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Chapter 8
Explainability in Medical AI

Ron C. Li, Naveen Muthu, Tina Hernandez-Boussard, Dev Dash, 
and Nigam H. Shah

After reading this chapter, you should know the answers to these questions:
•	 What are the current trends in AI explainability research?
•	 What types of explainability paradigms can be conferred onto different machine 

learning (ML) models?
•	 What are the different methods by which ML models can be explained?
•	 How can principles of cognitive informatics be applied to explainability in 

medical AI?
•	 What is an ‘emergent property’ of a sociotechnical system?
•	 What regulatory frameworks have been put forth with regards to accountability 

of ML models?

�Introduction

The current paradigm of artificial intelligence (AI) in medicine primarily relies on 
machine learning (ML) models as a means to provide insights—typically in the 
form of a diagnosis or prognosis—that can affect the health of individuals and popu-
lations. A model learned from past data is often a trigger that invokes a series of 
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actions comprising a care workflow. We define a model as a function learned from 
data that maps a vector of predictors to a real-valued response. Predictors are also 
referred to as inputs, features, or variables; response is referred to as an outcome, 
output, label, or task. The “logic” of how ML models generate their estimates, and 
how those estimates translate into recommendations in the context of explicit or 
implicit policies, is often difficult for human beings to understand.

The high complexity and dimensionality of the relationships that ML models 
derive from data are often not interpretable by human reasoning, which is why 
many ML models are often referred to as “black box” models. However, we have 
known for decades that explainability is an important attribute of any human rea-
soning process (see Chap. 5) and clinicians have historically named it as a top 
requirement for a clinical decision support system [1]. Because model generated 
recommendations in medicine can affect high stakes decisions, the discussion 
around the “explainability” of both the model’s output and the policy that trans-
lates that output into actions is particularly relevant for the safe and effective use 
of this technology.

�Current Trends in AI Explainability Research

Explainability of ML models has been deeply explored across academia, industry, 
and government as a potentially critical component of applying AI into health care 
in a way that is usable, transparent, and trustworthy [2]. Key themes from current 
work in explainability center on how it is defined, the methods by which it can be 
achieved for different ML models, how it is evaluated, and whether it is truly useful 
when applying AI in healthcare settings [3]. Based on the current consensus defini-
tion of explainability, a ML model is considered explainable if the explanation satis-
fies two criteria: (1) it is “interpretable,” meaning that the logic the model 
incorporates to make predictions is understandable by humans, and (2) it has fidel-
ity, meaning that the explanation faithfully reflects the underlying logic of the task 
model (the model making predictions) [4].

There are now a range of methods described in the literature to generate expla-
nations that attempt to satisfy these criteria, albeit with varying degrees of success 
[5]. These methods can be broadly divided into two categories: (1) using aspects of 
the model’s intrinsic architecture (e.g. beta coefficients from a linear regression) to 
derive explanations, which can only be done for certain model architectures, and 
(2) post hoc methods, where separate interpretable models are developed to accom-
pany the original, potentially “black box”, model in order to approximate explana-
tions between model features and the outcome. The majority of such post hoc 
methods fall into the category of attribution-based explanations, which use a vari-
ety of quantitative methods to attempt to measure the relative importance of the 
task model features in determining the outcome. These methods are typically 
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applicable to more complex and non-linear model architectures such as neural 
networks that may deliver higher predictive performance at the expense of the lack 
of intrinsic model interpretability. Nevertheless, while these computational strate-
gies can be used to approximate the relative importance of model variables, they 
do not reflect the true inner workings of the task model logic, so they may not 
satisfy the fidelity clause of explainability. Further, statistical explanations, even 
for the more “easily explainable” linear task models, still require an additional 
layer of human interpretation that can vary and may not faithfully reflect the under-
lying model mechanism.

In light of these limitations, whether explainability is truly useful when applying 
AI to health care continues to be debated. Explainable models are thought to facili-
tate users’ ability to understand and improve the model, discover new insights 
learned from the model, and even to be more empowered to manage social interac-
tions with other humans when using the model [6]. Qualitative stakeholder studies 
have also indicated that clinicians seem to want to understand explainable variables 
when exposed to predictive models in order to assess whether they align with their 
clinical judgement [7]. The healthcare AI field has indeed been moving forward, 
with increasing interest demonstrated in government research and development, 
venture capital and industry, as well as in professional societies as these entities 
encourage the development of methods, financing, and regulations that encourage 
explainability in medical AI [8, 9]. However, there remains some skepticism that 
explainability can truly enhance the usefulness of AI in health care, as well as con-
cern that it may even lead to harm. For example, explanations, especially if they do 
not sufficiently satisfy the clauses of interpretability and fidelity, may give users a 
false sense of security, especially since they typically require some level of statisti-
cal comprehension and nuance to understand them, even for linear models [10].

�Applying Additional Context to Understand Explainability 
in Medical AI

How we think about the meaning and purpose of explainability and its incorporation 
deserves deeper examination because the answers to these questions may depend on 
the context in which the model is deployed. This chapter applies principles of cog-
nitive informatics to delve into these questions. Consider the following hypotheti-
cal scenarios:

	1.	 An AI software product is used to analyze chest CTs as part of an automated 
system for lung cancer screening. Patients with chest CTs that are flagged by the 
AI software as high risk are automatically referred for biopsy.

	2.	 A physician and nurse for a hospitalized patient each receives an AI generated 
alert that a patient for whom they both are caring is at risk of developing respira-
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tory failure in the near future and recommends mechanical ventilation. They 
proceed to meet and discuss next steps for the patient’s clinical management.

	3.	 A consumer smartwatch outfitted with AI capabilities, detects cardiac arrhyth-
mias and notifies a user that an irregular heart rate has been detected recom-
mending that the user consult a physician for further evaluation. After performing 
a full clinical assessment, the physician orders a continuous cardiac monitoring 
study for a formal diagnostic evaluation.

Although each scenario includes an AI solution, the nature of the task performed 
by the AI enabled tool and how it is incorporated into patient care differ. The first 
scenario describes an AI approach that drives the diagnosis of lung cancer and auto-
matically triggers an intervention without any mediation by humans. The second AI 
scenario also drives the diagnostic and management process for a high risk medical 
condition, but the process is mediated by humans. In example three, the AI system 
supplies diagnostic insights, but is intended only to be supplementary information 
for a formal evaluation; however, at the population level the use of such a system 
does impact the total amount of work done by those that have to perform the formal 
evaluation.

The level of risk associated with the task and extent of human involvement in the 
delivery of care has broad implications for how to approach the purpose of AI 
explainability as well as the kinds of explanations provided. For example, in sce-
nario one, where the system drives high stakes clinical care without any mediation 
by human clinicians, it may be important for patients, as well as the clinicians, to 
understand the tool’s “reasoning” behind its conclusions, similar to how a patient 
would want a physician to explain the reasoning behind a cancer diagnosis. The 
health system employing this AI solution and regulatory bodies may also require 
in-depth understanding of how the ML model generates its predictions and the level 
of model performance for quality assurance. In scenario two, the AI system inter-
acts with human clinicians who need to synthesize the prediction with the rest of 
their clinical evaluation in order to make a decision about the patient’s management. 
While the clinicians need to trust the tool for its advice to be adopted, the mechanics 
of how the ML model generated the prediction may be less important to the clini-
cians than a conceptual understanding of why the program predicted this patient to 
be at risk that they can mentally incorporate into the rest of their clinical assessment. 
In scenario three, trust in the AI advisor is similarly important, but insight into the 
“how” and “why” of the AI prediction may be less relevant to the non-clinician 
layperson user since the AI prediction is only meant to be supplemental to a formal 
evaluation by a physician and does not directly drive care management.

These scenarios demonstrate that the thinking around the need for AI explain-
ability must move beyond a binary “yes/no” paradigm to it depends and for what 
purpose? Explainability can be for several purposes: understanding how the rela-
tionships between variables generate the output of the ML model, a conceptual 
appreciation for why certain predictions are formed from the available data, or sim-
ply as a surrogate for trust in the model’s performance. As illustrated by these 
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scenarios, the purpose of explainability depends on the nature of the task, the 
recipient(s) of the predictions, and the broader environment in which the AI system 
is deployed.

Deciding the appropriate purposes of AI explainability requires an understanding 
of how AI interacts with human users and the implications these interactions have 
on downstream clinical outcomes. In order to capture the depth and breadth of how 
explainability affects medical AI, we must consider three levels of impact that 
explainability can have on how AI systems are shaped: information processing by 
the individual human user, the interactions between people and AI agents, and the 
emergent properties of the broader AI-enabled sociotechnical system.

For example, when assessing how to incorporate AI explainability into scenario 
two, we would first consider what the physician and nurse individually need to 
understand about the prediction in order to make sense of it in the context of their 
understanding of the patient (i.e. do they need to understand how the program gen-
erated the prediction of respiratory failure in order to make sense of the rest of the 
patient’s clinical findings or do they primarily need to know that the predictions are 
rarely wrong). Second, we would query how explainability would affect the ability 
of the physician and nurse to interact with the AI agent to make shared decisions 
(i.e. given the social nature of human cognition, can the AI system function as an 
effective teammate?) Finally, these interactions with the AI system and the physi-
cian and nurse may have downstream ripple effects that may ultimately affect the 
clinical outcomes in unpredictable ways, such as impact on communication pat-
terns, culture, and patient safety.

The goals of this chapter are (1) to describe the different purposes of AI explain-
ability, (2) to present a framework for assessing the different needs for AI explain-
ability by examining how an AI system interacts with human cognitive processes 
situated in sociotechnical systems, and (3) to discuss how this framework can be 
applied to real world examples of AI in medicine and implications for regulatory 
approaches.

�Three Purposes of AI Explainability

Explainability is a tricky notion given the lack of consensus in the form of explain-
ability desired and when. For AI systems in medicine, we consider three purposes of 
explainability: (1) to allow the study of a ML model and perform quality assurance 
and/or improvements, (2) to help the user(s) of the AI system to gain contextual 
understanding of the model’s prediction in order to incorporate into their subsequent 
decisions and actions, and (3) to facilitate trust in AI systems (Chap. 18) [11]. To the 
ML engineer, explainability often refers to the ability to articulate which variables 
and their combinations, in what manner, led to the output produced by the model 
[12]. This approach to explainability requires an understanding of the computational 
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relationships among the variables and architecture needed to generate the model out-
puts, which is often highly complex in ML. For example, an ML model that predicts 
respiratory failure may generate predictions from hundreds of thousands of features 
derived from clinical data that may not be clinically meaningful (e.g. the log of the 
mean blood pressure over 24 h cubed), and the computational relationships among 
these features are often high dimensional and difficult to represent in any clinically 
understandable way. Sometimes, features may be included in an ML model due to 
pure statistical associations but not indicate any potential causal relationship that 
would be helpful to a clinician seeking insight into what about a patient’s clinical 
status may be increasing their risk of respiratory failure (e.g. hair color may be a 
feature in a model that predicts respiratory failure given a possible statistical associa-
tion in the training set, but this would not offer a clinically meaningful explanation 
for why the patient may be a risk for respiratory failure). The purpose of this type of 
explainability is typically to allow engineers to perform quality assurance and to 
replicate or improve on the ML model, whereas a user of the AI system, such as a 
clinician or patient, may not find this type of explanation helpful (Fig. 8.1).

To the clinician or patient user of medical AI, explainability is more likely to be 
important for enriching their understanding of the prediction in the context of the 
clinical situation and providing information that would allow them to trust the per-
formance of the AI system. For example, a team of physicians and nurses who are 
alerted by an AI system that their patient is at risk of going into respiratory failure 
and that the situation may warrant mechanical ventilation will typically want to 
understand which clinical variables contributed most to the model’s prediction. 
Here, explainability allows the clinician users to make sense of the prediction in the 
context of the rest of their evaluation as well as potentially to use that information 
to tailor their subsequent decisions and actions to respond to the risk. The precise 

Fig. 8.1  Intersecting 
purposes for AI model 
explainability. One model 
may benefit from one or a 
combination of purposes 
depending on end-user and 
stakeholder needs
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mathematical representation of the features is likely far less important to the clinical 
team than an understanding that the AI system detected the patient’s deteriorating 
mental status and increasing respiratory rate over the past 12 h as factors contribut-
ing to the risk of needing mechanical ventilation. Such summative insight, along 
with information about the model’s accuracy and how it was trained and validated 
may be enough to trust the AI system even without an in-depth trace-back of the 
inner workings of the model. To a layperson user of the AI system, such as the 
owner of the AI-enabled smartwatch in scenario three that detected an arrhythmia, 
understanding the context of the prediction may even be less important than having 
information to trust the system, especially if the information generated is only sup-
plemental to an evaluation by a physician.

Sometimes, the same information about explainability can be applied to all three 
purposes of model engineering, enriching user understanding, and facilitating trust. 
For example, the commonly used Pooled Cohort Equations for the prediction of 
10 year risk of atherosclerotic cardiovascular disease (ASCVD) is a linear regression 
that relies on variables including age, sex, race, blood pressure, cholesterol, history 
of diabetes, smoking history, and use of antihypertensive, statin, or anti-platelet med-
ications [13]. These variables all happen to also be components of a patient’s medical 
history that a physician would review to assess ASCVD risk, so knowledge of these 
variables and weights would fulfill the purposes of understanding the inner mechan-
ics of the model as well as deriving clinically meaningful explanations for the 
patient’s clinical condition and facilitating trust in the model prediction.

Given two models of equal performance, one a black-box and one an explainable 
model, most users, when asked, prefer the explainable model [14]. However, in 
many practical scenarios, models that may not be as easily interpreted can lead to 
better end user outcomes and may even be desirable in certain situations [15]. For 
example, when users are asked to accept or reject the price of a New York City 
apartment based on an explainable model, which tells them the features used such 
as the number of bedrooms and bathrooms, the distance to subways or schools) or a 
black box model which does not, the participants receiving explanation were more 
likely to accept wrong predictions than those who were shown the black box output.

In parallel, it is worth considering whether rigorous validation and high accuracy 
and consistency of the ML model alone could be sufficient for building user trust 
[16]. For example, one does not need to have an explainable model for a rain fore-
cast as long as it is correct enough, often enough, to rely on to carry an umbrella. 
Trust in the model’s output can be established by rigorous testing and prospective 
assessment of how often the model’s predictions are correct and calibrated, and for 
assessing the impact of the interventions on the outcome. At the same time, prospec-
tive assessment can be costly.

A request for “explainability” in medical AI can be separated into a request for 
explaining model mechanics (perhaps better phrased as transparency of the model-
ing), a need by the user to understand the clinical context of the AI predictions, or a 
need to establish user trust. We will explore how principles of cognitive informatics 
can be applied to untangle the kind of explainability needed in a particular 
application.
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�Expanding the Conception of AI Explainability Based 
on Cognitive Informatics

As discussed in the section on “Three Purposes of AI Explainability”, the current 
science has already established that explainability is not a single easily-defined con-
struct that can be conceived as present or absent, and is substantially dependent on 
what “explainability” is meant to help the person receiving the “explanation” 
accomplish. In addition to the concepts of causality, surrogacy for trust and func-
tional understanding of AI construction for an engineer, knowledge from cognitive 
informatics and related disciplines also suggest numerous nuances to “explainabil-
ity” that need to be further explored. Specifically, theories of human information 
processing, conceptions of humans interacting with AI agents, and complex socio-
technical systems theory all suggest that there is yet much to be learned about how 
explainability is applicable to healthcare settings.

�Human Information Processing

Consider the physician in the second example presented at the beginning of the 
chapter: while the physician having a difficult conversation with a patient about a 
poor prognosis, the physician is interrupted by an alert that suggests that a different 
patient in a different building is at risk of developing respiratory failure and may 
need escalation of care and mechanical ventilation. How will the physician respond? 
Will the physician leave the conversation? Seek more information? Dismiss 
the alert?

Models of human information processing have been part of the cognitive psy-
chology and human factors literature for decades (see also Chaps. 1 and 5). Early 
models were developed in the 1950s and 1960s [17]. At their most basic, these 
human information processor models note that there’s a layer of information pro-
cessing between human perception of inputs/stimuli (involving encoding perceived 
stimuli in the context of mental models, comparing various options and choosing a 
response) and outputs/execution of action. Importantly, cognitive processing is both 
“top-down” and “bottom-up”—what we perceive and process is filtered by what our 
attention is directed towards. A commonly used model of human information pro-
cessing in healthcare settings is the model in situation awareness theory (Fig. 8.2). 
Among other applications, situation awareness theory has been used in the improve-
ment of the recognition of clinical deterioration in hospitalized patients as well as 
the diagnostic reasoning process [18]. The human information processing model 
underlying situation awareness theory resembles other goal-directed linear models 
of human information processing such as Norman’s theory of action and 
Rasmussen’s decision ladder [19–21]. This model suggests that when humans per-
ceive information, they then comprehend the information (see discussion of mental 
models below), project the expected future states based on this information as well 
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Fig. 8.2  Endsley’s model of situational awareness. This model describes situational awareness in 
dynamic decision making and notes how technology such as AI can affect each step in human 
information processing [22]

as various choices that the person might make, then make a choice based on the 
desired future state, finally acting on the decision.

In our scenario, the physician may perceive the alert and see if there’s any other 
information that can quickly allow for comprehension and verification of the current 
situation. If no supplemental information allows for verification of the alert, the 
only information that the physician will use to project the future state of the patient 
is what remains in the physician’s memory. Any new information obtained by sen-
sors or documented in the electronic health record that may be relevant and explain 
why the alert triggered will not be used by the physician. Because such information 
is never perceived, the physician may simply project that the patient’s risk of respi-
ratory failure has not changed and that the alert is simply incorrect, resuming their 
focus on the challenging conversation.

Comprehension of the alert and the situation does not happen in a vacuum. 
Human experts rely on mental models stored in long-term memory to translate per-
ceived information into comprehension that can support reasoned projection of 
future states and subsequent decision-making. A mental model is a person’s expla-
nation of “how things work in the world” and allows one to predict what will happen 
if one takes a particular action (see also Chaps. 1 and 5). Experts are able to do this 
very efficiently by framing new information in the context of existing mental mod-
els built from experience (such as knowledge about disease processes, how previous 
patients with similar appearance have progressed in their illness, etc.).

So consider again how AI predictions alone, unaccompanied by additional 
explanatory information that matches the mental models of the user, may fail to 
produce action. For example, suppose that the alert in our example was received by 
a relatively inexperienced physician, and this physician knew that the alert was 
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appearing for a patient admitted with a neurological concern. In this inexperienced 
physician, the mental model of neurologic abnormalities may not yet have linked 
“impending respiratory failure” to the possibility that such failure is a consequence 
of a neurologic problem interfering with the central respiratory control system. 
Because the physician experiences an apparent mismatch between the mental model 
of the patient (this patient will experience a deterioration with primarily neurologic 
changes such as altered mental status) and the alert (warning of impending respira-
tory failure), the alert may again be ignored in the absence of another explanation 
that helps the physician to establish quickly that the alert is not a false alarm.

Of course, human comprehension is not always a linear process. Other models of 
human comprehension, such as Klein’s data-frame theory of sense-making and 
theories of information foraging in the human-computer interaction literature, 
explain that information processing is often an iterative process [23]. People tend to 
gather just enough information to “satisfice” and allow them to apply a mental 
model that helps them to understand the current situation [24]. If all relevant infor-
mation had been gathered, a different mental model might have been applied, as a 
key piece of information may have reframed the situation. This also suggests an 
aspect of sufficiency for optimal stopping to the concept of explanation (see also 
Chap. 5). In the example discussed, if the most salient information presented with 
the risk prediction alert biases the physician towards framing the risk as a primary 
respiratory failure that is viewed as unlikely in the patient, the physician may be 
satisfied and dismiss the alert. On the other hand, if the explanatory information 
supplementing the AI risk prediction helps physicians frame the patient as poten-
tially experiencing a neurologic disruption of the respiratory control system, they 
may be far more likely to seek more information and act.

Through all of these concepts of human information processing, explainability 
can be considered in the context of the “gulf of evaluation”: the degree to which a 
person can use information to make sense of a situation and determine how well 
their goals have been met. To the extent that a user can perceive information or 
knowledge in an AI system and quickly make sense of the real world based on the 
explanation provided, they are more likely to make the optimal decision. If the 
explanatory information that allows the person to make sense of the situation is 
missing or requires substantial effort to glean, such as needing to click through 
multiple screen transitions, the person is much more likely to fail to appropri-
ately use AI.

�Human-AI Agents

In the previous section, we primarily conceived of explanation in AI systems as 
relevant at one point in time: when a person receives information from the AI sys-
tem and may make a decision to act. However, AI systems can be complex enough, 
especially if there is a component of automation, that it can be conceived of as an 
independent agent. The “agency” of the AI system comes from implicit goals in any 
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automated steps the technology might take (e.g. the automated referral for biopsy in 
the first example from the beginning of the chapter) as well as the “conversation” 
that occurs over a series of interactions between people and the technology that they 
are using. In this context, explanations may be considered in terms of their ability to 
make the AI agent’s intentions and actions understood in order to produce predict-
able interactions that allow work towards a common goal [25].

The conception of humans and AI systems as agents that interact has been pres-
ent from some of the foundational work in clinical informatics [26]. In the MYCIN 
and EMYCIN systems, the role of the AI agent was as a “consultant” for the clinical 
user (see Chap. 2). In Clancey’s GUIDON project, the system was a tutor for stu-
dents. In this work, an early discovery was the need for users to understand “why” 
the systems were acting as they did. The systems attempted to make explicit as 
explanation the internal goal and strategy of the AI system. Often these goals and 
strategies are implicit, which can be challenging for a human who seeks to interact 
with the system. In the absence of explicit explanation, people must infer goals and 
strategies for the agent with which they interact, which is even more challenging in 
the case of adaptive AI systems that change their behavior over time.

Conceiving of the interaction between humans and an AI agent as a “dialogue” 
was also established in the projects that were derived from MYCIN (see also Chap. 
9). A conversation implies a conception of explanation tied to intelligibility. A phe-
nomenon studied in aviation is that of “automation surprises”, where the AI system 
acts in a way that is not expected and is thus not comprehensible to the person with-
out an explanation. In this case, humans may assume that automation has failed, 
leading the person to take inappropriate actions. Another issue may arise when the 
set of actions that are offered do not match what the user is expecting, limiting the 
“conversational” nature of the interaction. For example, if the physician interacting 
with an AI-enabled sepsis alert is expecting to gather more information through lab 
testing to assess patient risk for sepsis but the system forces a decision about antibi-
otics before the physician can obtain that information, then the physician may won-
der “why” the AI system is “recommending” antibiotics, even though the AI system 
is merely providing an incomplete set of potential choices.

As with human information processing, it is beyond the scope of this chapter to 
review all of the ways that explanations may function in a back-and-forth series of 
interactions between human and AI agents. Appreciation of humans as agents inter-
acting with potential AI agents, however, suggests there is much still to be learned 
about the role of explanation in such interactions. Explanation is critically important 
so that a person can predictably interact with an AI system to achieve one’s goals.

�Sociotechnical Systems

When considering the impact of AI systems on health care, we need to examine the 
broader care delivery system in which the AI technologies are being incorporated. 
Healthcare is complex  - meaning that the delivery of health care, whether it is 
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diagnosing and identifying disease, providing therapies, or implementing interven-
tions to prevent disease, occurs in complex sociotechnical systems. Complexity 
exists because (1) there are numerous relationships/interactions among the many 
entities that are involved, and (2) health care is a human-driven process (since care 
is provided by and for humans, and human behavior is adaptive to changes in the 
environment). While the previous section introduced the idea of interaction between 
the human and the AI system, outcomes in health care are mediated by numerous 
nonlinear interactions between people, processes, and technologies. With nonlinear 
systems, changes in the input do not always lead to proportional changes in output. 
Outcomes from complex systems cannot be predicted by examining the properties 
of just one component of the system. The system must be examined as a whole, and 
we need to assess how changes to any particular component impact the rest of the 
system in order to understand how it could affect the outcome. These outcomes are 
known as emergent properties as they emerge only when the system exists as a 
whole but not within or between any individual components.

Health care has made important progress in recognizing that processes and out-
comes that we see are not products of individual actions but instead emerge from a 
complex set of interactions between people, the tools they use, and the processes/
organization of their work environment. Patient safety is a great example of what is 
now often conceptualized as an emergent property of the care delivery system. The 
Systems Engineering Initiative for Patient Safety (SEIPS) model is now well estab-
lished in health care and has been applied to numerous healthcare projects to design 
tools and technology in healthcare delivery (Fig. 8.2) [27]. Patient safety, defined as 
the prevention of unintended harm to the patient, cannot be attributed to any one 
part of the work system alone but emerges from how each part of the care delivery 
system interacts with the others (Fig. 8.3).

When introducing AI systems to improve health care, we need to think about 
how the system changes the existing sociotechnical work environment to mediate 
the outcome. In other words, how does the AI system interact with the other people, 
processes, and technologies (including other AI systems)? A common assumption 
in health care is that digital tools improve the reliability of care because humans are 
error-prone. In reality, any introduction of technology adds new components and 
thus new “failure” points for safety. In order to function effectively, the person in the 
sociotechnical environment needs the AI system not just to explain its goals and 
intentions, but also to convey how it is interacting with the other elements of the 
sociotechnical environment.

Trust is a concept that is discussed often in the context of explainable AI—under-
standably, as it may be essential to sustained use of any given AI system. While trust 
is traditionally viewed as a property of the human-AI interaction, it may also be 
useful to conceive of trust as another emergent property like patient safety. Over 
time, when people observe interactions and the outcomes of interactions with AI 
systems in their work, people will develop a set of expectations on how to best inter-
act with AI systems. This will come not just from their own experience but also 
through observing other people, socialization of the technology in the popular press 
and the culture of their work organization. If these expectations are violated without 
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Fig. 8.3  The systems engineering initiative for patient safety (SEIPS) model. An example of a 
framework for understanding the structures, processes and outcomes in health care and their inter-
actions, which result in the ‘emergent’ outcomes such as patient safety [27]

explanation, trust in a given AI system can be lost. Furthermore, knowing that atten-
tion to information processing has a “top-down” component (i.e. humans pay selec-
tive attention to information they are already expecting), subtle unexpected changes 
in the system may never be perceived by the user. For example, consider the exam-
ple of the AI system that automatically screens chest CTs for lung cancer and refers 
patients for biopsies. If the threshold for referral is updated with only a subtle nota-
tion and without explanation to the patient or physician, the change in system’s 
behavior may be noticed only when there are dramatic outcomes, such as a large 
increase in the number of referrals or a missed referral in a patient with lung cancer. 
At that point, physicians and patients may lose trust in the system.

This is why trust is best assessed not as “present” or “absent” but in terms of 
whether trust is appropriately calibrated. Under-trust is traditionally the focus of 
healthcare AI literature, given the limited adoption of AI systems to date. Much 
effort is spent on increasing trust in AI systems because of the adoption problem. 
However, over-trust is just as important. Over-trust occurs when the clinician comes 
to depend on the AI system, either because of the clinician’s lack of expertise or 
because other pressures from the sociotechnical system such as the workload poten-
tially drive inappropriate reliance on technology. A goal of explanation for AI sys-
tems is to optimize the calibration of trust. The goal is neither under-trust when the 
AI system is enabling the correct action but also not over-trust when the AI system 
is operating outside of its optimal scope or the user should not trust the AI system 
without further patient assessment.
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This understanding of sociotechnical systems suggests that AI explanations may 
not translate across clinical contexts in which the AI system might be used. Rather, 
local customization of the explanation and user interface may be necessary to situ-
ate the AI system in the sociotechnical environment. Design principles that incorpo-
rate contextual constraints such as ecological interface design may be useful on this 
front. To the extent that the interface can mirror the external world, and the AI sys-
tem’s actions are placed within the context of that external world, people can be 
more successful in their essential roles for patient safety: anticipating errors and 
acting as a source of resilience.

Ultimately, the lenses of human information processing, human-AI agents, and 
sociotechnical systems suggest that there may be no single “universally” suitable 
design for optimal AI explanations and approaches to AI explanation will continue 
to evolve.

�Implications of Explainability on Bias 
and the Regulatory Environment

It is important to understand the effect of explainability on accountability and the 
regulation of AI. As mentioned, complex AI systems often include elaborate data 
transformation using hundreds of thousands of features derived from clinical data 
that may or may not be meaningful. As these complex systems increasingly drive 
clinical decisions, it is important to acknowledge the legitimate concerns about the 
intentional and unintentional consequences of these AI systems. Explainability 
presents an opportunity to understand better the changing landscape of accountabil-
ity and regulation.

�Explainability and Inherent Biases

An emerging body of evidence suggests that AI systems can make unfair and dis-
criminatory decisions, replicate or develop biases, and behave in inscrutable and 
unexpected ways in highly sensitive environments that put human interests and 
safety at risk. Therefore, it is important to consider how explainability may mitigate 
such biases and affect our own inherent biases using the three purposes of explain-
ability mentioned in section “Three Purposes of AI Explainability”.

For the ML engineer, explainability offers an opportunity to identify and miti-
gate potential biases in AI systems. However, this is only possible through the 
transparent reporting of the AI details, such as recommended by the Minimal 
Information for Medical AI Reporting, or the MINIMAR standards [28]. Such 
standards demand information related to the data source and cohort selection, 
demographics of the training population, model features and design 
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characteristics, as well as evaluation criteria and validation steps. Data biases (see 
Chap. 3) are common across most data sources, therefore the transparent reporting 
of the MINIMAR concepts ensures that the interpretability of the model and can 
help end users (e.g., providers, healthcare systems, etc.) to identify the populations 
for which the AI can be applied—a step at mitigating inherent data biases. 
Furthermore, having a clear definition of the model output is imperative. Datasets 
with inconsistent, imperfect, or even incorrect labels used for training and testing 
data allow one’s own biases to enter into the model and affect explainability. 
Understanding the intent of the model (e.g. predict mortality or predict transfer to 
ICU), composition of the training data, development of the ground truth, model 
architecture, and data transformation enables the ML engineer to assess biases in 
the data and algorithmic fairness empirically. While the model architecture may 
not be critical for explainability, understanding sample representativeness in AI 
models may help clinicians decide if the prediction is applicable to their patient 
population. For example, many models predicting adverse events in Type II dia-
betic (T2DM) patients have not reported Hispanics in their training data. Given 
Hispanics higher prevalence and complication rates for T2DM compared to Whites, 
it is essential clinicians have this type of explainability to determine if they incor-
porate the AI prediction into their clinical decision making. This type of explain-
ability is the foundation of developing trust for both the clinician as well as the 
patient population, as it is only through transparency and explainability that one 
can mitigate biases in AI that contribute to unfair and discriminatory decisions that 
put human interests and safety at risk.

�Effect of Explainability on Accountability for Decision Making

Accountability, in this context, means the ability to determine whether a decision 
was made in accordance with procedural and substantive standards and to hold 
someone responsible if those standards are not met. Therefore, it is important that 
developers understand and integrate current standards within the model’s design 
and during development. Explainable models must be developed through team 
efforts involving knowledge experts, decision makers, and end-users. The incorpo-
ration of procedural and substantive standards must be clearly presented to end-
users across platforms.

Human-interpretable information about the factors used in a decision and their 
relative weight is necessary. This is likely the most common understanding of what 
constitutes an explanation for a decision. A list of the factors that went into a deci-
sion, ideally ordered by the significance to the output, can provide accountability by 
confirming that proper procedures were followed.

While there is significant support for explanations as a tool for holding AI 
accountable, there are also concerns about the costs of generating such explana-
tions. True explainability could inhibit innovation by forcing transparency around 
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key model features which may be seen as industry trade secrets. However, the lack 
of incentives, restrictions around data sharing and data privacy, and the acceptance 
of stealth science in industry has created an environment that allows AI to be imple-
mented without understanding how the model was developed, from what data was 
the model learned, and using what data was the model deemed satisfactory for use. 
Accountability can only fairly proceed if transparency is provided regarding the 
data, model, and standards woven into the AI model.

�The Current Regulatory Framework and Explainability

Across the global AI regulatory environment, explainability is the center of account-
ability (see Chap. 18). In 2017, the International Medical Device Regulators Forum 
(IMDRF) came together to develop a path for standardized AI regulations, includ-
ing a risk-based framework [29]. The hypothetical scenarios described in the intro-
duction provide examples of the different levels of risk to consider and the 
importance of explainability in each scenario. The level of regulation and necessary 
documentation are determined by the risk-based framework, as described above. In 
addition to the risk-framework, the European Union has put forth the General Data 
Protection Regulation (GDPR) mechanism which ensures users (or patients) have a 
right to information about the existence, logic, and potential consequences of 
AI-driven decision-making systems. The GDPR establishes rules and regulations 
for privacy and permissions and gives control to individuals. Patients must not only 
consent to the collection of the data but also to each use of their data. For AI devel-
opers, this requires that they explain in plain language how data will be used as part 
of the consent process. Many interpret this as the “right to explanation”. Systems 
are now aiming to produce more explainable models; design an explanation inter-
face; and understand the human requirements for useful explanations [30]. However, 
there are also concerns about the costs of generating explainable AI in regard to 
engineering challenges, the effect on innovation and trade secrets; and the cost of 
system accuracy or other performance objectives.

�Application of Explainability to Real World Examples 
of Medical AI

The following real world examples of medical AI can be used to understand the dif-
ferences among the purposes of explainability, targets and downstream actions 
among the three methods of explainability, as well as how the cognitive informatics 
concepts we have described apply to particular use cases of medical AI.
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�Example: Continuous Blood Glucose Monitoring for Patients 
with Type 1 Diabetes

Current Type 1 Diabetes management approaches are largely limited to non-closed 
loop systems that depend on the patient checking blood glucose levels and adminis-
tering themselves insulin either through a pump or a syringe. The iLet bionic pan-
creas from Beta Bionics [31] aims to simplify the latter, interfacing with an 
embedded glucose monitor and continuously dosing insulin similar to a native pan-
creas. It needs to be able to adapt to blood glucose variation patterns and function 
autonomously. The end users of this device are endocrinologists and their patients 
who will likely not benefit from a mechanistic or ‘engineer’s’ explainability but 
rather on ‘trust inducing explainability’—relying on outcome data that shows a 
closed loop feedback system for glucose control has minimal hypoglycemic events 
and maintains glucose levels within an acceptable range that is conducive for 
improved long term outcomes. From a cognitive informatics perspective, human 
information processing needs with this system are likely very different from how 
patients are counseled about diabetes management now, learning to “count carbohy-
drates” and estimate how much insulin to self-administer. However, explanation for 
this highly autonomous agent may need to convey information like how the insulin 
administered is based on the blood sugar goal or how well the overall blood sugar 
control has been, allowing a patient to not only monitor the system but also trouble-
shoot and recover from malfunctions without experiencing life-threatening hypo-
glycemic or hyperglycemic events. From a regulatory perspective, given this 
automated closed-loop system, and lack of a physician intermediary while care is 
being delivered, the regulatory concerns are high although this device would be 
categorized as a medical device rather than SaMD (software as a medical device) 
per the previously mentioned framework put forth by IMDRF.

�Example: Digital Image Analysis Tools Assisting 
in Histopathological Diagnoses

Proscia’s digital pathology tools are designed to drive clinical management by ana-
lyzing pathology samples and prioritizing certain cases for review by pathologists, 
especially cases that are flagged by the system to demonstrate high risk features. For 
example—biopsy samples of precancerous lesions that have high risk features are 
prioritized for expedited review to allow for earlier management of a potential can-
cer diagnosis. Such a system, which is tasked in prioritizing certain cases for review 
for the end user (in this case a Pathologist), will need to demonstrate the reasons for 
prioritization. In this case, the Pathologist is tasked with making the final diagnosis. 
Clinical data may help with contextual explainability but these tools may benefit 
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most from having surrogates for the underlying mechanistic ‘engineering’ pro-
cesses. In the case of AI/computer vision systems, segmentation and bounding box 
techniques can assist in establishing this surrogate, but may need significant more 
time invested into labeling training data. Image classification techniques that do not 
have segmentation, object detection, or bounding boxes built in will need to depend 
on context to engender trust in the end user. These tools have to rely on proper func-
tioning within a human-AI team; the level at which this tool can operate autono-
mously should be carefully conveyed to the healthcare team to optimize calibration 
in such a tool. This will avoid under-trust leading to under-utilization and over-trust 
leading to an inappropriate amount of dependency. From a regulatory perspective, 
digital pathology tools fall under Category II of the IMDRF framework as they drive 
clinical management of serious conditions and would likely benefit from indepen-
dent review.

�Example: Wearable Devices Informing Clinical Management

Finally, we offer an emerging use-case scenario where wearable data is informing 
clinical management. Wearables are starting to incorporate not only heart rate infor-
mation to show variability, and correlate the rate to motion sensors to determine 
types of activity and levels of sleep, but also to oxygen sensors and basic one lead 
rhythm monitors such as the ECG App on the Apple Watch. This particular app is 
designed to detect atrial fibrillation, low and high heart rates, and to provide a sum-
mary of heart rate variability. Algorithms that assist in aggregation of clinical data 
will likely need to depend on causal explainability—information that becomes 
important with context. In the case of an ECG app assisting in detection of atrial 
fibrillation, the output is to be taken in conjunction with patient data—possibly 
complaints of palpitations or indications of a history of cardiac disease that would 
predispose to a diagnosis of atrial fibrillation. Human information processing mod-
els are important for information that is best analyzed in context (in this case, patient 
symptoms and history). Along with contextual explanatory information presented 
with the model output, the end users’ experiences within their sociotechnical envi-
ronment will also drive each user’s trust in the prediction and subsequent decision-
making. Regulatory concerns with wearables that inform clinical management are 
largely dependent on the manufacturer and on the element for which it chooses to 
obtain clearance. The ECG app has FDA clearance as a Class II device but the pulse 
oximeter function is described for ‘general wellness’ and thus does not have FDA 
clearance as a medical device.
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�Conclusion

The question of whether explainability is useful for medical AI must be expanded to 
include considerations around (1) the type and purpose of the explanation and (2) the 
type of human-machine interaction in which explainability may play a role in mediating 
the desired outcome. Finally, the degree of explainability may impact how bias and 
accountability are incorporated into the medical AI product and how it may be regulated.

Questions for Discussion

•	 How can the different methods and purposes of explainability be applied to dif-
ferent AI use cases?

•	 How do principles of human information processing and information flow across 
teams affect how AI explainability should be approached?

•	 What frameworks are important to consider for an AI agent, with a similar under-
lying model, that is deployed across different environments?

•	 What potential pitfalls might there be with the current regulatory framework 
with regards to AI explainability?

•	 Who are the common stakeholders and what motivations do they have with 
regards to accountability in AI systems?

•	 What are some of the potential underlying causes of unintended intrinsic biases 
within AI systems?

Further Reading

General Data Protection Regulation (GDPR), https://gdpr-info.eu/.

•	 Official EU documentation of General Data Protection Regulation, including 
recitals and key issues. This regulation for consumer privacy is a reference for 
other countries and regions as they craft their own versions. E.g. California 
Consumer Privacy Act has many similarities with GDPR.

Gilpin, L.H., Bau. D., Yuan, B.Z., et al. Explaining Explanations: An Overview of 
Interpretability of Machine Learning. In: 2018 IEEE 5th International Conference 
on Data Science and Advanced Analytics (DSAA). pp. 80–89. Available at https://
arxiv.org/pdf/1806.00069.

•	 An exploration into best practices of explainability, the insufficiency of current 
approaches and future directions for explainable artificial intelligence. Being 
aware of the work being done in the non-clinical realm will help inform efforts 
with regards to explainable medical AI.

Markus, A.F. The role of explainability in creating trustworthy artificial intelligence 
for health care: A comprehensive survey of the terminology, design choices, and 
evaluation strategies. Journal of Biomedical Informatics. 2021;113:103655. https://
doi.org/10.1016/j.jbi.2020.103655.

•	 In this paper is an exploration of quantitative metrics regarding explainable 
AI. Although the field is far from a consensus, having quantitative metrics will 
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allow for model comparison with regards to explainability similar to how model 
performance is compared today.

Carayon, P., Hundt, A.S., Karsh, B.T., et  al. Work system design for PATIENT 
safety: The SEIPS model. Qual Saf Health Care. 2006 Dec;15 Suppl 1(Suppl 
1):i50–8. http://dx.doi.org/10.1136/qshc.2005.015842. 

•	 This paper provides an overview for the Systems Engineering Initiative for 
Patient Safety framework, which is applied to describe complex work systems in 
healthcare and provides a tool to examine the context for the downstream impact 
of explainable AI in healthcare workflows.

Brady, P.W., Wheeler, DS, Muething, S.E., Kotagal, U.R. Situation awareness: A 
new model for predicting and preventing patient deterioration. Hosp Pediatr. 
2014;4(3):143–6. https://doi.org/10.1542/hpeds.2013-0119.

•	 This paper describes an example of how AI is applied to a use case in pediatrics, 
and how explainability facilitates a team dynamic that was important in mediat-
ing the outcome.
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