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Chapter 5
Clinical Cognition and AI: 
From Emulation to Symbiosis

Vimla L. Patel and Trevor A. Cohen

After reading this chapter, you should know the answers to these questions:
•	 How do contemporary AI systems differ from expert human decision makers?
•	 Why is understanding clinical cognition critical for the future of sustainable AI?
•	 What constraints on human decision making suggest a complementary role for 

AI in clinical decision making?
•	 How might AI enhance the safety of clinical practice?

�Augmenting Human Expertise: Motivating Examples

One of the more controversial claims about AI systems in medicine is that they have 
the potential to replace the role of the physician, especially in perceptual domains 
such as radiology and pathology, in which interpretation of images is a prominent 
component of physician work. While it is natural that practitioners with a focus on 
image interpretation would consider the implications of current AI technologies for 
the professional viability of their fields (see, for example [1]), a strong counterargu-
ment to this claim is that these technologies may play a complementary role in the 
field and allow radiologists (and pathologists) to focus on assessment and 
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communication of AI-based image interpretations, and the positioning of these 
interpretations within a broader diagnostic workflow [2]. Alternatively, and in line 
with the main motivating argument for the current chapter, it has been proposed that 
physicians and AI systems might play a complementary role in diagnosis itself [1, 
3, 4], though less attention has been paid to several other crucial areas of a clini-
cian’s task.

This chapter considers the proposal of complementary physician/AI systems 
from a cognitive informatics perspective, focusing on the strengths and weak-
nesses of the information processing systems concerned. Before proceeding to 
address these issues, the section below presents some examples from the published 
literature of systems that establish a case for the utility of human-machine collabo-
ration in order to augment human abilities.

The burgeoning literature on AI-based diagnostic systems in radiology is replete 
with examples of hybrid human/AI systems outperforming either compo-
nent  taken alone in diagnostic tasks. For example, Lakhani and Sundaram report 
results from a combined human/AI workflow in which a board-certified cardiotho-
racic radiologist was enlisted to resolve disagreements between two convolutional 
network architectures trained to identify pulmonary tuberculosis in chest radio-
graphs [5]. This arbitration process improved ensemble model specificity from 
94.7% to 100% without loss in sensitivity, with the radiologist reviewing only those 
13 of 150 test cases in which disagreement between models occurred. Patel and col-
leagues report results from a workflow in which images with low-confidence pre-
dictions for the presence or absence of pneumonia from a convolutional network 
were reconsidered by groups of radiologists in concert [6]. Probabilistic estimates 
from these experts were then used as an alternative to the model’s original predic-
tions, resulting in an approximately 10% improvement in accuracy over that 
obtained with deep learning alone.

In both cases, the combined human/AI system also outperformed its human com-
ponent, an individual radiologist in the tuberculosis study, and a group of radiolo-
gists in the pneumonia study. Another common finding of interest is that the 
predominant mode of improvement with human oversight is an improvement in 
specificity. That is to say, the AI models alone tended toward overdiagnosis, which 
supports a pragmatic argument for the judicious use of human expertise to reduce 
false positive diagnoses in those cases in which uncertainty is identified either 
through disagreement between models, or through low-probability predictions from 
a single model.

Similar findings have been observed in dermatology diagnosis. Combined 
human/AI systems outperformed their independent components [7], with a 2.5% 
increase in specificity when enforcing the same level of sensitivity. Notably, some 
work in this area has also investigated the role of representation—advantages in 
performance for the human-computer collective were observed to be contingent 
upon the granularity (probabilities of differential diagnoses vs. global risk of malig-
nancy) and cognitive demand of the representation used to convey predictions to 
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physicians [8]. These results illustrate the need to consider the constraints on human 
information processing when attempting to integrate AI into clinical decision mak-
ing processes. While these results concern perceptual domains of medicine, it has 
also been argued that AI can play a complementary role in verbal domains by sup-
porting the aggregation and synthesis of information required to reach a diagnostic 
conclusion [3].

These sorts of pragmatic motivating arguments for the consideration of human 
cognition are very different from those that motivated considerations of human 
information processing earlier in the development of AIM.  With early systems, 
there was a desire to develop models that emulated procedures characteristic of 
human intelligence, with two early systems (INTERNIST-1 [9] and the Present 
Illness Program [10]) deliberately designed to model the generation and testing of a 
set of diagnostic hypotheses that cognitive studies had suggested were characteristic 
of the behavior of medical experts [11].

The section that follows considers the intersection among  cognitive science, 
clinical cognition and AI, from earlier studies to current work, with a focus on the 
shared roots of these fields and the need for AI development to consider human 
cognition.

�Cognitive Science and Clinical Cognition

Cognitive science, or the science of cognition, includes numerous subfields of psy-
chology, philosophy, linguistics, cognitive anthropology, neuroscience and com-
puter science. Basic research in cognitive science uses theories and methods from a 
combination of these domains to investigate problems, including clinical problems. 
For example, a program of research has used theories and methods from cognitive 
science to investigate clinical cognition and medical decision making (for examples 
see: [12–14]). Table  5.1, illustrates how research in basic cognitive sciences is 
related to our understanding of clinical cognition.

Similarly, our understanding of the reasoning processes and knowledge associ-
ated with diagnostic and patient management provides a basis for influencing the 
development of medical AI and decision support systems. For example, research in 
characterizations of expert and novice clinical knowledge organization in human 
memory can be used in creating representations of such knowledge in clinical AI 
systems. Table 5.2 shows the corresponding relationships between medical cogni-
tion and research in AI. The science of cognition provides the foundation needed 
to drive AI-based decision-support systems that can augment human behavior.

Research in clinical cognition draws on the theories, and methods developed in 
basic cognitive science, and contributes to applications in biomedical informatics in 
a number of ways. We are beginning to see a greater awareness of the concept of 
clinical cognition and its relationship to clinical support systems. A recent literature 
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Table 5.1  Correspondences between cognitive science and medical cognition

Cognitive science Medical cognition

Knowledge organization and human memory Organization of clinical and basic science 
knowledge

Problem solving, heuristics/reasoning 
strategies

Medical problem solving and decision making

Perception/attention Interpretation of radiologic and other visual data
Diagrammatic reasoning Perceptual processing of patient data displays
Text comprehension Learning from medical texts
Dialog analysis Medical discourse analysis
Distributed cognition Collaborative practice in health care
Coordination of theory and evidence Diagnostic and therapeutic reasoning
Natural intelligence Expertise in clinical practice

Table 5.2  Correspondences between medical cognition and research in AI

Medical cognition Medical AI

Organization of clinical basic science 
knowledge

Development and use of medical knowledge bases in 
intelligent systems

Medical problem solving and decision 
making

Medical artificial intelligence/decision support 
systems

Radiologic and dermatologic diagnosis Visual data analytics/machine learning
Perceptual processing of patient data 
displays

Biomedical information visualization

Learning from medical texts/medical 
discourse analysis

Natural language processing

Collaborative practice in health care Technology-supported collaborative environments
Diagnostic and therapeutic reasoning Clinical support systems
Natural intelligence in clinical practice Interactive environments for collaborative problem 

solving

evaluation from a biomedical informatics journal identified 57 articles that were 
related to cognitive informatics [15]. The topics of these articles ranged from char-
acterizing the limits of clinician problem-solving and reasoning behavior and char-
acterization of distributed clinical teams, to developing cognitively plausible 
interventions for supporting clinician activities. The reader is referred to Chap. 4 in 
Shortliffe and Cimino’s textbook of Biomedical Informatics for comprehensive 
coverage of this topic [16].

�Symbolic Representations of Clinical Information

Much of the research in late 1980s and 90s, such as the research in Patel’s labora-
tory, fell into the symbolic tradition, and dealt with models of diagnostic reasoning. 
The theoretical foundation of cognitive modeling is the idea that cognition is a kind 
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of computation (where computation involves the manipulation of symbols). The 
claim is that what the mind does, in part, is to perform cognitive tasks by mental 
computing. This computational theory of mind provides the fundamental underpin-
ning for most contemporary theories of cognitive science. The basic premise is that 
much of human cognition can be characterized as a series of computations on men-
tal representations. In medical cognition, mental representations are internal states 
that reflect a clinician’s hypothesis about a patient’s condition. For example, notic-
ing an abnormal enlargement of the neck region, which prompts the clinician to 
elicit further inferences about the patient’s underlying condition (such as family 
history of a thyroid condition), may influence the physician’s information-gathering 
strategies and contribute to an evolving problem representation.

In artificial intelligence, symbolic AI is an approach to AI based on the manipu-
lation of knowledge represented in language-like (symbolic) structures in which all 
relevant semantics (meaning) is explicit in the syntax (formal structure). This also 
provids a framework for the study of human cognition as the manipulation of sym-
bolic structures. It involves the explicit embedding of human knowledge and behav-
ior rules into computer programs. This type of research in early decades has in 
recent years been superseded by connectionist AI (neural networks), though in cog-
nitive science both symbolic and connectionist approaches have had periods of his-
torical predominance [17]. All the steps in symbolic AI are based on human-readable 
representations of the problem that use formal logic. This reasoning process can be 
easily understood, and a symbolic AI program can therefore explain why a certain 
conclusion is reached, including the reasoning steps. An explanation that is under-
standable to human beings helps create a shared meaning of the reasoning process 
underlying clinical problem-solving, which is an important step in building trust 
(see Chap. 18).

As the investigations moved from laboratory conditions to realistic clinical 
environments, it became evident that cognitive factors alone did not account for 
all the variance in clinicians’ performance. Besides cognition, other differences 
were found to influence decision making, due to socio-cultural, organizational 
and technological factors. This alerted researchers in their early work to consider 
the situated nature of the clinical environment in addition to human cognition 
[18, 19].

�Clinical Text Understanding

Early research in language understating lead to development of an influential 
method of analyzing the process of text understanding or text comprehension, 
based on the assumption that text can be described at multiple levels, from sur-
face codes (e.g., words and syntax) to a deeper level of semantics (meaning) [20, 
21]. Comprehension refers to cognitive processes associated with understanding 
or deriving meaning from written text, conversation, or other informational 
resources. It involves the processes that people use when trying to make sense of 
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a piece of text, such as a sentence, or a verbal utterance, such as verbal exchanges 
during a conversation. This work influenced the studies of medical text under-
standing by physicians at various levels of expertise, where formal methods of 
natural language representations, such as propositional and semantic representa-
tions were used.

Propositions are a form of natural language representation that captures the 
essence of an idea (i.e., semantics) or concept without explicit reference to linguis-
tic content. Propositional representations constitute an important construct in theo-
ries of comprehension. Propositional knowledge can be expressed using a predicate 
calculus formalism or as a semantic network.

The formalism is informed by an elaborate propositional language [22]. Patel 
and Frederiksen [23] and Patel and Groen [24] introduced the use of propositional 
analysis as a method of natural language representation in the clinical domain. The 
method provided the means to characterize the information clinicians and medical 
students understood from reading a text, based on their summaries or explanations 
of the patient problems. Figure 5.1 presents a schematic representation of natural 
language analysis of clinical text, using a propositional representation representing 
a text-based model and its relationship to semantic and conceptual level analysis, 
representing a situational model [25].

These studies have shown that individuals at different levels of expertise repre-
sent clinical text differently [26–29]. This means that these various representations 

Fig. 5.1  Schematic representation of text (propositions with text-based model) using proposi-
tional analysis and its relationship to semantic structure and higher-level conceptual representation 
(situational model)
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will lead to different interpretations of a patient’s problem, leading to inconsistent 
diagnostic decisions. The details of the results show that expert physicians (Board 
certified in their domain of expertise), are able to separate relevant clinical informa-
tion that can be used to inform the diagnostic decision-making process, from infor-
mation that is not pertinent to this process. Non-experts remember  considerably 
more information, but much of this is usually not relevant to the diagnostic decision 
at hand [26, 27]. Theories and methods of text comprehension have been widely 
used in the study of medical cognition and have been instrumental in characterizing 
the process of guideline development and interpretation (for examples see [30]).

Medical expertise is one of those areas of research where the importance of com-
prehension processes has been demonstrated [24]. Medical problem solving depends 
on understanding the problem because problem interpretation and analysis in medi-
cine requires construction of appropriate clusters of information in long-term mem-
ory that match the current patient presentation. The construction-integration model 
was developed to account for the process of text comprehension [31, 32]. This 
model consists of a hybrid symbolic/connectionist architecture developed by 
Kintsch to account for the process of text comprehension. A model of diagnostic 
problem solving based on the construction-integration theory involves an interac-
tion between the textbase and the long-term memory store, from which a situation 
model (Refer to Fig. 5.1) is derived through the cyclical process of construction and 
integration. A detailed account of how the construction-integration theory is used to 
explain some important aspects of expertise in medicine is given elsewhere [33]. 
The authors present a series of studies which serve as evidence for the validity of the 
construction-integration theory in accounting for the construction of schema during 
real-time diagnostic reasoning.

The study of medical cognition has been summarized in a series of articles [12, 
34] and edited volumes (e.g., [35]). In more recent times, medical cognition is dis-
cussed in the context of informatics, generating a new field of investigation, cogni-
tive informatics (for example, [13–15, 36]). Furthermore, foundations of cognition 
play a significant role in investigations of human computer interaction (HCI), 
including human factors and patient safety [37].

�Clinical Cognition, Reasoning and the Evolution of AI

AI in medicine and medical cognition mutually influenced each other in several 
ways, including providing a basis for developing formal models of competence in 
problem-solving tasks. It is not necessary to replicate literally the human mind in 
order to exhibit intelligent behavior, and besides this may not always be desirable 
since human beings are error prone. However, in areas such as natural language 
understanding, commonsense reasoning and the ability to generalize effectively 
from small numbers of examples, human beings are still far superior to the best 
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contemporary AI systems. Learning the mechanisms underlying these human abili-
ties could lead to advances in AI. Using techniques and insights drawn from cogni-
tive psychology, more robust and comprehensive AI systems could be built, resulting 
in models motivated not only by mathematics and a desire to optimize performance, 
but also by learning from the strengths of human psychology.

Early studies in linking clinical cognition to intelligent systems in medicine 
began with Anthony Gorry’s series of studies in the 70s, comparing a computational 
model of medical problem solving with the actual problem-solving behavior of phy-
sicians [38]. Drawing on this work, others [10] developed a clinical program, where 
they were guided by the nature and organization of expert knowledge—which was 
a central concern to both developers of clinical expert systems and researchers in 
clinical cognition. Medical expert consultation systems, such as INTERNIST-1 [9] 
and MYCIN [39], introduced ideas about knowledge-based reasoning strategies 
across a range of cognitive tasks. MYCIN, in particular, had a substantial influence 
on studies in clinical cognition (see Chap. 2).

A landmark publication that significantly influenced clinical cognition is Newell 
and Simon’s Human Problem Solving [40], relating human problem solving to 
research in artificial intelligence. It described a theoretical framework, extended a 
language for the study of cognition, and introduced protocol-analytic methods [41] 
that have become prevalent and dominant methods in investigations of high-level 
cognition, including the use of this framework for knowledge elicitation techniques 
in the development decision support systems. This work provided a foundation for 
the formal investigation of symbolic-information processing (problem solving) 
approaches.

Protocol analysis is among the most commonly used methods. It refers to a class 
of techniques for representing verbal think-aloud protocols, which are the most 
common source of data used in studies of problem solving. In these studies, subjects 
are instructed to verbalize their thoughts as they perform an experimental task. 
Ericsson and Simon [41] specify the conditions under which verbal reports are 
acceptable as legitimate data. Data collected during retrospective think-aloud pro-
tocols, where the subject has had the opportunity to reconstruct the information in 
memory (with potential for memory distortion), are considered suspect. Think-
aloud protocols recorded while collecting observational data in context, provide rich 
data for the characterization of cognitive processes. In studies of expertise, Patel and 
colleagues used the think-aloud paradigm to generate sparse data, showing that the 
use of specific probes could constrain data collection, where subjects were asked to 
provide explanations for a patient’s pathophysiological condition.

�Bridging Cognition to Medical Reasoning

The study of expertise is one of the principal paradigms in problem-solving research, 
which has been documented in a number of volumes in the literature [42–45]. 
Comparing experts to novices provides us with the opportunity to explore the 
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aspects of performance that undergo change and result in increased problem-solving 
skill. A goal of this approach has been to characterize expert performance in terms 
of the knowledge and cognitive processes used in comprehension, problem solving, 
and decision making, using carefully developed laboratory tasks [46].

The origin of medical problem-solving research on medical thinking is associated 
with the seminal work of Elstein and colleagues, who studied the problem-solving 
processes of physicians by drawing on then-contemporary methods and theories of 
cognition, based on psychology [11]. Their highly publicized research findings led 
to an elaborated model of hypothetico-deductive reasoning, which proposed that 
physicians reasoned by first generating and then testing a set of hypotheses to 
account for clinical data (i.e., reasoning from hypothesis to data). This model of 
problem-solving has had a substantial influence on studies of medical education. 
These authors were the first to use experimental methods and psychological theories 
to investigate problem solving in medicine. Patel and colleagues studied the knowl-
edge-based solution strategies of expert cardiologists as evidenced by their patho-
physiological explanations of a complex clinical problem [24]. The results indicated 
that expert physicians who accurately diagnosed the problem, employed a forward 
(data-driven) reasoning strategy—using patient data to lead toward a complete 
diagnosis (i.e., reasoning from data to hypothesis). This contrasts with subjects who 
misdiagnosed or partially diagnosed the patient problem. They tended to use a back-
ward or hypothesis-driven reasoning strategy. Figure 5.2 shows a diagrammatic 
representation of data-driven reasoning. From the presence of puncture wound mark 
on the arm to a young unemployed male, (clinical findings on the left side of figure), 
the physician reasons forward to conclude the diagnosis of infection (right side of 
the figure). Figure 5.3 shows a representation of hypothesis-driven reasoning. When 
making the diagnosis of myxedema, the physician explains an inconsistent finding 
of respiratory failure to be the result of a hypometabolic state of the patient.

Although expert clinicians, in their own domain of expertise, typically use data-
driven reasoning or general heuristics during clinical tasks, this type of reasoning 
sometimes breaks down, and the physician must resort to hypothesis-driven 

Fig. 5.2  A diagrammatic representation of data-driven reasoning when an unemployed young 
male presents with fever and a puncture wound mark on the arm. Presenting signs and symptoms 
through data-driven inferences, indicated likelihood of this patient being an intravenous drug user, 
with possible use of a contaminated needle, leading to infection. COND refers to a conditional 
relation, based on propositional analysis. Arrows indicate directionality

5  Clinical Cognition and AI: From Emulation to Symbiosis



118

Fig. 5.3  A diagrammatic representation of hypothesis-driven reasoning. An anomalous finding of 
respiratory failure, which is inconsistent with the main diagnosis (myxedema), is accounted for as 
a result of a hypometabolic state of the patient, in a backward-directed inference. CAU indicates a 
causal relation, and RSLT identifies a resultive relation in propositional analysis. Arrows indicate 
directionality

reasoning. In everyday practice, both types of reasoning are used. Forward directed 
reasoning was found to be the hallmark of expertise, as shown in other knowledge-
based domains, such as physics [47]. Although data-driven reasoning is highly effi-
cient, it is often error-prone in the absence of adequate domain knowledge, since 
there are no built-in checks on the legitimacy of the inferences that a person makes. 
In contrast, hypothesis-driven reasoning is slower and may make heavy demands on 
working memory, because one must keep track of goals and hypotheses. It is, there-
fore, most likely to be used when there is uncertainty, domain knowledge is inade-
quate, or the problem is complex. This type of reasoning is not used in regular 
time-constrained practice because details interfere with the utility of efficient deci-
sion making. Other chapters in the book discuss the concepts of forward and back-
ward chaining in systems (Chaps. 3 and 4). It should be noted that forward reasoning 
by expert systems consists of straightforward chaining of rules, whereas the forward 
reasoning of human experts invariably has missing steps in the inferencing process 
[28]. This indicates that forward reasoning may be generated by a process consider-
ably more complex than the simple chaining of rules.

Hypothesis-driven reasoning is usually exemplary of a weak method of problem 
solving in the sense that is used in the absence of relevant prior knowledge and when 
there is uncertainty about a problem solution. In problem-solving terms, strong 
methods engage knowledge, whereas weak methods refer to general strategies that 
do not. Weak does not necessarily imply ineffectual in this context. Furthermore, 
hypothesis-driven reasoning may be more conducive to the novice learning experi-
ence in that it can guide the organization of knowledge [48]. Causal reasoning as 
part of the backward reasoning is an indispensable part of human thought, and it has 
been argued that formalizing it is a prerequisite to achieving human-level machine 
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intelligence [49]. These types of reasoning relate to Kahneman’s “fast” and “slow”, 
models of reasoning [50], where the author proposes two types of reasoning corre-
sponding to two different components of the human brain. There are identified as 
System 1 and System2. System 1 processes information fast, but is slow to learn, 
since it learns through experience—often through sensory perception and pattern 
matching strategies—and it is error prone. System 2 processes information slowly, 
but is fast to learn. It learns from theory through explanatory processes with a logi-
cal inference engine, and is relatively reliable because it has built in error checks. 
This process is effortful and is triggered under uncertain conditions. The character-
ization of the two systems is not unlike the forward and backward reasoning in 
medical decision making developed by Patel and Groen and described above. The 
authors showed a formal relationship between comprehension and problem solving 
[51] in clinical medicine. The recognition of the relationship between the cognitive 
studies in clinical comprehension and problem solving, and AI dates back at least to 
1991, when the two keynote presentations at the Artificial Intelligence-Europe 
meeting in Maastricht, Netherlands discussed the two topics and their synergies [28, 
52]. These relationships show that collaboration among cognitive science, AI and 
neuroscience can produce an understanding of the mechanisms in the brain that 
generate human cognition. Thus, it is important to build AI systems with the ability 
to understand, think, reason and learn flexibly and rapidly, which will require deeper 
understanding of how the human mind functions as we do our tasks.

�Models of Medical Reasoning

It is generally accepted there are two basic forms of reasoning: deductive reason-
ing, which in medicine consists of deriving a diagnosis (conclusion) from diagnos-
tic category or a pathophysiological process (hypothesis). The other form is 
inductive reasoning, which consists of generating a diagnosis (conclusion), from 
patient data. However, reasoning in the “real world” does not fit neatly into any of 
these basic reasoning types. A third form of reasoning was identified as best captur-
ing the generation of clinical hypotheses, where deduction and induction are inter-
mixed. This is termed abductive reasoning [53], which is based in philosophy and 
is illustrated by the clinician generating a plausible explanatory hypothesis through 
a process of heuristic rule utilization (see for example, [54]).

Abductive reasoning is thought of as a cyclical process of generating possible 
explanations (i.e., identification of a set of hypotheses that are able to account for 
the clinical case on the basis of the available data) from a set of data and testing 
those explanations (i.e., evaluation of each generated hypothesis on the basis of its 
expected consequences) for the abnormal state of the patient at hand [11, 55–57]. 
Abductive reasoning is a data-driven process and dependent on domain knowledge. 
Within this generic framework, various models of diagnostic reasoning may be con-
structed. Following Patel and Ramoni [58], we can distinguish between two major 
models of diagnostic reasoning: heuristic classification [59] and cover and dif-
ferentiate [60]. However, these models can be seen as special cases of a more gen-
eral model: the select and test model [57], where the processes of hypothesis 
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generation and testing can be characterized in terms of four types of processes: 
abstraction, abduction, deduction, and induction.

During abstraction, pieces of data in the data set are selected according to 
their relevance for the problem solution and chunked in schemas representing an 
abstract description of the problem at hand (e.g., abstracting that an adult male 
with hemoglobin concentration less than 14 g/dL is an anemic patient). Following 
this, hypotheses that could account for the current situation are related through a 
process of abduction, characterized by a “backward flow” of directed inferences. 
This model of reasoning can be used to explain the medical diagnostic process. 
Expert clinicians are selective in the data they collect (abstraction), focusing 
only on the data that are relevant to the generated hypotheses, while ignoring 
other less-relevant data [24, 27]. Successful clinicians focus on the fewest pieces 
of data and are better able to integrate these pieces of data into a coherent expla-
nation for the problems [61]. Typically, physicians generate a small set of hypoth-
eses very early in the case (abduction), as soon as the first pieces of data become 
available, as was first shown by Elstein’s group [11], and later corroborated by 
other researchers (For example, [62, 63]). Physicians sometimes make use of the 
hypothetico-deductive process (deduction), which involves four stages: cue 
acquisition, hypothesis generation, cue interpretation, and hypothesis evaluation 
[11]. The reader is referred to the comprehensive summary of the research in 
clinical reasoning provided by Patel and colleagues in a recent book chapter [34]. 
The complex nature of clinical reasoning and decision making illustrates why is 
it so difficult to develop intelligent systems that can behave like human beings.

�Knowledge Organization, Expert Perception and Memory

The discussion so far has focused more on expertise and the processes of diagnostic 
reasoning. Research has also revealed differences in knowledge representation with 
levels of expertise. A recurring finding from studies of expertise is that experts rep-
resent knowledge at a higher level of abstraction than their less experienced coun-
terparts [64]. For example, Norman and colleagues investigated the ability of 
clinicians of different levels of dermatology expertise to make clinical diagnoses 
based on images presented as slides. Experts were more accurate in their diagnoses, 
and also exhibited a tendency to categorize slides at higher levels of abstraction. A 
similar finding was found in the study of expertise in radiology: less experienced 
subjects focused on surface anatomical features, while experienced radiologists 
developed deeper, more principled problem representations [65]. While this was not 
unexpected in visual domains of medicine, Patel and her colleagues identified an 
analogous difference in levels of abstraction in verbal problem solving, with expert 
physicians tending to represent case information from written scenarios at a higher 
level of abstraction than novice physicians [33]. Specifically, experts are distin-
guished by their emphasis on the facet level [66], which represents intermediate 
solutions to diagnostic problems. An example might be the cluster of symptoms 
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associated with congestive cardiac failure—once these are recognized a specific 
diagnosis that explains the cause of the congestive cardiac failure can be sought. For 
experts, these facet-level pre-diagnostic hypotheses serve as intermediate steps in a 
diagnostic process, narrowing down the space of possible solutions to mediate 
effective problem solving. In addition, the aggregation of information into larger, 
meaningful units allows expert problem solvers to represent complicated cases 
within the laboratory-determined constraints on working memory capacity 
(famously, 7+-2 units of information) [67]. Such patterns of knowledge organiza-
tion have immediate implications for the design of AIM systems. Adler-Milstein 
and her colleagues use the analogy of “wayfinding” to describe the use of AI to 
support the process of diagnosis by gathering, organizing and prioritizing informa-
tion that is germane to the solution of a diagnostic problem [3]. How then, should 
the information be organized once gathered? The section on “AI, Machine Learning, 
and Human Cognition” considers how what is known about clinical knowledge 
organization and decision making might be used to guide this process.

�Understanding Clinical Practice for AI Systems

�The Role of Distributed Cognition

The work discussed in previous sections has focused on the cognitive processes of 
individual decision makers, often captured in laboratory experiments. However, 
toward the turn of the twenty-first century, a new paradigm of cognitive research 
emerged, known as distributed cognition [68]. Distributed cognition broadens the 
focus of cognitive research, moving from the study of individuals in laboratory set-
tings to the study of groups of individuals at work in naturalistic environments. For 
example, Hutchins, a seminal figure in the field, conducted his influential work on 
navigation aboard naval vessels at sea [68]. A pragmatic advantage of this approach 
to research is that while representations in the mind (internal representations) can-
not be observed directly, representations that occur in the work environment (exter-
nal representations) can be recorded and studied. A famous example of an external 
representation concerns the “speed bug”, a positionable plastic pointer that slides 
around the edge of the speedometer and can be used to demarcate appropriate land-
ing speeds once these have been retrieved from a reference book [69]. This example 
is illustrative of a fundamental idea in distributed cognition: that an individual (or 
team of individuals) in a work environment constitute a composite cognitive sys-
tem—a symbol processing system—with greater functionality than any of its indi-
vidual components. From this perspective, the reference book of acceptable speeds 
is part of the long-term memory of the system, and the speed bug—a cognitive 
artifact—is part of its working memory [69]. In previous research, a significant 
paradigm shift was seen from a focus on individual cognition to collaborative and 
distributed cognition in healthcare. A special issue of the journal AI in Medicine 
included five original articles by prominent scholars that present complementary 
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approaches to collaboration and distributed cognition in health and medicine, 
emphasizing situations where collaboration is between human and computer or 
facilitated by computers [70]. On account of the prominent role of cognitive artifacts 
such as whiteboards and different sorts of clinical notes in clinical practice, distrib-
uted cognition has proved to be an informative way to characterize such settings [71, 
72], and identify opportunities to design tools that support their cognitive work [73].

As an illustrative example, Cohen and his colleagues used the distributed cogni-
tion paradigm to characterize the distribution of cognitive work in a psychiatry 
emergency department [71]. The work revealed ways in which cognition was dis-
tributed across teams and cognitive artifacts (such as written notes, see Fig. 5.4), 
and also over time, with these cognitive artifacts serving as bridges to maintain the 
continuity of cognitive tasks despite frequent staffing changes.

Considering a clinical environment from this perspective can lead to a more 
holistic picture of the ways in which AI technologies can offer support than the 
prevailing approaches of automated diagnostic decision making or prediction of 
adverse outcomes, including support for such cognitive tasks as information search, 
aggregation and synthesis [74].

Fig. 5.4  Distribution of cognitive tasks in a psychiatric emergency department. The tasks, broadly 
categorized into information gathering tasks, and those involving actions taken on the basis of this 
information, are supported by a range of cognitive artifacts such as specific document types and the 
departmental whiteboard. Both the internal (mental) representations of the staff members and the 
external physical representations on these artifacts support the cognitive work required

V. L. Patel and T. A. Cohen



123

�AI, Machine Learning, and Human Cognition

The AI of today is a natural evolution of what we have seen over recent decades. For 
example, the deep neural networks currently used to classify images in radiology 
and other medical domains originated in the twentieth century [75, 76]. The changes, 
the reasons we are seeing AI in every aspect of life, appear to be less about AI 
advancement itself than they are  about data generation and our current ability 
to leverage advanced computational power. However, there are certain barriers to 
the rapid growth of AI that are unlikely to be overcome by data and computational 
power alone. These barriers demonstrate that the path to the advancement of AI can 
be tricky and challenging. Present AI systems do not have a deep understanding—
an understanding that integrates new observations with prior structured knowl-
edge—but, rather, a shallow intelligence, that is the ability to emulate and, in the 
context of constrained tasks, sometimes even to improve upon some human pattern 
recognition and perception abilities. One cannot deny that there is intelligence in AI 
systems, but it does not follow the same rules as humans do.

The major goal of AI is to push forward the frontier of machine intelligence. 
Before going any further, it may be important to introduce a few terms. Machine 
learning and deep learning are two subsets of artificial intelligence which have 
garnered a lot of attention over the past few years. Many machine learning applica-
tions aim to allow computers to analyze and act with less human intervention by 
learning from training data. Deep learning—itself a type of machine learning—
aims to support analyses that use multilayered structures inspired by the neural 
connectivity of the human brain (see Chap. 6). While many other machine learning 
methods require less training data and computing power than deep learning, deep 
learning methods typically need less human intervention because they have the 
capacity to learn useful representations of incoming data by themselves, obviating 
the need for these to be engineered manually. Deep learning can be viewed as a 
statistical technique for recognizing patterns in sample data, using neural networks 
with multiple layers, where there is an attempt at imitating (albeit superficially) the 
structure and function of neural networks in the human brain. An important advan-
tage of deep neural networks is that they are able to learn useful representations 
while training. For example, in image processing a deep learning model may propa-
gate data through different layers of the network, with each layer successively learn-
ing to recognize higher level image features that collectively suggest a label, as 
learned from training data. This is similar in some ways to how expert problem 
solvers work—using abstraction to relate their observations to previously learned 
hierarchies of concepts and relations in order to find an answer. However, there are 
important differences between these processes.

Consider the case of text comprehension. Human beings, as they process texts, 
frequently derive a wide range of inferences, as explained earlier. Deep learning 
currently struggles with open-ended inference based on real-world knowledge at the 
level of human accuracy [77]. Furthermore, human reasoners have the capability to 
explain the sequences of inferences that drive their decision making processes. 
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However, the propagation of representations from layer to layer of a deep neural 
networks, en route to a prediction, defies explanation in human terms. This transpar-
ency issue is a fundamental concern when using deep learning for problem domains 
like medical diagnosis, where clinicians need to understand how a given system 
made a decision. Problems that have to do with commonsense reasoning are usually 
outside the scope of deep learning. Human beings solve even simple problems by 
integrating knowledge across vastly disparate sources. In medicine these may 
include observational data, knowledge of clinical science, laboratory data and so 
forth. This is not true for the majority of deep learning models, which learn complex 
statistical correlations among input and output features, but with no inherent repre-
sentation of causality or associated domain knowledge. We need to reach human-
level cognitive flexibility if we are to see AI models reach human-like performance. 
These issues are well addressed in recent scholarly literature [77–79]. However, 
such flexible human-like performance is not a prerequisite to improving healthcare 
with AI.  Contemporary AI methods can already perform constrained tasks with 
human-like accuracy, and have other capabilities—such as the ability to process 
large amounts of data quicky—that can be leveraged to support human deci-
sion makers.

�Reinforcing the Human Component

Artificial intelligence is poised to transform the healthcare industry. By developing 
new data analytics, intelligent clinical systems can analyze large and varied data 
sets, and clinicians can easily access the information they need to deliver care to 
their patients. AI and augmented intelligence have similar goals but differ in the 
way of achieving them. Augmented intelligence is like AI in that both fields use 
machine learning to enhance performance. However, instead of replacing human 
intelligence, augmented intelligence aims to use AI methods to build upon it in an 
assistive role. This change in emphasis has broad implications. Technologies medi-
ate human performance, and influence the way people behave as they interact with 
them. This goes beyond merely supporting, enhancing or expediting performance. 
Tools, and artifacts not only enhance people’s ability to perform tasks but also 
change the way in which they do so. The following sections provide some examples 
of how AI systems can be used to augment human cognition in medicine.

�Augmenting Clinical Comprehension

One approach to leveraging what is known about medical cognition to inform the 
design of AIM systems involves using approaches that deliberately emulate the 
knowledge organization of expert clinicians. As an illustrative example, Fig.  5.5 
shows one of four views of a narrative text discharge summary (from a fictional 
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patient encounter developed for research purposes) provided by a system that com-
bines supervised machine learning with semantic word vector representations to 
draw connections between phrases in text and the diagnostically and prognostically 
important facet-level constructs of psychosis, mood, substance abuse and danger-
ousness [82, 83]. The figure shows a view that emphasizes phrases related to psy-
chosis, such as those mentioning auditory hallucinations or paranoid ideation (as 
well as phrases mentioning antipsychotic medications such as Risperdal). Relevant 
phrases are also presented in the top and rightmost panels, and both these phrases 
and the four facets in the top panel serve as links to accommodate navigation, and 
switch perspective to emphasize the facet concerned. The interface also provides a 
graphical summary (bottom panel) of other narrative text records that indicates the 
extent to which content from each facet is represented, to facilitate exploration of 
historical narratives at a conceptual level that is conducive to problem solving. 
Evaluation of the interpretation of two case scenarios by 16 psychiatry residents 
revealed that the interface supported clustering of case-relevant information, with 
more detailed case recollection and better diagnostic accuracy in the more complex 
of the two scenarios when the interface was used [84]. In addition, residents using 
the interface better attended to clinically relevant elements of the case that had been 
neglected by non-expert participants in previous work [80], including important 
indicators of potential dangerousness to self and others. Qualitative evaluation of 
verbal think-aloud protocols captured during the process of exploring the cases 
using the interface revealed patterns of navigation used by residents to explore 
hypotheses at the facet level. These studies demonstrate the potential for AI to aug-
ment human decision making by simulating expert knowledge organization to 
reveal patterns in clinical data, rather than making decisions or predictions directly. 
From a distributed cognition perspective, the simulations of the knowledge and 
retrieval structures—structures that would typically support efficient decision 
making in the minds of the experts—are part of a larger cognitive system that 
includes residents, the interface and the AIM models that underlie it.

�Supporting Specific Cognitive Tasks

The preceding section describes a system that was developed to support trainees 
(residents) by simulating knowledge organization and retrieval structures that are 
characteristic of expert medical cognition, and expertise in general. It is also possi-
ble to design systems to support the thought processes underlying a specific task, 
that have been characterized using cognitive methods. For example, Baxter and his 
colleagues describe the use of a cognitive task analysis—a systematic approach for 
collecting information about the mental processes underlying a particular task 
[85]—to inform the development of an expert system named FLORENCE to sup-
port decision making about ventilator settings in the context of neonatal respiratory 
distress [86]. This work involved a detailed characterization of the tasks, actors, 
communication events, documents and instruments in the neonatal intensive care 
unit concerned, resulting in a number of design implications for the system. These 
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included practice recommendations for staff that identified contingencies in which 
the system’s suggestions may be unreliable, the need for a distinctive alarm that 
would stand out from those already prevalent in the environment, and the incorpora-
tion of mnemonic devices already used by staff into the wording of the system’s 
recommendations. These design implications were all informed by what had been 
learned about the cognitive capabilities of the team in the unit: their ability to rec-
ognize anomalous data that may lead to untrustworthy recommendations, the poten-
tial for their awareness of one alert to be drowned out by others, and the aids they 
use to remember procedural tasks developed to preemptively address potential 
causes of faulty readings that could mislead FLORENCE.

�Mental Models of AI Systems

Interestingly, many of the design implications that emerged from the aforemen-
tioned cognitive task analysis concerned devising ways for human team members to 
recognize or preempt conditions under which an AIM system is likely to be incor-
rect. This requires having a mental model the system, akin to those shown to enhance 
learning to use devices in general [87]. Bansal and his colleagues provide empirical 
evidence that an accurate mental model of such conditions is fundamental to effec-
tive team performance in AI-advised decision making [88]. In these experiments, 
which were conducted with crowdsourced workers in the context of a simulated 
AI-advised task, better overall team performance was observed when using systems 
with error-prone conditions that were easier to understand because they depended 
upon fewer data features, and consistently led to a system error. The benefits of 
consistent model performance have also been shown in prior work by this group 
related to updating machine learning models, which was shown to have detrimental 
effects on overall team performance when it led to changes in decision-making on 
previously-observed examples [89]. These findings are also consistent with subse-
quent work showing that more accurate mental models of AI systems lead to better 
collaborative performance on word games [90]. Related work has investigated 
mediation of the development of accurate mental models of AI systems [91], and 
how such mental models are revised in response to surprising behavior [90]. While 
these findings mostly emerged from work outside the medical domain, they have 
clear implications for the development of AIM systems, and characterization of 
healthcare provider’s mental models of AIM is an important area for future cogni-
tive informatics research.

�Conclusion

The influence of technology is not best measured quantitatively alone, since it is 
often qualitative in nature. The importance of cognitive factors that determine how 
human beings comprehend information, solve problems, and make decisions cannot 
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be overstated. Investigations into the process of medical reasoning have been one 
such area where advances in cognitive science have made significant contribu-
tions to AI.

At the AI in Medicine conference in Amsterdam in 2009, researchers raised the 
question of whether we have forgotten about the role of the human mind as we perform 
our tasks in the evolution of AIM research [92]. This question is still salient today, 
perhaps more salient given that technological advances have surpassed our understand-
ing of human behavior in such complex socio-technical environments. Today, a new 
question is whether we are getting the most out of our AIM inventions. It is time to 
reshape the current innovative technologies to serve human beings and augment our 
activities. In the clinical world, such augmented intelligence can provide clinicians 
with additional assistance they need to deliver a better quality of care for their patients.

Questions for Discussion

•	 Discuss, with examples, how the knowledge of cognitive science foundations 
can provide a better understanding of human-technology collaboration for devel-
oping contemporary AI systems for clinical practice. Can you think of principles 
of some of the component subfields of cognitive science that may also be valu-
able in such collaborative efforts?

•	 What are the ways to augment human intelligence for safer clinical practice, 
given what we know about current medical AI systems? Consider known limita-
tions of human cognition, such as a propensity toward bias in diagnostic decision 
making and constraints on attentions span and working memory, how these limi-
tations may manifest as vulnerabilities to medical error, and how AI methods 
may be used to preempt these patient safety concerns. 

•	 Consider the potential and limitations of symbolic representation of knowledge 
in AI systems, and ways to circumvent these limitations with more contemporary 
approaches. Conversely, consider the limitations of contemporary deep learning 
models. How might the limitations of these  approaches be addressed through 
incorporation of symbolic approaches, and vice versa?
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