Chapter 3 Norms

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role in functional analysis. Banach spaces are complete normed spaces. Completeness allows one to prove the convergence of a sequence or of a series without using the limit.

Definition 3.1.1 A norm on a real vector space X is a function

$$
X \to \mathbb{R} : u \mapsto ||u||
$$

such that

 (N_1) for every $u \in X \setminus \{0\}, ||u|| > 0;$ (\mathcal{N}_2) for every $u \in X$ and for $\alpha \in \mathbb{R}$, $||\alpha u|| = |\alpha| ||u||$; (N_3) (Minkowski's inequality) for every $u, v \in X$,

$$
||u + v|| \le ||u|| + ||v||.
$$

A (real) normed space is a (real) vector space together with a norm on that space.

Examples 1. Let $(X, ||.||)$ be a normed space and let Y be a subspace of X. The space Y together with $||.||$ (restricted to Y) is a normed space.

2. Let $(X_1, ||.||_1)$, $(X_2, ||.||_2)$ be normed spaces. The space $X_1 \times X_2$ together with

$$
||(u_1, u_2)|| = \max(||u_1||_1, ||u_2||_2)
$$

is a normed space.

© Springer Nature Switzerland AG 2022 M. Willem, *Functional Analysis*, Cornerstones, https://doi.org/10.1007/978-3-031-09149-0_3

3. We define the norm on the space \mathbb{R}^N to be

$$
|x|_{\infty} = \max\Big{|x_1|, \ldots, |x_N|\Big}.
$$

Every normed space is a metric space.

Proposition 3.1.2 *Let* X *be a normed space. The function*

$$
X \times X \to \mathbb{R} : (u, v) \mapsto ||u - v||
$$

is a distance on X*. The following mappings are continuous:*

$$
X \to \mathbb{R}: u \mapsto ||u||,
$$

\n
$$
X \times X \to X: (u, v) \mapsto u + v,
$$

\n
$$
\mathbb{R} \times X \to X: (\alpha, u) \mapsto \alpha u.
$$

Proof By \mathcal{N}_1 and \mathcal{N}_2 ,

$$
d(u, v) = 0 \iff u = v, \quad d(u, v) = || - (u - v)|| = ||v - u|| = d(v, u).
$$

Finally, by Minkowski's inequality,

$$
d(u, w) \le d(u, v) + d(v, w).
$$

Since by Minkowski's inequality,

$$
|||u|| - ||v||| \le ||u - v||,
$$

the norm is continuous on X . It is easy to verify the continuity of the sum and of the product by a scalar.

Definition 3.1.3 Let X be a normed space and $(u_n) \subset X$. The series $\sum_{n=1}^{\infty} u_n$ $n=0$

converges, and its sum is $u \in X$ if the sequence \sum k $n=0$ u_n converges to u . We then

write
$$
\sum_{n=0}^{\infty} u_n = u
$$
.
The series $\sum_{n=0}^{\infty} u_n$ converges normally if $\sum_{n=0}^{\infty} ||u_n|| < \infty$.

Definition 3.1.4 A Banach space is a complete normed space.

Proposition 3.1.5 *In a Banach space* X*, the following statements are equivalent:*

(a)
$$
\sum_{n=0}^{\infty} u_n
$$
 converges;
(b)
$$
\lim_{\substack{j \to \infty \\ j < k}} \sum_{n=j+1}^{k} u_n = 0.
$$

Proof Define $S_k = \sum$ k $n=0$ u_n . Since X is complete, we have

$$
(a) \iff \lim_{\substack{j \to \infty \\ j < k}} ||S_k - S_j|| = 0 \iff \lim_{\substack{j \to \infty \\ j < k}} \left\| \sum_{n=j+1}^k u_n \right\| = 0 \iff b). \quad \Box
$$

Proposition 3.1.6 *In a Banach space, every normally convergent series converges. Proof* Let $\sum_{n=1}^{\infty} u_n$ be a normally convergent series in the Banach space X. Minkowski's inequality implies that for $j < k$,

$$
\left\| \sum_{n=j+1}^k u_n \right\| \leq \sum_{n=j+1}^k ||u_n||.
$$

Since the series is normally convergent,

$$
\lim_{\substack{j \to \infty \\ j < k}} \sum_{n=j+1}^{k} ||u_n|| = 0.
$$

It suffices then to use the preceding proposition.

Examples 1. The space of bounded continuous functions on the metric space X,

$$
\mathcal{BC}(X) = \left\{ u \in \mathcal{C}(X) : \sup_{x \in X} |u(x)| < \infty \right\},\
$$

together with the norm

$$
||u||_{\infty} = \sup_{x \in X} |u(x)|,
$$

 \Box

is a Banach space. Convergence with respect to $||.||_{\infty}$ is uniform convergence.

2. Let μ be a positive measure on Ω . We denote by $L^1(\Omega, \mu)$ the quotient of \mathcal{L}^1 (Ω , μ) by the equivalence relation "equality almost everywhere". We define the norm

$$
||u||_1 = \int_{\Omega} |u| \, d\mu.
$$

Convergence with respect to $||.||_1$ is convergence in mean. We will prove in Sect. 4.2, on Lebesgue spaces, that $L^1(\Omega, \mu)$ is a Banach space.

3. Let Λ_N be the Lebesgue measure on the open subset Ω of \mathbb{R}^N . We denote by $L^1(\Omega)$ the space $L^1(\Omega, \Lambda_N)$. Convergence in mean is not implied by simple convergence, and almost everywhere convergence is not implied by convergence in mean.

If $m(\Omega) < \infty$, the comparison theorem implies that for every $u \in \mathcal{BC}(\Omega)$,

$$
||u||_1 = \int_{\Omega} |u| dx \leq m(\Omega) ||u||_{\infty}.
$$

Hence $\mathcal{BC}(\Omega) \subset L^1(\Omega)$, and the canonical injection is continuous, since

$$
||u - v||_1 \leq m(\Omega) ||u - v||_{\infty}.
$$

In order to characterize the convergence in $L^1(\Omega, \mu)$ we shall define the notions of convergence in measure and of equi-integrability.

We consider a positive measure μ on Ω . We identify two μ -measurable functions on Ω when they are μ -almost everywhere equal.

Definition 3.1.7 A sequence of measurable functions (u_n) converges in measure to a measurable function u if for every $t > 0$,

$$
\lim_{n\to\infty}\mu\{|u_n-u|>t\}=0.
$$

Proposition 3.1.8 Assume that the sequence (u_n) converges in measure to u.

Then there exists a subsequence (u_n) *converging almost everywhere to* u *on* Ω *.*

Proof There exists a subsequence (u_{n_k}) such that, for every k,

$$
\mu\{|u_{n_k}-u|>1/2^k\}\leq 1/2^k.
$$

Let us define

$$
A_k = \{ |u_{n_k} - u| > 1/2^k \}, \quad B_k = \Omega \setminus A_k
$$

and

$$
A = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k, \qquad B = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} B_k
$$

so that $A = \Omega \backslash B$. For every $x \in B$, there exists $j \ge 1$ such that

$$
k \ge j \Rightarrow |u_{n_k}(x) - u(x)| \le 1/2^k.
$$

Hence, for every $x \in B$, $\lim_{k \to \infty} u_{n_k}(x) = u(x)$.

Since, for every j ,

$$
\mu(A) \le \mu\left(\bigcup_{k=j}^{\infty} A_k\right) \le 2/2^j,
$$

we conclude that $\mu(A) = 0$.

Proposition 3.1.9 *Let* (u_n) *be a sequence of measurable functions such that*

- *(a)* (u_n) *converges to u almost everywhere on* Ω *,*
- *(b) for every* $\varepsilon > 0$ *, there exists a measurable subset* B *of* Ω *such that* $\mu(B) < \infty$ *and* sup n $\overline{}$ $|u_n|d\mu \leq \varepsilon.$

Then (u_n) converges in measure to u.

Proof Let $t > 0$ and let $\varepsilon > 0$. By assumption (b) there exists a measurable subset B of Ω such that $\mu(B) < \infty$ and sup $|u_n|d\mu \leq \varepsilon t/3$. It follows from Fatou's lemma that $|u|d\mu \leq \varepsilon t/3$. Lebesgue's dominated convergence theorem implies the existence of m such that

$$
n \geq m \Rightarrow \int_B X_{|u_n-u|>t} \, d\mu \leq \varepsilon/3.
$$

We conclude using Markov's inequality that, for $n > m$,

$$
\mu\{|u_n - u| > t\} \le \int_B \chi_{|u_n - u| > t} d\mu + \frac{1}{t} \int_{\Omega \setminus B} |u_n - u| d\mu
$$

$$
\le \frac{\varepsilon}{3} + \frac{1}{t} \int_{\Omega \setminus B} |u_n| d\mu + \frac{1}{t} \int_{\Omega \setminus B} |u| d\mu \le \varepsilon. \qquad \Box
$$

 \Box

Proposition 3.1.10 *Let* $u \in L^1(\Omega, \mu)$ *and let* $\varepsilon > 0$ *. Then*

(a) there exists δ > 0 *such that, for every measurable subset* A *of* Ω

$$
\mu(A) \leq \delta \Rightarrow \int_A |u| d\mu \leq \varepsilon \; ;
$$

- *(b) there exists a measurable subset B of* Ω *such that* $\mu(B) < \infty$ *and* $\overline{1}$ $|u|d\mu \leq \varepsilon.$
- *Proof* (a) By Lebesgue's dominated convergence theorem, there exists m such that

$$
\int_{|u|>m} |u|d\mu \leq \varepsilon/2.
$$

Let $\delta = \varepsilon/(2m)$. For every measurable subset A of Ω such that $\mu(A) < \delta$, we have that

$$
\int_A |u| d\mu \le m\mu(A) + \int_{|u|>m} |u| d\mu \le \varepsilon.
$$

(b) By Lebesgue's dominated convergence theorem, there exists n such that

$$
\int_{|u|\leq 1/n} |u|d\mu \leq \varepsilon.
$$

The set $B = { |u| > 1/n }$ is such that $\mu(B) < \infty$ and $\int_{\Omega \setminus B} |u| d\mu \le \varepsilon$. \Box

Definition 3.1.11 A subset S of $L^1(\Omega, \mu)$ is equi-integrable if

- (a) for every $\varepsilon > 0$, there exists $\delta > 0$ such that, for every measurable subset A of $Ω$ satisfying $μ(A) ≤ δ$, sup
 $e ∈ S$ $\overline{}$ $|u|d\mu \leq \varepsilon,$
- (b) for every $\varepsilon > 0$, there exists a measurable subset B of Ω such that $\mu(B) < \infty$ and sup u∈S $\overline{}$ $|u|d\mu \leq \varepsilon.$

Theorem 3.1.12 (Vitali) *Let* $(u_n) \subset L^1(\Omega, \mu)$ *and let u be a measurable function. Then the following properties are equivalent:*

- (a) $\|u_n u\|_1 \to 0, n \to \infty$,
- *(b)* (u_n) *converges in measure to* u *and* $\{u_n : n \in \mathbb{N}\}\)$ *is equi-integrable.*

Proof Assume that (a) is satisfied. Markov's inequality implies that, for every $t > 0$,

$$
\mu\{|u_n - u| > t\} \le \frac{1}{t} \|u_n - u\|_1 \to 0, n \to \infty.
$$

Let $\varepsilon > 0$. There exists *m* such that

$$
n \ge m \Rightarrow \|u_n - u\|_1 \le \varepsilon/2.
$$

In particular, for every measurable subset A of Ω and for every $n > m$,

$$
\int_A |u_n| d\mu \le \int_A |u| d\mu + \int_A |u_n - u| d\mu \le \int_A |u| d\mu + \varepsilon/2.
$$

Proposition [3.1.10](#page-5-0) implies the existence of $\delta > 0$ such that, for every measurable subset A of Ω ,

$$
\mu(A) \leq \delta \Rightarrow \int_A \sup \Bigl(2|u|, |u_1|, ..., |u_{m-1}|\Bigr) d\mu \leq \varepsilon.
$$

We conclude that, for every measurable subset A of Ω ,

$$
\mu(A) \leq \delta \Rightarrow \sup_{n} \int_{A} |u_{n}| d\mu \leq \varepsilon.
$$

Similarly, Proposition [3.1.10](#page-5-0) implies the existence of a measurable subset B of Ω such that $\mu(B) < \infty$ and

$$
\int_{\Omega\setminus B} \sup (2|u|, |u_1|, ..., |u_{m-1}|) d\mu \leq \varepsilon.
$$

We conclude that \sup_{n} $|u_n|d\mu \leq \varepsilon.$

Assume now that (b) is satisfied. Let $\varepsilon > 0$. By assumption, there exists $\delta > 0$ such that, for every measurable subset A of Ω ,

$$
\mu(A) \leq \delta \Rightarrow \sup_{n} \int_{A} |u_{n}| d\mu \leq \varepsilon,
$$

and there exists a measurable subset B of Ω such that $\mu(B) < \infty$ and

$$
\sup_n \int_{\Omega \setminus B} |u_n| d\mu \leq \varepsilon.
$$

We assume that $\mu(B) > 0$. The case $\mu(B) = 0$ is simpler. Since (u_n) converges in measure to u, Proposition [3.1.8](#page-3-0) implies the existence of a subsequence (u_{n_k}) such that $u_{n_k} \to u$ almost everywhere on Ω . It follows from Fatou's lemma that, for every measurable subset A of Ω ,

$$
\mu(A) \le \delta \Rightarrow \int_A |u| d\mu \le \varepsilon,
$$

and that

$$
\int_{\Omega\setminus B} |u|d\mu \leq \varepsilon.
$$

There exists also *m* such that

$$
n \ge m \Rightarrow \mu\{|u_n - u| > \varepsilon/\mu(B)\} \le \delta.
$$

Let us define $A_n = \{|u_n - u| > \varepsilon/\mu(B)\}\)$, so that, for $n \ge m$, $\mu(A_n) \le \delta$. For every $n \geq m$, we obtain

$$
\int_{\Omega} |u_n - u| d\mu \le \int_{\Omega \setminus B} |u_n| + |u| d\mu + \int_{A_n} |u_n| + |u| d\mu + \int_{B \setminus A_n} |u_n - u| d\mu
$$

$$
\le 4\varepsilon + \int_{B \setminus A_n} \varepsilon / \mu(B) d\mu \le 5\varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, the proof is complete.

The following characterization is due to de la Vallée Poussin.

Theorem 3.1.13 *Let* $S \subset L^1(\Omega, \mu)$ *be such that* $c = \sup_{\Omega} ||u||_1 < +\infty$ *. The* $u \in S$ *following properties are equivalent:*

(a) for every $\varepsilon > 0$ *there exists* $\delta > 0$ *such that, for every measurable subset* A *of* Ω

$$
\mu(A) \le \delta \Rightarrow \sup_{u \in S} \int_A |u| d\mu \le \varepsilon,
$$

(b) there exists a strictly increasing convex function $F : [0, +\infty) \to [0, +\infty)$ *such that*

$$
\lim_{t \to \infty} F(t)/t = +\infty, \quad M = \sup_{u \in S} \int_{\Omega} F(|u|) d\mu < +\infty.
$$

Proof Since, by Markov's inequality

$$
\sup_{u\in S}\mu\{|u|>t\}\leq c/t,
$$

assumption (a) implies the existence of a sequence (n_k) of integers such that, for every k,

$$
n_k < n_{k+1} \quad \text{and} \quad \sup_{u \in S} \int_{|u| > n_k} |u| \, d\mu \leq 1/2^k.
$$

Let us define $F(t) = t + \sum_{i=1}^{\infty}$ $k=1$ $(t - n_k)^+$. It is clear that F is strictly increasing and convex. Moreover, for every i ,

$$
t > 2n_{2j} \Rightarrow j \leq F(t)/t
$$

and, for every $u \in S$, by Levi's theorem,

$$
\int_{\Omega} F(|u|) d\mu = \int_{\Omega} |u| d\mu + \sum_{k=1}^{\infty} \int_{\Omega} (|u| - n_k)^{+} d\mu \le \int_{\Omega} |u| d\mu + \sum_{k=1}^{\infty} \int_{|u| > n_k} |u| d\mu \le c+1,
$$

so that S satisfies (b).

Assume now that S satisfies (b). Let $\varepsilon > 0$. There exists $s > 0$ such that for every $t > s$, $F(t)/t > 2M/\varepsilon$. Hence for every $u \in S$ we have that

$$
\int_{|u|>s}|u|d\mu \leq \frac{\varepsilon}{2M}\int_{|u|>s}F(|u|)d\mu \leq \varepsilon/2.
$$

We choose $\delta = \varepsilon/(2s)$. For every measurable subset A of Ω such that $\mu(A) \leq \delta$ and for every $u \in S$, we obtain

$$
\int_{A} |u| d\mu \leq s\mu(A) + \int_{|u|>s} |u| d\mu \leq \varepsilon.
$$

3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans définir l'opération que l'on considère, de même qu'on fait la théorie de l'addition sans définir la nature des termes à additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.

Proposition 3.2.1 *Let* X *and* Y *be normed spaces and* $A : X \rightarrow Y$ *a linear mapping. The following properties are equivalent:*

(a) A *is continuous;* (*b*) $c = \sup$ $u \in X$
 $u \neq 0$ $||Au||$ $\frac{1}{||u||} < \infty$.

Proof If $c < \infty$, we obtain

$$
||Au - Av|| = ||A(u - v)|| \le c||u - v||.
$$

Hence A is continuous.

If A is continuous, there exists $\delta > 0$ such that for every $u \in X$,

$$
||u|| = ||u - 0|| \le \delta \Rightarrow ||Au|| = ||Au - A0|| \le 1.
$$

Hence for every $u \in X \setminus \{0\}$,

$$
||Au|| = \frac{||u||}{\delta} ||A\left(\frac{\delta}{||u||}u\right)|| \le \frac{||u||}{\delta}.
$$

Proposition 3.2.2 *The function*

$$
||A|| = \sup_{\substack{u \in X \\ u \neq 0}} \frac{||Au||}{||u||} = \sup_{\substack{u \in X \\ ||u|| = 1}} ||Au||
$$

defines a norm on the space $\mathcal{L}(X, Y) = \{A : X \rightarrow Y : A \text{ is linear and continuous}\}.$

Proof By the preceding proposition, if $A \in \mathcal{L}(X, Y)$, then $0 \le ||A|| < \infty$. If $A \neq 0$, it is clear that $||A|| > 0$. It follows from axiom \mathcal{N}_2 that

$$
||\alpha A|| = \sup_{\substack{u \in X \\ ||u|| = 1}} ||\alpha A u|| = \sup_{\substack{u \in X \\ ||u|| = 1}} |\alpha| ||Au|| = |\alpha| ||A||.
$$

It follows from Minkowski's inequality that

$$
||A + B|| = \sup_{\substack{u \in X \\ ||u|| = 1}} ||Au + Bu|| \le \sup_{\substack{u \in X \\ ||u|| = 1}} (||Au|| + ||Bu||) \le ||A|| + ||B||.
$$

Proposition 3.2.3 (Extension by density) *Let* Z *be a dense subspace of a normed space X*, *Y a Banach space, and* $A \in \mathcal{L}(Z, Y)$ *. Then there exists a unique mapping* $B \in \mathcal{L}(X, Y)$ *such that* $B|_Z = A$ *. Moreover,* $||B|| = ||A||$ *.*

Proof Let $u \in X$. There exists a sequence $(u_n) \subset Z$ such that $u_n \to u$. The sequence (Au_n) is a Cauchy sequence, since

$$
||Au_j - Au_k|| \le ||A|| \, ||u_j - u_k|| \to 0, \quad j, k \to \infty
$$

by Proposition 1.2.3. We denote by f its limit. Let $(v_n) \subset Z$ be such that $v_n \to u$. We have

$$
||Av_n - Au_n|| \le ||A|| \, ||v_n - u_n|| \le ||A|| \, (||v_n - u|| + ||u - u_n||) \to 0, \quad n \to \infty.
$$

Hence $Av_n \to f$, and we define $Bu = f$. By Proposition [3.1.2,](#page-1-0) B is linear. Since for every n ,

$$
||Au_n|| \leq ||A|| \, ||u_n||,
$$

we obtain by Proposition [3.1.2](#page-1-0) that

$$
||Bu|| \le ||A|| \, ||u||.
$$

Hence B is continuous and $||B|| \le ||A||$. It is clear that $||A|| \le ||B||$. Hence $||A|| =$ $||B||.$

If $C \in \mathcal{L}(X, Y)$ is such that $C|_Z = A$, we obtain

$$
Cu = \lim_{n \to \infty} Cu_n = \lim_{n \to \infty} Au_n = \lim_{n \to \infty} Bu_n = Bu.
$$

Proposition 3.2.4 *Let* X and Y *be normed spaces, and let* $(A_n) \subset \mathcal{L}(X, Y)$ *and* $A \in \mathcal{L}(X, Y)$ *be such that* $||A_n - A|| \to 0$ *. Then* (A_n) *converges simply to* A*.*

Proof For every $u \in X$, we have

$$
||A_nu - Au|| = ||(A_n - A)u|| \le ||A_n - A|| ||u||.
$$

Proposition 3.2.5 *Let* Z *be a dense subset of a normed space* X*, let* Y *be a Banach space, and let* $(A_n) \subset \mathcal{L}(X, Y)$ *be such that*

- *(a)* $c = \sup ||A_n|| < \infty$;
- *(b) for every* $v \in Z$ *,* $(A_n v)$ *converges.*

Then A_n *converges simply to* $A \in \mathcal{L}(X, Y)$ *, and*

$$
||A|| \leq \lim_{n \to \infty} ||A_n||.
$$

Proof Let $u \in X$ and $\varepsilon > 0$. By density, there exists $v \in B(u, \varepsilon) \cap Z$. Since $(A_n v)$ converges, Proposition 1.2.3 implies the existence of n such that

$$
j, k \ge n \Rightarrow ||A_j v - A_k v|| \le \varepsilon.
$$

Hence for $j, k > n$, we have

$$
||A_j u - A_k u|| \le ||A_j u - A_j v|| + ||A_j v - A_k v|| + ||A_k v - A_k u||
$$

\n
$$
\le 2c ||u - v|| + \varepsilon
$$

\n
$$
= (2c + 1)\varepsilon.
$$

The sequence (A_nu) is a Cauchy sequence, since $\varepsilon > 0$ is arbitrary. Hence (A_nu) converges to a limit Au in the complete space Y. It follows from Proposition [3.1.2](#page-1-0) that A is linear and that

$$
||Au|| = \lim_{n \to \infty} ||A_n u|| \le \lim_{n \to \infty} ||A_n|| \, ||u||.
$$

But then A is continuous and $||A|| \le \lim_{n \to \infty} ||A_n||$.

Theorem 3.2.6 (Banach–Steinhaus theorem) *Let* X *be a Banach space, let* Y *be a* normed space, and let $(A_n) \subset \mathcal{L}(X, Y)$ be such that for every $u \in X$,

$$
\sup_n||A_nu||<\infty.
$$

Then

$$
\sup_n||A_n||<\infty.
$$

First Proof Theorem 1.3.13 applied to the sequence $F_n: u \mapsto ||A_n u||$ implies the existence of a ball $B(v, r)$ such that

$$
c = \sup_{n} \sup_{u \in B(v,r)} ||A_n u|| < \infty.
$$

It is clear that for every $y, z \in Y$,

$$
||y|| \le \max{||z + y||, ||z - y||}. \tag{*}
$$

Hence for every *n* and for every $w \in B(0, r)$, $||A_n w|| \leq c$, so that

$$
\sup_n ||A_n|| \leq c/r.
$$

$$
\Box
$$

Second Proof Assume to obtain a contradiction that $\sup_n ||A_n|| = +\infty$. By considering a subsequence, we assume that $n \frac{3^n}{2} \le ||A_n||$. Let us define inductively a sequence (u_n) . We choose $u_0 = 0$. There exists v_n such that $||v_n|| = 3^{-n}$ and $\frac{3}{4}3^{-n}||A_n|| \leq ||A_n v_n||$. By (*), replacing if necessary v_n by $-v_n$, we obtain

$$
\frac{3}{4}3^{-n}||A_n|| \leq ||A_n v_n|| \leq ||A_n(u_{n-1} + v_n)||.
$$

We define $u_n = u_{n-1} + v_n$, so that $||u_n - u_{n-1}|| = 3^{-n}$. It follows that for every $k \geq n$,

$$
||u_k - u_n|| \leq 3^{-n}/2.
$$

Hence (u_n) is a Cauchy sequence that converges to u in the complete space X. Moreover,

$$
||u - u_n|| \leq 3^{-n}/2.
$$

We conclude that

$$
||A_n u|| \ge ||A_n u_n|| - ||A_n (u_n - u)||
$$

\n
$$
\ge ||A_n|| \left[\frac{3}{4} 3^{-n} - ||u_n - u|| \right]
$$

\n
$$
\ge n \left[3^n \left[\frac{3}{4} 3^{-n} - \frac{1}{2} 3^{-n} \right] \right] = n/4.
$$

Corollary 3.2.7 *Let* X *be a Banach space,* Y *a normed space, and* $(A_n) \subset \mathcal{L}(X, Y)$ *a sequence converging simply to A. Then* (A_n) *is bounded,* $A \in \mathcal{L}(X, Y)$ *, and*

$$
||A|| \leq \lim_{n \to \infty} ||A_n||.
$$

Proof For every $u \in X$, the sequence $(A_n u)$ is convergent, hence bounded, by Proposition 1.2.3. The Banach–Steinhaus theorem implies that $\sup_{n} |A_n|| < \infty$. It follows from Proposition $3.1.2$ that A is linear and

$$
||Au|| = \lim_{n \to \infty} ||A_n u|| \le \lim_{n \to \infty} ||A_n|| ||u||,
$$

so that A is continuous and $||A|| \le \lim_{n \to \infty} ||A_n||$.

The preceding corollary explains why every natural linear mapping defined on a Banach space is continuous.

 \Box

Examples (Convergence of functionals) We define the linear continuous functionals f_n on $L^1(]0, 1[)$ to be

$$
\langle f_n, u \rangle = \int_0^1 u(x) x^n \, dx.
$$

Since for every $u \in L^1(0, 1)$ such that $||u||_1 = 1$, we have

$$
|\langle f_n, u \rangle| < \int_0^1 |u(x)| dx = 1,
$$

it is clear that

$$
||f_n|| = \sup_{\substack{u \in L^1 \\ ||u||_1 = 1}} |\langle f_n, u \rangle| \le 1.
$$

Choosing $v_k(x) = (k+1)x^k$, we obtain

$$
\lim_{k \to \infty} \langle f_n, v_k \rangle = \lim_{k \to \infty} \frac{k+1}{k+n+1} = 1.
$$

It follows that $||f_n|| = 1$, and for every $u \in L^1([0, 1])$ such that $||u||_1 = 1$,

$$
|\langle f_n, u \rangle| < ||f_n||.
$$

Lebesgue's dominated convergence theorem implies that (f_n) converges simply to $f = 0$. Observe that

$$
||f|| < \lim_{n \to \infty} ||f_n||.
$$

Definition 3.2.8 A seminorm on a real vector space X is a function $F: X \rightarrow$ $[0, +\infty[$ such that

- (a) for every $u \in X$ and for every $\alpha \in \mathbb{R}$, $F(\alpha u) = |\alpha| F(u)$, (positive homogeneity);
- (b) for every $u, v \in X$, $F(u + v) \leq F(u) + F(v)$, (subadditivity).

Examples (a) Any norm is a seminorm.

- (b) Let X be a real vector space, Y a normed space, and $A: X \rightarrow Y$ a linear mapping. The function F defined on X by $F(u) = ||Au||$ is a seminorm.
- (c) Let X be a normed space, Y a real vector space, and A: $X \rightarrow Y$ a surjective linear mapping. The function F defined on Y by

$$
F(v) = \inf \Biggl\{ \|u\| \colon Au = v \Biggr\}
$$

is a seminorm.

Proposition 3.2.9 *Let* F *be a seminorm defined on a normed space* X*. The following properties are equivalent*

(a) F *is continuous;* (b) $c = \sup_{x \in V} F(u) < \infty$. $u \in X$
|| u ||=1

Proof If F satisfies (b), then

$$
|F(u) - F(v)| \le F(u - v) \le c||u - v||,
$$

so that F is continuous.

 $k=1$

It is easy to prove that the continuity of F at 0 implies (b).

Let F be a seminorm on the normed space X and consider a convergent series $\sum_{k=1}^{\infty} u_k$. For every *n*,

$$
F\left(\sum_{k=1}^n u_k\right) \leq \sum_{k=1}^n F(u_k).
$$

If, moreover, F is continuous, it follows that

$$
F\left(\sum_{k=1}^{\infty} u_k\right) \leq \sum_{k=1}^{\infty} F(u_k) \leq +\infty.
$$

Zabreiko's theorem asserts that the converse is valid when X is a Banach space.

Theorem 3.2.10 *Let* X *be a Banach space and let* $F: X \rightarrow [0, +\infty[$ *be a seminorm such that, for any convergent series* [∞] $k=1$ u_k ,

$$
F\left(\sum_{k=1}^{\infty} u_k\right) \leq \sum_{k=1}^{\infty} F(u_k) \leq +\infty.
$$

Then F *is continuous.*

 \Box

Proof Let us define, for any $t > 0$, $G_t = \{u \in X : F(u) \le t\}$. Since $X = \bigcup_{k=0}^{\infty}$ $n=1$ G_n

Baire's theorem implies the existence of m such that G_m contains a closed ball $B[a, r]$. Using the propreties of F, we obtain

$$
B[0,r] \subset \frac{1}{2}B[a,r] + \frac{1}{2}B[-a,r] \subset \overline{G}_{m/2} + \overline{G}_{m/2} \subset \overline{G}_m.
$$

Let us define $t = m/r$, so that $B[0, 1]$ is contained in \overline{G}_t , and, for every k, B[0, $1/2^k$] is contained in $\overline{G}_{t/2^k}$. Let $u \in B[0, 1]$. There exists $u_1 \in G_t$ such that $||u - u_1|| \le 1/2$. We construct by induction a sequence (u_k) such that

$$
u_k \in G_{t/2^{k-1}}, \|u - u_1 - \ldots - u_k\| \leq 1/2^k.
$$

By assumption

$$
F(u) = F\left(\sum_{k=1}^{\infty} u_k\right) \le \sum_{k=1}^{\infty} F(u_k) \le \sum_{k=1}^{\infty} t/2^{k-1} = 2t.
$$

Since $u \in B[0, 1]$ is arbitrary, we obtain

$$
\sup_{\substack{u \in X \\ \|u\|=1}} F(u) \le 2t.
$$

It suffices then to use Proposition [3.2.9](#page-14-0).

Let A be a linear mapping between two normed spaces X and Y . If A is continuous, then the graph of A is closed in $X \times Y$:

$$
u_n \xrightarrow{X} u, A u_n \xrightarrow{Y} v \Rightarrow v = A u.
$$

The closed graph theorem, proven by S. Banach in 1932, asserts that the converse is valid when X and Y are Banach spaces.

Theorem 3.2.11 *Let* X *and* Y *be Banach spaces and let* $A: X \rightarrow Y$ *be a linear mapping with a closed graph. Then* A *is continuous.*

Proof Let us define on X the seminorm $F(u) = ||Au||$. Assume that the series $\sum_{i=1}^{\infty}$ $k=1$ u_k converges to u in X and that $\sum_{k=1}^{\infty}$ $k=1$ $F(u_k) < +\infty$. Since Y is a Banach space, $\sum_{i=1}^{\infty}$ $k=1$ Au_k converges to v in Y. But the graph of the linear mapping A is closed, so

that $v = Au$ and

$$
F(u) = \|Au\| = \|v\| = \|\sum_{k=1}^{\infty} Au_k\| \le \sum_{k=1}^{\infty} \|Au_k\| = \sum_{k=1}^{\infty} F(u_k).
$$

We conclude using Zabreiko's theorem:

$$
\sup_{\substack{u \in X \\ ||u|| = 1}} \|Au\| = \sup_{\substack{u \in X \\ ||u|| = 1}} F(u) < +\infty. \Box
$$

The *open mapping theorem* was proved by J. Schauder in 1930.

Theorem 3.2.12 *Let* X *and* Y *be Banach spaces and let* $A \in \mathcal{L}(X, Y)$ *be surjective. Then* $\{Au : u \in X, ||u|| < 1\}$ *is open in* Y.

Proof Let us define on Y the seminorm $F(v) = \inf\{\|u\| : Au = v\}$. Assume that the series $\sum_{n=1}^{\infty}$ $k=1$ v_k converges to v in Y and that \sum^{∞} $k=1$ $F(v_k)$ < $+\infty$. Let $\varepsilon > 0$. For every k, there exists $u_k \in X$ such that

$$
||u_k|| \leq F(v_k) + \varepsilon/2^k \quad \text{and} \quad Au_k = v_k.
$$

Since X is a Banach space, the series $\sum_{n=1}^{\infty}$ $k=1$ u_k converges to u in X . Hence we obtain

$$
||u|| \leq \sum_{k=1}^{\infty} ||u_k|| \leq \sum_{k=1}^{\infty} F(v_k) + \varepsilon
$$

and

$$
Au = \sum_{k=1}^{\infty} Au_k = \sum_{k=1}^{\infty} v_k = v,
$$

so that $F(v) \leq \sum_{n=1}^{\infty}$ $k=1$ $F(v_k) + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we conclude that $F(v) \leq$ $\sum_{i=1}^{\infty}$ $k=1$ $F(v_k)$. Zabreiko's theorem implies that

$$
\{Au: u \in X, ||u|| < 1\} = \{v \in Y: F(v) < 1\}
$$

is open in Y .

3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1 A scalar product on the (real) vector space X is a function

$$
X \times X \to \mathbb{R} : (u, v) \mapsto (u|v)
$$

such that

- (S_1) for every $u \in X \setminus \{0\}$, $(u|u) > 0$;
- (*S*₂) for every $u, v, w \in X$ and for every $\alpha, \beta \in \mathbb{R}$, $(\alpha u + \beta v | w) = \alpha(u | w) + \beta(u)$ $\beta(v|w)$;
- (S_3) for every $u, v \in X$, $(u|v) = (v|u)$.

We define $||u|| = \sqrt{u|u}$. A (real) pre-Hilbert space is a (real) vector space together with a scalar product on that space.

Proposition 3.3.2 *Let* $u, v, w \in X$ *and let* $\alpha, \beta \in \mathbb{R}$ *. Then*

(a) $(u|\alpha v + \beta w) = \alpha(u|v) + \beta(u|w)$; *(b)* $||\alpha u|| = |\alpha| ||u||$.

Proposition 3.3.3 *Let X be a pre-Hilbert space and let* $u, v \in X$ *. Then*

- *(a) (parallelogram identity)* $||u + v||^2 + ||u v||^2 = 2||u||^2 + 2||v||^2$;
- *(b) (polarization identity)* $(u|v) = \frac{1}{4} ||u + v||^2 \frac{1}{4} ||u v||^2$;
- *(c) (Pythagorean identity)* $(u|v) = 0 \Longleftrightarrow ||u + v||^2 = ||u||^2 + ||v||^2$.

Proof Observe that

$$
||u + v||2 = ||u||2 + 2(u|v) + ||v||2,
$$
\n(*)

$$
||u - v||2 = ||u||2 - 2(u|v) + ||v||2.
$$
 (**)

By adding and subtracting, we obtain parallelogram and polarization identities. The Pythagorean identity is clear.

Proposition 3.3.4 *Let* X *be a pre-Hilbert space and let* $u, v \in X$ *. Then*

- *(a) (Cauchy–Schwarz inequality)* $|(u|v)| \leq ||u|| \, ||v||$;
- *(b) (Minkowski's inequality)* $||u + v|| \le ||u|| + ||v||$ *.*

Proof It follows from (*) and (**) that for $||u|| = ||v|| = 1$,

$$
|(u|v)| \le \frac{1}{2} (||u||^2 + ||v||^2) = 1.
$$

Hence for $u \neq 0 \neq v$, we obtain

$$
\frac{|(u|v)|}{||u|| ||v||} = \left| \left(\frac{u}{||u||} \left| \frac{v}{||v||} \right) \right| \le 1.
$$

By (*) and the Cauchy–Schwarz inequality, we have

$$
||u + v||2 \le ||u||2 + 2||u|| ||v|| + ||v||2 = (||u|| + ||v||)2.
$$

Corollary 3.3.5 *(a) The function* $||u|| = \sqrt{u|u}$ *defines a norm on the pre-Hilbert space* X*.*

(b) The function

$$
X \times X \to \mathbb{R} : (u, v) \mapsto (u|v)
$$

is continuous.

Definition 3.3.6 A family $(e_j)_{j \in J}$ in a pre-Hilbert space X is orthonormal if

$$
(e_j|e_k) = 1, \t j = k,= 0, \t j \neq k.
$$

Proposition 3.3.7 (Bessel's inequality) *Let* (e_n) *be an orthonormal sequence in a pre-Hilbert space* X *and let* $u \in X$ *. Then*

$$
\sum_{n=0}^{\infty} |(u|e_n)|^2 \leq ||u||^2.
$$

Proof It follows from the Pythagorean identity that

$$
||u||^{2} = \left||u - \sum_{n=0}^{k} (u|e_{n})e_{n} + \sum_{n=0}^{k} (u|e_{n})e_{n} \right||^{2}
$$

=
$$
\left||u - \sum_{n=0}^{k} (u|e_{n})e_{n} \right||^{2} + \sum_{n=0}^{k} |(u|e_{n})|^{2}
$$

$$
\geq \sum_{n=0}^{k} |(u|e_{n})|^{2}.
$$

Proposition 3.3.8 *Let* (e_0, \ldots, e_k) *be a finite orthonormal sequence in a pre-Hilbert space* $X, u \in X$ *, and* $x_0, \ldots, x_k \in \mathbb{R}$ *. Then*

$$
\left\|u - \sum_{n=0}^k (u \mid e_n) e_n\right\| \le \left\|u - \sum_{n=0}^k x_n e_n\right\|.
$$

Proof It follows from the Pythagorean identity that

$$
\left\| u - \sum_{n=0}^{k} x_n e_n \right\|^2 = \left\| u - \sum_{n=0}^{k} (u \mid e_n) e_n + \sum_{n=0}^{k} ((u \mid e_n) - x_n) e_n \right\|^2
$$

$$
= \left\| u - \sum_{n=0}^{k} (u \mid e_n) e_n \right\|^2 + \sum_{n=0}^{k} |(u \mid e_n) - x_n|^2.
$$

Definition 3.3.9 A Hilbert basis of a pre-Hilbert space X is an orthonormal sequence generating a dense subspace of X.

Proposition 3.3.10 *Let* (e_n) *be a Hilbert basis of a pre-Hilbert space X and let* u ∈ X*. Then*

(a)
$$
u = \sum_{n=0}^{\infty} (u \mid e_n) e_n;
$$

\n(b) (Parseval's identity) $||u||^2 = \sum_{n=0}^{\infty} |(u \mid e_n)|^2.$

Proof Let $\varepsilon > 0$. By definition, there exists a sequence $x_0, \ldots, x_j \in \mathbb{R}$ such that

$$
||u - \sum_{n=0}^{j} x_n e_n|| < \varepsilon.
$$

It follows from the preceding proposition that for $k \geq j$,

$$
||u - \sum_{n=0}^k (u \mid e_n)e_n|| < \varepsilon.
$$

Hence $u = \sum^{\infty}$ $n=0$ $(u \mid e_n)e_n$, and by Proposition [3.1.2,](#page-1-0)

$$
\left\| \lim_{k \to \infty} \sum_{n=0}^{k} (u \mid e_n) e_n \right\|^2 = \lim_{k \to \infty} \left\| \sum_{n=0}^{k} (u \mid e_n) e_n \right\|^2 = \lim_{k \to \infty} \sum_{n=0}^{k} |(u \mid e_n)|^2 = \sum_{n=0}^{\infty} |(u \mid e_n)|^2.
$$

We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11 *Assume the existence of a sequence* (f_i) *generating a dense subset of the normed space* X*. Then* X *is separable.*

Proof By assumption, the space of (finite) linear combinations of (f_i) is dense in X. Hence the space of (finite) linear combinations with rational coefficients of (f_i) is dense in X . Since this space is countable, X is separable.

Proposition 3.3.12 *Let* X *be an infinite-dimensional pre-Hilbert space. The following properties are equivalent:*

- *(a)* X *is separable;*
- *(b)* X *has a Hilbert basis.*

Proof By the preceding proposition, (b) implies (a).

If X is separable, it contains a sequence (f_i) generating a dense subspace. We may assume that (f_i) is free. Since the dimension of X is infinite, the sequence (f_i) is infinite. We define by induction the sequences (g_n) and (e_n) :

$$
e_0 = f_0/||f_0||,
$$

\n
$$
g_n = f_n - \sum_{j=0}^{n-1} (f_n|e_j)e_j, e_n = g_n/||g_n||, \quad n \ge 1.
$$

The sequence (e_n) generated from (f_n) by the Gram–Schmidt orthonormalization process is a Hilbert basis of X.

Definition 3.3.13 A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Riesz–Fischer) *Let* (en) *be an orthonormal sequence in the Hilbert space* ^X*. The series* [∞] $n=0$ c_ne_n converges if and only if \sum^{∞} $n=0$ $c_n^2 < \infty$. Then $\begin{array}{c} \hline \end{array}$ $\sum_{n=0}^{\infty} c_n e_n$ $n=0$ $\begin{array}{c} \hline \end{array}$ $\sum^2 = \sum^{\infty} c_n^2.$ $n=0$

Proof Define $S_k = \sum$ k $n=0$ c_ne_n . The Pythagorean identity implies that for $j < k$,

$$
||S_k - S_j||^2 = \left\| \sum_{n=j+1}^k c_n e_n \right\|^2 = \sum_{n=j+1}^k c_n^2.
$$

Hence

$$
\lim_{\substack{j \to \infty \\ j < k}} ||S_k - S_j||^2 = 0 \Longleftrightarrow \lim_{\substack{j \to \infty \\ j < k}} \sum_{n=j+1}^k c_n^2 = 0 \Longleftrightarrow \sum_{n=0}^\infty c_n^2 < \infty.
$$

Since X is complete, (S_k) converges if and only if \sum^{∞} $n=0$ $c_n^2 < \infty$. Then \sum^{∞} $n=0$ $c_ne_n =$ $\lim_{k \to \infty} S_k$, and by Proposition [3.1.2](#page-1-0),

$$
||\lim_{k \to \infty} S_k||^2 = \lim_{k \to \infty} ||S_k||^2 = \lim_{k \to \infty} \sum_{n=0}^k c_n^2 = \sum_{n=0}^\infty c_n^2.
$$

Examples 1. Let μ be a positive measure on Ω . We denote by $L^2(\Omega, \mu)$ the quotient of

$$
\mathcal{L}^2(\Omega,\mu) = \left\{ u \in \mathcal{M}(\Omega,\mu) : \int_{\Omega} |u|^2 d\mu < \infty \right\}
$$

by the equivalence relation "equality almost everywhere." If $u, v \in L^2(\Omega, \mu)$, then $u + v \in L^2(\Omega, \mu)$. Indeed, almost everywhere on Ω , we have

$$
|u(x) + v(x)|^2 \le 2(|u(x)|^2 + |v(x)|^2).
$$

We define the scalar product

$$
(u|v) = \int_{\Omega} uv \, d\mu
$$

on the space $L^2(\Omega, \mu)$.

The scalar product is well defined, since almost everywhere on Ω ,

$$
|u(x) v(x)| \leq \frac{1}{2} (|u(x)|^2 + |v(x)|^2).
$$

By definition,

$$
||u||_2 = \left(\int_{\Omega} |u|^2 d\mu\right)^{1/2}.
$$

Convergence with respect to $||.||_2$ is convergence in quadratic mean. We will prove in Sect. 4.2, on Lebesgue spaces, that $L^2(\Omega, \mu)$ is a Hilbert space. If $\mu(\Omega) < \infty$, it follows from the Cauchy–Schwarz inequality that for every $u \in L^2(\Omega, \mu)$,

$$
||u||_1 = \int_{\Omega} |u| \, d\mu \le \mu(\Omega)^{1/2} ||u||_2.
$$

Hence $L^2(\Omega, \mu) \subset L^1(\Omega, \mu)$, and the canonical injection is continuous.

2. Let Λ_N be the Lebesgue measure on the open subset Ω of \mathbb{R}^N . We denote by $L^2(\Omega)$ the space $L^2(\Omega, \Lambda_N)$. Observe that

$$
\frac{1}{x} \in L^2(]1, \infty[)
$$
 $\setminus L^1(]1, \infty[)$ and $\frac{1}{\sqrt{x}} \in L^1(]0, 1[)$ $\setminus L^2(]0, 1[)$.

If $m(\Omega) < \infty$, the comparison theorem implies that for every $u \in \mathcal{BC}(\Omega)$,

$$
||u||_2^2 = \int_{\Omega} u^2 dx \le m(\Omega) ||u||_{\infty}^2.
$$

Hence $\mathcal{BC}(\Omega) \subset L^2(\Omega)$, and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945) *Let* (en) *be an orthonormal sequence* in $L^2($ a, *b*[). The following properties are equivalent:

(a) (en) *is a Hilbert basis; (b) for every* $a \le t \le b$, $\sum_{n=1}^{\infty} \left(\int_{0}^{t} dx \right)$ $n=1$ $\int_{a}^{t} e_n(x) dx$ $\bigg)^2 = t - a;$ (c) $\sum_{n=1}^{\infty} \int_{0}^{b}$ $n=1$ a $\int f^t$ $\int_{a}^{t} e_n(x) dx$ $\bigg)^2 dt = \frac{(b-a)^2}{2}.$

Proof Property (b) follows from (a) and Parseval's identity applied to $\chi_{[a,t]}$. Property (c) follows from (b) and Levi's theorem. The converse is left to the reader.

 \Box

Example The sequence $e_n(x) =$ $\sqrt{2}$ $\frac{2}{\pi}$ sin *n x* is orthonormal in $L^2(]0, \pi[$). Since

$$
\frac{2}{\pi} \sum_{n=1}^{\infty} \int_0^{\pi} \left(\int_0^t \sin n \, x \, dx \right)^2 dt = 3 \sum_{n=1}^{\infty} \frac{1}{n^2}
$$

and since by a classical identity due to Euler,

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},
$$

the sequence (e_n) is a Hilbert basis of $L^2(]0, \pi[$).

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

Definition 3.4.1 Let X be a real vector space and let $A : X \rightarrow X$ be a linear mapping. The eigenvectors corresponding to the eigenvalue $\lambda \in \mathbb{R}$ are the nonzero solutions of

$$
Au=\lambda u.
$$

The multiplicity of λ is the dimension of the space of solutions. The eigenvalue λ is simple if its multiplicity is equal to 1. The rank of A is the dimension of the range of A.

Definition 3.4.2 Let X be a pre-Hilbert space. A symmetric operator is a linear mapping $A: X \to X$ such that for every $u, v \in X$, $(Au|v) = (u|Av)$.

Proposition 3.4.3 *Let* X *be a pre-Hilbert space and* $A : X \rightarrow X$ *a symmetric continuous operator. Then*

$$
||A|| = \sup_{\substack{u \in X \\ ||u|| = 1}} |(Au|u)|.
$$

Proof It is clear that

$$
a = \sup_{\substack{u \in X \\ ||u|| = 1}} |(Au|u)| \le b = \sup_{\substack{u, v \in X \\ ||u|| = ||v|| = 1}} |(Au|v)| = ||A||.
$$

If $||u|| = ||v|| = 1$, it follows from the parallelogram identity that

$$
|(Au|v)| = \frac{1}{4} |(A(u+v)|u+v) - (A(u-v)|u-v)|
$$

\n
$$
\leq \frac{a}{4} [||u+v||^2 + ||u-v||^2]
$$

\n
$$
= \frac{a}{4} [2||u||^2 + 2||v||^2] = a.
$$

Hence $b = a$.

Corollary 3.4.4 *Under the assumptions of the preceding proposition, there exists a sequence* $(u_n) \subset X$ *such that*

$$
||u_n|| = 1, ||Au_n - \lambda u_n|| \to 0, |\lambda_1| = ||A||.
$$

Proof Consider a maximizing sequence (u_n) :

$$
||u_n|| = 1, |(Au_n|u_n)| \to \sup_{\substack{u \in X \\ ||u|| = 1}} |(Au|u)| = ||A||.
$$

By passing if necessary to a subsequence, we can assume that $(Au_n|u_n) \rightarrow \lambda_1$, $|\lambda_1| = ||A||$. Hence

$$
0 \le ||Au_n - \lambda_1 u_n||^2 = ||Au_n||^2 - 2\lambda_1 (Au_n |u_n) + \lambda_1^2 ||u_n||^2
$$

$$
\le 2\lambda_1^2 - 2\lambda_1 (Au_n |u_n) \to 0, \quad n \to \infty.
$$

Definition 3.4.5 Let X and Y be normed spaces. A mapping $A: X \rightarrow Y$ is compact if the set $\{Au: u \in X, ||u|| \leq 1\}$ is precompact in Y.

By Proposition [3.2.1](#page-9-0), every linear compact mapping is continuous.

Theorem 3.4.6 *Let X be a Hilbert space and let* $A: X \rightarrow X$ *be a symmetric compact operator. Then there exists an eigenvalue* λ_1 *of* A *such that* $|\lambda_1| = ||A||$ *.*

Proof We can assume that $A \neq 0$. The preceding corollary implies the existence of a sequence $(u_n) \subset X$ such that

$$
||u_n|| = 1, ||Au_n - \lambda_1 u_n|| \to 0, |\lambda_1| = ||A||.
$$

Passing if necessary to a subsequence, we can assume that $Au_n \to v$. Hence $u_n \to u = \lambda_1^{-1}v$, $||u|| = 1$, and $Au = \lambda_1 u$. $u = \lambda_1^{-1} v, ||u|| = 1, \text{ and } Au = \lambda_1 u.$

Theorem 3.4.7 (Poincaré's principle) Let X be a Hilbert space and $A: X \rightarrow X$ *a symmetric compact operator with infinite rank. Let there be given the eigenvectors* (e1,...,en−1) *and the corresponding eigenvalues* (λ1,...,λn−1)*. Then there exists an eigenvalue* λ_n *of* A *such that*

$$
|\lambda_n| = \max \{ |(Au|u)| : u \in X, ||u|| = 1, (u|e_1) = \ldots = (u|e_{n-1}) = 0 \}
$$

and $\lambda_n \to 0$, $n \to \infty$.

Proof The closed subspace of X

$$
X_n = \{u \in X : (u|e_1) = \ldots = (u|e_{n-1}) = 0\}
$$

is invariant by A. Indeed, if $u \in X_n$ and $1 \le j \le n - 1$, then

$$
(Au|e_j) = (u|Ae_j) = \lambda_j(u|e_j) = 0.
$$

Hence $A_n = A \bigg|_{X_n}$ is a nonzero symmetric compact operator, and there exist an eigenvalue λ_n of \overline{A}_n such that $|\lambda_n| = ||A_n||$ and a corresponding eigenvector $e_n \in$ X_n such that $||e_n|| = 1$. By construction, the sequence (e_n) is orthonormal, and the sequence $(|\lambda_n|)$ is decreasing. Hence $|\lambda_n| \to d$, $n \to \infty$, and for $j \neq k$,

$$
||Ae_j - Ae_k||^2 = \lambda_j^2 + \lambda_k^2 \to 2d^2, \quad j, k \to \infty.
$$

Since A is compact, $d = 0$.

Theorem 3.4.8 *Under the assumptions of the preceding theorem, for every* $u \in X$, *the series* $\sum_{n=1}^{\infty}$ $n=1$ $(u|e_n)e_n$ *converges and* $u - \sum_{n=0}^{\infty}$ $n=1$ (u|en)en *belongs to the kernel of* A*:*

$$
Au = \sum_{n=1}^{\infty} \lambda_n(u|e_n)e_n.
$$
 (*)

Proof For every $k \geq 1$, $u - \sum$ k $n=1$ $(u|e_n)e_n \in X_{k+1}$. It follows from Proposition [3.3.8](#page-19-0).

that

$$
\left\|Au - \sum_{n=1}^k \lambda_n(u|e_n)e_n\right\| \le ||A_{k+1}|| \left\|u - \sum_{n=1}^k (u|e_n)e_n\right\| \le ||A_{k+1}|| \ ||u|| \to 0, \ k \to \infty.
$$

$$
\Box
$$

Bessel's inequality implies that $\sum_{n=1}^{\infty} |(u|e_n)|^2 \le ||u||^2$. We deduce from the Riesz $n=1$ Fischer theorem that $\sum_{n=1}^{\infty}$ $n=1$ $(u|e_n)e_n$ converges to $v \in X$. Since A is continuous,

$$
Av = \sum_{n=1}^{\infty} \lambda_n(u|e_n)e_n = Au
$$

and $A(u - v) = 0$.

Formula (∗) is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].

The first proof of the Banach–Steinhaus theorem in Sect. [3.2](#page-8-0) is due to Favard [22], and the second proof to Royden [66].

Theorem [3.2.10](#page-14-1) is due to P.P. Zabreiko, *Funct. Anal. and Appl. 3 (1969) 70-72*. Let us recall the elegant notion of vector space over the reals used by S. Banach in [6] :

Suppose that a non-empty set E is given, and that to each ordered pair (x, y) of elements of E there corresponds an element $x + y$ of E (called the *sum* of x and y) and that for each number t and $x \in E$ an element tx of E (called the *product* of the number t with the element x) is defined in such a way that these operations, namely *addition* and *scalar multiplication* satisfy the following conditions (where x , y and z denote arbitrary elements of E and a, b are numbers):

1) $x + y = y + x$, 2) $x + (y + z) = (x + y) + z$, 3) $x + y = x + z$ *implies* $y = z$, 4) $a(x + y) = ax + ay$, 5) $(a + b)x = ax + bx$, 6) $a(bx) = (ab)x$, 7) $1 \cdot x = x$.

Under these hypotheses, we say that the set E constitutes a *vector* or *linear* space. It is easy to see that there then exists exactly one element, which we denote by Θ , such that $x + \Theta = x$ for all $x \in E$ and that the equality $ax = bx$ where $x \neq \Theta$ yields $a = b$; furthermore, that the equality $ax = ay$ where $a \neq 0$ implies $x = y$.

Put, further, by definition :

$$
-x = (-1)x
$$
 and $x - y = x + (-y)$.

The space $\mathcal{L}^1(\mathbb{R}^N)$ with the *pointwise sum*

$$
(u + v)(x) = u(x) + v(x),
$$

and the *scalar multiplication*

$$
(a\cdot u)(x)=a\ u(x),
$$

is *not* a vector space. Indeed one has in general to allow $-\infty$ and $+\infty$ as values of the elements of $\mathcal{L}^1(\mathbb{R}^N)$. Hence the pointwise sum and the scalar multiplication by 0 are not, in general, well defined. On the other hand the space $L^1(\Omega, \mu)$, with the pointwise sum and the scalar multiplication, is a vector space since it consists of equivalence classes of μ -almost everywhere defined and finite function on Ω .

3.6 Exercises for Chap. [3](#page-0-0)

- 1. Prove that $\mathcal{BC}(\Omega) \cap L^1(\Omega) \subset L^2(\Omega)$.
- 2. Define a sequence $(u_n) \subset BC(0, 1)$ such that $||u_n||_1 \to 0$, $||u_n||_2 = 1$, and $||u_n||_{\infty} \rightarrow \infty.$
- 3. Define a sequence $(u_n) \subset BC(\mathbb{R}) \cap L^1(\mathbb{R})$ such that $||u_n||_1 \to \infty$, $||u_n||_2 = 1$ and $||u_n||_{\infty} \to 0$.
- 4. Define a sequence $(u_n) \subset BC(0, 1)$ converging simply to u such that $||u_n||_{\infty} = ||u||_{\infty} = ||u_n - u||_{\infty} = 1.$
- 5. Define a sequence $(u_n) \subset L^1(0, 1)$ such that $||u_n||_1 \to 0$ and for every $0 < x < 1$, $\lim_{n \to \infty} u_n(x) = 1$. *Hint*: Use characteristic functions of intervals.
- 6. On the space $C([0, 1])$ with the norm $||u||_1$ = \int_0^1 $|u(x)|dx$, is the linear functional

$$
f:\mathcal{C}([0,1])\to\mathbb{R}:u\mapsto u(1/2)
$$

continuous?

- 7. Let X be a normed space such that every normally convergent series converges. Prove that X is a Banach space.
- 8. A linear functional defined on a normed space is continuous if and only if its kernel is closed. If this is not the case, the kernel is dense.
- 9. Is it possible to derive the norm on $L^1(]0, 1[)$ (respectively $\mathcal{BC}(]0, 1[)$) from a scalar product?
- 10. Prove *Lagrange's identity* in pre-Hilbert spaces:

$$
||||v||u - ||u||v||2 = 2||u||2||v||2 - 2||u|| ||v||(u|v).
$$

11. Let X be a pre-Hilbert space and $u, v \in X \setminus \{0\}$. Then

$$
\left| \left| \frac{u}{||u||^2} - \frac{v}{||v||^2} \right| \right| = \frac{||u - v||}{||u|| ||v||}.
$$

Let $f, g, h \in X$. Prove *Ptolemy's inequality*:

$$
||f|| ||g - h|| \le ||h|| ||f - g|| + ||g|| ||h - f||.
$$

12. (The Jordan–von Neumann theorem.) Assume that the parallelogram identity is valid in the normed space X . Then it is possible to derive the norm from a scalar product. Define

$$
(u|v) = \frac{1}{4} (||u + v||^2 - ||u - v||^2).
$$

Verify that

$$
(f + g|h) + (f - g|h) = 2(f|h),
$$

$$
(u|h) + (v|h) = 2\left(\frac{u+v}{2}|h\right) = (u+v|h).
$$

- 13. Let f be a linear functional on $L^2([0, 1])$ such that $u \ge 0 \Rightarrow \langle f, u \rangle \ge 0$. Prove, by contradiction, that f is continuous with respect to the norm $||.||_2$. Prove that f is not necessarily continuous with respect to the norm $||.||_1$.
- 14. Prove that every symmetric operator defined on a Hilbert space is continuous. *Hint*: If this were not the case, there would exist a sequence (u_n) such that $||u_n|| = 1$ and $||Au_n|| \rightarrow \infty$. Then use the Banach–Steinhaus theorem to obtain a contradiction.
- 15. In a Banach space an algebraic basis is either finite or uncountable. *Hint*: Use Baire's theorem.
- 16. Assume that $\mu(\Omega) < \infty$. Let $(u_n) \subset L^1(\Omega, \mu)$ be such that
	- (a) \sup_n $\overline{1}$ $\int_{\Omega} |u_n| \ell n (1 + |u_n|) d\mu < +\infty;$
	- (b) (u_n) converges almost everywhere to u .

Then $u_n \to u$ in $L^1(\Omega, \mu)$.

17. Let us define, for
$$
n \ge 1
$$
, $u_n(x) = \frac{\cos 3^n x}{n}$.

(a) The series
$$
\sum_{n=1}^{\infty} u_n
$$
 converges in $L^2(]0, 2\pi[$).

(b) For every $x \in A = \{2k\pi/3^j : j \in \mathbb{N}, k \in \mathbb{Z}\}, \sum_{n=1}^{\infty} u_n(x) = +\infty.$ $n=1$

(c) For every $x \in B = \{(2k+1)\pi/3^j : j \in \mathbb{N}, k \in \mathbb{Z}\},\sum^{\infty}$ $n=1$ $u_n(x) = -\infty.$

(d) The sets A and B are dense in \mathbb{R} .