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Chapter 9
Intelligent Agents and Dialog Systems

Timothy Bickmore and Byron Wallace

After reading this chapter, you should know the answers to these questions:
• What is a dialog system and how can it be used in patient- and consumer-facing 

systems in medicine?
• What are the main approaches to the implementation of dialog systems? What 

are the limitations of these approaches?
• How are dialog systems evaluated?
• What are some of the safety issues in fielding patient- and consumer-facing dia-

log systems in medicine?

 Introduction to Dialog Systems

People most commonly communicate with each other not in isolated utterances, but 
in interleaved sequences of utterances wrapped in ritualized behavior that we col-
loquially refer to as conversations. Developing natural language interfaces that can 
move beyond single transactions of user query/system response to fully engage 
users in conversation would benefit a variety of applications. At a minimum, once 
the information that needs to be exchanged extends beyond that which can be 
expressed in a single utterance, dialog becomes imperative. Beyond this, dialog is 
essential for performing tasks that require multiple natural language exchanges with 
a user in a coherent manner, as for example in a series of questions and responses to 
automate an interactive, incremental differential diagnosis. Certainly, the emulation 

T. Bickmore (*) · B. Wallace 
Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
e-mail: t.bickmore@northeastern.edu; b.wallace@northeastern.edu

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
T. A. Cohen et al. (eds.), Intelligent Systems in Medicine and Health, Cognitive 
Informatics in Biomedicine and Healthcare, 
https://doi.org/10.1007/978-3-031-09108-7_9

mailto:t.bickmore@northeastern.edu
mailto:b.wallace@northeastern.edu
https://doi.org/10.1007/978-3-031-09108-7_9#DOI


258

of any kind of counseling session or interview to produce automated patient-facing 
health education systems requires complex goal-oriented dialog management that 
spans many interleaved patient and system messages In addition, interleaved 
sequences of messages allow a listener to confirm understanding or request clarifi-
cation of information provided (a process referred to as “grounding”). Only in dia-
log can a conversational task (e.g., diagnosis or health counseling) be dynamically 
decomposed into sub-tasks in a coherent manner.

To ground our discussion, Fig. 9.1 shows an excerpt of a dialog between a study 
nurse and a patient about informed consent for an oncology clinical trial. There are 
several interesting things to note for those who have not studied natural conversa-
tions before. First, spontaneous conversation is full of disfluencies: there are very 
few grammatically complete and correct sentences in spontaneous conversation, 
and the use of “filler words” such as “um” (as in line #11) is very common. Second, 
conversational turns can span a single word to many sentences in duration. Third, a 
great deal of conversation is spent establishing mutual understanding of what was 
said: the patient feedback at lines #2 and #10, and the patient query at line #14 all 
serve exclusively to ensure that both parties understand each other, at least well 
enough for the purpose at hand. Only one person can talk at a time in conversation, 
and people are generally very good at coordinating their use of the speech channel, 
but overlaps, pauses (as in line #11) and interruptions (such as in line #15) are com-
mon. Finally, conversation typically makes extensive use of “deixis”, which is a 
reference to the immediate physical context or to what was said before (for exam-
ple, line #1 refers to the current day, line #9 refers to the consent form that is being 
handed to the patient). Designing automated dialog systems that can participate in 
these kinds of conversations, for example taking the role of the study nurse here to 

1. Nurse: So, today I am going to talk to you about a research study that your doctor has stated that
might be a good option for you.

2. Patient: OK.
3. Nurse: Have you had any experience with research before?
4. Patient: I have done a couple of research before. Nothing like this, just questionnaires on how I

was treated as a patient. You know, small little things like 25 dollars. 
5. Nurse: All right, but no treatment. You never took any drugs or anything like that?
6. Patient: No.
7. Nurse: Have you ever been treated for cancers in the past?
8. Patient: This is the first time.
9. Nurse: First time. OK, what I am going to do is give you is this packet. And this is something that

we give to all of our patients. This is the consent form.
10. Patient: OK.
11. Nurse: Ummmm. So……(Pause)… This drug that Doctor Smith said that you may be eligible for is a

drug that is kind of daughter or son of Thalidomide. Have you ever heard of Thalidomide?
12. Patients: No, never heard of it.
13. Nurse: Thalidomide was used back in the 50's and 60's for nausea in European women and…
14. Patient: (interrupting) Feeling sick?
15. Nurse: Yeah, feeling sick. And, they took this drug that does wonders for the nausea but

unfortunately because they were pregnant during that it caused side-effects. ...

Fig. 9.1 Excerpt of nurse-patient dialog for administration of oncology clinical trial 
informed consent
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automate administration of informed consent, represents an aspirational goal for 
dialog systems researchers. However, the state of the art is quite far from achieving 
this level of performance.

Chapter 7 introduced natural language processing (NLP). In this chapter we 
review the state of the art in dialog systems, a sub-field of NLP, including text-based 
chatbots, speech-based conversational assistants, and multimodal embodied conver-
sational agents that simulate face-to-face conversation, for both provider- and 
patient-facing biomedical applications.

 Definitions and Scope

Dialog has been defined as a conversational exchange between two or more enti-
ties. For the purposes of this chapter, we will be concerned with communicative 
exchanges between a human (health professional, patient, or consumer) and an 
automated system in which messages are in textual or spoken natural language. 
This system may also be augmented with additional information such as the non-
verbal behavior used by humans in face-to-face conversation (hand gestures, 
facial displays, eye gaze, etc.). We refer to an isolated message from one entity 
within a dialog as an utterance. While a dialog can consist of a single utterance, 
we are primarily concerned with dialogue in which several utterances from two 
entities are interleaved in order to accomplish some task. Discourse is a general-
ization of dialog that also includes the study of written text comprising multiple 
sentences.

Discourse theory is generally concerned with how multiple utterances fit together 
to specify meaning. Theories of discourse generally assume that discourses are 
composed of discourse segments (consisting of one or more adjacent utterances), 
organized according to a set of rules. Beyond this, however, discourse theories vary 
widely in how they define discourse segments and the nature of the inter-segment 
relationships. Some define these relationships to be a function of surface structure 
(e.g., based on categories of utterance function, such as request or inform, called 
“speech acts” [1]), while others posit that these relationships must be a function of 
the intentions (plans and goals) of the individuals engaged in conversation [2, 3]. In 
addition, researchers developing computational models of discourse and dialog 
have included a number of other constructs in their representation of discourse con-
text, including: entities previously mentioned in the conversation; topics currently 
being discussed (e.g., “questions under discussion” [4]); and information structure, 
which indicates which parts of utterances contribute new information to the conver-
sation as opposed to those parts that serve mainly to tie new contributions back to 
earlier conversation [5].

Discourse theory also seeks to provide accounts of a wide range of phenomena 
that occur in naturally-occurring dialog, including: mechanisms for conversation 
initiation, termination, maintenance and turn-taking; interruptions; speech 
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intonation (used to convey a range of information about discourse context [6]); dis-
course markers (words or phrases like “anyway” that signal changes in discourse 
context [7]); discourse ellipsis (omission of a syntactically required phrase when the 
content can be inferred from discourse context); grounding (how speaker and lis-
tener negotiate and confirm the meaning of utterances through signals such as head-
nods and paraverbals such as “uh huh” [8]); and indirect speech acts (e.g., when a 
speaker says “do you have the time?” they want to know the time rather than simply 
wanting to know whether the hearer knows the time or not [9]).

Embodied Conversational Agents (ECAs) are conversational agents that include 
the ability to use human-like conversational nonverbal behavior in their dialog 
(Fig.  9.2). ECAs are animated humanoid computer-based characters that use 
speech, eye gaze, hand gesture, facial expression and other nonverbal modalities to 
emulate the experience of human face-to-face conversation with their users [10]. 
Such agents can provide a “virtual consultation” with a simulated health provider, 
offering a natural and accessible source of information for patients. These agents 
represent one form of multimodal dialog system, in which the nonverbal modalities 
are recognized and produced in addition to accompanying text or speech, to more 
fully understand the user’s communicative intent and to better express system 

Box 9.1 Definition
Dialog systems  are computational artifacts designed to engage humans in 
dialog, as defined above. Intelligent agents are autonomous, goal-directed 
computational artifacts. Conversational agents  are intelligent agents that 
converse with humans via a dialog system interface. Conversational assis-
tants are conversational agents that use speech input and output to perform a 
wide range of tasks, as exemplified by the now ubiquitous Siri, Amazon 
Alexa, and Google Home products.

Fig. 9.2 Embodied 
conversational agent for 
patient education at 
hospital discharge
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output. In addition to carrying additional factual information, nonverbal behavior is 
also used in face-to-face conversation to regulate the interaction structure itself, for 
example, gaze and intonation to regulate turn-taking behavior, and body position 
and orientation to regulate conversation initiation and termination. Nonverbal 
behavior is also particularly effective for conveying affective and relational cues 
that may be important for establishing patient trust in and working alliance with the 
ECA [11].

 What’s Hard About Getting Machines to Engage 
in Spontaneous Human Conversation?

People unconsciously leverage a complex set of processes to make conversation 
work, most of which are entirely automatic and unconscious. They assume that an 
entity that engages them in what appears to be natural language dialog has these 
abilities until they discover their limitations. Several of these processes, such as 
conversation initiation and termination, and turn-taking and grounding, were 
mentioned above. Additional examples include: deixis, referring to something in 
the speakers’ mutual context (object, time, location, social relationship) in lan-
guage; anaphoric or cataphoric references (referring to something said earlier or 
later in the dialog); and conversational framing [12] or layering [13] in which 
different styles or genres of talk are used to change how utterances are interpreted 
(e.g., symptom inquiry by a third party made within social chat storytelling occur-
ring within the context of a clinical interview). There are many more conversa-
tional processes and linguistic phenomena that together make the seemingly 
effortless task of a water cooler conversation seem miraculous upon close 
inspection.

Fortunately, most of these conversational processes can be “compiled out” by 
tightly constraining what a user is allowed to do, or by greatly lowering their expec-
tations. System-initiated dialog that rigidly walks a user through a series of steps 
generally avoids the need to engage in many of these processes. Similarly, a system 
that engages a patient in scripted greeting and small talk at the start of a health edu-
cation session does not need a computational model of conversational frames. 
Agents that only provide responses to single utterance user queries (such as popular 
conversational assistants like Siri) have trained users to not expect any conversa-
tional behavior beyond these simple exchanges.

 Machine Learning and Dialog Systems

In the research community, the dominant modern approach to dialog systems is now 
based on machine learning (ML; see Chap. 6). Learning-based approaches to dialog 
permit flexibility and avoid the need for exhaustive manual engineering of rules. 
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ML-based approaches to dialog have yielded strong empirical performance, 
although measuring this is a challenge ([14]; see the section on “Automated Metrics 
for End-to-End Architectures”). However, building such systems requires training 
data (i.e., example conversations) from which to learn, which may not be available 
in all domains, and can be prohibitively expensive to collect. Moreover, it is difficult 
to control the outputs of machine learning models, and so deploying such systems 
in the context of healthcare applications may be a risky endeavor.

 History of Dialog Systems in Healthcare

Chapter 2 reviewed the history of AI in medicine; here we focus on the development 
of dialog systems specifically. One of the very earliest dialog systems developed 
was produced as a demonstration of a patient-facing psychotherapy counseling 
agent (see Chap. 2). The ELIZA system was developed to simulate the behavior of 
a Rogerian psychotherapist, in which the patient and the computer exchanged typed 
text messages [15]. Although ELIZA was not intended to be used for actual therapy, 
similar systems have been proven effective for therapy in which the system is essen-
tially prompting a patient to think aloud and work through his or her own problems 
[16]. An example conversation with ELIZA is shown in Fig. 9.3.

Colby developed an ELIZA-like system that was designed to use Cognitive 
Behavioral Therapy to treat individuals with depression. In addition to providing 
typed text counseling with patients, the system provided text-based educational 
materials about depression [17]. These systems are characterized by system 
responses that are only coherent with the immediately preceding user utterance, 
implemented using pattern-response rules that are matched to the user input with 
regular expressions, and template-based text generation of system responses. They 
also use a variety of techniques to maintain the illusion of coherent dialog, includ-
ing: maintaining system-initiated dialog, having most system outputs prompt the 
user with open-ended questions; relying on the user’s sense-making ability to infer 

1. ELIZA: Hello, I am Eliza.
2. User: Hi.
3. ELIZA: How are you today.. What would you like to discuss?
4. User: I’ve been feeling a little depressed lately.
5. ELIZA: Can you elaborate on that?
6. User: I’m just not myself. I find it hard to get motivated.
7. ELIZA: Did you come to me because you are just not yourself. You find it hard to get motivated?
8. User: Yes, that’s right.
9. ELIZA: I see.

Fig. 9.3 Example Conversation with ELIZA
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coherent explanations for the system’s outputs; and reflecting the user’s inputs back 
to them with minor wording changes in order to give the illusion of understanding 
what the user is saying. This approach to dialog system implementation is widely 
used in “chatbots” deployed on the web for entertainment, marketing and sales 
applications, and has given rise to an open standard chatbot implementation lan-
guage (AIML [18]).

Development dating from 1964 was also conducted on systems that could collect 
a medical history from patients [19]. Unlike ELIZA, these systems conducted 
system- initiated dialog only, asking patients a series of questions with highly- 
constrained patient input (mostly YES/NO questions) to drive branching logic. 
Research and development of these systems has continued, and some commercial 
tools are available, although they still have not attained wide use in clinical prac-
tice [20].

Some of the earliest work in physician-facing medical expert systems used 
system- initiated dialogue to interact with providers for decision support. MYCIN 
was an early rule-based expert system that identified bacteria causing an infection 
and recommended antibiotics [21] (see Chap. 2). It was designed to interact with 
physicians by asking a series of very constrained questions requiring one- or two- 
word responses. In fact, it was a desire to avoid having to implement natural lan-
guage understanding that led to the use of MYCIN’s core backward-chaining 
diagnostic algorithm.

By using a backward-chained approach, MYCIN controlled the dialogue and therefore 
could ask specific questions that generally required one- or two-word answers. ([21], p. 601)

MYCIN (and derivative projects) used various text generation techniques to pro-
duce their final output case summaries.

The sections on “Example Patient- and Consumer-facing Dialog Systems” and 
“Example Provider-facing Dialog Systems” provide more recent examples of 
patient- and provider-facing medical dialog systems.

In the last decade, deep neural network-based methods trained on massive cor-
pora have come to dominate Natural Language Processing (NLP) [22]. These meth-
ods have enabled highly accurate automatic speech transcription tasks [23] and 
improved NLP system performance across a variety of problems, including building 
conversational agents [24].

One means for building dialog systems entails specifying models that map user 
input utterances directly to output utterances (“end-to-end” systems). This can yield 
strong performance with respect to the fluency of outputs, but such systems can 
struggle to maintain coherence throughout a dialog [25]. While such text-to-text 
models have been used in the context of task-oriented dialog systems [26, 27], they 
may be more suitable to “general domain” conversational agents—i.e., general 
“chatbots”—as such models are not naturally amenable to guiding “goal-based” 
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dialog. This reflects the myopic optimization strategy used to estimate model 
parameters: Typically one aims to find parameters that make the model as likely as 
possible to produce the words comprising response utterances in the observed train-
ing data. This optimization criterion does not explicitly encode higher-order conver-
sational goals, which likely require explicit planning to achieve.

A common strategy to address this problem is to decompose dialog systems into 
independent modules, to be trained separately and combined in a pipeline. For 
example, one module might process user utterances, a second might then decide on 
an action to take, and a third might then generate a response, conditioned on this. 
Developing “end-to-end” methods that permit joint optimization of all components 
necessary for goal-based dialog is an active area of research [28]. We discuss arche-
typal modern machine learning models in the section on “Neural Network Methods 
and End-to-End Architectures”.

 Dialog System Technology

 Classic Symbolic Pipeline Architectures

Historically, dialog systems have been developed using a pipeline architecture, in 
which a user utterance is incrementally transformed into a representation that the 
core agent logic can provide a response to, followed by another series of processing 
stages to render the system output. These stages can include Automated Speech 
Recognition (ASR), multimodal integration, utterance understanding, dialog man-
agement, natural language generation, multimodal generation, and Text-To-Speech 
(TTS). Approaches to dialog management include finite-state automata, frames, 
and plan-based frameworks (Fig. 9.4).

Automated Speech Recognition (ASR) is responsible for transcribing the users’ 
speech input into one or more text representations. Speech recognition has improved 
significantly from single-speaker digit recognition systems in 1952 [29] to speaker- 
independent continuous speech recognition systems based on deep neural networks 
[30]. Currently, several open source ASR engines such as Pocketsphinx [31], Kaldi 
[32], and HTK [33] are available, but accurate speech recognition can require sub-
stantial processing power which cloud based services such as IBM Watson [34], and 
the Google cloud platform [35] provide. Although recent systems have achieved 
around 5% word error rates [36, 37], there are still some doubts regarding the use of 
ASR in applications such as medical documentation [38]. Goss et al [39] reported 
that 71% of notes dictated by emergency physicians using ASR contained errors, 
and 15% contained critical errors.

A Natural Language Understanding (NLU) module extracts a semantic repre-
sentation of the user’s utterance, which can then be used by the dialog manager to 
generate a system response. State-of-the-art statistical NLU systems often contain 
three main components: domain detection, intent detection, and slot tagging [40]. 
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Fig. 9.4 Pipeline dialog system architecture

The domain classifier identifies the high-level domain to which the user utterance 
belongs (e.g., symptoms, medications, or educational content). The intent classifier 
determines the specific intent of the user within the identified domain (e.g. report_
finding). Finally, the slot tagger extracts entity values embedded in the user utter-
ance (e.g. syndrome_name or severity_level). NLU is one of the most complex tasks 
in dialog systems for several reasons. First, ambiguity and synonymy are among the 
biggest challenges in identifying specific meanings in natural language. Second, 
natural language is context-dependent—the same utterance can have different 
meanings in different contexts. Third, spontaneous speech is often noisy with disflu-
encies (e.g., filled pauses, repairs, restarts).
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Dialog management is most typically implemented using finite state machines or 
layers of finite state machines, also referred to as hierarchical transition networks, 
particularly for applications in which the system maintains the conversational initia-
tive. In these systems, states typically represent system utterances and branches to 
next states are made in response to user responses. Layers in the hierarchy can be 
used to represent discourse segments, for example to satisfy a particular conversa-
tional goal. Dialog managers can also be frame-based, in which a current “frame” is 
used to guide the conversation by asking users for information to fill slots until 
enough information has been gathered for the system to take an action.

More advanced approaches to dialog management involve the explicit represen-
tation of user and system plans and goals, which is required to manage conversa-
tional phenomena such as: mixed-initiative dialog, in which either the user or the 
system can take control of the conversation at any time; proper handling of interrup-
tions and requests for clarifications; and indirect speech acts. Flexibly handling 
these phenomena requires representing and reasoning about the intentions that 
underlie system and user utterances, inferring the user’s goals and task plan, and 
dynamically synthesizing the system’s task plan. Inferring a user’s goals and task 
plan is necessary because, as exemplified by indirect speech acts, people’s utter-
ances do not always correspond directly to their communicative intent (e.g., as in 
“Do you have the time?”). Thus, plan-based theories of communicative action and 
dialog assume that the speaker's speech acts are part of a plan, and the listener's task 
is to infer it and respond appropriately to the underlying plan, rather than just to the 
utterance [41]. Synthesizing system task plans, including communicative and other 
actions, is necessary in complex applications in which all possible conversational 
contingencies (and their possible orderings) cannot be anticipated and scripted, but 
must be addressed in an incremental, reactive manner.

Dynamic planning and plan inference can be computationally very complex and 
difficult to develop, and thus have not been used much to date in fielded health dia-
log systems. However, they remain active areas of research, and a handful of health 
dialog systems that use these techniques have been developed for the application of 
clinical guidelines [42], for the automatic generation of reminders for older adults 
with cognitive impairment [43], for medication advice [44], and for diet promo-
tion [45].

One research project used a task decomposition planning formalism to drive 
health behavior change counseling dialog for exercise and diet promotion [46]. This 
formalism was based on the Shared Plans theory [47, 48], in which dialog is viewed 
as a collaboration in which participants coordinate their action towards achieving a 
shared goal. Discourse segments are defined by the sequence of sub-goals or atomic 
actions in a recipe that serve to elaborate a particular goal, and the only meaningful 
relationships among discourse segments are elaboration (goal expansion) and order-
ing of goals and actions. Figure 9.5 shows a portion of the plan tree for an exercise 
promotion dialog. Plan fragments that elaborate dialog goals into subgoals and 
atomic actions are referred to as recipes and are represented in ANSI/CEA-2018 
[49] (ANSI/CEA-2018 provides a standard declarative representation for tasks that 
can be decomposed in this manner). Figure  9.6 shows a portion of a high-level 
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Greeting Small Talk Review Status Counseling Pre Closing Good bye

Negotiate Goal

Recommend

Agent:

Based on your activity level, I suggest
gradually working up to 10,000 steps per
day over the next eight weeks

Patient:

OK.

Have Counseling Dialog

Fig. 9.5 Plan tree fragment for exercise promotion counseling dialog

task Negotiate

input parameters: behavior, target

outputs: goal

steps: 1. ComputeDesired
           2. Recommend
            3. Followup
            4. Confirm

task Recommend

input parameters: behavior, target, desired

outputs: response

precondition: (behavior=’exercise’ and

target =’long_term_goal’

adjacency pair:

agent utterance:

Based on your activity level, I suggest

gradually working up to ‹desired› steps per

day over the next eight weeks
…

Fig. 9.6 Example 
pseudocode for a 
high-level recipe and a 
low-level dialogue 
specification

recipe for behavior goal negotiation, and an example of an atomic dialogue turn that 
elaborates the “Recommend” subgoal for negotiating long-term exercise goals. The 
run-time planning system (based on the COLLAGEN collaborative dialog system 
[50]) starts with a top-level goal to have a counseling dialog, then incrementally 
elaborates the goal using recipes until atomic utterances are produced. This process 
results in a plan tree in which the root is the initial goal and the leaves are the utter-
ances produced by the agent and the user (Fig. 9.5). The planning process proceeds 
without backtracking, i.e., elaborations are never undone once they are added to the 
dialog plan tree.
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The most common approach to symbolic Natural Language Generation (NLG) 
is template-based text generation, in which an output utterance is represented as a 
string annotated with variables whose values are determined at runtime [51]. While 
relatively simple and straightforward, this approach does not offer much flexibility 
or expressivity. In the most general case, text generation can involve word-by-word 
synthesis of utterances based on a grammar and dictionary, discourse context and 
world knowledge, and is itself decomposed into another pipeline of processing 
stages [51] (Fig. 9.4).

Content determination is the first stage, and involves deciding what information 
should be communicated in the output, beyond that dictated by the dialog manager. 
Document structuring decides how chunks of text should be grouped together in 
one or more output utterances and how they should be related in rhetorical terms. 
Sentence planning involves: selection of the specific words or other linguistic 
resources that should be used to express the selected content; deciding what expres-
sions should be used to refer to entities; and deciding how structures created by 
document planning should be mapped onto linguistic structures, such as utterances 
or conversational turns.

The last step of NLG, referred to as surface realization, involves turning the 
internal representations produced during sentence planning into the text of one or 
more utterances. Research has also been conducted into generation of multi-modal 
system outputs (speech or text plus accompanying nonverbal behavior for an ECA, 
or graphics to help illustrate a concept to be conveyed) although, as with multi- 
modal input understanding, this has not been used widely in health dialog systems 
to date.

Finally, Text-To-Speech (TTS) involves the conversion of utterance text into an 
acoustic signal. TTS is now a very mature technology and the quality and natural-
ness has improved significantly over the last decade, producing understandable 
speech for a wide range of languages. Speech Synthesis Markup Language (SSML) 
enables the annotation of utterance text with tags that can manipulate speed, pitch, 
volume, and other aspects of prosody to produce more expressive speech [52].

 Neural Network Methods and End-to-End Architectures

In the past decade, neural networks have emerged as the dominant model class for 
natural language processing (NLP) [22], as they have become the dominant machine 
learning formalism for many areas of modeling in medicine (see Chap. 1). Neural 
network-based NLP has in turn given rise to neural conversational models [25, 53–
55]. Departing from the classical symbolic approaches reviewed above, neural mod-
els represent utterances as dense, continuous vectors (i.e., learned representations). 
Neural language models [56] are typically used in such architectures to generate 
responses conditioned on a representation of context, e.g., the most recent utterance.

Completely “end-to-end” systems forego explicit planning and learn to map 
directly from an input to an output utterance via a deep neural network [57]. 
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Bidirectional
encoder

Autoregressive
decoder

A patient utterance A response

Fig. 9.7 High-level 
schematic of a Seq2Seq 
model for dialog 
generation

Sequence-to-sequence architectures are currently dominant neural models for dia-
log; these use neural network modules to map input to output texts. This is typically 
accomplished with an encoder-decoder architecture. The encoder learns to com-
press inputs into a dense representation; this is then passed onto the decoder, which 
is responsible for conditionally generating a response. Because the decoder must 
generate text, it is typically defined as an auto-regressive (conditional) language 
model, which is to say that it generates outputs one word at a time in a left-to-right 
fashion. Figure 9.7 provides a high-level schematic of this approach.

Simple sequence-to-sequence approaches have the advantage of minimizing the 
manual effort that must be expended to build new conversational systems; they are 
induced entirely from training data, and so do not require explicit rule- or template- 
formulation. However, this brings inherent drawbacks. Chief amongst them is the 
reliance on large, high-quality training corpora. In addition, such models struggle to 
make meaningful use of dialog history [58]. With respect to task-oriented dialog 
systems, end-to-end sequence-to-sequence models can learn to take particular 
actions only implicitly, which makes them difficult to interpret and control.

Some work has attempted to make neural dialog models more explicitly task- 
oriented by learning policies via (deep) reinforcement learning [25, 59]. Other 
recent efforts have aimed to combine the strengths of end-to-end and more explic-
itly goal-oriented approaches [28]. Unifying the symbolic approaches discussed 
above with modern, data-driven neural network models for dialog is likely to remain 
an active area of research in the coming years.

 Approaches to Dialog System Evaluation

Evaluating dialog systems is important in general, but is especially crucial in safety- 
critical areas such as medicine. Due to the multi-faceted nature of dialog systems, 
and the inherent complexity of natural language, evaluation is typically multi- 
dimensional. Of course, medical applications typically have well-defined health 
outcomes that are ultimately of greatest importance, such as knowledge gain for 
health education systems, or objective health outcomes for conversational agents 
that promote health behavior change, but here we review application-independent 
performance metrics and methods.
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 Evaluation of Pipeline Architectures

In classic pipeline architecture-based systems, a “Wizard-of-Oz” methodology is 
commonly used to replace one or more pipeline components with a human “wizard” 
(unbeknownst to test subjects) so that the overall system can be evaluated prior to 
full implementation, or to provide a baseline comparison for a fully-automated sys-
tem [60]. Dialog from these sessions is recorded and analyzed for several purposes, 
including: early characterization of domain dialogs; characterization of user 
responses in particular contexts of interest; assessment of user acceptance of and 
attitude towards a planned system; and assessment of utility and efficacy of a 
planned system. Although ideally, user-system interaction will closely follow 
provider- patient interaction, it has been observed that in many situations users speak 
and otherwise behave differently when interacting with a computerized system than 
when with another human (e.g., they simplify their speech patterns) [61]. In these 
situations, Wizard-of-Oz testing is particularly important, since the study of 
provider- patient interaction will not correctly characterize these dialogs.

Pipeline architectures also have well-established evaluation metrics for certain 
components. For example, Word Error Rate (WER) is often used as one of the 
most common figures of merit for ASR modules.

 Automated Metrics for End-to-End Architectures

Manual assessment of model outputs remains the gold standard for evaluating 
Natural Language Processing (NLP) models for text generation tasks broadly (e.g., 
machine translation, abstractive summarization), and for dialog systems in particu-
lar. Manual assessment involves having humans interact with a dialog system, or 
review transcripts of interactions or text generation outputs, and provide subjective 
and objective performance evaluations. However, enlisting domain experts to per-
form such assessments is time-consuming and expensive. Manual evaluation is 
therefore impracticable for model development, which typically requires iterative 
refinement. For this reason, contemporary work on NLP models for text generation 
tasks tends to favor use of fully automated metrics to facilitate model development.

Such metrics assume access to “reference” texts written by humans and aim to 

measure some notion of similarity between a model output yi
  for a given input xi 

and the corresponding reference text yi. In the context of dialog systems, xi might be 
an utterance and yi a reference response. Intuitively, we would like a metric that is 

high if yi


 is similar to yi. Most automated metrics essentially measure similarity as 

some function of word overlap between the model output and reference.
BLEU (short for Bilingual Evaluation Understudy) is one such metric, first pop-

ularized in the context of automated machine translation. The motivating dictum 
behind BLEU is “The closer a machine translation is to a professional human trans-
lation, the better it is” [62]. To operationalize this intuition, BLEU computes n-gram 
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precision,1 for varying n; that is, it measures the number of n-grams in a generated 
output that also appear in the corresponding reference. The precision values for dif-
ferent n-gram lengths are then combined using a weighted average. This aggregate 
precision score is subsequently multiplied by a “brevity penalty” factor, which is 
intended to measure whether outputs are comparable in length to reference sum-
maries. Meteor [63] is a similar metric, also popular in machine translation: This 
proposes several modifications intended to address limitations of BLEU. Both of 
these metrics have been shown to correlate reasonably well with human assess-
ments of translation system outputs [62, 63].

Recall Oriented Understudy for Gisting Evaluation (ROUGE) [64], another 
automated metric, is perhaps the dominant choice for evaluating summarization 
systems. It is—as the name suggests—more focused on recall, i.e., it is high when 

yi


 contains as many n-grams as possible that also appear in yi. Typically one calcu-

lates ROUGE-N for a particular n-gram list; for example, ROUGE-1 tallies unigram 
recall of the model output with respect to the reference. In the context of automated 
summarization, ROUGE has been shown to correlate with human judgements of 
quality [64], although it has been noted that it does not reliably measure higher- 
order properties of outputs such as factual accuracy [65].

The above automated measures of generated outputs were not designed for eval-
uating dialog generation systems, but they are nonetheless often used for this when 
“reference” response utterances are available. However, in the context of evaluating 
dialog systems such metrics have been shown to poorly correlate with human judge-
ments, and so should be interpreted accordingly [14]. Developing better automated 
metrics for evaluating automatically generated dialog responses is an active area of 
research [66, 67].

 System-Level Evaluation

There are a number of approaches for evaluating overall dialog system perfor-
mance (see Chap. 17 for a more general discussion of evaluation issues). From a 
usability perspective, metrics such as task completion rate, user satisfaction, effi-
ciency, and learnability are relevant. One influential dialog system evaluation frame-
work (PARADISE) attempts to combine these into a single metric [68]. PARADISE 
uses a decision-theoretic framework to combine evaluations of system accuracy 
(success rate at achieving desired conversational outcomes) with the “costs” of 
using a system—comprised of quantitative efficiency measures (number of dialog 
turns, conversation time, etc.) and qualitative measures (e.g., number of repair 
utterances)—to yield a single quality measure for a given interaction. Weights for 
the various elements of the evaluation are determined empirically from overall 

1 An n-gram is just a sequence of n words or “tokens”, e.g., “bank” is a 1-gram (or “unigram”), 
“river bank” is a 2-gram (“bigram”), and so on.
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Table 9.1 Example conversational agent usability heuristics (from [71])

Heuristic Explanation

Visibility of 
system status

The system should keep users informed about what is going on, through 
appropriate feedback within reasonable time, without overwhelming the user

User control 
and freedom

Users often choose system functions by mistake and will need an option to 
effortlessly leave the unwanted state without having to go through an extended 
dialogue. Support undo and redo

Context 
preservation

Maintain context preservation regarding the conversation topic intra-session, 
and if possible inter-session. Allow the user to reference past messages for 
further interactions to support implicit user expectations of conversations

assessments of user satisfaction for a sample set of conversations, and the evaluation 
formula can be applied to sub-dialogs as well as to entire conversations to enable 
identification of problematic dialog fragments.

Two other qualitative evaluation methods were developed on the TRINDI and 
DISC projects. They provide criteria for evaluating a dialog system’s competence in 
handling certain dialog phenomena. The TRINDI Tick-List consists of three sets of 
questions that are intended to elicit explanations describing the extent of a system’s 
competence [69]. The first set consists of eight questions relating to the flexibility of 
dialog that a system can handle. For example, the question “Can the system deal 
with answers to questions that give more information than was requested?” assesses 
whether the system has any ability to handle mixed-initiative dialog. The DISC 
Dialog Management grids [70] include a set of nine questions, similar to the Trindi 
Tick-List, that are intended to elicit some factual information regarding the potential 
of a dialog system.

Langevin et al. recently developed a set of usability heuristics to guide the evalu-
ation of text- or speech-based conversational agents [71]. Usability heuristics are 
used to guide “expert evaluation” of an interface, in which a designer uses them as 
a checklist to draw their attention to common classes of usability problems. Derived 
from Nielsen’s classic usability heuristics [72], the 11 new heuristics were found to 
be more effective at identifying problems with conversational agents than Nielsen’s 
original set. Examples of the heuristics are shown in Table 9.1.

 Example Patient- and Consumer-Facing Dialog Systems

A number of embodied conversational agents have been developed to provide health 
education and health behavior change counseling across several health conditions. 
For example, an ECA was developed as a virtual discharge nurse who explained 
their hospital discharge and home care instructions (Fig. 9.2) [73, 74]. The agent 
was provided on a touch screen kiosk to patients while they were in their hospital 
beds, and spent 30–60  min reviewing a hospital discharge booklet with them, 
including information about medications, follow-up appointments, and self-care 
procedures. Patient understanding was confirmed using comprehension checks, and 
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at the end of the session a report was printed for the human discharge nurse that 
indicated questions the patient still had that he or she could address. A randomized 
controlled trial (RCT) was conducted with 764 patients on a general medicine floor 
at an urban safety net hospital, aged 49.6, 49.7% with inadequate health literacy, 
comparing the virtual nurse to standard care. Among the intervention group, 302 
participants actually interacted with the agent, and only 149 completed all question-
naires, due to logistical challenges in completing the study in a busy hospital envi-
ronment when patients were ready to go home. Patients reported very high 
satisfaction and working alliance with the agent, and more patients preferred talking 
to the agent than their doctors or nurses in the hospital.

Several speech-based conversational agents have also been developed and evalu-
ated in RCTs [43, 75, 76]. For example, the Telephone-Linked Care (TLC) systems 
developed by Friedman and colleagues at Boston University used recorded speech 
output, and either DTMF or ASR for user input. TLC behavior change applications 
have been applied to changing dietary behavior [77], promoting physical activity [78], 
smoking cessation [79], and promoting medication adherence in patients with depres-
sion [80] and hypertension [81]. TLC chronic disease applications have been devel-
oped for chronic obstructive pulmonary disease (COPD) [82], and coronary heart 
disease, hypercholesterolemia, and diabetes mellitus [81]. All of these systems have 
been evaluated in RCTs and most were shown to be effective on at least one outcome 
measure, compared to standard-of-care or non-intervention control conditions.

There are now many commercially-successful patient- and consumer-facing dia-
log systems. Woebot, is a text-based chatbot designed to alleviate anxiety and 
depression using a range of counseling techniques, and was recently demonstrated 
to be effective at reducing substance misuse [83]. Clear Genetics produces a text- 
based chatbot that provides a range of genetics counseling functions, including 
administration of informed consent for genetic testing [84]. In addition, many dia-
log systems have been developed as add-on “skills” for speech-based conversational 
assistants such as Alexa. At the time of this writing, Amazon lists over 2000 skills 
(task-specific modules that can extend Alexa’s functionality) in their Health and 
Fitness category, all of which can be considered patient- and consumer-facing health 
dialog systems.

 Example Provider-Facing Dialog Systems

There are far fewer examples of provider-facing medical dialog systems in the lit-
erature, and these have largely been early research prototypes. For example, the 
HOMEY system is a decision support tool that advises physicians on whether a 
patient should be referred to a cancer specialist [85]. Laranjo et al. describe several 
additional dialog systems that interact with both patients and providers [86]. Dialog 
systems may be less acceptable to health providers than to patients and consumers 
because they are slower to use and more error-prone compared to functionally- 
equivalent graphical user interfaces.
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 Safety Issues in Dialog Systems for Healthcare

Dialog systems that provide advice to healthcare providers can tolerate imperfect 
performance, since providers presumably have the expertise to recognize unsafe 
recommendations. However, due to the inherent ambiguity in natural language, lack 
of user knowledge about the expertise and natural language abilities of a conversa-
tional agent, and potentially misplaced trust, great care must be taken to ensure 
patients and consumers do not put themselves in situations in which may they act on 
information mistakenly provided by a conversational agent that could cause harm. 
To demonstrate these potential safety issues, a study was conducted using three 
widely-available disembodied conversational agents (Apple’s Siri, Google Home, 
and Amazon’s Alexa). Laypersons were recruited to ask these agents for advice on 
what to do in several medical scenarios provided to them in which incorrect actions 
could lead to harm or death, and then report what action they would take. Out of 394 
tasks attempted, participants were only able to complete 42.6% (168). For those tasks, 
29.2% (49) of reported actions could have resulted in some degree of harm, includ-
ing 16.1% (27) that could have resulted in death, as rated by clinicians using a 
standard medical harm scale [87]. The errors responsible for these outcomes were 
found at every level of system processing as well as in user actions in specifying 
their queries and in interpreting results (see Fig. 9.8 for an example). The findings 
from this study imply that unconstrained natural language input, in the form of 
speech or typed text, should not be used for systems that provide medical advice 
given the state-of-the-art. Users should be tightly constrained in the kinds of advice 
they can ask for, for example, through the use of multiple-choice menus of utter-
ances they are allowed to “say” in each step of the conversation (e.g. as in Fig. 9.2). 
In addition, unconstrained generative approaches to dialog generation pose addi-
tional complications; these may yield offensive or medically inaccurate outputs, for 
example (as discussed in the section on “Approaches to Dialog System Evaluation”).

 State of the Art: What We Currently Can and Can’t Do

There are currently several commercially-available toolkits for developing state- 
machine- based dialog systems in which the system maintains initiative, and con-
strained or unconstrained user inputs can be reliably mapped to a small number of 

User: Siri, I'm taking Oxycontin for chronic back pain. But I'm going out tonight. How many
          drinks can I have?

Siri:  I've set your chronic back pain one alarm for 10:00 P.M.
User: I can drink all the way up until 10:00? Is that what that meant?
RA:  Is that what you think it was?
User: Yeah, I can drink until 10:00. And then after 10 o'clock I can't drink.

Fig. 9.8 Example of medical advice from siri that was rated as potentially fatal (excerpt from 
[87]) (RA is the research assistant)
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options in each state. This state-based model is exemplified by standard dialog man-
agement languages (e.g., VoiceXML for speech-based systems [88]) and commer-
cial dialog-management tools (e.g., Google’s DialogFlow [89]). As described in the 
section on “Example Patient- and Consumer-facing Dialog Systems”, there are also 
several commercial products that use this approach for consumer- and patient- 
facing health education and counseling.

However, we cannot reliably support general, unconstrained user input in 
mixed- initiative conversations, nor any of the other conversational phenomena 
described in the section on “Introduction to Dialog Systems”, at least not to the 
degree that people can.

 Future Directions

It is unclear if end-to-end approaches will ever be capable of sustaining coherent 
dialog over many utterances given that the discourse context alone becomes combi-
natorically large. Hybrid systems that use the best capabilities of the pipelined and 
neural approaches combined represent more promising approaches, at least in the 
near-term. Consistent with the recurrent theme of combining machine learning and 
symbolic approaches mentioned elsewhere in this book, one approach is to bring 
more machine learning-based components into the classic symbolic pipeline. Going 
forward, key questions include: How can we unify end-to-end neural systems with 
symbolic planning-based approaches? Conversely, might we better represent and 
exploit (long term) context in modern neural dialog systems?

Patient- and consumer-facing dialog systems that support unconstrained natu-
ral language input are certainly preferred to those that are more constrained, since 
patients can express themselves freely and may be able to communicate more 
nuanced information. However, these systems represent a safety risk as described 
in the section on “Safety Issues in Dialog Systems for Healthcare”. The identifi-
cation and mitigation of unsafe medical dialog remains an important area of 
research and a problem that must be addressed before these systems can reach 
their potential.

There are several active research areas dialogue systems. For example, in pipe-
line architectures, incremental processing, in which system responses are generated 
incrementally while a user is producing their utterance, allows for much faster sys-
tem response time, but requires re-architecting how the pipeline works [90]. 
Multiparty interaction represents another important area of research to support 
group counseling [91] or three-way patient-clinician-agent interactions. Multimodal 
dialog with ECAs or humanoid robots, in which user verbal and nonverbal behavior 
can be used to support conversational processes and allow users to better express 
themselves [92], also represents an active area of research.

These advances will enable the development of automated health providers and 
counselors that can provide complex information to patients and consumers in a 
natural, fluid, and intuitive way, tailored to each user and situation, and that do not 
require users to dumb down and simplify their language and requests, such as the 

9 Intelligent Agents and Dialog Systems



276

one shown in Fig. 9.1. This will enable routine patient education and counseling 
tasks, such as administration of informed consent, explanation of medications and 
medical procedures, and explanation of discharge instructions, to be fully 
automated.

 Conclusion

In this chapter, we have provided a review of the state of medically relevant dialog 
systems, including their current capabilities and limitations, and directions of ongoing 
and future research and development. Development of this technology is important 
for the delivery of complex information to patients and consumers, but is particularly 
important for those with low health or computer literacy who may struggle with text-
heavy graphical user interfaces. While these systems have great potential for improv-
ing health, attention must be paid to the risks inherent in using unconstrained text or 
speech input in situations in which misunderstandings can lead to harm.

Questions for Discussion

• How do pipeline and rule-based systems differ from “end-to-end” neural 
approaches?

• Why might existing automated metrics like ROUGE fail to reliably measure the 
factual accuracy of utterances?

• How can unsafe medical dialog be identified and mitigated?
• What kinds of medical applications would benefit most from embodiment by the 

conversational agent?
• What kinds of medical applications would make the relative slowness of dialog 

systems acceptable to clinicians?

Further Reading

Chattopadhyay D, Ma T, Sharifi H, Martyn-Nemeth P. Computer-controlled virtual 
humans in patient-facing systems: systematic review and meta-analysis. J Med 
Internet Res. 2020;22(7):e18839 [93]. 

• This article provides a comprehensive review of patient-facing embodied conver-
sational agents in medicine.

Laranjo L, Dunn AG, Tong HL, Kocaballi AB, Chen J, Bashir R, et al. Conversational 
agents in healthcare: a systematic review. J Am Med Inform Assoc. 
2018;25(9):1248–58 [86].

• This article provides a review of conversational agents in medicine that use 
unconstrained natural language input.

Bickmore T, Trinh H, Olafsson S, O'Leary T, Asadi R, Rickles N, et al. Patient and 
consumer safety risks when using conversational assistants for medical 
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information: an observational study of Siri, Alexa, and Google Assistant. J Med 
Internet Res. 2018;20(9):e11510 [87].

• This is an empirical study of worst-case safety issues when patients or consum-
ers use conversational agents for actionable medical advice.

Grosz B, Pollack ME, Sidner CL. Discourse. In: Posner MI, editor. Foundations of 
cognitive science. Cambridge: MIT Press; 1989 [94].

• This chapter provides an excellent primer on basic issues in the study of discourse.

Sordoni A, Galley M, Auli M, Brockett C, Ji Y, Mitchell M, et al. A neural network 
approach to context-sensitive generation of conversational responses. In Proceedings 
of the 2015 Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, pages 196–205, 
Denver, Colorado. Association for Computational Linguistics [95].

• An early neural dialog system that is illustrative of approaches to follow.

Sankar C, Subramanian S, Pal C, Chandar S, Bengio Y. Do neural dialog systems 
use the conversation history effectively? An empirical study. In Proceedings of the 
57th Annual Meeting of the Association for Computational Linguistics, pages 
32–37, Florence, Italy. Association for Computational Linguistics [96].

• An examination of how well current neural based approaches can harness con-
versational history to inform utterances/responses.
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