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Chapter 6
Machine Learning Systems

Devika Subramanian and Trevor A. Cohen

After reading this chapter, you should be able to answer the following 
questions:
• What types of problems are suitable for machine learning?
• What are the steps in the design of a machine learning workflow for a clinical 

prediction problem?
• What are key techniques for transforming multi-modal clinical data into a form 

suitable for use in machine learning?
• What limitations in model-building arise from just using observational data? 

How does the use of prospective data mitigate some of these limitations?
• What are some examples of biases in observational data?
• What is feature engineering and when is it required?
• When is it appropriate to use an ensemble model instead of a single 

global model?
• What are the challenges in deploying machine learned models in clinical 

decision- making settings?
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 Identifying Problems Suited to Machine Learning

The exponential growth of a diverse set of digital health data sources (as described in 
Chap. 3) has opened new opportunities for data-driven modeling and decision- making 
in clinical medicine. These data sources including electronic health records (EHRs); 
large de-identified health datasets such as Medical Information Mart for Intensive Care 
(MIMIC) [1], which contains lab tests and time series of vital signs from Intensive Care 
Units (ICUs); the Cancer Genome Atlas (TCGA [2]), which includes imaging as well 
as proteomic and genomics data; and longitudinal, nationwide EHR datasets aggregated 
by companies such as Cerner. Machine learning is a critical enabling technology for 
analyzing and interpreting these massive data sources to support and improve clinical 
decision-making. Recent successes in machine learning have mainly focused on image-
based predictive diagnostics: diabetic retinopathy [2], classification of skin cancer 
lesions [3], and identification of lymph node metastases in breast cancer [4] (see Chap. 
12). Contemporary machine learning methods provide the means to go beyond these 
successes by exploiting the full range of data sources available today, including geno-
type sequencing, proteomics and other -omics data, data from wearable devices such as 
continuous glucose monitors, from health apps on smartphones, and from patients’ 
social media interactions (including text data). By integrating them with other classical 
data sources, physicians can leverage rich, time-indexed, multimodal representations of 
patients. Standardized frameworks such as the Observational Medical Outcomes 
Partnership (OMOP [5])1 common data model for encoding disparate data types, 
make it possible to incorporate diverse data sources into a machine learning workflow.

There are two broad classes of problems that can be solved using machine learn-
ing: (1) prediction problems involving probabilistic estimation of a diagnosis, out-
come of a therapy modality, risk of developing a disease, or disease progression from 
observational patient data; and (2) probabilistic modeling involving estimation of 
joint distributions of clinical variables from observational and interventional data, 
which can then be used to make “what-if” inferences to answer questions such as 
“will adding a specific therapeutic intervention reduce risk of hospital readmission?”. 
Supervised machine learning models solve prediction problems. They learn map-
pings between predictor variables and outcome variables from paired associational 
training data that take the form (predictors, outcomes). A typical example might 
involve assigning a diagnostic label to a radiological image (predictors: pixels; out-
comes: diagnoses). Training such models requires sets of predictors labeled with the 
outcomes of interest. Unsupervised machine learning models find patterns between 
a collection of clinically relevant variables, without the need for explicitly labeled 
data. Examples of patterns include finding phenotypic clusters and dimensionality 
reduction by inferring latent factors of variation among a large collection of variables.

The focus of the current chapter is on supervised machine learning models. This 
class of machine learning models currently predominates in AIM applications for 
tasks such as diagnosis assignment and outcome prediction. The discussion makes 

1 https://www.ohdsi.org/data-standardization/the-common-data-model/. (accessed August19, 2022) 
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assumptions about the reader’s knowledge of pertinent mathematics and notational 
conventions. Those who lack the requisite background may wish to focus on the 
conceptual aspects of the discussion rather than the mathematical details.2

There are unique technical challenges and opportunities that arise in defining 
solvable problems in the healthcare context. In setting up a prediction model, one 
needs to consider carefully the following: (1) The prediction target: what is to be 
predicted, (2) Technical feasibility of prediction: is it predictable at all, (3) Economic 
feasibility of prediction: is it worth predicting in the context of the clinical work-
flow, and (4) Information source selection: from what information sources can the 
prediction be made.

For example, consider the problem of determining the optimal time to insert a left 
ventricular assist device (LVAD—a surgically implanted artificial pump that assists 
the heart in circulating blood throughout the body) in a patient with chronic heart 
failure. The standard of care for LVAD insertion defines the optimal insertion time to 
be when the “pumping life” of the heart is estimated to be approximately 1 year. The 
prediction problem is then reduced to a mortality estimation problem—what is the 
probability of a patient’s survival for 1 year given various clinical assessments of the 
heart’s mechanical and electrical efficacy, coupled with a broad range of laboratory 
assessments on the condition of other vital organs. This prediction problem is solved 
routinely by expert cardiologists, so there is evidence that it is a solvable problem. 
Unfortunately, not all LVAD insertion decisions made by experts lead to optimal 
patient outcomes, which opens the possibility of machine learning analysis of this 
decision problem. The informational basis for prediction can initially be set to all the 
records reviewed by the expert cardiologist in making the LVAD insertion decision. 
Training data can be assembled from a retrospective study of EHR records contain-
ing all the relevant information (such as arterial blood pressure, EKG findings and 
ultrasound studies of cardiac function) together with the correct final go/no-go inser-
tion decision. Note that the variable to predict is the correct decision, not necessarily 
the decision made by any individual doctor. The correct decision needs to be vali-
dated with information on the patient after the LVAD procedure, or by an expert 
committee. A predictive supervised machine learning model can extract probabilis-
tic patterns to predict appropriate times for LVAD insertion from the curated dataset, 
in effect summarizing the experiences of the most successful expert cardiologists.

Defining outcome and predictor variables for a prediction problem can be tricky. 
One problem is that information about the outcome variable can be leaked through 
the predictors. Consider predicting diabetic ketoacidosis (DKA)3 in a pediatric Type 
1 diabetes4 patient based on data gathered from the EHR, including demographic 

2 Introductory material on the pertinent mathematical details (e.g., probability theory, linear alge-
bra, calculus) is provided in the suggested readings at the end of this chapter.
3 DKA is a serious complication of diabetes resulting from the buildup of fatty acid byproducts 
called ketones in the bloodstream, with dangerous increases in blood acidity if untreated.
4 Type 1 diabetes tends to arise first in children and requires treatment with insulin. The type of 
disease that arises in adults, who are often overweight, is Type 2 diabetes and can often be treated 
with medications rather than insulin.
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information, lab tests, antibody titers, insulin dosing and modality. A supervised 
machine learning model built from retrospective patient data predicts that high val-
ues of beta-hydroxy-butyrate are predictive of DKA. Unfortunately, beta-hydroxy- 
butyrate is measured only for patients with DKA and is used in monitoring and 
management of that condition. By using beta-hydroxy-butyrate as a predictor, the 
answer has inadvertently been revealed to the algorithm.

Missing values in predictor variables pose a fresh set of challenges. Not all 
supervised learning methods can handle missing values. Those that cannot then 
drop data points, leading to models built on fewer samples, which may not be sta-
tistically robust. A further complication is the nature of missing data—was a mea-
surement randomly omitted, or omitted for a specific cohort as in the 
beta-hydroxy-butyrate example above? Similarly, is there limited representation of 
specific demographic groups in the database, reflecting human biases in data collec-
tion that could yield large errors in prediction for that subgroup? Compensating for 
these biases in the construction of training data sets is essential for a successful 
machine learning project, and a detailed account of the origin of missing values in 
clinical data and methods to manage them is provided in Chap. 11.

 The Machine Learning Workflow: Components of a Machine 
Learning Solution

This chapter seeks to introduce principles and mechanics of building data-driven 
predictive machine learning models for healthcare applications. At the heart of the 
process is the clinical question that needs answering, for it drives the selection of 
both the data and the machine learning model. Formulating clinical questions appro-
priate for data-driven machine learning analysis is still an art. One typically cycles 
through the steps shown in Box 6.1: specification of the clinical question, data 
source selection, data extraction and transformation, model specification and con-
struction, model validation, and incorporation of the model into a clinical workflow.

Box 6.1 Steps in a Typical Workflow for Data-Driven Predictive 
Modeling in Healthcare
• Step 0: Specify the clinical question that needs to be answered
• Step 1: Identify data sources relevant to answering that question
• Step 2: Extract and transform raw data from the original sources into a 

form needed for analysis by specific machine learning (ML) algorithms
• Step 3: Select a suitable algorithm and build a model, ensuring appropriate 

choice of algorithm hyper-parameters
• Step 4: Validate model predictions; checking for robustness and going 

back to the earlier steps in the workflow, if warranted
• Step 5: Incorporate model into clinical workflow with a human-centered 

approach, and construct system-level impact assessments
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Here is a specific example of a predictive modeling workflow.

• The clinical question: Is the risk of developing DKA in the next 3 months for 
a teenage, white, pediatric Type 1 diabetes patient with an HbA1c5 increase of 
1 point (from 7 to 8) over the last 3 months high enough to warrant an interven-
tion? Which of the two following interventions is likely to be more success-
ful—a social worker visit to ensure insulin compliance or an increase in 
insulin dosing?

• The data sources: Taking a data-driven perspective on this question would 
involve retrieving, from the EHR database, pertinent information on all Type 1 
diabetes patients with similar demographic and clinical profiles, and examining 
the percentage of times interventions were applied, and their relative success, to 
recommend an evidence-based solution. While modern-day database tools allow 
easy retrieval of records from the EHR, the definitions of similar demographic 
and clinical profiles must be chosen carefully with an expert endocrinologist’s 
help. For example, should gender be included in the demographic profile? Which 
lab tests are the most relevant to determine similarity in clinical profiles? Are 
there genetic markers available to risk-stratify patients? Predictive modeling is a 
collaboration between expert human beings and the machine, with the human 
expert providing nuanced decision criteria for cohort selection and the machine 
performing detailed analysis on expert-defined patient cohorts.

• Data extraction and transformation: Transforming raw clinical data into 
analysis- ready data sets can be challenging. This is primarily because the goal of 
data collection in hospitals is to support care and to manage costs and payments, 
and not necessarily to enable retrospective or predictive analyses. For structured 
fields, values may be missing or entered incorrectly. Further, approaches to han-
dle time-series data sampled at different time scales are needed. There can also 
be wide variation in formats of unstructured data such as free text clinical notes. 
Since most machine learning algorithms take tabular data (two-dimensional 
arrays) or multi-dimensional arrays as input, data must be represented in these 
forms to be processed by these algorithms.

• Model specification and construction: In this example, the goal is to quantify 
the statistical association (if any) between risk of DKA in the next 3 months and 
the demographic and clinical profile of Type 1 diabetes patients. If there are 
enough patients in our analysis cohort, a supervised ML algorithm can be used 
to identify the probabilistic patterns that relate available predictors to DKA risk. 
In addition, it may be of value to know if there is a relationship between patient 
profiles and effectiveness of a specific type of intervention. Such associational 
queries can be easily answered using a range of supervised learning algorithms, 
which are covered in this chapter. Demographic and clinical data for pediatric 

5 HbA1c stands for Hemoglobin A1c, which reflects average blood sugar levels over the past 
2–3 months.

6 Machine Learning Systems



140

Type 1 diabetes patients can be assembled from the EHR. These can be com-
bined with patient data on interventions and their outcomes. From such a data-
set, it is possible to build a simple logistic regression model to predict the 
probability of success of a specific intervention given a patient’s profile. More 
sophisticated models to capture nonlinear interactions between predictors and 
outcomes, such as gradient boosted decision trees, can also be built if there are 
sufficient data to build them. Ultimately, an end-to-end machine learning pipe-
line (whose structure is dictated by the nature of the problem/data) is built and 
compared against a simple baseline model (such as a logistic regression). The 
pipeline is refined by evaluating whether it overfits or underfits the data (see sec-
tion on “Bias and Variance”), and either reduce the number of parameters in the 
model or add more data (data augmentation) to support robust learning of model 
parameters.

• Model validation: Once a predictive model is constructed, there is a need to 
assess its performance on new (as yet unseen) data. In a retrospective study, a 
randomly selected portion of the available data (typically 20%), called the test 
set, is set aside and the remaining 80% is used to train the model. For classifica-
tion problems, it is possible to use several performance measures. A detailed 
presentation of some widely-used performance metrics is provided in the next 
section on “Evaluating machine learning models: validation metrics”. These 
metrics can be calculated over the set-aside test data to get an unbiased estimate 
of the performance of the trained model. With a prospective study, a new test set 
can be constructed by retrieving fresh data from the EHR to evaluate the perfor-
mance of the model. A very important principle in model validation is to ensure 
that the training and test sets are kept separate—that is, the test set is not inad-
vertently used in the training process (for example, to select algorithm parame-
ters). Model configuration may be accomplished with a held-out subset of the 
training set that is often referred to as a validation set. The test set estimates 
performance of the model on “unseen” data. The training set can be viewed as 
the analog of the “homework problem set” in human learning, and the test set 
serves as the “exam”. Clearly, using problems identical to the homework in the 
exam provides an overoptimistic estimate of the model’s (the student’s) predic-
tive performance. The choice of evaluation metric is also key and reflects priori-
ties in the clinical use context—e.g., is it more important to avoid false negatives 
(failing to predict future DKA, leading to a missed opportunity of diagnosis) or 
to minimize false positives (incorrectly predicting future DKA, potentially lead-
ing to overtreatment).

• Incorporation into clinical workflow and system-level assessment: While 
having a predictive model with strong performance is a necessary component, it 
is unfortunately not all that is needed for clinical impact. One needs to determine 
where to inject the model’s predictions in the workflow of a pediatric endocri-
nologist for maximal impact on patient outcomes. Human factor considerations 
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play a critical role in the design of the user interface through which the model’s 
decisions as well as its explanations are presented to the doctor (see Chap. 17). 
The final impact of the model can be estimated at the health system level with 
measures such as reduction in DKA admissions over a given time frame. While 
the discussion of validation here is focused on measures of accuracy, the reader 
is referred to Chap. 17 for a holistic account of evaluation that considers other 
important aspects such as system integration, usability, and eventual clinical 
outcomes.

 Evaluating Machine Learning Models: Validation Metrics

A broad range of evaluation metrics are widely used to measure the performance of 
machine learning algorithms. While an exhaustive account of these metrics is not 
provided in this chapter, some of the most commonly applied ones are introduced, 
as well as some principles to consider when interpreting them. These metrics are 
introduced using the schematic representation of the results of a two-class classifi-
cation system shown in Fig. 6.1.

Recall (Sensitivity) Recall measures the proportion of testing examples in the 
positive class that have been correctly identified by the model. This corresponds to 
the estimation of the sensitivity of a test in medicine (e.g., what proportion of cases 
of a disease in a population are detected by a laboratory test), and this term may be 
more familiar to a clinical audience. As is the case with some of the other metrics 
here, recall can be derived from the cells of a 2 × 2 table with cells corresponding to 
counts of correctly (true positive and true negative) and incorrectly (false positive 

Fig. 6.1 Illustration of a possible output from a two-class classifier with an evaluation set of 25 
examples, 15 of which are in the positive class (+), and 10 of which are in the negative class (−). 
Note that the classifier is imperfect, in that 4 members of the negative class have been classified as 
positive and 3 members of the positive class have been classified as negative
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and false negative) classified examples. However, a straightforward way to think of 
recall is as the proportion of all the positive cases that were correctly identified by 
the model:

  

number of correctly classified positive examples
total numb
     

 eer of positive examples   

In the example in Fig. 6.1, recall would be estimated as 12/15 = 0.8.

Precision (Positive Predictive Value) It follows from the definition of recall that 
it is not affected by the number of negative examples that are incorrectly classified 
as positive cases (so-called false positives—the bottom row of the left panel in 
Fig. 6.1). However, it is also important to know what proportion of the ostensibly 
positive cases identified by a machine learning classifier were correctly identified. 
For example, a diagnostic system that falsely identifies many cases of a disease that 
then require extensive follow-up may do more harm than good, both at the individ-
ual and the societal level. Precision measures the proportion of a model’s positive 
predictions that were true, and can be defined as:

 

number of correctly classified positive examples
total numb

     
 eer of classified positive examples    

Precision can be estimated from the leftmost panel of Fig. 6.1 as 12/16 = 0.75.
Precision corresponds to the positive predictive value of a clinical test—what 

proportion of people with a positive test truly have the condition it is intended 
to detect.

It is worth considering the trade-off between recall and precision. Given that 
machine learning classifiers often use a threshold (e.g., probability > 0.5) to assign 
discrete classes based on a probabilistic estimate, one might imagine simply setting 
this threshold to optimize for recall (by setting a low threshold such that most every-
thing is classified as positive), or for precision (by setting a high threshold, such that 
the model only classifies examples it is very confident about as positive cases). In 
some circumstances, such as when the risk of missing a diagnosis is tolerable 
whereas the next step after automated detection is an invasive and expensive exami-
nation, precision may be more important than recall. In a screening scenario where 
it is desirable to detect most instances of a disease in the population, and a sequence 
of follow-up tests with greater precision is readily available, recall may be key. As 
such, the optimal performance characteristics of a machine learning model may 
vary depending upon how the predictions it makes will be used. Also, this trade-off 
suggests it may not be particularly meaningful to consider precision or recall in 
isolation.

The F-measure The F-measure evaluates performance by balancing precision 
against recall. With the most widely used variant of this measure, known as the F1 
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Fig. 6.2 Comparison 
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measure, there is an equal balance between these two components. The F1 measure 
is the harmonic mean6 between precision (p) and recall (r), which can be defined as 
follows:

 

F p r
p r p r pr
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p r
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1 1

2 2
,( ) =
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=

+( )
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+/ / / .
 

The implications for combining two metrics are that the harmonic mean rewards 
balanced combinations. The harmonic mean will be highest when p and r are 
relatively close together, and lowest when they are relatively far apart. 
Figure 6.2 illustrates that unlike the typically used arithmetic mean, the opti-
mal harmonic mean of two values that sum to ten occurs when they are per-
fectly balanced. Likewise, the optimal F score will reflect a balance between 
precision and recall.

However, there may be tasks in which a perfect balance between precision and 
recall is not the optimal configuration. The F1 measure is the balanced form of the 
F-measure, which can be more generally formulated as follows:

 
F p r

pr

p r
,( ) =

+( )
+

1
2

2

b

b  

6 The name ‘harmonic’ concerns the musical relationships that emerge from applying this mean to 
tonal frequencies. For example, the frequency of “middle C” is ~261.6 Hz, and that of the C above 
this ~523.3 Hz (about double). The harmonic mean of these frequencies is ~348.8 Hz, which is 
represented by “F” (albeit only approximately on evenly tempered keyboard instruments), the next 
point of harmonic progression when traversing the cycle of fourths.
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The β parameter permits modification of the measure. For example, the F2 mea-
sure with β = 2 penalizes precision more heavily than recall, because the effects 
of precision on the denominator are multiplied by four, decreasing the over-
all score.

While the F measure effectively balances precision against recall (with the capa-
bility to shift emphasis), predictive models for classification generally produce a 
measure of confidence in their prediction—a probability that a test case falls into a 
particular category. Categories are assigned when this probability exceeds some 
threshold. Simply evaluating based on assigned categories discards information 
about the probabilistic estimates concerned. With a threshold of 0.5, a test case 
assigned a category-related probability of 0.6 and another assigned a probability of 
0.9 would be treated identically when evaluating the model. However, it is often 
desirable to compare model performance across the full range of possible thresh-
olds, without discarding these differences in a model’s confidence in its 
predictions.

Measures Derived from Performance Curves This comparison can be accom-
plished by comparing the area under curves that measure performance characteris-
tics of interest. Two widely used metrics of this nature are the area under the receiver 
operating characteristic curve (AUROC), and the area under the precision recall 
curve (AUPRC). Both of these metrics are estimated across a range of possible 
threshold values, effectively assessing model performance irrespective of the thresh-
old chosen for category assignment.

The AUROC measures the area under a curve that is typically plotted as the sen-
sitivity (recall) (y-axis) against the false positive rate—the proportion of all negative 
examples that have been misclassified as positive (x-axis).

In contrast the AUPRC measures the area under a curve that is typically plotted 
as the precision (y-axis) against the recall of a model (x-axis).

To illustrate these measures, consider a classification task with 10 positive test 
cases amongst 1000 in total.7 Based on model output, the positive cases have been 
ranked among the 1000 cases, and the recall, precision, and false positive rate at the 
rank of each example is shown in Table 6.1.

Note in particular the denominator when calculating precision (number of pre-
dicted positives) and the false positive rate (number of negative examples). With 
precision, the denominator increases with recall. Moving down the ranked list of 
model predictions, each correctly classified positive example comes at the cost of 
many false positive results. On account of the class imbalance in the dataset these 
increases in the denominator result in substantial drops in precision with each posi-
tive example that is correctly classified. In contrast, the denominator of the false 
positive rate is constant, at 990—the number of negative examples. The false posi-
tive rate therefore increases gradually while working down the long list of negative 
examples.

7 This presentation is inspired by Hersh’s account of ranked retrieval evaluations [6].
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Table 6.1 Performance characteristics of a hypothetical classifier

Rank Recall
Precision (of predicted 
positives)

False positive rate (of 990 negative 
examples)

1 0.1 = 1/10 1.0 = 1/1 (all true positives) 0 (all true positives)
5 0.2 = 2/10 0.4 = 2/5 0.003 ≅ 3/990
15 0.3 = 3/10 0.2 = 3/15 0.012 ≅ 12/990
17 0.4 = 4/10 0.24 ≅ 4/17 0.013 ≅ 13/990
24 0.5 = 5/10 0.21 ≅ 5/24 0.019 ≅ 19/990
100 0.6 = 6/10 0.06 = 6/100 0.095 ≅ 94/990
191 0.7 = 7/10 0.04 ≅ 7/191 0.186 ≅ 184/990
300 0.8 = 8/10 0.03 ≅ 8/300 0.295 ≅ 292/990
488 0.9 = 9/10 0.02 ≅ 9/488 0.483 ≅ 479/990
1000 1.0 = 10/10 0.01 = 10/1000 1.0 = 990/990 (all false positives)

This disparity is illustrated in Fig. 6.3, in which the AUPRC and AUROC for 
these results are compared. In both cases the area under the curve is invariant to 
which value is assigned to the x-axis, and also the two graphs have a value in com-
mon—the model recall. Therefore, for illustrative purposes the assignment of axes 
for the AUPRC is reversed, such that recall occupies the x-axis in both graphs. To 
map between the graph and Table 6.1 move up the y axis (recall) while moving from 
top to bottom of the table. As the proportion of positive examples that are correctly 
classified increases, the corresponding part of the AUPRC (the area under the orange 
PR curve) drops precipitously as the PR curve moves rapidly leftward while the 
corresponding AUROC (the area under the blue ROC curve) rises gradually as the 
corresponding ROC curve moves slowly to the right.

 Supervised Machine Learning

This section describes some of the key approaches and algorithms used in super-
vised machine learning. It is not intended to be an exhaustive account of these meth-
ods. More information can be found in one of the detailed and widely used textbooks 
of machine learning already available as resources, and several are suggested for 
further reading at the conclusion of this chapter. Rather, the goals in introducing 
these methods are first to familiarize the reader with standard nomenclature and 
notation used in machine learning, thereby eliminating a potential barrier to further 
exploration of related literature; and second to explain through illustration some 
fundamental concepts that relate to machine learning in general and must be under-
stood before these methods can be applied in a principled manner. The key concepts 
that are developed during the course of the illustration of selected methods include 
the notion of a machine learning model with pliable parameters that can be fit to 
training data in order to make predictions; how training objectives can be configured 
to emphasize data points of greater predictive utility; and—of particular importance 
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Fig. 6.3 Comparison between the AUROC and rotated AUPRC. The area under the blue curve 
shows the AUROC, and the area under the orange curve the AUPRC. The main contribution to the 
area under this orange curve occurs at low recall values (the bottom 20% of the y-axis)—precision 
drops precipitously as new positive examples are identified, because each of these carries the bag-
gage of many negative examples in an imbalanced set. In contrast, the area under the blue AUROC 
curve continues to increase gradually throughout the full range of recall values, with larger changes 
to the false positive rate (fpr) delayed until around half of the positive examples have been identified

to supervised learning—the inherent trade-off between the ability of a model to 
conform to its training data and its ability to generalize to data outside of this train-
ing set. The general discussion offered is pertinent to applications in healthcare and 
biomedicine, as well as to other domains.

Machine learning is essentially an automated search for meaningful patterns in 
data. Traditional computational systems map inputs to outputs according to manually 
specified and programmed decision rules. In the clinical context, such systems are 
rigid and require frequent updates to accommodate changes in standard of care and/
or evolution of the understanding of disease. The promise of machine learning is the 
automatic inference of general decision rules from lots of specific examples of 
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decision-making in a variety of contexts. It mirrors the residency phase of training of 
clinicians where clinically useful rules and patterns are learned directly by observa-
tion and integrated with those learned during didactic classroom learning. With 
retraining on suitable new data as they emerge, a machine learning system can adapt 
to new experiences and new examples without the need for explicit reprogramming.

 The Structure of a Supervised Machine Learning Algorithm

In order to approach the topic of machine learning, it is necessary to become famil-
iar with some notational conventions that are standard in the field (Box 6.2). This 
section illustrates the use of these conventions to describe a simple machine learn-
ing algorithm. It also introduces the fundamental concept of a loss function, a func-
tion that measures the extent to which a machine learning model conforms to its 
training data, and the gradient descent algorithm to achieve this end.

The simplest example of a machine learning algorithm is finding the least- 
squares line that fits given (x,y) points on the plane. The training data for the algo-
rithm consists of pairs of real numbers (x,y), and the pattern or model to be found is 
a line represented by the equation y = θ1x + θ0, where the parameters θ1 and θ0 stand 
for the slope and intercept. The parameters θ1 and θ0 are obtained by minimizing the 
mean squared prediction error of the model over the given data points. As such, this 
simple example serves to introduce some of the standard nomenclature used to 
describe machine learning approaches: a dataset composed of pairs (x,y) where x is 
an input data point (part of a larger set X), and a corresponding output y (part of a 

Box 6.2 Notational Conventions
• x: a feature of a data point, such as a patient’s HbA1C level
• x: (boldface) a vector made up of individual features for a data point
• X: the entire set of data points, such as a set of patients
• y: a label attached to a data point, e.g., 1 indicating “developed DKA”
• Y: the set of labels for the entire set of data points
• θ: the parameters of a model, e.g., the coefficients of a regression model
• argmin: the arguments that minimize some function, e.g., the parameters 

that minimize the difference between predicted and actual values for a 
data set

• ||x||: the vertical lines indicate the length (or norm) of the vector x
• xT: the superscript “T” indicates the transpose of the vector x—for exam-

ple, the transpose of a row vector becomes a column vector
• x1

Tx2: shorthand for the scalar (or “dot”) product between two vectors, x1 
and x2. This is calculated by multiplying the values in corresponding coor-
dinates, and summing up the total
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larger set Y), and a function f(θ) characterized by some parameters θ that will be 
learned through application of some algorithm, so as minimize the difference 
between the predicted and actual outputs. This difference provides a measure of 
how “wrong” the model is about a data point, which can be averaged across all the 
points in a data set to assess overall model fit. More formally, for a dataset 
D = {(x(i),y(i)) | x(i) ∈ R and y(i) ∈ R; 1 ≤ i ≤ m} containing m pairs of real values, and 
the parameter pair (θ0, θ1) defining a model of a line, the error made by the model is 
specified by a loss function, which is derived from the difference between y as pre-
dicted by this equation for each observed x value (x(i)) given model parameters θ, 
and the actual value of y for the data points concerned. One widely used loss func-
tion is the mean squared error loss function (also known as the quadratic loss func-
tion), which minimizes the average of the square of this difference across all data 
points in the set:
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This loss function perspective on supervised machine learning unifies all the algo-
rithms into a common framework. The entire family of supervised machine learning 
algorithms can be characterized by a loss function, a function family (in this case—
the family of linear functions) for capturing the relationship between the predictors 
in vector x and the outcome y, and an optimization algorithm to find the parameters 
of that function—typically gradient descent to minimize the loss. Linear regression 
and the other algorithms introduced in this chapter all share the same structure. The 
differences may be in the loss function, the optimization algorithm, or the expres-
sive power of the function family. Considering machine learning from this perspec-
tive not only provides a unified framework to support learning, but also permits 
communicating with machine learning researchers and practitioners with a shared 
terminology, a prerequisite to effective team science.

Values of θ0 and θ1 can be found that globally minimize this quadratic squared 
empirical loss function—these are the parameters that define the best fit line for the 
dataset D. By definition, these values will be the ones that minimize the average 
error in prediction across all the points in the set. These values can be found using 
an approach called gradient descent. The underlying idea is to start with a random 
guess, and gradually move toward a correct solution by adjusting the parameters to 
decrease the loss.

For a linear model with two parameters θ0 and θ1, a 3D visualization and contour 
plot of the loss function is shown in Fig. 6.4. The figures show how the loss (vertical 
z axis in Fig. 6.4 left and labeled blue ellipses in Fig. 6.4 right) changes as these 
parameters are adjusted. The loss is minimized with θ0 and θ1 at approximately 35 
and −1 respectively. The figures plot this loss function across a broad range of 
parameter values. However, it would be preferable not to explore this space exhaus-
tively in order to find a solution.
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Fig. 6.4 Two views of gradient descent. These figures illustrate how the loss (vertical z axis in the 
left panel, labeled blue ellipses in the right panel) changes at different values of the parameters θ0 
and θ1. The loss in this case is minimized with θ0 and θ1 at approximately 35 and −1, respectively, 
which corresponds to the lowest point on the z axis (left panel), and the point marked by the red  
(right panel)

To find the lowest loss value (marked with a red x in the contour plot in Fig. 6.4 
right), a gradient descent algorithm starts with an initial random guess for (θ0, θ1) and 
follows the direction of steepest descent of the loss function Loss((θ0, θ1))  in the 
parameter space, updating its values using
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until the values stabilize, and the gradient descent process converges. Conceptually, 
each parameter θj is updated in accordance with its influence upon the loss function. 
This is estimated as the partial derivative of the loss function with respect to each 
parameter, because the partial derivative estimates the extent to which changing a 
parameter of a function will change its output. In this way, each iterative step of the 
algorithm serves to move the parameters closer to values that reduce the error in 
predicted y values for the training data. Gradient descent provably converges to the 
optimal solution because the loss function is a convex function.8 The step size of 
the gradient descent algorithm is denoted α, the learning rate. It is chosen to be 
small enough so that the algorithm does not oscillate around the true minimum 
value of the loss function Loss (θ).

8 A convex function is a function in which a line drawn between the results of evaluating the func-
tion at any two points (e.g., f(x) with x = 0.25 and x = 0.5) will lie above the result of evaluating it 
at any value in between (e.g., f(x) with x = 0.35). Effectively this means that the function has a 
single (global) minimum, and that this can be reached by following the slope of descent.
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Once the parameters that lead to minimal loss have been found, the learned 
model can predict y for new values of x using y = θ0 + θ1x. The quality of the model 
is assessed by measuring squared error on new x values.

Note that the specification of the linear regression problem requires more than 
just the training data, i.e., the (x,y) pairs. Several assumptions about the nature of 
these data, and a model that will fit them are made. It is assumed that the model 
that predicts y is linear in x and described completely by a slope and intercept 
parameter. The goodness of fit of the linear model is assessed by measuring aver-
aged squared prediction error over the training data itself. That is, the strong 
assumption is made that the training data are a good proxy for new data that the 
model will predict on. Formally, it is said that the data set D is a representative 
sample of the fixed, but unknown distribution P of (x,y) example pairs—both 
observed and unobserved. Such an assumption is common in human learning in a 
classroom setting—problem sets solved by students are assumed to be a represen-
tative sample from the fixed distribution from which exam questions will be drawn. 
It is further assumed that each (x,y) is drawn independently, so there is no temporal 
dependence between the samples. This assumption is violated with time series 
data (see Chap. 11).

 Supervised Learning: A Mathematical Formulation

The training of the model described in the previous chapter is an example of super-
vised machine learning, because the model parameters were fit to a set of data 
points (the x values) with labels (the y values) it learns to predict. More broadly, 
supervised machine learning can be conceptualized as shown in Fig. 6.5, as a search 
for the “best” function/pattern in the space of functions H, guided by a representa-
tive training sample. This view casts supervised machine learning as an optimiza-
tion problem with a sample of (x,y) pairs drawn from an unknown but fixed 
distribution of examples, and a pre-defined space of functions characterizing the 
class of pattern relating the x’s to the y’s. The training data are used to navigate the 
space H of functions mapping x’s to the y’s to find one that “explains” the labeled 
training data the best. To guide the search for a suitable model in H, a loss function 
which quantifies how well the model fits the data is needed. Also needed are smooth-
ness properties of the function space H to make search tractable. That is, H must be 
defined such that neighboring points in function space have similar losses with 
respect to the training data, so that the space can be explored systematically. The 
gradient descent algorithm works only when the function space H is smooth in this 
sense and supports computation of the derivative of the loss function with respect to 
the parameters of H. However, supervised machine learning problems can often be 
approached in this way, and gradient descent is a keystone of many contemporary 
machine learning approaches, including deep neural networks.
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Fig. 6.5 Schematic depiction of supervised machine learning. Training data are a subset of the 
universe of possible labeled exampled pairs. The figure shows only a single x value per example, 
but in practice this is likely to consist of a vector of features, x (such as the intensities of pixel 
values in a radiology image). The task in supervised machine learning is to identify a function, f(x) 
(referred to as h* in Box 6.3) that correctly maps the x values of the data to the y values of the labels

Box 6.3 Mathematical Components of a Supervised Machine 
Learning Problem
Given
• a finite data set of pairs (x,y), where x is a vector of predictor variables, and 

y, the associated real-valued prediction
• a class of functions H: X  →  Y which map vectors x in X to real num-

bers y in Y
• a loss function L: Y × Y → R which maps a real-valued prediction and the 

true value to a real number denoting the distance between them

Find
• a function h* in H which minimizes empirical loss (hence, the argument of 

the minimum, or argmin)
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Box 6.3 provides a compact formulation of supervised learning which reveals the 
ingredients needed for building a good predictive model: (1) a representative, 
labeled training set composed of pairs (x,y), (2) a mathematical family of patterns H 
that potentially captures the association between x and y, and (3) a loss function L 
to evaluate the quality of fit between the model and the paired data. All of these must 
be constructed in a problem-specific way involving close collaboration between 
clinicians and machine learning scientists/engineers.
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The class of patterns or functions H mapping the predictor variables x to an out-
come variable y can be parametric, or non-parametric. Parametric models have a 
fixed number of parameters. The simple linear regression model on one variable has 
two parameters, θ0 and θ1, which are learned from (x,y) data by gradient descent 
optimization of the squared error loss function. Parametric methods make strong 
assumptions about the underlying function to be learned. They are computationally 
efficient at prediction time because they require the evaluation of a fixed parametric 
function (in the case of a linear regression model, each incoming feature would 
simply be multiplied by its respective parameter, followed by adding up of the 
results, and addition of the bias term θ0).

Non-parametric methods make fewer assumptions about the nature of the under-
lying pattern relating the x’s to the y’s. A classic example of a non-parametric learn-
ing method is the k-nearest neighbors algorithm, illustrated in Fig. 6.6. To classify 
a new point, denoted by x in the figure, the algorithm computes the k closest points 
to x in the training data set, and outputs the majority vote (+ or −) among them. The 
method is very sensitive to the choice of distance metric as well as to the number k 
of neighbors chosen, with the latter illustrated in Fig. 6.6.

 Augmenting Feature Representations: Basis 
Function Expansion

Returning to parametric models and fitting (x,y) points with a mean squared error 
loss function, it is possible to expand the model class to include higher order terms 
in x, while still retaining linearity in the parameter space. In the linear model intro-
duced in the section on “The Structure of a Supervised Machine Learning 

a b c

Fig. 6.6 Effect of the choice of k on the class assigned to the unseen data point x by a k-nearest 
neighbors classifier. With (a) k = 1, the negative class (−) is assigned. However, with (b) k = 2, the 
classes are tied, and with (c) k = 3, the positive class (+) is assigned
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Algorithm”, a change in the x value of a data point will always result in the same 
change in the y value that the model outputs. For example, if the parameter θ1 = 2 
and θ0 = 0, doubling x will quadruple y. However, there are many examples in medi-
cine (and beyond) in which the relationships between variables of interest are non-
linear. Changes to an outcome of interest may be more severe once a value reaches 
its extremes. For example, risk of stroke increases gradually up to the age of around 
65, and much more rapidly after this point [7]. The simple linear model introduced 
previously would underestimate the risk of stroke in older patients, because it can-
not address changes in the relationship between age and risk. There are two funda-
mental approaches to increasing model expressivity to accommodate such 
relationships. One involves modifying the features that are provided to the model, 
and the other involves modifying the model itself. More expressive models are 
introduced in subsequent sections of this chapter. The discussion that follows shows 
how transforming the features of a data set into a more expressive feature set can 
allow a linear model to capture non-linear relationships between y (e.g., stroke risk) 
and x (e.g. age).

One expression of this idea is called basis function expansion and involves 
extending the feature set of a model to include higher order terms. The feature x can 
be expanded to the feature set x, x2, x3 and so forth. In the case of stroke risk, a model 
might be risk_stroke = θ0 + θ1age + θ2age2. The relationship between stroke risk and 
age would then be modeled as a weighted sum of a linear (age) and an exponential 
(age2) function, with the parameters θ1 and θ2 indicating how much each of these 
should influence the model. While these parameters are constant once trained, the 
influence of the exponential component of the model will be stronger as age 
increases, as its contribution to the sum grows proportionately larger. With appro-
priately trained parameters, this model will be able to predict a sharper rise in stroke 
risk with increasing age accurately.

However, when applied injudiciously, basis function expansion can reduce the 
accuracy of model predictions on unseen examples. Consider, for example, fitting a 
cubic or higher-order function on given (x,y) points as shown in Fig. 6.7. These data 
points correspond to the pattern produced by a pneumotachogram (also known as a 
pneumotachograph), which measures the rate of air flow during inspiration (left part 
of the curve) and expiration, and is used to study lung function [8].

The model associated with the degree 3 polynomial shown at the bottom left 
panel is y = θ3x3 + θ2x2 + θ1x + θ0 and a gradient descent algorithm finds values for 
all the θ coefficients to minimize the average squared error. It is possible to enrich 
the class of patterns even further and select a ninth order polynomial as shown in the 
bottom right panel. The fitted curve passes through all the training points, and zero 
training error is achieved with respect to the loss function. However, the learned 
polynomial performs poorly outside of the training set. A small vertical jitter (shift-
ing each data point in the y-axis) applied to the training points will result in a cubic 
polynomial that is not very different from the one shown in the lower left of Fig. 6.7, 
but the shape of the degree 9 polynomial at the bottom right will undergo radical 
changes.
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Fig. 6.7 Using basis function expansion to fit—and to overfit—a complex function with a model 
that is non-linear in x but linear in the expanded parameter vector θ. (Adapted from “The Elements 
of Statistical Learning” [9])

This figure illustrates the concept of overfitting—where a model has sufficient 
degrees of freedom to fit so tightly to the individual data points that it fails to capture 
the pattern of relatedness between them and is exceedingly sensitive to noise intro-
duced to the data. Overfitting is a fundamental issue in machine learning, and one 
that will be returned to throughout the chapter. It is especially important in the medi-
cal domain, where datasets may be relatively small because they are limited to data 
from one institution or concern a rare condition. In the context of such limited data, 
a model with many degrees of freedom may conform closely to anomalous data 
points within the set that are not truly representative of the phenomenon that is 
being modeled and perform poorly at the point of deployment when applied to 
unseen data. Overfitting is also related to the tradeoff between bias and variance.

 Bias and Variance

Figure 6.7 illustrates the tradeoff in machine learning between complexity of the 
model class—e.g., third vs. ninth degree polynomial (bias—which indicates the 
capacity of the functions in H and relates to how closely they can fit to individual 
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data points) and stability of the parameter estimates (variance—which concerns 
how robust the estimated function is to variations in the training data). Models with 
high bias will have low variance because their strong assumptions render them 
insensitive to small changes in the data, so it is important to consider the tradeoff 
between bias and variance, and how they relate to sources of error. It is possible to 
decompose the error made by a model into two components: structural error 
(caused by limiting the class of functions considered), and approximation error 
(caused by limits on the amount of training data made available).

At the top right of Fig. 6.7, there is a model with a very strong bias (it assumes 
the training data can be explained by a line). The error made by this model is all 
accounted for by the limiting structural assumption. Providing the model with more 
training data will not reduce its prediction error. Such a model is called an underfit-
ted model. Underfitted models have high errors on both the training and test data. 
At the bottom right, there is a model with many more degrees of freedom; thus, it 
has much lower bias. Its errors are approximation errors, caused by the limited 
amount of training data—there are just ten points to estimate the ten parameters of 
the polynomial. Such a model is an overfitted model. Overfitted models have low 
training error (because they have the freedom to fit tightly to the individual training 
data points) and high test error (because the tightness of the fit to a small number of 
potentially noisy training examples obscures the general pattern that would apply to 
other examples beyond the confines of the training set). The consequence is that 
overfitted models generalize poorly beyond their training data.

For the given collection of ten training points, the degree 3 polynomial (bottom 
left panel) offers a good tradeoff between structural and approximation error. The 
model class is powerful enough to capture the patterns in the data, and there are 
enough training samples to fit the model with low variance estimates. To build a 
successful machine learning model, one needs to find the right function class (bias) 
and provide a large enough training set to estimate the parameters of the learned 
function (variance) robustly. A family of techniques called regularization, to trade 
off bias and variance automatically, are introduced below. Regularization remains 
an important concern in machine learning, including in deep learning models, 
where techniques such as dropout are often a prerequisite to avoiding overfitting. 
The underlying principle of deliberately constraining the extent to which a model 
can fit to training data in order to prevent overfitting manifests in different ways in 
different models, but is fundamental to training models that generalize well to 
unseen data.

 Regularization: Ridge and Lasso Regression

Regression models that are lower degree polynomials have fewer parameters and 
the gradient descent optimization procedure can find low variance estimates for 
them, even with a limited training set. However, such a model could potentially 
underfit the training data. Higher degree polynomials have far greater flexibility, but 
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variance on the estimates of the optimized parameters could be high, which are 
signs of an overfitted model. An overfitted model, such as a degree 10 polynomial 
fitted on 10 (x,y) points, has parameters whose values are very large (both positive 
and negative).

One approach to control model complexity, then, is to penalize large (in the abso-
lute value sense) parameter values, so that the final model has coefficients that do 
not grow without bound. Penalizing large parameter values by modifying the loss 
function used during optimization is called regularization.

The L2-regularized loss function for linear regression is,
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so called because the L2 norm9 is used to penalize the components of θ. Note that h(x) 
is the model prediction for x, and is the dot product of the parameter vector θ with 
[1;x]. The first term of the regularized loss function is the mean squared error of the 
model over the training data (as introduced in the section on “The Structure of a 
Supervised Machine Learning Algorithm”), which is also called the unregularized 
loss. The second term is the penalty function, which is the squared length of θ (the 
vector of parameters) without the intercept parameter θ0. The larger the values of the 
parameters, the larger this term will be, which will in turn increase the value returned 
by the loss function. The penalty term is scaled by the factor λ which weights it rela-
tive to the unregularized loss. When λ is very low, the second term has negligible 
impact on the loss, so the components of θ can grow large. As λ increases, the second 
term dominates the loss function, and the optimizer focuses on keeping the compo-
nents of θ as small as possible, ignoring the impact on the mean squared error term. 
As λ tends to infinity, all components of θ except for the intercept term are driven to 
zero. The model then simply predicts the mean of the training data for all new points x.

To choose an appropriate value of the regularization parameter λ, the training 
data are randomly divided into a training set and a validation set (as introduced in 
the section on “The Machine Learning Workflow: Components of a Machine 
Learning Solution”), typically in the ratio of 90/10. A sweep is conducted through 
potential values of λ in the log space, as shown in Fig. 6.8, to find the best value for 
the regularization constant—one that achieves the lowest loss over the validation 
set. The regularized loss is shown on the y-axis over the training and validation sets, 
and the natural logarithm of λ is shown in the x-axis. There is a range of λ values that 
are suitable for the model, and the convention is to choose the lowest value in the 
range. Regularization with search for the appropriate λ hyper-parameter, allows 
complex models to be trained on data sets without overfitting, essentially by 

9 The L2 norm gives the length of a vector from its origin and is calculated as the square root of the 
sum of this vector’s squared components (in two dimensions this length would be that of the hypot-
enuse of a right-angled triangle with sides adjacent to the right angle corresponding the vector’s 
components on the x and y axes). With L2 regularization, the sum of the squared components is 
used directly, without applying the square root.
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Fig. 6.8 Grid search to identify the optimal regularization parameter. The y axis shows the regu-
larized loss J, and the x axis shows the natural logarithm of the regularization parameter, λ. 
Validation loss improves until a λ value of around 10−30, suggesting this may be a good choice to 
achieve a model that generalizes well to unseen data. The extremes of the x axis suggest poorly 
fitted models. The leftmost extreme suggests an overfitted model, with near zero training loss with 
high validation loss at low λ. The rightmost extreme suggests an underfitted model, with increasing 
loss on both training and validation sets at high λ

limiting effective model complexity. Put another way, regularization drives higher 
order terms in the polynomial regression function to zero—thus, the learning proce-
dure is given the ability to fit a ninth order polynomial, but the penalty term in the 
regularized loss function will drive the optimization process to select only terms no 
higher than degree 3, consistent with the amount of training data that are available.

L2-regularized regression is also known as ridge regression. However, the pen-
alty term in the regularized loss function need not be limited to the L2 norm of θ. A 
widely used penalty function is the L1-norm,10 and the corresponding L1-regularized 
loss function for linear regression is
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L1-regularized regression is called lasso regression. Lasso regression has the spe-
cial property that it drives components of θ exactly to zero [9], given sufficiently 
large values of the regularization parameter λ. Thus, sparse models that only involve 
a subset of the features in input vector x are obtained. Since lasso regression per-
forms automatic feature selection, it is in wide use in clinical settings, where predic-
tive models with the fewest number of predictors (for a given level of performance) 
are prized. For example, Walsh and Hripcsak describe a series of readmission risk 
prediction models in which lasso regression resulted in an average of a fivefold 
reduction in the number of features considered [10]. Lasso models can be readily 

10 The L1 norm of a vector is the sum of its absolute coordinate values.
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incorporated into clinical workflow with minimal computational requirements when 
relevant features can be extracted in real-time directly from data sources such as 
electronic records [10, 11].

 Linear Models for Classification

A common task in biomedical machine learning involves assigning categorical 
labels, such as diagnosis names or types of predicted outcomes on the basis of 
observed data. This task is referred to as classification. In classification, the out-
come variable is discrete rather than continuous. There is therefore a need to modify 
the class of prediction functions H as well as the loss function to accommodate the 
change in outcome type. A formal description of the components of a classification 
problem is provided in Box 6.4.

The only difference between regression and classification is in the target of the 
prediction function—regression functions produce continuous value predictions, 
while classification functions predict discrete values, or probability distributions on 
a discrete value set. Thus, the class of functions H and the loss function L are modi-
fied to handle this change in the target of prediction. A good way to visualize a 
classification function h in H is as a partition of the input space X into decision 
regions, each associated with a member of C. Linear models of classification learn 
hyperplanes in the input space dividing it into different decision regions, while 
linear models with expanded basis functions learn non-linear decision boundaries. 

Box 6.4 Mathematical Components of a Classification Problem
Given
• a finite data set of pairs (x,y), where x is a vector of predictor variables, and 

y, is the associated discrete class or category drawn from a finite set C 
of labels

• a class of functions H: X  →  C which map vectors x in X to discrete 
values in C

• a loss function L: C × P(C) → R which maps a true category and the pre-
dicted distribution over the categories to a real number denoting the dis-
tance between true and predicted classes

Find
• a function h* in H which minimizes empirical loss
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A very special case of classification is binary classification when the set C consists 
of exactly two elements {0,1} called the negative and positive class respectively. 
The goal of learning in binary classification is to find the best decision rule that 
predicts the correct class given the vector x of predictors.

Classification problems are frequent targets of machine learning applications in 
medicine, with typical examples including classifying patients by diagnosis on the 
basis of their imaging data (e.g. detecting diabetic retinopathy in retinal images [2]; 
for further examples see Chap. 12), classifying clinical notes with respect to the 
nature of their content (e.g. identifying clinical notes containing goals-of-care dis-
cussions [12]; see also text classification, Chap. 7, section “Overview of Biomedical 
NLP Tasks”), and predicting clinical outcomes (e.g. readmission within 30 days of 
discharge [10]; for further examples see Chap. 11).

Linear models of classification come in two flavors, based on whether they learn 
the posterior distribution P(y|x) (e.g. the probability of a side effect after some drug 
has been observed) or the joint distribution P(xy) (e.g. the overall probability of 
both the drug and side effect being observed together) from the paired (x, y) training 
data. The difference between these estimates may not be obvious at first. For a given 
binary predictor, xi⋲ {True,False} (e.g. presence of a drug), the posterior distribu-
tion P(y|xi) will correspond to the proportion of observations of xi in which y (e.g. 
presence of a side effect) is also true. In contrast, the joint distribution P(xiy) cor-
responds to the proportion of all examples in which both xi and y are true. In the 
example, P(xiy) would be low when the side effect in question occurs many times 
without the drug being taken—but P(y|xi) may still be high if the side effect occurs 
frequently in cases where the drug has been taken. Models that learn the posterior 
distribution are called discriminative models, while models that learn the joint 
distribution are called generative models.

 Discriminative Models: Logistic Regression

A classic example of a linear discriminative binary classification model is logistic 
regression. Rather than predicting an unbounded value as with linear regression, 
logistic regression models P(y|x), the posterior distribution of the binary outcome y 
given input x as the following function: a linear computation (the dot product of a 
parameter vector θ with the input vector x, θTx) followed by a non-linear “squash-
ing” of that dot product into the range [0,1] to represent a probability. This can be 
interpreted as the probability of a class of interest, such as a diagnosis or outcome.
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The particular nonlinear squashing function g used in logistic regression is called 
the sigmoid. As shall be seen later, this function is a fundamental building block of 
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deep neural networks. Given a training data set D, and an appropriate loss function, 
the optimal value of the parameter vector θ which characterizes the classification 
function can be found. Given a new vector x, the posterior probability of y = 1 
given x, i.e., P(y = 1|x), is evaluated, and if that probability is greater than or equal 
to 0.5, the new x is classified as positive (belong to class 1, which may indicate a 
diagnosis or outcome of interest). Since the sigmoid function g(z) equals 0.5 when 
z is 0, the decision boundary separating class 0 from class 1 is defined by the 
hyperplane

 q T x = 0  

The equation above defines a linear separating hyperplane for binary classification. 
When θTx ≥ 0, x lies on the positive side of the plane, and when θTx < 0, x lies on 
the negative side (it is worth noting that the use of a bias term θ0 allows the model 
flexibility in setting a threshold for classification—for θTx to equal zero, θ1…n

Tx1…

n = -θ0). The decision boundary learned by logistic regression on a nearly linearly 
separable data set composed of (x, y) pairs where each x is a point on a plane, is 
shown in Fig. 6.9. Points belonging to the positive class are marked with a + sign, 
while points belonging to the negative class are marked with a − sign.

The loss function for training a logistic model can be derived by the maximum 
likelihood principle, in which a model is trained to maximize the probability of the 
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Fig. 6.9 Illustration of a decision boundary for a logistic regression classifier with two classes. 
Examples that fall to the right of the boundary (θTx > 0) corresponding to estimated P(y|x) > 0.5), 
are classified as positive
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observed data, assuming that P(y = 1| x; θ) = h(x) = g(θTx). The logarithm of the 
negative likelihood of data set D composed of (x,y) pairs, where y is in the set {0,1} 
can be shown to be the cross entropy function.
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As this function is not only fundamental to logistic regression but is also widely 
used in training deep neural networks amongst other models, it is worth unpacking 

here. 
1

1m i

m

=
å  indicates that an average over m data points is taken, and the rest of the 

right-hand side of the equation is a compact way of describing the log likelihood of 
the data. If y(i), the label of the example i, is equal to one, only the leftmost term is 
considered, because (1 − y(i)) in the rightmost term will be zero. In this case, the 
likelihood will be the log of the predicted probability h(x) = P(y = 1|x) assigned to 
this example. Conversely, with y(i) = 0, only the rightmost term will be considered, 
and the likelihood will be the log of the predicted probability P(y  =  0), or 
1 − P(y = 1). So, the log likelihood of the dataset is the average of the logs of the 
predicted probabilities of the correct labels across all examples. The negative log 
likelihood reverses the polarity of this estimate, converting a maximization problem 
into a minimization one.

Gradient descent minimizes J(θ) to find the optimal value of the parameter vector 
θ. Since the cross-entropy function J(θ) is a convex function, it has a global mini-
mum which can be computed by standard optimization algorithms. It is therefore 
guaranteed that θ found by minimizing the cross-entropy function represents the 
optimal classifier for the data set in the infinite space of parametric functions H.

 Regularized Logistic Regression: Ridge and Lasso Models

The decision boundary in Fig. 6.9 applies readily to situations in which high values 
of the tests concerned indicate a diagnosis. However, circumstances may arise in 
which both high and low values of a laboratory test have implications for the predic-
tion at hand. For example both high and low white cell counts may portend adverse 
outcomes. A range of modeling approaches that apply to classification in these cir-
cumstances are discussed in the section on “Non-linear Models”. For the current 
discussion, it is noteworthy that basis function expansion—the same approach that 
was introduced as a way to augment feature representations to model non-linear 
functions with linear regression in the section on “Bias and Variance”—is also 
applicable to classification problems when logistic regression is used.

When a data set is not linearly separable in the (x1, x2) plane as shown in Fig. 6.10, 
it is possible use the basis function expansion trick to expand the space of predic-
tors. Each point (x1, x2) could be mapped into a 15-dimensional space of all sixth- 
order polynomial combinations of x1and x2, to learn a linear separating hyperplane 
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Fig. 6.10 Using feature expansion to learn non-linear decision boundaries with a (linear) logistic 
regression model. The black ovoid boundary is the decision boundary learned by the classifier, 
which separates the positive (+) and negative (−) classes reasonably cleanly, despite these classes 
not being linearly separable in the plane

in that 15-dimensional space. One benefit of this expansion is that it allows the 
model to consider the magnitude of a feature value out of context of its polarity—
the polynomial expansion x2 will be high for both highly negative and highly posi-
tive values of x, enabling the model to learn decision boundaries that are ovoid or 
circular in relation to the unexpanded features. The projection of that decision 
boundary in two dimensions is shown in Fig. 6.10. Basis function expansion allows 
us to consider rich models with low bias; therefore, to prevent overfitting it is neces-
sary to strongly regularize the models. Ridge and lasso penalty terms are added to 
the cross-entropy function, just as in linear regression, to control the growth of the 
parameter vector.

Analogously to regularized linear regression, L2-regularized ridge logistic 
regression is characterized by the following loss function
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while L1-regularized lasso logistic regression penalizes the parameter vector θ 
using the absolute value.
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Note that in both L1 and L2 regularization, the intercept component θ0 is not penal-
ized because the intercept accounts for the overall mean of the data points, effec-
tively setting the threshold for classification. The best value of the regularization 
constant λ can be determined by a cross-validation procedure as was done in the 
case of linear regression. By varying λ, it is possible to adjust the relative impor-
tance of minimizing error on the training data (first term of J(θ), representing the 
averaged log likelihood) and driving the coefficients of θ to zero (second term of 
J(θ), representing the penalty on the coefficients of θ). As λ approaches zero (no 
regularization), the solution found by the optimizer is very likely overfitted, espe-
cially when the number of training data points is small. As λ approaches infinity, the 
training data are ignored, and the coefficients of θ are driven to zero, leading to an 
underfitted model, such as the one shown in Fig. 6.11.

 A Simple Clinical Example of Logistic Regression

This example is derived from data associating male lung cancer and smoking [13]. 
There is one binary predictor: whether someone is a smoker or not, and the outcome 
is also discrete with two values: cancer, or no-cancer. For this simple problem, it is 
easier to present summary statistics of the data as shown below—such a table is 
called a contingency table.

Lung-cancer No-cancer

Smoker 647 622
Non-smoker 2 27

The structure of the logistic model to predict the probability of cancer given 
smoking status is
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Fig. 6.11 Underfitting of a logistic regression model on account of excessive regularization. The 
black ovoid boundary is the decision boundary learned by the classifier, which does not cleanly 
separate the positive (+) and negative (−) classes

This model represents the natural logarithm of the odds ratio of cancer given smok-
ing as a linear function of smoking.
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The parameter θ0 represents the baseline log odds of getting cancer regardless of 
smoking status, and θ1 characterizes the increment in log odds of getting cancer for 
the smoking cohort. Unregularized logistic regression can be used, since there is 
only one predictor and 1298 examples, so there is no need to penalize the loss func-
tion. The optimizer finds the values for the parameter vector θ shown below.
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This model states that the log odds of developing cancer for non-smokers is −2.6025 
(log (2/27)), while the incremental odds of developing cancer for smokers is 2.6419. 
That is, for a smoker, the predicted log odds of cancer goes up by 2.6419 over the 
baseline odds, −2.6025 + 2.6419, which is 0.039 (or log (647/622)). The estimated 
odds ratio of cancer for smokers versus non-smokers is e2.6419 = 14.04. That is, smok-
ers are 14 times more likely to get cancer than non-smokers. The mechanics of logis-
tic regression and the probabilistic interpretation of the parameter vector are revealed 
in this example, where summary statistics of the data suffice to estimate the parameters.

 A Multivariate Clinical Example of Logistic Regression

Now consider the more complex problem of predicting whether or not a Type 2 
diabetes patient’s condition worsens over the course of a year based on a set of 10 
baseline predictors: {age, gender, body mass index (bmi), average blood pressure 
(bp), and six blood serum measurements: total serum cholesterol (tc), low-density 
lipoprotein (ldl), high-density lipoprotein (hdl), total cholesterol/hdl (tch), logarithm 
of triglyceride level (ltg), blood glucose level (glu)}. These data for 442 patients 
along with the outcome variable, which is a quantitative measure of disease progres-
sion 1 year after the baseline are publicly available.11 For this example, a discrete 
outcome variable y will be defined by labeling patients whose progression evalua-
tions are more than one standard deviation above the cohort mean as positive (y = 1), 
and the others as negative (y = 0). That is, the model to be estimated has the form
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where x is the 11-element vector [1,age,gender,bmi, bp,tc,ldl,hdl,tch,ltg,glu] and 
the parameter vector θ has 11 components, the first being the intercept (θ0), and the 
other 10 associated with the predictor variables in x (θ1…10). An L1-regularized 
logistic model is learned, finding the optimal choice for λ, the regularization param-
eter, by five-fold cross-validation. The model learned has only five non-zero coef-
ficients, with bmi, ltg, and bp being the most significant coefficients in the model.
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11 https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html (accessed August 19, 2022).
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The five-fold cross-validated AUROC of this model is 0.9 ± 0.05, indicating that it 
will predict well on new patients, if they are drawn from the same distribution of 
patients as the training set. Beyond accuracy, the model provides interpretability 
(see Chap. 8): the coefficients indicate both the magnitude and the direction of each 
parameter’s influence on model predictions, albeit with the important caveat that 
unlike the binary feature in the previous example, the incoming features may be 
represented on different scales, which will affect the coefficients also.

Regularized logistic regression models are widely used for risk stratification in 
clinical settings. For example, a multivariate L1-regularized logistic regression 
model has been used to predict SARS-Cov2-related death within a year using ten 
baseline characteristics: gender, age, race, ethnicity, body mass index, Charlson 
comorbidity index, diabetes, chronic kidney disease, congestive heart failure and 
the Care Assessment Need score [14]. The model was trained on over 7.6 million 
Veteran’s Affairs enrollees with training data obtained from the period May 21 to 
September 2020, and a testing cohort obtained from the period October 1 to 
November 2, 2020. The AUROC of the model on the test data was 0.836, outper-
forming a simple age- based stratification strategy with an AUROC of 0.74. The 
model was learned from structured data readily extractable from EHR records. 
Further, the model is easily interpretable since the coefficients of the ten predictors 
serve as the log-odds ratio of the effect of that predictor on the final outcome. The 
model was ultimately integrated into the clinical workflow with a built-in web-
based risk calculator and used for prioritizing vaccinations among veterans. The 
model is estimated to have prevented 63.5% of deaths that would occur by the time 
50% of VA enrollees are vaccinated. The model also adheres to the four ethical 
principles outlined by the Advisory Committee on Immunization Practices [15]. It 
maximizes benefits (by targeting those at highest risk for vaccine allocation), pro-
motes justice (by identifying older adults or those with a high comorbidity burden 
who will require focused outreach for vaccination), mitigates health inequities (by 
assigning higher priority to racial and ethnic minorities directly reflecting their 
higher risk of mortality), and promotes transparency (by using an evidence-based 
model with explicit parameters). The use of ethnicity as a variable in this model 
compensates for known differences in health risk across populations, making a pre-
ventative intervention more readily available, without the benefit of additional con-
textual knowledge such as socio-economic status and other specific risk factors. 
Further discussion of the ethical implications of the use of such variables in predic-
tive models is presented in Chap. 18.

 Generative Models: Gaussian Discriminant Analysis

Generative models learn the full joint distribution P(xy) from training data pairs 
(x,y) where x is a vector of predictor variables and y, a discrete outcome. For binary 
classification problems, y takes on one of two values {0,1}, while for multiclass 
classification problems, y can take some finite number, greater than two, of values. 
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Since P(xy) = P(x| y)P(y) using probability theory, the following generative model 
component distributions are estimated.

• prior probabilities: P(y = 1), (P(y = 0) = 1 − P(y = 1))
• class conditional distributions: P(x|y = 1), P(x|y = 0)

from the training data. Armed with the component distributions, the information to 
generate new examples from both classes is available. To generate a new positive 
example, a random x from the distribution P(x|y = 1) is drawn. To generate a new 
negative example, the distribution P(x|y = 0) is used. This is why the model is called 
‘generative’—it can construct new examples from both classes. A discriminative 
model, which only estimates P(y = 1|x) from training data, can classify a new exam-
ple, but it cannot construct one de novo. Furthermore, unlike discriminative models, 
generative models learn the distributions of individual feature inputs, permitting one 
to pose questions such as “what are the characteristics of a patient with worsening 
type 2 Diabetes”. This has inherent advantages for the generation of synthetic data-
sets and can support the construction of causal models that capture cause-effect 
relationships between individual variables (see Chap. 10). However, these capabili-
ties come at a cost in that large amounts of data are required to correctly estimate 
the prerequisite distributions, which often cannot be robustly estimated with the 
relatively small datasets used for clinical machine learning.

Parametric generative models make assumptions about the (parametric) form of 
the prior probability distribution and the class conditional distributions. A common 
choice for the prior probabilities for binary classification problems is the Bernoulli 
distribution (the distribution used for modeling a coin toss), and for continuous 
predictors x, the class conditional densities are modeled as multivariate Gaussian 
distributions with a mean and covariance for class y = 0 and for class y = 1. These 
two assumptions characterize Gaussian discriminant analysis (GDA); one of the 
simplest parametric generative models in the field. A simple two-class example of 
GDA with two-dimensional x vectors is shown below. The learned multivariate nor-
mal class conditional densities associated with the classes are drawn as ellipses. 
Each ellipse is a contour plot of a two-dimensional Gaussian distribution learned 
from data, representing an iso-probability line. The center of the ellipses is the 
mean, and the shape of the ellipse is determined by the covariance matrix of the 
two-dimensional Gaussian. The means of the two multivariate normals in Fig. 6.12 
for the two classes are different, but their covariances are the same.

The decision boundary between the two classes is computed using Bayes rule 
with the learned prior and class conditional distributions (the negative class distribu-
tion is represented in the denominator of the equation, which indicates the probabil-
ity of x summed across both possible values {0,1} of the label y).
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Readers with a clinical or biostatistics background may be familiar with Bayes rule 
applied in this way, as it provides a means to convert the sensitivity of a test—
P(x|y = 1), where y = 1 indicates a positive case in a population, and x indicates a 
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Fig. 6.12 Class-conditional distributions for a binary classification problem. The ellipses demar-
cate regions of probability that the members of each class (+ and o) will have particular values. The 
centers of the ellipses are class means, and the shapes of the ellipse are determined by the distribu-
tion of class members in relation to these means. In this case a single pattern of distribution has 
been estimated for both classes, but these have different means

positive test result—into a clinically actionable positive predictive value, P(y = 1|x), 
or the probability that a patient has the disease given a positive test result.

When the class conditional distributions are Gaussians, with tied covariances, as 
shown in Fig. 6.12 above, the decision boundary between the classes is a hyperplane 
(line in two dimensions). When both the means and the covariances individually for 
both classes are estimated, the decision boundary is a quadratic (parabola). Gaussian 
discriminant analysis can be used to learn generative models for multiclass prob-
lems, with a combination of tied and independent covariances for the different 
classes, as shown in Fig. 6.13.

In sum, Gaussian discriminant analysis, a parametric generative model, is excel-
lent for data that mostly conforms to a multivariate Gaussian distribution. When this 
assumption about the training data holds, GDA is the best classification method—it 
yields the most accurate classifier with the least amount of data. Discriminative 
models, like logistic regression, are less sensitive to assumptions about the distribu-
tion of the data in X, and therefore need a lot more examples to build models of 
comparable performance.

 Factored Generative Models: Naive Bayes

Multivariate distributions of the form P(x|y) are difficult to handle, both analytically 
and computationally. One approach around this difficulty is to assume conditional 
independence between the features of the vector x ∈ Rd, and model the multivariate 
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Fig. 6.13 Learning more complex decision boundaries with Gaussian discriminant analysis 
(GDA). This figure shows the boundaries learned from two class problems with tied (left panels) 
and individually estimated (right panels) covariance patterns for binary (top panels) and three-class 
classification (bottom panels). This illustrates the ability of GDA to fit to the unique characteristics 
of different classes, and address multi-class classification problems

distribution P(x|y) as the product of d one dimensional distributions of the form 
P(xi  ∣  y). This is a strong and often unfounded assumption—for example, when 
modeling clinical data this would mean ignoring relationships between the values of 
different liver function tests that in practice may be of considerable diagnostic util-
ity, as well as other important relationships such as drug interactions and relation-
ships to comorbid diagnoses. Nonetheless, despite their “naivete”, models 
embodying this assumption can lead to surprisingly accurate predictions.
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This factorization works well for both discrete and continuous valued vectors x, 
even when the conditional independence assumptions between the components of x 
conditioned on the class y, do not hold. Naive Bayes models are the industry- 
standard for the problem of spam detection and for text classification (with over 
300,000 articles on Google Scholar as of August 2022) and have been widely used 
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for machine learning in medicine. Recent applications include suicide risk predic-
tion [16], and predicting neonatal sepsis [17].

For illustrative purposes, consider the following problem: there are 1.13 cases of 
bacterial meningitis per 100,000 population in the US. Assume that 60% of patients 
with bacterial meningitis report the characteristic symptom of a stiff neck, but that 
15% of patients without meningitis also report this symptom. Given that a new 
patient reports a stiff neck, what is the probability that they have meningitis? It is 
possible to write the facts of this problem as the following probability statements:

 1. P(y = meningitis) = 1.13 × 10−5; P(y = not-meningitis) = 1 – 1.13 × 10−5

 2. P(stiff neck = 1|y = meningitis) = 0.6
 3. P(stiff neck = 1|y = not-meningitis) = 0.15

The first set of equations describe the prior probabilities of the two classes {menin-
gitis, non-meningitis}, and the next two describe the class conditional distributions 
with respect to a primary symptom of meningitis—stiff neck. Bayes Theorem can 
be used to calculate the probability that a patient presenting with stiff neck has 
meningitis:
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The d in the denominator has one of two possibilities: 1 indicating meningitis, and 
0 indicating “not meningitis”. Since the prior probability of meningitis is very low, 
and stiff neck is four times more likely to occur in meningitis patients, the posterior 
probability of the patient having meningitis rises to 4.5 × 10−5, if a patient presents 
with a stiff neck alone. However, stiff neck is only one of the symptoms of menin-
gitis. By taking other symptoms into account, such as high fever, nausea, etc., it is 
possible to improve the estimation of the posterior probability of meningitis in a 
patient. Suppose k Boolean features are used, representing the presence or absence 
of specific symptoms—let us call the features x1, …, xk. To keep things simple, each 
of these will take on values in {0,1} denoting absence or presence of a symptom. 
Now every patient is represented by a Boolean vector x of length k, with every posi-
tion in the vector denoting whether a specific symptom is present or absent. To learn 
the distribution P(x|y = meningitis) or P(x|y = not-meningitis), it is possible to use
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Since the vector x is discrete, it is possible to simply count the number of meningitis 
patients represented by the vector x, and divide it by the total number of patients, to 
get the proportion of patients of the form x, representing a specific absence/presence 
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pattern of symptoms. If k (the number of symptoms) is 20, the possible number of 
configurations of vector x is 220. Estimating the distribution requires estimation of 
O(220) entries, an intractable task with typically available EHR data.

Now the power of the Naive Bayes assumption can be seen. The multivariate 
discrete distribution P(x|y) is factored as the product of k univariate Bernoulli distri-
butions of the form P(xj = 1|y = meningitis) and P(xj = 1 ∣ y = not meningitis). For a 
k-dimensional vector x, only 2k parameters are needed to characterize the class 
conditional distributions. The reduction of parameters from O(2k) to 2k makes gen-
erative modeling of patients a tractable proposition.
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For the price of estimating 2k + 1 parameters (the 1 is for P(y = meningitis)), Bayes 
rule can be used as above to diagnose meningitis. The real challenge in building 
Naive Bayes classifiers for diagnosis or more generally any classification problem, 
is choosing good features to characterize a patient. For example, Google’s Gmail 
has a proprietary list of thousands of features that it extracts from each email to stay 
ahead of the arms race with spammers.

To avoid underflow problems that arise from multiplying thousands of probabili-
ties in the numerator of the posterior probability calculation, the computation is 
performed in log space.12 That is, to classify a new patient x as having meningitis, 
the following inequality is evaluated, which also eliminates computing the denomi-
nator of the expression above, which is identical for both classes.

 

log log

log

P y meningitis P x y meningitis

P y not m
j

j=( )( ) + =( )( ) >
=

å |
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j
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Recently, Naive Bayes classifiers for detecting patients at increased risk of suicide were 
constructed using structured data on 3.7 million patients across five diverse health care 
systems [16]. The model detected a mean of 38% of cases of suicide attempts with 90% 
specificity at a mean of 2.1 years in advance of the attempt. This model used univariate 
Gaussian distributions to model continuous variables obtained from structured health 
records, and Bernoulli or multinomial distributions for the discrete variables.

12 This is a common computational optimization that works because log(ab) = log(a) + log(b)—so 
we can add instead of multiplying, obviating the underflow that occurs when repeatedly multiply-
ing by small number; and log(a) > log(b) for all a > b—so we will assign the class with the highest 
posterior probability given the data x.
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 Bias and Variance in Generative Models

It is possible to either underfit or overfit a generative model. Continuing with the 
meningitis classification example, a model with low bias has a very large number of 
symptom features. With a limited amount of training data, the estimates of the class 
conditional probabilities for this large feature set are likely to have high variance. 
On the other hand, a model with very few features to represent a patient has high 
bias, and its parameters can be stably estimated, even with a limited amount of data. 
However, a model with a limited feature set is unlikely to generalize well to new 
data. Finding the right tradeoff between bias and variance amounts to finding the 
right feature set (both in content and size) to balance generalization performance 
and reliability of estimation of the distributional parameters, with respect to the 
available training data. Feature selection (see Chap. 11) is thus a critical aspect of 
construction of generative models.

The use of Bayes rule for performing classification of new examples raises a 
novel problem unique to generative models. Suppose one of the class conditional 
probabilities corresponding to a specific feature is estimated to be zero given the 
training data. This situation occurs quite frequently in email classification when a 
chosen word feature does not appear in the training corpus. Should a new piece of 
email contain that feature, the Bayes rule computation will yield a zero, since one 
of the probability terms in the numerator is zero. To guard against this situation, a 
regularization process called Laplace smoothing is performed on probability esti-
mates. Instead of starting word counts at zero in the estimation procedure, counts 
are started at 1 (or another small constant). So, no class conditional probability is 
ever estimated to be zero, regardless of the limitations on the training data.

 Recap of Parametric Linear Models for Classification

Given a training data set composed of pairs (x,y) where x is a vector of d dimensions 
in a continuous/discrete space, and y is a label drawn from the set {0,1}, there are 
two distinct approaches to building functions that predict y given a new x

• Discriminative models learn the posterior probability P(y = 1|x) = g(θT x) as a 
parametric function and optimize the value of the parameter vector θ to make the 
predicted distribution of y as close as possible to the true distribution. The learned 
parameter vector describes the linear classification boundary θTx = 0 between the 
two classes (0 and 1). Logistic regression belongs to this family of models.

• Generative models learn the full joint distribution P(xy) in terms of its compo-
nents P(y) and P(x| y). Generative models come in two forms: full models, and 
factored models which assume that the components of x are independent of one 
another given the class. Factored models are easier to estimate and work with and 
are widely used in a range of text classification and clinical decision-making 
tasks. The decision boundaries they learn can be characterized by a hyperplane 
in the domain of the input vectors x.
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 Non-linear Models

Linear classification models assume a monotonic and proportional relationship 
between input variables and the probability of an output label. Models of this sort 
cannot learn that both high and low blood pressure can be useful predictive features 
for the onset of renal failure, nor can they learn that the probability of this outcome 
increases exponentially once a particular blood pressure is reached. However, they 
can be configured to do so, by transforming the incoming data to enrich the space of 
features.

Consider the following classification problem in two dimensions (Fig.  6.14 
(left)). Can the two classes be separated by a linear boundary?

Clearly, there is no linear separating hyperplane in the original feature space 
(x1, x2). However, it is possible to use the basis function expansion trick introduced 
in the section on “Augmenting Feature Representations” to map each (x1, x2) pair 
into a new feature space z1, z2 defined as

 
z z x x x x
1 2 1 1 2 2
, ,( ) = * *( )  

Now a linear hyperplane defined by z1 + z2 ≤ R2 where R is the radius of the black 
circle in Fig. 6.14,13 achieves perfect separation as shown below.

13 Summing the squares of x and y returns the square of the distance from the origin, which will be 
less than R^2 for the examples in the innermost class.

X2

X1

Z2

Z1

Z1 + Z2 <= R2

Fig. 6.14 (Left) A non-linear classification boundary in the original (x1,x2) feature space. (right): 
A linear boundary in the (z1,z2) feature space where z1 = x1 × x1 and z2 = x2 × x2. Note that the linear 
boundary with expanded bases (right) corresponds to the non-linear boundary in the original fea-
ture space (left)
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There are two approaches to constructing non-linear classifiers.

1. Stay within the framework of linear classifiers with their optimality guarantees, 
but manually construct appropriate non-linear feature spaces (basis functions) in 
which the classification boundaries are linear. The example shown above illus-
trates this idea. However, the downside of this approach is that it places the entire 
burden of designing basis functions for data representation on the human 
modeler.

2. Bypass the explicit construction of basis functions and build non-linear classifi-
ers directly. What is lost in this approach are the optimality/convergence guaran-
tees of linear models. However, there are a number of well-established approaches 
to apply, which can be broadly categorized as either kernel methods or 
stacked models.

 – Kernel methods represent examples not by their features, but in relation to 
other examples in the training set. Kernel regression and support vector 
machines belong to this family of methods.

 – Stacked models are constructed by chaining or layering simpler learning 
models. Layered logistic regression models, also known as deep feedfor-
ward neural networks, are an example of this class of techniques.

 Kernel Methods

Consider a binary classification problem with points (x1,x2) drawn from a two- 
dimensional plane, with labels from the set {0,1}, where points in class 0 are colored 
orange, and points in class 1 are colored blue (see Fig. 6.15). A set of L landmarks 
from the training data are selected; in Fig. 6.15, the landmark points are labeled l1, 
l2, l3, i.e., L = 3 for this example. One can think of these landmarks as paradigmatic 
positive and negative examples for a decision problem. In clinical datasets, such 
landmarks may correspond to textbook expositions of a disease or condition.

I1

I3

I2

X2

X1

Fig. 6.15 A binary 
classification problem on 
points in a plane (training 
points not shown), with 
three selected landmark 
examples (l1, l2 and l3) 
chosen from the two 
classes (blue and orange). 
Unseen data can then be 
classified on the basis of 
their relationships to these 
selected landmarks
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Each point in the training data has the form ((x1,x2),y) and every method dis-
cussed so far predicts y from (x1,x2) using a function parameterized by a vector 
θ. For example, logistic regression without basis function expansion would learn θ 
such that the posterior probability of y = 1 given x is well approximated by the sig-
moid of the dot product of θ and x.

 
P y x x x x= ( )( ) = + +( )1

1 2 0 1 1 2 2
|; , |;q s q q q

 

Instead of describing a training example x by its intrinsic properties—i.e., its loca-
tion in the x1 – x2 plane, let us represent it by its “similarity” to the three landmark 
examples shown in Fig. 6.16. That is, a similarity function sim on pairs of points in 
the x1 – x2 plane is first defined as follows. This similarity function or kernel, is 
called a radial basis function.

 

sim x l x l
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sim(x,l) is characterized by a fixed bandwidth parameter σ(unrelated to the sigmoid 
product above), which is a real number that takes on values in the range [0,1]. The 
value 0 is achieved when x is far away (in terms of Euclidean distance) from l, and 
the value 1 is obtained when x is identical to l. In short, sim(x,l) characterizes how 
similar x is to landmark l, for points x and l in an n-dimensional space. Note that sim 
is a symmetric function; sim(x, l)  =  sim(l, x). This is a required condition for all 
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Fig. 6.16 Kernel logistic regression for a binary classification problem. On the left four landmarks 
are chosen, indicated by the black circles. On the right, all the data points serve as landmarks. The 
similarity between each data point and the landmarks concerned has been measured using the 
Radial Basis Function (RBF), described in the section on “Similarity Functions for Kernel 
Methods”. Note that in this case the boundaries are similar, and that both lead to perfect separation 
of the classes
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kernels. The new representation for point x is a three-dimensional vector, character-
izing how similar x is to the three chosen landmarks

 
sim x l sim x l sim x l, , , , ,

1 2 3( ) ( ) ( )( )
 

This representation of x is a sequence of pairwise comparisons to three landmark 
examples: instead of the classical representation in terms of the features of x alone. 
In this new representation, the posterior probability of y = 1 will be approximated 
for the example as
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The decision rule for classification is a linear function in θ which can be learned by 
classical logistic regression.
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0 1 1 2 2 3 3

0+ ( ) + ( ) + ( )( ) ³sim x l sim x l sim x l, , ,
 

Note that the features associated with the decision function no longer pertain to x 
alone, but to its similarity to a set of landmark examples. When the radial basis func-
tion is used as a similarity function, the linear hyperplane in the similarity feature 
space forms complex non-linear boundaries in the original x1–x2 coordinate space. 
As an example, consider the task of separating the points laid out in an XOR con-
figuration (XOR is a Boolean function with two inputs that will be true if and only 
if they are different) as shown in Fig. 6.16. Given points on the plane drawn from 
two classes, the task is to learn a decision surface that separates the two classes cor-
rectly. Clearly, the two classes cannot be separated by a linear hyperplane in the 
original feature space. Suppose four landmarks l1, l2, l3, l4, are presciently selected, 
which are centroids of the four clusters of training points, indicated by a larger filled 
black circle in the figure. Then, every point x = (x1,x2) is mapped into

 
x sim x l sim x l sim x sim x l® ( ) ( ) ( ) ( )( ), , , , ,l , ,

1 2 3 4  

Given the 80 points in x labeled 0 or 1 the predictors are transformed into an 80 × 4 
matrix K, and the label vector of length 80 containing 0s and 1s denoting members 
of class 0 or class 1. It is possible to use regularized logistic regression on (K,y), and 
optimize the penalized cross-entropy loss function to learn the parameter vector 
θ characterizing the linear hyperplane in the feature space of K. This approach is 
called kernelized logistic regression. To make a prediction on a new example x, x 
is transformed into a four-dimensional vector kx with the mapping above, and 
σ(θTkx)  is computed to obtain its classification. It is possible to project the linear 
hyperplane into the original feature space as shown in Fig. 6.16 (black lines), and 
observe that a near-perfect approximation of the XOR function has been learned. 
This is mostly due to a very judicious choice of landmarks. However, when all train-
ing data points are chosen as landmarks, so that the transformed predictor matrix K 
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is of dimension 80  ×  80, an excellent approximation to the true function is still 
obtained.

There are three approaches to landmark selection for kernelized logistic regression:

 1. use all examples in the training set as landmarks and choose a large regulariza-
tion constant in the penalty function, especially if the number of examples is 
large. Regularization is critical to reduce the risk of overfitting.

 2. cluster the examples in the training set and select cluster centers as landmarks. 
When the number of examples is very large (in the millions), this approach 
works better than choosing all examples as landmarks.

 3. have domain experts suggest landmarks.

Kernelized logistic regression has been applied to predict the effects of drugs by 
representing them in terms of their similarity to other drugs. For example, McCoy 
and Perlis describe the application of logistic regression to drug representations that 
include the similarities between the side-effect profiles of a drug and those of a 
curated panel of six drugs that affect the central nervous system, in order to predict 
which drugs will cross the blood-brain barrier [18]. This work exemplifies the 
expert-driven approach to landmark selection.

 Similarity Functions for Kernel Methods

The success of kernelization is closely tied to the choice of the similarity or kernel 
function. A kernel function k measures how similar two d-dimensional vectors are.

 k R R Rd d: ´ ®  

It takes two vectors as arguments and returns a real number measuring the similarity 
between the two input vectors. The radial basis function is a popular general- 
purpose kernel for vectors in Rd. It has been rediscovered in many applied areas of 
science, and is known by a variety of names, including the Gaussian kernel.
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Another popular kernel is the polynomial kernel of order n, defined as

 
k x l x lT

n
,( ) = +( )1

 

Note that both functions are symmetric. Kernel functions are often designed with 
specific applications in mind; this activity is called kernel engineering. Consider the 
problem of predicting DNA sequences in the human genome that encode proteins. 
A supervised machine learning approach to this problem casts the problem in the 
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framework of binary classification. It entails gathering a training set of protein- 
encoding DNA sequences and DNA sequences known not to encode proteins (e.g., 
sequences drawn from regulatory regions). The success of the machine learning 
approach is deeply tied to how the input DNA sequences are represented. A poor 
representation leads to predictive models with poor generalization performance.

One idea for representing the training data sequences is to have expert biologists 
manually engineer features (e.g., counts of specific short subsequences which may/
may not be indicative of protein regions). Another idea is to move away from a 
representation tied to a single DNA sequence to a comparative representational 
approach. That is, rather than trying to describe a DNA sequence on its own, a ker-
nel function k is defined on DNA sequences which evaluates how similar two 
sequences are. Such kernel functions are much easier to design than features on an 
individual DNA sequence. Next, L landmark DNA sequences from both classes 
(protein-coding and non-coding) are selected and each DNA sequence is repre-
sented as a vector of length L denoting its similarity to these L landmarks. It is then 
possible to apply penalized logistic regression, Gaussian Discriminant Analysis, or 
Factored Naive Bayes models to learn the prediction function from the kernel rep-
resentations. The reader is directed to the following textbook for further discussion 
of this approach [19].

The practical significance of working in kernel space, rather than in an expanded 
basis function space is revealed through the following image processing example. 
Suppose images of size 16 × 16 are available for a binary classification task. If all 
fifth order polynomial terms in the 16 × 16 pixel space are considered as features, 

the size of the feature space will expand to 
k k=
åæ
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5 256
 1010. Instead, working with 

a polynomial kernel of degree 5, it is possible to compute (xTl + 1)5 between image 
x, and landmark l in O(16 × 16) time—take the dot product of image x and image l, 
and add 1 to the value, and raise it to the fifth power. The basis function space of all 
fifth order polynomials is never explicitly materialized, but the effect of working in 
that space is obtained, with simply O(256) amount of work! This is the magic of 
kernels.

 Recap: How to Use Kernels for Classification

Given a labeled training set D of (x,y) pairs,

• Choose L landmarks from D
• Choose a kernel function k that captures similarity between pairs of examples
• Represent each x in D by a vector of length L + 1 of the form (1, k(x, l1), …, k(x, lL)). 

The prepended 1 is used for the intercept term θ0 in the learned model. The new 
training set K has (kx,y) pairs, where kx is the kernelized representation of x.
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• Use a discriminative (penalized logistic regression) or generative (Gaussian dis-
criminant Analysis, Naive Bayes) model to estimate a parameter vector from the 
kernel transformed data K and label vector y.

• To predict on a new example x, map it to its kernel form kx, and use the learned 
parameter vector with kx to compute the classification.

 Sparse Kernel Machines and Maximum Margin Classifiers

Kernelization can yield models with poor generalization performance, particularly 
if landmarks are chosen poorly. Too many landmarks could potentially result in an 
overfitted model, and too few landmarks result in underfitted models. Conceptually, 
the most important landmarks are arguably those that are close to the boundary 
between classes, because it is these landmarks that will help to distinguish between 
examples that are hardest to classify. A geometric view of the classification problem 
gives us insight into how to simultaneously select good landmarks and build a high- 
performance classifier.

Consider the points on a plane drawn from two classes as shown in Fig. 6.17. The 
points are linearly separable, and an infinite collection of boundary lines drawn in 
the space between the two sets of points is a perfect classifier. Of all these lines, only 
one, shown as a dotted black line in Fig. 6.17, maximizes the distance between the 
points in the two classes. The separating hyperplane is equidistant from the closest 
points to it in both classes. By formulating the problem of finding the decision 
boundary that maximally separates two (separable) classes as an optimization prob-
lem, it is possible to find a unique solution to the problem of finding the “best” clas-
sifier. In Fig. 6.17, the position and orientation of the maximum margin separating 
line is determined by just two of the nine training data points—i.e., the points at the 

θTx + θ0 = 0 : separating hyperplane

θconvex hull convex hull

Fig. 6.17 The optimal decision boundary separating points from two classes on the plane. This 
boundary is the maximum margin separating line and is the perpendicular bisector of the line join-
ing the closest points on the convex hulls of the two linearly separable classes. Note that this deci-
sion boundary can be identified using a single landmark from each class only
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ends of the line perpendicular to the decision boundary. These two points are called 
support vectors and form the sparse set of landmarks needed to describe the opti-
mal, margin-maximizing decision boundary. The problem of finding the (sparse) set 
of landmarks and the optimal placement of the decision hyperplane is thus solved 
jointly.

To understand how to set up the optimization problem of maximizing the geo-
metric margin between two sets of separable points, it is helpful to review some 
geometry as shown in Fig. 6.18. The margin r of a point x from a hyperplane defined 
by θTx + θ0 = 0 is the perpendicular distance of x from the plane. θ is the slope of the 
hyperplane, and θ0 is the intercept.

The sign of the distance of a point from a decision boundary is determined by 
whether it is on the positive or the negative side of the hyperplane (the distance for 
x would be positive, but one might imagine the reflection of x falling on the negative 
side of the boundary, to the left of it). The label set {0,1} will be mapped to the set 
{−1,1} to write a single formula for the margins of members of both classes. With 
y as an element of this set (i.e., a label in {−1,1}), the margin of a point (x,y) in a 
dataset D is

 

r y
xT

=
+q q
q

0

 

Note that this new definition of margin r is greater than 0 for points on both sides of 
the boundary since the (negative) distance is multiplied with label y = −1 for points 
in the negative class. A dataset D is correctly classified, if and only if the margins of 

Fig. 6.18 r is the perpendicular distance of the point x from the hyperplane θTx + θ0 = 0. The unit 

vector perpendicular to the plane is q
q 

. A perpendicular line (of length r, and parallel to this unit 

vector) dropped from the point x meets the plane at x⊥. So, x is the vector sum of x⊥ and r
q
q 

. 

Rearranging terms, and taking the dot product on both sides by θ, the given expression for the scalar 
distance r is derived
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all the points in D are greater than 0. The margin of the entire dataset is the smallest 
margin among all its elements.
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To separate the two classes maximally, the slope θ and intercept θ0 of the separating 
hyperplane to maximize margin(D) must be selected. That is, there is a need to find
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Unfortunately, this specification of the optimization problem yields infinitely many 
solutions for θ and θ0—because for every k, if θ and θ0 are solutions, so are kθ and 
kθ0. That is, the optimal solution is agnostic to the length of the vector defining the 
hyperplane. To obtain a unique solution, a scaling factor is defined such that
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for the point (x,y) in the dataset D that is closest to the decision boundary. So, the 
optimization problem is reduced to finding
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subject to the constraints that y(θTx + θ0) ≥1 for all points (x,y) in D. That is, all 
points in D must be at a distance of one or greater from the decision boundary. 
Maximizing 1

 q
 is equivalent to minimizing ∣∣θ∣∣, so the maximization problem is 

converted into a constrained quadratic minimization problem and can be solved 
using a classical numerical solver.
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The solution obtained from the solver has the form
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which associates a weight α with each point (x,y) in D. The slope and intercept of 
the maximum margin separator depends only on those (x,y) for which α > 0, as 
illustrated in Fig. 6.19. These points are the support vectors for the classifier and 
form a sparse set of landmarks for the dataset. The dark line in Fig.  6.19 is the 
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Fig. 6.19 Two support vectors for a two-class problem in two dimensions. The position and ori-
entation of the decision boundary is determined by the two support vectors, which form a sparse 
set of landmarks for the dataset shown. The support vectors are computed by solving the quadratic 
optimization problem of finding the maximum margin separator between the two classes. The dot-
ted blue line, called the positive margin, is parallel to the decision boundary. All positive (blue) 
examples lie on or to the right of the positive margin. The dotted orange line is the negative margin. 
A. negative (orange) examples lie on or to the left of the negative margin. The positive and negative 
examples are separated by a distance equal to the margin width. The larger the margin width, the 
more robust the classifier

decision boundary, and the dotted lines at +1 and −1 denote the positive and nega-
tive margin lines. The resulting classifier is called a support vector machine (SVM).

To classify a new point x’ with a SVM the side of the decision boundary the point 
lies on is computed,
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Only the support vectors with non-zero α are involved in this computation, even 
though the summation as written is over all (x,y) in D. Effectively, the position of the 
new point relative to all of the support vectors is used to make classification decisions, 
taking into account both which side of each support vector the point lies on, and how 
far it is from this support vector. To build a non-linear SVM, the linear dot product xTx′ 
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Fig. 6.20 Non-linear 
decision boundaries 
(demarcating the red and 
the blue shaded regions) 
and support vectors (circles 
enclosed in a purple ring) 
for a 2D data set learned 
with a radial basis function

is replaced by a kernel function k(x, x′), such as the radial basis function. It is possible 
to learn non-linear decision boundaries in two-dimensional data as shown in Fig. 6.20 
and identify a sparse set of support vectors using radial basis function as kernels, 
rather than the linear dot product kernel described in the equation above.

In all the discussion so far, it has been assumed that the two classes are separable, 
either linearly with a dot product kernel, or non-linearly with a polynomial or radial 
basis function kernel. To make SVMs practical for real world data sets which are not 
linearly separable to begin with, the formulation of maximum margin classifiers is 
extended to allow misclassified points. This tolerance for misclassification also 
relates to the recurring theme of overfitting. A solution that permits misclassifica-
tion of points in the training set may generalize better to other data than one that fits 
the training set perfectly (Fig. 6.21).

The optimization objective of SVMs will be adapted to relax the margin con-
straint on some of the points. Margin width of the final classifier can be traded off 
with the number of points in the data set that are allowed to violate margin con-
straints, i.e., fall on the wrong side of their class boundary.

Margin violation ξ(x, y) of a point (x,y) is defined as the distance of x from its class 
margin (Fig. 6.22). Then, the margin maximization optimization problem is for-
mulated as
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A point that is correctly classified will have a margin violation of exactly zero, 
incorrectly classified points will have margin violations greater than zero. The regu-
larization constant C is a measure of the willingness to allow misclassifications. 
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Fig. 6.21 Given the two-class dataset on the plane, the maximum margin separator derived by an 
SVM is shown by the solid purple line and the small-dashed margins. This SVM has a narrow 
margin and is defined by three support vectors, that are circles, enclosed in a purple ring. If the two 
circled positive class points in the center are ignored, it is possible to construct an SVM classifier 
with a much wider margin indicated by the broken dotted blue and orange lines. The support vec-
tors for the wider margin classifier are circled in green. Wider margin classifiers have better gener-
alization performance
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Fig. 6.22 The orange 
point outside the orange 
margin, and the 
misclassified blue point 
outside the blue margin, 
have both violated their 
margins. The extent of 
violation, defined as the 
distance from the point to 
its class margin, is traded 
off against margin width in 
the penalized objective 
function for an SVM for 
non-separable data

This is analogous to the approaches to regularization introduced in the discussion of 
linear models, in the sense that permitting misclassifications prevents a model from 
overfitting to the training set, improving generalization to new datasets. If C is high 
(imposing a high penalty for misclassification), then the margin violation term 
dominates, and the optimizer is forced to reduce the margin width concomitantly; 
while if C is low, the optimizer will construct a wide margin classifier since margin 
violations are not penalized so heavily. The penalized version of the SVM 
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optimization yields a soft-margin SVM. For any value of C, which expresses the 
tradeoff between margin width and misclassification rate, the optimizer produces a 
unique solution to θ and θ0 and identifies the sparse set of landmarks (i.e., support 
vectors).

 Neural Networks: Stacked Logistic Models

In this section, neural networks will be introduced. As noted throughout this vol-
ume, neural networks—and, in particular, deep neural networks—have led to 
rapid advancements in automated image recognition, speech recognition, and natu-
ral language processing, amongst other areas. A remarkable feature of contempo-
rary neural network models is that the underlying models are composed of individual 
units that are relatively simple in their design. It is the interaction between large 
numbers of such units that gives deep neural networks their representational power.

The fundamental building block of deep neural networks is the logistic model, 
shown in Fig. 6.23. As was seen in the section on “Discriminative models: Logistic 
Regression”, the logistic model characterized by the parameter vector θ captures the 
posterior probability P(y = 1| x; θ) from a dataset composed of vectors x ∈ Rd with 
associated labels y ∈ {0, 1}. It predicts class membership y from the input x by com-
puting g(θTx) where g is the sigmoid function. The sigmoid function squashes the dot 
product θTx which can be an arbitrary real number, into the range [0,1]. The dot prod-
uct here provides a concise way to express a sequence of operations in which the val-
ues of each blue input node (1 for the bias term, x1 and x2) are multiplied by a 
corresponding weight 1(−30) + x1 (20) + x2 (20) and added together to produce the 
input to the orange node, which applies the sigmoid function as its activation func-
tion. A logistic model is a linear classifier—it can only capture linear boundaries sepa-
rating classes y = 0 and y = 1.

The model in Fig. 6.23 maps x ∈ {0, 1}2 to y ∈ {0, 1}. The network computes the 
Boolean AND of the two components of x. Note that the sigmoid function g(a) ≈ 0 
for a ≪ 0 and g(a) ≈ 1 for a ≫ 0. Thus, when both components of x are 1, the linear 

1

x1 y

x2

y = g (θT x) = = g(−30 + 20x1 + 20x2)
1

1 + e−θT x

20

20

-30

Fig. 6.23 A logistic 
model, drawn as a 
two-layer neural network. 
The first layer is the 
Boolean input vector x and 
the second layer is the 
output y composed of a 
single logistic unit. This 
network computes the 
Boolean AND of the 
components of x
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dot product θTx = 10; and y = g(10) ≈ 1. When any one, or both of the components 
of x are zero, the corresponding dot product θTx ≤  − 10, so y = g(−10) ≈ 0.

In 1943, McCollough and Pitts [20] demonstrated that a stacked assembly of 
logistic units can represent any Boolean function—and by extension any function 
that can be calculated on a classical computer. An example of a stacked assembly 
composed of three layers is shown in Fig. 6.24. The network represents the nonlin-
early separable XNOR function (the logical complement of the XOR function—
true if and only if both inputs are identical), i.e., the output y = x1 XNOR x2.

Given an input Boolean vector x, the intermediate outputs a1 and a2 of the second 
(hidden) layer are calculated, and the output y of the final layer is then computed in 
terms of a1 and a2:

 
a g x x
1 1 2

30 20 20= - + +( )  

 
a g x x
2 1 2

10 20 20= - -( )  

 
y g a a= - + +( )10 20 20

1 2  

Computation of the outputs of the network proceeds sequentially, layer by layer, 
with outputs of layer i + 1 computed from the outputs of layer i. This network is 
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Layer 1 Layer 2 Layer 3
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Fig. 6.24 A three layer, 
fully connected, stacked 
assembly of logistic units 
with an input layer, a 
hidden layer (composed of 
a bias unit set to 1, and two 
logistic units with outputs 
a1 and a2) and an output 
layer with a single logistic 
unit with output y. The 
network computes the 
nonlinear function x1 
XNOR x2, which cannot be 
represented by a single 
logistic model. The 
parameters defining the 
model are the weights on 
the edges connecting the 
units to one another, and it 
is these weights that define 
the behavior of the model. 
The attentive reader will 
recognize the AND 
subnetwork from Fig. 6.23 
leading to output a1
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fully connected, i.e., every logistic unit in layer i + 1 is connected to all the units in 
the layer i below. In the example network shown in Fig. 6.24, layer 2 outputs are 
computed from layer 1 (the inputs), and the layer 3 output is computed from the 
values of units in layer 2. Note that the units a1 and a2 in layer 2 are connected to all 
units (including the bias unit) in the input layer. Fully connected stacked assemblies 
of logistic units are therefore called feedforward multilayer networks. The final 
output y is a highly non-linear function of the input vector x, viz.,

 
y g g x x g x x= - + - + +( ) + - -( )( )10 20 30 20 20 20 10 20 20

1 2 1 2  

The parameters of the feedforward network are defined in Fig.  6.24 using two 
parameter matrices, one defining the weighted connections between layer 2 and 
layer 1 (the matrix Θ(1)), and the other between layer 3 and layer 2 (the matrix Θ(2)) 
shown below (Fig. 6.24).

 
Q Q1 230 20 20

10 20 20
10 20 20

( ) ( )=
-

- -
é

ë
ê

ù

û
ú = -[ ];

 

Note that Θ(1) has dimension 2 × 3, reflecting the fact that there are two logistic units 
in layer 2 connected to the two input units in layer 1 and the additional bias unit. Θ(2) 
has dimension 1 × 3, since there is a single output unit in layer 3 connected to the 
two logistic units and the bias unit in layer 2.

 Parameterizing Feedforward Networks and the Forward 
Propagation Algorithm

Given a new input vector x, it is possible to define the vector a(l) of activations of the 
units in each layer l in the network with the following system of matrix operations.

 a 1( ) = x  

 
z a l Ll l l+( ) ( ) ( )= * éë

ù
û = ¼ -1

1 1 1Q ; ,
 

 
a g z l Ll l+( ) +( )= ( ) = ¼ -1 1

1 1,
 

The symbol z in these equations corresponds to the sum of the inputs to a layer (or 
individual unit within a layer) before the activation function g has been applied. In 
the running example, the value z—known as the logit—for unit a1 would be 
−30 + 20 x1 + 20 x2. The equations provide a symbolic representation of a sequence 
of steps in which the input, x, provides initial activation values for the input layer of 
the network. Then, the logits, z, for a subsequent layer are calculated by multiplying 
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these inputs by the weighted connections, Θ, to each of its units, and adding the 
results. The matrix product in the equation provides a shorthand notation for per-
forming this operation across all units in a layer and describes the way in which this 
operation is generally implemented to take advantage of efficient numerical compu-
tations provided by Graphical Processing Units (GPUs) and other specialized hard-
ware. Finally, the activation function, g, is applied to the logits, to estimate the 
activations for this layer, which may in turn provide the input for a layer to follow.

The system of equations for forward propagation shown above can be used to 
calculate the final output of a fully connected, L layered feedforward network. Such 
a network is characterized by L − 1 parameter matrices Θ(l), l = 1…L − 1. Each layer 
l has S(l) units and a single bias unit. Matrix Θ(l) connects layer l to layer l + 1 and 
has dimensionality S(l  +  1)  ×  (S(l)  +  1). For example, in the network depicted in 
Fig. 6.24, S(1) = 2, S(2) = 2, S(3) = 1, L = 3. This network has two parameter matrices 
of sizes 2 × (2 + 1) and 1 × (2 + 1) and a total of 9 parameters.

By increasing the number L of layers, as well as by increasing the number of 
logistic units in each layer, it is possible to represent nonlinear functions of ever- 
increasing complexity. A deep feedforward network encodes a set of prior beliefs 
about the structure of the function that maps vectors x to the class y. The intermedi-
ate layers represent underlying factors of variation, which in turn can be expressed 
in terms of simpler factors, all the way down to the input components in x. Fully 
connected, feedforward networks are universal function approximators, capable of 
representing any mapping from inputs to outputs to within any specified tolerance ε 
of the true function [21].

Any Boolean function can be represented by a three-layer network, such as the 
one shown in Fig. 6.24. Any continuous function on the reals can be approximated 
by a three-layer network, but it may require a very large number of units in each 
layer [22, 23]. Finally, any function (including discontinuous functions) can be 
approximated by a four-layer network with enough units in each layer. Surprisingly, 
these representation theorems hold not just for logistic units (in which the non- 
linearity g(x) is the sigmoid function), but for rectified linear units (called ReLUs), 
defined as g(x) =  max (0, x) as well. ReLUs are the most widely used non-linearity 
in feedforward neural networks, because the maximum is cheaper to compute than 
the sigmoid, and it has been experimentally found to accelerate the convergence of 
stochastic gradient descent for parameter learning [24].

While the representation theorems assure us that a network with four layers is 
sufficient to capture any mapping, they place no bounds on the “width” of each 
layer. In practice, networks of much greater depths are built, trading off the number 
of units in each layer for depth. While a feedforward neural network of sufficient 
depth and width can represent any function in principle, in practice, it is not guaran-
teed to find those parameter settings with the training algorithms.

In the networks discussed up to this point, the parameters of the networks have 
been pre-configured to approximate particular Boolean functions. However, neural 
networks must learn how to approximate functions of interest for AIM applications, 
such as radiological image recognition. As is apparent from the network in the run-
ning example, the behavior of a feedforward neural network is dictated by its 
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weights, as these determine how input from one layer proceeds to activate units in 
the next. Therefore, it is the weights that must be adjusted to change the behavior of 
a neural network during the process of training it. The section that follows will 
explain how the backpropagation algorithm—the mainstay of training neural net-
works—is used to accomplish this end.

 Learning the Parameters of a Feedforward Network

A standard way of presenting the backpropagation algorithm uses calculus to calcu-
late a sequence of derivatives, each of which measures how much the result of one 
operation (such as multiplication by a set of network weights, or the application of 
an activation function) influences the operation that follows it. As with linear regres-
sion, the key idea is to update each model parameter in accordance with its influ-
ence. However, with linear regression this influence is straightforward to estimate, 
as it depends only upon the (constant) slope of the line concerned, and the input 
features. With nonlinearities such as the sigmoid function, the extent to which a 
particular change in input influences the output of the function differs depending 
upon the value of the function beforehand (Fig. 6.25).

With knowledge of the extent of the influence of each neural network weight on 
the output of the model—and hence the loss function—it is possible to update indi-
vidual parameters to steer the model toward accurate classification of the data in a 
training set. Beginning with this standard presentation, some other perspectives on 
the algorithm will be provided to help to build intuition about backpropagation. 
While this constitutes more detail than has been provided with some of the other 
algorithms under discussion, this is warranted here because backpropagation is fun-
damental to training deep neural networks, which have become—or are becom-
ing—the dominant approach to many problems in AIM. As ultimately there is a 
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1.0Fig. 6.25 The extent to 
which changing the input 
of the sigmoid function (x 
axis) influences its output 
(y axis) depends upon the 
value of the function 
beforehand. Both d1 and 
d2 represent the change in 
y after adding 1 to x, but 
d2 is much larger
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need to know how much each parameter influences the loss function, the presenta-
tion will begin there.

 
J y h x y h xq( ) = - ( )( )éë ùû + -( ) - ( )( )éë ùû( )log log1 1

 

Recall the cross entropy loss function for a single example (x,y), shown above. The 
prediction function with parameter vector θ is

 
h x g xT( ) = ( )q

 

The parameters θ (referred to as weights in neural network parlance) can be learned 
from a given data set by gradient descent on the cross-entropy loss function

 
q q

q
q

¬ -
( )dJ
d  

The gradient of the cross-entropy loss function with respect to the component θj is

 

dJ
d

h x y x
j

j

q
q
( )

= ( ) -( )
 

The first term is the error in prediction on the (x,y) pair (how “wrong” the model 
was), and the second term is the j-th component of the input vector x (this deter-
mines how changing the parameters in θ will affect a model prediction—for exam-
ple, if x j

i( )  = 0, changing the parameter q j
i( )  will not improve classification of this 

example). Therefore, the gradient tells us how each parameter in θ influences how 
well the prediction for a specific example approximates the correct label, y. This 
gradient can be used for updating the parameters connecting the final two layers of 
a feedforward network, which function as a simple logistic model. However, with 
deeper networks there is a need to estimate the influence of weights in proximal 
layers on model error, to determine how these weights should be updated. The sim-
ple feedforward network in Fig. 6.26 will be used to explain how derivatives of the 
loss function can be computed with respect to all the weights in the network.

The input vector x has two components, and the hidden layers have two logistic 
units each. The final output is a scalar a(4). Here are the forward equations to calcu-
late the output h((x1, x2)) of the network, repeating the sequence of equations from 
the section on “Parameterizing feedforward networks and the forward propagation 
algorithm” (input → logit (z) → activation (g(z)) for each layer of the network.

 
a x x1

1 2

( ) = ( ),
 

 
z a2 1 1

1
( ) ( ) ( )= * éë

ù
ûQ ;

 

D. Subramanian and T. A. Cohen



191

+1

θ(1) θ(2) θ(3)

x1 y

x2

Layer
1

Layer
2

Layer
3

Layer
4

+1 +1

Fig. 6.26 A simple 
four-layer feedforward 
neural network to illustrate 
the backpropagation 
algorithm and the 
computation of the 
derivative of the loss 
function with respect to all 
the network parameters
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a g z4 3( ) ( )= ( )

 

First, the derivative of the loss function J(θ) with respect to θ(3) is calculated, using 
the chain rule of differentiation. This estimates the influence of the weights in the 
penultimate layer (Θ(3)) on the loss function. As the output of the third layer will be 
ingested by the fourth layer to generate the output of the network, this estimation 
must consider the operations of the output unit also.

 

dJ
d

dJ
da

da
dz

dz
dQ Q3 4

4

4

4

3( ) ( )

( )

( )

( )

( )=
 

Consequently, the first term is the derivative of the cross-entropy loss with respect 
to the network output, the result of applying the sigmoid activation function to the 
logit of the output unit, z(4). The second term is the derivative of this non-linear sig-
moid function with respect to the logit, and the final term is the derivative of the 
logit with respect to the θ(3) parameter. The steps of the calculation are as follows:
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which mirrors the derivative of a single logistic unit with input x replaced by the 
activation of the layer right below the output layer ([1;a(3)], with 1 indicating the 

relevant bias term). The numerator of the first derivative calculated, 
dJ
da 4( ) , incorpo-

rates the class label: (y − a(4)) indicates both the direction and the magnitude of the 
desired correction to the output of the model. If the label y is one, this will measure 
how far from one the output was, and the sign will be positive. If the label y is zero, 
this will measure how far from zero the output was, and the sign will be negative. 
The denominator is the derivative of the sigmoid function,15 g(x)(1 − g(x)).

This is also the second derivative calculated, because it governs the influence of 
the logit it activates, z,(4) on the loss function. The influence of the weights in the 
preceding layer, θ(3), on this logit depend upon the activations they are multiplied by, 
a(3). When these three derivatives are multiplied together, as dictated by the chain 

rule, the term a(4)(1 − a(4)) cancels out, leaving 
dJ

dQ 3( ) . Essentially, the chain of influ-

ence is traversed in reverse, from the error function through the logistic unit, and 
finally to the weights of the third layer. From here it is possible to proceed recursively.

A second view of the backpropagation algorithm considers it from the perspec-
tive of how responsibility for error is allocated across the weights of the network. If 
the counterpart of model error (the a(4)− y term) for the hidden units in the network 
is known, it is possible to compute derivatives of the loss function with respect to 
θ(2) and θ(1) as well. Error at the output layer is defined as

 
d 4 4( ) ( )= -( )a y

 

14 Recall (perhaps from distant calculus) that the derivative of d/dy log(y) = 1/y. Proceed algebra-
ically from this step by cross-multiplying the summed fractions to reach this derivative.
15 The sigmoid function g(x)= 1/(1 + e−x) = (1 + e−x)−1. Its derivative dg(x)/dx = (−1)(1 + e−x)−2de−x/
dx = (−1)(1 + e−x)−2(−1)e−x = 1/(1 + e−x)(1 − 1/(1 + e−x))= g(x)(1 − g(x).
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The key idea behind the backpropagation algorithm is that each of the hidden nodes 
in Layer 3 is responsible for some fraction of the error in the output node, and the 
extent of this responsibility depends upon the weights connecting them to it. For 
example, the error at hidden node j in Layer 3 is determined by q j

3( ) , the weight 
connecting unit j to the output unit, and the error at the output unit, δ(4), modulated 
by the extent to which changing the logit of this node will affect the output of the 
activation function that follows it.

 

d q dj j
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In vector form, this can be rewritten as
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where the ⊙ operator is the Hadamard product of the two vectors—a pointwise 
multiplication of the components of two equally sized vectors. One can see the cor-
respondence between the the jth element of δ(3) shown above, and vectorized form 
below. Generalizing, for l = 2 … L − 1,

 
d l

j
l T l

l

l

da
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( )

( )= ( )q d 1


 

Gradient descent is used to update the parameters of the network. The learning pro-
cedure which incorporates both forward and backward propagation is shown below. 
Initialization of gradients for all unit pairs ij is with unit j in layer l and unit i in layer 
l + 1, for l = 1 … L − 1.

 
Dij

l( ) = 0
 

For every example pair (x,y) in the training data

 1. set a(1) = x
 2. use forward propagation to compute a(2),...,a(L)

 3. set δ(l) = ( a(L) − y)
 4. use backpropagation to compute δ(l − 1),...,δ(2)

 5. update gradients using D Dij
l

ij
l

j
l

i
la( ) ( ) ( ) +( )¬ + d 1  for every i,j,l

 6. update parameter by gradient descent using q q aij
l

ij
l

ij
l( ) ( ) ( )¬ - D  for every i,j,l

This algorithm can be extended to work not just on feedforward networks, but on 
general computation graphs, providing a third perspective on the algorithm. The 
nodes of a computation graph are operations (e.g., sums, products, reciprocals, 
exponentiations) and the leaves of the graph are the operands (the quantities upon 
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which these operations are applied). The computation graph for the sigmoid of the 

dot product of two vectors q
q q q

,
exp

x
x x

1

1
0 1 1 2 2

+ - + +( )( )
 is shown in Fig. 6.27.

Schematically, this could represent the components of the neural network in 
Fig. 6.26 running from layer three to the output node, after receiving, summing, 
and transforming input from the previous layer. To keep the quantities manage-
able and readable, the inputs −1 and −3 are used, though in practice these would 
be values between 0 and 1 if a sigmoid activation function were used. Feeding 
forward (from left to right), these incoming values as well as a 1 representing the 
bias term are then multiplied by the weights of the third layer, θ(3) (i.e. the vector 
[−3,1,−2]), which connects this layer to the output node. The resulting products 
are then added to generate the logit z(4). This logit provides the input to the sig-
moid function (1/1 + exp(−x)), which in the computation graph is decomposed 
into a series of individual operations, first reversing the sign, exponentiating, add-
ing one and taking the reciprocal. The result is a(4), which gives the output of the 
network for this example: a predicted probability of 0.88 that this example belongs 
to the positive class.

In order to update the weights of the network the cross-entropy loss (CE) is first 
measured. For an example from the positive class this is calculated as −log(p), with 
p as the predicted probability. The next step is to proceed back across the graph 
(from right to left), multiplying this value by the derivative of the operation in the 
node concerned. These derivatives are as follows:

 
For f z z

df z
dz

z( ) = ( )
= -1 1

2
/ , /

 

 
For f z z c

df z
dz

( ) = +
( )

=, 1

 

Fig. 6.27 The computation graph for the sigmoid of the dot product of two vectors is used to 
demonstrate how to run forward propagation and backward propagation for general network 
architectures

D. Subramanian and T. A. Cohen



195

 
For f z e

df z
dz

ez z( ) = ( )
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For f z az

df z
dz

a( ) = ( )
=,

 

To compute the derivative of J with respect to the first operation (1/x), the chain rule 
is used, and incoming derivative 0.127 is multiplied with the derivative of 1/x, which 
is −1/x2 = −0.882,  to give  0.098. The derivative of the +1 operation is 1, so the 
incoming derivative 0.098 moves unchanged across that operation. Again, multiply-
ing the incoming derivative 0.098 with ez = 0.135, it is possible to propagate the 
product 0.013 across the exp operation. To propagate the incoming derivative 0.013 
across the *−1 operation, the fourth derivative in the table of derivatives above is 
used, obtaining −0.013. Figure 6.28 shows how weights learned from training data 
using backpropagation can be used to approximate the XNOR function.

To propagate the derivative across the sum and product operations, recall that

 
For ,x y x y df

dx
df
dy

( ) = + = =, ,1 1

 

 
For ,f x y xy df

dx
y df
dy

x( ) = = =, ,

 

To complete the example, it is evident that the incoming derivative is being propa-
gated unchanged across the sum operator, and being multiplied by the input on the 
other branch across the product operation. This provides part of the information 
required to update each weight in θ(3): the extent to which changing this weight 
would influence the loss function if it were multiplied by one in the forward pass. 
However, this is not the case—the weights in θ(3) are multiplied by the vector 
[1,−1,−3]. This vector is multiplied by −0.013 (as well as the learning rate) to 
determine the update to each weight.

In modern deep learning frameworks, such as PyTorch and TensorFlow, one 
must specify only the forward propagation computation. The computation is inter-
nally represented as a directed acyclic graph and derivatives are propagated over the 
operations by the chain rule using automatically computed derivatives such as the 
ones in the tables above. More details on automatic differentiation can be found in 
Chap. 6 of Goodfellow et al.’s comprehensive deep learning text [9].

The core ideas behind the backpropagation algorithm have been around since the 
late 1980s [25, 26]. The success of deep learning networks today can be attributed 
to the ready availability of massive data sets needed to train the millions of param-
eters in modern networks, as well as efficient vector and matrix computations 
(including special-purpose (tensor processing) hardware) to accelerate the forward 
and backward computations. Another major innovation is the replacement of the 
sigmoid nonlinearity in networks by the rectified linear unit [27] (ReLU) defined as 
ReLU(x) = max(0,x). As can be observed in Fig. 6.25 the sigmoid function g(z) 
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Fig. 6.28 In the original feature space (x1,x2) on the left, the four values of the XNOR function are 
depicted with orange and blue dots. Blue dots represent the value 1, and orange dots represent the 
value 0. Note that when x1 and x2 are the same (both 0 or both 1), the XNOR function has value 1. 
The blue and orange dots cannot be separated by a single hyperplane in the (x1,x2) space. However, 
in the (a1,a2) space shown on the right, where a1 and a2 are the intermediate outputs of the stacked 
assembly of logistic units shown in Fig. 6.26, the XNOR function is linearly separable and thus can 
be represented by a single output unit y. The new basis functions a1 and a2 can be learned automati-
cally by the backpropagation algorithm from training data representing the XNOR function

saturates beyond a narrow range of z values about the origin (i.e., it asymptotes to 
0 for negative z values, and to 1 for positive z values). Outside this narrow range, 
small changes to z (represented by the x axis on Fig.  6.25) will have negligible 
effects on the output (represented by the y axis on this figure). Hence, the derivative 
of the sigmoid function beyond this narrow interval is 0, and the gradient descent 
training algorithm essentially stalls. This problem is called the vanishing gradient 
problem. The use of the ReLU non-linearity significantly reduces this problem, 
since the gradient is one if the result of the linear logit computation is positive.

 Convolutional Networks

This section describes the Convolutional Neural Network (CNN), a specialized 
deep neural network architecture that is especially effective at modeling imaging 
data and as such underlies many of advances in medical image processing that are 
described in Chap. 12. CNNs offer advantages over standard architectures in their 
ability to leverage the innate 2D correlational structure of image-related data 
sources. Multi-layer, fully connected feedforward networks of the appropriate depth 
and width have the power to represent any function from a set of inputs to an output 
set (continuous or discrete). However, the architecture forces all inputs, including 
those with 2D or 3D structure, such as still images and videos, to be flattened into 
one-dimensional vectors, for processing by the network. Spatial and temporal struc-
ture inherent in two-dimensional image arrays or three-dimensional video streams 
(the third dimension is time) are lost in this representational transformation. 
Convolutional neural networks preserve local correlations in the input and use 
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convolution in place of full matrix multiplication in some of the layers. Convolution 
is a well-known mathematical operation in which a function called a kernel or filter 
is applied to an input, yielding an activation map. It is widely used in computer 
vision applications where kernels are designed to detect specific features (such as 
oriented edges) in images. Figure 6.29 shows a 2D kernel of size 2 × 2 applied to an 
input matrix of size 5 × 5, yielding a 4 × 4 activation map. The kernel or filter is 
swept horizontally across the input starting at the top left, with a specified shift 
(called stride) to the right, until it reaches the right edge of the image. The values in 
the 2 × 2 kernel are pointwise multiplied and summed with the 2 × 2 part of the 
image underneath it, yielding a scalar. In a trained model, this scalar indicates the 
extent to which this part of the image maps to a feature the filter has learned to iden-
tify. For instance, when the kernel is aligned with the left most corner of the input, 
the convolution yields 2 × 1 + 3 × 1 + 1 × 2 + 4 × 2 = 15. This is the first element of 
the activation map which is computed by sweeping the kernel across and then down 
by the specified stride. The 2 × 2 kernel yields four elements in the activation map 
for each horizontal sweep (as each position occupies two columns of the input 
matrix, there are four possible horizontal positions). Since the vertical stride is also 
one, the activation map is of size 4 × 4, with each cell indicating the strength of 
activation of the filter in one of its possible positions in the input matrix.

Convolution networks have far fewer parameters than a conventional feedfor-
ward network on the same inputs. Continuing with the example in Fig. 6.29, the 
number of units to represent the 5 × 5 input would be 26 (5 × 5 + 1 bias unit) and 
the number of units to represent the next layer, that is, the 4 × 4 activation map 
would be 17 (16 + 1). In a standard neural network architecture, every one of the 
16 units in the activation layer would need to be connected to the 26 units below, 
yielding 16  ×  26  =  416 parameters. Instead, there are just four parameters (the 

5 x 5 input

2 x 2 kernel/filter

stride = 1

5 5 5 5 5

4 4 4 4 5

3 3 3 3 3

2 2 2 2 2

1 1 1 1 1 2 3 15 15 15 15

25 25 25 25

35 35 35 35

45

4 x 4 activation map

45 45 45

1 4

Fig. 6.29 An example of a 2D convolution with a 5 × 5 input matrix and a 2 × 2 kernel. The result-
ing activation map is of size 4 × 4 since the stride is 1. The first row of numbers in the activation 
map is generated by sweeping the kernel across the first two rows of the input starting at the left 
corner and moving one column horizontally to the right. The pointwise products of the filter values 
with the input values under the filter are taken and summed to yield the values in the activation map
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kernel values or weights) capturing the entire interaction between the input and the 
activation layer. Since the kernel computes the same function across all the input 
units, the activation map values are akin to the output of a feature detector. 
Convolutional networks embody translational invariance because the kernel iden-
tifies specific features no matter where they occur in the input. This is intuitively 
appealing for image classification problems, as ideally the network would learn to 
recognize important features, such as cavitation in chest radiographs, irrespective of 
where they occur within a particular training image. The parameter sharing with 
the use of convolutional layers with small kernels or filters becomes even more 
compelling when working with larger inputs of size 224 × 224 × 3 (such as the 
ImageNet collection [28]—the “×3” indicates three channels, for red, green and 
blue color encoding). The input is padded with zeros around the edge and a 3 × 3 × 3 
kernel is used to obtain an activation map of size 224 × 224 × 3 (224 + 2 – 3 + 1 for 
each dimension). A fully connected model will need 224 × 224 × 3 × 224 × 224 × 3 = 
2.3  ×  1010 parameters or weights, while the convolutional layer only has 
3 × 3 × 3 = 27 parameters! By sweeping a small kernel by a small stride across a 
large image, sparsity is obtained in the connections between layers, because not 
every unit in a layer is connected to all units in the following layer. The filter thus 
defines a receptive field that moves across the entire image.

To specify a convolutional layer in a deep network with input of size H × H × D, 
several hyper-parameters must be defined: K, the number of filters or kernels, F, the 
size of the filter (typically a square matrix), S, the stride of the filter (typically 1 or 
2), and P, a zero padding around the edges of the input to ensure that the activation 

map size A A A H F p
S

´ =
+ -

+where
2

1  is an integer. The total number of 

parameters defining a convolutional layer for an input of size H  ×  H  ×  D is 
(K × F × F × D) parameters for the K filters and K bias parameters (one per filter).

Filter weights in convolutional networks trained by backpropagation can be visu-
alized as color images, as shown in Fig.  6.30. The filters come to resemble the 

Fig. 6.30 A visualization of the filter weights of the first layer of a VGGNet trained on the 
ImageNet classification task [29]
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features they detect, because the signal that propagates forward from a matrix mul-
tiplication will be highest when the matrices have similar values. This capability to 
learn feature representations from data is an important advantage of deep learning 
models, especially considering these feature representations can be of value for 
tasks beyond those the network was originally trained. Zeiler and Fergus [29] pio-
neered this visualization technique in the context of the ImageNet recognition task, 
rendering the 96 11 × 11 × 3 filters in the convolutional layer next to the input layer 
as color images of size 11 × 11 each. Oriented edge detectors and color patches are 
automatically learned by the machine, by minimizing the cross-entropy loss at the 
output layer and propagating loss functions derivatives back to the first layer. 
Similarly, activation maps at higher hidden layers can be projected back to the input, 
to reveal the regions of the input image that contribute most to the final classifica-
tion decisions [30], as illustrated in Fig. 6.31.

The convolution operation is linear; and once the linear activation map is com-
puted, a nonlinearity, such as ReLU, is applied. Convolutional/ReLU layers are gen-
erally followed by a pooling layer which reduces the dimensionality of the activation 
map. A commonly used pooling kernel is of size 2 × 2 with horizontal and vertical 
stride of two, which selects the maximum value in its receptive field. That is, only 
the signal from the region that most strongly activates a filter propagates forward to 
the next layer of the network. MaxPool is illustrated in Fig. 6.32, where it clearly 
functions as a non-linear downsampler. When a convolutional layer follows a pool-
ing layer, the network learns filters on a wider receptive field than on the origi-
nal input.

Classical convolutional networks for K-class object recognition problems such 
as VGGNet [32] are a sequence of convolution/ReLU/MaxPool layers that progres-
sively map the input image through a series of reduced dimensional hidden outputs 
into a penultimate layer which is flattened and fully connected to an output layer 
of size K.

Fig. 6.31 GradCAM [30] visualization of examples from a popular and somewhat controversial 
set of radiological images used to train deep learning models to detect COVID-positive patients, 
with high accuracy reported in several evaluations. Pixels in red have the highest importance in the 
classification decision. Of note, the models are often attending to regions outside the lungs them-
selves, which contain metadata denoted in different ways across institutions. As “healthy control” 
counterexamples were often drawn from different sources to the COVID-positive cases, the ability 
to identify image provenance explains much of the model’s ostensibly strong performance [31]
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5 4
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5 2 4 1
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max pooling
with 2x2 filter
stride = 2

Fig. 6.32 The max pool filter selects the maximum value in a 2 × 2 block starting at the left corner 
of the input. The maximum value in the first 2 × 2 block of the input is 5. The next step is to stride 
the filter by 2 horizontally, and obtain 4 as the maximum value. The resulting output is a 2 × 2 
matrix since the vertical stride of the filter is also 2. Max pooling reduces a n × n input matrix into 
a n/2 × n/2 output

 Other Network Architectures

While convolutional networks with convolution/ReLU/MaxPool layers, with fully 
connected layers at the output form the dominant architectural paradigm, a host of 
variations have been proposed in the literature to solve problems beyond discrete 
object recognition. One class, called UNets [33] are specially engineered for solv-
ing image segmentation problems, i.e., problems in which exact localization of fea-
tures is important, unlike a simple object recognition problem. Details of the UNet 
architecture are beyond the scope of this chapter, and the interested reader is directed 
to the original paper [33].

For handling time series data such as video streams in medical imaging, recur-
rent networks are the appropriate architecture. Unlike the feedforward systems stud-
ied thus far, in which the computations flow in one direction from inputs to the final 
outputs, recurrent networks allow the final output of a network to serve as input with 
a time delay. Chapter 10 of the Goodfellow et al. text [34] on deep learning offers 
an excellent introduction to this family of networks, and its many variations such as 
LSTMs and echo state networks.

In natural language processing, the Transformer architecture has emerged as an 
important approach to processing text sequences underlying widely used models 
such as Bidirectional Encoder Representations from Transformers (BERT) [35, 
36]. Transformers generate context-specific representations of textual input, by 
allowing words (or parts of words) in a sequence to influence the representations of 
other words as they progress through the network. This provides an intuitive way to 
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model ambiguous words such as “cold” (virus vs. temperature), because representa-
tions of this word that are close to the output layer will be informed by contextual 
cues. The relative influence of specific contextual cues is learned by the model, so 
that those cues that are useful for particular tasks will be emphasized when the 
model is fine-tuned accordingly. For discussion of some key applications of neural 
Transformer models, see Chap. 7.

 Putting It All Together: The Workflow for Training Deep 
Neural Networks

Deep learning models have been used in a wide range of clinical applications rang-
ing from diagnosis, to risk assessment and treatment. A large fraction of them are 
end-to-end models that start with images (optical, CT, Xray) as inputs and culmi-
nate in a classification output layer with intervening hidden layers consisting of 
convolutional/ReLU/pooling layers together with fully connected feedforward lay-
ers at the end of the pipeline. In this section, the workflow for setting up and training 
deep neural networks for supervised learning problems in clinical applications is 
elaborated.

 1. Decide on the network architecture: for a supervised learning problem, the 
type and arrangement of layers is determined by the inputs and outputs and the 
nature of the prediction problem: e.g., whether it is classification into a small set 
of discrete categories, image segmentation, or risk estimation. Modern deep 
learning frameworks such as Pytorch [37], Keras (keras.io) and TensorFlow 
(tensorflow.org) allow easy parametric specification of layers ranging from 
simple fully connected to convolution/ReLU and MaxPool composites, as well 
as more exotic layers to support specialized applications. It is important to 
avoid the data arrogance trap, particularly if the available training sets are orders 
of magnitude smaller in size than the number of parameters in the network 
model. The use of pre-trained networks with parameters optimized for related 
tasks is crucial to obtain robust generalization performance. An example is the 
use of a VGGNet and Resnet architecture trained on the ImageNet dataset with 
1.2 million images in 1000 categories as a feature extractor for classification of 
pneumonia from chest X-ray images [38].

 2. Choose an appropriate loss function: for regression problems, mean squared 
error is the standard choice, while cross-entropy loss is the usual choice for 
binary classification. The softmax loss function, which is a generalization of 
cross-entropy loss, is used for multi-class classification. Weighted versions of 
these loss functions are available in standard deep learning frameworks, allow-
ing designers to accommodate problems with class imbalance, or problems 
where the costs associated with false positive errors and false negative errors 
are quite different.
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 3. Choose a regularization approach: One technique for regularization is to use 
penalized loss functions, where the L1 or L2 norm of the network weights is 
added to the chosen loss function. Another technique is called dropout [39], and 
can be added as a layer in modern deep learning frameworks. During training, 
some of the units (and their connections) are stochastically dropped during 
weight update, which encourages sparsity in the network weights.

 4. Initialize network parameters: weights on bias units are typically initialized 
to zero. The most used technique [40] for initializing weights connecting units 
in layers l−1 and l is to select them from a uniform distribution [−b, +b] where 

b = 6 / S Sl i( ) ( )-+ 1 . S(l) denotes the number of hidden units in layer l of the 

network. Proper initialization of network parameters is still an open problem in 
the field.

 5. Select pre-processing steps for training data: to make the inputs well- 
conditioned, it is traditional to normalize training inputs, e.g., subtracting 
means from images, or more generally, using standard scaling of each col-
umn of the input to make it have zero mean and unit variance. The choice of 
pre- processing step requires domain knowledge and understanding of how 
the inputs were generated, and the elimination of input artifacts that could 
cause overfitting in the models. In many medical image classification prob-
lems, such as Gleason grading of prostate cancer from whole slide images 
[41], semi- automated label cleaning is employed, in which erroneously 
graded training examples are excluded from the training sets. Another sig-
nificant pre- processing step in image classification tasks is to break up an 
input image into smaller patches and learn models on the patches. A second 
model learns to integrate feature responses from the patches to make a final 
classification.

 6. Determine if data augmentation is needed, and if it is, determine how to aug-
ment training data. If the number of parameters in the chosen network architec-
ture far exceeds (i.e., is an order of magnitude greater than) the product of the 
number of training examples and the size of each example, there is a need to 
augment the training set. One of the easiest ways to perform data augmentation 
to is apply affine transformations: translations and small rotations to the exist-
ing training set data to force the network to be robust in the face of perturbations 
of the input. Yet another approach is to inject a small amount of white noise to 
all the inputs to encourage better generalization performance.

 7. Decide on a stopping criterion: It is customary to set aside a small portion of 
the training set, called a validation set, and calculate the loss function on 
both the training and validation sets for each epoch of training. In a single 
epoch, network parameters are updated after iterating through the whole 
training set. Training loss decreases with the number of training epochs, 
eventually tending to zero. The validation loss, on the other hand, first 
decreases and then increases, indicating that the network has been overfitted 
to the training data. The optimal stopping point for training is when the vali-
dation loss achieves its minimum.
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 8. Tuning the learning hyper-parameters: these include choice of learning rate, 
the gradient descent optimization algorithm, and example batch size for gradi-
ent estimation. Tuning hyper-parameters is still an art and is extremely compu-
tationally intensive. Close monitoring of the training and validation loss using 
a visualization framework such as Tensorboard16 is crucial to find good values 
for the hyper-parameters. Tools such as AutoML17 can automatically perform 
coarse to fine grained searches in the hyper-parameter space to find good com-
binations of values.

 9. Train the model: Run the model with the (augmented) training data with the 
chosen hyper-parameters and architecture until the optimal stopping point.

 10. Test the model: evaluate the predictive performance of the model on the set 
aside test set (or on the set aside chunk for N-fold cross-validation). In datasets 
with class imbalance, cross-validation has to be designed carefully to avoid 
overfitting and overestimating model performance [42]. Generating artificial 
examples to overcome imbalance in classification problems can introduce inad-
vertent biases in the model. An interesting example of this phenomenon occurs 
in the domain of predicting synergistic drug interactions. While there are tens 
of thousands of known drug compounds, very few documented examples of 
synergistic interactions exist (rare class problem). Further, drug pairs that do 
not have synergistic interaction are never documented. Researchers often use 
random drug pairs as negative examples. These models rarely perform well 
outside the training set, because they merely learn to distinguish random drug 
pairs from ones that have synergistic interactions, instead of generalizing pat-
terns present in useful drug combinations [43]. Deep learning models in com-
puter vision are vulnerable to adversarial attacks in which small perturbations 
in inputs cause large variations in outputs [44] (such as misclassifying a stop 
sign image with a few pixel alterations as a 30 mph speed limit sign). In health-
care predictive analytics, algorithms for generating adversarial examples for 
biomedical text classification have been devised [45] to test the robustness of 
deep models. Adversarial example generation for healthcare applications is an 
active area of research.

 11. Interpret/Visualize the model: Visualize the network weights and generate 
activation maps as well as GradCAM maps for both correctly classified and 
incorrectly classified members of the test set to build an understanding of 
the generalization performance of the network model. GradCAM maps 
reveal whether relevant areas of the input contribute to the final decision 
made by the network. When irrelevant features (such as a date or patient 
name on a clinical image) are highlighted by GradCAM, the input data is 
reengineered to eliminate these noise features and the system retrained on 
the cleaned data.

16 tensorflow.org/tensorboard (accessed August 19, 2022)
17 automl.org (accessed August 19, 2022)
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 Ensembling Models

So far, several model families for supervised learning have been presented, ranging 
from simple models such as linear and logistic regression with basis function expan-
sion, dense and sparse kernel methods which project examples into appropriately 
chosen similarity spaces, and non-linear adaptive basis functions with universal 
approximation properties, exemplified by deep neural networks. For each family, a 
loss function was optimized to obtain the best model for the given labeled data set. 
In this section, model ensembles are introduced. Ensembles improve prediction by 
combining several models by weighted averaging for regression models or simple 
majority/weighted majority voting for classification models. Two conditions are 
necessary for an ensemble of classification models to perform better than a single 
model. First, the error rate (i.e., probability of misclassification) of each model in 
the ensemble must be less than 0.5. Second, the errors made by each member of the 
ensemble must be uncorrelated with the others. If the highest error rate of an indi-
vidual binary classifier in an ensemble of size L is ϵ, then the error rate of the entire 
ensemble with simple majority voting is
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For L = 21 and ϵ = 0.3, the error rate of the ensemble is 0.026! This is a direct con-
sequence of the strong assumption that the errors of the ensemble members are 
uncorrelated. This assumption, unfortunately, generally does not hold for human 
committees, leading to the general belief that committee decisions are inferior to an 
individual member’s decision. Thus, the key to making good ensembles is to devise 
ways to decorrelate the errors of individual members.

There are two major approaches to constructing ensembles: bagging and 
boosting.

• In bagging [46], L bootstrap samples are created from the given training data set 
D with m elements of the form (x,y). A bootstrap sample is constructed by uni-
formly sampling m times, with replacement, from D. A bootstrap sample has the 
same size as the original dataset D but may have duplicates. L classifiers are 
constructed with each of the bootstrap samples, and a simple majority rule is 
used for final classification. Bagging can be easily parallelized since the con-
struction of the bootstrap sample and the associated classifier can occur indepen-
dently. The random forest algorithm [47] builds bagged ensembles of decision 
trees and it has found wide acceptance in medicine because of its impressive 
performance in clinical decision-making tasks [48].

• In boosting [49], ensemble members are learned sequentially, with each mem-
ber focusing on the errors made by the previously learned members of the 
ensemble. Weights w(i) are associated with every example (x(i), y(i)) in a dataset 
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D containing m pairs. Initially all weights are 1, and a classification algorithm 
that minimizes weighted cross-entropy loss is learned in each round. Examples 
misclassified by a classifier are weighted higher for the next classifier in the 
sequence; examples correctly classified are down weighted for the next classi-
fier. The same data set D with the new weights is used to learn the next classi-
fier in the sequence, with the process terminating with the error rate of the 
learned classifier exceeds 0.5. Finally, the predictions are combined by a 
weighted voting scheme where each classifier’s voting weight reflects its over-
all predictive accuracy. There are many boosting algorithms in the literature 
[49–51]. Each of them is characterized by (1) specification of the initial exam-
ple weights, and how weights are up- and down-weighted after each round of 
classifier learning, (2) how the voting weight of each classifier in the ensemble 
is determined, (3) the specific loss function (e.g., weighted cross-entropy loss) 
for learning each classifier, and (4) a termination criterion (which determines 
how many members will be included in the boosted ensemble). The most popu-
lar boosting algorithm in use today is XGBoost [52]—it is readily scalable to 
large data sets and has achieved state-of-the-art results on many machine learn-
ing challenges. A recent example of its use is the prediction of adverse out-
comes in Type 2 diabetes patients with administrative health data [53]: on a 
training dataset of over a million patients, an XGBoost model on over 700 
features extracted from administrative data predicted 3-year risk of diabetes 
complications in with an AUROC of 0.77 on held out validation and test sets of 
over a quarter million patients.

 Conclusion

This chapter has introduced supervised machine learning algorithms for solving 
clinical decision-making problems with labeled data. The types of problems that are 
best suited for supervised learning and workflow sequence for model construction 
and validation have also been identified. Although machine learning systems have 
shown success in a range of retrospective studies, relatively few are deployed in 
practice. An interesting exception is Google’s neural network detector of diabetic 
retinopathy in retinal fundus photographs [2]. One of the many challenges faced in 
translation of research algorithms to the clinical context is that systems are often 
trained on data that are subject to extensive cleaning and curation, and thus quite 
unlike data in a real-world clinical setting.

Randomized controlled trials and prospective studies are now being pursued to 
ease the transition from the computational lab to patient bedside. More refined, 
context-specific measures of performance, beyond F1-scores and AUROCs, are 
being developed for evaluating ML systems. A recent study uses the percentage of 
time pediatric Type 1diabetic patients spend inside their target glucose range as a 
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way of evaluating a learning system that manages real-time insulin dosing [54]. 
Simple linear models such as logistic regression have the potential for ready deploy-
ment since the coefficients of the model can be easily converted into a score card 
system for risk stratification. A recent review of clinical prediction models shows 
the wide-spread use of logistic models in medicine [55].

The most visible recent successes of ML have been in image interpretation with 
deep neural networks, in the domains of radiology, pathology, gastroenterology and 
ophthalmology. In these problem areas, clinicians generally find it difficult to artic-
ulate decision-making criteria for classification. Thus, end-to-end learning systems 
such as deep neural nets that take pairs of the form (raw image, overall decision) as 
training inputs, and learn appropriate intermediate features by optimization of well- 
chosen loss functions, are a winning alternative that have even outperformed clini-
cians in some evaluations [56, 57].

An open problem is how to get doctors, as well as patients, to trust the deci-
sions made by ML systems. Clearly, interpretable and explainable models will be 
key (see Chap. 8), and stronger prospective validation guidelines developed 
jointly by ML scientists and by clinicians, and then endorsed by regulatory bod-
ies, will go a long way to bridging the trust gap. For example, the use of GradCAM 
visualizations of deep neural net image classification models have been important 
for convincing clinicians and regulators of the validity of a model’s decisions 
beyond performance scores such as AUROC and F1. Equally important are ethi-
cal considerations concerning data use and equity (see Chap. 18), particularly the 
need for standards of diversity and inclusion in the design of training data for 
machine learning systems. A 2021 study of underreporting and underrepresenta-
tion of diverse skin types in present-day skin cancer databases reveals gaps in 
training sets that limit the applicability of predictive models for people of 
color [58].

Many technical, legal, ethical and regulatory problems need to be addressed 
before predictive ML systems are routinely incorporated into clinical workflow (see 
Chaps. 17 and 18). There are open questions in accountability assignment: who is to 
be held responsible for a model’s mistakes? Do we turn to the ML engineers who 
build the model, the clinicians who use the model, the regulators who cleared the 
model for use, or others? As these issues are raised and solved in specific clinical 
contexts, supervised learning will be a major enabler of improved access to high- 
quality healthcare at a global scale.

Questions for Discussion

• How does one integrate prior knowledge about a clinical decision-making 
problem in the formulation of a supervised learning approach to it? Under 
what circumstances are we likely to obtain high performing models using 
data alone?

• One of the few useful theoretical results in supervised machine learning is the 
“no free lunch” theorem [59]—there is no single best model that performs opti-
mally for all problems. Do deep neural networks with their universal approxima-
tion properties negate this theorem?
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• Modern machine learning algorithms can build high-performing models by 
picking up on incidental correlations in training data. An apocryphal story 
from the early days of machine learning is about a neural network learning 
algorithm that distinguished images of enemy tanks from friendly tanks by 
picking up the blue skies at the top edge of the friendly tank images. Flushing 
out confounding variables in a high-dimensional dataset is still an art. Can you 
provide examples of confounders in clinical decision-making tasks? How can 
one systematically eliminate such features from consideration during model 
construction?

• The ImageNet dataset has 12 million examples of over a thousand object catego-
ries, and the best performing neural nets trained on ImageNet (an ensemble of 
Resnet50 networks) have error rates of under 3% on set-aside test sets. Why do 
deep neural networks require millions of examples to learn robust models of 
objects, when humans can generalize from very few examples? Why is it that 
humans generalize so well with very few examples? Hint: a new area called few- 
shot learning concerns an attempt to reduce the sample complexity of deep neu-
ral networks.

• What, in your opinion, are the primary barriers to the adoption of machine learn-
ing systems in a clinical context? Are the barriers lower in some areas of medi-
cine than in others? If so, why?

• Obtaining high quality labeled data is a bottleneck in the design of supervised 
machine learning systems for clinical decision-making. The quality of the 
learned model is determined completely by the quality of the associated labels/
decisions associated with each case. What approaches can be used to assess con-
sistency and quality of data labels before one embarks on model construction?

• What are potential uses of unsupervised learning (learning from unlabeled data) 
in the clinical context?

Further Reading

Goodfellow I, Bengio G, Courville A. Deep learning. MIT Press; 2016.

• The definitive text on deep learning available online at deeplearningbook.org. 
It has three major parts. Part 1 is a concise yet comprehensive of review of all 
the mathematics needed to understand machine learning algorithms and a 
summary of ML algorithms before the deep learning era. Part 2 is a deep dive 
into modern deep learning networks starting from feedforward multilayer net-
works through convolutional networks and recurrent networks. This part 
combines a clear exposition of the theoretical foundations of deep networks 
with practical tips on network design and training. Part 3 covers advanced 
topics including representation learning, autoencoders, and deep generative 
models, including generative adversarial networks.

Murphy K. Probabilistic machine learning: an introduction. MIT Press; 2022.

• A new two volume, comprehensive, reference textbook from an authority in 
the field, available online at probml.ai. The first book covers the foundational 
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mathematics, linear models for regression and classification, deep neural net-
works, non-parametric models including ensemble models and unsupervised 
learning. The second book, to be released in 2023, will cover advanced topics 
in prediction, generative models, causality, and reinforcement learning.

Bishop CM. Pattern recognition and machine learning. Springer; 2021 (old edition 
2006 available online).

• An extremely well-written textbook on classical machine learning algorithms 
including feedforward neural networks. The latest edition covers graphical 
models and approximate inference.

James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning 
with Applications in R. 2nd ed. Springer; 2017.

• A basic textbook on machine learning which goes deep into linear and logistic 
regression, tree- based models, basis function expansion, ensemble techniques 
and clustering methods. It has excellent practical end-of-chapter exercises. It 
is available as a free download online at hastie.su.domains/ElemStatLearn.

Nielsen M. Neural networks and deep learning, online book at neuralnetworksand-
deeplearning.com.

• This book is an excellent introduction to neural networks. It has the clearest 
explanation of backpropagation and through a hands-on approach elucidates 
why neural networks are universal function approximators. This book should 
be required reading for all machine learning enthusiasts.
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