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Chapter 1
Introducing AI in Medicine

Trevor A. Cohen, Vimla L. Patel, and Edward H. Shortliffe

After reading this chapter, you should know the answers to these questions:
•	 How does one define artificial intelligence (AI)? What are some ways in 

which AI has been applied to the practice of medicine and to health care more 
broadly?

•	 How does one define cognitive informatics (CI)? How can the CI perspective 
inform the development, evaluation and implementation of AI-based tools to 
support clinical decision making?

•	 What are some factors that have driven the current wave of interest in AI 
methods?

•	 How can one compare and contrast knowledge-based systems with machine 
learning models? What are some of the relative advantages and disadvantages of 
these approaches?

•	 Considering the current state of progress, where is research and development 
most urgently needed in the field and why?
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�The Rise of AIM

�Knowledge-Based Systems

The term “artificial intelligence” (AI) can first be found in a proposal for a confer-
ence that took place at Dartmouth College in 1956, which was written by John 
McCarthy and his colleagues [1]. The research to be conducted in this two-month 
conference was built upon the “conjecture that every aspect of learning or any 
other feature of intelligence can in principle be so precisely described that a 
machine can be made to simulate it.” This conference is considered a seminal event 
in AI, and was followed by a steady growth of interest in the field that is reflected 
by the frequency with which the term ‘artificial intelligence’ appeared in books of 
this era (Fig. 1.1). There was a first peak of activity in the mid-1980s that followed 
a period of rapid progress in the development of knowledge-based expert systems, 
systems that were developed by eliciting knowledge from human experts and ren-
dering this content in computer-interpretable form. Diagnostic reasoning in medi-
cine was one of the first focus areas for the development of such systems, providing 
proof that AI methods could approach human performance in tasks demanding a 
command of a rich base of knowledge [3]. This shows that medical decision mak-
ing has long been considered a paradigmatic example of intelligent human behav-
ior, and has been a focus of—and has had an influence on—AI research for decades.

The historical trend in term usage in Fig. 1.1 also reveals a dip in enthusiasm and 
in support for AI endeavors following the peak in the 1980s (one of the so-called ‘AI 
Winters’), for reasons that are discussed in Chap. 2. For the purpose of this introduc-
tion, we focus on the events of recent years, which have seen rapid growth in inter-
est in AIM applications driven by media attention to AI in general (evident to the 
right of Fig. 1.1), coupled with high profile medical demonstrations of diagnostic 
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Fig. 1.1  Frequency with 
which the term ‘artificial 
intelligence’ appears in 
books published between 
1950 and 2019 and 
digitized by Google (data 
obtained from the Google 
Books n-gram viewer 
website [2]). 1e-6 indicates 
the order of frequency of 
occurrence of the term 
(e.g. approximately 2.5 
occurrences per million 
bigrams at the peak in the 
late eighties)
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accuracy, particularly in image recognition. This growth is part of a larger picture in 
which the capabilities of artificial neural networks—originally conceived as mod-
els of human information processing and learning [4, 5]—have been enhanced 
through a convergence of the availability of large data sets for training, refinements 
in training approaches, and increases in computational power.

�Neural Networks and Deep Learning

Loosely inspired by the interconnections between neurons in the human brain, arti-
ficial neural networks consist of interconnected functional units named neurons, 
each producing an output signal determined by their input data, weights assigned to 
incoming connections, and an activation function that transforms cumulative 
incoming signals into an output that is passed on to a next layer of the network. The 
weights of a neural network serve as parameters that can be altered during training 
of a model, so that the output of the neural network better approximates a desired 
result, such as assigning a high probability to the correct diagnostic label for a radio-
logical image. When used in this way, neural networks exemplify the paradigm of 
supervised machine learning, in which models learn from labels (such as diagno-
ses) assigned to training data. This approach is very different in nature from the 
deliberate engineering of human knowledge that supported the expert systems in the 
first wave of AIM (see Chap. 2 and, for detailed accounts of knowledge modeling 
and machine learning methods, see Chaps. 4 and 6 respectively).

While machine learning models can learn to make impressively accurate predic-
tions, especially when large data sets are available for training, systems leveraging 
explicitly modeled human knowledge—systems intended to reason as humans do—
are much better positioned to explain themselves (for an example, see Box 1.1) than 
systems that have been developed to optimize accuracy without considering human 
cognition. Explanation has long been recognized as a desirable property of AI sys-
tems for automated diagnosis, and as a prerequisite for their acceptance by clini-
cians [6] (and see Chap. 8). However, the general trend in machine learning has 
been that accuracy comes at the cost of interpretability, to the point at which restor-
ing some semblance of interpretability to the predictions made by contemporary 
machine learning models has emerged as a field of research in its own right—
explainable AI—with support from the Defense Advanced Research Projects 
Agency (DARPA),1 the same agency that initiated the research program on network 
protocols that ultimately led to a consumer-accessible internet.

1 See https://www.darpa.mil/program/explainable-artificial-intelligence (accessed  August 18, 
2022) for details.
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This trend toward accurate but opaque predictions has accelerated with the advent 
of deep learning models—neural networks that have multiple intervening layers of 
neurons between input data and output predictions. While deep neural network 
architectures are not new phenomena (see for example the important paper by 
Hinton et al. [8]), their performance when trained on large data sets has produced 
dramatic improvements in results attained across fundamental tasks such as speech 
recognition, question answering and image recognition.

Figure 1.2 shows the extent of recent improvements for three key benchmarks: 
the Stanford Question Answering Dataset (SQUAD [9])—over 100,000 compre-
hension questions related to short articles; ImageNet—over 14 million images each 
assigned one of two hundred possible class labels [10]; and LibriSpeech—over 
1000 hours of speech with matching text from audiobooks [11]. Of note, with both 
SQUAD and ImageNet, human performance on the tasks concerned has been esti-
mated, and superseded by deep learning models.

Conceptually, the advantages of deep learning models over previous machine 
learning approaches have been attributed to their capacity for representation learn-
ing [12]. With prior machine learning approaches, performance generally advanced 
through engineering ways to represent incoming data (such as pixels of an image 
representing a handwritten digit) that led to better downstream machine learning 
performance (representations such as a count of the number of loops in a handwrit-
ten digit [13]). With deep learning models, the lower layers of a network can learn 
to represent incoming data in ways that facilitate task performance automatically.2 
Of particular importance for domains such as medicine, where large labeled data 

2 While deep learning models excel at learning representations that lead to better predictive model-
ing performance, representation learning is broader than deep learning and includes a number 
of previously established methods. For a review of developments up to 2013, see [14].

Box 1.1 An explanation provided by the MYCIN system in response to a 
user entering “WHY”: From Shortliffe et al. 1974 [7]

–– **WHY
–– [1.0] It is important to find out whether there is therapeutically significant 

disease associated with this occurrence of ORGANISM-1.
–– It has already been established that:
–– [1.1] the site of the culture is not one of those which are normally sterile, and
–– [1.2] the method of collection is sterile
–– Therefore, if:
–– [1.3] the organism has been observed in significant numbers
–– Then: there is strongly suggestive evidence (.9) that there is therapeutically 

significant disease associated with this occurrence of the organism
–– [Also: there is strongly suggestive evidence (.8) that the organism is not a 

contaminant]

T. A. Cohen et al.
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Fig. 1.2  Best documented performance, by year, on three key benchmarks (data from the 2021 AI 
Index Report [15, 16]). (1)  SQUAD1.1 = Stanford Question Answering Dataset  (version 1.1). 
Performance metric is “F1” (the balanced f-measure; see Chap. 6); (2) ImageNet - performance 
metric is “top 5 acc” (the percent of images in which the correct label, among 200 possibilities, 
appeared in the top 5 predictions); (3) LibriSpeech - performance metrics is “100-wer” (a transfor-
mation of the word error rate, with 100 indicating every word in a recording was recognized cor-
rectly). Dashed lines indicate documented human performance on the task concerned, which has 
been superseded by AI in both cases

sets are relatively difficult to obtain, the ability to extract useful representations for 
one task can often be learned from training on another related one. This ability to 
apply information learned from one task or data set to another is known as transfer 
learning, and is perhaps best exemplified by what has become a standard approach 
to classifying medical images (see Chap. 12): adding a classification layer to a deep 
neural network that has been pretrained on the task of recognizing non-medical 
images in ImageNet [17]. Similarly, fine-tuning of models such as Google’s BERT 
and Open-AI’s GPT series, which were originally trained to predict held-out words 
in large amounts of text from a range of digital data sources, has advanced perfor-
mance across a broad range of natural language processing (NLP) tasks [18, 19].

1  Introducing AI in Medicine
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Fig. 1.3  Recognition of a subtle diagnostic cue by a deep neural network trained to detect thyroid 
cancer in different ultrasound images of the same nodule. Each image (top row) is annotated with 
the probability of malignancy according to the model, and is paired with a visualization of the 
pixels attended to by the deep learning model when making a prediction for whether an image is 
in the “malignant class”, developed using the GradCam method [20]. Only the second image from 
the left exhibits the diagnostic feature of interrupted eggshell calcification, in which the rim of the 
opaque “shell” of calcification (blue arrows in the top row) is disrupted (red arrow). The GradCam 
visualization reveals the model has learned to attend to this subtle diagnostic feature. Image cour-
tesy of Dr. Nikita Pozdeyev

�Machine Learning and Medical Practice

Of course, outperforming humans on the repetitive and mundane task of selecting 
among hundreds of possible labels for a given image, or surpassing their accuracy 
in answering multiple choice questions about particular passages, does not neces-
sarily provide an indication that deep neural networks could meet the requirements 
for flexibility, prioritization and adaptive decision making under uncertainty needed 
to replace medical practitioners in a busy clinical environment (audiobooks are also 
far less challenging to transcribe than recordings captured in a naturalistic environ-
ment—see Chap. 9 for a related discussion of automated medical transcription).

Nonetheless, the ability to recognize diagnostically important features is a funda-
mental task in interpreting medical images (as illustrated in Fig. 1.3—see also Chap. 
12). A  system capable of answering clinical questions accurately on the basis of 
written notes would make the information that these notes contain amenable to 
downstream computational processing for decision support or observational research 
(methods to achieve such ends are discussed in detail in Chap. 7). Furthermore, simi-
lar advances in performance have been achieved by predictive models in medicine, 
due in part to the large volume of digitized medical data that has accompanied the 
adoption of electronic health record (EHR) systems,3 and the widespread use of 
digital platforms for image storage and retrieval (see Chap. 3) [22].

3 In the United States this increase in adoption is attributable to the incentivization structures pro-
vided by the Health Information Technology for Economic and Clinical Health (HITECH) act of 
2009 [21].
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For example, a 2016 paper in the Journal of the American Medical Association 
describes an impressively accurate deep learning system for the diagnosis of diabetes-
related eye disease in images of the retina [23]. Similarly, a widely-cited 2017 paper 
in Nature describes the application of deep learning to detect skin cancer [24], with 
the resulting system performing as well as 21 board-certified dermatologists in iden-
tifying two types of neoplastic skin lesions. These systems leveraged recent advances 
in AI, including deep neural network architectures and approaches to train them effi-
ciently, as well as large sets of labeled data that were used to train the networks—over 
125,000 images in each study. The dermatology system benefitted further from pre-
training on over 1.25 million non-medical images labeled with 1000 object categories. 
Beyond imaging, deep learning models trained on EHR data have learned to predict 
in-hospital mortality, unplanned readmission, prolonged length of stay, and final dis-
charge diagnosis—in many cases outperforming traditional predictive models that are 
still widely used in clinical practice [25]. In this case, models were trained on data 
from over 200,000 hospitalized adult patients from two academic medical centers, 
considering over 40 billion sequential data points collectively.

These advances have attracted a great deal of press attention, with frequent arti-
cles in prominent media outlets considering the potential of AI to enhance—or dis-
rupt—the practice of medicine [26–28]. As we have discussed in the preface to this 
volume, neither AI systems with physician-level performance nor media attention to 
such systems are without precedent, even in the days before advances in computa-
tional power and methodology mediated the current explosive interest in machine 
learning. However, the convergence of an unprecedented availability of clinical data 
with the maturation of machine learning models (and the computational resources 
to train them at scale) has allowed the rapid development of AI-based predictive 
models in medicine. Many demonstrate impressive results beyond those we have 
briefly described here. Furthermore, the proven commercial viability and public 
acceptance of such models in other areas have offset some of the skepticism with 
which AI models were greeted initially. Having seen the effectiveness with which 
machine learning models leverage data to deliver our entertainment and shopping 
recommendations on a daily basis, why would we not wish such systems to assist 
our clinicians in their medical practice? A strong indicator of the commercial poten-
tial of AI-based systems in medicine is the emergence of regulatory frameworks for 
their application in practice (see also Chap. 18) [29], with a number of AI systems 
already approved for medical use in the United States (Fig. 1.4) and Europe [30].

�The Scope of AIM

A fundamental question in the study (and regulation) of AIM systems concerns the 
definition of the term “Artificial Intelligence”. Given the breadth of approaches that 
have been categorized as related to AI, it is perhaps not surprising that there is no 
universally-accepted definition of this term, and that the extent to which contempo-
rary deep learning approaches constitute AI is still vigorously debated [32, 33]. A 
representative sample of AI definitions is provided in Box 1.2. While there are 

1  Introducing AI in Medicine
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Box 1.2 Sample Definitions of Artificial Intelligence
•	 “The study of complex information processing problems that often have 

their roots in some aspect of biological information processing” (Marr, 
1977) [34]

•	 “…the study of ideas that enable computers to do the things that make 
human beings seem intelligent: the ability to reason symbolically, the abil-
ity to acquire and apply knowledge, and the ability to manipulate and com-
municate ideas” (Winston, 1977) [35]

•	 “….the part of computer science concerned with designing intelligent 
computer systems, that is, systems that exhibit the characteristics we asso-
ciate with intelligence in human behavior  – understanding, language, 
learning, reasoning, solving problems and so on” (Barr et al., vol 1, 1981, 
p. 3) [36]

T. A. Cohen et al.
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clearly common threads that run among them, notably the emphasis on intelligence 
(loosely defined by Barr as exhibiting the characteristics we associate with intelli-
gence in human behavior, or by Winston as emphasizing the use of knowledge and 
an ability to communicate ideas), the definitions also reflect a departure from the 
cognitive motivations of AI at its inception—performance of tasks as humans do—
to the more pragmatic motivations of the performance-oriented systems that are 
commonly termed AI today. Note that McCarthy in particular asserts explicitly that 
biological constraints need not apply. Of course, motivations for understanding how 
machines might solve a problem presumed to require human intelligence are not 
exclusively pragmatic, as this topic is also of considerable academic interest.

As one might anticipate given the fluidity of definitions of AI in general, the 
notion of what qualifies as AI in medicine is also in flux. At the inception of the 
field, the focus was on systems that could reason, leveraging encoded knowledge 
(including probabilistic estimates or uncertainty) derived from clinical experts. 
Such formalization of knowledge to render it computable also underlies the clinical 
decision support rules embedded in contemporary EHR systems. However, few 
would argue that the individual rules firing alerts in such systems constitute AI, even 
when considered collectively (see the discussion of warnings and alerts in Chap. 
17). It seems, therefore, that the perceived difficulty of the tasks accomplished by a 
system determine whether it is thought to have exhibited intelligent behavior. Today, 
machine learning approaches (including deep neural networks) are strongly associ-
ated with the term AI. These systems are not designed to reason, but instead learn to 
recognize patterns, such as diagnostic features of radiology images, leading to per-
formance on constrained tasks that is comparable to that of highly trained physi-
cians. As such it is easy to argue that they exhibit intelligent human behavior, at 
least in the context of a task for which large amounts of labeled training data are 
readily available. Furthermore, such models can make predictions that are beyond 
the capabilities of human experts at times, such as prediction of cardiovascular risk 
factor status from retinal fundus photographs [39], or prediction of 3-D protein 
structure from an amino acid sequence [40]. Perhaps as a consequence of the lack 
of funding for research associated with the term AI during periods in which it was 
out of favor (see Chap. 2), a great deal of machine learning work in the field was not 
framed as AI research, but would be perceived this way in retrospect. Analogous to 
the case with rule-based models, this raises the question of how sophisticated a 
machine learning model is required to qualify as AI. For example, would a system 

•	 “The branch of computer science that is concerned with the automation of 
intelligent behavior” (Luger and Stubblefield, 1993) [37]

•	 “It is the science and engineering of making intelligent machines, espe-
cially intelligent computer programs. It is related to the similar task of 
using computers to understand human intelligence, but AI does not have to 
confine itself to methods that are biologically observable”. (McCarthy, 
2007) [38]

1  Introducing AI in Medicine
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based on a logistic regression model trained on a handful of features, with less than 
ten trainable parameters constitute AI? Perhaps, as with rules, the main question 
concerns the nature of the task that the model is able to accomplish, with a bench-
mark for AIM being the automated accomplishment of tasks that would be chal-
lenging for a highly trained human.

�From Accurate Predictions to Clinically Useful AIM

However, irrespective of whether the engineers of AIM systems attempt to emulate 
human-like problem-solving processes, the ultimate goal of such efforts is often to 
support decision making by human clinicians at the point of care. The role of AIM 
in improving the quality, efficiency and safety of clinical practice exists within a 
larger system that includes human decision makers [41]. As such, both the remark-
able capabilities and recognized constraints of human information processing must 
also be considered when designing and deploying AI-based systems, even if the 
systems concerned do not explicitly attempt to emulate human information process-
ing methods. The consideration of the broader context in which AI-based systems 
must operate to influence patient care reveals a number of challenges that must be 
overcome in order to bridge the gulf between systems that perform well in the con-
text of a constrained reference set, and systems that provide clinical utility at the 
point of care. Many of these challenges have been recognized since the inception of 
the field. In a 1975 paper, Shortliffe and Davis identified a series of seven consider-
ations for expert system evaluation that suggest a path from conception of a system 
to clinical utility (Table 1.1; see also Chap. 17).

Of note, most of the work on accurate automated medical image interpretation 
we have discussed addresses only the second consideration in Table 1.1, and improv-
ing the ability of machine learning models to approach (or even surpass) the accu-
racy of expert clinicians has remained the focus of much recent work [43]. However, 
such models must be embedded in systems that are both usable and acceptable to 
clinicians if they are to exert an effect on management to improve outcomes for 
patients or to advance institutional or societal priorities such as cost-effectiveness. 
Furthermore, the design of AI systems should be motivated by the needs of clini-
cians, which are best understood in the context of the processes and environmental 
constraints in which they work [41].

Demonstration Impact

1 Need 5 Management
2 Expert-level 

performance
6 Patient outcome

3 Usability 7 Cost-effectiveness
4 Acceptance by 

clinicians

Table 1.1  Overview: seven 
considerations for system 
evaluation [42]

T. A. Cohen et al.
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�The Cognitive Informatics Perspective

�Why CI?

It is our view that the discipline of cognitive informatics (CI) [44–46], which brings 
the perspective of the cognitive sciences to the study of medical decision making by 
human beings and machines, is uniquely positioned to address these challenges. 
Through its roots in the study of medical reasoning [47–49], CI provides a sound 
scientific basis from which to consider the relationship between current technolo-
gies and human intelligence. CI has extended its area of inquiry to include both 
human-computer interaction and the study of the effects of technology on the flow 
of work and information in clinical settings [50–53]. Accordingly CI is well-
positioned to inform the integration of AIM systems into clinical practice, and more 
broadly to inform the design of AI systems that complement the cognitive capabili-
ties of human decision makers, in alignment with seminal ideas concerning the 
potential of cooperative human-machine systems [54].

�The Complementarity of Human and Machine Intelligence

As is discussed in Chap. 5, evaluations in the context of image processing tasks have 
demonstrated that the performance of human beings and machines working in con-
cert can result in better diagnostic accuracy than either machines or human 
beings alone [55–57]. In some ways this is not surprising, given the different strate-
gies human experts and machines employ to achieve diagnostic accuracy. Cognitive 
studies of radiologists have shown that experts in this domain integrate their knowl-
edge of anatomical structures and their projections onto two-dimensional images, 
with their knowledge of general physiology and specific disease processes. This 
allows radiologists to generate initial hypotheses that narrow the focus of their 
search for a definitive diagnosis [47]. In contrast, contemporary neural network 
models learn to identify radiological abnormalities by training two-dimensional 
“feature detectors” to recognize regions that are useful in distinguishing between 
diagnostic categories in the training data (as illustrated previously, in Fig. 1.3), irre-
spective of where within an image these regions may occur [58]. Differences in the 
processes through which neural networks and human experts interpret images can 
also be detected empirically. Recent work has shown that human beings and 
machines focus on different features when interpreting histology slides [59].

Acknowledgment of these differences leads naturally to the conclusion that a 
human/AI collaborative team has the potential to make better decisions than those 
that would emerge from a fully automated or exclusively manual process (see, for 
example, the discussion of QMR in Chap. 2). However, many open questions remain 
regarding how best to realize this potential. A promising proposal concerns deliber-
ately designing AI systems to compensate for known “blind spots” in clinical 

1  Introducing AI in Medicine
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decision making [60], such as biases in diagnostic reasoning that have been identi-
fied through cognitive research [61], or distracted attention in busy clinical settings 
[62]. Alternatively, one might envision developing ways to distribute labor across a 
human/AI collaborative system to maximize the expected utility of this system, tak-
ing into account both the accuracy of model predictions and the time required for a 
human actor to reassess them. Recent work has developed an approach to optimiz-
ing collaborative systems in this way, resulting in some experiments in systems that 
increase high-confidence predictions (i.e. predictions to which the model assigns 
extremely high or low probability) at the expense of its accuracy in edge cases (i.e. 
predictions close to the model’s decision boundary), where human input could 
resolve model uncertainty [63].

�Mediating Safe and Effective Human Use of AI-Based Tools

CI methods are already well established as means to evaluate the usability of deci-
sion support tools [45, 46]. Findings from this line of research have led to recom-
mendations that the usability of clinical systems should be prioritized as a means 
to enhance their acceptability and safety [64]. In contrast to system-centric meth-
ods of usability evaluation, such as heuristic evaluations by usability experts [65], 
CI approaches attempt to understand the thought process of a user, which is par-
ticularly important in knowledge-rich domains, such as medicine, where both 
knowledge of the system being used and of the domain are required to perform 
tasks correctly [66]. This can be accomplished through analysis of a think-aloud 
protocol, collected by prompting users to verbalize their thoughts during the pro-
cess of completing representative tasks [67]. This approach is similarly well-suited 
to the study of clinician interactions with AI-based systems, where users must 
make clinical decisions on the basis of their estimation of the veracity of sys-
tem output.

Critical questions concerning the nature of these interactions remain to be 
answered. One such question concerns how best to represent model predictions. For 
example, recent work in dermatology diagnosis found that advantages in perfor-
mance for a human-computer collective were contingent upon the granularity (prob-
abilities of all of the diseases in the differential diagnosis vs. a single global risk of 
malignancy) and cognitive demand of the representation used to convey predictions 
to physicians [57]. Analysis of verbal protocols collected during interactions with 
interfaces, using alternative representations of the same predictions, could inform our 
understanding of why this is the case by revealing the reasoning dermatologists use 
when deciding whether to accept a particular recommendation. Another important 
question concerns the role of explanations provided by a system in influencing human 
decision making. Intriguingly, recent research has shown that revealing the influence 
of input features (here, words in a passage of text) on model predictions increases the 
likelihood that users will accept the validity of these predictions, irrespective of 
whether they are accurate [68]. This suggests that displaying feature salience may not 
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be adequate to support the fault detection procedures that are a prerequisite to safe 
and resilient human/AI collaborative systems. CI methods are well-suited to identify 
the thought processes through which faulty AI decisions are (or are not) identified 
when considering explanations, to inform the development of effective systems in 
which process are both highly automated and subject to human control. This should 
arguably be the case for systems making critical medical decisions, where mistakes 
have irreversible consequences [69].

�Concluding Remarks

In this chapter, we have provided an introduction to AIM, with a focus on recent 
developments. In doing so, we have highlighted some key challenges that AI models 
must meet if they are to achieve the goal of improving the efficiency, safety and 
quality of health care. We have argued that the field of CI is well-suited to address 
these challenges, by providing greater insight into the role of the human component 
of human/AI collaborative systems, to inform their design and evaluation. 
Consideration of the cognitive processes through which human beings evaluate, 
interpret and act upon the recommendations made by AI systems is fundamental to 
the development of solutions that enhance the capabilities of clinicians and research-
ers in the biomedical domain. Accordingly, one of our goals in developing this vol-
ume has been to provide a resource to support the multidisciplinary training required 
to design and implement AI methods with the potential to enhance the practice of 
medicine as well as life science research in human biology.

Questions for Discussion

•	 What is an example of a recent technological advancement in AIM, and what are 
its implications for clinical practice?

•	 Provide your own definition of AIM that reflects the discussion in this chapter 
(i.e., do not simply pick one from Box 1.2). Do any aspects of the field of which 
you are aware fall outside the scope of this definition?

•	 What are the main application areas and techniques for AIM?
•	 AI in medicine has a long history, and AIM technologies have been proposed as 

a potential disruptor of the healthcare industry before. What current contextual 
factors might increase or limit the potential for broad adoption?

Further Reading

Chang, AC.  Intelligence-Based Medicine: Artificial Intelligence and Human 
Cognition in Clinical Medicine and Healthcare. Academic Press (Elsevier); July 
8th 2020.

•	 This book provides a survey of AI methods from clinical and data science per-
spectives, with an emphasis on their implementation in, and impact upon, medi-
cine and its subspecialties.
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Miotto R, Wang F, Wang S, Jiang X, Dudley JT.  Deep learning for healthcare: 
review, opportunities and challenges. Briefings in Bioinformatics. 2018 Nov 27;19 
(6):1236–1246.

•	 This paper provides an overview and of deep learning applications in healthcare 
up to 2018, and introduces a number of issues that are addressed in the cur-
rent volume.

Patel VL, Kannampallil TG. Cognitive informatics in biomedicine and healthcare. 
Journal of biomedical informatics. 2015 Feb 1;53:3–14.

•	 This paper provides a definition and overview of the field of cognitive informat-
ics, with a focus on biomedical applications.

Topol EJ.  High-performance medicine: the convergence of human and artificial 
intelligence. Nature Medicine. Nature Publishing Group; 2019 Jan;25 (1):44–56.

•	 This paper provides an overview of AI applications in healthcare, including a 
thoughtful account of challenges that distinguish this domain from others in 
which AI applications have established their value.

Zhang D, Mishra S, Brynjolfsson E, Etchemendy J, Ganguli D, Grosz B, Lyons T, 
Manyika J, Niebles JC, Sellitto M, Shoham Y, Clark J, Perrault R. The AI Index 
2021 Annual Report. arXiv:210306312 [cs] [Internet]. 2021 Mar 8 [cited 2021 Apr 
24]; Available from: http://arxiv.org/abs/2103.06312

•	 Stanford’s AI Index Report provides an overview of national and global AI trends 
in research and industry.
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