Chapter 3 Norms

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role in functional analysis. Banach spaces are complete normed spaces. Completeness allows one to prove the convergence of a sequence or of a series without using the limit.

Definition 3.1.1 A norm on a real vector space *X* is a function

$$X \to \mathbb{R} : u \mapsto ||u||$$

such that

$$||u + v|| \le ||u|| + ||v||.$$

A (real) normed space is a (real) vector space together with a norm on that space.

Examples 1. Let (X, ||.||) be a normed space and let Y be a subspace of X. The space Y together with ||.|| (restricted to Y) is a normed space.

2. Let $(X_1, ||.||_1), (X_2, ||.||_2)$ be normed spaces. The space $X_1 \times X_2$ together with

$$||(u_1, u_2)|| = \max(||u_1||_1, ||u_2||_2)$$

is a normed space.

© Springer Nature Switzerland AG 2022 M. Willem, *Functional Analysis*, Cornerstones, https://doi.org/10.1007/978-3-031-09149-0_3 3. We define the norm on the space \mathbb{R}^N to be

$$|x|_{\infty} = \max\left\{|x_1|, \ldots, |x_N|\right\}.$$

Every normed space is a metric space.

Proposition 3.1.2 Let X be a normed space. The function

$$X \times X \to \mathbb{R} : (u, v) \mapsto ||u - v||$$

is a distance on X. The following mappings are continuous:

$$X \to \mathbb{R} : u \mapsto ||u||,$$

$$X \times X \to X : (u, v) \mapsto u + v,$$

$$\mathbb{R} \times X \to X : (\alpha, u) \mapsto \alpha u.$$

Proof By \mathcal{N}_1 and \mathcal{N}_2 ,

$$d(u, v) = 0 \iff u = v, \quad d(u, v) = || - (u - v)|| = ||v - u|| = d(v, u).$$

Finally, by Minkowski's inequality,

$$d(u, w) \le d(u, v) + d(v, w).$$

Since by Minkowski's inequality,

$$|||u|| - ||v||| \le ||u - v||,$$

the norm is continuous on X. It is easy to verify the continuity of the sum and of the product by a scalar. \Box

Definition 3.1.3 Let X be a normed space and $(u_n) \subset X$. The series $\sum_{n=0}^{\infty} u_n$

converges, and its sum is $u \in X$ if the sequence $\sum_{n=0}^{k} u_n$ converges to u. We then

write
$$\sum_{n=0}^{\infty} u_n = u$$
.
The series $\sum_{n=0}^{\infty} u_n$ converges normally if $\sum_{n=0}^{\infty} ||u_n|| < \infty$

Definition 3.1.4 A Banach space is a complete normed space.

Proposition 3.1.5 In a Banach space X, the following statements are equivalent:

(a)
$$\sum_{n=0}^{\infty} u_n$$
 converges;
(b) $\lim_{\substack{j \to \infty \\ i < k}} \sum_{n=j+1}^k u_n = 0.$

Proof Define $S_k = \sum_{n=0}^k u_n$. Since X is complete, we have

$$(a) \Longleftrightarrow \lim_{\substack{j \to \infty \\ j < k}} ||S_k - S_j|| = 0 \iff \lim_{\substack{j \to \infty \\ j < k}} \left\| \sum_{n=j+1}^k u_n \right\| = 0 \iff b). \quad \Box$$

Proposition 3.1.6 In a Banach space, every normally convergent series converges. **Proof** Let $\sum_{n=0}^{\infty} u_n$ be a normally convergent series in the Banach space X. Minkowski's inequality implies that for j < k,

$$\left\|\sum_{n=j+1}^k u_n\right\| \leq \sum_{n=j+1}^k ||u_n||.$$

Since the series is normally convergent,

$$\lim_{\substack{j \to \infty \\ j < k}} \sum_{n=j+1}^k ||u_n|| = 0.$$

It suffices then to use the preceding proposition.

Examples 1. The space of bounded continuous functions on the metric space X,

$$\mathcal{BC}(X) = \left\{ u \in \mathcal{C}(X) : \sup_{x \in X} |u(x)| < \infty \right\},\$$

together with the norm

$$||u||_{\infty} = \sup_{x \in X} |u(x)|,$$

is a Banach space. Convergence with respect to $||.||_{\infty}$ is uniform convergence.

2. Let μ be a positive measure on Ω . We denote by $L^1(\Omega, \mu)$ the quotient of $\mathcal{L}^1(\Omega, \mu)$ by the equivalence relation "equality almost everywhere". We define the norm

$$||u||_1 = \int_{\Omega} |u| \, d\mu$$

Convergence with respect to $||.||_1$ is convergence in mean. We will prove in Sect. 4.2, on Lebesgue spaces, that $L^1(\Omega, \mu)$ is a Banach space.

3. Let Λ_N be the Lebesgue measure on the open subset Ω of \mathbb{R}^N . We denote by $L^1(\Omega)$ the space $L^1(\Omega, \Lambda_N)$. Convergence in mean is not implied by simple convergence, and almost everywhere convergence is not implied by convergence in mean.

If $m(\Omega) < \infty$, the comparison theorem implies that for every $u \in \mathcal{BC}(\Omega)$,

$$||u||_1 = \int_{\Omega} |u| dx \le m(\Omega) ||u||_{\infty}.$$

Hence $\mathcal{BC}(\Omega) \subset L^1(\Omega)$, and the canonical injection is continuous, since

$$||u-v||_1 \le m(\Omega)||u-v||_{\infty}.$$

In order to characterize the convergence in $L^1(\Omega, \mu)$ we shall define the notions of *convergence in measure* and of *equi-integrability*.

We consider a positive measure μ on Ω . We identify two μ -measurable functions on Ω when they are μ -almost everywhere equal.

Definition 3.1.7 A sequence of measurable functions (u_n) converges in measure to a measurable function u if for every t > 0,

$$\lim_{n\to\infty}\mu\{|u_n-u|>t\}=0.$$

Proposition 3.1.8 Assume that the sequence (u_n) converges in measure to u.

Then there exists a subsequence (u_{n_k}) converging almost everywhere to u on Ω .

Proof There exists a subsequence (u_{n_k}) such that, for every k,

$$\mu\{|u_{n_k}-u|>1/2^k\}\leq 1/2^k.$$

Let us define

$$A_k = \{ |u_{n_k} - u| > 1/2^k \}, \quad B_k = \Omega \setminus A_k$$

and

$$A = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k, \qquad B = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} B_k$$

so that $A = \Omega \setminus B$. For every $x \in B$, there exists $j \ge 1$ such that

$$k \ge j \Rightarrow |u_{n_k}(x) - u(x)| \le 1/2^k$$

Hence, for every $x \in B$, $\lim_{k \to \infty} u_{n_k}(x) = u(x)$.

Since, for every j,

$$\mu(A) \le \mu\left(\bigcup_{k=j}^{\infty} A_k\right) \le 2/2^j,$$

we conclude that $\mu(A) = 0$.

Proposition 3.1.9 Let (u_n) be a sequence of measurable functions such that

- (a) (u_n) converges to u almost everywhere on Ω ,
- (b) for every $\varepsilon > 0$, there exists a measurable subset B of Ω such that $\mu(B) < \infty$ and $\sup_{n} \int_{\Omega \setminus B} |u_n| d\mu \le \varepsilon$.

Then (u_n) converges in measure to u.

Proof Let t > 0 and let $\varepsilon > 0$. By assumption (b) there exists a measurable subset *B* of Ω such that $\mu(B) < \infty$ and $\sup_n \int_{\Omega \setminus B} |u_n| d\mu \le \varepsilon t/3$. It follows from Fatou's lemma that $\int_{\Omega \setminus B} |u| d\mu \le \varepsilon t/3$. Lebesgue's dominated convergence theorem implies the existence of *m* such that

$$n \ge m \Rightarrow \int_B \chi_{|u_n-u|>t} d\mu \le \varepsilon/3.$$

We conclude using Markov's inequality that, for $n \ge m$,

$$\begin{split} \mu\left\{|u_n - u| > t\right\} &\leq \int_B \chi_{|u_n - u| > t} \, d\mu + \frac{1}{t} \int_{\Omega \setminus B} |u_n - u| d\mu \\ &\leq \frac{\varepsilon}{3} + \frac{1}{t} \int_{\Omega \setminus B} |u_n| d\mu + \frac{1}{t} \int_{\Omega \setminus B} |u| d\mu \leq \varepsilon. \end{split}$$

Proposition 3.1.10 Let $u \in L^1(\Omega, \mu)$ and let $\varepsilon > 0$. Then

(a) there exists $\delta > 0$ such that, for every measurable subset A of Ω

$$\mu(A) \leq \delta \Rightarrow \int_A |u| d\mu \leq \varepsilon \; ;$$

- (b) there exists a measurable subset B of Ω such that $\mu(B) < \infty$ and $\int_{\Omega \setminus B} |u| d\mu \leq \varepsilon$.
- **Proof** (a) By Lebesgue's dominated convergence theorem, there exists m such that

$$\int_{|u|>m} |u|d\mu \le \varepsilon/2.$$

Let $\delta = \varepsilon/(2m)$. For every measurable subset A of Ω such that $\mu(A) \leq \delta$, we have that

$$\int_A |u| d\mu \le m\mu(A) + \int_{|u|>m} |u| d\mu \le \varepsilon.$$

(b) By Lebesgue's dominated convergence theorem, there exists n such that

$$\int_{|u| \le 1/n} |u| d\mu \le \varepsilon$$

The set $B = \{|u| > 1/n\}$ is such that $\mu(B) < \infty$ and $\int_{\Omega \setminus B} |u| d\mu \le \varepsilon$. \Box

Definition 3.1.11 A subset S of $L^1(\Omega, \mu)$ is equi-integrable if

- (a) for every ε > 0, there exists δ > 0 such that, for every measurable subset A of Ω satisfying μ(A) ≤ δ, sup ∫_A |u|dμ ≤ ε,
 (b) for every ε > 0, there exists a measurable subset B of Ω such that μ(B) < ∞
- (b) for every $\varepsilon > 0$, there exists a measurable subset *B* of Ω such that $\mu(B) < \infty$ and $\sup_{u \in S} \int_{\Omega \setminus B} |u| d\mu \le \varepsilon$.

Theorem 3.1.12 (Vitali) Let $(u_n) \subset L^1(\Omega, \mu)$ and let u be a measurable function. *Then the following properties are equivalent:*

- (a) $||u_n u||_1 \rightarrow 0, n \rightarrow \infty$,
- (b) (u_n) converges in measure to u and $\{u_n : n \in \mathbb{N}\}$ is equi-integrable.

Proof Assume that (a) is satisfied. Markov's inequality implies that, for every t > 0,

$$\mu\{|u_n - u| > t\} \le \frac{1}{t} ||u_n - u||_1 \to 0, n \to \infty.$$

Let $\varepsilon > 0$. There exists *m* such that

$$n \ge m \Rightarrow ||u_n - u||_1 \le \varepsilon/2.$$

In particular, for every measurable subset *A* of Ω and for every $n \ge m$,

$$\int_{A} |u_{n}| d\mu \leq \int_{A} |u| d\mu + \int_{A} |u_{n} - u| d\mu \leq \int_{A} |u| d\mu + \varepsilon/2.$$

Proposition 3.1.10 implies the existence of $\delta > 0$ such that, for every measurable subset *A* of Ω ,

$$\mu(A) \leq \delta \Rightarrow \int_A \sup \Big(2|u|, |u_1|, ..., |u_{m-1}| \Big) d\mu \leq \varepsilon.$$

We conclude that, for every measurable subset A of Ω ,

$$\mu(A) \le \delta \Rightarrow \sup_n \int_A |u_n| d\mu \le \varepsilon.$$

Similarly, Proposition 3.1.10 implies the existence of a measurable subset *B* of Ω such that $\mu(B) < \infty$ and

$$\int_{\Omega\setminus B} \sup\Big(2|u|, |u_1|, ..., |u_{m-1}|\Big) d\mu \leq \varepsilon.$$

We conclude that $\sup_n \int_{\Omega \setminus B} |u_n| d\mu \leq \varepsilon$.

Assume now that (b) is satisfied. Let $\varepsilon > 0$. By assumption, there exists $\delta > 0$ such that, for every measurable subset A of Ω ,

$$\mu(A) \le \delta \Rightarrow \sup_n \int_A |u_n| d\mu \le \varepsilon,$$

and there exists a measurable subset *B* of Ω such that $\mu(B) < \infty$ and

$$\sup_n \int_{\Omega \setminus B} |u_n| d\mu \leq \varepsilon.$$

We assume that $\mu(B) > 0$. The case $\mu(B) = 0$ is simpler. Since (u_n) converges in measure to u, Proposition 3.1.8 implies the existence of a subsequence (u_{n_k}) such that $u_{n_k} \rightarrow u$ almost everywhere on Ω . It follows from Fatou's lemma that, for every measurable subset A of Ω ,

$$\mu(A) \leq \delta \Rightarrow \int_A |u| d\mu \leq \varepsilon,$$

and that

$$\int_{\Omega\setminus B} |u|d\mu \leq \varepsilon.$$

There exists also m such that

$$n \ge m \Rightarrow \mu\{|u_n - u| > \varepsilon/\mu(B)\} \le \delta.$$

Let us define $A_n = \{|u_n - u| > \varepsilon/\mu(B)\}$, so that, for $n \ge m$, $\mu(A_n) \le \delta$. For every $n \ge m$, we obtain

$$\begin{split} \int_{\Omega} |u_n - u| d\mu &\leq \int_{\Omega \setminus B} |u_n| + |u| d\mu + \int_{A_n} |u_n| + |u| d\mu + \int_{B \setminus A_n} |u_n - u| d\mu \\ &\leq 4\varepsilon + \int_{B \setminus A_n} \varepsilon / \mu(B) d\mu \leq 5\varepsilon. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, the proof is complete.

The following characterization is due to de la Vallée Poussin.

Theorem 3.1.13 Let $S \subset L^1(\Omega, \mu)$ be such that $c = \sup_{u \in S} ||u||_1 < +\infty$. The following properties are equivalent:

(a) for every $\varepsilon > 0$ there exists $\delta > 0$ such that, for every measurable subset A of Ω

$$\mu(A) \le \delta \Rightarrow \sup_{u \in S} \int_A |u| d\mu \le \varepsilon,$$

(b) there exists a strictly increasing convex function $F : [0, +\infty[\rightarrow [0, +\infty[$ such that

$$\lim_{t \to \infty} F(t)/t = +\infty, \quad M = \sup_{u \in S} \int_{\Omega} F(|u|) d\mu < +\infty.$$

Proof Since, by Markov's inequality

$$\sup_{u\in S}\mu\{|u|>t\}\leq c/t,$$

assumption (a) implies the existence of a sequence (n_k) of integers such that, for every k,

$$n_k < n_{k+1}$$
 and $\sup_{u \in S} \int_{|u| > n_k} |u| d\mu \le 1/2^k$.

Let us define $F(t) = t + \sum_{k=1}^{\infty} (t - n_k)^+$. It is clear that F is strictly increasing and convex. Moreover, for every j,

$$t > 2n_{2j} \Rightarrow j \le F(t)/t$$

and, for every $u \in S$, by Levi's theorem,

$$\int_{\Omega} F(|u|)d\mu = \int_{\Omega} |u|d\mu + \sum_{k=1}^{\infty} \int_{\Omega} (|u|-n_k)^+ d\mu \le \int_{\Omega} |u|d\mu + \sum_{k=1}^{\infty} \int_{|u|>n_k} |u|d\mu \le c+1,$$

so that S satisfies (b).

Assume now that *S* satisfies (b). Let $\varepsilon > 0$. There exists s > 0 such that for every $t \ge s$, $F(t)/t \ge 2M/\varepsilon$. Hence for every $u \in S$ we have that

$$\int_{|u|>s} |u|d\mu \leq \frac{\varepsilon}{2M} \int_{|u|>s} F(|u|)d\mu \leq \varepsilon/2.$$

We choose $\delta = \varepsilon/(2s)$. For every measurable subset A of Ω such that $\mu(A) \leq \delta$ and for every $u \in S$, we obtain

$$\int_{A} |u| d\mu \le s\mu(A) + \int_{|u| > s} |u| d\mu \le \varepsilon.$$

3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans définir l'opération que l'on considère, de même qu'on fait la théorie de l'addition sans définir la nature des termes à additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.

Proposition 3.2.1 Let X and Y be normed spaces and $A : X \rightarrow Y$ a linear mapping. The following properties are equivalent:

(a) A is continuous; (b) $c = \sup_{\substack{u \in X \\ u \neq 0}} \frac{||Au||}{||u||} < \infty.$

Proof If $c < \infty$, we obtain

$$||Au - Av|| = ||A(u - v)|| \le c||u - v||.$$

Hence A is continuous.

If *A* is continuous, there exists $\delta > 0$ such that for every $u \in X$,

$$||u|| = ||u - 0|| \le \delta \Rightarrow ||Au|| = ||Au - A0|| \le 1.$$

Hence for every $u \in X \setminus \{0\}$,

$$||Au|| = \frac{||u||}{\delta} ||A\left(\frac{\delta}{||u||}u\right)|| \le \frac{||u||}{\delta}.$$

Proposition 3.2.2 The function

$$||A|| = \sup_{\substack{u \in X \\ u \neq 0}} \frac{||Au||}{||u||} = \sup_{\substack{u \in X \\ ||u||=1}} ||Au||$$

defines a norm on the space $\mathcal{L}(X, Y) = \{A : X \to Y : A \text{ is linear and continuous}\}.$

Proof By the preceding proposition, if $A \in \mathcal{L}(X, Y)$, then $0 \leq ||A|| < \infty$. If $A \neq 0$, it is clear that ||A|| > 0. It follows from axiom \mathcal{N}_2 that

$$||\alpha A|| = \sup_{\substack{u \in X \\ ||u|| = 1}} ||\alpha Au|| = \sup_{\substack{u \in X \\ ||u|| = 1}} |\alpha| ||Au|| = |\alpha| ||A||.$$

It follows from Minkowski's inequality that

$$||A + B|| = \sup_{\substack{u \in X \\ ||u|| = 1}} ||Au + Bu|| \le \sup_{\substack{u \in X \\ ||u|| = 1}} (||Au|| + ||Bu||) \le ||A|| + ||B||.$$

Proposition 3.2.3 (Extension by density) Let *Z* be a dense subspace of a normed space *X*, *Y* a Banach space, and $A \in \mathcal{L}(Z, Y)$. Then there exists a unique mapping $B \in \mathcal{L}(X, Y)$ such that $B|_{Z} = A$. Moreover, ||B|| = ||A||.

Proof Let $u \in X$. There exists a sequence $(u_n) \subset Z$ such that $u_n \to u$. The sequence (Au_n) is a Cauchy sequence, since

$$||Au_j - Au_k|| \le ||A|| ||u_j - u_k|| \to 0, \quad j, k \to \infty$$

by Proposition 1.2.3. We denote by f its limit. Let $(v_n) \subset Z$ be such that $v_n \to u$. We have

$$||Av_n - Au_n|| \le ||A|| \, ||v_n - u_n|| \le ||A|| \, (||v_n - u|| + ||u - u_n||) \to 0, \quad n \to \infty.$$

Hence $Av_n \rightarrow f$, and we define Bu = f. By Proposition 3.1.2, B is linear. Since for every n,

$$||Au_n|| \le ||A|| ||u_n||,$$

we obtain by Proposition 3.1.2 that

$$||Bu|| \le ||A|| \, ||u||.$$

Hence *B* is continuous and $||B|| \le ||A||$. It is clear that $||A|| \le ||B||$. Hence ||A|| = ||B||.

If $C \in \mathcal{L}(X, Y)$ is such that $C|_{Z} = A$, we obtain

$$Cu = \lim_{n \to \infty} Cu_n = \lim_{n \to \infty} Au_n = \lim_{n \to \infty} Bu_n = Bu.$$

Proposition 3.2.4 Let X and Y be normed spaces, and let $(A_n) \subset \mathcal{L}(X, Y)$ and $A \in \mathcal{L}(X, Y)$ be such that $||A_n - A|| \rightarrow 0$. Then (A_n) converges simply to A.

Proof For every $u \in X$, we have

$$||A_n u - Au|| = ||(A_n - A)u|| \le ||A_n - A|| \, ||u||.$$

Proposition 3.2.5 Let Z be a dense subset of a normed space X, let Y be a Banach space, and let $(A_n) \subset \mathcal{L}(X, Y)$ be such that

- (a) $c = \sup_{n} ||A_n|| < \infty;$
- (b) for every $v \in Z$, $(A_n v)$ converges.

Then A_n converges simply to $A \in \mathcal{L}(X, Y)$, and

$$||A|| \le \lim_{n \to \infty} ||A_n||.$$

Proof Let $u \in X$ and $\varepsilon > 0$. By density, there exists $v \in B(u, \varepsilon) \cap Z$. Since $(A_n v)$ converges, Proposition 1.2.3 implies the existence of *n* such that

$$j, k \ge n \Rightarrow ||A_j v - A_k v|| \le \varepsilon.$$

Hence for $j, k \ge n$, we have

$$\begin{aligned} ||A_{j}u - A_{k}u|| &\leq ||A_{j}u - A_{j}v|| + ||A_{j}v - A_{k}v|| + ||A_{k}v - A_{k}u|| \\ &\leq 2c ||u - v|| + \varepsilon \\ &= (2c + 1)\varepsilon. \end{aligned}$$

The sequence $(A_n u)$ is a Cauchy sequence, since $\varepsilon > 0$ is arbitrary. Hence $(A_n u)$ converges to a limit Au in the complete space Y. It follows from Proposition 3.1.2 that A is linear and that

$$||Au|| = \lim_{n \to \infty} ||A_nu|| \le \lim_{n \to \infty} ||A_n|| \, ||u||.$$

But then A is continuous and $||A|| \leq \lim_{n \to \infty} ||A_n||$.

Theorem 3.2.6 (Banach–Steinhaus theorem) *Let* X *be a Banach space, let* Y *be a normed space, and let* $(A_n) \subset \mathcal{L}(X, Y)$ *be such that for every* $u \in X$ *,*

$$\sup_n ||A_n u|| < \infty.$$

Then

$$\sup_n ||A_n|| < \infty.$$

First Proof Theorem 1.3.13 applied to the sequence $F_n : u \mapsto ||A_nu||$ implies the existence of a ball B(v, r) such that

$$c = \sup_{n} \sup_{u \in B(v,r)} ||A_n u|| < \infty.$$

It is clear that for every $y, z \in Y$,

$$||y|| \le \max\{||z+y||, ||z-y||\}.$$
(*)

Hence for every *n* and for every $w \in B(0, r)$, $||A_nw|| \le c$, so that

$$\sup_n ||A_n|| \le c/r.$$

Second Proof Assume to obtain a contradiction that $\sup_n ||A_n|| = +\infty$. By considering a subsequence, we assume that $n \ 3^n \le ||A_n||$. Let us define inductively a sequence (u_n) . We choose $u_0 = 0$. There exists v_n such that $||v_n|| = 3^{-n}$ and $\frac{3}{4}3^{-n}||A_n|| \le ||A_nv_n||$. By (*), replacing if necessary v_n by $-v_n$, we obtain

$$\frac{3}{4}3^{-n}||A_n|| \le ||A_nv_n|| \le ||A_n(u_{n-1} + v_n)||.$$

We define $u_n = u_{n-1} + v_n$, so that $||u_n - u_{n-1}|| = 3^{-n}$. It follows that for every $k \ge n$,

$$||u_k - u_n|| \le 3^{-n}/2.$$

Hence (u_n) is a Cauchy sequence that converges to u in the complete space X. Moreover,

$$||u - u_n|| \le 3^{-n}/2.$$

We conclude that

$$||A_{n}u|| \ge ||A_{n}u_{n}|| - ||A_{n}(u_{n} - u)||$$

$$\ge ||A_{n}|| \left[\frac{3}{4}3^{-n} - ||u_{n} - u||\right]$$

$$\ge n \ 3^{n} \left[\frac{3}{4}3^{-n} - \frac{1}{2}3^{-n}\right] = n/4.$$

Corollary 3.2.7 Let X be a Banach space, Y a normed space, and $(A_n) \subset \mathcal{L}(X, Y)$ a sequence converging simply to A. Then (A_n) is bounded, $A \in \mathcal{L}(X, Y)$, and

$$||A|| \leq \lim_{n \to \infty} ||A_n||.$$

Proof For every $u \in X$, the sequence $(A_n u)$ is convergent, hence bounded, by Proposition 1.2.3. The Banach–Steinhaus theorem implies that $\sup_n ||A_n|| < \infty$. It follows from Proposition 3.1.2 that A is linear and

$$||Au|| = \lim_{n \to \infty} ||A_nu|| \le \lim_{n \to \infty} ||A_n|| ||u||,$$

so that *A* is continuous and $||A|| \leq \lim_{n \to \infty} ||A_n||$.

The preceding corollary explains why every natural linear mapping defined on a Banach space is continuous.

Examples (Convergence of functionals) We define the linear continuous functionals f_n on $L^1(]0, 1[)$ to be

$$\langle f_n, u \rangle = \int_0^1 u(x) x^n \, dx.$$

Since for every $u \in L^1(]0, 1[)$ such that $||u||_1 = 1$, we have

$$|\langle f_n, u \rangle| < \int_0^1 |u(x)| dx = 1,$$

it is clear that

$$||f_n|| = \sup_{\substack{u \in L^1 \\ ||u||_1 = 1}} |\langle f_n, u \rangle| \le 1.$$

Choosing $v_k(x) = (k+1)x^k$, we obtain

$$\lim_{k \to \infty} \langle f_n, v_k \rangle = \lim_{k \to \infty} \frac{k+1}{k+n+1} = 1.$$

It follows that $||f_n|| = 1$, and for every $u \in L^1(]0, 1[)$ such that $||u||_1 = 1$,

$$|\langle f_n, u \rangle| < ||f_n||.$$

Lebesgue's dominated convergence theorem implies that (f_n) converges simply to f = 0. Observe that

$$||f|| < \lim_{n \to \infty} ||f_n||.$$

Definition 3.2.8 A seminorm on a real vector space X is a function $F: X \rightarrow [0, +\infty[$ such that

- (a) for every $u \in X$ and for every $\alpha \in \mathbb{R}$, $F(\alpha u) = |\alpha|F(u)$, (positive homogeneity);
- (b) for every $u, v \in X$, $F(u + v) \le F(u) + F(v)$, (subadditivity).

Examples (a) Any norm is a seminorm.

- (b) Let X be a real vector space, Y a normed space, and A: $X \to Y$ a linear mapping. The function F defined on X by F(u) = ||Au|| is a seminorm.
- (c) Let X be a normed space, Y a real vector space, and $A: X \to Y$ a surjective linear mapping. The function F defined on Y by

$$F(v) = \inf \left\{ \|u\| \colon Au = v \right\}$$

is a seminorm.

Proposition 3.2.9 Let F be a seminorm defined on a normed space X. The following properties are equivalent

(a) F is continuous; (b) $c = \sup_{\substack{u \in X \\ \|u\|=1}} F(u) < \infty.$

Proof If F satisfies (b), then

$$|F(u) - F(v)| \le F(u - v) \le c ||u - v||,$$

so that F is continuous.

It is easy to prove that the continuity of *F* at 0 implies (b).

Let *F* be a seminorm on the normed space *X* and consider a convergent series $\sum_{k=1}^{\infty} u_k$. For every *n*,

$$F\left(\sum_{k=1}^{n} u_k\right) \leq \sum_{k=1}^{n} F(u_k).$$

If, moreover, F is continuous, it follows that

$$F\left(\sum_{k=1}^{\infty} u_k\right) \le \sum_{k=1}^{\infty} F(u_k) \le +\infty.$$

Zabreiko's theorem asserts that the converse is valid when X is a Banach space.

Theorem 3.2.10 Let X be a Banach space and let $F: X \to [0, +\infty[$ be a seminorm such that, for any convergent series $\sum_{k=1}^{\infty} u_k$,

$$F\left(\sum_{k=1}^{\infty} u_k\right) \le \sum_{k=1}^{\infty} F(u_k) \le +\infty.$$

Then F is continuous.

Proof Let us define, for any t > 0, $G_t = \{u \in X : F(u) \le t\}$. Since $X = \bigcup_{n=1}^{\infty} \overline{G}_n$,

Baire's theorem implies the existence of *m* such that \overline{G}_m contains a closed ball B[a, r]. Using the propreties of *F*, we obtain

$$B[0,r] \subset \frac{1}{2}B[a,r] + \frac{1}{2}B[-a,r] \subset \overline{G}_{m/2} + \overline{G}_{m/2} \subset \overline{G}_m.$$

Let us define t = m/r, so that B[0, 1] is contained in \overline{G}_t , and, for every k, $B[0, 1/2^k]$ is contained in $\overline{G}_{t/2^k}$. Let $u \in B[0, 1]$. There exists $u_1 \in G_t$ such that $||u - u_1|| \le 1/2$. We construct by induction a sequence (u_k) such that

$$u_k \in G_{t/2^{k-1}}, \|u - u_1 - \ldots - u_k\| \le 1/2^k.$$

By assumption

$$F(u) = F\left(\sum_{k=1}^{\infty} u_k\right) \le \sum_{k=1}^{\infty} F(u_k) \le \sum_{k=1}^{\infty} t/2^{k-1} = 2t.$$

Since $u \in B[0, 1]$ is arbitrary, we obtain

$$\sup_{\substack{u \in X \\ \|u\|=1}} F(u) \le 2t.$$

It suffices then to use Proposition 3.2.9.

Let A be a linear mapping between two normed spaces X and Y. If A is continuous, then the graph of A is closed in $X \times Y$:

$$u_n \xrightarrow{X} u, Au_n \xrightarrow{Y} v \Rightarrow v = Au.$$

The closed graph theorem, proven by S. Banach in 1932, asserts that the converse is valid when *X* and *Y* are Banach spaces.

Theorem 3.2.11 Let X and Y be Banach spaces and let $A: X \to Y$ be a linear mapping with a closed graph. Then A is continuous.

Proof Let us define on X the seminorm F(u) = ||Au||. Assume that the series $\sum_{k=1}^{\infty} u_k$ converges to u in X and that $\sum_{k=1}^{\infty} F(u_k) < +\infty$. Since Y is a Banach space, $\sum_{k=1}^{\infty} Au_k$ converges to v in Y. But the graph of the linear mapping A is closed, so

that v = Au and

$$F(u) = ||Au|| = ||v|| = ||\sum_{k=1}^{\infty} Au_k|| \le \sum_{k=1}^{\infty} ||Au_k|| = \sum_{k=1}^{\infty} F(u_k).$$

We conclude using Zabreiko's theorem:

$$\sup_{\substack{u \in X \\ \|u\|=1}} \|Au\| = \sup_{\substack{u \in X \\ \|u\|=1}} F(u) < +\infty.$$

The open mapping theorem was proved by J. Schauder in 1930.

Theorem 3.2.12 Let X and Y be Banach spaces and let $A \in \mathcal{L}(X, Y)$ be surjective. Then $\{Au : u \in X, ||u|| < 1\}$ is open in Y.

Proof Let us define on Y the seminorm $F(v) = \inf\{||u|| : Au = v\}$. Assume that the series $\sum_{k=1}^{\infty} v_k$ converges to v in Y and that $\sum_{k=1}^{\infty} F(v_k) < +\infty$. Let $\varepsilon > 0$. For every k, there exists $u_k \in X$ such that

$$||u_k|| \le F(v_k) + \varepsilon/2^k$$
 and $Au_k = v_k$

Since X is a Banach space, the series $\sum_{k=1}^{\infty} u_k$ converges to u in X. Hence we obtain

$$\|u\| \le \sum_{k=1}^{\infty} \|u_k\| \le \sum_{k=1}^{\infty} F(v_k) + \varepsilon$$

and

$$Au = \sum_{k=1}^{\infty} Au_k = \sum_{k=1}^{\infty} v_k = v_k$$

so that $F(v) \leq \sum_{k=1}^{\infty} F(v_k) + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we conclude that $F(v) \leq \sum_{k=1}^{\infty} F(v_k)$. Zabreiko's theorem implies that

$$\{Au : u \in X, \|u\| < 1\} = \{v \in Y : F(v) < 1\}$$

is open in Y.

3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1 A scalar product on the (real) vector space X is a function

$$X \times X \to \mathbb{R} : (u, v) \mapsto (u|v)$$

such that

- (\mathcal{S}_1) for every $u \in X \setminus \{0\}, (u|u) > 0;$
- (S₂) for every $u, v, w \in X$ and for every $\alpha, \beta \in \mathbb{R}$, $(\alpha u + \beta v | w) = \alpha(u | w) + \beta(v | w)$;
- (S₃) for every $u, v \in X$, (u|v) = (v|u).

We define $||u|| = \sqrt{(u|u)}$. A (real) pre-Hilbert space is a (real) vector space together with a scalar product on that space.

Proposition 3.3.2 *Let* $u, v, w \in X$ *and let* $\alpha, \beta \in \mathbb{R}$ *. Then*

(a) $(u|\alpha v + \beta w) = \alpha(u|v) + \beta(u|w);$ (b) $||\alpha u|| = |\alpha| ||u||.$

Proposition 3.3.3 *Let* X *be a pre-Hilbert space and let* $u, v \in X$ *. Then*

- (a) (parallelogram identity) $||u + v||^2 + ||u v||^2 = 2||u||^2 + 2||v||^2$;
- (b) (polarization identity) $(u|v) = \frac{1}{4}||u+v||^2 \frac{1}{4}||u-v||^2$;
- (c) (Pythagorean identity) $(u|v) = 0 \iff ||u+v||^2 = ||u||^2 + ||v||^2$.

Proof Observe that

$$||u + v||^{2} = ||u||^{2} + 2(u|v) + ||v||^{2}, \qquad (*)$$

$$||u - v||^{2} = ||u||^{2} - 2(u|v) + ||v||^{2}.$$
(**)

By adding and subtracting, we obtain parallelogram and polarization identities. The Pythagorean identity is clear.

Proposition 3.3.4 *Let* X *be a pre-Hilbert space and let* $u, v \in X$ *. Then*

- (a) (Cauchy–Schwarz inequality) $|(u|v)| \le ||u|| ||v||$;
- (b) (*Minkowski's inequality*) $||u + v|| \le ||u|| + ||v||$.

Proof It follows from (*) and (**) that for ||u|| = ||v|| = 1,

$$|(u|v)| \le \frac{1}{2} \left(||u||^2 + ||v||^2 \right) = 1.$$

Hence for $u \neq 0 \neq v$, we obtain

$$\frac{|(u|v)|}{||u|| ||v||} = \left| \left(\frac{u}{||u||} \left| \frac{v}{||v||} \right) \right| \le 1.$$

By (*) and the Cauchy-Schwarz inequality, we have

$$||u + v||^2 \le ||u||^2 + 2||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2.$$

Corollary 3.3.5 (a) The function $||u|| = \sqrt{(u|u)}$ defines a norm on the pre-Hilbert space X.

(b) The function

$$X \times X \to \mathbb{R} : (u, v) \mapsto (u|v)$$

is continuous.

Definition 3.3.6 A family $(e_j)_{j \in J}$ in a pre-Hilbert space X is orthonormal if

$$(e_j|e_k) = 1, \qquad j = k, = 0, \qquad j \neq k.$$

Proposition 3.3.7 (Bessel's inequality) Let (e_n) be an orthonormal sequence in a pre-Hilbert space X and let $u \in X$. Then

$$\sum_{n=0}^{\infty} |(u|e_n)|^2 \le ||u||^2.$$

Proof It follows from the Pythagorean identity that

$$||u||^{2} = \left\| u - \sum_{n=0}^{k} (u|e_{n})e_{n} + \sum_{n=0}^{k} (u|e_{n})e_{n} \right\|^{2}$$
$$= \left\| u - \sum_{n=0}^{k} (u|e_{n})e_{n} \right\|^{2} + \sum_{n=0}^{k} |(u|e_{n})|^{2}$$
$$\geq \sum_{n=0}^{k} |(u|e_{n})|^{2}.$$

Proposition 3.3.8 Let (e_0, \ldots, e_k) be a finite orthonormal sequence in a pre-Hilbert space $X, u \in X$, and $x_0, \ldots, x_k \in \mathbb{R}$. Then

$$\left\| u - \sum_{n=0}^{k} (u \mid e_n) e_n \right\| \leq \left\| u - \sum_{n=0}^{k} x_n e_n \right\|.$$

Proof It follows from the Pythagorean identity that

$$\left\| u - \sum_{n=0}^{k} x_n e_n \right\|^2 = \left\| u - \sum_{n=0}^{k} (u \mid e_n) e_n + \sum_{n=0}^{k} ((u \mid e_n) - x_n) e_n \right\|^2$$
$$= \left\| u - \sum_{n=0}^{k} (u \mid e_n) e_n \right\|^2 + \sum_{n=0}^{k} |(u \mid e_n) - x_n|^2.$$

Definition 3.3.9 A Hilbert basis of a pre-Hilbert space X is an orthonormal sequence generating a dense subspace of X.

Proposition 3.3.10 Let (e_n) be a Hilbert basis of a pre-Hilbert space X and let $u \in X$. Then

(a)
$$u = \sum_{n=0}^{\infty} (u \mid e_n) e_n;$$

(b) (Parseval's identity) $||u||^2 = \sum_{n=0}^{\infty} |(u \mid e_n)|^2.$

Proof Let $\varepsilon > 0$. By definition, there exists a sequence $x_0, \ldots, x_j \in \mathbb{R}$ such that

$$||u-\sum_{n=0}^{j}x_{n}e_{n}||<\varepsilon.$$

It follows from the preceding proposition that for $k \ge j$,

$$||u - \sum_{n=0}^{k} (u \mid e_n) e_n|| < \varepsilon.$$

Hence $u = \sum_{n=0}^{\infty} (u \mid e_n)e_n$, and by Proposition 3.1.2,

$$\left\|\lim_{k \to \infty} \sum_{n=0}^{k} (u \mid e_n) e_n\right\|^2 = \lim_{k \to \infty} \left\|\sum_{n=0}^{k} (u \mid e_n) e_n\right\|^2 = \lim_{k \to \infty} \sum_{n=0}^{k} \left| (u \mid e_n) \right|^2 = \sum_{n=0}^{\infty} \left| (u \mid e_n) \right|^2.$$

We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11 Assume the existence of a sequence (f_j) generating a dense subset of the normed space X. Then X is separable.

Proof By assumption, the space of (finite) linear combinations of (f_j) is dense in X. Hence the space of (finite) linear combinations with rational coefficients of (f_j) is dense in X. Since this space is countable, X is separable.

Proposition 3.3.12 Let X be an infinite-dimensional pre-Hilbert space. The following properties are equivalent:

- (a) X is separable;
- (b) X has a Hilbert basis.

Proof By the preceding proposition, (b) implies (a).

If X is separable, it contains a sequence (f_j) generating a dense subspace. We may assume that (f_j) is free. Since the dimension of X is infinite, the sequence (f_j) is infinite. We define by induction the sequences (g_n) and (e_n) :

$$e_0 = f_0/||f_0||,$$

 $g_n = f_n - \sum_{j=0}^{n-1} (f_n|e_j)e_j, e_n = g_n/||g_n||, \quad n \ge 1.$

The sequence (e_n) generated from (f_n) by the Gram–Schmidt orthonormalization process is a Hilbert basis of *X*.

Definition 3.3.13 A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Riesz–Fischer) Let (e_n) be an orthonormal sequence in the Hilbert space X. The series $\sum_{n=0}^{\infty} c_n e_n$ converges if and only if $\sum_{n=0}^{\infty} c_n^2 < \infty$. Then $\left\| \sum_{n=0}^{\infty} c_n e_n \right\|^2 = \sum_{n=0}^{\infty} c_n^2$.

Proof Define $S_k = \sum_{n=0}^{k} c_n e_n$. The Pythagorean identity implies that for j < k,

$$||S_k - S_j||^2 = \left\|\sum_{n=j+1}^k c_n e_n\right\|^2 = \sum_{n=j+1}^k c_n^2.$$

Hence

$$\lim_{\substack{j \to \infty \\ j < k}} ||S_k - S_j||^2 = 0 \iff \lim_{\substack{j \to \infty \\ j < k}} \sum_{n=j+1}^k c_n^2 = 0 \iff \sum_{n=0}^\infty c_n^2 < \infty.$$

Since *X* is complete, (S_k) converges if and only if $\sum_{n=0}^{\infty} c_n^2 < \infty$. Then $\sum_{n=0}^{\infty} c_n e_n = \lim_{k \to \infty} S_k$, and by Proposition 3.1.2,

$$||\lim_{k \to \infty} S_k||^2 = \lim_{k \to \infty} ||S_k||^2 = \lim_{k \to \infty} \sum_{n=0}^k c_n^2 = \sum_{n=0}^\infty c_n^2.$$

Examples 1. Let μ be a positive measure on Ω . We denote by $L^2(\Omega, \mu)$ the quotient of

$$\mathcal{L}^{2}(\Omega,\mu) = \left\{ u \in \mathcal{M}(\Omega,\mu) : \int_{\Omega} |u|^{2} d\mu < \infty \right\}$$

by the equivalence relation "equality almost everywhere." If $u, v \in L^2(\Omega, \mu)$, then $u + v \in L^2(\Omega, \mu)$. Indeed, almost everywhere on Ω , we have

$$|u(x) + v(x)|^2 \le 2(|u(x)|^2 + |v(x)|^2).$$

We define the scalar product

$$(u|v) = \int_{\Omega} uv \, d\mu$$

on the space $L^2(\Omega, \mu)$.

The scalar product is well defined, since almost everywhere on Ω ,

$$|u(x) v(x)| \le \frac{1}{2} (|u(x)|^2 + |v(x)|^2).$$

By definition,

$$||u||_2 = \left(\int_{\Omega} |u|^2 d\mu\right)^{1/2}.$$

Convergence with respect to $||.||_2$ is convergence in quadratic mean. We will prove in Sect. 4.2, on Lebesgue spaces, that $L^2(\Omega, \mu)$ is a Hilbert space. If $\mu(\Omega) < \infty$, it follows from the Cauchy–Schwarz inequality that for every $u \in L^2(\Omega, \mu)$,

$$||u||_1 = \int_{\Omega} |u| \, d\mu \le \mu(\Omega)^{1/2} ||u||_2.$$

Hence $L^2(\Omega, \mu) \subset L^1(\Omega, \mu)$, and the canonical injection is continuous.

2. Let Λ_N be the Lebesgue measure on the open subset Ω of \mathbb{R}^N . We denote by $L^2(\Omega)$ the space $L^2(\Omega, \Lambda_N)$. Observe that

$$\frac{1}{x} \in L^2(]1, \infty[) \setminus L^1(]1, \infty[) \text{ and } \frac{1}{\sqrt{x}} \in L^1(]0, 1[) \setminus L^2(]0, 1[)$$

If $m(\Omega) < \infty$, the comparison theorem implies that for every $u \in \mathcal{BC}(\Omega)$,

$$||u||_2^2 = \int_{\Omega} u^2 dx \le m(\Omega) ||u||_{\infty}^2.$$

Hence $\mathcal{BC}(\Omega) \subset L^2(\Omega)$, and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945) *Let* (e_n) *be an orthonormal sequence in* $L^2(]a, b[)$ *. The following properties are equivalent:*

(a) (e_n) is a Hilbert basis; (b) for every $a \le t \le b$, $\sum_{n=1}^{\infty} \left(\int_{a}^{t} e_{n}(x) dx \right)^{2} = t - a$; (c) $\sum_{n=1}^{\infty} \int_{a}^{b} \left(\int_{a}^{t} e_{n}(x) dx \right)^{2} dt = \frac{(b-a)^{2}}{2}$.

Proof Property (b) follows from (a) and Parseval's identity applied to $\chi_{[a,t]}$. Property (c) follows from (b) and Levi's theorem. The converse is left to the reader.

Example The sequence $e_n(x) = \sqrt{\frac{2}{\pi}} \sin n x$ is orthonormal in $L^2(]0, \pi[)$. Since

$$\frac{2}{\pi} \sum_{n=1}^{\infty} \int_0^{\pi} \left(\int_0^t \sin n \ x \ dx \right)^2 dt = 3 \sum_{n=1}^{\infty} \frac{1}{n^2}$$

and since by a classical identity due to Euler,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$$

the sequence (e_n) is a Hilbert basis of $L^2(]0, \pi[)$.

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

Definition 3.4.1 Let X be a real vector space and let $A : X \to X$ be a linear mapping. The eigenvectors corresponding to the eigenvalue $\lambda \in \mathbb{R}$ are the nonzero solutions of

$$Au = \lambda u$$

The multiplicity of λ is the dimension of the space of solutions. The eigenvalue λ is simple if its multiplicity is equal to 1. The rank of *A* is the dimension of the range of *A*.

Definition 3.4.2 Let X be a pre-Hilbert space. A symmetric operator is a linear mapping $A : X \to X$ such that for every $u, v \in X$, (Au|v) = (u|Av).

Proposition 3.4.3 Let X be a pre-Hilbert space and $A : X \rightarrow X$ a symmetric continuous operator. Then

$$||A|| = \sup_{\substack{u \in X \\ ||u|| = 1}} |(Au|u)|.$$

Proof It is clear that

$$a = \sup_{\substack{u \in X \\ ||u|| = 1}} |(Au|u)| \le b = \sup_{\substack{u, v \in X \\ ||u|| = ||v|| = 1}} |(Au|v)| = ||A||.$$

If ||u|| = ||v|| = 1, it follows from the parallelogram identity that

$$|(Au|v)| = \frac{1}{4} |(A(u+v)|u+v) - (A(u-v)|u-v)|$$

$$\leq \frac{a}{4} [||u+v||^2 + ||u-v||^2]$$

$$= \frac{a}{4} [2||u||^2 + 2||v||^2] = a.$$

Hence b = a.

Corollary 3.4.4 Under the assumptions of the preceding proposition, there exists a sequence $(u_n) \subset X$ such that

$$||u_n|| = 1, ||Au_n - \lambda u_n|| \to 0, |\lambda_1| = ||A||.$$

Proof Consider a maximizing sequence (u_n) :

$$||u_n|| = 1, |(Au_n|u_n)| \to \sup_{\substack{u \in X \\ ||u|| = 1}} |(Au|u)| = ||A||.$$

By passing if necessary to a subsequence, we can assume that $(Au_n|u_n) \rightarrow \lambda_1$, $|\lambda_1| = ||A||$. Hence

$$0 \le ||Au_n - \lambda_1 u_n||^2 = ||Au_n||^2 - 2\lambda_1 (Au_n |u_n) + \lambda_1^2 ||u_n||^2$$

$$\le 2\lambda_1^2 - 2\lambda_1 (Au_n |u_n) \to 0, \quad n \to \infty.$$

Definition 3.4.5 Let *X* and *Y* be normed spaces. A mapping $A: X \to Y$ is compact if the set $\{Au: u \in X, ||u|| \le 1\}$ is precompact in *Y*.

By Proposition 3.2.1, every linear compact mapping is continuous.

Theorem 3.4.6 Let X be a Hilbert space and let $A: X \to X$ be a symmetric compact operator. Then there exists an eigenvalue λ_1 of A such that $|\lambda_1| = ||A||$.

Proof We can assume that $A \neq 0$. The preceding corollary implies the existence of a sequence $(u_n) \subset X$ such that

$$||u_n|| = 1, ||Au_n - \lambda_1 u_n|| \to 0, |\lambda_1| = ||A||.$$

Passing if necessary to a subsequence, we can assume that $Au_n \rightarrow v$. Hence $u_n \rightarrow u = \lambda_1^{-1}v$, ||u|| = 1, and $Au = \lambda_1 u$.

Theorem 3.4.7 (Poincaré's principle) Let X be a Hilbert space and $A : X \to X$ a symmetric compact operator with infinite rank. Let there be given the eigenvectors (e_1, \ldots, e_{n-1}) and the corresponding eigenvalues $(\lambda_1, \ldots, \lambda_{n-1})$. Then there exists an eigenvalue λ_n of A such that

$$|\lambda_n| = \max\{|(Au|u)| : u \in X, ||u|| = 1, (u|e_1) = \dots = (u|e_{n-1}) = 0\}$$

and $\lambda_n \to 0$, $n \to \infty$.

Proof The closed subspace of X

$$X_n = \{ u \in X : (u|e_1) = \ldots = (u|e_{n-1}) = 0 \}$$

is invariant by A. Indeed, if $u \in X_n$ and $1 \le j \le n - 1$, then

$$(Au|e_i) = (u|Ae_i) = \lambda_i(u|e_i) = 0.$$

Hence $A_n = A \Big|_{X_n}$ is a nonzero symmetric compact operator, and there exist an eigenvalue λ_n of A_n such that $|\lambda_n| = ||A_n||$ and a corresponding eigenvector $e_n \in X_n$ such that $||e_n|| = 1$. By construction, the sequence (e_n) is orthonormal, and the sequence $(|\lambda_n|)$ is decreasing. Hence $|\lambda_n| \to d$, $n \to \infty$, and for $j \neq k$,

$$||Ae_j - Ae_k||^2 = \lambda_j^2 + \lambda_k^2 \rightarrow 2d^2, \quad j, k \rightarrow \infty.$$

Since A is compact, d = 0.

Theorem 3.4.8 Under the assumptions of the preceding theorem, for every $u \in X$, the series $\sum_{n=1}^{\infty} (u|e_n)e_n$ converges and $u - \sum_{n=1}^{\infty} (u|e_n)e_n$ belongs to the kernel of A:

$$Au = \sum_{n=1}^{\infty} \lambda_n(u|e_n)e_n.$$
^(*)

Proof For every $k \ge 1$, $u - \sum_{n=1}^{k} (u|e_n)e_n \in X_{k+1}$. It follows from Proposition 3.3.8.

that

$$\left\| Au - \sum_{n=1}^{k} \lambda_n(u|e_n)e_n \right\| \le ||A_{k+1}|| \quad \left\| u - \sum_{n=1}^{k} (u|e_n)e_n \right\| \le ||A_{k+1}|| \ ||u|| \to 0, \ k \to \infty.$$

Bessel's inequality implies that $\sum_{n=1}^{\infty} |(u|e_n)|^2 \le ||u||^2$. We deduce from the Riesz-Eischer theorem that $\sum_{n=1}^{\infty} |u|e_n|e_n$ converges to $u \in X$. Since A is continuous

Fischer theorem that $\sum_{n=1}^{\infty} (u|e_n)e_n$ converges to $v \in X$. Since A is continuous,

$$Av = \sum_{n=1}^{\infty} \lambda_n(u|e_n)e_n = Au$$

and A(u - v) = 0.

Formula (*) is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].

The first proof of the Banach–Steinhaus theorem in Sect. 3.2 is due to Favard [22], and the second proof to Royden [66].

Theorem 3.2.10 is due to P.P. Zabreiko, *Funct. Anal. and Appl. 3 (1969) 70-72*. Let us recall the elegant notion of vector space over the reals used by S. Banach in [6] :

Suppose that a non-empty set *E* is given, and that to each ordered pair (x, y) of elements of *E* there corresponds an element x + y of *E* (called the *sum* of *x* and *y*) and that for each number *t* and $x \in E$ an element *tx* of *E* (called the *product* of the number *t* with the element *x*) is defined in such a way that these operations, namely *addition* and *scalar multiplication* satisfy the following conditions (where *x*, *y* and *z* denote arbitrary elements of *E* and *a*, *b* are numbers):

1) x + y = y + x, 2) x + (y + z) = (x + y) + z, 3) x + y = x + z implies y = z, 4) a(x + y) = ax + ay, 5) (a + b)x = ax + bx, 6) a(bx) = (ab)x, 7) $1 \cdot x = x$.

Under these hypotheses, we say that the set *E* constitutes a *vector* or *linear* space. It is easy to see that there then exists exactly one element, which we denote by Θ , such that $x + \Theta = x$ for all $x \in E$ and that the equality ax = bx where $x \neq \Theta$ yields a = b; furthermore, that the equality ax = ay where $a \neq 0$ implies x = y.

Put, further, by definition :

$$-x = (-1)x$$
 and $x - y = x + (-y)$.

The space $\mathcal{L}^1(\mathbb{R}^N)$ with the *pointwise sum*

$$(u+v)(x) = u(x) + v(x),$$

and the scalar multiplication

$$(a \cdot u)(x) = a \ u(x),$$

is *not* a vector space. Indeed one has in general to allow $-\infty$ and $+\infty$ as values of the elements of $\mathcal{L}^1(\mathbb{R}^N)$. Hence the pointwise sum and the scalar multiplication by 0 are not, in general, well defined. On the other hand the space $L^1(\Omega, \mu)$, with the pointwise sum and the scalar multiplication, is a vector space since it consists of equivalence classes of μ -almost everywhere defined and finite function on Ω .

3.6 Exercises for Chap. 3

- 1. Prove that $\mathcal{BC}(\Omega) \cap L^1(\Omega) \subset L^2(\Omega)$.
- 2. Define a sequence $(u_n) \subset \mathcal{BC}(]0, 1[)$ such that $||u_n||_1 \to 0$, $||u_n||_2 = 1$, and $||u_n||_{\infty} \to \infty$.
- 3. Define a sequence $(u_n) \subset \mathcal{BC}(\mathbb{R}) \cap L^1(\mathbb{R})$ such that $||u_n||_1 \to \infty$, $||u_n||_2 = 1$ and $||u_n||_{\infty} \to 0$.
- 4. Define a sequence $(u_n) \subset \mathcal{BC}(]0, 1[)$ converging simply to u such that $||u_n||_{\infty} = ||u||_{\infty} = ||u_n u||_{\infty} = 1.$
- 5. Define a sequence $(u_n) \subset L^1(]0, 1[)$ such that $||u_n||_1 \to 0$ and for every 0 < x < 1, $\overline{\lim_{n \to \infty}} u_n(x) = 1$. *Hint*: Use characteristic functions of intervals.
- 6. On the space C([0, 1]) with the norm $||u||_1 = \int_0^1 |u(x)| dx$, is the linear functional

$$f: \mathcal{C}([0, 1]) \to \mathbb{R}: u \mapsto u(1/2)$$

continuous?

- 7. Let *X* be a normed space such that every normally convergent series converges. Prove that *X* is a Banach space.
- 8. A linear functional defined on a normed space is continuous if and only if its kernel is closed. If this is not the case, the kernel is dense.
- 9. Is it possible to derive the norm on $L^1(]0, 1[)$ (respectively $\mathcal{BC}(]0, 1[)$) from a scalar product?
- 10. Prove Lagrange's identity in pre-Hilbert spaces:

$$\left| \left| ||v||u - ||u||v \right| \right|^2 = 2||u||^2||v||^2 - 2||u|| \, ||v||(u|v).$$

11. Let *X* be a pre-Hilbert space and $u, v \in X \setminus \{0\}$. Then

$$\left| \left| \frac{u}{||u||^2} - \frac{v}{||v||^2} \right| \right| = \frac{||u - v||}{||u|| ||v||}$$

Let $f, g, h \in X$. Prove Ptolemy's inequality:

$$||f|| ||g - h|| \le ||h|| ||f - g|| + ||g|| ||h - f||.$$

12. (The Jordan–von Neumann theorem.) Assume that the parallelogram identity is valid in the normed space X. Then it is possible to derive the norm from a scalar product. Define

$$(u|v) = \frac{1}{4} (||u+v||^2 - ||u-v||^2).$$

Verify that

$$(f + g|h) + (f - g|h) = 2(f|h),$$
$$(u|h) + (v|h) = 2\left(\frac{u+v}{2}|h\right) = (u+v|h)$$

- 13. Let f be a linear functional on $L^2([0, 1[)$ such that $u \ge 0 \Rightarrow \langle f, u \rangle \ge 0$. Prove, by contradiction, that f is continuous with respect to the norm $||.||_2$. Prove that f is not necessarily continuous with respect to the norm $||.||_1$.
- 14. Prove that every symmetric operator defined on a Hilbert space is continuous. *Hint*: If this were not the case, there would exist a sequence (u_n) such that $||u_n|| = 1$ and $||Au_n|| \to \infty$. Then use the Banach–Steinhaus theorem to obtain a contradiction.
- 15. In a Banach space an algebraic basis is either finite or uncountable. *Hint*: Use Baire's theorem.
- 16. Assume that $\mu(\Omega) < \infty$. Let $(u_n) \subset L^1(\Omega, \mu)$ be such that
 - (a) $\sup_{n} \int_{\Omega} |u_{n}| \ell n(1 + |u_{n}|) d\mu < +\infty;$ (b) (u_{n}) converges almost everywhere to u.

Then $u_n \to u$ in $L^1(\Omega, \mu)$.

17. Let us define, for
$$n \ge 1$$
, $u_n(x) = \frac{\cos 3^n x}{n}$.

(a) The series
$$\sum_{n=1}^{\infty} u_n$$
 converges in $L^2(]0, 2\pi[)$.

(b) For every $x \in A = \{2k\pi/3^j : j \in \mathbb{N}, k \in \mathbb{Z}\}, \sum_{n=1}^{\infty} u_n(x) = +\infty.$

(c) For every $x \in B = \{(2k+1)\pi/3^j : j \in \mathbb{N}, k \in \mathbb{Z}\}, \sum_{i=1}^{\infty} u_n(x) = -\infty.$

(d) The sets A and B are dense in \mathbb{R} .