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Chapter 2
AI in Medicine: Some Pertinent History

Edward H. Shortliffe and Nigam H. Shah

After reading this chapter, you should know the answers to these questions:
•	 What are the roots of artificial intelligence in human history, even before the 

general introduction of digital computers?
•	 How did computer science emerge as an academic and research discipline and 

how was AI identified as a component of that revolution?
•	 How did a medical focus on AI applications emerge from the early general prin-

ciples of the field?
•	 How did the field of cognitive science influence early work on AI in Medicine 

(AIM) and how have those synergies evolved to the present?
•	 What were the early medical applications of AI and how were they received in 

the clinical and medical research communities?
•	 How has the focus of medical AI research and application evolved in parallel 

with AI itself, and with the progress in computing power, communications tech-
nology, and interactive devices?

•	 To what extent are the early problems and methods developed by early AIM 
researchers still relevant today? What has been lost and what has been gained?

•	 How have the advances in hardware and the availability of labeled data made 
certain forms of AI popular? How can we combine these recent advances with 
what we learned from the previous 40 years?

•	 How might we anticipate the further evolution of AI in medicine in light of the 
way the field has evolved to date and its likely trajectory?
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�Introduction

The history of artificial intelligence in medicine (AIM) is intimately tied to the his-
tory of AI itself, since some of the earliest work in applied AI dealt with biomedi-
cine. In this chapter we provide a brief overview of the early history of AI, but then 
focus on AI in medicine (and in human biology), providing a summary of how the 
field has evolved since the earliest recognition of the potential role of computers in 
the modeling of medical reasoning and in the support of clinical decision making. 
The growth of medical AI has been influenced not only by the evolution of AI itself, 
but also by the remarkable ongoing changes in computing and communication tech-
nologies. Accordingly, this chapter anticipates many of the topics that are covered 
in subsequent chapters, providing a concise overview that lays out the concepts and 
progression that are reflected in the rest of this volume.

�Artificial Intelligence: The Early Years

As was discussed in Chap. 1, AI is a diverse field that addresses a wide variety of 
topics regarding human intelligence and expertise, with an emphasis on how to 
model and simulate these topics in computer systems. Thus studies of how human 
beings reason are part of AI, but so are the creation of devices (such as robots) that 
incorporate human-like features. Viewed in this framework, notions relevant to AI 
emerged early in human history as people studied the workings of the human mind 
or imagined creations that might duplicate those capabilities.

For example, fantastical non-human intelligent entities were imagined as far 
back as Greek mythology. Hephaestus was a mythical blacksmith who manufac-
tured mechanical servants, and there were even early tales that involved the concept 
of intelligent robots. But perhaps the most important early harbinger of AI was 
Aristotle’s invention of syllogistic logic (a formal deductive reasoning system) in 
the fourth century BC.

Mechanical inventions that attempted the creation of human-like machines are 
known to have existed as early as the thirteenth century, when talking heads were 
created as novelty items and Al-Jazari, an Arab inventor, designed what is believed 
to be the first programmable humanoid robot (a boat carrying four mechanical 
musicians, powered by water flow). There are many other examples that could be 
mentioned from periods prior to the twentieth century.1

1 For more discussion, see “A Brief History of AI” at https://aitopics.org/misc/brief-history 
(accessed August 13, 2022) and “History of Artificial Intelligence” at https://en.wikipedia.org/
wiki/History_of_artificial_intelligence. (accessed August 13, 2022).
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In the early twentieth century Bertrand Russell and Alfred North Whitehead 
published Principia Mathematica, which revolutionized formal logic [1]. 
Subsequent philosophers pursued the logical analysis of knowledge. The first use of 
the word “robot” in English occurred in a play by Karel Capek that was produced 
in 1921.2 Thereafter a mechanical man, Electro, was introduced by Westinghouse 
Electricat at the New  York World’s Fair in 1939 (along with a mechanical dog 
named Sparko). It was a few years earlier (1936–37) that Alan Turing proposed the 
universal Turing Machine concept and proved notions of computability.3 Turing’s 
analysis imagined an abstract machine that can manipulate symbols on a strip of 
tape, guided by a set of rules. He showed that such a simple machine was capable 
of simulating the logic of any computer algorithm that could be constructed. Also 
relevant (in 1943) were the introduction of the term cybernetics, the publication by 
McCulloch and Pitts of A Logical Calculus of the Ideas Immanent in Nervous 
Activity (an early stimulus to the notion of artificial neural networks) [2], and 
Emil Post’s proof that production systems are a general computational mecha-
nism [3].

Especially important for AI was George Polya’s 1945 book How to Solve It, 
which introduced the notion of heuristic problem solving [4]—a key influential 
concept in the AI community to this day. That same year Vannevar Bush published 
As We May Think, which offered a remarkable vision of how, in the future, comput-
ers could assist human beings in a wide range of activities [5]. In 1950, Turing 
published Computing Machinery and Intelligence, which introduced the Turing 
Test as a way of defining and testing for intelligent behavior [6]. In that same year, 
Claude Shannon (of information theory fame) published a detailed analysis show-
ing that chess playing could be viewed as search (Programming A Computer to 
Play Chess) [7]. The dawn of computational artificial intelligence was upon us as 
computers became viable and increasingly accessible devices.

�Modern History of AI

The history of AI, as we think of it today, began with the development of stored-
program digital computers and the ground-breaking work of John von Neumann 
and his team at Princeton University in the 1950s. As the potential of computers 

2 Čapek K. Rossumovi Univerzální Roboti (Rossum’s Universal Robots). It premiered on 25 
January 1921 and introduced the word “robot” to the English language and to science fiction as a 
whole. https://en.wikipedia.org/wiki/R.U.R. (accessed August 13, 2022).
3 Turing submitted his paper on 31 May 1936 to the London Mathematical Society for its 
Proceedings, but it was published in early 1937. https://en.wikipedia.org/wiki/Turing_machine. 
(accessed August 13, 2022).
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began to be appreciated, academic engineering scientists began to pursue concepts 
that would evolve to be known as computer science. The history and capabilities of 
AI have subsequently been tied to the evolution of computers and their associated 
technologies.

As is mentioned in Chap. 1, it was at a conference at Dartmouth University in 
1956 that a group of early computer scientists gathered to discuss the notion of 
simulating human reasoning by computer. One attendee, John McCarthy from 
Massachusetts Institute of Technology (MIT) (who later spent most of his pro-
fessional life at Stanford University), coined a name for the developing field: 
artificial intelligence. At Carnegie Mellon University (then known as Carnegie 
Tech), psychologist Allen Newell, economist/psychologist Herbert Simon, and 
systems programmer (from the Rand Corporation) John Clifford Shaw intro-
duced the Logic Theorist system4—arguably the first AI program—which was 
followed by their General Problem Solver in 1957.5 At about the same time 
(1958), Frank Rosenblatt invented the perceptron algorithm at the Cornell 
Aeronautical Laboratory [8]. This introduced the notion of connectionism in 
AI, where networks of circuits or connected units were used to simulate intelli-
gent behavior.

The notion of machine learning was first explored by Arthur Samuel (IBM) 
between 1958 and 1962 [9]. He developed a checker-playing program that learned 
strategy and novel methods by having it mounted on two machines and then having 
it play against itself thousands of times—resulting in a program that was able to 
beat the world champion. Another key development during that era (1958) was John 
McCarthy’s creation of the LISP programming language6—which dominated as the 
basis for AI research and development for several decades (including in the medical 
AI community).

During the 1960s there was an explosion in creative AI work, initially at MIT 
and Carnegie Mellon, but later in the decade at other universities in the 
US. International explorations of AI were also underway, especially in the United 
Kingdom (where the first Machine Intelligence workshop was held in Edinburgh 
in 1966). By the end of the decade, as early computer science departments began 
to be formed, AI groups began to appear more broadly (with notable efforts under-
way at the University of California Berkeley and Stanford University). The first 
industrial robot company was formed (1962) and a series of influential AI PhD 

4 http://shelf1.library.cmu.edu/IMLS/MindModels/logictheorymachine.pdf. (accessed August 
13, 2022).
5 http://bitsavers.informatik.uni-stuttgart.de/pdf/rand/ipl/P-1584_Report_On_A_General_
Problem-Solving_Program_Feb59.pdf. (accessed August 13, 2022).
6 McCarthy’s original paper is available at http://www-formal.stanford.edu/jmc/recursive.html. 
(accessed August 13, 2022).
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dissertations emerged—particularly at MIT where the students of Marvin Minsky 
had a huge impact on the evolving field [10]. Also noteworthy was the invention 
of the mouse pointing device by Doug Engelbart at Stanford Research Institute 
(SRI7), which was to revolutionize the way in which human beings would interact 
with computers. In 1969, also at SRI, scientists developed “Shakey”, a mobile 
robot that had a problem-solver embedded in addition to locomotion (wheels) and 
perception (cameras with image processing).8 The first International Joint 
Conference on Artificial Intelligence (IJCAI) was held in Washington, DC in 
1969. Meanwhile, that same year at MIT, Minsky and Seymour Papert published 
Perceptrons [11], an influential book that discussed the computational approach 
that Rosenblatt had introduced a decade earlier, outlining the limits of what per-
ceptrons could do. This led to a decrease in interest in connectionist concepts and 
arguably held back the pace of development for what eventually became known as 
neural networks in the 1980s and in turn led to today’s deep learning approaches 
(see Chap. 6).

AI research topics in the 1960s seem remarkably similar to those that domi-
nate today. Machine learning, natural language processing, speech understand-
ing, image analysis, robotics, and simulation of human problem solving were all 
major areas of research focus. Much of the funding for such research in the US 
came from the Department of Defense (DOD), which envisioned eventual mili-
tary applications of AI but provided extensive support for basic methodology 
development that had no immediate military application. The DOD also sup-
ported communications research, which in turn became a great facilitator of AI 
development work. Perhaps most notable was the introduction of a nationwide 
network for interconnecting major research computers that were located at aca-
demic institutions and in research centers for military contractors. The DOD’s 
Advanced Research Projects Agency (ARPA)9 supported much of the AI and 
communications research in the country. This network for research computers, 
was built on the notion of packet switching and became known as the ARPA 
Network or, simply, the ARPAnet. Collaborative AI research among universities 
became heavily dependent on this network, and the notion of electronic messag-
ing among researchers across the various sites evolved into the email that we 
take for granted today. Similarly, the ARPAnet, and its packet switching technol-
ogy, were eventually taken over by the National Science Foundation (NSF) and, 

7 See https://en.wikipedia.org/wiki/Douglas_Engelbart. (accessed August 13, 2022). SRI became 
an independent entity outside of Stanford University and is known today simply as SRI 
International.
8 https://www.sri.com/hoi/shakey-the-robot/. (accessed August 13, 2022).
9 Also often called DARPA, for Defense Advanced Research Projects Agency.
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in turn, became a coordinated independent entity that is today known as the 
Internet.

�AI Meets Medicine and Biology: The 1960s and 1970s

As AI was developing as a research discipline, it is not surprising that some of the 
challenging problems that attracted investigators were drawn from biomedical sci-
ence. An early example from 1965 was MIT work by Joseph Weizenbaum who was 
exploring chatbot technology (conversational natural language processing and 
response generation; see Chap. 9). He developed a program known as “The Doctor”, 
but more affectionately referred to as “Eliza”, which attempted to provide psychiat-
ric assessments of patients. The focus was on maintaining the conversation intelli-
gently rather than actually reaching a psychiatric diagnosis. The program became a 
popular, easy-to-use “toy” at AI centers since it was available for conversations over 
the ARPAnet, and it did respond in ways that suggested, at some level, that it under-
stood what the user was saying. A few years later, at Stanford, a psychiatrist on the 
medical school faculty, Ken Colby, worked with AI researchers to develop a conver-
sational program, known as “Parry”, that would simulate the behavior of a patient 
with paranoid schizophrenia. He undertook the work largely for educational pur-
poses, and his students and residents enjoyed “interviewing” the program to learn 
about its thought disorder and to try to keep the “patient” from shutting down and 
refusing to communicate further. Of course, as Parry became known in the AI com-
munity, it was inevitable that people would begin to wonder how Eliza would han-
dle a therapeutic session with Parry. Accordingly, in 1972, an ARPAnet link was 
created between Eliza at MIT (Cambridge, MA) and Parry at Stanford (Palo Alto, 
CA). Without human intervention, the two programs had a conversation,10 and this 
somewhat hysterical match-up has become part of AI lore [12].

�Emergence of AIM Research at Stanford University

A more serious and ground-breaking AI research effort in biomedicine was the 
Dendral Project at Stanford University. It began as an effort developed by a remark-
able scientist, Joshua Lederberg, who had been attracted to Stanford as founding 
chair of their Department of Genetics in the late 1950s. He arrived shortly after 
receiving the Nobel Prize in Physiology or Medicine (at age 33!) for his ground-
breaking work, at the University of Wisconsin, on genetic transfer between bacteria. 
Then, in the mid-1960s, a young researcher, Edward Feigenbaum, joined the faculty 
in Stanford’s nascent computer science department, arriving from UC Berkeley 

10 See https://tools.ietf.org/html/rfc439 for a transcript of the interchange between the two pro-
grams. (accessed August 13, 2022).
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after studying with Herbert Simon at Carnegie Tech (Carnegie Mellon University 
today). Lederberg and Feigenbaum teamed up with Carl Djerassi, an eminent pro-
fessor in the Chemistry Department, who was an expert in organic and hormonal 
chemistry and who had been instrumental in the development of birth control pills 
a decade earlier.

Lederberg was himself an excellent programmer (in addition to his skills as a 
geneticist) who became fascinated with the challenge of determining organic com-
pound structures from mass spectral data—a task mastered by very few organic 
chemists. He wondered if there might be a computational solution and felt that the 
first requirement was to consider all the possible structures consistent with a com-
pound’s chemical formula (CaHbOc, where the superscripts indicate the number of 
carbon, hydrogen, and oxygen atoms in one molecule of the compound). As the 
number of atoms in a compound increases, the number of potential structures 
becomes very large. Lederberg developed an algorithmic approach, which he called 
the “dendritic algorithm,”11 and wrote a program that could generate the entire 
exhaustive set of potential structures for any organic compound. Pruning that large 
space to define a couple of likely structures was guided by mass spectral analysis 
(mass spectroscopy) of the compound, and it was in this area that Djerassi had 
special expertise. With the addition of Feigenbaum and other computer scientists to 
the team, the Dendral Project thus sought to encode the rules used by organic chem-
ists who knew how to interpret mass spectra in order to infer the small number of 
structures, from among all those generated by the dendritic algorithm, that were 
consistent with the spectral data. The focus on knowledge representation and the use 
of production rules, plus the capture and encoding of expertise, placed this early 
work solidly in the AI arena.

Another key contributor to this work in the early years was Bruce Buchanan,12 a 
research scientist with computing expertise and formal training that included a PhD 
in Philosophy of Science. He stimulated and participated in efforts to view the 
Dendral work as research on theory formation. Although the system was initially 
based solely on rules acquired from Djerassi and other experts in interpretation of 
the mass spectra of organic compounds, Buchanan and others pursued the possibil-
ity that it might be possible to infer such rules from lots of examples of mass spectra 
and the corresponding compounds of known structure. This machine learning 
approach, which greatly enhanced the Dendral program’s performance over time as 
new rules were added, became known as Meta-Dendral.

By the early 1970s, Dendral had become well known in computer science circles 
[13] and the biomedical focus had spawned methods that generalized for use in 
other domains—a phenomenon that was to occur many times in subsequent decades 
as biomedicine became a challenging real-world stimulus to novel approaches that 
were adopted broadly by AI researchers in areas beyond medicine. DENDRAL also 

11 The name was inspired by the expanding network of possible solutions that reminded him of a 
neuron’s dendrites.
12 See Buchanan’s foreword to this volume.
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spawned a dynamic research environment at Stanford, linking the school of medi-
cine with the university’s young computer science department. As other projects 
were developed that focused on capturing biomedical expertise in computer pro-
grams, Feigenbaum generalized the efforts in an overriding principle that had 
guided much of the work:

The key empirical result of DENDRAL experiments became known as the knowledge-is-
power hypothesis (later called the Knowledge Principle), stating that knowledge of the 
specific task domain in which the program is to do its problem solving was more important 
as a source of power for competent problem solving than the reasoning method employed.—
Edward A. Feigenbaum, 1977 [14].

The process of capturing and encoding expert knowledge became known as knowl-
edge engineering. See Chap. 4 for a focused discussion on knowledge-based sys-
tems, their subsequent evolution, and the current status of such work.

As DENDRAL grew and new projects were started at Stanford, it became clear 
that the computing facilities available for the research work were too limited. 
Furthermore, other medical AI projects were underway at a handful of other institu-
tions and most researchers working on medical AI problems were feeling similar 
computational constraints. Lederberg accordingly submitted a successful proposal 
to the Division of Research Resources (DRR) at the National Institutes of Health 
(NIH). He envisioned a major computing facility that would support medical AI 
research, not only at Stanford but at other universities around the US. The resulting 
shared resource was also granted one of the few remaining available connections to 
the ARPAnet—the first computer on the network that was not funded by the DOD. In 
this way the computer could be used by researchers anywhere in the country, using 
their own local connections to the ARPAnet to provide them with access to the com-
putational power available at Stanford.13 This shared computing resource, installed 
on the Stanford medical school campus in 1973, was known at the Stanford 
University Medical Experimental Computer for Artificial Intelligence in Medicine, 
more commonly referred to as SUMEX-AIM, or simply SUMEX.  With grant 
renewals every 5 years, SUMEX served the national (and eventually the interna-
tional) AI in Medicine community for 18 years.14 With the departure from Stanford 
of Dr. Lederberg (who became President of Rockefeller University in New York 
City in the mid-1970s), Feigenbaum took over as Principal Investigator of SUMEX-
AIM for several years.

13 Since local area networking did not yet exist, most connections to the ARPAnet relied on dial-up 
modems with acoustic couplers. The network had local phone numbers for terminal interface 
processors (known as TIPs), scattered around the country, so investigators could generally access 
the network, and hence the computer at Stanford, with a local phone call.
14 See “The Seeds of Artificial Intelligence. SUMEX-AIM.” Published in 1980 by the Division of 
Resarch Resources at NIH. https://eric.ed.gov/?id=ED190109. (accessed August 13, 2022).
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�Three Influential AIM Research Projects from the 1970s

The notion of using computers to assist with medical diagnosis often traces its roots 
to a classic article that was published in Science in 1959 [15]. It was written by two 
NIH physician-scientists, one a dentist (Robert Ledley) and the other a radiologist 
(Lee Lusted). The paper laid out the nature of Bayesian probability theory and its 
relevance to medical diagnosis, arguing that computers could be programmed to 
assist with the Bayesian calculations and thus could serve as diagnostic aids. They 
acknowledged the challenges in deriving all the necessary probabilities and recog-
nized the problem of conditional dependencies when applying Bayes’ theorem for 
a real-world problem like medical diagnosis. However, their work stimulated a 
number of research projects that sought to use probability theory for diagnosis, with 
especially influential projects by Homer Warner and colleagues at the University of 
Utah [16] and by Timothy deDombal and his team at Leeds in the United 
Kingdom [17].

It was the challenges with statistical approaches, and their lack of congruence 
with the way in which human experts solved similar problems, that led scientists to 
consider whether AI methods might not be adapted for such clinical decision mak-
ing problems. Three AIM research efforts from the 1970s are particularly well 
known and played key roles in the evolution of the field. Unlike DENDRAL, these 
projects were focused on clinical medicine, and two of them were created using the 
SUMEX-AIM resource. All three programs were envisioned as potential sources of 
consultative decision support for clinicians as they thought to diagnose and/or man-
age patients.

�INTERNIST-1/QMR

One of the early SUMEX projects was developed over the ARPAnet from the 
University of Pittsburgh. There an esteemed physician leader, Dr. Jack Myers, had 
stepped down as Chair of Medicine and in the early 1970s became interested in 
sharing his clinical knowledge and experience in a novel way (rather than writing 
“yet another textbook”). Renowned as a master clinician and diagnostician, and a 
past President of the American College of Physicians and Chairman of the American 
Board of Internal Medicine, he collaborated with an MIT/Carnegie Tech-trained 
computer scientist, Harry E. Pople, Jr., PhD. Randolph A. Miller, then a second year 
Pitt medical student who had learned to program in machine language and a higher 
level language while in high school, joined the project in its second year. They 
worked together in an effort to create a program that would assist in the diagnosis of 
adult patients with problems whose diagnoses fell in the realm of internal medicine.

2  AI in Medicine: Some Pertinent History



30

Fig. 2.1  The hypothetico-deductive approach, as applied to medical diagnosis. The Internist-1 
program implemented these general notions in a program that tackled the diagnosis of essentially 
all diseases in internal medicine

The basic notion behind INTERNIST-115 was that it should be possible to simu-
late by computer the hypothetico-deductive approach that cognitive studies had 
shown were often used by expert clinicians as they attempted to diagnose challeng-
ing cases (Fig. 2.1) [18]. Myers invited medical students, including Miller and oth-
ers, to spend medical school elective time conducting intensive analyses of the 
peer-reviewed literature on a disease topic of their choosing, which was then aug-
mented by Myers’ own experience. They thus characterized 650 disorders in inter-
nal medicine using 4500 possible patient descriptors. Miller took a sabbatical 
research year, working full time with Pople and Myers in 1974–75 to write the 
INTERNIST-1 Knowledge Base (KB) editor program.

Miller’s programming enabled Pople’s diagnostic algorithms to access and 
manipulate a KB that otherwise exceeded the computer system’s available address 
space. The team developed a computational algorithm that used presenting history, 
symptoms, physical exam findings, and lab results from a patient to generate a set 
of diagnoses that could potentially explain the patient’s problems. They also created 
a refinement process that selected a strategy and identified additional questions that 
would allow the program to distinguish between competing hypotheses and to gen-
erate new ones.

INTERNIST-1 could accurately diagnose many difficult cases. In addition, it 
could deal with multiple concurrent disorders in the same patient. It was ultimately 
tested with some of the most difficult diagnostic challenges in the clinical literature 

15 The community often referred to the program simply as Internist, although this simpler name 
was legally unavailable for ownership/copyright reasons.
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(Clinical Pathological Conferences published in the New England Journal of 
Medicine) where it correctly diagnosed more of the cases than did the physicians 
who had actually cared for the patients [18].

While the evaluation of INTERNIST-1 showed the potential of the heuristic AI 
approach to assist human beings with diagnosis, it also uncovered a number of 
shortcomings that showed that the system was not suitable for widespread clinical 
use [19]. After Miller joined the Pitt faculty, he observed that INTERNIST-1 was of 
great interest to medical students and faculty clinicians. However, it was also clear 
that the system was impractical to use—especially because it required the user to 
take an hour or more to enter all information about the patient, and then to respond 
to queries from the program. Recognizing this, he decided that the most useful ele-
ment of INTERNIST-1 was its knowledge base.

Beginning in 1983, he began working on a different approach to diagnostic assis-
tance—one that recognized the human clinician-user was the most knowledgeable 
intelligence in the diagnostic consultation process. The doctor knew the patient far 
better than the computer system could. The new diagnostic assistant system, Quick 
Medical Reference (QMR), ran on the newly available personal computers. Miller 
felt that QMR should support the clinician’s problem-solving as efficiently as pos-
sible. He worked with colleagues to develop QMR as a toolkit to assist clinicians 
with about a dozen specific diagnostic assistance tasks, which the user could select 
individually or chain together serially to address the dilemmas that had puzzled 
them. The user could invoke QMR quickly on a personal computer in the office. For 
example, it allowed questions such as “What is the differential diagnosis of finding 
x?” or “How can I best screen a patient for disease y?” QMR allowed the user to 
rank and influence the differential diagnosis produced, and to determine the mode 
for generating questions, in a way that had not been possible with INTERNIST-1. 
Eventually, over the course of a decade, QMR was marketed as a commercial 
product.

One lesson of this work, and other medical systems to be described shortly, was 
that consultative decision aids were not likely to be used if they did not integrate 
well into clinicians’ existing workflow [19] (see also Chap. 17 for more discussion 
of this issue). It took the revolution in networking and electronic health records, 
which introduced new ways of accessing pertinent patient data, for such programs 
to be more realistically used, even though their early capabilities were impressive.

�CASNET

Another center of excellence for research on medical AI in the 1970s was based at 
Rutgers University in New Brunswick, New Jersey. Their computer science depart-
ment, chaired by Saul Amarel, had recruited a young faculty member, Casimir 
Kulikowski, who had applied his computer science expertise to medical problems 
during his training and early postdoctoral work. Amarel and Kulikowski success-
fully proposed a second computing resource for applied artificial intelligence in 

2  AI in Medicine: Some Pertinent History
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Fig. 2.2  CASNET’s three-level description of a disease process. Note the causal links at the level 
of pathophysiological states. Observations (symptoms, signs, or tests) could be associated with 
either pathophysiological states or disease categories. (Reproduced with permission from 
C. Kulikowski and S. Weiss)

medicine. Like SUMEX, the Rutgers Resource was funded by the Division of 
Research Resources at NIH and was in time connected to the ARPAnet. Their initial 
major project involved a collaboration with Dr. Arin Safir, an ophthalmologist at Mt. 
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Fig. 2.3  An example of a 
MYCIN rule. Rules were 
encoded using the LISP 
programming language (at 
the top). Given the 
standardized approach to 
representing the 
knowledge, it was possible 
to write code to translate 
the rules into English (at 
the bottom). This provided 
transparency during 
interactions with clinical 
users

Sinai Medical Center in New  York City, who provided the necessary clinical 
expertise.

This system focused on modeling causal reasoning using a network-based rep-
resentation of the pertinent domain knowledge. The program, known as CASNET 
(for causal associational network) assisted with the diagnosis of various forms of 
glaucoma. Their networked approach modeled the ability of expert clinicians to 
reason from observations about a patient to the delineation of existing physiological 
states (Fig.  2.2), which in turn helped to distinguish among potential diagnostic 
explanations for the findings. This important work was pursued with involvement of 
a talented PhD student, Shalom Weiss, who made portions of the project the focus 
of his doctoral dissertation [20].

�MYCIN

This Stanford project began as doctoral research for a medical student who was also 
pursuing a PhD in what today would be called biomedical informatics. Edward 
Shortliffe had come to Stanford to study medicine in 1970—partly because of the 
school’s flexibility (which would permit a medical student to pursue a simultaneous 
second degree in a computer-related discipline), but also because of the advanced 
biomedical computing environment that Lederberg and others had created. He 
quickly got to know AI researchers in the computer science department on the main 
campus, and especially those who were involved with the Dendral project. Guided 
by medical school faculty (Stanley Cohen, then Chief of Clinical Pharmacology and 
a genetics researcher,16 and Stanton Axline, an infectious disease expert), Shortliffe 
built on the Dendral notion of encoding expert knowledge in production rules. His 

16 Cohen, who succeeded Lederberg as chair of genetics, briefly served as Principal Investigator of 
the SUMEX-AIM resource upon the Lederberg’s departure for Rockefeller University. After a 
year, Feigenbaum took over that role until he was succeeded by Shortliffe.
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Fig. 2.4  This diagram provides an overview of the MYCIN system, identifying the three subsys-
tems (rectangles), the corpus of decision rules, and the dynamic information that was generated 
during the consideration of a specific case. See text for details

principal computer science colleague was Bruce Buchanan. The idea was to develop 
a consultation program that would advise physicians on the selection of antimicro-
bial therapy for patients with severe infections. The resulting project was known as 
MYCIN, with Cohen serving as Shortliffe’s dissertation advisor [21].

MYCIN used a collection of decision rules, acquired from Cohen, Axline, and 
others as the research group discussed actual cases taken from Stanford’s wards. 
These rules were then encoded and stored in a growing collection (Fig. 2.3).

The rules were then kept separate from the actual program, which had three com-
ponents (see rectangles in Fig.  2.4). The primary focus was the Consultation 
Program, which obtained patient data and offered advice, but also important was the 
Explanation Program, which could offer English-language explanations of why 
questions were being asked and why the program had offered its recommendations. 
The program itself knew how to handle a consultative interaction, but knew nothing 
about the domain of infectious diseases. All such knowledge was stored in the cor-
pus of decision rules. A third subsystem, the Rule-Acquisition Program, was devel-
oped to allow experts to offer new rules or to edit existing ones. By running a 
challenging case through the Consultation Program, and using the Explanation 
Program to gain insight into why the program’s performance might have been inap-
propriate for a given case, the expert could use the Rule-Acquisition Program to 
update the system’s knowledge – entering new rules (for translation from English 
into LISP-coded versions) or editing existing ones. By re-running the case, the 
expert could see if MYCIN’s advice had been suitably corrected.

MYCIN was formally evaluated in a blinded experiment that had infectious dis-
ease experts compare its performance with nine other prescribers who were 

E. H. Shortliffe and N. H. Shah



35

1960’S

1970’S

1980’S
NEOMYCIN ONCOCIN

WHEEZE

SACON

CLOT

DART

GRAVIDA

CENTAUR

PUFF

TEIRESIAS EMYCIN

VM

SU /X

Meta-DENDRAL

CONGEN

DENDRAL

MYCIN

GUIDON

BAOBAB

(QA) (Inference) (Evaluation)(Explanation
Subsystem)

(Knowledge
Acquisition)

Fig. 2.5  Just as MYCIN drew inspiration from the earlier DENDRAL work, several other Stanford 
research projects built on the methods and concepts that MYCIN had introduced. This diagram 
shows many of these projects and their ancestry. Those projects depicted in rectangles were them-
selves the basis for computer science doctoral dissertations (VM: LM Fagan; TEIRESIAS: R 
Davis; EMYCIN: W van Melle; GUIDON: WJ Clancey; CENTAUR: J Aikins)

presented with the same ten cases [22]. The comparison group included the actual 
therapy given to the patient, Stanford infectious disease faculty members and a fel-
low, a medical resident, and a medical student. MYCIN was shown to perform at the 
top of the comparison group, as judged by the evaluators (who did not know which 
advice had been offered by the program).

The AI approach developed for MYCIN became known as a rule-based expert 
system. The architecture was attractive because the knowledge base was kept in 
rules that were separate from the program, offering the possibility that the system 
could provide advice in a totally different domain if the infectious disease rules 
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were removed and a new set of rules was substituted. The program without the rules 
was termed “empty MYCIN” or “essential MYCIN”—generally simply referred to 
as EMYCIN [23]. This work provided further support for Feigenbaum’s knowledge 
is power aphorism, previously mentioned. MYCIN also stimulated several other 
research projects in what became known as the Stanford Heuristic Programming 
Project, many of which were also focused on medical topics and were doctoral dis-
sertations in computer science (Fig. 2.5). This diagram conveys the way in which 
Stanford’s AIM science advanced over two decades, with each project introducing 
methods or concepts on which subsequent research could build. An important les-
son is that AIM research is about more than building systems in the engineering 
sense. Equally important is its dependence on the scientific method, with experi-
ments offering lessons that generalize and can feed back into the evolution of the 
field [24].

�Cognitive Science and AIM

As the 1970s progressed, AIM researchers became aware of the synergy between 
their work to capture and convey clinical expertise and the work of researchers in 
educational psychology and cognitive science, many of whom were focused on 
medical problem solving. Since AIM researchers were seeking to encode clinical 
expertise and to produce systems that could reason using that knowledge, they were 
naturally drawn to work that studied clinicians as they solved problems. An esteemed 
physician at Yale University’s medical school, Alvan Feinstein, had published an 
influential volume in 1967, Clinical Judgment [25]. Feinstein is commonly viewed 
as the founder of the field of clinical epidemiology, and the focus of his volume was 
on defining and teaching clinical thinking. The work inspired others to pursue 
related aspects of clinical expertise, and several groups tackled tasks in medical 
problem solving, using methods from psychology and cognitive science.

Particularly influential was a volume by Elstein, Shulman, and Sprafka, educa-
tional psychologists at Michigan State University [26]. They performed a variety of 
studies that sought to apply contemporary psychological theories and methods to 
address the complexity of problem solving in cases derived from real-life clinical 
settings. Their work influenced the thinking of AIM researchers, who were seeking 
to capture elements of medical reasoning, even if their programs were not formally 
modeling the workings of the human mind.

Meanwhile, at Tufts New England Medical Center in Boston, two nephrologists 
were becoming interested in the nature of medical problem solving and the role that 
computers might play in capturing or simulating such reasoning. William Schwartz 
had published a thoughtful piece in 1970 that anticipated the future role that com-
puters might play in medicine and the impact that such changes might impose on 
clinical practice and even on the types of people who would be drawn to becoming 
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a physician [27]. The second nephrologist, Jerome Kassirer,17 had developed a col-
laboration with a computer science graduate student at MIT, Benjamin Kuipers, and 
they performed and published a number of experiments (further discussed in Chap. 
5) that offered insights into clinical reasoning processes, including a classic paper 
on causal reasoning in medicine that appeared in 1984 (by which time Kuipers had 
joined the faculty at the University of Texas in Austin) [28].

The interest in expert reasoning in medicine, shared by Schwartz and Kassirer, 
also attracted a Tufts cardiologist, Stephen Pauker, and a computer scientist at MIT, 
Anthony Gorry. Pauker also knew how to program and this group sought to develop 
an experimental program that explicitly simulated the cognitive processes that they 
had documented in studies of expert physicians who were solving problems. This 
led to the development of the Present Illness Program (PIP - see also Chap. 4) 
which leveraged early cognitive science and AI and was arguably the first AIM 
research project to be published in a major clinical journal [29]. When Gorry 
departed MIT for Rice University, he was succeeded later in the decade by Peter 
Szolovits, himself a leader in AIM research and knowledge-based systems (see 
Chap. 4).

By the early 1980s there was pertinent related work underway at McGill 
University. Vimla Patel and Guy Groen were examining the relationship between 
comprehension of medical texts or descriptions with approaches to problem solving 
by individuals with varying levels of expertise [30]. This body of work, which 
extended throughout the next decade as well, provided an additional set of cognitive 
insights that informed the work of the AIM research community, while attracting 
the McGill group to become interested in how their work might influence the devel-
opment of computational models of clinical expertise (see Chap. 5).

The work described briefly in this section laid the groundwork for subsequent 
work on expert reasoning and cognition that accounts for this book’s emphasis on 
the interplay between AIM and cognitive science. These relationships were further 
solidified by the close interactions, and attendance at one another’s meetings, 
between members of the AIM community and those in the Society for Medical 
Decision Making (SMDM).18 The emergence of cognitive informatics as a specialty 
area within AIM research was built upon this early work and also on the growing 
recognition of the importance of cognitive issues in related areas of computer sci-
ence, including computer-based education and human-computer interaction.

�Reflecting on the 1970s

By the end of the decade, medical AI was having a significant impact on AI more 
generally. The top journal in the field, Artificial Intelligence, devoted an entire issue 
to AIM research [31], and the field of expert systems was being applied broadly in 

17 Years later Kassirer became the Editor-in-Chief of the New England Journal of Medicine 
(1992–2000).
18 https://smdm.org/. (accessed August 13, 2022).
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Fig. 2.6  The RX project 
was an early example of 
machine learning in the 
form of data mining under 
AI control. The goal was to 
use existing knowledge, 
plus real world data, to 
support the discovery of 
hypotheses that could in 
turn be formally explored 
using large amounts of 
data and statistical 
methods – thereby adding 
to current knowledge. For 
more details see https://
www.bobblum.com/
ESSAYS/COMPSCI/
rx-project.html. (Figure 
reproduced with the 
permission of R.L. Blum)

other areas of society. A community of medical AI researchers had come together to 
hold annual meetings (dubbed AIM Workshops) and to form new collaborations 
while embracing an increasing number of research projects. The first Symposium 
on Computer Applications in Medical Care (SCAMC), held in Arlington, VA in 
1977,19 had an entire session devoted to AIM research projects. AIM research was 
heavily cited in computer science research papers outside the field of medicine.

There was also important exploratory machine learning research in the medical 
arena, inspired in part by the Meta-Dendral work mentioned earlier. As clinical 
databases became available in specialized areas of medicine [32], it was natural to 
explore how computers might be able to learn, or discover new relationships. Blum 
pursued such work, proposing a cycle for discovery and clinical studies through the 
principled examination of such databases (Fig.  2.6) [33]. His RX program ulti-
mately discovered and analyzed an association between prednisone and cholesterol 
that was published in a major clinical journal [34].

By the end of the 1970s, the AIM field was devoted to the notion that knowledge 
representation and use was the key to intelligent behavior by computer programs. 
As we describe in subsequent sections, the knowledge is power aphorism has been 
somewhat forgotten in today’s AI research and application communities—arguably 
to their detriment.

19 SCAMC went on to become the major US meeting in the field of biomedical informatics, merg-
ing with other organizations in 1989–1990 to create today’s American Medical Informatics 
Association (AMIA), https://www.AMIA.org, (accessed August 13, 2022).
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�Evolution of AIM During the 1980s and 1990s

The next two decades were characterized by substantial evolution of AI and AIM, 
partly because of the remarkable changes in computing technology, but also because 
of the ups and downs of academic, industrial, and government interest in AI and its 
potential.

�AI Spring and Summer Give Way to AI Winter

By the early 1980s there was rapidly growing interest in AI, medical applications, 
and especially in expert systems [35]. Companies began to recruit AI scientists and 
commercial expert systems were introduced to the marketplace or used for internal 
purposes [36]. Cover stories on AI and expert systems began to appear in major 
popular news magazines, often with prominent featuring of medical programs such 
as the ones described in the previous sections of this chapter. They tended to make 
wild predictions about the impact AI would soon be having on society, much of 
which ironically did not align well with what the system developers believed to be 
reasonable. However, the enthusiasm continued for several years and led, for exam-
ple, to a major investment by the Japanese Ministry of International Trade and 
Industry which formed their Fifth Generation Computer Project20 starting in 1982.

Early in the decade new companies, such as Teknowledge and Intellicorp, were 
also created specifically to commercialize expert systems. In parallel, hardware 
companies such as Symbolics, LISP Machines Inc., and Xerox Corporation intro-
duced single-user machines that were designed to run the LISP programming lan-
guage, to offer graphical user interfaces with mouse pointing devices, and to support 
the development of expert systems and other AI-related applications. Note that 
these machines appeared only shortly after the introduction of the first personal 
computers (e.g., the Apple II in the late 1970s followed by the first IBM PC and the 
Apple Macintosh a few years later). In parallel, the first commercial local area 
networking products were introduced (e.g., Ethernet from Xerox Corp and a com-
petitor known as Wangnet), which had a profound effect on the ways in which com-
puters and programs were designed to interact and share data.

The rapid change in the early 1980s continued throughout the decade. For exam-
ple, it was not long until the first general-purpose workstations running the Unix 
operating system were introduced (e.g., by SUN Microsystems), and these rapidly 
made the notion of a LISP machine obsolete. The LISP machine market disinte-
grated and “Unix Boxes” (high-end workstations that were much more powerful 
than the existing personal computers) began to dominate in the AI research 
community.

20 See https://en.wikipedia.org/wiki/Fifth_generation_computer. (accessed August 13, 2022).
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Fig. 2.7  Graphic shows 
the two periods often 
called AI Winter, one at the 
end of the 1970s (which 
had little impact on AIM) 
and the second in the late 
1980s and early 1990s 
(which did affect AIM 
work for several years)

As the decade proceeded, the AI “luster” also began to fade, as highly touted 
systems tended to fail to live up to their expectations. Companies often found that 
the systems were expensive to maintain and difficult to update. They generally had 
no machine learning component, so maintenance was crucial in order to incorporate 
new knowledge into them. Performance was accordingly viewed as “brittle”.

In the early 1980s ARPA had again begun to fund its support of general AI 
research, with an emphasis on knowledge-based systems—no doubt encouraged to 
do so by the major Japanese investment in their own project in the area. ARPA had 
lowered its enthusiasm for AI research in the mid- to late-1970s, even as the AIM 
activities were taking off. But AIM researchers were not supported by DARPA but 
rather by NIH or, in a few cases, by the National Science Foundation (NSF), and 
their work and impact had continued apace as described previously. Support for 
AIM research also continued during the 1980s, while ARPA was ramping up its 
own support for AI generally. However, as the decade came to an end, the AI com-
munity faced a clear diminution in the enthusiasm that had been strong only a few 
years earlier. Thus, there was again a dip in funding support for AI as the 1990s 
began, and some of this affected the AIM research community as well.

The dips in support for AI, and in belief for its potential, occurred in the late 
1970s and again in the period between 1987 and 1993. These two drops in funding 
and interest have been called AI Winter #1 and #221 (see Fig. 2.7). During these 
periods it became unhelpful for companies or researchers to emphasize that they 
were working on AI problems. It was hard to attract interest from collaborators or 
funding agencies at a time when AI was viewed as having been oversold and having 
failed to demonstrate the utility that had been promised. By the early 1990s, those 
working in AI areas, including AIM, often sought new terms for what they were 

21 See https://en.wikipedia.org/wiki/AI_winter. (accessed August 13, 2022).
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doing, hoping they would avoid the taint of the AI label. For example, work on 
knowledge base and terminology development often fell under the term ontology 
research,22 and some types of machine learning research were often called knowl-
edge discovery in databases (KDD).23

As is shown in Fig. 2.7, there has been no downturn in enthusiasm for AI and its 
promise for almost 30 years. Those who lived through the early AI winters often 
wonder if the extreme enthusiasm for AI today, with remarkable investment in 
almost all areas of science (and medicine/health), is a harbinger of what could 
become a third period of disenchantment. However, most observers feel that the 
field has greatly matured and that current approaches are better matched to the state 
of computing and communications technology than was possible when earlier 
research, and commercial experiments, were being undertaken. As you read this 
book, you should develop your own sense of whether today’s enthusiasm is well 
matched to the reality of what is happening, especially in AIM, and whether we can 
be optimistic about ongoing progress and impact. We return to this topic in Chaps. 
19 and 20.

�AIM Deals with the Tumult of the 80s and 90s

The expert systems fervor in the 1980s, which had been driven in part by medical 
AI projects that offered new methods and models for analyzing data and offering 
advice, put the AIM community in a highly visible position. AI in Medicine had 
become a worldwide phenomenon, with some medical focus in Japan during the 
Fifth Generation Computer Project. The major new source of AIM research energy, 
however, was in Europe, where a medical AI community began to coalesce. The first 
European meeting that focused on AIM (1985) was organized by Ovo de Lotto and 
Mario Stefanelli as a 2-day conference in Pavia, Italy. The meeting’s success led to 
the decision to hold such meetings biannually under the name Artificial Intelligence 
in Medicine Europe (AIME). They quickly attracted an audience from the US and 
other parts of the world, so eventually the meeting name was adjusted to be simply 
Artificial Intelligence in MEdicine, continuing the AIME acronym.24

A retrospective paper analyzing three decades of trends in the content of AIME 
meetings, published in 2015, provides some instructive insights on how the field 
evolved over that time [37]. At the first meeting in 1985, essentially all the papers 
dealt with knowledge-based systems and knowledge engineering, reflecting the 
expert systems phenomenon. However, the number of papers in those categories 

22 See https://en.wikipedia.org/wiki/Ontology_(information_science). (accessed August 13, 2022).
23 See https://www.techopedia.com/definition/25827/knowledge-discovery-in-databases-kdd. 
(accessed August 13, 2022).
24 The first meeting hosted outside of Europe (by the University of Minnesota) was held in 2020, 
although it needed to be held virtually due to the COVID-19 pandemic that prevented most travel 
to conferences.
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a b

Fig. 2.8  The original ONCOCIN interface used a simple ASCII terminal and all interaction was 
through a computer keyboard (a). Within a few years, with reimplementation on a LISP machine, 
the program offered a greatly improved interface to clinician users (b)

decreased substantially over time while major new areas of emphasis were ontolo-
gies and terminologies, temporal reasoning, natural language processing (see 
Chap. 7), guidelines/protocols (see Chap. 10), management of uncertainty, and 
image/signal processing (see Chap. 12). The largest increase, which began slowly in 
the 1990s, was in the area of machine learning. By 2013 it had surpassed knowledge 
engineering as the most dominant topic at the meetings when measured cumula-
tively over three decades. This is not surprising given the AI emphasis on machine 
learning that today makes it the most active subfield of the discipline (see Chap. 6).

By the end of the 1980s, there was consensus that the AIM field was so active and 
productive that it warranted its own journal. Artificial Intelligence in Medicine was 
first published in 1989 with Kazem Sadegh-Zadeh, from the University of Műnster 
in Germany, serving as founding editor [38]. This journal, published by Elsevier, is 
a major source of current research results in the field to this day. Several other peer-
reviewed journals also publish AIM methodologic research papers,25 and the more 
applied work has appeared in a variety of clinical, public health, and general science 
journals.

The rapid evolution in networking, hardware capabilities, and computing power 
during the 1980s also had a major influence on AIM research and capabilities during 
that decade. As an example, consider the ONCOCIN program, which was devel-
oped to apply knowledge-based methods to provide advice to oncologists caring for 
patients enrolled in cancer chemotherapy clinical trials [39]. The program was ini-
tially conceived to run on an computer terminal attached to a mainframe computer 
running a LISP programming environment (Fig. 2.8a). The terminal could display 

25 Examples include the Journal of the American Medical Informatics Association (JAMIA, Oxford 
University Press), Journal of Biomedical Informatics (JBI, Elsevier), and Intelligence-Based 
Medicine (Elsevier).
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Table 2.1  Some Questions Asked by AIM Researchers in an Online Discussion Forum - 1991

Question Brief response (details in ref. [39])

 �� 1. �Are AIM systems 
intended to address user 
needs?

AIM research is driven by desire to develop tools that address 
clinical needs, but like all basic research, there can be a long 
trajectory before reaching those goals

 �� 2. �Has AIM research 
contributed to AI? To 
cognitive psychology? 
To clinical medicine?

Basic methodological innovation is often required, even when 
working on applied goals. There is ample evidence that AI, 
computer science, and cognitive psychology have all been 
affected by AIM research. Contributing to clinical medicine 
remains a future goal, although the work has already stimulated 
much discussion in the clinical world

 �� 3. �Is AIM part of 
information science, 
computer science, AI, 
engineering, or 
biomedicine?

Created at the intersection of all these fields, AIM is a key 
component of the field of biomedical informatics (BMI), which 
itself merges those disciplines

 �� 4. �Are AIM researchers 
adequately trained? To 
what extent is there a 
problem with 
inbreeding?

Daunting as it may be to study broadly the many fields that come 
together in BMI and AIM, it has been the lack of expertise at that 
intersection which has accounted for many of the problems in 
developing and implementing computer-based systems for 
biomedicine. Hence training in BMI is optimal. Inbreeding will 
be less of an issue as more BMI training programs are introduced

 �� 5. �Why is it so difficult for 
AIM systems to be 
tested in clinical 
settings with regard to 
process or outcome of 
clinical care?

This question reveals unfamiliarity with the many AIM system 
evaluations that have been published. Most focus on the quality 
of decisions. Demonstrations of impact on the quality of care and 
patient outcome remain to be undertaken

 �� 6. �Why isn’t AIM research 
better funded?

All AI-related research funding has suffered during the downturn 
in interest in AI. But it will rebound as we continue to 
demonstrate the value and innovation in what we do

 �� 7. �Why have AIM systems 
been so difficult to 
transport from site to 
site successfully?

With the demise of the “Greek Oracle” (consultation model) [19], 
integration with local information systems has become the crucial 
delivery mechanism. In the lack of standards or facile access to 
such systems, it is very hard to move a developed system to a new 
integrated environment

only ASCII characters26 and all interactions were by computer keyboard. Within a 
few years, with the introduction of Xerox LISP machines that were self-contained 
for single users and included both a mouse pointing device and high quality graphi-
cal capabilities, ONCOCIN was ported to a LISP device that provided a greatly 
improved interface that was intuitive for clinicians to use (Fig. 2.8b).

The democratization of the Internet, which occurred during the late 1980s and 
early 1990s (with the commercialization of its management and creation of the 
domain system), created opportunities for collaboration at a distance as well as the 

26 American Standard Code for Information Interchange (ASCII), is a character encoding standard 
for electronic communication. ASCII codes represent text in computers, telecommunications 
equipment, and other devices.
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emergence of communities with shared interests. At a time when AI Winter was 
affecting the AIM research community, it is not surprising that forums for sharing 
opinions, asking questions, and providing pointers to information of interest would 
emerge. One such list, simply called ai-medicine@stanford.edu, had been created in 
advance of the AIME meeting held in Maastricht, The Netherlands in August 1991. 
A keynote presentation at that meeting assessed a variety of soul-searching ques-
tions that AIM researchers had been asking one another on the list server. Later 
published in the AI in Medicine journal, the paper looked at AI in Medicine’s “ado-
lescence” and anticipated its future directions [40]. Table 2.1 summarizes seven key 
questions and briefly provides the response from the article, although interested 
readers should peruse the full paper. Many of the questions (and answers) are still 
relevant today, some 30 years later. Fifteen years after the Maastricht meeting, the 
AIME meeting, held in Amsterdam in 2007, provided a panel that reassessed the 
questions and answers from 1991, while adding thoughts about how the field had 
evolved in the intervening years [41].

As AIM’s first four decades came to an end (with the century), work on advanced 
systems was continuing apace, with improved funding and enthusiasm. With grow-
ing implementation of electronic health records (EHRs) and creation of digital 
imaging databases, coupled with the general availability of enhanced computational 
power, machine learning (ML) research was gaining in interest and impact. The ML 
revolution was on the horizon and today has been a dominant element in AI in gen-
eral and in AIM. In the next section, we briefly examine the two decades that led to 
the present.

�The Last 20 Years: Both AI and AIM Come of Age

The early 2000s were dominated by the completion of the human genome project 
and the associated rise of interest in bioinformatics, while the adoption of EHRs 
continued silently in the background at a slow pace. Several techniques in super-
vised machine learning were first applied to large biomedical datasets in the context 
of genomics and bioinformatics work [42, 43].

Meanwhile, in computer science, there were two major developments underway: 
(1) the availability of commodity graphical processing units (GPUs),27 beginning 
in about 2001, for efficiently manipulating image data–which at their core comprise 
an array of numbers, and (2) the availability of large, labeled datasets (such as the 
introduction of ImageNet28 in 2010) to support efforts to learn increasingly complex 
classifiers via supervised machine learning. The availability of ImageNet and the 
recognition that GPUs could be as flexible as CPUs (but orders of magnitude faster 
in array operations) led to accelerated progress in image recognition—partly due to 

27 https://en.wikipedia.org/wiki/GeForce_3_series. (accessed August 13, 2022).
28 https://en.wikipedia.org/wiki/ImageNet#History_of_the_database. (accessed August 13, 2022).

E. H. Shortliffe and N. H. Shah

https://ai-medicine@stanford.edu
https://en.wikipedia.org/wiki/GeForce_3_series
https://en.wikipedia.org/wiki/ImageNet#History_of_the_database


45

the creation of annual contests using shared datasets.29 The computing ability 
offered by GPUs accelerated the adoption of artificial neural networks (which, as 
was mentioned earlier in this chapter, had been explored since the 1960s, initially 
inspired by the concept of perceptrons). Ideas put forward by Geoffrey Hinton, 
Yann LeCun, and Yoshua Bengio for deep neural networks [44] became widely 
adopted beginning in 2006 (earning the trio the 2018 ACM A.M. Turing Award30). 
A landmark was reached in 2012, when a deep convolutional neural network called 
AlexNet achieved a 16% error rate in the ImageNet challenge (the previous best 
performance had hovered at around 25%). That same year, Andrew Ng and Jeff 
Dean (both at Google) demonstrated the feasibility of unsupervised machine 
learning (see Chap. 6) by training a computer to recognize over 20,000 object cat-
egories, such as cat faces and human faces, without having to label images as con-
taining a face or a cat [45].

The developments in computer science percolated to medicine, initially in the 
form of image analysis advances in radiology and pathology. For a few years expert 
systems (and knowledge-based approaches in general) took a back seat given the 
challenges in acquisition of patient data in electronic form to enable the machine 
learning approaches. Adoption of electronic medical records regained momentum 
after the passage of the Health Information Technology for Economics and Clinical 
Health (HITECH) Act in 2009. By 2012 the powerful compute capabilities (in the 
form of cloud computing) were readily accessible for a nominal fee; machine 
learning using neural networks had proved its worth in image, text and speech pro-
cessing; and patient data in electronic form were available in large amounts–leading 
to a renewed enthusiasm about the potential of AI in Medicine.

As a result, the application of supervised machine learning to medical datasets 
became commonplace, leading to rapid advances in learning classifiers using large 
amounts of labeled data. Computers approximated human ability in reading retinal 
images [46], X-rays [47], histopathology slides [48], and the entire medical record 
to provide diagnostic as well as prognostic outputs [49]. However, as mentioned 
earlier, in the hype around “deep learning” the knowledge is power aphorism was 
often forgotten and, on occasion, re-discovered [50].

It is too soon to tell if this third AIM wave will deliver on the hype or lead to 
another, and potentially more severe, AI winter (Fig. 2.7). However, old concerns 
around explainability and trustworthiness of AI systems in medicine [51] are again 
being actively discussed (see Chaps. 8 and 18), with a keen focus on prevention of 
bias and ensuring fairness in their use in medical decision making [52, 53].

Given today’s massive amount of activity in the field, there are several ongoing 
debates. For example, it is unclear if the unstructured content from clinical notes 
holds much value in improving diagnostic or prognostic systems given the high 
prevalence of copy-and-pasting, use of templates, and pressures to over-document 

29 https://www.image-net.org/challenges/LSVRC/. (accessed August 13, 2022).
30 Often called the “Nobel Prize in Computer Science”. See https://awards.acm.org/about/2018- 
turing. (accessed August 13, 2022).
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in light of billing concerns (see Chaps. 10 and 11). As another example, there is 
increasing tension between the need to share data for training AI systems and the 
desire to ensure patient privacy (see Chap. 18). Once considered a forward-thinking 
piece of legislation, the Health Insurance Portability and Accountability Act 
(HIPAA) from 1996 is increasingly considered a hindrance to building AI systems31 
while also being inadequate to protect patient privacy [54].

While the media hype around AI in medicine continues, there are several excit-
ing possibilities to integrate the advances from the pre-2000s with recent develop-
ments. A particularly noteworthy direction is on combining symbolic computing 
with deep neural networks [44] (see Chap. 6). As Bengio, Lecun and Hinton note, it 
was a surprise that the simple approach (creating networks of relatively simple, non-
linear neurons that learn by adjusting the strengths of their connections) proved so 
effective when applied to large training sets using huge amounts of computation 
(thanks to GPUs!). It turned out that a key ingredient was the depth of the networks; 
shallow networks did not work as well, but until the last decade or so we lacked the 
computational power to work with neural networks that were “deep”. In outlining 
the promising future directions for AI research, these authors reflect in their Turing 
lecture [43] on the role that the symbolic AI research from the twentieth century 
might play in guiding how we structure and train neural nets so they can capture 
underlying causal properties of the world. In the same vein, we encourage the reader 
to reflect again on the rich history of symbolic reasoning systems built by AIM 
researchers in the twentieth century (as presented earlier in this chapter and reca-
pitulated in some detail in Chap. 4). It is exciting to consider how that earlier work 
might be complementary to the machine learning developments in the last 20 years. 
As we suggested in Chap. 1 and earlier in this chapter, future work may demonstrate 
that combining the two paradigms, with a better focus on the role of cognitive sci-
ence in designing ML systems (see Chaps. 5, 6 and 20), might catalyze rapid prog-
ress in the core diagnostic and prognostic tasks of AI in Medicine.

Today’s cutting edge research will be tomorrow’s history. The following chapters 
provide a glimpse of how current research and practice may evolve as both methods 
and computational capabilities continue to advance.

Questions for Discussion

•	 How would you characterize the notion of “intelligence”, first as a characteristic 
of human beings (or other organisms) and second as a feature of modern comput-
ing? How do those characterizations diverge from one another? In what sense are 
devices that you use every day “intelligent”.

•	 What has been the role of communications technology in advancing both artifi-
cial intelligence research and its applications in biomedicine?

•	 Given the explosive interest in expert systems, including their potential use in 
biomedicine, to what do you attribute their failure to meet early expectations and 

31 https://hai.stanford.edu/news/de-identifying-medical-patient-data-doesnt-protect-our-privacy. 
(accessed August 13, 2022).
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the emergence of the AI Winter of 1987–1993? Consider inherent characteristics 
of the approach as well as the then-current communications and computational 
technologies.

•	 What accounts for the slow progress in machine learning (despite some impres-
sive early examples) until the last two decades?

•	 Do we need a resurgence of expertise in the area of knowledge engineering for 
the development of medical AI systems? Why or why not?

•	 What uses might unsupervised learning have in medicine?
•	 How might prior medical knowledge, codified in knowledge structures such as 

ontologies, be provided to deep neural networks to improve their performance?
•	 What are the principal barriers that you envision in the ongoing effort to develop, 

test, and implement medical AI systems that interact directly with clinicians? 
With patients?

Further Reading

Dyson G.  Turing’s Cathedral: The Origins of the Digital Universe. New  York: 
Vintage Books, 2012.

•	 A historical description of scientific innovation, told in the context of work by a 
team of young mathematicians and engineers, led by John von Neumann at 
Princeton’s Institute for Advanced Study, who applied the ideas of Alan Turing 
to develop the fastest electronic computer of its era. That work also introduced 
the concept of RAM (random access memory) that we still use in most comput-
ers today. See also Alice Rawsthorn’s book review, “Genius and Tragedy at 
Dawn of Computer Age” (New York Times, March 25, 2012).

Simon HA.  The Sciences of the Artificial (3rd edition). Cambridge, MA: MIT 
Press, 1996.

•	 Originally published in 1968, this is a classic volume by a Nobel Laureate 
(Economics) who was also an early luminary in the field of AI. His assessment 
of AI includes topics that include not only his thoughts as a cognitive psycholo-
gist, but also analyses of the organization of complexity, the science of design, 
chaos, adaptive sysstems, and genetic algorithms.

Clancey WJ, Shortliffe EH. Readings in Medical Artificial Intelligence: The First 
Decade. Reading, MA: Addison-Wesley, 1984.

•	 This book is a compendium of classic papers describing the first generation of 
AIM systems, including MYCIN, CASNET and INTERNIST-1.  It provides a 
detailed account of the methods underlying the development of these systems, 
including methods for the elicitation of expert knowledge and probabilistic infer-
ence procedures.

Shortliffe EH. Artificial intelligence in medicine: Weighing the accomplishments, 
hype, and promise. IMIA Yearbook of Medical Informatics 2019;28(01):257–62, 
(https://doi.org/10.1055/s-0039-1677891).
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•	 This paper can be considered as the third in a series that includes refs. [40, 41] in 
that it describes the state of the field approaching the year 2020. The paper pro-
vides a historically-informed perspective on recent developments in machine 
learning methodology, takes stock of achievements to date and considers chal-
lenges that remain for clinically impactful deployment of AIM systems.

Szolovits P. (ed.) (1982). Artificial Intelligence in Medicine. (AAAS Selected 
Symposium). Boulder, CO: Westview Press. (https://www.google.com/books/edi-
tion/Artificial_Intelligence_In_Medicine/8tmiDwAAQBAJ)

•	 This book is an edited volume, published originally by the American Association 
for the Advancement of Science (AAAS), with chapters summarizing much of 
the medical AI research of the 1970s. It includes an especially important paper 
by Harry Pople describing the evolution of the INTERNIST-1 system.

Bengio Y, Lecun Y, Hinton G. Deep Learning for AI. Communications of the ACM 
2021;64(7):58–65 (https://doi.org/10.1145/3448250).

•	 Yoshua Bengio, Yann LeCun, and Geoffrey Hinton are recipients of the 2018 
ACM A.M. Turing Award for breakthroughs that have made deep neural net-
works a critical component of computing. This commentary describes their 
reflections on the progress to date in building deep neural networks and their 
thoughts on the future of deep learning, including the role of symbolic AI.
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