
Chapter 3
Norms

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role
in functional analysis. Banach spaces are complete normed spaces. Completeness
allows one to prove the convergence of a sequence or of a series without using the
limit.

Definition 3.1.1 A norm on a real vector space X is a function

X → R : u �→ ||u||

such that

(N1) for every u ∈ X \ {0}, ||u|| > 0;
(N2) for every u ∈ X and for α ∈ R, ||αu|| = |α| ||u||;
(N3) (Minkowski’s inequality) for every u, v ∈ X,

||u + v|| ≤ ||u|| + ||v||.

A (real) normed space is a (real) vector space together with a norm on that space.

Examples 1. Let (X, ||.||) be a normed space and let Y be a subspace of X. The
space Y together with ||.|| (restricted to Y ) is a normed space.

2. Let (X1, ||.||1), (X2, ||.||2) be normed spaces. The space X1 × X2 together with

||(u1, u2)|| = max(||u1||1, ||u2||2)

is a normed space.
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3. We define the norm on the space R
N to be

|x|∞ = max
{
|x1|, . . . , |x

N
|
}
.

Every normed space is a metric space.

Proposition 3.1.2 Let X be a normed space. The function

X × X → R : (u, v) �→ ||u − v||

is a distance on X. The following mappings are continuous:

X → R : u �→ ||u||,
X × X → X : (u, v) �→ u + v,

R × X → X : (α, u) �→ αu.

Proof By N1 and N2,

d(u, v) = 0 ⇐⇒ u = v, d(u, v) = || − (u − v)|| = ||v − u|| = d(v, u).

Finally, by Minkowski’s inequality,

d(u,w) ≤ d(u, v) + d(v,w).

Since by Minkowski’s inequality,

∣∣∣||u|| − ||v||
∣∣∣ ≤ ||u − v||,

the norm is continuous on X. It is easy to verify the continuity of the sum and of the
product by a scalar. 	


Definition 3.1.3 Let X be a normed space and (un) ⊂ X. The series
∞∑

n=0

un

converges, and its sum is u ∈ X if the sequence
k∑

n=0

un converges to u. We then

write
∞∑

n=0

un = u.

The series
∞∑

n=0

un converges normally if
∞∑

n=0

||un|| < ∞.
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Definition 3.1.4 A Banach space is a complete normed space.

Proposition 3.1.5 In a Banach space X, the following statements are equivalent:

(a)
∞∑

n=0

un converges;

(b) lim
j → ∞
j < k

k∑
n=j+1

un = 0.

Proof Define Sk =
k∑

n=0

un. Since X is complete, we have

(a) ⇐⇒ lim
j → ∞
j < k

||Sk − Sj || = 0 ⇐⇒ lim
j → ∞
j < k

∣∣∣∣∣∣

∣∣∣∣∣∣
k∑

n=j+1

un

∣∣∣∣∣∣

∣∣∣∣∣∣
= 0 ⇐⇒ b). 	


Proposition 3.1.6 In a Banach space, every normally convergent series converges.

Proof Let
∞∑

n=0

un be a normally convergent series in the Banach space X.

Minkowski’s inequality implies that for j < k,

∣∣∣∣∣∣

∣∣∣∣∣∣
k∑

n=j+1

un

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

k∑
n=j+1

||un||.

Since the series is normally convergent,

lim
j → ∞
j < k

k∑
n=j+1

||un|| = 0.

It suffices then to use the preceding proposition. 	


Examples 1. The space of bounded continuous functions on the metric space X,

BC(X) =
{
u ∈ C(X) : sup

x∈X

|u(x)| < ∞
}

,

together with the norm

||u||∞ = sup
x∈X

|u(x)|,
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is a Banach space. Convergence with respect to ||.||∞ is uniform convergence.
2. Let μ be a positive measure on Ω . We denote by L1(Ω,μ) the quotient of

L1 (Ω,μ) by the equivalence relation “equality almost everywhere”. We define
the norm

||u||1 =
∫

Ω

|u| dμ.

Convergence with respect to ||.||1 is convergence in mean. We will prove in
Sect. 4.2, on Lebesgue spaces, that L1(Ω,μ) is a Banach space.

3. Let ΛN be the Lebesgue measure on the open subset Ω of RN . We denote by
L1(Ω) the space L1(Ω,ΛN). Convergence in mean is not implied by simple
convergence, and almost everywhere convergence is not implied by convergence
in mean.

If m(Ω) < ∞, the comparison theorem implies that for every u ∈ BC(Ω),

||u||1 =
∫

Ω

|u|dx ≤ m(Ω)||u||∞.

Hence BC(Ω) ⊂ L1(Ω), and the canonical injection is continuous, since

||u − v||1 ≤ m(Ω)||u − v||∞.

In order to characterize the convergence in L1(Ω,μ) we shall define the notions
of convergence in measure and of equi-integrability.

We consider a positive measure μ on Ω . We identify two μ-measurable functions
on Ω when they are μ-almost everywhere equal.

Definition 3.1.7 A sequence of measurable functions (un) converges in measure to
a measurable function u if for every t > 0,

lim
n→∞ μ{|un − u| > t} = 0.

Proposition 3.1.8 Assume that the sequence (un) converges in measure to u.
Then there exists a subsequence (unk

) converging almost everywhere to u on Ω .

Proof There exists a subsequence (unk
) such that, for every k,

μ{|unk
− u| > 1/2k} ≤ 1/2k.

Let us define

Ak = {|unk
− u| > 1/2k}, Bk = Ω\Ak

and
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A =
∞⋂

j=1

∞⋃
k=j

Ak, B =
∞⋃

j=1

∞⋂
k=j

Bk

so that A = Ω\B. For every x ∈ B, there exists j ≥ 1 such that

k ≥ j ⇒ |unk
(x) − u(x)| ≤ 1/2k.

Hence, for every x ∈ B, lim
k→∞ unk

(x) = u(x).

Since, for every j ,

μ(A) ≤ μ

⎛
⎝

∞⋃
k=j

Ak

⎞
⎠ ≤ 2/2j ,

we conclude that μ(A) = 0. 	


Proposition 3.1.9 Let (un) be a sequence of measurable functions such that

(a) (un) converges to u almost everywhere on Ω ,
(b) for every ε > 0, there exists a measurable subset B of Ω such that μ(B) < ∞

and sup
n

∫

Ω\B
|un|dμ ≤ ε.

Then (un) converges in measure to u.

Proof Let t > 0 and let ε > 0. By assumption (b) there exists a measurable

subset B of Ω such that μ(B) < ∞ and sup
n

∫

Ω\B
|un|dμ ≤ εt/3. It follows

from Fatou’s lemma that
∫

Ω\B
|u|dμ ≤ εt/3. Lebesgue’s dominated convergence

theorem implies the existence of m such that

n ≥ m ⇒
∫

B

χ |un−u|>t dμ ≤ ε/3.

We conclude using Markov’s inequality that, for n ≥ m,

μ {|un − u| > t} ≤
∫

B

χ |un−u|>t dμ + 1

t

∫

Ω\B
|un − u|dμ

≤ ε

3
+ 1

t

∫

Ω\B
|un|dμ + 1

t

∫

Ω\B
|u|dμ ≤ ε. 	
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Proposition 3.1.10 Let u ∈ L1(Ω,μ) and let ε > 0. Then

(a) there exists δ > 0 such that, for every measurable subset A of Ω

μ(A) ≤ δ ⇒
∫

A

|u|dμ ≤ ε ;

(b) there exists a measurable subset B of Ω such that μ(B) < ∞ and∫

Ω\B
|u|dμ ≤ ε.

Proof (a) By Lebesgue’s dominated convergence theorem, there exists m such
that

∫

|u|>m

|u|dμ ≤ ε/2.

Let δ = ε/(2m). For every measurable subset A of Ω such that μ(A) ≤ δ, we
have that

∫

A

|u|dμ ≤ mμ(A) +
∫

|u|>m

|u|dμ ≤ ε.

(b) By Lebesgue’s dominated convergence theorem, there exists n such that

∫

|u|≤1/n

|u|dμ ≤ ε.

The set B = {|u| > 1/n} is such that μ(B) < ∞ and
∫

Ω\B
|u|dμ ≤ ε. 	


Definition 3.1.11 A subset S of L1(Ω,μ) is equi-integrable if

(a) for every ε > 0, there exists δ > 0 such that, for every measurable subset A of

Ω satisfying μ(A) ≤ δ, sup
u∈S

∫

A

|u|dμ ≤ ε,

(b) for every ε > 0, there exists a measurable subset B of Ω such that μ(B) < ∞
and sup

u∈S

∫

Ω\B
|u|dμ ≤ ε.

Theorem 3.1.12 (Vitali) Let (un) ⊂ L1(Ω,μ) and let u be a measurable function.
Then the following properties are equivalent:

(a) ‖un − u‖1 → 0, n → ∞,
(b) (un) converges in measure to u and {un : n ∈ N} is equi-integrable.

Proof Assume that (a) is satisfied. Markov’s inequality implies that, for every t > 0,
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μ{|un − u| > t} ≤ 1

t
‖un − u‖1 → 0, n → ∞.

Let ε > 0. There exists m such that

n ≥ m ⇒ ‖un − u‖1 ≤ ε/2.

In particular, for every measurable subset A of Ω and for every n ≥ m,

∫

A

|un|dμ ≤
∫

A

|u|dμ +
∫

A

|un − u|dμ ≤
∫

A

|u|dμ + ε/2.

Proposition 3.1.10 implies the existence of δ > 0 such that, for every measurable
subset A of Ω ,

μ(A) ≤ δ ⇒
∫

A

sup
(

2|u|, |u1|, ..., |um−1|
)
dμ ≤ ε.

We conclude that, for every measurable subset A of Ω ,

μ(A) ≤ δ ⇒ sup
n

∫

A

|un|dμ ≤ ε.

Similarly, Proposition 3.1.10 implies the existence of a measurable subset B of Ω

such that μ(B) < ∞ and

∫

Ω\B
sup

(
2|u|, |u1|, ..., |um−1|

)
dμ ≤ ε.

We conclude that sup
n

∫

Ω\B
|un|dμ ≤ ε.

Assume now that (b) is satisfied. Let ε > 0. By assumption, there exists δ > 0
such that, for every measurable subset A of Ω ,

μ(A) ≤ δ ⇒ sup
n

∫

A

|un|dμ ≤ ε,

and there exists a measurable subset B of Ω such that μ(B) < ∞ and

sup
n

∫

Ω\B
|un|dμ ≤ ε.

We assume that μ(B) > 0. The case μ(B) = 0 is simpler. Since (un) converges in
measure to u, Proposition 3.1.8 implies the existence of a subsequence (unk

) such
that unk

→ u almost everywhere on Ω . It follows from Fatou’s lemma that, for
every measurable subset A of Ω ,
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μ(A) ≤ δ ⇒
∫

A

|u|dμ ≤ ε,

and that
∫

Ω\B
|u|dμ ≤ ε.

There exists also m such that

n ≥ m ⇒ μ{|un − u| > ε/μ(B)} ≤ δ.

Let us define An = {|un − u| > ε/μ(B)}, so that, for n ≥ m, μ(An) ≤ δ. For every
n ≥ m, we obtain

∫

Ω

|un − u|dμ ≤
∫

Ω\B
|un| + |u|dμ +

∫

An

|un| + |u|dμ +
∫

B\An

|un − u|dμ

≤ 4ε +
∫

B\An

ε/μ(B)dμ ≤ 5ε.

Since ε > 0 is arbitrary, the proof is complete. 	

The following characterization is due to de la Vallée Poussin.

Theorem 3.1.13 Let S ⊂ L1(Ω,μ) be such that c = sup
u∈S

‖u‖1 < +∞. The

following properties are equivalent:

(a) for every ε > 0 there exists δ > 0 such that, for every measurable subset A of
Ω

μ(A) ≤ δ ⇒ sup
u∈S

∫

A

|u|dμ ≤ ε,

(b) there exists a strictly increasing convex function F : [0,+∞[→ [0,+∞[ such
that

lim
t→∞ F(t)/t = +∞, M = sup

u∈S

∫

Ω

F(|u|)dμ < +∞.

Proof Since, by Markov’s inequality

sup
u∈S

μ{|u| > t} ≤ c/t,

assumption (a) implies the existence of a sequence (nk) of integers such that, for
every k,
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nk < nk+1 and sup
u∈S

∫

|u|>nk

|u|dμ ≤ 1/2k.

Let us define F(t) = t +
∞∑

k=1

(t − nk)
+. It is clear that F is strictly increasing and

convex. Moreover, for every j ,

t > 2n2j ⇒ j ≤ F(t)/t

and, for every u ∈ S, by Levi’s theorem,

∫

Ω
F(|u|)dμ =

∫

Ω
|u|dμ+

∞∑
k=1

∫

Ω
(|u|−nk)

+dμ ≤
∫

Ω
|u|dμ+

∞∑
k=1

∫

|u|>nk

|u|dμ ≤ c+1,

so that S satisfies (b).
Assume now that S satisfies (b). Let ε > 0. There exists s > 0 such that for every

t ≥ s, F (t)/t ≥ 2M/ε. Hence for every u ∈ S we have that

∫

|u|>s

|u|dμ ≤ ε

2M

∫

|u|>s

F (|u|)dμ ≤ ε/2.

We choose δ = ε/(2s). For every measurable subset A of Ω such that μ(A) ≤ δ

and for every u ∈ S, we obtain

∫

A

|u|dμ ≤ sμ(A) +
∫

|u|>s

|u|dμ ≤ ε. 	


3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans
définir l’opération que l’on considère, de même qu’on fait la
théorie de l’addition sans définir la nature des termes à
additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.
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Proposition 3.2.1 Let X and Y be normed spaces and A : X → Y a linear
mapping. The following properties are equivalent:

(a) A is continuous;

(b) c = sup
u ∈ X
u �= 0

||Au||
||u|| < ∞.

Proof If c < ∞, we obtain

||Au − Av|| = ||A(u − v)|| ≤ c||u − v||.

Hence A is continuous.
If A is continuous, there exists δ > 0 such that for every u ∈ X,

||u|| = ||u − 0|| ≤ δ ⇒ ||Au|| = ||Au − A0|| ≤ 1.

Hence for every u ∈ X \ {0},

||Au|| = ||u||
δ

||A
(

δ

||u||u
)

|| ≤ ||u||
δ

. 	


Proposition 3.2.2 The function

||A|| = sup
u∈X
u�=0

||Au||
||u|| = sup

u∈X||u||=1

||Au||

defines a norm on the space L(X, Y ) = {A : X → Y : A is linear and continuous}.
Proof By the preceding proposition, if A ∈ L(X, Y ), then 0 ≤ ||A|| < ∞. If
A �= 0, it is clear that ||A|| > 0. It follows from axiom N2 that

||αA|| = sup
u ∈ X||u|| = 1

||αAu|| = sup
u ∈ X||u|| = 1

|α| ||Au|| = |α| ||A||.

It follows from Minkowski’s inequality that

||A + B|| = sup
u ∈ X||u|| = 1

||Au + Bu|| ≤ sup
u ∈ X||u|| = 1

(||Au|| + ||Bu||) ≤ ||A|| + ||B||. 	


Proposition 3.2.3 (Extension by density) Let Z be a dense subspace of a normed
space X, Y a Banach space, and A ∈ L(Z, Y ). Then there exists a unique mapping
B ∈ L(X, Y ) such that B

∣∣
Z

= A. Moreover, ||B|| = ||A||.
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Proof Let u ∈ X. There exists a sequence (un) ⊂ Z such that un → u. The
sequence (Aun) is a Cauchy sequence, since

||Auj − Auk|| ≤ ||A|| ||uj − uk|| → 0, j, k → ∞

by Proposition 1.2.3. We denote by f its limit. Let (vn) ⊂ Z be such that vn → u.
We have

||Avn −Aun|| ≤ ||A|| ||vn −un|| ≤ ||A|| (||vn −u|| + ||u−un||) → 0, n → ∞.

Hence Avn → f , and we define Bu = f . By Proposition 3.1.2, B is linear. Since
for every n,

||Aun|| ≤ ||A|| ||un||,

we obtain by Proposition 3.1.2 that

||Bu|| ≤ ||A|| ||u||.

Hence B is continuous and ||B|| ≤ ||A||. It is clear that ||A|| ≤ ||B||. Hence ||A|| =
||B||.

If C ∈ L(X, Y ) is such that C
∣∣
Z

= A, we obtain

Cu = lim
n→∞ Cun = lim

n→∞ Aun = lim
n→∞ Bun = Bu. 	


Proposition 3.2.4 Let X and Y be normed spaces, and let (An) ⊂ L(X, Y ) and
A ∈ L(X, Y ) be such that ||An − A|| → 0. Then (An) converges simply to A.

Proof For every u ∈ X, we have

||Anu − Au|| = ||(An − A)u|| ≤ ||An − A|| ||u||. 	


Proposition 3.2.5 Let Z be a dense subset of a normed space X, let Y be a Banach
space, and let (An) ⊂ L(X, Y ) be such that

(a) c = sup
n

||An|| < ∞;

(b) for every v ∈ Z, (Anv) converges.

Then An converges simply to A ∈ L(X, Y ), and

||A|| ≤ lim
n→∞ ||An||.
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Proof Let u ∈ X and ε > 0. By density, there exists v ∈ B(u, ε) ∩ Z. Since (Anv)

converges, Proposition 1.2.3 implies the existence of n such that

j, k ≥ n ⇒ ||Ajv − Akv|| ≤ ε.

Hence for j, k ≥ n, we have

||Aju − Aku|| ≤ ||Aju − Ajv|| + ||Ajv − Akv|| + ||Akv − Aku||
≤ 2c ||u − v|| + ε

= (2c + 1)ε.

The sequence (Anu) is a Cauchy sequence, since ε > 0 is arbitrary. Hence (Anu)

converges to a limit Au in the complete space Y . It follows from Proposition 3.1.2
that A is linear and that

||Au|| = lim
n→∞ ||Anu|| ≤ lim

n→∞ ||An|| ||u||.

But then A is continuous and ||A|| ≤ lim
n→∞ ||An||. 	


Theorem 3.2.6 (Banach–Steinhaus theorem) Let X be a Banach space, let Y be
a normed space, and let (An) ⊂ L(X, Y ) be such that for every u ∈ X,

sup
n

||Anu|| < ∞.

Then

sup
n

||An|| < ∞.

First Proof Theorem 1.3.13 applied to the sequence Fn : u �→ ||Anu|| implies the
existence of a ball B(v, r) such that

c = sup
n

sup
u∈B(v,r)

||Anu|| < ∞.

It is clear that for every y, z ∈ Y ,

||y|| ≤ max{||z + y||, ||z − y||}. (*)

Hence for every n and for every w ∈ B(0, r), ||Anw|| ≤ c, so that

sup
n

||An|| ≤ c/r.
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Second Proof Assume to obtain a contradiction that supn ||An|| = +∞. By
considering a subsequence, we assume that n 3n ≤ ||An||. Let us define inductively
a sequence (un). We choose u0 = 0. There exists vn such that ||vn|| = 3−n and
3
4 3−n||An|| ≤ ||Anvn||. By (∗), replacing if necessary vn by −vn, we obtain

3

4
3−n||An|| ≤ ||Anvn|| ≤ ||An(un−1 + vn)||.

We define un = un−1 + vn, so that ||un − un−1|| = 3−n. It follows that for every
k ≥ n,

||uk − un|| ≤ 3−n/2.

Hence (un) is a Cauchy sequence that converges to u in the complete space X.
Moreover,

||u − un|| ≤ 3−n/2.

We conclude that

||Anu|| ≥ ||Anun|| − ||An(un − u)||

≥ ||An||
[

3

4
3−n − ||un − u||

]

≥ n 3n

[
3

4
3−n − 1

2
3−n

]
= n/4. 	


Corollary 3.2.7 Let X be a Banach space, Y a normed space, and (An) ⊂ L(X, Y )

a sequence converging simply to A. Then (An) is bounded, A ∈ L(X, Y ), and

||A|| ≤ lim
n→∞ ||An||.

Proof For every u ∈ X, the sequence (Anu) is convergent, hence bounded, by
Proposition 1.2.3. The Banach–Steinhaus theorem implies that sup

n
||An|| < ∞. It

follows from Proposition 3.1.2 that A is linear and

||Au|| = lim
n→∞ ||Anu|| ≤ lim

n→∞ ||An|| ||u||,

so that A is continuous and ||A|| ≤ lim
n→∞ ||An||. 	


The preceding corollary explains why every natural linear mapping defined on a
Banach space is continuous.
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Examples (Convergence of functionals) We define the linear continuous functionals
fn on L1(]0, 1[) to be

〈fn, u〉 =
∫ 1

0
u(x)xn dx.

Since for every u ∈ L1(]0, 1[) such that ||u||1 = 1, we have

|〈fn, u〉| <

∫ 1

0
|u(x)|dx = 1,

it is clear that

||fn|| = sup
u ∈ L1

||u||1 = 1

|〈fn, u〉| ≤ 1.

Choosing vk(x) = (k + 1)xk , we obtain

lim
k→∞〈fn, vk〉 = lim

k→∞
k + 1

k + n + 1
= 1.

It follows that ||fn|| = 1, and for every u ∈ L1(]0, 1[) such that ||u||1 = 1,

|〈fn, u〉| < ||fn||.

Lebesgue’s dominated convergence theorem implies that (fn) converges simply to
f = 0. Observe that

||f || < lim
n→∞ ||fn||.

Definition 3.2.8 A seminorm on a real vector space X is a function F : X →
[0,+∞[ such that

(a) for every u ∈ X and for every α ∈ R, F(αu) = |α|F(u), (positive
homogeneity);

(b) for every u, v ∈ X, F(u + v) ≤ F(u) + F(v), (subadditivity).

Examples (a) Any norm is a seminorm.
(b) Let X be a real vector space, Y a normed space, and A : X → Y a linear

mapping. The function F defined on X by F(u) = ‖Au‖ is a seminorm.
(c) Let X be a normed space, Y a real vector space, and A : X → Y a surjective

linear mapping. The function F defined on Y by
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F(v) = inf
{
‖u‖: Au = v

}

is a seminorm.

Proposition 3.2.9 Let F be a seminorm defined on a normed space X. The
following properties are equivalent

(a) F is continuous;
(b) c = sup

u∈X‖u‖=1

F(u) < ∞.

Proof If F satisfies (b), then

∣∣F(u) − F(v)
∣∣ ≤ F(u − v) ≤ c‖u − v‖,

so that F is continuous.
It is easy to prove that the continuity of F at 0 implies (b). 	

Let F be a seminorm on the normed space X and consider a convergent series

∞∑
k=1

uk . For every n,

F

( n∑
k=1

uk

)
≤

n∑
k=1

F(uk).

If, moreover, F is continuous, it follows that

F

( ∞∑
k=1

uk

)
≤

∞∑
k=1

F(uk) ≤ +∞.

Zabreiko’s theorem asserts that the converse is valid when X is a Banach space.

Theorem 3.2.10 Let X be a Banach space and let F : X → [0,+∞[ be a

seminorm such that, for any convergent series
∞∑

k=1

uk,

F

( ∞∑
k=1

uk

)
≤

∞∑
k=1

F(uk) ≤ +∞.

Then F is continuous.
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Proof Let us define, for any t > 0, Gt = {u ∈ X : F(u) ≤ t}. Since X =
∞⋃

n=1

Gn,

Baire’s theorem implies the existence of m such that Gm contains a closed ball
B[a, r]. Using the propreties of F , we obtain

B[0, r] ⊂ 1

2
B[a, r] + 1

2
B[−a, r] ⊂ Gm/2 + Gm/2 ⊂ Gm.

Let us define t = m/r , so that B[0, 1] is contained in Gt , and, for every k,
B[0, 1/2k] is contained in Gt/2k . Let u ∈ B[0, 1]. There exists u1 ∈ Gt such that
‖u − u1‖ ≤ 1/2. We construct by induction a sequence (uk) such that

uk ∈ Gt/2k−1 , ‖u − u1 − . . . − uk‖ ≤ 1/2k.

By assumption

F(u) = F

( ∞∑
k=1

uk

)
≤

∞∑
k=1

F(uk) ≤
∞∑

k=1

t/2k−1 = 2t.

Since u ∈ B[0, 1] is arbitrary, we obtain

sup
u∈X
‖u‖=1

F(u) ≤ 2t.

It suffices then to use Proposition 3.2.9. 	

Let A be a linear mapping between two normed spaces X and Y . If A is

continuous, then the graph of A is closed in X × Y :

un
X−→ u,Aun

Y−→ v ⇒ v = Au.

The closed graph theorem, proven by S. Banach in 1932, asserts that the converse is
valid when X and Y are Banach spaces.

Theorem 3.2.11 Let X and Y be Banach spaces and let A : X → Y be a linear
mapping with a closed graph. Then A is continuous.

Proof Let us define on X the seminorm F(u) = ‖Au‖. Assume that the series
∞∑

k=1

uk converges to u in X and that
∞∑

k=1

F(uk) < +∞. Since Y is a Banach space,

∞∑
k=1

Auk converges to v in Y . But the graph of the linear mapping A is closed, so

that v = Au and
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F(u) = ‖Au‖ = ‖v‖ = ‖
∞∑

k=1

Auk‖ ≤
∞∑

k=1

‖Auk‖ =
∞∑

k=1

F(uk).

We conclude using Zabreiko’s theorem:

sup
u∈X‖u‖=1

‖Au‖ = sup
u∈X‖u‖=1

F(u) < +∞. 	


The open mapping theorem was proved by J. Schauder in 1930.

Theorem 3.2.12 Let X and Y be Banach spaces and let A ∈ L(X, Y ) be surjective.
Then {Au : u ∈ X, ‖u‖ < 1} is open in Y .

Proof Let us define on Y the seminorm F(v) = inf{‖u‖ : Au = v}. Assume that

the series
∞∑

k=1

vk converges to v in Y and that
∞∑

k=1

F(vk) < +∞. Let ε > 0. For

every k, there exists uk ∈ X such that

‖uk‖ ≤ F(vk) + ε/2k and Auk = vk.

Since X is a Banach space, the series
∞∑

k=1

uk converges to u in X. Hence we obtain

‖u‖ ≤
∞∑

k=1

‖uk‖ ≤
∞∑

k=1

F(vk) + ε

and

Au =
∞∑

k=1

Auk =
∞∑

k=1

vk = v,

so that F(v) ≤
∞∑

k=1

F(vk) + ε. Since ε > 0 is arbitrary, we conclude that F(v) ≤
∞∑

k=1

F(vk). Zabreiko’s theorem implies that

{Au : u ∈ X, ‖u‖ < 1} = {v ∈ Y : F(v) < 1}

is open in Y . 	
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3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1 A scalar product on the (real) vector space X is a function

X × X → R : (u, v) �→ (u|v)

such that

(S1) for every u ∈ X \ {0}, (u|u) > 0;
(S2) for every u, v,w ∈ X and for every α, β ∈ R, (αu + βv|w) = α(u|w) +

β(v|w);
(S3) for every u, v ∈ X, (u|v) = (v|u).

We define ||u|| = √
(u|u). A (real) pre-Hilbert space is a (real) vector space together

with a scalar product on that space.

Proposition 3.3.2 Let u, v,w ∈ X and let α, β ∈ R. Then

(a) (u|αv + βw) = α(u|v) + β(u|w);
(b) ||αu|| = |α| ||u||.

Proposition 3.3.3 Let X be a pre-Hilbert space and let u, v ∈ X. Then

(a) (parallelogram identity) ||u + v||2 + ||u − v||2 = 2||u||2 + 2||v||2;
(b) (polarization identity) (u|v) = 1

4 ||u + v||2 − 1
4 ||u − v||2;

(c) (Pythagorean identity) (u|v) = 0 ⇐⇒ ||u + v||2 = ||u||2 + ||v||2.

Proof Observe that

||u + v||2 = ||u||2 + 2(u|v) + ||v||2, (∗)

||u − v||2 = ||u||2 − 2(u|v) + ||v||2. (∗∗)

By adding and subtracting, we obtain parallelogram and polarization identities. The
Pythagorean identity is clear. 	


Proposition 3.3.4 Let X be a pre-Hilbert space and let u, v ∈ X. Then

(a) (Cauchy–Schwarz inequality) |(u|v)| ≤ ||u|| ||v||;
(b) (Minkowski’s inequality) ||u + v|| ≤ ||u|| + ||v||.
Proof It follows from (∗) and (∗∗) that for ||u|| = ||v|| = 1,

|(u|v)| ≤ 1

2

(
||u||2 + ||v||2

)
= 1.
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Hence for u �= 0 �= v, we obtain

|(u|v)|
||u|| ||v|| =

∣∣∣∣
(

u

||u||
∣∣ v

||v||
)∣∣∣∣ ≤ 1.

By (∗) and the Cauchy–Schwarz inequality, we have

||u + v||2 ≤ ||u||2 + 2||u|| ||v|| + ||v||2 =
(
||u|| + ||v||

)2
. 	


Corollary 3.3.5 (a) The function ||u|| = √
(u|u) defines a norm on the pre-Hilbert

space X.
(b) The function

X × X → R : (u, v) �→ (u|v)

is continuous.

Definition 3.3.6 A family (ej )j∈J in a pre-Hilbert space X is orthonormal if

(ej |ek) = 1, j = k,

= 0, j �= k.

Proposition 3.3.7 (Bessel’s inequality) Let (en) be an orthonormal sequence in a
pre-Hilbert space X and let u ∈ X. Then

∞∑
n=0

∣∣(u|en)
∣∣2 ≤ ||u||2.

Proof It follows from the Pythagorean identity that

||u||2 =
∣∣∣∣∣

∣∣∣∣∣u −
k∑

n=0

(u|en)en +
k∑

n=0

(u|en)en

∣∣∣∣∣

∣∣∣∣∣
2

=
∣∣∣∣∣

∣∣∣∣∣u −
k∑

n=0

(u|en)en

∣∣∣∣∣

∣∣∣∣∣
2

+
k∑

n=0

∣∣(u|en)
∣∣2

≥
k∑

n=0

∣∣(u|en)
∣∣2

. 	
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Proposition 3.3.8 Let (e0, . . ., ek) be a finite orthonormal sequence in a
pre-Hilbert space X, u ∈ X, and x0, . . . , xk ∈ R. Then

∣∣∣∣∣

∣∣∣∣∣u −
k∑

n=0

(u | en)en

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣u −
k∑

n=0

xnen

∣∣∣∣∣

∣∣∣∣∣ .

Proof It follows from the Pythagorean identity that

∣∣∣∣∣

∣∣∣∣∣u −
k∑

n=0

xnen

∣∣∣∣∣

∣∣∣∣∣
2

=
∣∣∣∣∣

∣∣∣∣∣u −
k∑

n=0

(u | en)en +
k∑

n=0

((u | en) − xn)en

∣∣∣∣∣

∣∣∣∣∣
2

=
∣∣∣∣∣

∣∣∣∣∣u −
k∑

n=0

(u | en)en

∣∣∣∣∣

∣∣∣∣∣
2

+
k∑

n=0

∣∣(u | en) − xn

∣∣2
. 	


Definition 3.3.9 A Hilbert basis of a pre-Hilbert space X is an orthonormal
sequence generating a dense subspace of X.

Proposition 3.3.10 Let (en) be a Hilbert basis of a pre-Hilbert space X and let
u ∈ X. Then

(a) u =
∞∑

n=0

(u | en)en;

(b) (Parseval’s identity) ||u||2 =
∞∑

n=0

|(u | en)|2.

Proof Let ε > 0. By definition, there exists a sequence x0, . . . , xj ∈ R such that

||u −
j∑

n=0

xnen|| < ε.

It follows from the preceding proposition that for k ≥ j ,

||u −
k∑

n=0

(u | en)en|| < ε.

Hence u =
∞∑

n=0

(u | en)en, and by Proposition 3.1.2,
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∣∣∣∣∣

∣∣∣∣∣ lim
k→∞

k∑
n=0

(u | en)en

∣∣∣∣∣

∣∣∣∣∣
2

= lim
k→∞

∣∣∣∣∣

∣∣∣∣∣
k∑

n=0

(u | en)en

∣∣∣∣∣

∣∣∣∣∣
2

= lim
k→∞

k∑
n=0

∣∣(u | en)
∣∣2 =

∞∑
n=0

∣∣(u | en)
∣∣2

.

	


We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11 Assume the existence of a sequence (fj ) generating a dense
subset of the normed space X. Then X is separable.

Proof By assumption, the space of (finite) linear combinations of (fj ) is dense in
X. Hence the space of (finite) linear combinations with rational coefficients of (fj )

is dense in X. Since this space is countable, X is separable. 	


Proposition 3.3.12 Let X be an infinite-dimensional pre-Hilbert space. The follow-
ing properties are equivalent:

(a) X is separable;
(b) X has a Hilbert basis.

Proof By the preceding proposition, (b) implies (a).
If X is separable, it contains a sequence (fj ) generating a dense subspace. We

may assume that (fj ) is free. Since the dimension of X is infinite, the sequence (fj )

is infinite. We define by induction the sequences (gn) and (en):

e0 = f0/||f0||,

gn = fn −
n−1∑
j=0

(fn|ej )ej , en = gn/||gn||, n ≥ 1.

The sequence (en) generated from (fn) by the Gram–Schmidt orthonormalization
process is a Hilbert basis of X. 	


Definition 3.3.13 A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Riesz–Fischer) Let (en) be an orthonormal sequence in the

Hilbert space X. The series
∞∑

n=0

cnen converges if and only if
∞∑

n=0

c2
n < ∞. Then

∣∣∣∣∣

∣∣∣∣∣
∞∑

n=0

cnen

∣∣∣∣∣

∣∣∣∣∣
2

=
∞∑

n=0

c2
n.

Proof Define Sk =
k∑

n=0

cnen. The Pythagorean identity implies that for j < k,
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||Sk − Sj ||2 =
∣∣∣∣∣∣

∣∣∣∣∣∣
k∑

n=j+1

cnen

∣∣∣∣∣∣

∣∣∣∣∣∣

2

=
k∑

n=j+1

c2
n.

Hence

lim
j → ∞
j < k

||Sk − Sj ||2 = 0 ⇐⇒ lim
j → ∞
j < k

k∑
n=j+1

c2
n = 0 ⇐⇒

∞∑
n=0

c2
n < ∞.

Since X is complete, (Sk) converges if and only if
∞∑

n=0

c2
n < ∞. Then

∞∑
n=0

cnen =
lim

k→∞Sk , and by Proposition 3.1.2,

|| lim
k→∞ Sk||2 = lim

k→∞ ||Sk||2 = lim
k→∞

k∑
n=0

c2
n =

∞∑
n=0

c2
n. 	


Examples 1. Let μ be a positive measure on Ω . We denote by L2(Ω,μ) the
quotient of

L2(Ω,μ) =
{
u ∈ M(Ω,μ) :

∫

Ω

|u|2dμ < ∞
}

by the equivalence relation “equality almost everywhere.” If u, v ∈ L2(Ω,μ),
then u + v ∈ L2(Ω,μ). Indeed, almost everywhere on Ω , we have

|u(x) + v(x)|2 ≤ 2(|u(x)|2 + |v(x)|2).

We define the scalar product

(u|v) =
∫

Ω

uv dμ

on the space L2(Ω,μ).
The scalar product is well defined, since almost everywhere on Ω ,

|u(x) v(x)| ≤ 1

2
(|u(x)|2 + |v(x)|2).

By definition,
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||u||2 =
(∫

Ω

|u|2dμ

)1/2

.

Convergence with respect to ||.||2 is convergence in quadratic mean. We will
prove in Sect. 4.2, on Lebesgue spaces, that L2(Ω,μ) is a Hilbert space. If
μ(Ω) < ∞, it follows from the Cauchy–Schwarz inequality that for every
u ∈ L2(Ω,μ),

||u||1 =
∫

Ω

|u| dμ ≤ μ(Ω)1/2||u||2.

Hence L2(Ω,μ) ⊂ L1(Ω,μ), and the canonical injection is continuous.
2. Let ΛN be the Lebesgue measure on the open subset Ω of RN . We denote by

L2(Ω) the space L2(Ω,ΛN). Observe that

1

x
∈ L2(]1,∞[) \ L1(]1,∞[) and

1√
x

∈ L1(]0, 1[) \ L2(]0, 1[).

If m(Ω) < ∞, the comparison theorem implies that for every u ∈ BC(Ω),

||u||22 =
∫

Ω

u2dx ≤ m(Ω)||u||2∞.

Hence BC(Ω) ⊂ L2(Ω), and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945) Let (en) be an orthonormal sequence
in L2(]a, b[). The following properties are equivalent:

(a) (en) is a Hilbert basis;

(b) for every a ≤ t ≤ b,
∞∑

n=1

(∫ t

a

en(x)dx

)2

= t − a;

(c)
∞∑

n=1

∫ b

a

(∫ t

a

en(x)dx

)2

dt = (b − a)2

2
.

Proof Property (b) follows from (a) and Parseval’s identity applied to χ [a,t].
Property (c) follows from (b) and Levi’s theorem. The converse is left to the reader.

	


Example The sequence en(x) =
√

2

π
sin n x is orthonormal in L2(]0, π [). Since

2

π

∞∑
n=1

∫ π

0

(∫ t

0
sin n x dx

)2

dt = 3
∞∑

n=1

1

n2
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and since by a classical identity due to Euler,

∞∑
n=1

1

n2 = π2

6
,

the sequence (en) is a Hilbert basis of L2(]0, π [).

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

Definition 3.4.1 Let X be a real vector space and let A : X → X be a linear
mapping. The eigenvectors corresponding to the eigenvalue λ ∈ R are the nonzero
solutions of

Au = λu.

The multiplicity of λ is the dimension of the space of solutions. The eigenvalue λ is
simple if its multiplicity is equal to 1. The rank of A is the dimension of the range
of A.

Definition 3.4.2 Let X be a pre-Hilbert space. A symmetric operator is a linear
mapping A : X → X such that for every u, v ∈ X, (Au|v) = (u|Av).

Proposition 3.4.3 Let X be a pre-Hilbert space and A : X → X a symmetric
continuous operator. Then

||A|| = sup
u ∈ X||u|| = 1

|(Au|u)|.

Proof It is clear that

a = sup
u ∈ X||u|| = 1

|(Au|u)| ≤ b = sup
u, v ∈ X

||u|| = ||v|| = 1

|(Au|v)| = ||A||.

If ||u|| = ||v|| = 1, it follows from the parallelogram identity that
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|(Au|v)| = 1

4
|(A(u + v)|u + v) − (A(u − v)|u − v)|

≤ a

4
[||u + v||2 + ||u − v||2]

= a

4
[2||u||2 + 2||v||2] = a.

Hence b = a. 	


Corollary 3.4.4 Under the assumptions of the preceding proposition, there exists a
sequence (un) ⊂ X such that

||un|| = 1, ||Aun − λun|| → 0, |λ1| = ||A||.

Proof Consider a maximizing sequence (un):

||un|| = 1, |(Aun|un)| → sup
u ∈ X||u|| = 1

|(Au|u)| = ||A||.

By passing if necessary to a subsequence, we can assume that (Aun|un) → λ1,
|λ1| = ||A||. Hence

0 ≤ ||Aun − λ1un||2 = ||Aun||2 − 2λ1(Aun|un) + λ2
1||un||2

≤ 2λ2
1 − 2λ1(Aun|un) → 0, n → ∞. 	


Definition 3.4.5 Let X and Y be normed spaces. A mapping A : X → Y is compact
if the set {Au : u ∈ X, ||u|| ≤ 1} is precompact in Y .

By Proposition 3.2.1, every linear compact mapping is continuous.

Theorem 3.4.6 Let X be a Hilbert space and let A : X → X be a symmetric
compact operator. Then there exists an eigenvalue λ1 of A such that |λ1| = ||A||.
Proof We can assume that A �= 0. The preceding corollary implies the existence of
a sequence (un) ⊂ X such that

||un|| = 1, ||Aun − λ1un|| → 0, |λ1| = ||A||.

Passing if necessary to a subsequence, we can assume that Aun → v. Hence un →
u = λ−1

1 v, ||u|| = 1, and Au = λ1u. 	
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Theorem 3.4.7 (Poincaré’s principle) Let X be a Hilbert space and A : X → X

a symmetric compact operator with infinite rank. Let there be given the eigenvectors
(e1, . . . , en−1) and the corresponding eigenvalues (λ1, . . . , λn−1). Then there exists
an eigenvalue λn of A such that

|λn| = max
{|(Au|u)| : u ∈ X, ||u|| = 1, (u|e1) = . . . = (u|en−1) = 0

}

and λn → 0, n → ∞.

Proof The closed subspace of X

Xn = {
u ∈ X : (u|e1) = . . . = (u|en−1) = 0

}

is invariant by A. Indeed, if u ∈ Xn and 1 ≤ j ≤ n − 1, then

(Au|ej ) = (u|Aej ) = λj (u|ej ) = 0.

Hence An = A

∣∣∣
Xn

is a nonzero symmetric compact operator, and there exist an

eigenvalue λn of An such that |λn| = ||An|| and a corresponding eigenvector en ∈
Xn such that ||en|| = 1. By construction, the sequence (en) is orthonormal, and the
sequence (|λn|) is decreasing. Hence |λn| → d, n → ∞, and for j �= k,

||Aej − Aek||2 = λ2
j + λ2

k → 2d2, j, k → ∞.

Since A is compact, d = 0. 	


Theorem 3.4.8 Under the assumptions of the preceding theorem, for every u ∈ X,

the series
∞∑

n=1

(u|en)en converges and u −
∞∑

n=1

(u|en)en belongs to the kernel of A:

Au =
∞∑

n=1

λn(u|en)en. (*)

Proof For every k ≥ 1, u−
k∑

n=1

(u|en)en ∈ Xk+1. It follows from Proposition 3.3.8.

that
∣∣∣∣∣∣

∣∣∣∣∣∣
Au −

k∑
n=1

λn(u|en)en

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ ||Ak+1||

∣∣∣∣∣∣

∣∣∣∣∣∣
u −

k∑
n=1

(u|en)en

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ ||Ak+1|| ||u|| → 0, k → ∞.
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Bessel’s inequality implies that
∞∑

n=1

|(u|en)|2 ≤ ||u||2. We deduce from the Riesz–

Fischer theorem that
∞∑

n=1

(u|en)en converges to v ∈ X. Since A is continuous,

Av =
∞∑

n=1

λn(u|en)en = Au

and A(u − v) = 0. 	

Formula (∗) is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].
The first proof of the Banach–Steinhaus theorem in Sect. 3.2 is due to Favard

[22], and the second proof to Royden [66].
Theorem 3.2.10 is due to P.P. Zabreiko, Funct. Anal. and Appl. 3 (1969) 70-72.
Let us recall the elegant notion of vector space over the reals used by S. Banach

in [6] :

Suppose that a non-empty set E is given, and that to each ordered pair (x, y) of elements
of E there corresponds an element x + y of E (called the sum of x and y) and that for
each number t and x ∈ E an element tx of E (called the product of the number t with
the element x) is defined in such a way that these operations, namely addition and scalar
multiplication satisfy the following conditions (where x, y and z denote arbitrary elements
of E and a, b are numbers):

1) x + y = y + x,
2) x + (y + z) = (x + y) + z,
3) x + y = x + z implies y = z,
4) a(x + y) = ax + ay,
5) (a + b)x = ax + bx,
6) a(bx) = (ab)x,
7) 1 · x = x.

Under these hypotheses, we say that the set E constitutes a vector or linear space. It is
easy to see that there then exists exactly one element, which we denote by Θ , such that
x + Θ = x for all x ∈ E and that the equality ax = bx where x �= Θ yields a = b;
furthermore, that the equality ax = ay where a �= 0 implies x = y.

Put, further, by definition :

−x = (−1)x and x − y = x + (−y).

The space L1(RN) with the pointwise sum

(u + v)(x) = u(x) + v(x),
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and the scalar multiplication

(a · u)(x) = a u(x),

is not a vector space. Indeed one has in general to allow −∞ and +∞ as values
of the elements of L1(RN). Hence the pointwise sum and the scalar multiplication
by 0 are not, in general, well defined. On the other hand the space L1(Ω,μ), with
the pointwise sum and the scalar multiplication, is a vector space since it consists of
equivalence classes of μ-almost everywhere defined and finite function on Ω .

3.6 Exercises for Chap. 3

1. Prove that BC(Ω) ∩ L1(Ω) ⊂ L2(Ω).
2. Define a sequence (un) ⊂ BC(]0, 1[) such that ||un||1 → 0, ||un||2 = 1, and

||un||∞ → ∞.
3. Define a sequence (un) ⊂ BC(R) ∩ L1(R) such that ||un||1 → ∞, ||un||2 = 1

and ||un||∞ → 0.
4. Define a sequence (un) ⊂ BC(]0, 1[) converging simply to u such that

||un||∞ = ||u||∞ = ||un − u||∞ = 1.
5. Define a sequence (un) ⊂ L1(]0, 1[) such that ||un||1 → 0 and for every

0 < x < 1, lim
n→∞ un(x) = 1. Hint: Use characteristic functions of intervals.

6. On the space C([0, 1]) with the norm ||u||1 =
∫ 1

0
|u(x)|dx, is the linear

functional

f : C([0, 1]) → R : u �→ u(1/2)

continuous?
7. Let X be a normed space such that every normally convergent series converges.

Prove that X is a Banach space.
8. A linear functional defined on a normed space is continuous if and only if its

kernel is closed. If this is not the case, the kernel is dense.
9. Is it possible to derive the norm on L1(]0, 1[) (respectively BC(]0, 1[)) from a

scalar product?
10. Prove Lagrange’s identity in pre-Hilbert spaces:

∣∣∣∣||v||u − ||u||v∣∣∣∣2 = 2||u||2||v||2 − 2||u|| ||v||(u|v).

11. Let X be a pre-Hilbert space and u, v ∈ X \ {0}. Then

∣∣∣∣
∣∣∣∣

u

||u||2 − v

||v||2
∣∣∣∣
∣∣∣∣ = ||u − v||

||u|| ||v|| .
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Let f, g, h ∈ X. Prove Ptolemy’s inequality:

||f || ||g − h|| ≤ ||h|| ||f − g|| + ||g|| ||h − f ||.

12. (The Jordan–von Neumann theorem.) Assume that the parallelogram identity
is valid in the normed space X. Then it is possible to derive the norm from a
scalar product. Define

(u|v) = 1

4

(||u + v||2 − ||u − v||2).

Verify that

(f + g|h) + (f − g|h) = 2(f |h),

(u|h) + (v|h) = 2

(
u + v

2
|h

)
= (u + v|h).

13. Let f be a linear functional on L2(]0, 1[) such that u ≥ 0 ⇒ 〈f, u〉 ≥ 0. Prove,
by contradiction, that f is continuous with respect to the norm ||.||2. Prove that
f is not necessarily continuous with respect to the norm ||.||1.

14. Prove that every symmetric operator defined on a Hilbert space is continuous.
Hint: If this were not the case, there would exist a sequence (un) such that
||un|| = 1 and ||Aun|| → ∞. Then use the Banach–Steinhaus theorem to
obtain a contradiction.

15. In a Banach space an algebraic basis is either finite or uncountable. Hint: Use
Baire’s theorem.

16. Assume that μ(Ω) < ∞. Let (un) ⊂ L1(Ω,μ) be such that

(a) sup
n

∫

Ω

|un|�n(1 + |un|)dμ < +∞;

(b) (un) converges almost everywhere to u.

Then un → u in L1(Ω,μ).

17. Let us define, for n ≥ 1, un(x) = cos 3nx

n
.

(a) The series
∞∑

n=1

un converges in L2(]0, 2π [).

(b) For every x ∈ A = {2kπ/3j : j ∈ N, k ∈ Z},
∞∑

n=1

un(x) = +∞.

(c) For every x ∈ B = {(2k + 1)π/3j : j ∈ N, k ∈ Z},
∞∑

n=1

un(x) = −∞.

(d) The sets A and B are dense in R.


	3 Norms
	3.1 Banach Spaces
	3.2 Continuous Linear Mappings
	3.3 Hilbert Spaces
	3.4 Spectral Theory
	3.5 Comments
	3.6 Exercises for Chap.3


