
Chapter 4
Lebesgue Spaces

4.1 Convexity

The notion of convexity plays a basic role in functional analysis and in the theory of
inequalities.

Definition 4.1.1 A subset C of a vector space X is convex if for every u, v ∈ C and
every 0 < λ < 1, we have (1 − λ)x + λy ∈ C.

A point x of the convex set C is internal if for every y ∈ X, there exists ε > 0
such that x + εy ∈ C. The set of internal points of C is denoted by int C.

A subset C of X is a cone if for every x ∈ C and every λ > 0, we have λx ∈ C.
Let C be a convex set. A function F : C →] − ∞,+∞] is convex if for every

x, y ∈ C and every 0 < λ < 1, we have F((1−λ)x +λy) ≤ (1−λ)F (x)+λF(y).
A function F : C → [−∞,+∞[ is concave if −F is convex.
Let C be a cone. A function F : C →] − ∞,+∞] is positively homogeneous if

for every x ∈ C and every λ > 0, we have F(λx) = λF(x).

Examples Every linear function is convex, concave, and positively homogeneous.
Every norm is convex and positively homogeneous. Open balls and closed balls in
a normed space are convex.

Proposition 4.1.2 The upper envelope of a family of convex (respectively positively
homogeneous) functions is convex (respectively positively homogeneous).

Lemma 4.1.3 Let Y be a hyperplane of a real vector space X, f : Y → R linear
and F : X →] − ∞,+∞] convex and positively homogeneous such that f ≤ F on
Y and

Y ∩ int{x ∈ X : F(x) < ∞} �= φ.
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90 4 Lebesgue Spaces

Then there exists g : X → R linear such that g ≤ F on X and g
∣
∣
Y

= f .

Proof There exists z ∈ X such that X = Y ⊕ Rz. We must prove the existence of
c ∈ R such that for every y ∈ Y and every t ∈ R,

〈f, y〉 + ct ≤ F(y + tz).

Since F is positively homogeneous, it suffices to verify that for every u, v ∈ Y ,

〈f, u〉 − F(u − z) ≤ c ≤ F(v + z) − 〈f, v〉.

For every u, v ∈ Y , we have by assumption that

〈f, u〉 + 〈f, v〉 ≤ F(u + v) ≤ F(u − z) + F(v + z).

We define

a = sup
u∈Y

〈f, u〉 − F(u − z) ≤ b = inf
v∈Y

F (v + z) − 〈f, v〉.

Let u ∈ Y∩ int{x ∈ X : F(x) < ∞}. For t large enough, F(tu−z) = tF (u−z/t) <

+∞. Hence −∞ < a. Similarly, b < +∞. We can choose any c ∈ [a, b]. ��
Let us state a cornerstone of functional analysis, the Hahn–Banach theorem.

Theorem 4.1.4 Let Y be a subspace of a separable normed space X, and let f ∈
L(Y,R). Then there exists g ∈ L(X,R) such that ||g|| = ||f || and g

∣
∣
∣
Y
= f .

Proof Let (zn) be a sequence dense in X. We define f0 = f , Y0 = Y , and Yn =
Yn−1+Rzn, n ≥ 1. Let there be fn ∈ L(Yn,R) such that ||fn|| = ||f || and fn

∣
∣
∣
Yn−1

=
fn−1. If Yn+1 = Yn, we define fn+1 = fn. If this is not the case, the preceding

lemma implies the existence of fn+1 : Yn+1 → R linear such that fn+1

∣
∣
∣
Yn

= fn and

for every x ∈ Yn+1,

〈fn+1, x〉 ≤ ||f || ||x||.

On Z =
∞
⋃

n=0

Yn we define h by h

∣
∣
∣
Yn

= fn, n ≥ 0. The space Z is dense in X,

h ∈ L(Z,R), ||h|| = ||f ||, and h

∣
∣
∣
Y
= f . Finally, by Proposition 3.2.3, there exists

g ∈ L(X,R) such that ||g|| = ||h|| and g

∣
∣
∣
Z
= h. ��

Notation The dual of a normed space X is defined by X∗ = L(X,R). Let us recall
that the norm on X∗ is defined by
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||g|| = sup
u∈X‖u‖≤1

|〈g, u〉| = sup
u∈X‖u‖≤1

〈g, u〉.

Theorem 4.1.5 Let Z be a subspace of a separable normed space X, and let u ∈
X\Z. Then

0 < d(u,Z) = max{〈g, u〉 : g ∈ X∗, ||g|| ≤ 1, g
∣
∣
∣
Z
= 0}.

In particular if u ∈ X\{0}, then

||u|| = max
g∈X∗
‖g‖≤1

〈g, u〉 = max
g∈X∗
‖g‖≤1

|〈g, u〉|.

Proof Let us first prove that

c = sup
{

〈g, u〉 : g ∈ X∗ : ||g|| ≤ 1, g
∣
∣
∣
Z
= 0

}

≤ δ = d(u,Z).

Assume that ||g|| ≤ 1 and g

∣
∣
∣
Z
= 0. Then, for every z ∈ Z,

〈g, u〉 = 〈g, u − z〉 ≤ ||g|| ||u − z|| ≤ ||u − z||,

so that 〈g, u〉 ≤ δ and c ≤ δ.

It suffices then to prove the existence of g ∈ X∗ such that ||g|| ≤ 1, g
∣
∣
∣
Z
= 0 and

〈g, u〉 = δ. Let us define the functional f on Y = Ru ⊕ Z by

〈f, tu + z〉 = tδ.

Since, for t �= 0,

〈f, tu + z〉 ≤ |t |δ ≤ |t | ||u + z/t || = ||tu + z||,

the functional f is such that ||f || ≤ 1. The preceding theorem implies the existence

of g ∈ X∗ such that ||g|| = ||f || ≤ 1 and g

∣
∣
∣
Y
= f . In particular 〈g, u〉 = δ and

g

∣
∣
∣
Z
= 0. ��
The next theorem is due to P. Roselli and the author. Let us define

C+ = {

(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0

}

.
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Theorem 4.1.6 (Convexity Inequality) Let F : C+ → R be a positively

homogeneous function, and let uj ∈ L1(Ω,μ) be such that uj ≥ 0,
∫

Ω

ujdμ > 0,

j = 1, 2. If F is convex, then

F

(∫

Ω

u1dμ,

∫

Ω

u2dμ

)

≤
∫

Ω

F(u1, u2)dμ.

If F is concave, the reverse inequality holds.

Proof We define F(x) = +∞, x ∈ R
2 \ C+, and yj =

∫

Ω

ujdμ, j = 1, 2.

Lemma 4.1.3 implies the existence of α, β ∈ R such that

F(y1, y2) = αy1 + βy2 and, for all x1, x2 ∈ R, αx1 + βx2 ≤ F(x1, x2). (∗)

For every 0 ≤ λ ≤ 1, we have

α(1 − λ) + βλ ≤ F(1 − λ, λ) ≤ (1 − λ)F (1, 0) + λF(0, 1),

so that c = sup
0≤λ≤1

|F(1 − λ, λ)| < ∞. Since

∣
∣F(u1, u2)

∣
∣ ≤ c(u1 + u2),

the comparison theorem implies that F(u1, u2) ∈ L1(Ω,μ). We conclude from (∗)

that

F

(∫

Ω

u1dμ,

∫

Ω

u2dμ

)

= α

∫

Ω

u1dμ + β

∫

Ω

u2dμ

=
∫

Ω

αu1 + βu2dμ

≤
∫

Ω

F(u1, u2)dμ. ��

Lemma 4.1.7 Let F : C+ → R be a continuous and positively homogeneous
function. If F(., 1) is convex (respectively concave), then F is convex (respectively
concave).

Proof Assume that F(., 1) is convex. It suffices to prove that for every x, y ∈ ◦
C+,

F(x + y) ≤ F(x) + F(y). The preceding inequality is equivalent to

F

(
x1 + y1

x2 + y2
, 1

)

≤ x2

x2 + y2
F

(
x1

x2
, 1

)

+ y2

x2 + y2
F

(
y1

y2
, 1

)

. ��
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Remark Define F on R2 by

F(y, z) = −√
yz, (y, z) ∈ C+,

= +∞, (y, z) ∈ R
2 \ C+.

The function F is positively homogeneous and, by the preceding lemma, is convex
on C+, hence on R

2. It is clear that 0 = F on Y = R × {0}. There is no linear
function g : R2 → R such that g ≤ F on R2 and g = 0 on Y .

The convexity inequality implies a version of the Cauchy–Schwarz inequality: if
v,w ∈ L1(Ω,μ), then

∫

Ω

|vw|1/2dμ ≤
(∫

Ω

|v|dμ

)1/2 (∫

Ω

|w|dμ

)1/2

.

Definition 4.1.8 Let 1 < p < ∞. The exponent p′ conjugate to p is defined by
1/p + 1/p′ = 1. On the Lebesgue space

Lp(Ω,μ) =
{

u ∈ M(Ω,μ) :
∫

Ω

|u|pdμ < ∞
}

,

we define the functional ||u||p =
(∫

Ω

|u|pdμ

)1/p

.

Theorem 4.1.9 Let 1 < p < ∞.

(a) (Hölder’s inequality.) Let v ∈ Lp(Ω,μ) and w ∈ Lp′
(Ω,μ). Then

∫

Ω

|vw|dμ ≤ ||v||p||w||p′ .

(b) (Minkowski’s inequality.) Let v,w ∈ Lp(Ω,μ). Then

||v + w||p ≤ ||v||p + ||w||p.

(c) (Hanner’s inequalities.) Let v,w ∈ Lp(Ω,μ). If 2 ≤ p < ∞, then

||v + w||pp + ||v − w||pp ≤ (||v||p + ||w||p)p + ∣
∣||v||p − ||w||p

∣
∣
p

.

If 1 < p ≤ 2, the reverse inequality holds.

Proof On C+, we define the continuous positively homogeneous functions

F(x1, x2) = x
1/p
1 x

1/p′
2 ,
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G(x1, x2) = (x
1/p
1 + x

1/p
2 )p,

H(x1, x2) = (x
1/p
1 + x

1/p
2 )p + |x1/p

1 − x
1/p
2 |p.

Inequality (a) follows from the convexity inequality applied to F and u =
(|v|p, |w|p′

). Inequality (b) follows from the convexity inequality applied to G

and u = (|v|p, |w|p). Finally, inequalities (c) follow from the convexity inequality
applied to H and u = (|v|p, |w|p). When v = 0 or w = 0, the inequalities are
obvious.

On [0,+∞[, we define f = F(., 1), g = G(., 1), h = H(., 1). It is easy to
verify that

f ′′(x) = 1 − p

p2
x

1
p

−2
,

g′′(x) = 1 − p

p
x

− 1
p

−1
(x

− 1
p + 1)p−2,

h′′(x) = 1 − p

p
x

− 1
p

−1
[

(x
− 1

p + 1)p−2 − |x− 1
p − 1|p−2

]

.

Hence f and g are concave. If 2 ≤ p < ∞, then h is concave, and if 1 < p ≤ 2,
then h is convex. It suffices then to use the preceding lemma. ��

4.2 Lebesgue Spaces

Let μ : L → R be a positive measure on the set Ω .

Definition 4.2.1 Let 1 ≤ p < ∞. The space Lp(Ω,μ) is the quotient ofLp(Ω,μ)

by the equivalence relation “equality almost everywhere.” By definition,

||u||Lp(Ω,μ) = ||u||p =
(∫

Ω

|u|pdμ

)1/p

.

When ΛN is the Lebesgue measure on the open subset Ω of R
N , the space

Lp(Ω,ΛN) is denoted by Lp(Ω).

In practice, we identify the elements of Lp(Ω,μ) and the functions of Lp(Ω,μ).

Proposition 4.2.2 Let 1 ≤ p < ∞. Then the space Lp(Ω,μ) with the norm ||.||p
is a normed space.

Proof Minkowski’s inequality implies that if u, v ∈ Lp(Ω,μ), then u + v ∈
Lp(Ω,μ) and
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||u + v||p ≤ ||u||p + ||v||p.

It is clear that if u ∈ Lp(Ω,μ) and λ ∈ R, then λu ∈ Lp(Ω,μ) and ||λu||p =
|λ| ||u||p. Finally, if ||u||p = 0, then u = 0 almost everywhere and u = 0 in
Lp(Ω,μ). ��

The next inequalities follow from Hölder’s inequality.

Proposition 4.2.3 (Generalized Hölder’s Inequality) Let 1 < pj < ∞, uj ∈
Lpj (Ω,μ), 1 ≤ j ≤ k, and 1/p1 + . . . + 1/pk = 1. Then

k
∏

j=1

uj ∈ L1(Ω,μ)

and

∫

Ω

k
∏

j=1

|uj |dμ ≤
k

∏

j=1

||uj ||pj
.

Proposition 4.2.4 (Interpolation Inequality) Let 1 ≤ p < q < r < ∞,

1

q
= 1 − λ

p
+ λ

r
,

and u ∈ Lp(Ω,μ) ∩ Lr(Ω,μ). Then u ∈ Lq(Ω,μ) and

||u||q ≤ ||u||1−λ
p ||u||λr .

Proposition 4.2.5 Let 1 ≤ p < q < ∞, μ(Ω) < ∞, and u ∈ Lq(Ω,μ). Then
u ∈ Lp(Ω,μ) and

||u||p ≤ μ(Ω)
1
p

− 1
q ||u||q .

Proposition 4.2.6 Let 1 ≤ p < ∞ and (un) ⊂ Lp(Ω,μ) be such that

(a) ||un||p → ||u||p, n → ∞;
(b) un converges to u almost everywhere.

Then ||un − u||p → 0, n → ∞.

Proof Since almost everywhere

0 ≤ 2p(|un|p + |u|p) − |un − u|p,

Fatou’s lemma ensures that
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2p+1
∫

Ω

|u|pdμ ≤ lim
∫

Ω

[

2p(|un|p + |u|p) − |un − u|p]

dμ

= 2p+1
∫

|u|pdμ − lim
∫

Ω

|un − u|pdμ.

Hence lim ||un − u||pp ≤ 0. ��
The next result is more precise.

Theorem 4.2.7 (Brezis–Lieb Lemma) Let 1 ≤ p < ∞ and let (un) ⊂ Lp(Ω,μ)

be such that

(a) c = sup
n

||un||p < ∞;

(b) un converges to u almost everywhere.

Then u ∈ Lp(Ω,μ) and

lim
n→∞

(||un||pp − ||un − u||pp
) = ||u||pp.

Proof By Fatou’s lemma, ||u||p ≤ c. Let ε > 0. There exists, by homogeneity,
c(ε) > 0 such that for every a, b ∈ R,

∣
∣|a + b|p − |a|p − |b|p∣

∣ ≤ ε|a|p + c(ε)|b|p.

We deduce from Fatou’s lemma that
∫

Ω

c(ε)|u|pdμ ≤ lim
n→∞

∫

Ω

ε|un − u|p + c(ε)|u|p − ∣
∣|un|p − |un − u|p − |u|p∣

∣dμ

≤ (2c)pε +
∫

Ω

c(ε)|u|pdμ − lim
n→∞

∫

Ω

∣
∣|un|p − |un − u|p − |u|p∣

∣dμ,

or

lim
n→∞

∫

Ω

∣
∣|un|p − |un − u|p − |u|p∣

∣dμ ≤ (2c)pε.

Since ε > 0 is arbitrary, the proof is complete. ��
We define

Rh(s) = s + h, s ≤ −h,

= 0, |s| < h,

= s − h, s ≥ h.

Theorem 4.2.8 (Degiovanni–Magrone) Let μ(Ω) < ∞, 1≤ p < ∞, and (un) ⊂
Lp(Ω,μ) be such that
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(a) c = sup
n

||un||p < ∞;

(b) un converges to u almost everywhere.

Then

lim
n→∞

(

||un||pp − ||Rhun||pp
)

= ||u||pp − ||Rhu||pp.

Proof Let us define

f (s) = |s|p − |Rh(s)|p.

For every ε > 0, there exists c(ε) > 0 such that

|f (s) − f (t)| ≤ ε
∣
∣|s|p + |t |p∣

∣ + c(ε).

It follows from Fatou’s lemma that

2ε
∫

Ω

|u|pdμ+c(ε)m(Ω) ≤ lim
n→∞

∫

Ω

ε
(|un|p+|u|p)+c(ε)−∣

∣f (un)−f (u)
∣
∣dμ

≤ ε cp + ε

∫

Ω

|u|pdμ + c(ε)μ(Ω) − lim
n→∞

∫

Ω

∣
∣f (un) − f (u)

∣
∣dμ.

Hence

lim
n→∞

∫

Ω

∣
∣f (un) − f (u)

∣
∣dμ ≤ ε cp.

Since ε > 0 is arbitrary, the proof is complete. ��

Theorem 4.2.9 (F. Riesz, 1910) Let 1 ≤ p < ∞. Then the space Lp(Ω,μ) is
complete.

Proof Let (un) be a Cauchy sequence in Lp(Ω,μ). There exists a subsequence
vj = unj

such that for every j ,

||vj+1 − vj ||p ≤ 1/2j .

We define the sequence

fk =
k

∑

j=1

|vj+1 − vj |.

Minkowski’s inequality ensures that
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∫

Ω

f
p
k dμ ≤

⎛

⎝

k
∑

j=1

1/2j

⎞

⎠

p

< 1.

Levi’s theorem implies the almost everywhere convergence of fk to f ∈ Lp(Ω,μ).
Hence vk converges almost everywhere to a function u. For m ≥ k + 1, it follows
from Minkowski’s inequality that

∫

Ω

|vm − vk|pdμ ≤
⎛

⎝

m−1
∑

j=k

1/2j

⎞

⎠

p

≤ (2/2k)p.

By Fatou’s lemma, we obtain

∫

Ω

|u − vk|pdμ ≤ (2/2k)p.

In particular, u = u − v1 + v1 ∈ Lp(Ω,μ). We conclude by invoking the Cauchy
condition:

||u − uk||p ≤ ||u − vk||p + ||vk − uk||p ≤ 2/2k

+||unk
− uk||p → 0, k → ∞. ��

Proposition 4.2.10 Let 1 ≤ p < ∞ and let un → u in Lp(Ω,μ). Then there exist
subsequences vj = unj

and g ∈ Lp(Ω,μ) such that almost everywhere,

|vj | ≤ g and vj → u, j → ∞.

Proof If the sequence (un) converges in Lp(Ω,μ), it satisfies the Cauchy condition
by Proposition 1.2.3. The subsequence (vj ) in the proof of the preceding theorem
converges almost everywhere to u, and for every j ,

|vj | ≤ |v1| +
∞
∑

j=1

|vj+1 − vj | = |v1| + f ∈ Lp(Ω,μ). ��

Theorem 4.2.11 (Density Theorem) Let 1 ≤ p < ∞ and L ⊂ Lp(Ω,μ). Then
L is dense in Lp(Ω,μ).

Proof Let u ∈ Lp(Ω,μ). Since u is measurable with respect to μ on Ω , there
exists a sequence (un) ⊂ L such that un → u almost everywhere. We define

vn = max(min(|un|, u),−|un|).
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By definition, |vn| ≤ |un|, and almost everywhere,

|vn − u|p ≤ |u|p ∈ L1, |vn − u|p → 0, n → ∞.

It follows from Lebesgue’s dominated convergence theorem that ||vn − u||p → 0,
n → ∞. Hence

Y = {u ∈ Lp(Ω,μ) : there exists f ∈ L such that |u| ≤ f almost everywhere}

is dense in Lp(Ω,μ). It suffices to prove that L is dense in Y .
Let u ∈ Y , f ∈ L be such that |u| ≤ f almost everywhere and (un) ⊂ L such

that un → u almost everywhere. We define

wn = max(min(f, un),−f ).

By definition, wn ∈ L and, almost everywhere,

|wn − u|p ≤ 2pf p ∈ L1, |wn − u|p → 0, n → ∞.

It follows from Lebesgue’s dominated convergence theorem that ||wn − u||p → 0,
n → ∞. Hence L is dense in Y . ��

Theorem 4.2.12 Let Ω be open in R
N and 1 ≤ p < ∞. Then the space Lp(Ω) is

separable.

Proof By the preceding theorem, K(Ω) is dense in Lp(Ω). Proposition 2.3.2
implies that for every u ∈ K(Ω),

uj =
∑

k∈ZN

u(k/2j )fj,k

converges to u in Lp(Ω). We conclude the proof using Proposition 3.3.11. ��

4.3 Regularization

La logique parfois engendre des monstres. Depuis un
demi-siècle on a vu surgir une foule de fonctions bizarres qui
semblent s’efforcer de ressembler aussi peu que possible aux
honnêtes fonctions qui servent à quelque chose.

Henri Poincaré
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Regularization by convolution allows one to approximate locally integrable func-
tions by infinitely differentiable functions.

Definition 4.3.1 Let Ω be an open subset of RN . The space of test functions on Ω

is defined by

D(Ω) = {u ∈ C∞(RN) : spt u is a compact subset of Ω}.

Let α = (α1, . . . , α
N
) ∈ N

N be a multi-index. By definition,

|α| = α1 + . . . + α
N
, Dα = ∂

α1
1 . . . ∂

α
N

N
, ∂j = ∂

∂xj

.

Using a function defined by Cauchy in 1821, we shall verify that 0 is not the only
element inD(Ω).

Proposition 4.3.2 The function defined on R by

f (x) = exp(1/x), x < 0,
= 0, x ≥ 0,

is infinitely differentiable.

Proof Let us prove by induction that for every n and every x < 0,

f (n)(0) = 0, f (n)(x) = Pn(1/x) exp(1/x),

where Pn is a polynomial. The statement is true for n = 0. Assume that it is true for
n. We obtain

lim
x→0−

f (n)(x) − f n(0)

x
= lim

x→0−
Pn(1/x) exp(1/x)

x
= 0.

Hence f (n+1)(0) = 0. Finally, we have for x < 0,

f (n+1)(x) = (−1/x2)(Pn(1/x) + P ′
n(1/x)) exp(1/x) = Pn+1(1/x) exp(1/x). ��

Definition 4.3.3 We define on RN the function

ρ(x) = c−1 exp(1/(|x|2 − 1)), |x| < 1,
= 0, |x| ≥ 1,
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where

c =
∫

B(0,1)
exp(1/(|x|2 − 1))dx.

The regularizing sequence ρn(x) = nNρ(nx) is such that

ρn ∈ D(RN), spt ρn = B[0, 1/n],
∫

RN

ρn dx = 1, ρn ≥ 0.

Definition 4.3.4 Let Ω be an open set of RN . By definition, ω ⊂⊂ Ω if ω is open
and ω is a compact subset of Ω . We define, for 1 ≤ p < ∞,

L
p

loc(Ω) = {u : Ω → R : for all ω ⊂⊂ Ω,u

∣
∣
∣
ω

∈ Lp(ω)}.

A sequence (un) converges to u in L
p

loc(Ω) if for every ω ⊂⊂ Ω ,

∫

ω

|un − u|pdx → 0, n → ∞.

Definition 4.3.5 Let u ∈ L1
loc(Ω) and v ∈ K(RN) be such that spt v ⊂ B[0, 1/n].

For n ≥ 1, the convolution v ∗ u is defined on

Ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n}

by

v ∗ u(x) =
∫

Ω

v(x − y)u(y)dy =
∫

B(0,1/n)

v(y)u(x − y)dy.

If |y| < 1/n, the translation of u by y is defined on Ωn by τyu(x) = u(x − y).

Proposition 4.3.6 Let u ∈ L1
loc(Ω) and v ∈ D(RN) be such that spt v ⊂

B[0, 1/n]. Then v ∗ u ∈ C∞(Ωn), and for every α ∈ N
N , Dα(v ∗ u) = (Dαv) ∗ u.

Proof Let |α| = 1 and x ∈ Ωn. There exists r > 0 such that B[x, r] ⊂ Ωn. Hence

ω = B(x, r + 1/n) ⊂⊂ Ω,

and for 0 < |ε| < r ,

v ∗ u(x + εα) − v ∗ u(x)

ε
=

∫

ω

v(x + εα − y) − v(x − y)

ε
u(y)dy.
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But

lim
ε → 0
ε �= 0

v(x + εα − y) − v(x − y)

ε
= Dαv(x − y)

and

sup
y ∈ ω

0 < |ε| < r

∣
∣
∣
∣

v(x + εα − y) − v(x − y)

ε

∣
∣
∣
∣
< ∞.

Lebesgue’s dominated convergence theorem implies that

Dα(v ∗ u)(x) =
∫

ω

Dαv(x − y)u(y)dy = (Dαv) ∗ u(x).

It is easy to conclude the proof by induction. ��

Lemma 4.3.7 Let ω ⊂⊂ Ω .

(a) Let u ∈ C(Ω). Then for every n large enough,

sup
x∈ω

|ρn ∗ u(x) − u(x)| ≤ sup
|y|<1/n

sup
x∈ω

|τyu(x) − u(x)|.

(b) Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞. Then for every n large enough,

||ρn ∗ u − u||Lp(ω) ≤ sup
|y|<1/n

||τyu − u||Lp(ω).

Proof For every n large enough, ω ⊂⊂ Ωn. Let u ∈ C(Ω). Since

∫

B(0,1/n)

ρn(y)dy = 1,

we obtain for every x ∈ ω,

∣
∣ ρn ∗ u(x) − u(x)

∣
∣ =

∣
∣
∣
∣

∫

B(0,1/n)

ρn(y)
(

u(x − y) − u(x)
)

dy

∣
∣
∣
∣

≤ sup
|y|<1/n

sup
x∈ω

∣
∣u(x − y) − u(x)

∣
∣.

Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞. By Hölder’s inequality, for every x ∈ ω, we have
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∣
∣ ρn ∗ u(x) − u(x)

∣
∣ =

∣
∣
∣
∣

∫

B(0,1/n)

ρn(y)
(

u(x − y) − u(x)
)

dy

∣
∣
∣
∣

≤
(∫

B(0,1/n)

ρn(y)
∣
∣u(x − y) − u(x)

∣
∣pdy

)1/p

.

Fubini’s theorem implies that

∫

ω

∣
∣ρn ∗ u(x) − u(x)

∣
∣
p
dx ≤

∫

ω

dx

∫

B(0,1/n)

ρn(y)
∣
∣u(x − y) − u(x)

∣
∣pdy

=
∫

B(0,1/n)

dy

∫

ω

ρn(y)
∣
∣u(x − y) − u(x)

∣
∣pdx

≤ sup
|y|<1/n

∫

ω

∣
∣u(x − y) − u(x)

∣
∣pdx. ��

Lemma 4.3.8 (Continuity of Translations) Let ω ⊂⊂ Ω .

(a) Let u ∈ C(Ω). Then lim
y→0

sup
x∈ω

|τyu(x) − u(x)| = 0.

(b) Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞. Then lim
y→0

||τyu − u||Lp(ω) = 0.

Proof We choose an open subset U such that ω ⊂⊂ U ⊂⊂ Ω . If u ∈ C(Ω), then
property (a) follows from the uniform continuity of u on U .

Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞, and ε > 0. The density theorem implies the
existence of v ∈ K(U) such that ||u − v||Lp(U) ≤ ε. By (a), there exists 0 < δ <

d(ω, ∂U) such that for every |y| < δ, sup
x∈ω

|τyv(x) − v(x)| ≤ ε. We obtain for every

|y| < δ,

||τyu − u||Lp(ω) ≤ ||τyu − τyv||Lp(ω) + ||τyv − v||Lp(ω) + ||v − u||Lp(ω)

≤ 2||u − v||Lp(U) + m(ω)1/psup
x∈ω

|τyv(x) − v(x)|

≤ (2 + m(ω)1/p)ε.

Since ε > 0 is arbitrary, the proof is complete. ��
We deduce from the preceding lemmas the following regularization theorem.
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Theorem 4.3.9

(a) Let u ∈ C(Ω). Then ρn ∗ u converges uniformly to u on every compact subset
of Ω .

(b) Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞. Then ρn ∗ u converges to u in L
p

loc(Ω).

The following consequences are fundamental.

Theorem 4.3.10 (Annulation Theorem) Let u ∈ L1
loc(Ω) be such that for every

v ∈ D(Ω),

∫

Ω

v(x)u(x)dx = 0.

Then u = 0 almost everywhere on Ω .

Proof By assumption, for every n, ρn ∗ u = 0 on Ωn. ��

Theorem 4.3.11 Let 1 ≤ p < ∞. Then D(Ω) is dense in Lp(Ω).

Proof By the density theorem, K(Ω) is dense in Lp(Ω). Let u ∈ K(Ω). There
exists an open set ω such that spt u ⊂ ω ⊂⊂ Ω . For j large enough, the support
of uj = ρj ∗ u is contained in ω. Since uj ∈ C∞(RN) by Proposition 4.3.6, uj ∈
D(Ω). The regularization theorem ensures that uj → u in Lp(Ω). ��

Definition 4.3.12 A partition of unity subordinate to the covering of the compact
subset Γ of RN by the open sets U1, . . . , Uk is a sequence ψ1, . . . , ψk such that

(a) ψj ∈ D(Uj ), ψj ≥ 0, j = 1, . . . , k;

(b)
k

∑

j=1

ψj = 1 on Γ ,
k

∑

j=1

ψj ≤ 1 on R
N .

Let us prove the theorem of partition of unity.

Theorem 4.3.13 Let U1, . . . , Uk be a covering by open sets of the compact subset
Γ of RN . Then there exists a partition of unity subordinates to U1, . . . , Uk .

Proof Let K be a compact subset of the open subset U of RN . We choose an open
set ω such that K ⊂ ω ⊂⊂ U . For n large enough, ϕ = ρn ∗ χ

ω is such that
ϕ ∈ D(U), ϕ = 1 on K and 0 ≤ ϕ ≤ 1 on R

N .
For n large enough, the finite sequence

Fj = {x : d(x,RN\Uj ) ≥ 1/n}, j = 1, . . . , k

is a covering of Γ by closed sets. Indeed if this is not the case, there exists, by the

compactness of Γ , x ⊂ Γ \
k

⋃

j=1

Uj . This is a contradiction.
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By the first part of the proof, there exists, for j = 1, . . . , k, ϕj ∈ D(Uj ) such
that ϕj = 1 on Γ

⋂
Fj and 0 ≤ ϕj ≤ 1 on RN . Let us define the functions

ψ1 = ϕ1,

ψ2 = ϕ2(1 − ϕ1),

. . .

ψk = ϕk(1 − ϕ1) . . . (1 − ϕk−1).

It is easy to prove, by a finite induction, that

ψ1 + . . . + ψk = 1 − (1 − ϕ1) . . . (1 − ϕk).

Assume that x ∈ Γ . There exists j such that x ∈ Fj . By definition, we conclude
that ϕj (x) = 1 and ψ1(x) + . . . + ψk(x) = 1. ��
Now we consider Euclidean space.

Proposition 4.3.14 Let 1 ≤ p < ∞ and u ∈ Lp(RN). Then ||ρn ∗ u||p ≤ ||u||p
and ρn ∗ u → u in Lp(RN).

Proof It follows from Hölder’s inequality that

∣
∣ρn ∗ u(x)

∣
∣ =

∣
∣
∣
∣

∫

RN

u(y)ρn(x − y)dy

∣
∣
∣
∣
≤

∣
∣
∣
∣

∫

RN

∣
∣u(y)

∣
∣pρn(x − y)dy

∣
∣
∣
∣

1/p

.

Fubini’s theorem implies that

∫

RN

∣
∣ρn ∗ u(x)

∣
∣
p
dx ≤

∫

RN

dx

∫

RN

∣
∣u(y)

∣
∣
p
ρn(x − y)dy

=
∫

RN

dy

∫

RN

∣
∣u(y)

∣
∣pρn(x − y)dx

=
∫

RN

∣
∣u(y)

∣
∣pdy.

Hence ||ρn ∗ u||p ≤ ||u||p.
Let u ∈ Lp(RN) and ε > 0. The density theorem implies the existence of v ∈

K(RN) such that ||u − v||p ≤ ε. By the regularization theorem, ρn ∗ v → v in
Lp(RN). Hence there exists m such that for every n ≥ m, ||ρn ∗ v − v||p ≤ ε. We
obtain for every n ≥ m that

||ρn ∗ u − u||p ≤ ||ρn ∗ (u − v)||p + ||ρn ∗ v − v||p + ||v − u||p ≤ 3ε.

Since ε > 0 is arbitrary, the proof is complete. ��
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Proposition 4.3.15 Let 1 ≤ p < ∞, f ∈ Lp(RN), and g ∈ K(RN). Then

∫

RN

(ρn ∗ f )g dx =
∫

RN

f (ρn ∗ g)dx.

Proof Fubini’s theorem and the parity of ρ imply that

∫

RN

(ρn ∗ f )(x)g(x)dx =
∫

RN

dx

∫

RN

ρn(x − y)f (y)g(x)dy

=
∫

RN

dy

∫

RN

ρn(x − y)f (y)g(x)dx

=
∫

RN

(ρn ∗ g)(y)f (y)dy. ��

4.4 Compactness

We prove a variant of Ascoli’s theorem.

Theorem 4.4.1 Let X be a precompact metric space, and let S be a set of uniformly
continuous functions on X such that

(a) c = sup
u∈S

sup
x∈X

∣
∣u(x)

∣
∣ < ∞;

(b) for every ε > 0, there exists δ > 0 such that sup
u∈S

ωu(δ) ≤ ε.

Then S is precompact in BC(X).

Proof Let ε > 0 and let δ corresponds to ε by (b). There exists a finite covering of
the precompact space X by balls B[x1, δ], . . . , B[xk, δ]. There exists also a finite
covering of [−c, c] by intervals [y1 − ε, y1 + ε], . . . , [yn − ε, yn + ε]. Let us denote
by J the (finite) set of mappings from {1, . . . , k} to {1, . . . , n}. For every j ∈ J , we
define

Sj = {u ∈ S : |u(x1) − yj (1)| ≤ ε, . . . , |u(xk) − yj (k)| ≤ ε}.

By definition, (Sj )j∈J is a covering of S. Let u, v ∈ Sj and x ∈ X. There exists m

such that d(x, xm) ≤ δ. We have

∣
∣u(xm) − yj (m)

∣
∣ ≤ ε,

∣
∣v(xm) − yj (m)

∣
∣ ≤ ε

and, by (b),

∣
∣u(x) − u(xm)

∣
∣ ≤ ε,

∣
∣v(x) − v(xm)

∣
∣ ≤ ε.
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Hence |u(x) − v(x)| ≤ 4ε, and since x ∈ X is arbitrary, ||u − v||∞ ≤ 4ε. If Sj is
nonempty, then Sj ⊂ B[u, 4ε]. Since ε > 0 is arbitrary, S is precompact in BC(X)

by Fréchet’s criterion. ��
We prove a variant of M. Riesz’s theorem (1933).

Theorem 4.4.2 Let Ω be an open subset of RN , 1 ≤ p < ∞, and let S ⊂ Lp(Ω)

be such that

(a) c = sup
u∈S

||u||Lp(Ω) < ∞;

(b) for every ε > 0, there exists ω ⊂⊂ Ω such that sup
u∈S

∫

Ω\ω
|u|pdx ≤ εp;

(c) for every ω ⊂⊂ Ω , lim
y→0

sup
u∈S

||τyu − u||Lp(ω) = 0.

Then S is precompact in Lp(Ω).

Proof Let ε > 0 and let ω corresponds to ε by (b). Assumption (c) implies the
existence of 0 < δ < d(ω, ∂Ω) such that for every |y| ≤ δ,

sup
u∈S

||τyu − u ||Lp(ω) ≤ ε.

We choose n > 1/δ. We deduce from Lemma 4.3.7 that

sup
u∈S

||ρn ∗ u − u||Lp(ω) ≤ sup
u∈S

sup
|y|<1/n

||τyu − u||Lp(ω) ≤ ε. (∗)

We define

U = {x ∈ R
N : d(x, ω) < 1/n} ⊂⊂ Ω.

Let us prove that the family R = {ρn ∗ u
∣
∣
ω

: u ∈ S} satisfies the assumptions of
Ascoli’s theorem in BC(ω).

1. By (a), for every u ∈ S and for every x ∈ ω, we have

∣
∣ρn ∗ u(x)

∣
∣ ≤

∫

U

ρn(x − z)
∣
∣u(z)

∣
∣dz ≤ sup

RN

|ρn| ||u||L1(U) ≤ c1.

2. By (a), for every u ∈ S and for every x, y ∈ ω, we have

∣
∣ρn ∗ u(x) − ρn ∗ u(y)

∣
∣ ≤

∫

U

∣
∣ρn(x − z) − ρn(y − z)

∣
∣
∣
∣u(z)

∣
∣dz

≤ sup
z

∣
∣ρn(x − z) − ρn(y − z)

∣
∣ ||u||L1(U) ≤ c2|x − y|.
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Hence R is precompact in BC(ω). Since

||v||Lp(ω) ≤ m(ω)1/p sup
ω

|v|,

R is precompact in Lp(ω). But then (∗) implies the existence of a finite covering
of S

∣
∣
ω
in Lp(ω) by balls of radius 2ε. Assumption (b) ensures the existence of a

finite covering of S in Lp(Ω) by balls of radius 3ε. Since ε > 0 is arbitrary, S is
precompact in Lp(Ω) by Fréchet’s criterion. ��

4.5 Comments

Figure 4.1 gives a geometric interpretation of Lemma 4.1.3. It is contained in the
Lectures on Analysis by G. Choquet (W.A. Benjamin, New York, 1969).

Proofs of the Hahn–Banach theorem without the axiom of choice (in separable
spaces) are given in the treatise by Garnir et al. [28] and in the lectures by Favard
[22].

The convexity inequality is due to Roselli and the author [64]. In contrast to
Jensen’s inequality [36], it is not restricted to probability measures. But we have
to consider positively homogeneous functions. See [16] for the relations between
convexity and lower semicontinuity.

Fig. 4.1 Lemma of the Hahn-Banach theorem
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4.6 Exercises for Chap. 4

1. (Young’s inequality.) Let 1 < p < ∞. Then for every a, b ≥ 0,

ab ≤ ap

p
+ bp′

p′ .

First proof: A = �n ap, B = �n bp′
, exp

(
A

p
+ B

p′

)

≤ expA

p
+ expB

p′ .

Second proof:
bp′

p′ = sup
a≥0

(

ab − ap

p

)

.

2. (Hölder’s inequality.) Let 1 < p < ∞. If ||u||p �= 0 �= ||v||p′ , then by Young’s
inequality,

∫

Ω

∣
∣

u

||u||p
v

||v||p′

∣
∣dμ ≤ 1.

3. (Minkowski’s inequality.) Prove that

(a) ||u||p = sup
||w||p′=1

∫

Ω

uw dμ

(b) ||u + v||p ≤ ||u||p + ||v||p
4. (Minkowski’s inequality.) Let 1 < p < ∞ and define, onLp(Ω,μ), the convex

function G(u) =
∫

Ω

|u|pdμ. Then with λ = ||v||p/(||u||p + ||v||p),

G

(
u + v

||u||p + ||v||p
)

= G

(

(1 − λ)
u

||u||p + λ
v

||v||p
)

≤ (1 − λ)G

(
u

||u||p
)

+ λG

(
v

||v||p
)

= 1.

Hence ||u + v||p ≤ ||u||p + ||v||p.
5. (Jensen’s inequality)

(a) Let f : [0,+∞[→ R be a convex function and y > 0. There exists α, β ∈
R such that

f (y) = αy + β and, for all x ≥ 0, αx + β ≤ f (x).

(b) Let f : [0,+∞[→ R be a convex function. Let μ be a positive measure
on Ω such that μ(Ω) = 1, and let u ∈ L1(Ω,μ) be such that u ≥ 0 and∫

Ω

u dμ > 0. Then
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f

(∫

Ω

u dμ

)

≤
∫

Ω

f (u)dμ ≤ +∞.

If f is concave, the reverse inequality holds.
6. Assume that μ(Ω) = 1. Then for every u ∈ L1(Ω,μ), u ≥ 0,

0 ≤ exp
∫

Ω

�n u dμ ≤
∫

Ω

u dμ ≤ �n

∫

Ω

exp u dμ ≤ +∞.

7. Let Ω = B(0, 1) ⊂ R
N . Then

λp + N > 0 ⇐⇒ |x|λ ∈ Lp(Ω), λp + N < 0 ⇐⇒ |x|λ ∈ Lp(RN \ Ω).

8. A differentiable function u : R → R satisfies

x2u′(x) + u(x) = 0

if and only if u(x) = cf (x), where c ∈ R and f is the function defined in
Proposition 4.3.2.

9. Let 1 < p < ∞, (un) ⊂ L1(Ω,μ) and let u : Ω → R be μ-measurable. Then
the following properties are equivalent:

(a) ‖un − u‖p → 0, n → ∞;
(b) (un) converges in measure to u and {|un|p : n ∈ N} is equi-integrable.

10. (Rising sun lemma, F. Riesz, 1932.) Let g ∈ C([a, b]). The set

E =
{

a < x < b : g(x) < max[x,b] g

}

consists of a finite or countable union of disjoint intervals ]ak, bk[ such that
g(ak) ≤ g(bk). Hint: If ak < x < bk , then g(x) < g(bk).

11. (Maximal inequality, Hardy–Littlewood, 1930.) Let u ∈ L1(]a, b[), u ≥ 0. The
maximal function defined on ]a, b[ by

Mu(x) = sup
x<y<b

1

y − x

∫ y

x

u(s)ds

satisfies, for every t > 0,

|{Mu > t}| ≤ t−1
∫ b

a

u(s)ds.

Hint: Use the rising sun lemma with
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g(x) =
∫ x

a

u(s)ds − tx.

12. (Lebesgue’s differentiability theorem) Let u ∈ L1(]a, b[). Prove that for almost
every a < x < b,

lim
y→x
y>x

1

y − x

∫ y

x

|u(s) − u(x)|ds = 0.

Hint: Use Theorem 4.3.11 and the maximal inequality.
13. (Godunova’s inequality) Let f : [0,+∞[→ [0,+∞[ be convex, and let

u : R → [0,+∞[ be Lebesgue-measurable. Then

∫ ∞

0
f

(∫ x

0
u(t)

dt

x

)
dx

x
≤

∫ ∞

0
f (u(x))

dx

x
≤ +∞.

Hint:

∫ ∞

0
f

(∫ x

0
u(t)

dt

x

)
dx

x
≤

∫ ∞

0
dx

∫ x

0
f (u(t))

dt

x2

=
∫ ∞

0
dt

∫ ∞

t

f (u(t))
dx

x2

=
∫ ∞

0
f (u(t))

dt

t
.

14. (Hardy’s inequality) Let 1 < p < ∞ and v : R → [0,+∞[ be Lebesgue-
measurable. Then

∫ ∞

0

[∫ x

0
v(t)

dt

x

]p

dx ≤
(

p

p − 1

)p ∫ ∞

0
vp(x)dx ≤ +∞. (∗)

Verify that this inequality is optimal using the family

fε(x) = 1, 0 < x ≤ 1,

= x−ε−1/p, x > 1.

Hint. Godunova’s inequality

∫ ∞

0

[∫ x

0
u(t)

dt

x

]p
dx

x
≤

∫ ∞

0
up(x)

dx

x

is equivalent to (∗) where
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v(x) = x−1/pu(x1−1/p).

15. (Knopp’s inequality) Let v : R → [0,+∞[ be Lebesgue-measurable. Then

∫ ∞

0
exp

(∫ x

0
v(t)

dt

x

)

dx ≤ e

∫ ∞

0
exp v(x)dx ≤ +∞. (∗∗)

Hint. Godunova’s inequality

∫ ∞

0
exp

(∫ x

0
u(t)

dt

x

)
dx

x
≤

∫ ∞

0
exp u(x)

dx

x

is equivalent to (∗∗) where

v(x) = u(x) − ln x.
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