Chapter 3 )
Norms G

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role
in functional analysis. Banach spaces are complete normed spaces. Completeness
allows one to prove the convergence of a sequence or of a series without using the
limit.

Definition 3.1.1 A norm on a real vector space X is a function

X —>R:uw |ul

such that
(Np)  foreveryu € X \ {0}, ||ul| > 0;
(N2)  foreveryu € X and for o € R, ||au|| = |a| ||u]l;

(M3)  (Minkowski’s inequality) for every u, v € X,

[l + vl < [lull + [[v]].

A (real) normed space is a (real) vector space together with a norm on that space.
Examples 1. Let (X, ||.||) be a normed space and let Y be a subspace of X. The

space Y together with ||.|| (restricted to Y') is a normed space.
2. Let (X1, ].1l1), (X2, ].1l2) be normed spaces. The space X| x X, together with

11, u2) |l = max(|ur]l1, [luzll2)
is a normed space.
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60 3 Norms
3. We define the norm on the space R" to be

[xloo = max{lxi], ... I I}.

Every normed space is a metric space.

Proposition 3.1.2 Let X be a normed space. The function
XxX—>R:(v) = |lu—vl
is a distance on X. The following mappings are continuous:
X —> R:uw|ul],
XxX—>X:(u,v)y—~>u+v,
RxX— X:(x,u) = au.
Proof By N and N>,
du,v) =0<=u=v, du,v)=|—w—v)||=|v—ull =d,u).
Finally, by Minkowski’s inequality,
du,w) <du,v)+d(v, w).

Since by Minkowski’s inequality,

Jlall = o] < Il = v,

the norm is continuous on X. It is easy to verify the continuity of the sum and of the
product by a scalar. O

o0
Definition 3.1.3 Let X be a normed space and (u,) C X. The series Zun

n=0
k

converges, and its sum is # € X if the sequence Z”” converges to u. We then

n=0
o0
write E U, = u.
n=0

o0 o0
The series Zu,, converges normally if Z| lu,|| < oo.
n=0 n=0
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Definition 3.1.4 A Banach space is a complete normed space.

Proposition 3.1.5 In a Banach space X, the following statements are equivalent:

o0
(a) Z u, converges;

n=0
k
(b) lim Y u, =0
j— o0 -
j<k n=j+1
k
Proof Define Sy = Zun. Since X is complete, we have
n=0
k
(@) < lim || —S;[|=0 lim || Y u,||=0&b). O
j— oo j— -
j<k j<k =it

Proposition 3.1.6 In a Banach space, every normally convergent series converges.
o
Proof Let Zun be a normally convergent series in the Banach space X.

n=0
Minkowski’s inequality implies that for j < k,

k k
DTl = D0 luall.
n=j+1 n=j+1

Since the series is normally convergent,
k

dlim Y [ju,l| =0.

— 00 =
Jj <k =it

It suffices then to use the preceding proposition. O

Examples 1. The space of bounded continuous functions on the metric space X,

BC(X) = {u € C(X) : sup |lu(x)| < oo},
xeX

together with the norm

llulloo = sup |u(x)],
xeX
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is a Banach space. Convergence with respect to ||.||o is uniform convergence.

2. Let u be a positive measure on £2. We denote by LY (£2, ) the quotient of
L' (£2, ) by the equivalence relation “equality almost everywhere”. We define
the norm

[uell1 =/ luldp.
2

Convergence with respect to ||.||; is convergence in mean. We will prove in
Sect. 4.2, on Lebesgue spaces, that L! (£2, ) is a Banach space.

3. Let Ay be the Lebesgue measure on the open subset 2 of RY. We denote by
L'(£2) the space L'(£2, Ay). Convergence in mean is not implied by simple
convergence, and almost everywhere convergence is not implied by convergence
in mean.

If m(£2) < oo, the comparison theorem implies that for every u € BC(S2),

el =fg|u|dx < m()][ullso-

Hence BC(£2) C L'(£2), and the canonical injection is continuous, since
llu —vll1 < m(82)[lu — vlloc.
In order to characterize the convergence in L' (§2, 1) we shall define the notions
of convergence in measure and of equi-integrability.

We consider a positive measure p on §2. We identify two p-measurable functions
on §2 when they are p-almost everywhere equal.

Definition 3.1.7 A sequence of measurable functions (u,) converges in measure to
a measurable function u if for every ¢t > 0,

lim w{lu, —u| >t} =0.
n— oo

Proposition 3.1.8 Assume that the sequence (u,) converges in measure to u.
Then there exists a subsequence (u,,) converging almost everywhere to u on 2.

Proof There exists a subsequence (u,, ) such that, for every &,
pllun, —ul > 1/25) < 1725,
Let us define
Ak = (lun, —ul > 1/2%), Br = 2\A

and



3.1 Banach Spaces 63

By

=NU

||C8
Y
Il
2
DX

~
I
<
-~
Il

J
so that A = §2\ B. For every x € B, there exists j > 1 such that
k> j = fun (x) — u(x)] < 1/2%,

Hence, for every x € B, lim u,, (x) = u(x).
k— 00

Since, for every j,

o
p) <pw| A ] =272,
k=j

we conclude that £t(A) = 0. |

Proposition 3.1.9 Let (u,,) be a sequence of measurable functions such that

(a) (u,) converges to u almost everywhere on 2,
(b) for every e > 0, there exists a measurable subset B of §2 such that u(B) < 0o

and sup lupldu < e.
n J2\B

Then (uy) converges in measure to u.
Proof Lett > 0 and let ¢ > 0. By assumption (b) there exists a measurable

subset B of £2 such that u(B) < oo and sup/ luy,ldu < et/3. It follows
n J2\B

from Fatou’s lemma that / luldu < et/3. Lebesgue’s dominated convergence
2\B
theorem implies the existence of m such that

n>m= / Xiup—u|>r dib < &/3.
B

We conclude using Markov’s inequality that, for n > m,

1
M{|un_u|>t}§/X|un—u|>t dM+—/ lup — uldp
B t Jo\B

e 1 1
§—+—/ |un|d//«+_-/ luldp < e. =
3 tJos rJa\B
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Proposition 3.1.10 Letu € L' (2, i) and let & > 0. Then

(a) there exists § > 0 such that, for every measurable subset A of §2
p) <= [ idu < e
A

(b) there exists a measurable subset B of §2 such that w(B) < oo and

luldu < e.
2\B

Proof (a) By Lebesgue’s dominated convergence theorem, there exists m such
that

/ luldpn < /2.
lu|>m

Let § = ¢/(2m). For every measurable subset A of £2 such that u(A) < §, we
have that

/ uldp < mu(A) +/ uldp < e.
A lu|>m

(b) By Lebesgue’s dominated convergence theorem, there exists n such that

/ uldu < s.
lul<1/n

The set B = {|u| > 1/n} is such that u(B) < oo and/ luldp < e. i
Q\B

Definition 3.1.11 A subset S of L' (£2, ) is equi-integrable if
(a) for every ¢ > 0, there exists § > 0 such that, for every measurable subset A of
£2 satisfying u(A) <4, sup/ luldu < e,
ueSJA
(b) for every ¢ > 0, there exists a measurable subset B of §2 such that u(B) < oo
and sup/ luldp < e.
ueS J2\B
Theorem 3.1.12 (Vitali) Let (u,) C L1 (£2, ) and let u be a measurable function.
Then the following properties are equivalent:

(@) llup —ully = 0,n — oo,
(b) (u,) converges in measure to u and {u,, : n € N} is equi-integrable.

Proof Assume that (a) is satisfied. Markov’s inequality implies that, for every r > 0,
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1
ufluy —ul >t} < ;””n —ulliy = 0,n — oc0.
Let ¢ > 0. There exists m such that
n>m=|lu, —ul <¢/2.

In particular, for every measurable subset A of £2 and for every n > m,

[|un|dusf Iuldu+/ |un—u|dus/ uld +2/2.
A A A A

Proposition 3.1.10 implies the existence of § > 0 such that, for every measurable
subset A of 2,

WA <5 = / sup (21l . . 1)l < .
A
We conclude that, for every measurable subset A of £2,
w(A) <6 = sup/ lunldp < e.
n A

Similarly, Proposition 3.1.10 implies the existence of a measurable subset B of §2
such that £ (B) < oo and

/ sup(2lul, i1, . 1) < .
Q\B

We conclude that sup/ lupldu < e.
Q\B

n
Assume now that (b) is satisfied. Let ¢ > 0. By assumption, there exists § > 0

such that, for every measurable subset A of 2,

w(Ad) <é= sup/ lupldp < e,
n A

and there exists a measurable subset B of §2 such that u(B) < oo and

sup/ lunldpn < e.
n JQ\B

We assume that u(B) > 0. The case u(B) = 0 is simpler. Since (u,) converges in
measure to u, Proposition 3.1.8 implies the existence of a subsequence (u,,) such
that u,, — wu almost everywhere on £2. It follows from Fatou’s lemma that, for
every measurable subset A of £2,
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/MM55=ﬁ/WMMS&
A

and that

/' uldu < e.
2\B

There exists also m such that
n>m= u{lu, —u|l >e/u(B)} <34.

Let us define A, = {|u,, — u| > ¢/u(B)}, so that, forn > m, u(A,) < 4. For every
n > m, we obtain

f |Mn—u|dMSf |Mn|+|u|dﬂ+/ |Mn|+|u|dﬂ+/ |up —uldp
2 \B Ap B\A,

5484-/ e/u(B)du < 5e.
B\Ay,

Since ¢ > 0 is arbitrary, the proof is complete. O
The following characterization is due to de la Vallée Poussin.

Theorem 3.1.13 Let S C L'(82, ) be such that ¢ = suplul; < —+oo. The
ues

following properties are equivalent:

(a) for every ¢ > 0 there exists § > 0 such that, for every measurable subset A of
2

nAd) <é= sup/ luldp < e,
A

uesS

(b) there exists a strictly increasing convex function F : [0, +oo[— [0, +o0[ such
that

lim F(t)/t = +o00, M = sup/ F(uDdu < 4+o00.
t— 00 7

uesS

Proof Since, by Markov’s inequality

sup u{lul >t} < c/t,
ues

assumption (a) implies the existence of a sequence (ny) of integers such that, for
every k,
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ues

ng < ngs1  and sup/ luldu < 1/2F.
|u|>ng

o
Let us define F(t) =t + Z(t — ng)T. It is clear that F is strictly increasing and
k=1

convex. Moreover, for every j,

t>2nm;=j<F@)/t

and, for every u € S, by Levi’s theorem,

u|>ny

o0 o0
/F(Iul)du=/ |u|du+2f<|u\—nk>+dus/ |u|du+2/ luldp < c+1,
Q 2 k=1 2 2 k=1 |

so that S satisfies (b).
Assume now that S satisfies (b). Let & > 0. There exists s > 0 such that for every
t>s,F(t)/t > 2M/¢e. Hence for every u € S we have that

£
uldp < —/ F(uldu < ¢/2.
/u|>x M lu|>s

We choose 6§ = ¢/(2s). For every measurable subset A of §2 such that u(A) < §
and for every u € S, we obtain

f uldpe sWAH/ uldu < e. !
A lu|>s

3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans
définir I’opération que 1’on considere, de méme qu’on fait la
théorie de I’addition sans définir la nature des termes a
additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.
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Proposition 3.2.1 Let X and Y be normed spaces and A : X — Y a linear
mapping. The following properties are equivalent:

(a) A is continuous;

A
(b) ¢ = sup [l Aull <
wex lull
u#0

Proof 1f ¢ < oo, we obtain
[[Au — Av|| = [|A(u — V)| < c|lu —v]|.

Hence A is continuous.
If A is continuous, there exists § > 0 such that for every u € X,

llull = llu = 0]| <8 = ||Aul| = [|Au — AO]| < 1.

Hence for every u € X \ {0},

_lull ) [|ue]]
Aul| = — 1A —u )| = —. O
B lul| s

Proposition 3.2.2 The function

[|Aul|
[|All = sup ——— = sup ||Aul|
ueX ||u|| ueX
u#0 [lul|=1

defines a norm on the space L(X,Y) = {A : X — Y : A is linear and continuous}.
Proof By the preceding proposition, if A € L£(X,Y), then 0 < ||A]| < oo. If
A #£ 0, it is clear that ||A|| > 0. It follows from axiom N that

llaAll= sup |leAul||= sup |a||lAul| = |a||lA]l.
uelX uelX
[ull =1 [ull =1

It follows from Minkowski’s inequality that
IIA+Bl|= sup [lAu+ Bul| < sup (||Aull+[[Bul]) < [|A]l+[IB]l. q

uelX uelX
[lull =1 [lull =1

Proposition 3.2.3 (Extension by density) Let Z be a dense subspace of a normed
space X, Y a Banach space, and A € L(Z,Y). Then there exists a unique mapping
B € L(X,Y) such that B’Z = A. Moreover; ||B|| = ||A||.
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Proof Let u € X. There exists a sequence (u,) C Z such that u, — wu. The
sequence (Au,) is a Cauchy sequence, since

|Auj — Augll < [|All [luj —ug|l = 0, j, k— o0

by Proposition 1.2.3. We denote by f its limit. Let (v,) C Z be such that v, — u.
We have

[|Avy — Aunl| < [|Al] [[va —unll < [[A[l (Hvp —ull +|lu —unll) = 0, n— oc.

Hence Av, — f, and we define Bu = f. By Proposition 3.1.2, B is linear. Since
for every n,

Aun[| < [[AIl [lunll,
we obtain by Proposition 3.1.2 that
[[Bull < [|A[l [|ul].
Hence B is continuous and || B|| < ||A||. Itis clear that || A|| < ||B||. Hence ||A|| =

[1BIl.
If C € L(X,Y) is such that C| , = A, we obtain

Cu = lim Cu, = lim Au, = lim Bu, = Bu. |
n— oo n—od n—od

Proposition 3.2.4 Let X and Y be normed spaces, and let (A,) C L(X,Y) and
A € L(X,Y) be such that ||A, — A|| — 0. Then (A,) converges simply to A.

Proof For every u € X, we have

[|Anu — Aull = |[(An — Dul| < [|Ay — All [|ul]. 0o

Proposition 3.2.5 Let Z be a dense subset of a normed space X, let Y be a Banach
space, and let (A,) C L(X,Y) be such that

(a) ¢ =sup|[A,]| < oo;
n
(b) foreveryv € Z, (A,v) converges.
Then A,, converges simplyto A € L(X,Y), and

Al < lim [[Ag]].
n—00
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Proof Letu € X and ¢ > 0. By density, there exists v € B(u, &) N Z. Since (A, v)
converges, Proposition 1.2.3 implies the existence of n such that

J o k=n=||Ajv— Apv|| < e
Hence for j, k > n, we have

[|Aju — Agull < [[Aju — Ajv|| + ||Ajv — Agvl| + [[Agv — Agul]
<2llu—v|l+e
= (2c + De.

The sequence (A,u) is a Cauchy sequence, since ¢ > 0 is arbitrary. Hence (A, u)
converges to a limit Au in the complete space Y. It follows from Proposition 3.1.2
that A is linear and that

[lAu|| = lim [[Apu|l < Lm [[Ay]][|u]l.
n—oo n—o0
But then A is continuous and ||A|| < lim ||A,]||. ]
n—>oo

Theorem 3.2.6 (Banach—Steinhaus theorem) Ler X be a Banach space, let Y be
a normed space, and let (A,) C L(X,Y) be such that for every u € X,

sup ||Aqu|| < oo.
n

Then

sup [|An]| < oo.
n

First Proof Theorem 1.3.13 applied to the sequence F,, : u + ||A,u|| implies the
existence of a ball B(v, r) such that

c=sup sup ||Aul| < oo.
n ueB(v,r)

It is clear that for every y,z € Y,
[yl < max{||z + yll, llz — yII}. (*)
Hence for every n and for every w € B(0, r), ||A,w]|| < ¢, so that

sup [|Anll < c/r.
n
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Second Proof Assume to obtain a contradiction that sup, [|A,|| = +oo. By
considering a subsequence, we assume that n 3" < ||A,||. Let us define inductively
a sequence (u,). We choose up = 0. There exists v, such that ||v,|| = 37" and

%3’”||A,,|| < ||Apvy|l. By (%), replacing if necessary v, by —v,,, we obtain
3 —n
Z3 ARl < [lApvall < [|An(up—1 + vl

We define u,, = u,—1 + vy, so that ||lu, — u,—1|| = 37". It follows that for every
k>n,

ke — upll <37%/2.

Hence (u,) is a Cauchy sequence that converges to u in the complete space X.
Moreover,

llu —upll <37"/2.
We conclude that
NAnull = [|Anunll — |1 An(uy — u)l]

3.
> IIAnII[Z3 "= lun —ull]

3 1
>n 3”[—3_” - —3_":| =n/4. O
4 2
Corollary 3.2.7 Let X be a Banach space, Y a normed space, and (A,)) C L(X,Y)
a sequence converging simply to A. Then (A,) is bounded, A € L(X,Y), and

IAll < lim [[An]].
n—o00

Proof For every u € X, the sequence (A,u) is convergent, hence bounded, by
Proposition 1.2.3. The Banach-Steinhaus theorem implies that sup||A,|| < oco. It
n

follows from Proposition 3.1.2 that A is linear and

Au|| = lim [[Apu|| < lm [|Ay]|[|ull,
n—oo n—o00
so that A is continuous and ||A|| < lim ||A,]]. ]
n—oo

The preceding corollary explains why every natural linear mapping defined on a
Banach space is continuous.
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Examples (Convergence of functionals) We define the linear continuous functionals
fn on L'(J0, 1]) to be

1
(f»u) =/ u(x)x"dx.
0

Since for every u € L'(]0, 1[) such that ||u||; = 1, we have

1
[{fn, u)| < fo lu(x)ldx =1,
it is clear that

I[fall =" sup  [(fu,u)| < 1.

uel
[lulli =1
Choosing v (x) = (k + 1)x¥, we obtain

o vr) = lim — !

lim im —— =
k— 00 koo k+n+1

It follows that || f,,|| = 1, and for every u € L'(]0, 1[) such that ||u||; = I,

| (s ] < 11 full-

Lebesgue’s dominated convergence theorem implies that (f,) converges simply to
f = 0. Observe that

A< Lim [ f]l.
n—o0

Definition 3.2.8 A seminorm on a real vector space X is a function F: X —
[0, +o0] such that

(a) for every u € X and for every ¢ € R, F(au) = |o|F(u), (positive
homogeneity);
(b) foreveryu,v e X, F(u +v) < F(u) + F(v), (subadditivity).

Examples (a) Any norm is a seminorm.

(b) Let X be a real vector space, Y a normed space, and A: X — Y a linear
mapping. The function F defined on X by F(u) = ||Au|| is a seminorm.

(c) Let X be a normed space, Y a real vector space, and A: X — Y a surjective
linear mapping. The function F defined on Y by
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F(v) = inf{nun: Au = v]

18 a seminorm.

Proposition 3.2.9 Let F be a seminorm defined on a normed space X. The
following properties are equivalent

(a) F is continuous;
(b) c = sup F(u) < oo.
ueX
flull=1
Proof If F satisfies (b), then
|[Fu) = Fv)| < F(u —v) < cllu—vl,

so that F is continuous.
It is easy to prove that the continuity of F at O implies (b). O

Let F be a seminorm on the normed space X and consider a convergent series

o0
Z u. For every n,
k=1

n n
F(z ) <3 Fluw).
k=1 k=1
If, moreover, F is continuous, it follows that
o0 o0
F(Z uk) =Y P < +oc.
k=1 k=1

Zabreiko’s theorem asserts that the converse is valid when X is a Banach space.

Theorem 3.2.10 Let X be a Banach space and let F: X — [0,4+o0[ be a
o0

seminorm such that, for any convergent series Z ug,
k=1

F(Z uk> <D Flu) < +o0.

k=1

Then F is continuous.
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o
Proof Let us define, forany t > 0, G; = {u € X: F(u) < t}. Since X = U G,

n=1
Baire’s theorem implies the existence of m such that G,, contains a closed ball
Bla, r]. Using the propreties of F, we obtain

1 1 — — —
B[0,r] C EB[a, rl+ EB[—a,r] CGmp2+Gmp2 C G

Let us define t = m/r, S0 that B[O, 1] is contained in G,, and, for every k,
B[O, 1/2"] is contained in Gt/zk. Let u € B[O, 1]. There exists #; € G; such that
llu —u1|| < 1/2. We construct by induction a sequence (uy) such that

up € Gyt llu —uy — ... —ul| < 1725,
By assumption
[e¢) o o0
Fu)=F (Z uk> <Y Fu) <) t/2 =2
k=1 k=1 k=1

Since u € B[O, 1] is arbitrary, we obtain

sup F(u) < ?2t.

ueX
[lull=1

It suffices then to use Proposition 3.2.9. O

Let A be a linear mapping between two normed spaces X and Y. If A is
continuous, then the graph of A is closed in X x Y:

X Y
U, — u, Auy, — v = v=Au.

The closed graph theorem, proven by S. Banach in 1932, asserts that the converse is
valid when X and Y are Banach spaces.

Theorem 3.2.11 Let X and Y be Banach spaces and let A: X — Y be a linear
mapping with a closed graph. Then A is continuous.

Proof Let us define on X the seminorm F(u) = | Au|. Assume that the series
o o0

Z uy converges to u in X and that Z F(ux) < 4oo0. Since Y is a Banach space,

k=1 k=1
0

Z Auy converges to v in Y. But the graph of the linear mapping A is closed, so

k=1
that v = Au and
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Fu) = Aull = ol = | D Aull < Dl Auell = Y F ().
k=1

k=1 k=1

We conclude using Zabreiko’s theorem:

sup ||Aul| = sup F(u) < 4o0.
ueX ueX
flull=1 flull=1
The open mapping theorem was proved by J. Schauder in 1930.

Theorem 3.2.12 Let X and Y be Banach spaces and let A € L(X, Y) be surjective.
Then {Au :u € X, ||u|l < 1} isopeninY.

Proof Let us define on Y the seminorm F'(v) = inf{||u| : Au = v}. Assume that
o0 o
the series Z Vg converges to v in Y and that Z F(v) < 4+o00. Let ¢ > 0. For

k=1 k=1
every k, there exists u; € X such that

lugll < F(ug) +e/25 and  Aug = vy

o0
Since X is a Banach space, the series Z uy converges to u# in X. Hence we obtain
k=1

o0 o
lull <Y gl <D F (o) + ¢
k=1 k=1

and

o0
so that F(v) < Z F(vr) + ¢. Since ¢ > 0 is arbitrary, we conclude that F(v) <

k=1
o
Z F (vi). Zabreiko’s theorem implies that
k=1

{Auue X, ul|l<1l}={vetY:Fl) <1}

isopenin?Y. o
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3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1 A scalar product on the (real) vector space X is a function
XxX—>R:(u,v)+— (uv)

such that

(S1) forevery u € X \ {0}, (u|u) > 0;

(Sp) for every u,v,w € X and for every o, 8 € R, (au + fv|lw) = a(u|lw) +
Bv|w);

(S3) forevery u,v € X, (u|v) = (v|u).

We define ||u|| = +/(u]u). A (real) pre-Hilbert space is a (real) vector space together
with a scalar product on that space.

Proposition 3.3.2 Letu,v, w € X and let o, § € R. Then

(a) (ulav + pw) = a(ulv) + Bulw);

(b) lou|| = laf [|ul].

Proposition 3.3.3 Let X be a pre-Hilbert space and let u, v € X. Then

(a) (parallelogram identity) ||u + v||* + ||u — v||* = 2||ul|* + 2||v]|*;
(b) (polarization identity) (ulv) = X||u + v||> = Flju — v|[*;
(c) (Pythagorean identity) (u|v) = 0 <= ||lu + v||*> = [|u]|* + ||v]|*

Proof Observe that

e + vl* = [Jul|* + 2@|v) + ||v] [, (%)

o — v]* = [Jul]® = 2@u|v) + ||v]|*. (%)

By adding and subtracting, we obtain parallelogram and polarization identities. The
Pythagorean identity is clear. O
Proposition 3.3.4 Let X be a pre-Hilbert space and let u, v € X. Then

(a) (Cauchy-Schwarz inequality) |(u|v)| < ||ul] ||v]|;
(b) (Minkowski’s inequality) ||lu + v|| < |lu]| + ||v]|.

Proof 1t follows from () and (*x) that for ||u|| = ||v]| = 1,

[(u|v)| < %(I|u||2+ ||v||2> =1.
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Hence for u # 0 # v, we obtain

[(u|v) ZKL L>’<1
[u]] V]| [l 0]l /] —

By () and the Cauchy—Schwarz inequality, we have
2

i+ w1 < 1ful =+ 20ful 1ol + 0] = (11ull + 1ol 0

Corollary 3.3.5 (a) The function ||u|| = +/(u|u) defines a norm on the pre-Hilbert
space X.
(b) The function
XxX—>R:(u,v)— (uv)

is continuous.

Definition 3.3.6 A family (e;) je; in a pre-Hilbert space X is orthonormal if

(ejlex) =1, J=k,
=0, j#k

Proposition 3.3.7 (Bessel’s inequality) Let (e,) be an orthonormal sequence in a
pre-Hilbert space X and letu € X. Then

> Jlen)| < .
n=0

Proof 1t follows from the Pythagorean identity that

2

k k
||M||2 =||u—= Z(”|en)en + Z(u|en)en
n=0 n=0

k 2k
= ||lu — Z(u|en)en + Z|(u|en)|2
n=0 n=0

k
> Y |len)]. 0
n=0
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Proposition 3.3.8 Let (ep,...,ex) be a finite orthonormal sequence in a
pre-Hilbert space X, u € X, and xo, ..., x; € R. Then

=

k
u— Z Xnén
n=0

k
w—y (ulenen
n=0

Proof 1t follows from the Pythagorean identity that

2 2

k k
= [lu =Dl eden+ ) (] en) = xa)en

n=0 n=0

k
u— an en
n=0

2 g
+ 3 |l ew) —xal 0

n=0

k
= ||U— Z(u | en)en
n=0

Definition 3.3.9 A Hilbert basis of a pre-Hilbert space X is an orthonormal
sequence generating a dense subspace of X.

Proposition 3.3.10 Let (e,) be a Hilbert basis of a pre-Hilbert space X and let
u € X. Then

(@) u="y (uleen;

n=0

o
(b) (Parseval’s identity) ||u||* = Zl(u | en)|2.
n=0

Proof Let e > 0. By definition, there exists a sequence xo, ..., x; € R such that

j
=) xuenll <e.
n=0

It follows from the preceding proposition that for k > j,

k
= (| enenll < e

n=0

o]

Hence u = Z(u | en)en, and by Proposition 3.1.2,
n=0



3.3 Hilbert Spaces 79

2
= lim = lim Z |l en? —Z|<u\en>}

n=0

k 2
lim uleye
MOZO( | en)en
=

We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11 Assume the existence of a sequence (f;) generating a dense
subset of the normed space X. Then X is separable.

Proof By assumption, the space of (finite) linear combinations of (f;) is dense in
X. Hence the space of (finite) linear combinations with rational coefficients of (f;)
is dense in X. Since this space is countable, X is separable. O

Proposition 3.3.12 Let X be an infinite-dimensional pre-Hilbert space. The follow-
ing properties are equivalent:

(a) X is separable;
(b) X has a Hilbert basis.

Proof By the preceding proposition, (b) implies (a).

If X is separable, it contains a sequence (f;) generating a dense subspace. We
may assume that (f;) is free. Since the dimension of X is infinite, the sequence ( f;)
is infinite. We define by induction the sequences (g,) and (e,):

eo = fo/ll foll.
n—1

gn=fo— Y (falep)ej.en=gu/llgall. n =1
j=0

The sequence (e,) generated from (f,) by the Gram—Schmidt orthonormalization
process is a Hilbert basis of X. O

Definition 3.3.13 A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Rlesz—Flscher) Let (e;) be an orthonormal sequence in the

Hilbert space X. The series chen converges if and only if Z ¢, < 0o. Then
n=0 n=0

00 2 00
S| =3
n=0 n=0

k
Proof Define Sy = chen. The Pythagorean identity implies that for j < k,
n=0
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2

k k
2 2
ISk =SiIP =] D cuen|| = D> e
n=j+1 n=j+1
Hence
k 00
im (IS —SjIP=0 lim Y =0 i <oo.

j— o0 j—> oo = 1 0
j<k j<k =it n=

o0 o0
Since X is complete, (Sx) converges if and only if Zcﬁ < 00. Then chen =

. . n=0 n=0
lim Sg, and by Proposition 3.1.2,
k—o00
k (o)
lim S| = lim ||Se|)? = lim Y 2= 2.
[ lim S|l = lim ||S] ,HOOZ% g 2;) g 0
n= n=

Examples 1. Let ;1 be a positive measure on £2. We denote by L?(£2, 1) the
quotient of

L2, pn) = {u e M2, 1) : / lulPdu < oo}
2

by the equivalence relation “equality almost everywhere.” If u, v € L*(£2, ),
thenu +v e L2({2, w). Indeed, almost everywhere on §2, we have

| (x) + o) * < 2(Ju@)? + [v)]?).

We define the scalar product
(ulv) = / uvdp
2

on the space L2(82, 10).
The scalar product is well defined, since almost everywhere on §2,

1
lu(x) v(x)| < 5(|u<x)|2 + Jv(x) ).

By definition,
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12
|WH2==</ mﬁdu)
2

Convergence with respect to ||.||2 is convergence in quadratic mean. We will
prove in Sect.4.2, on Lebesgue spaces, that L2(£2, ) is a Hilbert space. If
n(82) < oo, it follows from the Cauchy—Schwarz inequality that for every
u € L*(82, p),

|Mh=LmMu5M9W%wz

Hence L*(£2, ) € L'(£2, 1), and the canonical injection is continuous.
2. Let Ay be the Lebesgue measure on the open subset £2 of RY. We denote by
L%(£2) the space L?(£2, Ay). Observe that

! e L*(J1, 00) \ L' (11, oo[) and 1 e L'(0, 1) \ L%Q0, 1]).
x NES

If m(£2) < oo, the comparison theorem implies that for every u € BC(S2),
|w6=/u%xsm9mwg
2

Hence BC(§2) C L*(£2), and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945) Let (e,,) be an orthonormal sequence
in L*(la, b]). The following properties are equivalent:

(a) (ey) is a Hilbert basis;
2

o t
(b) foreverya <t <b, Z (/ en(x)dx) =t—a;

n=1

o b 2 _ 2
() ;/ (/:en(x)dx> di = (I’T“).

Proof Property (b) follows from (a) and Parseval’s identity applied to X4 -
Property (c) follows from (b) and Levi’s theorem. The converse is left to the reader.
O

[2
Example The sequence e, (x) = ,/ — sinn x is orthonormal in L0, m[). Since
T

2 00 T t 2 00 1
—Z/ (/ sinnxdx) dt=3%" —
ﬂ”:I 0 0 n:ln
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and since by a classical identity due to Euler,

2T e
—n 6

the sequence (e;,) is a Hilbert basis of L2(10, z]).

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

3 Norms

Definition 3.4.1 Let X be a real vector space and let A : X — X be a linear
mapping. The eigenvectors corresponding to the eigenvalue A € R are the nonzero

solutions of

Au = Au.

The multiplicity of X is the dimension of the space of solutions. The eigenvalue A is
simple if its multiplicity is equal to 1. The rank of A is the dimension of the range

of A.

Definition 3.4.2 Let X be a pre-Hilbert space. A symmetric operator is a linear

mapping A : X — X such that for every u, v € X, (Aulv) = (u]|Av).

Proposition 3.4.3 Let X be a pre-Hilbert space and A : X — X a symmetric

continuous operator. Then

Al = sup [(Aulu)l.
ueX
[lul| =1
Proof 1t is clear that
a= sup |(Aulu)| <D= sup [(Aulv)| = [|A]].
uelX u,veX
[lul] =1 [lull = [lv]| =1

If ||u|| = ||v]| = 1, it follows from the parallelogram identity that
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|(Aulv)| = %|<A(u + o)l +v) — (A — v)lu — )|
< S0+ ol 4+l = v])
= S02lul® +2[1vl ] = a.
Hence b = a. a

Corollary 3.4.4 Under the assumptions of the preceding proposition, there exists a
sequence (u,) C X such that

llunll =1, [|Aup — Aun|l — 0, [A1] = [|A]l.
Proof Consider a maximizing sequence (u,):
llupll = 1, [(Auplup)| —  sup  [(Aulu)| = [|A]].
uelX
lull =1
By passing if necessary to a subsequence, we can assume that (Au,|u,) — Ap,
[X1] = ||A]|. Hence
0 < [|Aun — Arutn| [ = 1| Aun|* — 201 (Attn|1tn) + 151t |*

< 2)\% — 27 (Auylup) — 0, n— oo. |

Definition 3.4.5 Let X and Y be normed spaces. A mapping A: X — Y is compact
if the set {Au: u € X, ||u|| < 1} is precompactin Y.

By Proposition 3.2.1, every linear compact mapping is continuous.

Theorem 3.4.6 Let X be a Hilbert space and let A: X — X be a symmetric
compact operator. Then there exists an eigenvalue L1 of A such that |11| = ||Al|.

Proof We can assume that A # 0. The preceding corollary implies the existence of
a sequence (#,) C X such that

llunll = 1, [|Aup — Aqunll — 0, |A1] = [[A]l.

Passing if necessary to a subsequence, we can assume that Au,, — v. Hence u,, —
u:kl_lv,llu||:1,andAu:A1u. |
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Theorem 3.4.7 (Poincaré’s principle) Let X be a Hilbert space and A : X — X
a symmetric compact operator with infinite rank. Let there be given the eigenvectors
(e1, ..., en—1) and the corresponding eigenvalues (M1, ..., Ay—1). Then there exists
an eigenvalue )\, of A such that

Al = max{|(Aulw)| :u € X, ||ull = 1, (ule)) = ... = (ulex—1) = 0}

and A, — 0, n — o0.

Proof The closed subspace of X
X, = {u € X :(uley) =...= (uley—1) = 0}
is invariant by A. Indeed, ifu € X,, and 1 < j <n — 1, then
(Aulej) = (u|Aej) = Aj(ule;) = 0.

Hence A, = A| is a nonzero symmetric compact operator, and there exist an

n
eigenvalue A, of A, such that |1,| = ||A,]|| and a corresponding eigenvector e, €
X, such that ||e, || = 1. By construction, the sequence (e, ) is orthonormal, and the
sequence (|A,]) is decreasing. Hence |A,| — d, n — oo, and for j # k,

|Aej — Aer||> =25 +2; — 2d*,  j. k — oc.
Since A is compact, d = 0. O

Theorem 3 4.8 Under the assumptions of the preceding theorem, for everyu € X,

the series Z(u len)e, converges and u — Z(u len)en belongs to the kernel of A:

n=1 n=1

o0
Au = Z)\n(’”en)en- *)
n=1
k
Proof Foreveryk > 1,u — Z(u|e,1)en € Xk+1. It follows from Proposition 3.3.8.
n=1
that
k k
Au=y " dnulen)en|| < NArprll || u— D (ulen)en|| < [1Agpall [lull = 0, k — oo.
n=1 n=1
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o0
Bessel’s inequality implies that X:|(u|en)|2 < ||u||2. We deduce from the Riesz—

n=1
00

Fischer theorem that Z(u|en)en converges to v € X. Since A is continuous,

n=1

o
Av = Z,\n(me,,)e,, = Au

n=1

and A(u —v) =0. |

Formula (%) is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].

The first proof of the Banach—Steinhaus theorem in Sect.3.2 is due to Favard
[22], and the second proof to Royden [66].

Theorem 3.2.10 is due to P.P. Zabreiko, Funct. Anal. and Appl. 3 (1969) 70-72.

Let us recall the elegant notion of vector space over the reals used by S. Banach
in [6] :

Suppose that a non-empty set E is given, and that to each ordered pair (x, y) of elements
of E there corresponds an element x + y of E (called the sum of x and y) and that for
each number ¢t and x € E an element 7x of E (called the product of the number ¢ with
the element x) is defined in such a way that these operations, namely addition and scalar
multiplication satisfy the following conditions (where x, y and z denote arbitrary elements
of E and a, b are numbers):

D x+y=y+ux,

D x+G+a=Cc+y +z
3) x+y=x+zimpliesy =z,
4) a(x +y) =ax + ay,

5) (a + b)x = ax + bx,

6) a(bx) = (ab)x,

7 1-x=x.

Under these hypotheses, we say that the set E constitutes a vector or linear space. It is
easy to see that there then exists exactly one element, which we denote by @, such that
x + © = x for all x € E and that the equality ax = bx where x # © yields a = b;
furthermore, that the equality ax = ay where a # 0 implies x = y.

Put, further, by definition :

—x=(-Dx and x—y=x+(—y).
The space £! (RN) with the pointwise sum

(u~+v)(x) =ulkx) + v(x),
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and the scalar multiplication

(a-u)(x) =au(x),

is not a vector space. Indeed one has in general to allow —oo and +oo as values
of the elements of £!(RY). Hence the pointwise sum and the scalar multiplication
by 0 are not, in general, well defined. On the other hand the space L'(£2, i), with
the pointwise sum and the scalar multiplication, is a vector space since it consists of
equivalence classes of p-almost everywhere defined and finite function on £2.

3.6 Exercises for Chap.3

—_—

10.

11.

. Prove that BC(£2) N L1(2) c L*(2).

Define a sequence (u,,) C BC(]0, 1]) such that ||u,||; — O, ||un|l2 = 1, and
[lttn]loo — 00.

. Define a sequence (u,) C BC(R) N L' (R) such that |[u,||1 — 00, ||un|l2 =1

and ||uy,|leo — O.

. Define a sequence (u,) C BC(]0, 1[) converging simply to u such that

lunlloo = lttlloo = llun — ulloo = 1.

Define a sequence (u,) < L'(o0, 1[) such that ||lu,||; — O and for every

0 <x <1, lim u,(x) = 1. Hint: Use characteristic functions of intervals.
n—>oo

1
On the space C([0, 1]) with the norm ||u||; = / |u(x)|dx, is the linear
0

functional
f:CUO0, 1) — R:ur u(l/2)

continuous?

Let X be a normed space such that every normally convergent series converges.
Prove that X is a Banach space.

A linear functional defined on a normed space is continuous if and only if its
kernel is closed. If this is not the case, the kernel is dense.

. Is it possible to derive the norm on L'qo, 1D (respectively BC(]0, 1[)) from a

scalar product?
Prove Lagrange’s identity in pre-Hilbert spaces:

2
11l — lallv][* = 2lul*v]1* = 2llul] [|v]](]v).
Let X be a pre-Hilbert space and u#, v € X \ {0}. Then

v

H u o =l
lull? ol

el vl
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12.

13.

14.

15.

16.

17.
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Let f, g, h € X. Prove Ptolemy’s inequality:

ANl = Al < [IAIILF = gll 4 Hgll 1R = f1I.

(The Jordan—von Neumann theorem.) Assume that the parallelogram identity
is valid in the normed space X. Then it is possible to derive the norm from a
scalar product. Define

1
(uv) = Z(nu +ol* = [lu — vl]?).
Verify that

(f +glh) + (f — glh) = 2(f1h),

(u|h) + (v|h) =2 <#|h> = (u+vlh).

Let f be a linear functional on L2(]0, 1[) such thatu > 0 = (f, u) > 0. Prove,
by contradiction, that f is continuous with respect to the norm ||.||. Prove that
f is not necessarily continuous with respect to the norm ||.||;.

Prove that every symmetric operator defined on a Hilbert space is continuous.
Hint: If this were not the case, there would exist a sequence (u,) such that
lunll = 1 and ||Au,|| — o0. Then use the Banach—Steinhaus theorem to
obtain a contradiction.

In a Banach space an algebraic basis is either finite or uncountable. Hint: Use
Baire’s theorem.

Assume that ©(£2) < oo. Let (u,) C L'(£2, ) be such that

@ sup [ funltn(1 + s Dy < o0
n J
(b) (u,) converges almost everywhere to u.

Then u,, — u in L'(£2, p).

cos3"x
Let us define, forn > 1, u, (x) = .

o
(a) The series Z u, converges in L2(10, 2x]).

n=1

o0
(b) Foreveryx € A= (2kn/3/: j e N,k € Z}, Y u,(x) = +oo.

n=1

o0
(c) Forevery x € B = {(2k + 1)71/3/: jeN kelZ}, Zun(x) = —00.

n=1

(d) The sets A and B are dense in R.
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