N > 3. Then for every u € D(RN ),

244/N 4/N 2
el 157N < cllul 17N )1V 3.

Hint: Use the interpolation inequality. L
7. Letl < p< Nandg = p(N — 1)/(N — p). Then for every u € Z)(Rﬁ),

’ q 5. q—1
/RN_1 ', 0" dx” < gllull] e g, 13, 1l -

8. Verify that Hardy’s inequality is optimal using the family

9. Let1 < p < N. Then D(RN \ {0}) is dense in W7 (RN).
10. Let2 < N < p < oo. Then for every u € WOI”’(RN \ {0}), u/|x| € LP(RN)
and

Hu/IxUlp@ny < IVullpp@yy-

p—N

11. Let I < p < oo. Verify that the embedding wLP(RN) ¢ LP(RYM) is not
compact. Let 1 < p < N. Verify that the embedding WO1 P(B(0, 1)) C
LP"(B(0, 1)) is not compact.

12. Let us denote by D, (RV) the space of radial functions in D(RY). Let N > 2

and 1 < p < oo. Then there exists ¢(N, p) > 0 such that for every u €
Dy (RY),
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13.

14.

15.

16.

Exercises for Chap. 6 161

1/p 1 _
)] < eV, pllull P 19ull P,

Let 1 < p < N. Then there exists d(N, p) > 0 such that for every u €
D, (RY),

|”(x)} <d(N, p)||Vu||p|x|(l7*N)/p.

Hint: Let us write u(x) = u(r), r = |x|, so that

o0
N Hu@)|” < p/ |u(s)|”‘1\d—“(s>\sN—lds,
P dr

lu(r)| < /rw‘Z—Z(s)‘ds.

Let us denote by er "P(RN) the space of radial functions in W7 (RN). Verify

that the space D, (RV) is dense in er P (RN).

Letl < p < Nand p < g < p*. Verify that the embedding W,"”(RN)

L4(RN) is compact. Verify also that the embedding W,"”(RN) ¢ LP(RYN) is

not compact.

Let 1 < p < oo and let £2 be an open subset of RV . Prove that the map
w2y > whP(@2):u > ut

is continuous. Hint: Vu™ = H (u)Vu, where

HH=1, >0,
=0, r=<O0.

Sobolev implies Poincaré. Let £2 be an open subset of RY (N > 2) such that
m($2) < +oo,and let 1 < p < +o00. Then there exists ¢ = ¢(p, N) such that,
for every u € Wé’p(Q),
lullp < cm@) N[ Vull,.
Hint. (a)If 1 < p < N, then
lullp, < m() M ull e < e m(E)N | Vull.

() If p > N, then

lull, = lullgs < clVuly < cm@E)N|Vull,.
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17.

18.

19.

6 Sobolev Spaces

Let £2 be an open bounded convex subset of RV N > 2, and u €
C'(2) W' 1(£2). Then, for every x € £2,

u(x)—fu

1
wherefu = —/ u(x)dx andd = sup |y —x|.
m($2) Jo X,y € 2
Hint. Define

1 aV IVu(y)|
Nm(2) Joly—xV1%"

v(y) = |Vu(y)l ,ye€s,

=0 .y e RM\Q.
ly—x| y—x
@ ulx)—uly) = / Vu(x +ro)-odr, c = .
0 ly — x|

(b)

ly—x|
gf dy /y v(x +ro)dr
Izl
f dz/ <x+r—|> dr

d 00
5/ da/ ,oN_ldp/ v(x +ro)dr
SN-1 0 0

_aV v(x +2)
N Jgy JzIN!

m(.Q)‘u(x) —fu

dz.

Let us define, for every bounded connected open subset £2 of RV, and for 1 <
p < 09,

Mp, 2) = inf{nwnp: we W), qu =0, lull, = 1}.

For every 1 < p < oo, there exists a bounded connected open subset £2 of R?
such that A(p, £2) = 0.

Hint. Consider on two sides of a square Q two infinite sequences of small
squares connected to Q by very thin pipes.

Prove that, for every 1 < p < oo,

inf{x(p, 2): 2 is a smooth bounded connected open subset of R2, m(2) = 1} =0.
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Hint. Consider a sequence of pairs of disks smoothly connected by very thin
pipes.
20. Generalized Poincaré’s inequality. Let 1 < p < o0, let §£2 be a smooth bounded
connected open subset of RV, and let f € [W!?(£2)]* be such that
< f,1>=1.

Then there exists ¢ > 0 such that, for every u € WI’P(.Q),

lu— < fou>llp <clVullp.



	6 Sobolev Spaces
	6.1 Weak Derivatives
	6.2 Cylindrical Domains
	6.3 Smooth Domains
	6.4 Embeddings
	6.5 Comments
	6.6 Exercises for Chap.6


