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Chapter 3
Data and Computation: A Contemporary 
Landscape

Ida Sim and Marina Sirota

After reading this chapter, you should know the answers to these questions:
• What type of data can be leveraged for medical research and care?
• How do we know and learn about the world through data and computation?
• What computational infrastructures currently exist to support research discovery 

and clinical care?
• What are artificial intelligence and machine learning and how are they related?
• What types of knowledge representation exist?
• What are open challenges in the field moving forward?

 Understanding the World Through Data and Computation

Data has been called the “new oil” [1] or likened to “sunlight” [2] in its ubiquity and 
importance. Yet no one goes to medical school to learn data; one goes to medical 
school to learn what’s needed to diagnose, treat, and care for people. What then is 
the role of data in biomedicine? Ackoff [3] is often credited with positing the data- 
information- knowledge continuum, in which data are raw observations, information 
is data in context, and knowledge is an understanding about the world that is useful 
for explaining, predicting, and guiding future action. Knowledge—what we learn in 
medical school—may be explicit and codifiable (e.g., guidelines, textbooks), tacit 
and not codifiable (e.g., expertise, heuristics), or process knowledge (e.g., how to 
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remove a gallbladder). Here is a clinical example. An observation that a patient’s 
Hemoglobin A1c (HbA1c) is 8.2% is data; that this HbA1c of 8.2% is above the 
normal range is information, i.e., data in context; that a high HbA1c is associated 
with increased risk of adverse cardiovascular outcomes is knowledge. Knowledge is 
used, along with data and information about specific patients or populations, to 
guide actions in clinical care and population health respectively.

In recent years, machine learning and other computational approaches have pow-
ered a new path to transforming data into knowledge. But of course, biomedicine 
had been generating knowledge from data well before the modern era of computing. 
The dominant epistemology of clinical medicine—“the investigation of what distin-
guishes justified belief from opinion” [4]—became increasingly grounded in the 
scientific method starting at the turn of the twentieth century, progressed as a result 
of the 1910 Flexner Report [5] to formalized teaching of physiology and biochem-
istry in medical school (See Chap. 16), and culminated with the tenets of evidence- 
based medicine (EBM) as described by Guyatt and others in 1992 [6]. EBM is 
marked by scrupulous attention to experimental sources of bias that may cloud 
attempts to distinguish “justified belief from opinion.” The randomized controlled 
trial (RCT), which controls for both known and unknown confounders through ran-
domization, was held up as the gold standard for resolving questions of causation, 
sitting atop the evidence hierarchy save for the aggregation of RCTs in meta- 
analysis (Fig. 3.1).

However, this classical formulation of EBM addresses only questions of causa-
tion (does X cause Y). RCTs are not an appropriate study design for other types of 
questions central to clinical care [7], including description of natural history 
(what happens to people with Stage 5 lung cancer), classification (does this 
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Fig. 3.1 Hierarchy of evidence according to evidence-based medicine
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patient belong in (i.e., is classifiable into) the group of patients with Type 2 diabe-
tes), prediction (how long will this patient with Stage 5 cancer live), and expla-
nation (how does a high HbA1C result in elevated cardiovascular risk). An 
expanded version of EBM now addresses these other epistemological tasks using 
other study designs such as case control studies, prospective cohort studies, and 
prognostic rules [8].

 

Evidence is generated from data collected according to some study protocol 
(e.g., for an RCT, cohort study, or systematic review) and analyzed through biosta-
tistical methods (e.g., intention-to-treat analysis for RCTs). The analyses generate 
findings which are used to support claims of knowledge (e.g., dexamethasone 
reduces 28-day mortality in some hospitalized patients with COVID-19 [9]). A par-
ticular claim of knowledge is justified beyond simple belief based on the evidentiary 
strength of the study design and analytic method. The claim that dexamethasone is 
efficacious for COVID-19 as supported by a well-conducted RCT can be contrasted 
with a belief in some circles of hydroxychloroquine’s efficacy.

The contemporary landscape of biomedical epistemology is in tension and flux. 
While much of clinical research is still firmly embedded in traditional EBM 
approaches to generating evidence and knowledge, new computational approaches 
analyze vast amounts of data using “study designs” or algorithms that are wholly 
different from how clinical researchers and clinicians have been taught to know the 
world. Logistic regression and various machine learning algorithms are both ana-
lytic methods applied to data to generate evidence for claims of knowledge. These 
two ways of knowing [10]—EBM and data science—are complementary and can 
both be advanced with contemporary computational capabilities. This chapter 
reviews the foundations of data and computation as an underpinning to the follow-
ing chapters.

 Types of Data Relevant to Biomedicine

There are many broad classes of data relevant to biomedicine and healthcare, includ-
ing Electronic Health Records (EHR), -omics, imaging, mobile and social media, 
environmental, public health, and clinical research data. The EHR captures patient 
information including demographics, diagnosis codes, lab test results, medications, 
allergies, and clinical notes generated from the provision of health care. While these 
data are originally collected for clinical and reimbursement purposes, they provide 
an incredible opportunity to mine and apply machine learning techniques for pre-
dicting disease risk or understanding disease better. These data have been used 
widely to predict patient outcomes such as hospital readmission rate [11] or 
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pregnancy outcomes [12]. Other clinical datasets include MIMIC-IV [13], a large, 
single- center database containing information relating to patients admitted to criti-
cal care units at a large tertiary care hospital. MIMIC is a rare example of a large 
clinical dataset available for use by the broader research community. There are 
efforts in clinical trials data sharing through repositories such as ImmPort [14] and 
Vivli [15]. Finally clinical imaging is another field with many opportunities to apply 
advanced machine learning and predictive modeling techniques for diagnostic pur-
poses, as further described in Chap. 12.

Genomic and other molecular profiling technologies allow us to extract large 
amounts of data from patient samples, elucidating previously unknown factors 
involved in disease, such as drug targets or disease biomarkers. Much of the data 
from these types of experiments are publicly available. For instance, gene expres-
sion data are hosted in the Gene Expression Omnibus (GEO) [16] that as of July 
2021, contains data on over 4.5 million samples and over 150,000 experiments. 
These data are very rich, capturing a number of different disease areas. With the 
technologies getting cheaper and more advanced, many of the transcriptomic 
studies now capture expression on a single cell level. dbGAP [17] and Short Read 
Archive (SRA) both house sequencing data with additional security for ensuring 
patient privacy. There are also disease-specific databases such as the Cancer 
Genome Atlas (TCGA) [18] that contains molecular measurements on more than 
10,000 cancer samples and adjacent normal controls including transcriptomics, 
genetics, methylation and proteomics. The Preterm Birth Data Repository [19] is 
another example of a data repository, which as of July 2021 hosted over 45 molec-
ular studies relating to pregnancy outcomes with a focus on preterm birth. A more 
in-depth description of applications of artificial intelligence to molecular mea-
surements as part of the field of translational bioinformatics can be found in 
Chap. 14.

Clinical and molecular datasets can furthermore be enhanced by public health 
data such as The National Health and Nutrition Examination Survey (NHANES). 
NHANES is a program of studies designed to assess the health and nutritional status 
of adults and children in the United States and uniquely combines interviews and 
physical examinations. CalEnviroscreen [20] is a database that captures environ-
mental exposures across the state of California. Birth and death records (e.g., OSHP 
[21]) have been used extensively for research purposes. For instance in our own 
work, we have integrated the environmental exposure data from the CalEnviroscreen 
together with birth records information in order to identify arsenic and nitrate as 
water contaminants that are associated with preterm birth [22]. Finally in the last 
several years, mobile/social media data such as actigraphy, Twitter, and smartwatch 
data has been used to improve disease diagnosis (e.g., of atrial fibrillation [23]), 
monitor symptoms [24], and drive health behavior change [25, 26]. Newer modali-
ties of data acquisition including Ecological Momentary Assessments (EMAs) [27] 
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that prompt users for their behaviors and experiences in real time in their natural 
environments are offering an unprecedented view into people’s lived experience of 
health and disease.

The truth, however, is that there is no such thing as “health” and “non-health” 
data: all data can have implications for health. For example, individual-level data 
such as your online purchases, social media, geolocation, financial and criminal 
record data can be mined for predictors of health risk and health status. Environmental 
and population-level data such as block-level air pollution and noise [28], and vot-
ing patterns in your state [29], could be as predictive for health as traditional EHR 
data. The boundaries dividing health from general societal data and computing 
infrastructure are increasingly porous.

 Knowing Through Computation

The explosive availability of Big Data—distinguished by high Velocity (speed of 
data generation), Volume, and Variety—enables new levels of data-driven reason-
ing, of which there are two major flavors. Abductive reasoning as originally coined 
by Pierce in 1955 [30] can be characterized as a cyclical process of generating pos-
sible explanations or a set of hypotheses that are able to account for the available 
data (see also the similar discussion of these concepts as they apply to human rea-
soning in Chap. 5). More recently, the term abductive reasoning has been expanded 
to the notion of “Inference to the Best Explanation” [31], by which a hypothesis or 
theory is arrived at that best explains the available data. Over time, clinical research 
using traditional statistics also endeavors to arrive at a “best explanation.” A study 
postulates a hypothesis, data is collected and analyzed drawing on deep domain 
expertise, and the null hypothesis is accepted or rejected thus arriving at a provi-
sional explanation of the observed data. Randomized controlled trials are a type of 
study design that controls for known and unknown confounders to strengthen a 
claim of causation, yielding a “best explanation” that can be contravened by other 
or subsequent trials. In computation, case-based reasoning is a classic example of 
abductive decision support systems, which are nowadays overshadowed by induc-
tive machine learning approaches.

Inductive reasoning involves an inferential process from the observed data to 
account for the unobserved. It is a process of generating possible conclusions based 
on available data. The power of inductive reasoning lies in its ability to allow us to 
go beyond the limitations of our current evidence or knowledge to novel conclu-
sions about the unknown. Machine learning––computer algorithms that find and 
apply patterns in (huge amounts of) data––is quintessential inductive reasoning. 
Subtypes include classification, prediction, causal reasoning, and modeling 
(Box 3.1).
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The combination of Big Data and machine learning is fueling a transformation in 
computational reasoning. Coupled with advances in cloud, social, mobile and other 
technologies, a new frontier is opening up for what computers can do with and for 
humans in health and biomedicine.

 Motivational Example

Now that we have an overview of biomedical data and computation, we present and 
deconstruct an example clinical case (Box 3.2) to illustrate high-level issues and 
challenges that will shape the near future of data and computation.

Box 3.1 Examples of Inductive Reasoning
Classification: inferring which class an instance belongs to based on classes 
of observed instances. E.g., a diagnostic decision support system “classifies” 
a given patient to a “disease” based on the similarity of their symptoms to the 
symptoms of prior patients known to have that disease.

Prediction: inferring a future state based on past data. E.g., a clinical 
decision support system predicts whether a patient will require hospitaliza-
tion based on historical hospital admissions data.

Causation: inferring whether X caused Y. E.g., a deep neural network run-
ning over a clinical data warehouse is used to discover whether Drug X 
causes a Side Effect Y.

Modeling: simulating the components, relationships, and actions within a 
biomedical or health system to explain, explore, or predict E.g., a discrete 
event model of endocrine feedback for a disease.

Box 3.2 Illustrative Case
Andre is a 47-year-old man with mild Type 2 diabetes. He was returning from 
a business trip overseas when he felt short of breath, out of sorts, and had 
occasional sharp chest pains. He signed onto a telehealth service offered 
through his employer. The telehealth service’s chatbot interviewed Andre, 
using an avatar that was Hispanic, as Andre is. After an initial set of questions, 
the chatbot handed over the case to a human physician, who conducted a 
video consultation with Andre while reviewing his electronic health record 
data along with his respiratory rate, body temperature, oxygen saturation and 
other data from his smartwatch. The physician recommended that Andre get 
evaluated in person at the nearest Emergency Room (ER). Andre is getting 
worried. On his way to the ER, Andre asks Siri what he might have. Siri tells 
him scary diagnoses like pneumonia, and something called pulmonary embo-
lism. Siri explains that pulmonary embolism is when a blood clot forms in a 
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leg after prolonged sedentariness (like a long flight) and breaks off to the 
lungs causing chest pain and shortness of breath.

At the ER, Andre was first seen by a resident physician-in-training who 
ordered multiple tests including labwork, a chest x-ray, and a chest CT. Based 
on those data, a decision support system ran predictive models that resulted in 
a ranked list of differential diagnoses, with an intermediate probability for 
pulmonary embolism. The resident presented the case to Dr. Jackson, the 
attending ER physician. After reviewing the data and output, Dr. Jackson 
went to talk with Andre and examine him. She noticed crackles in the lungs, 
an S3, a prominent right-sided cardiac lift and elevated jugular venous pres-
sure. On further questioning, Andre mentioned that he had had a “bad cold” 
about 1 month before and had been feeling unwell even before the business 
trip. Suspecting biventricular failure from viral myopericarditis, Dr. Jackson 
ordered an echocardiogram and admitted Andre.

Andre is fortunate to have convenient timely access to “virtual-first” care through 
his employer. 9% of Americans have no health insurance [32] at all while 43% are 
underinsured [33]. When health care moved onto virtual platforms during the 
SARS-CoV-2 pandemic, marginalized populations had reduced access to health 
care due to lack of technology and/or technology literacy [34], adding “digital 
determinants of health” to the causes of health inequities (Chaps. 13 and 18). As 
with general consumer technology, chatbot services are increasingly common in 
health. Chapter 9 reviews natural language processing (NLP) and other computa-
tional issues underlying dialog systems. Culturally concordant avatars, language, 
and user interactions are needed to establish belonging and trust with digital interac-
tions for all peoples (Chap. 18). Central to this book on cognitive informatics is the 
importance of a smooth handoff between computational and human care: the deci-
sion to refer to Andre to the ER is one that should involve a human, who in this case 
was able to access and review Andre’s EHR and wearable data to get a better view 
of his overall status. The ability to access such data in real time requires health data 
interoperability encompassing network computing, data standards, and sociotechni-
cal data sharing mechanisms. Siri and the decision support system in the ER illus-
trate the exciting possibilities of automated reasoning. Early diagnostic systems 
dating from the 1970s include INTERNIST-1 and MYCIN (Chap. 2). Simpler sys-
tems, such as the Modified Early Warning System (MEWS) for scoring physiologic 
observations to predict sepsis [35], have been widely used in clinical practice, and 
have evolved to machine-learning based models with better performance (Chap. 
10). Advances in image recognition have given rise to imaging decision support 
systems such as for detecting pulmonary embolism (Chap. 12).

Andre’s case illustrates the importance of framing clinical decision support not 
as a solely computational task but as one of human/AI collaboration requiring a 
human-in-the-loop approach. The ER resident who first evaluated Andre likely had 
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premature closure [36] on the potential diagnosis of pulmonary embolism (PE) 
and collected data (e.g., chest CT) with PE in mind while not pursuing other poten-
tial diagnoses. When presented with this restricted set of data, the decision support 
system backs up the resident’s diagnostic hunch. Dr. Jackson, the more senior phy-
sician, performs a more thorough history and exam with a broader differential in 
mind, and notes signs of biventricular failure that the resident missed. These find-
ings increase her suspicion for viral myopericarditis, a diagnosis which becomes 
more likely with additional history that Andre has felt increasingly unwell since a 
viral syndrome 1 month ago. That the decision support system did not rank viral 
myopericarditis high on the potential list of diagnoses is less a failure of the diag-
nostic algorithm than a failure of the human component. Cognitive informatics 
emphasizes a balanced approach to how humans and machines work together. One 
could imagine circumventing the resident’s premature diagnostic closure by instru-
menting Andre’s existence—surveilling his exposure to a virus 1 month ago, track-
ing his progressively worsening symptoms and elevated heart pressures, sensing his 
decreased gait speed and mobility—to diagnose his condition before he hit the 
ER. Aside from the technical challenges of achieving accurate diagnosis using such 
multi-modal time-varying data, the continuous collection of vast amounts of data 
from our daily lives presents a potentially grave cost in privacy. Data privacy is a 
core element of trust, as is, increasingly, transparency and fairness of the algorithms 
underlying computational decision support (Chap. 18). The remainder of this chap-
ter discusses the main data and computational issues raised by Andre’s use case.

 Computational Landscape

There exists frequent confusion between artificial intelligence (AI) and machine 
learning (ML) and between ML and statistics. AI is the ability of a machine to 
perform tasks (and behave) like an intelligent being. AI encompasses a broad range 
of functions that lead a machine to “seem” intelligent, that we can break up into 
functions relating to data acquisition and processing, “thinking”, and action in the 
real world. Data acquisition and processing include machine vision and image pro-
cessing (e.g., detecting breast cancer in a mammogram, Chap. 12), speech recogni-
tion (e.g., dialog systems, Chap. 9), and NLP (e.g., extracting smoking status from 
EHR free text, Chap. 7). Thinking includes reasoning (as above), planning (e.g., 
surgical robot planning), and learning (Chaps. 5 and 6). Action in the real world 
includes image generation (e.g., embodied conversational agents, Chap. 9), speech 
generation (e.g., dialog systems, Chap. 9) and autonomous systems (e.g., robots that 
deliver meds).

As shown in Fig. 3.2, AI is a subset of computer science and ML is a subset of 
AI. Confusingly, ML also overlaps with statistics and data science. In fact, if ML is 
“computer algorithms that find and apply patterns in data,” statistics does so too. 
Although ML typically is used on huge amounts of data, both ML and statistics are 
just alternative ways to understand and draw inferences out of data. Because ML 
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Fig. 3.2 Data Science Field/Term Diagram (adapted from Ryan J Urbanowicz, ryanurb@
upenn.edu)

has commonalities with traditional analytics, ML is subject to the same pitfalls as 
traditional statistics, including bias, confounding, or inappropriate interpretation 
(Chap. 18). We can and should hold ML to the same expectations for scientific 
integrity as we do traditional analytics.

 Knowledge Representation

Knowledge representation is the field of AI dedicated to representing information 
about the world in a form that a computer system can understand and use to solve 
complex tasks such as diagnosing a medical condition.

There are different approaches to data representation including symbolic, rule- 
based and graph-based formalisms. One of the most active areas of knowledge rep-
resentation research are projects associated with the Semantic Web which seeks to 
add a layer of meaning on top of the internet. Rather than indexing web sites and 
pages via keywords, the Semantic Web creates large ontologies of concepts. An 
ontology is a set of concepts and categories in a subject area or domain that shows 
their properties and the relations between them. An example of an ontology in the 
biomedical domain is the Gene Ontology used to annotate genes.

A rule-based system has a knowledge base represented as a collection of “rules” 
that are typically expressed as “if-then” clauses. The set of rules forms the knowl-
edge base that is applied to the current set of facts.
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One of the earliest examples of such a system in the clinical domain was MYCIN 
[37], an early backward chaining expert system that used artificial intelligence to 
identify bacteria causing severe infections, such as bacteremia and meningitis, and 
to recommend antibiotics, with the dosage adjusted for a patient’s body weight. 
Knowledge graphs are another method to model knowledge. A knowledge graph is 
a directed, labeled graph in which the labels have well-defined meanings. A directed 
labeled graph consists of nodes, edges (links), and labels. Anything can act as a 
node, for example genes, proteins, diagnoses. Edges between them can be relation-
ships. This type of representation can be used for predicting and modeling different 
biological associations for instance drug-protein targets, gene-disease associations, 
protein-protein interactions, disease comorbidities. Knowledge-based systems are 
discussed in detail in Chap. 4 of this volume.

 Machine Learning

Machine learning is a branch of artificial intelligence based on the idea that sys-
tems can learn from data, identify patterns and make decisions with minimal human 
intervention. Machine learning approaches which are in further detail described in 
Chap. 6 can be characterized into supervised and unsupervised approaches 
(Fig. 3.3). Clustering algorithms that aim to group objects with similar attributes 
using measures of distance or similarity. For instance, one can cluster patients based 
on their clinical profiles and identify subgroups of patients that might be similar to 
each other. Unsupervised algorithms, or those that do not rely on ground truth, 
include k-means, hierarchical clustering, and expectation-maximization clustering 
using Gaussian mixture models. Classification is a task of identifying which cate-
gory an observation belongs to. Some examples include classifying an email to the 
“spam” or “non-spam” category, or in the biomedical domain, assigning a diagnosis 
to a given patient based on observed characteristics of the patient. Classification 
algorithms, which often rely on training data, include random forest, decision trees, 
naive bayes and others and are supervised, which means that there is some data that 
is used with existing labels. These concepts are further explored in Chap. 6.

Deep learning techniques deserve special mention due to the importance these 
methods are gaining currently. Deep learning methods rely on neural networks, 
which were first proposed in the 1940s, in which layers of neuron-like nodes mimic 
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how human brains analyze information. The underlying mechanisms of trained neu-
ral networks can be hard to disentangle, and thus, they have mainly been applied 
within biomedicine for image recognition. However, the ability to train a neural 
network on massive amounts of data has raised special interest in applying them 
elsewhere in the field of biomedicine, although the interpretability of these 
approaches is often a challenge (Chap. 8). These methods have been applied exten-
sively to image analysis [38] and have been recently extended to other types of data 
including EHR [39] and genetic data [40].

 Data Integration to Better Understand Medicine: Multimodal, 
Multi-Scale Models

The wealth and availability of public genomic, transcriptomic and other types of 
molecular data together with rich clinical phenotyping and computational integra-
tive methods provide a powerful opportunity to improve human health by refining 
the current knowledge about disease therapeutics and diagnostics. There are differ-
ent types of integrative models that can be applied to bring together diverse data 
[41]. As presented by Richie et al., meta-dimensional analysis can be divided into 
three categories: (1) Concatenation-based integration involves combining data 
sets from different data types at the raw or processed data level before modelling 
and analysis; (2) Transformation-based integration involves performing mapping 
or data transformation of the underlying data sets before analysis, and the modelling 
approach is applied at the level of transformed matrices; and (3) Model- based inte-
gration is the process of performing analysis on each data type independently, fol-
lowed by integration of the resultant models to generate knowledge about the trait 
of interest.

The ideal scenario is when the different types of data are collected on the same 
individuals. In this case both concatenation and transformation-based integration 
can be applied. In our prior work, we examined patient heterogeneity in a lupus 
cohort for which we had rich clinical as well as molecular measurements such as 
genotyping and methylation to identify several clinical clusters of SLE patients and 
molecular pathways associated with those clusters [42]. However, there are also 
situations when the data is not collected on the same individuals and therefore, we 
must use a model-based integration approach to bring the datasets together using 
phenotype as the common ground. For instance, if the goal is to identify genetic, 
transcriptomic and proteomic associations with a certain disease of interest, data 
sets could be extracted from the public domain, where DNA sequence data may be 
available on some of the patient samples, microarray data from a different subset of 
patient samples, and proteomic data on yet another subset of patient samples. 
Model-based integration would allow the independent analysis of each of the 
modalities, followed by an integration of the top models from each data set to iden-
tify integrative consensus models.
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By integrating data across measurement modalities as well as by integrating 
molecular measures with rich clinical phenotyping we can get a bit closer to achiev-
ing precision medicine by improving diagnostics and therapeutics.

 Distributed/Networked Computing

The modern world is a networked world including more recent technologies for 
computing such as cloud computing and graphical processing units (GPUs—more 
in Chap. 2), where both data and computation are distributed across time, space, and 
jurisdictions. A patient’s EHR data may reside in several places: her current primary 
doctor’s health system, the health systems of her previous care providers and of 
emergency visits, and third party telehealth companies for the occasional urgent 
care consult. Her genetic sequence, cancer genotype, and various wearable data 
such as Apple Watch or FitBit are likewise held and computed on in siloed and pro-
prietary systems, each subject to access policies and terms of use that are often 
opaque to both the patient herself and to third parties. As messy as this all is, as 
discussed in the section on “Types  of Data Relevant to Biomedicine”, there is no 
such thing as “health” and “non-health” data. Because the value of data is in its 
aggregation, a challenge is how to bring together multiple sources of data for any 
given query to enable multiple types of computation.

In the traditional approach, data is brought to the query. That is, if a data requester 
wants to run a query, the requester obtains a copy of the data, installs it on his/her 
own machine and runs the query on the data that has been brought in. Because the 
data requester now holds a copy of the data, the original data holder has effectively 
lost control over its access. Moreover, if the datasets are very large, as is the case for 
many imaging, genomic, sensor, and real-world data studies, the data requester may 
not have sufficient storage and compute capacity. Thus, this approach is not compat-
ible with any need for controlled access (which includes most cases of sharing 
patient data) nor for sharing large datasets.

The converse approach is bringing the query to the data. The data requester sub-
mits the query to the machine where the data resides, the query is run on that remote 
machine, and the results are returned back to the requester. Queries can, of course, 
be complex computations and analyses, not just simple search and retrieval queries. 
In this model, data holders retain control of the data and the requester does not ever 
have a copy of or control of the data.

 Data Federation Models

This basic idea of bringing the query to the data can be implemented through differ-
ent configurations of databases and query servers, each with their own benefits and 
challenges. In the simplest Local Data Store model, every data holder hosts its own 
data on its own server. External data requesters establish user accounts on that 
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server under some access control model. The requester then has access to view the 
data and to analyze it, but not to download a copy of the data to the requester’s own 
machine. However, this model is infeasible for widespread data sharing because 
data requesters wishing to query multiple databases must establish multiple user 
accounts and navigate multiple access policies and procedures and have no ability 
to combine data for aggregate analysis.

In the One Single Centralized Datastore model, data from multiple sources are 
aggregated into one “data warehouse.” An example is the University of California’s 
Health Data Warehouse that aggregates data from over 15 million patients seen at 
the five medical campuses of the University of California [43]. Another example is 
N3C, aggregating EHR data on 1.9 million COVID patients from 34 medical cen-
ters across the US into a single portal for secure data access and analysis [44]. This 
model benefits from economies of scale, and data requesters need to submit their 
queries to only one database under a uniform data access policy. However, this 
model still does not allow aggregation of data across data warehouses. The silo is 
just a bigger silo.

The federated query model combines the bring-the-query-to-the-data approach 
with federated databases. Databases are federated when independent geographi-
cally dispersed databases are networked in such a way that they can respond to 
queries as if all the data were in a single virtual database. Thus, data requesters can 
submit a query to a federated query service and have that query be routed to all 
databases participating in that federation. Data holders maintain full control of their 
data, and neither the data requester nor the query service provider ever has direct 
access to the data.

Federation technology has progressed substantially in recent years. An example 
is the R2D2 initiative with a federated network of 12 health systems comprising 202 
hospitals contributing COVID-related EHR data on 45 million patients [45]. In con-
trast to the N3C approach described above, data never leave the 12 health systems, 
which act as nodes on the network making their patient data available in a common 
data model. Queries and computations are submitted via a centralized service that 
then federates computation such as averages, regressions, and machine learning 
models to individual nodes on the network.

 Interoperability

Whenever data is brought together for query and computation, whether in the cen-
tralized warehouse or federated model, the data must be interoperable. 
Interoperability is the ability of computer systems or software to exchange and 
make use of information; it is not enough to send data that is unintelligible to the 
recipient. Interoperability therefore includes both syntactic and semantic interoper-
ability, which are enabled by the use of data interoperability standards. Syntactic 
interoperability refers to the format and ordering of what is exchanged, analogous 
to the grammar of an English sentence for exchanging ideas between humans. 
Examples of primarily syntactic standards include data exchange standards such as 
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HTML and, in health care, HL7 FHIR and DICOM for representing data in transit. 
Semantic interoperability refers to the meaning of what is exchanged, analogous 
to the words and their dictionary meaning in an English sentence. Semantic stan-
dards in healthcare include common terminologies such as SNOMED and 
LOINC. One needs both syntactic and semantic standards to enable full interoper-
ability. A sentence using English words and German grammar is not interoperable 
between humans (Box 3.3).

Data that is to be aggregated also need to share a common data model at rest. The 
University of California Health Data Warehouse, N3C warehouse, and the R2D2 
federated network all use the Observational Medical Outcomes Partnership 
Common Data Model (OMOP CDM) [46]. This model was designed for cross- 
institutional queries of EHR data for quality improvement and research purposes, 
and binds data to a mandatory clinical vocabulary (OMOP Standardized 
Vocabularies) [47] that is based on SNOMED, LOINC, RxNORM and others. Note 
the same OMOP data model and associated vocabularies can be used for centralized 
or federated approaches and is fit-for-purpose for a wide range of EHR data interop-
erability use cases. Common data models and data exchange protocols must be 
defined and agreed upon across all contributors to data sharing and adopted uni-
formly by each contributor or federation node.

 Computational Aspects of Privacy

Chapter 18 reviews the broader issues of Ethics, including Privacy. To understand 
the computational aspects of privacy, we need to distinguish privacy and security. 
Privacy is a concept that applies to people, rather than documents, in which there is 
a presumed right to protect that individual from unauthorized divulging of personal 
data of any kind. Security is the process of protecting information from destruction 
or misuse, including both physical and computer-based mechanisms. Security falls 
under IT. Privacy is when you are assured and protected from a company holding 
your geolocation data selling it without your knowledge or approval. Security is 
when no hacker can get into that company’s systems to access or corrupt your geo-
location data. You can have 100% security and no privacy; if you have no security, 
you also have no privacy.

Box 3.3 Interoperability 
Interoperability is the ability of computer systems or software to exchange 
and make use of information. Syntactic interoperability refers to the format 
and ordering of what is exchanged. Semantic interoperability refers to the 
meaning of what is exchanged.
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Privacy is best protected by a combination of technical and legal means. 
Technically, the objective is to minimize the risk that an adversary can associate or 
re-identify your personal data with you. However, there is no guarantee of absolute 
protection against re-identification. Data—EHR, geolocation, fitness data—can be 
subjected to de-identification or anonymization to increase privacy. De-identified 
data is data that has identifying personal data such as names and birthdates removed 
or perturbed in such a way as to be non-identifying (Chap. 18). Anonymized data 
has identifying personal data removed or perturbed and the key linking a data record 
to a particular person is destroyed such that the data becomes anonymous. In truth, 
with sufficient external data, de-identified and even anonymized data can be re- 
identified. Thus, legal mechanisms such as data use agreements (DUA) are needed 
to supplement technical privacy protection.

The challenges of privacy protection are magnified when data need to be aggre-
gated. The more data there is about an individual, the greater the risk the data will 
uniquely match an individual leading to re-identification.

The risk is further magnified with federated data sharing. Mechanisms such as 
differential privacy [48] are used where queries are federated over perturbed data 
and the answers are then operated on to “subtract” out the perturbations to arrive at 
the real answer without increasing the risk of re-identification. Another approach is 
synthetic data [49], where a synthetic dataset is created that matches the distribu-
tional properties of the original data set. In this way, computations can occur on the 
synthetic dataset with some provable level of accuracy to the original dataset. The 
details of computation for privacy are outside the scope of this book but are closely 
tied to the ability to safely aggregate and reuse large amounts of data for machine 
learning. The point to know is that the “old” way of privacy protection under HIPAA 
“safe harbor” [50]—removing a specified list of 18 identifying data elements—is 
increasingly insufficient for modern-day data sharing and computation.

 Trends and Future Challenges

Chapter 19 anticipates the future of AI in medicine and healthcare. Here, we review 
trends and open challenges affecting the general use of data and computation for 
biomedicine.

 Ground Truth

The availability of extensive molecular and clinical data provides an incredible 
opportunity to apply predictive modeling and ML techniques to improve diagnos-
tics and therapeutics. However, ML models need rich and accurate training data, 
including labelling of ground truth (e.g., which patients have the disease that the 
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ML is trying to predict). Many datasets, especially large public datasets, are poorly 
labelled and are also heterogeneous and not well annotated, making them difficult 
to aggregate and use for ML.  Annotation and labelling are difficult and time- 
consuming tasks. For example, labelling clinical and imaging data with ground 
truth labels of diagnosis requires expert time and costs. The limited availability of 
labelled data can be somewhat overcome by the sheer amount of data, but this bot-
tleneck is important to recognize. New semi-supervised approaches are emerging 
that rely on small amounts of labelled data to predict missing labels for larger data-
sets, but these approaches risk perpetuating and amplifying biases and mis-labelling 
in the smaller set. The availability of accurate and unbiased labelled training data 
for ML will be an ongoing challenge.

 Open Science and Mechanisms for Open data

Scientific culture is increasingly embracing open approaches to data sharing and 
reuse, adhering to FAIR (Findable, Accessible, Interoperable, Reusable) principles 
[51]. Findability requires indexing and shared metadata and persistent Digital 
Object Identifiers (DOIs) such as from DataCite or other services that span disci-
plines. Accessibility brings up data rights, ownership, access policies, and fair (as 
in just) credit for data sharing—all of which are wide open issues. We discussed 
Interoperability above.

Reusability needs to be distinguished between reusability by humans or reusabil-
ity by computers. Human reusability is a lower bar. Data and metadata need to be 
findable and sufficiently interpretable by humans to facilitate additional data cleaning, 
alignment, and harmonization to achieve the aggregation purpose. In contrast, auto-
mated reusability by computers requires much more stringent adherence to compati-
ble syntactic and semantic standards for all the data. This upfront work is challenging 
for data mapping but also governance reasons. People need to decide on common data 
elements, which necessitate agreement on potentially controversial scientific issues. 
For example, the N3C Consortium agreed on specific definitions of variables that all 
sites have to map their data into [52]. N3C also had to address privacy concerns for 
human data, as data reusability must take place under fair and just conditions that 
limit the risk of re-identification. Thus, N3C also defined three levels of access to N3C 
data in their secure enclave: a limited data set that can only be accessed with IRB 
approval, a de-identified data set that can be accessed without IRB approval, and a 
synthetic data set that requires only an N3C account and DUA [53]. Perhaps because 
of the additional challenges of protecting privacy, the ethos of open science and open 
data has a stronger hold in the life sciences than in clinical research and care.

As data, information and knowledge are shared, re-purposed, combined, and dis-
tributed in a networked world, the provenance of each component must be audit-
able lest errors and biases become compounded to an extent that threatens the 
integrity of computed inferences and decision support. Infrastructures for managing 
metadata and provenance are currently woefully inadequate. The FHIR [54] and 
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Open mHealth [55] data exchange standards model provenance (e.g., who measured 
a blood pressure reading in the clinic, what sensor model did the sleep duration 
come from) but these attributes are not consistently captured or described. The need 
for detailed provenance is critical for scientific reproducibility and is especially 
important for longitudinal studies of data that may drift over time. For example, the 
NIH’s 4-year RECOVER initiative to study Post-Acute Sequelae of SARS-CoV-2 
(PASC, aka “long COVID”) will be collecting real-world, survey, and sensor data 
whose definition, collection, and post-processing methods are likely to change as 
more is known about PASC. Without a clear trace of data transformations and other 
provenance, the scientific value of the consortium data will diminish over time. 
Provenance architectures, managing the risks of re-identification, and mechanisms 
for tracking and assigning data sharing credit are two major open challenges.

 Data as a Public Good

The ultimate value of data and computation to society rests on the willingness of the 
intended users to accept the outputs. How we collect, describe, and share data and 
how we construct our computational systems can earn the trust of users—or not. As 
discussed in Chap. 18, trustworthiness must be designed into data and computation 
from the outset and cannot be left as an afterthought. Lack of trust is corrosive and 
impedes data fluidity and data aggregation, which decreases the overall value of 
computation by reducing the amount and representativeness of the underlying data.

One of the central pillars of trustworthiness involves protecting the privacy of 
individuals. In the United States, the Health Insurance Portability and Accountability 
Act (HIPAA) [50] governs health data privacy by regulating healthcare organiza-
tions (“covered entities”) on when they can use and disclose individuals’ health 
information. This approach implicitly sets healthcare organizations as the principal 
custodians of health data, thus giving such organizations outsize control (and 
responsibility) over the trust fabric for the use of computers in health care. The 
European Union, in contrast, takes a person-centered rather than an organization- 
centered approach. The General Data Protection Regulation (GDPR) [56] explicitly 
places the individual in control of the use and disclosure of their own data, and 
defines a more expansive framing of data protection to include not only privacy but 
also appropriately scoped data requests, transparency, and fairness. As demonstrated 
by the SARS-CoV-2 pandemic, however, data also serve as a public good to inform 
public policies, drive machine learning models, or demonstrate the efficacy of phar-
maceutical and non-pharmaceutical interventions. While care must be taken to re- 
purpose data originally collected for individual care, a justice-based model for data 
sharing [57] is emerging that focuses on fostering public trust in uses of such data 
for the public good with attention to the needs of vulnerable populations and elimi-
nating health disparities. Data sharing that prioritizes public interest as well as per-
sonal privacy promotes optimal data use for society. Over time, the technical 
architecture of data, data sharing, and computation will morph to drive and align 
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with society’s evolving relationship to data, with deep implications for the future of 
cognitive informatics.

Questions for Discussion

• What are some existing clinical data resources and standards that allow for data 
analysis and integration?

• What molecular databases exist now that can be leveraged for biomedical 
research?

• How can supervised and unsupervised machine learning approaches comple-
ment traditional evidence-based medicine approaches?

• What is data federation and in what ways can it be achieved?
• What kind of data can be integrated to impact clinical decision making and care?
• What are key considerations in ensuring trustworthy data and computation?

Further Reading

Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating 
data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015 Feb;16 
(2):85–97. doi: 10.1038/nrg3868. Epub 2015 Jan 13. PMID: 25582081.

• This is a comprehensive review paper on integrative approaches. The authors 
explore meta-dimensional and multi-staged analyses — in the context of better 
understanding the role of genetics and genomics in complex outcomes. However 
the aforementioned approaches can also be leveraged for integrating other types 
of data.

Sim I. Mobile Devices and Health. N Engl J Med 2019; 381:956–968.

• Comprehensive review of leveraging mobile devices in health. This article dis-
cusses sensors, digital biomarkers, digital therapeutics and diagnostics, and the 
integration of mobile health into frontline clinical care. It concludes with open 
questions on the ethics, validation, and regulation of mobile health and the pre-
vailing market forces that are shaping the growth of this technology sector.

Straus S, Glasziou P, Richardson WS, Haynes RB. (2018) Evidence-Based Medicine: 
How to Practice and Teach It. Elsevier. ISBN: 9780702062964.

• A comprehensive description of evidence-based medicine geared towards prac-
ticing clinicians. It reviews EBM approaches for the major types of clinical ques-
tions (therapy, diagnosis and screening, prognosis) and includes tools and 
calculators for teaching and applying EBM in practice.

Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, 
Iñaki Inza, José A.  Lozano, Rubén Armañanzas, Guzmán Santafé, Aritz Pérez, 
Victor Robles, Machine learning in bioinformatics, Briefings in Bioinformatics, 
Volume 7, Issue 1, March 2006, Pages 86–112, https://doi.org/10.1093/bib/bbk007.
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• This is a comprehensive review of machine learning in bioinformatics. The 
authors present a number of modelling methods, such as supervised classifica-
tion, clustering and probabilistic graphical models for knowledge discovery, as 
well as deterministic and stochastic heuristics for optimization. They present 
applications in genomics, proteomics, systems biology, evolution and text min-
ing however the methodology is applicable to other types of data including 
clinical.

Alyass, A., Turcotte, M. & Meyre, D. From big data analysis to personalized medi-
cine for all: challenges and opportunities. BMC Med Genomics 8, 33 (2015). https://
doi.org/10.1186/s12920- 015- 0108- y.

• While there are incredible opportunities with the recent advances in high through-
put technologies allowing for leveraging and integrating large datasets to achieve 
more precise modeling of human disease, there are also challenges that need to 
be recognized. Several bottlenecks include generation of cost-effective high- 
throughput data; hybrid education and multidisciplinary teams; data storage and 
processing; data integration and interpretation; and individual and global eco-
nomic relevance. This article discusses challenges and opportunities in personal-

ized medicine using big data.
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