Chapter 4 )
Lebesgue Spaces e

4.1 Convexity

The notion of convexity plays a basic role in functional analysis and in the theory of
inequalities.

Definition 4.1.1 A subset C of a vector space X is convex if for every u, v € C and
every 0 < A < 1, wehave (1 —A)x + Ay € C.

A point x of the convex set C is internal if for every y € X, there exists ¢ > 0
such that x 4+ ey € C. The set of internal points of C is denoted by int C.

A subset C of X is a cone if for every x € C and every A > 0, we have Ax € C.

Let C be a convex set. A function F : C —] — 00, +00] is convex if for every
x,ye Candevery0) < A < l,wehave F(1 —A)x+Ay) < (1 =AM F(x)+AF(y).

A function F : C — [—00, +00[ is concave if —F is convex.

Let C be a cone. A function F : C —] — oo, +00] is positively homogeneous if
for every x € C and every A > 0, we have F(Ax) = LF (x).

Examples Every linear function is convex, concave, and positively homogeneous.
Every norm is convex and positively homogeneous. Open balls and closed balls in
a normed space are convex.

Proposition 4.1.2 The upper envelope of a family of convex (respectively positively
homogeneous) functions is convex (respectively positively homogeneous).

Lemma 4.1.3 Let Y be a hyperplane of a real vector space X, f : Y — R linear
and F : X —] — 00, 400] convex and positively homogeneous such that f < F on
Y and

YN int{x € X : F(x) < oo} # ¢.
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90 4 Lebesgue Spaces

Then there exists g : X — R linear such that g < F on X and g|Y = f.

Proof There exists z € X such that X = Y @ Rz. We must prove the existence of
¢ € R such that for every y € Y and every t € R,

(f,y)+ct < F(y +1tz2).
Since F is positively homogeneous, it suffices to verify that for every u, v € Y,
(fiu)—Fu—z) <c<Flv+2) —(fiv).
For every u, v € Y, we have by assumption that
(fruy+(fiv) = Fu+v) < Flu—-2)+ Fv+2).
We define

a=sup(fiu)—Fu—z)<b= inlf/F(v—i-Z)—(f,v).
ve

ueY
Letu € YNint{x € X : F(x) < oo}. Fort large enough, F(tu—z) = tF(u—z/t) <
~+o00. Hence —oco < a. Similarly, b < +00. We can choose any ¢ € [a, b]. m|
Let us state a cornerstone of functional analysis, the Hahn—Banach theorem.
Theorem 4.1.4 Let Y be a subspace of a separable normed space X, and let f €
LY, R). Then there exists g € L(X, R) such that ||g|| = || ] andg‘y: f-

Proof Let (z,) be a sequence dense in X. We define fo = f,Yg=Y,and ¥, =
Yy—14+Rz,,n > 1. Letthere be f,, € L(Y,, R) suchthat|| f,|| = || || and f"‘y =
n—1

fo—1- I Yy = Y, we define f,,41 = f,. If this is not the case, the preceding

lemma implies the existence of f, 41 : ¥,+1 — R linear such that f;, 1’ = f, and
Yy

for every x € Y41,

(fas1, x) < LS 1x]]

o0
On Z = UY,, we define # by h

, = fn, n = 0. The space Z is dense in X,

n=0
h e L(Z,R), |Ik]| = ||f]l, and h‘y: f. Finally, by Proposition 3.2.3, there exists
g€ L(X,R) suchthat||g||:||h||andg‘Z: h. O

Notation The dual of a normed space X is defined by X* = £(X, R). Let us recall
that the norm on X* is defined by
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llgll = sup |{g,u)| = sup (g, u).

ueX ueX
llull=1 llull=1

Theorem 4.1.5 Let Z be a subspace of a separable normed space X, and let u €
X\Z. Then

0<d(. 2) = max{(g.u): g € X", gl < L.g| =0},

In particular if u € X\{0}, then

[lul] = max (g, u) = max (g, u}|.
gex* gex*
llgll<1 llgll<1

Proof Let us first prove that
c= sup{(g,u): ge X gl < 1,g(Z: o} <s=du, 2).
Assume that ||g]|| < 1 and g‘Z= 0. Then, for every z € Z,

(8 u) = (g u—2z) < |lgll [lu—z|l < [lu—z||,

sothat (g, u) <dandc <.
It suffices then to prove the existence of g € X™ such that ||g|| < 1, g = 0 and
(g, u) = 8. Let us define the functional f on Y = Ru & Z by

(f,tu+2z) =16.
Since, for ¢t # 0,
(fitu+z) < |t16 < |t| llu+z/tl] = |ltu + z]|,

the functional f is such that || f|| < 1. The preceding theorem implies the existence

of g € X* such that ||g|| = ||f|| < 1 and g)Yz f. In particular (g, u) = § and
= 0. O
g Z
The next theorem is due to P. Roselli and the author. Let us define

C+ = {('xla )C2) € R2 X1 > O’ Xy > 0}
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Theorem 4.1.6 (Convexity Inequality) Let FF : C. — R be a positively
homogeneous function, and let u; € LY (2, ) be such that uj >0, | ujdu >0,
2

Jj = 1,2. If F is convex, then

F(/ uldu,/ uzdu> S/ F(uy, uz)dp.
2 2 2

If F is concave, the reverse inequality holds.

Proof We define F(x) = +oo, x € R?\ Cy4, and yj = /ujd,u,j =1,2.
2

Lemma 4.1.3 implies the existence of «, B € R such that
F(y1,y2) = ay1 + By2 and, for all x1, x2 € R, ax1 + Bxz < F(x1, x2). ()
For every 0 < A < 1, we have
a(l =) +BA<F(1—x1,1) <(A-=XF(,0)+AF(0,1),

sothatc = sup |F(1 — A, L)| < oo. Since
0<a<l

|F(uy, uz)| < c(uy + uz),

the comparison theorem implies that F(u1, u») € L' (82, ). We conclude from ()

that
F(f uldu,/ uzdu)=a/ u1du+ﬂ/ uxdp
2 2 2 2

=/ auy + Busrdp
2

< f Fur, undp. .
2

Lemma 4.1.7 Let F : C. — R be a continuous and positively homogeneous
function. If F(., 1) is convex (respectively concave), then F is convex (respectively
concave).

Proof Assume that F'(., 1) is convex. It suffices to prove that for every x, y € E‘+,
F(x +y) < F(x) + F(y). The preceding inequality is equivalent to

F(x‘+y‘,1>5 a F(ﬂ,1>+ 22 F(y—‘,l). o
X2+ 2 X2+ 2 X2 X2+ 2 )
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Remark Define F on R? by

F(y,2) =—=yz, (y,2) € Cy,
=+00,  (y.2) €R*\ (.

The function F is positively homogeneous and, by the preceding lemma, is convex

on C, hence on R2. It is clear that 0 = F on ¥ = R x {0}. There is no linear
function g : R?> - Rsuchthat g < FonR>and g =0on Y.

The convexity inequality implies a version of the Cauchy—Schwarz inequality: if
v,we LY($, W), then

12 12
jiww“ﬂdufi</|UWM> </|wwu> .
2 2 2

Definition 4.1.8 Let 1 < p < oo. The exponent p’ conjugate to p is defined by
1/p+ 1/p’ = 1. On the Lebesgue space

LP(2,n) = {u e M(£2, 1) :/ lu|Pdp < oo},
2

1/p
we define the functional ||u||, = (/ |u|pd,u,> .
Q

Theorem 4.1.9 Let 1 < p < oo.
(a) (Holder’s inequality.) Let v € LP (2, u) and w € Lp/(.Q, Ww). Then

/ lvwldp < [vllpllwlly.
Q
(b) (Minkowski’s inequality.) Let v, w € LP (82, ). Then
v +wllp < Ivllp + [wllp.
(c) (Hanner’s inequalities.) Let v, w € LP (2, n). If2 < p < o0, then

p p p
v+ wllh + 1o —wlh < (vl + wllp)? + [l = llwll,]” .

If 1 < p <2, the reverse inequality holds.

Proof On C., we define the continuous positively homogeneous functions

1 1/p
F(x1,x2) = xl/sz/P )
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G(x1,x2) = (x,/" + x)/PyP,

H(xy,xp) = (xll/p +x21/P)” + |x11/P _le/p|p-

Inequality (a) follows from the convexity inequality applied to F and u =
(Jv|?, |w|p/). Inequality (b) follows from the convexity inequality applied to G
and u = (|v|?, |w|?). Finally, inequalities (c) follow from the convexity inequality
applied to H and u = (|v|?, |[w|?). When v = 0 or w = 0, the inequalities are
obvious.

On [0, +oo[, we define f = F(.,1),g = G(.,1), h = H(.,1). It is easy to
verify that

1-— 1_

1o = =L,
p

" 1 - 1y 1 -2

g (x) = x 7 (x4 DT

W (x) = —L x5! [(x‘% F)P2 - 1|1’—2] .
p

Hence f and g are concave. If 2 < p < o0, then & is concave, and if | < p < 2,
then 4 is convex. It suffices then to use the preceding lemma. O

4.2 Lebesgue Spaces

Let 1 : £ — R be a positive measure on the set £2.

Definition 4.2.1 Let1 < p < oo. The space L? (2, w) is the quotient of L7 (£2, )
by the equivalence relation “equality almost everywhere.” By definition,

1/p
||u||LP(.Q,M)=||M||p=(/Qh”pd,u) :

When Ay is the Lebesgue measure on the open subset £2 of RV, the space
LP($2, Ay) is denoted by L7 (£2).

In practice, we identify the elements of L?(£2, ) and the functions of L7 (£2, ).

Proposition 4.2.2 Let 1 < p < oo. Then the space L ($2, u) with the norm ||.||,
is a normed space.

Proof Minkowski’s inequality implies that if u,v € LP($2,u), then u +v €
LP($2, ) and
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llu +vllp < lullp + 0]l p.

It is clear that if u € LP(§2, u) and A € R, then Au € LP(£2, u) and |[Au]], =
|A] |lu||p. Finally, if [|u||, = O, then u = 0 almost everywhere and u = 0 in
LP(82, ). O

The next inequalities follow from Holder’s inequality.

Proposition 4.2.3 (Generalized Holder’s Inequality) Let 1 < p; < oo, u; €
k

LPi(2,u), 1 < j <k and 1/py + ...+ 1/py = 1. Then ]—[u,- e L2,
j=1
and

k k
/ | ||Mj|dM§ | | et jllp; -
2. o

j=1 j=l1

Proposition 4.2.4 (Interpolation Inequality) Ler1 < p < g <r < 00,

andu € LP(£2, ) N L" (82, ). Thenu € L9(82, ) and

1-x A
aellg < {luel " Hull

Proposition 4.2.5 Let 1 < p < g < 00, u(£2) < oo, and u € L9(82, u). Then
u e LP($2, 1) and

11
llullp < n($2)7 4llullg.

Proposition 4.2.6 Let 1 < p < oo and (u,) C LP (82, ) be such that

(a) llunllp — llullp, n — oo;
(b) u, converges to u almost everywhere.

Then ||uy, — ul|p — 0, n — oc.

Proof Since almost everywhere
0 < 2P(junl” + ul?) — lup — ul”,

Fatou’s lemma ensures that
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2”“] lulPdu < ﬁﬂ/ [27 (un|? + [u|P) = |up — u|P]dp
2 2
=2P+1f|u|ﬂdu—m/ lun — u|Pdp.
2

Hence lim ||u, —u||£ <0. |
The next result is more precise.

Theorem 4.2.7 (Brezis—Lieb Lemma) Ler 1 < p < oo and let (u,) C LP(82, )
be such that

(a) ¢ =sup |luyllp < oo;
n
(b) u, converges to u almost everywhere.

Thenu € LP (82, ) and

Hm (||unllh = Nluy — ull5) = ||ullb.
im (Il = = wll}) = l1ul1}

Proof By Fatou’s lemma, ||u||, < c. Let ¢ > 0. There exists, by homogeneity,
c(e) > 0 such that for every a, b € R,

|la 4+ b|” — |a|? — |b?| < elal” + c(e)|b]".
We deduce from Fatou’s lemma that

/ c@ulPdp < lim [ eluy —ul” + c(@)ul” = |lunl” — up — ul? — |ul?|dp
2

n—o00 J

5(2c)178+/ C(8)|M|pdu«_ lim / ‘|“n|p_|un_ulp_|u|p|d:u~
0 n—o0o Jo

or
T [ Jltal? iy ul” = ] < 207,
n—-oo Jo
Since ¢ > 0 is arbitrary, the proof is complete. ]

We define

Ry(s)=s+h, s<-h,
=0, Is| < h,
=s—h, s>h.

Theorem 4.2.8 (Degiovanni-Magrone) Let u(£2) < oo, 1 < p < oo, and (u,) C
L? (82, ) be such that
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(a) ¢ =suplluullp, < o0;
n
(b) u, converges to u almost everywhere.

Then
gim (el 15 = 11 Ruteal ) = 1ull = | Rl
Proof Let us define
f(s)=IsI? = [Rp(s)IP.
For every ¢ > 0, there exists c(e) > 0 such that
|£ () = fOI < ellsI” + 18]7] + c(e).
It follows from Fatou’s lemma that

28/ ulPdptc(e)m(2) < lim | & (Jual?+lul?)+c(@)=| f )= f @)|dp
2

n—oo JQ

sscf’+s/ ulPdp + c(e)u(2) — Tim /lf(un)—f(mldu.
2 n—oo JQ

Hence
lim / |fun) — f)|dp < & cP.
n—oo JQ
Since ¢ > 0 is arbitrary, the proof is complete. m]

Theorem 4.2.9 (F. Riesz, 1910) Let 1 < p < o00. Then the space LP($2, 1) is
complete.

Proof Let (u,) be a Cauchy sequence in LP(£2, ). There exists a subsequence
Vj = Uy such that for every j,

vj+1 —vjllp < 1/27.

We define the sequence

k
fe=Y " lvjp1 — vl
j=1

Minkowski’s inequality ensures that
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k p

/f,{’dug Yl <1
2

j=1

Levi’s theorem implies the almost everywhere convergence of fi to f € LP(£2, ).
Hence vi converges almost everywhere to a function u. For m > k + 1, it follows
from Minkowski’s inequality that

m—1 p

[ o= wiran = (X2 | < ety
2

i=k

By Fatou’s lemma, we obtain
[ = wiran = @2ty
2

In particular, u = u — vy + vy € L?($2, ). We conclude by invoking the Cauchy
condition:
= wiellp < V= villp + lox — el < 2/2F

+llup, —uillp = 0, k — oo. O

Proposition 4.2.10 Let 1 < p < oo and let u, — u in LP (82, ). Then there exist
subsequences vj = u,; and g € LP(§2, ) such that almost everywhere,

vj| <gandv; - u, j— oo.

Proof 1f the sequence (u,) converges in L?(§2, ), it satisfies the Cauchy condition
by Proposition 1.2.3. The subsequence (v;) in the proof of the preceding theorem
converges almost everywhere to u, and for every j,

o0
il < loil+ Y 1vj41 —vjl = vl + f € LP(2, ). -
j=1

Theorem 4.2.11 (Density Theorem) Let 1 < p < oo and L C LP($2, u). Then
Lis densein LP (82, |v).

Proof Let u € LP($2, ). Since u is measurable with respect to u on 2, there
exists a sequence (u,,) C L such that u,, — u almost everywhere. We define

vp = max(min(|uy |, u), —[unl).
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By definition, |v,| < |u,|, and almost everywhere,
lon — ul? < [ul? € L', v, —ul? = 0, n— oco.

It follows from Lebesgue’s dominated convergence theorem that ||v, — ul|, — 0,
n — oo. Hence

Y ={u e LP($2, u) : there exists f € L such that |u| < f almost everywhere}

is dense in L?($2, ). It suffices to prove that £ is dense in Y.
Letu € Y, f € L be such that |u| < f almost everywhere and (u,) C L such
that u#,, — u almost everywhere. We define

wy = max(min(f, u,), —f).
By definition, w,, € £ and, almost everywhere,
lwy, —ul? <2P fP e L' |w, —ul? - 0, n— oo.

It follows from Lebesgue’s dominated convergence theorem that [|w, — u||, — 0,
n — oo. Hence L is dense in Y. O

Theorem 4.2.12 Let §2 be open in RN and 1 < p < oo. Then the space LP(£2) is
separable.

Proof By the preceding theorem, K(£2) is dense in LP(£2). Proposition 2.3.2
implies that for every u € K($2),

wj= Y uk/2) fjx

keZN

converges to u in L?(£2). We conclude the proof using Proposition 3.3.11. O

4.3 Regularization

La logique parfois engendre des monstres. Depuis un
demi-siecle on a vu surgir une foule de fonctions bizarres qui
semblent s’efforcer de ressembler aussi peu que possible aux
honnétes fonctions qui servent a quelque chose.

Henri Poincaré



100 4 Lebesgue Spaces
Regularization by convolution allows one to approximate locally integrable func-

tions by infinitely differentiable functions.

Definition 4.3.1 Let £2 be an open subset of RV . The space of test functions on £2
is defined by

D(2)={u e C°°(RN) : spt u is a compact subset of £2}.

Leta = (aq, ..., aN) € NV be a multi-index. By definition,
= o, DY=03" N, 9= —.
el =1 +... +a 1 : =9
Using a function defined by Cauchy in 1821, we shall verify that 0 is not the only
element in D(£2).
Proposition 4.3.2 The function defined on R by

f(x) =exp(l/x), x <0,
=0, x>0,

is infinitely differentiable.
Proof Let us prove by induction that for every n and every x < 0,
FP0) =0, f™00) = Pu(1/x) exp(1/x),

where P, is a polynomial. The statement is true for n = 0. Assume that it is true for
n. We obtain

i F®(x) — f(0) . P(/x)exp(l/x)
im ————————~ = lim -

x—0~ X x—>0~ X

0.

Hence f®+1(0) = 0. Finally, we have for x < 0,

FO ) = (= 1/x)(Pa(1/x) + PL(1/x)) exp(1/x) = Pyy1(1/x)exp(1/x). O

Definition 4.3.3 We define on RY the function

p(x) =c texp(1/(Ix]* = ), |x] < 1,
=0, x| > 1,
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where
c =/ exp(1/(Jx|> = 1))dx.
B(0,1)
The regularizing sequence p, (x) = n’¥ p(nx) is such that

pn € DRY),  spt p, = B[O, 1/n], /RN pndx =1, py > 0.

Definition 4.3.4 Let £2 be an open set of RV . By definition,  CC 2 if w is open
and o is a compact subset of £2. We define, for | < p < oo,

Ll (2)={u:2 > R:forallw CC 2,u| €L ()}

w

A sequence (u,) converges to u in L][:)c(.Q) if for every w CC £2,

/Iun—u|pdx —- 0, n— oco.
w

Definition 4.3.5 Letu € LIIOC(SZ) and v € K(RN) be such that sptv C B[O, 1/n].

For n > 1, the convolution v *x u is defined on
2, ={xe€R:dx,08) > 1/n}

by

vk u(x) = /Q v(x — yu(y)dy = / v(u(x — y)dy.

B(0,1/n)
If |y| < 1/n, the translation of u by y is defined on £2, by Tyu(x) = u(x — y).

Proposition 4.3.6 Let u € L\ (£2) and v € DRYN) be such that spt v C

loc

B[O, 1/n]. Then v x u € C*®(82,), and for every o € NV, D¥(v % u) = (D%v) * u.

Proof Let |x| = 1 and x € £2,,. There exists r > 0 such that B[x, r] C £2,. Hence
w=Bx,r+1/n) CC £2,

and for0 < |e| < r,

vxu(x +ea) — v u(x) =/ el s _y)”(y)dy

& ® &
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But
8 J— p— —
lim vix +ea —y) —vx y)zDav(x—y)
g—>0 &
e#0
and
v(x+ex—y)—v(x —y)
sup < 00.
yEw 3
O<lel<r

Lebesgue’s dominated convergence theorem implies that
D*(vxu)(x) = / D%v(x — y)u(y)dy = (D*v) * u(x).
w

It is easy to conclude the proof by induction. O

Lemma 4.3.7 Let w CC £2.
(a) Letu € C(82). Then for every n large enough,

sup |op * u(x) —u(x)| < sup sup|tyu(x) —u(x)|.
Xew lyl<l/nxew

(b) Letu € Lﬁ)c(.Q), 1 < p < o¢. Then for every n large enough,

lon *u —ullpr@wy < sup |ltyu —ullrr(w)-
[yI<l/n

Proof For every n large enough, w CC §2,,. Letu € C(§2). Since

/ en(Mdy =1,
B(0,1/n)

we obtain for every x € w,

| o xu(x) —u(x) | =

/ pn(y)(u(x -y — u(x))dy‘
B(0,1/n)

< sup sup |u(x —y) — u(x)!.
lyl<l/nxew

Letu € LY

loc(§2), 1 < p < oco. By Holder’s inequality, for every x € w, we have
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[psutn) —ue) | =| [ (e -y —u(x))dy'
B(0,1/n)

1/p
< (/ o) |ulx — y) — u(x>|”dy> .
B(0.1/n)

Fubini’s theorem implies that

/|pn*u<x)—u<x)|”dx sfdx/ P |uCx = y) — u(x)|"dy
» ® B(0,1/n)

=/ dy/ Pn|u(x = y) —u(x)| dx
B(0,1/n) w

< sup /|u(x—y)—u(x)}pdx. O
lyl<l/n/eo

Lemma 4.3.8 (Continuity of Translations) Letr w CC 2.
(a) Letu € C(82). Then lim sup |[tyu(x) — u(x)| = 0.

y—=>0xew
(wLHMG%MQLI5p<a1%mﬁ%ﬂwu—ﬂum@=0

y—

Proof We choose an open subset U such that w CC U CC £2.If u € C(2), then
property (a) follows from the uniform continuity of # on U.
Letu € LﬁC(Q), 1 < p < o0, and ¢ > 0. The density theorem implies the
existence of v € K(U) such that |[u — v||r@) < &. By (a), there exists 0 < § <
d(w, dU) such that for every |y| < §, sup|tyv(x) — v(x)| < &. We obtain for every

XeEw

ly| <,
Ty — ullLrw) < |lTyu — tyvllLr(w) + lITyv — vllLrw) + 11V — ul|Lr(w)

< 2lu = vllLrw) +m(@)/Psuplzyv(x) — v(x)|
XEW

< 24 m(w)/P)e.

Since ¢ > 0 is arbitrary, the proof is complete. O

We deduce from the preceding lemmas the following regularization theorem.
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Theorem 4.3.9

(a) Letu € C(82). Then p, * u converges uniformly to u on every compact subset
of £2.

(b) Letu e LIOC(.Q) 1 < p < 0. Then p, * u converges to u in Lloc(.Q).

The following consequences are fundamental.

Theorem 4.3.10 (Annulation Theorem) Let u LIIOC(SZ) be such that for every
v e D),

/ v(xX)u(x)dx = 0.
2

Then u = 0 almost everywhere on S2.

Proof By assumption, for every n, p, * u = 0 on £2,. O

Theorem 4.3.11 Let 1 < p < 00. Then D(S2) is dense in LP (£2).

Proof By the density theorem, K($2) is dense in LP(£2). Let u € K(§2). There
exists an open set w such that spt u C w CC £2. For j large enough, the support
of u; = p; * u is contained in w. Since u; € C>®(RM) by Proposition 4.3.6, uj €
D(£2). The regularization theorem ensures that u; — u in L?(£2). m|

Definition 4.3.12 A partition of unity subordinate to the covering of the compact
subset I of RN by the open sets Uy, .. ., Uy is a sequence ¥, ..., ¥y such that

@ ¥y € DU Yy 20.) =10k

(b) Zl//]_lonf' ij <1lonRV.

j=l1 Jj=1
Let us prove the theorem of partition of unity.

Theorem 4.3.13 Let Uy, ..., Uy be a covering by open sets of the compact subset
I of RN. Then there exists a partition of unity subordinates to Uy, . .., Uy.

Proof Let K be a compact subset of the open subset U of RY. We choose an open
set w such that K C w CC U. For n large enough, ¢ = p, % X, is such that
peDWU),p=1onKand0 < ¢ <1onRV.

For n large enough, the finite sequence

={x:dx,RMN\U) > 1/n}, j=1,....k

is a covering of I" by closed sets. Indeed if this is not the case, there exists, by the
k

compactness of I, x C I'\ U U;. This is a contradiction.
j=1
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By the first part of the proof, there exists, for j = 1,...,k, ¢; € D(U;) such
thatg; = lon I"( Fjand 0 < ¢; < 1 on RV Let us define the functions

Y1 = @1,
Y2 = @2(1 — @),

Yk =or(1 =) ... (1 —gr_1).

It is easy to prove, by a finite induction, that

Vvit+...+=1-0—-9)...(d— ).
Assume that x € I". There exists j such that x € F;. By definition, we conclude
that pj(x) = land Y1 (x) + ...+ Yy (x) = L. O
Now we consider Euclidean space.

Proposition 4.3.14 Let 1 < p < oo and u € LP(RN). Then ||p, *ullp < |lullp
and py x u — u in LP(RV).

Proof 1t follows from Holder’s inequality that

1/p
<

| on * u(x)| = ‘/ u(y)pn(x — y)dy
]RN

fRNlu(y)}ppn(x — y)dy

Fubini’s theorem implies that

f | pn s u(x)|Pdx Ef dxf u|” pu(x = y)dy
RN RN RN
=/ dy/ u|” pu(x — y)dx
RN RN

=f lu(y)|”dy.
RN

Hence ||on * ullp < |lull,.

Let u € L?(RV) and & > 0. The density theorem implies the existence of v €
K(RN) such that |lu — v]]| p =< €. By the regularization theorem, p, * v — v in
LP(RN). Hence there exists m such that for every n > m, ||pp * v — V||, < e. We
obtain for every n > m that

llon *u —ullp < lpn * (u = V)[|p 4+ [lpn* v —vllp + [lv—ull, < 3e.

Since ¢ > 0 is arbitrary, the proof is complete. O
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Proposition 4.3.15 Ler1 < p < oo, f € LP(RN), and g € K(RN). Then

/ (pu % g dx = / Fon * g)dx.
RN RN

Proof Fubini’s theorem and the parity of p imply that
/ (on * f)(x)g(x)dx =/ dX/ pn(x — ¥) f(y)g(x)dy
RV RN RN
= / dy/ pn(x = ¥) f(y)g(x)dx
RN RN

_ / (n * ) ) f ). 0
RN

4.4 Compactness

We prove a variant of Ascoli’s theorem.

Theorem 4.4.1 Let X be a precompact metric space, and let S be a set of uniformly
continuous functions on X such that

(a) ¢ =sup sup |u(x)| < 005
ueS xeX
(b) forevery ¢ > O, there exists § > 0 such that sup w,(§) < e.
ues

Then S is precompact in BC(X).

Proof Let ¢ > 0 and let § corresponds to & by (b). There exists a finite covering of
the precompact space X by balls B[x1, é], ..., B[xk, §]. There exists also a finite
covering of [—c, c] by intervals [y; — e, y1 +¢€], ..., [yn — &, yn +€]. Let us denote
by J the (finite) set of mappings from {1, ..., k} to {1, ..., n}. Forevery j € J, we
define

Si={ueS:|lux) -yl <e ..., lul)—yjwpl <e}

By definition, (S;) ey is a covering of S. Letu, v € §; and x € X. There exists m
such that d(x, x,,,) < 6. We have

luCem) = yiom| <& |vGm) = yjm| < ¢
and, by (b),

lu@) —uGm)| <& |o@x) —vw)| <e.
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Hence |u(x) — v(x)| < 4e, and since x € X is arbitrary, ||u — v||cc < 4&.If §; is
nonempty, then §; C Blu, 4¢]. Since ¢ > 0 is arbitrary, S is precompact in BC(X)
by Fréchet’s criterion. O

We prove a variant of M. Riesz’s theorem (1933).

Theorem 4.4.2 Let 2 be an open subset of RN, 1 < p < oo, and let S C LP(£2)
be such that

(a) ¢ =sup ||ullLr(2) < 00;
ues

(b) forevery e > 0, there exists w CC §2 such that sup / lu|Pdx < &P;
ueS J2\o
(c) forevery w CC £2, lim sup ||tyu — ul|Lr(w) = 0.
y=0 yes

Then S is precompact in L? ($2).
Proof Let ¢ > 0 and let w corresponds to & by (b). Assumption (c) implies the
existence of 0 < § < d(w, d52) such that for every |y| < §,

sup ||tyu — u |lLrw) <.
ues

We choose n > 1/§. We deduce from Lemma 4.3.7 that

sup ||on * u — ullLr() < sup sup ||tyu —ullLrw) < e. ()
uesS ues |yl<l/n
We define

U={xeR":dx 0 <1/n} cc 2.

Let us prove that the family R = {p, * u|w : u € S} satisfies the assumptions of
Ascoli’s theorem in BC(w).
1. By (a), for every u € S and for every x € w, we have

o ()| 5/ pu(x = D)|u(@)|dz < suplpul 1l 1) < 1.
U RN

2. By (a), for every u € S and for every x, y € w, we have

IA

low # 1 CX) — pu % 1 (y)| / o — 2) — ouly — )] |u(@)dz

IA

sup|pn (x — 2) — pu(y — 2| ull1 ) < calx — yl.
Z
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Hence R is precompact in BC(w). Since

10l Lr (@) < m(w)"/P sup|v],
w

R is precompact in L?(w). But then (x) implies the existence of a finite covering
of § |w in L?(w) by balls of radius 2¢. Assumption (b) ensures the existence of a
finite covering of S in L?(£2) by balls of radius 3¢. Since ¢ > 0 is arbitrary, S is
precompact in L?(§2) by Fréchet’s criterion. O

4.5 Comments

Figure 4.1 gives a geometric interpretation of Lemma 4.1.3. It is contained in the
Lectures on Analysis by G. Choquet (W.A. Benjamin, New York, 1969).

Proofs of the Hahn—Banach theorem without the axiom of choice (in separable
spaces) are given in the treatise by Garnir et al. [28] and in the lectures by Favard
[22].

The convexity inequality is due to Roselli and the author [64]. In contrast to
Jensen’s inequality [36], it is not restricted to probability measures. But we have
to consider positively homogeneous functions. See [16] for the relations between
convexity and lower semicontinuity.

Fig. 4.1 Lemma of the Hahn-Banach theorem
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4.6 Exercises for Chap.4

1. (Young’s inequality.) Let 1 < p < oo. Then for every a, b > 0,

/

, A B expA expB
First proof: A = ¢n a?, B = {n b? , exp (— + —/) < P + P
P p P P

/

b p
Second proof: —- = sup <ab - a_)
p

a>0 p
2. (Holder’s inequality.) Let 1 < p < oo. If ||u||, # O # ||vl|,r, then by Young’s
inequality,
u v
ldp < 1.

2 lullp [l

3. (Minkowski’s inequality.) Prove that

@ lllly = swp [ wwdp
llwll, =12
®) u+vllp < llullp +lvllp
4. (Minkowski’s inequality.) Let | < p < oo and define, on L?(§2, 1), the convex

function G(u):/ lu|Pdp. Then with A = [[v]],/(|ullp, + [[v]]p),
2

G<$)—G((l—k) Y Y. )
ull, + 1l /) [lullp [lvllp
5(1—A)G< ! )+AG( v ):1
[u]] [lv]lp

Hence [[u + v||p < [lullp + [[v]]p.
5. (Jensen’s inequality)

(a) Let f : [0, 4+00o[— R be a convex function and y > 0. There exists «, § €
R such that

fO)=cay+pBand forallx > 0,ax + B < f(x).

(b) Let f : [0, +00[— R be a convex function. Let p be a positive measure
on §2 such that u(£2) = 1, and let u € L'(£2, ) be such that u > 0 and

/udu > 0. Then
2
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10.

11.

4 Lebesgue Spaces

f(/gudu)sfgf(u)dMSJroo.

If f is concave, the reverse inequality holds.

. Assume that (£ (£2) = 1. Then for every u € Ll(.Q, w),u >0,

Ofexp/ énuduffud,ugén/ expu du < +o0o0.
Q Q Q

Let 2 = B(0,1) c R". Then
Ap+N>0 |xI* € LP(2),\p+ N <0< |x|* € LP(RV \ ).
A differentiable function u# : R — R satisfies
2.7
xu(x)+ulx)=0

if and only if u(x) = cf(x), where ¢ € R and f is the function defined in
Proposition 4.3.2.

Letl < p < o0, (u,) C L'(2, ) and let u: £2 — R be pu-measurable. Then
the following properties are equivalent:

@ llup —ullp — 0,n — 00;
(b) (up) converges in measure to u and {|u,|”: n € N} is equi-integrable.

(Rising sun lemma, F. Riesz, 1932.) Let g € C([a, b]). The set

E:{a<x<b:g(x)<maxg}
[x,b]

consists of a finite or countable union of disjoint intervals ]ak, bx[ such that
g(ay) < g(by). Hint: If ay < x < by, then g(x) < g(by).

(Maximal inequality, Hardy—Littlewood, 1930.) Let u € Ll(]a, b[),u > 0. The
maximal function defined on Ja, b[ by

1 y
Mu(x) = sup —— u(s)ds

x<y<b Y — X Jx

satisfies, for every ¢t > 0,

b
{Mu > t}| < f]/ u(s)ds.

Hint: Use the rising sun lemma with
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glx) = /xu(s)ds —tx.

12. (Lebesgue’s differentiability theorem) Let u € L'(Ja, b]). Prove that for almost
everya < x < b,

y—=x
y>x

lim —/ |u(s) — u(x)|ds = 0.

Hint: Use Theorem 4.3.11 and the maximal inequality.
13. (Godunova’s inequality) Let f: [0, +oo[— [0, +oo[ be convex, and let
u: R — [0, 400 be Lebesgue-measurable. Then

o x dt\ dx o dx
f f (/ u(t)—) — = / fux))— < +oo.
0 0 X X 0 X

o dx > * dt
f f(/ u(r)—)—sf dxf Fans
0 X 0 0 X

o0 o0 d
=f dr/ Fa@)=
0 t X

=f Fun?L,
0 t

14. (Hardy’s inequality) Let 1| < p < oo and v: R — [0, +o00o[ be Lebesgue-
measurable. Then

o) X p p 00
/ |:/ v(t)ﬂi| dx < (L> / v (x)dx < +o00. (%)
0 0 x p—1 0

Verify that this inequality is optimal using the family

Hint:

fe(x) =1, 0<x<l,

=x P x> 1.

Hint. Godunova’s inequality

I rx dt 1P dx o0 dx
/ [/ u(r)—} —s/ u? (1) &
0 0 X X 0 X

is equivalent to () where
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v(x) = x " VPuxmVPy,

15. (Knopp’s inequality) Let v: R — [0, +o0o[ be Lebesgue-measurable. Then

/Ooexp <fx v(t)£> dx < e/oo expv(x)dx < 4o0. ()
0 0 X 0

Hint. Godunova’s inequality

o0 * dr\ dx o dx
/ exp </ u(t)—) — < / exp u(x)—
0 0 X X 0 X

is equivalent to () where

v(x) = u(x) — Inx.



	4 Lebesgue Spaces 
	4.1 Convexity
	4.2 Lebesgue Spaces
	4.3 Regularization
	4.4 Compactness
	4.5 Comments
	4.6 Exercises for Chap.4


