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Enormous advances in information technology have permeated essentially all facets 
of life. Although these technologies are transforming the workplace as well as 
leisure time, formidable challenges remain in fostering tools that enhance 
productivity, are sensitive to work practices, and are intuitive to learn and to use 
effectively. Informatics is a discipline concerned with applied and basic science of 
information, the practices involved in information processing, and the engineering 
of information systems.

Cognitive Informatics (CI), a term that has been adopted and applied particularly 
in the fields of biomedicine and health care, is the multidisciplinary study of cogni-
tion, information, and computational sciences. It investigates all facets of computer 
applications in biomedicine and health care, including system design and computer-
mediated intelligent action. The basic scientific discipline of CI is strongly grounded 
in methods and theories derived from cognitive science. The discipline provides a 
framework for the analysis and modeling of complex human performance in tech-
nology-mediated settings and contributes to the design and development of better 
information systems for biomedicine and health care.

Despite the significant growth of this discipline, there have been few systematic 
published volumes for reference or instruction, intended for working professionals, 
scientists, or graduate students in cognitive science and biomedical informatics, 
beyond those published in this series. Although information technologies are now in 
widespread use globally for promoting increased self-reliance in patients, there is 
often a disparity between the scientific and technological knowledge underlying 
healthcare practices and the lay beliefs, mental models, and cognitive representa-
tions of illness and disease. The topics covered in this book series address the key 
research gaps in biomedical informatics related to the applicability of theories, 
models, and evaluation frameworks of HCI and human factors as they apply to clini-
cians as well as to the lay public.
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We wish to dedicate this volume to three 
giants of science who greatly inspired and 
influenced us while helping to lay the 
groundwork for artificial intelligence in 
medicine, even though each of them made 
their primary contributions in other fields. 
Furthermore, each has been a personal 
friend of at least one of us and we look back 
fondly on their humanity and their 
contributions.

Herbert Simon (Carnegie Mellon University) 
won the Nobel Prize in Economics (1978) for 
his pioneering research into the decision- 
making process within economic 
organizations. He is also known as an early 
innovator in the field of artificial intelligence, 
whose long partnership with Allen Newell 
led to early work on the Logic Theory 
Machine and General Problem Solver. As a 
psychologist who studied human and 
machine problem solving, he pioneered 
notions of bounded rationality and 
satisficing.

Joshua Lederberg (Stanford and Rockefeller 
Universities) won the Nobel Prize in 
Physiology or Medicine (1958) for his 
discoveries of genetic transfer in bacteria. A 
computer scientist as well as a geneticist, he 
was instrumental in devising the notion of 
capturing expert knowledge in computers. 
His Dendral Project led to a body of work 
that dealt with the interpretation of mass 
spectral data to identify organic compounds, 
and he created the first national resource to 
support research on artificial intelligence in 
medicine (SUMEX-AIM).
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Walter Kintsch (University of Colorado 
Boulder) is a psychologist and cognitive 
scientist who used both experimental and 
computational modeling techniques to study 
how people understand language. He 
reformulated discourse comprehension as a 
constraint satisfaction process. His work on 
latent semantic analysis demonstrated how 
machine learning could be used to construct 
a high-dimensional semantic space. His 
writing has influenced research on natural 
language understanding as well as the 
cognitive informatics focus reflected in 
this volume.

T.C., V.L.P., E.H.S.—March 2022

 

Photograph of Herbert Simon provided 
courtesy of Carnegie Mellon University.

Photograph of Joshua Lederberg provided 
courtesy of EH Shortliffe.

Photograph of Walter Kintsch provided by 
Professor Kintsch.
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Foreword

Delivering quality, affordable health care to large populations is one of humankind’s 
greatest challenges.

There are so many facets to health care, however, that talking about “the prob-
lem” is a gross understatement. George Polya’s heuristic (from Descartes) of divid-
ing problems into subproblems1 remains one of the best tools in our cognitive 
toolkit—human or artificial intelligence (AI).2 This book explores many of those 
subproblems from the perspective of using computing—AI in particular—to 
meet them.

The idea of automating solutions to specific human problems is rooted in Greek 
mythology but actual implementations of automated problem solving with mechan-
ical or electronic computers were initially restricted to single-purpose applications. 
For example, wartime uses included decoding encrypted messages and calculating 
trajectories of artillery shells; business uses included payroll accounting, informa-
tion retrieval, and process automation. Medical uses included keeping medical 
records, recording physiological data, and calculating drug doses.

Modern medicine is grounded in data from observations as well as measure-
ments. But the machines running initial applications of computers to medicine were 
so restricted in size and scope that demonstrations beyond single-purpose problems 
were severely limited.

Around 1950 Turing introduced the audacious idea that computers could be 
intelligent and could be used on problems that required reasoning, understanding, 

1 Polya G. How to Solve It: A New Aspect of Mathematical Method. Princeton, NJ: Princeton 
University Press, 2014 (originally published 1945).
2 Two memorable examples of identifying key subproblems are cited in McCullough’s book on 
building the Panama Canal [McCullough, D. The Path between the Seas: The Creation of the 
Panama Canal, 1870-1914. New York: Simon & Schuster, 1978]. First, after several years of fail-
ure, a new engineer put in charge of the project rethought the steps of digging a huge trench and 
recognized that the most rate-limiting step was getting rid of the dirt. Second, the same engineer 
recognized another rate-limiting step was keeping workers healthy. Neither was “the problem” per 
se; solving both subproblems made the difference.
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and learning—to work smarter, not harder. Acquiring measurements is one thing, 
interpreting the data is another. Importantly, early AI research introduced a concep-
tual framework that includes two critical differences from mathematical computa-
tion: symbolic reasoning and heuristic reasoning. Reasoning with symbols, as 
opposed to numeric quantities, carries with it the essential link human beings made 
when they invented language between words and the world, i.e., semantics. Heuristic 
reasoning is even older than humankind, being bound up with the Darwinian notion 
of survival. A decision to fight or flee does not leave time to consider the conse-
quences of all possible options,3 and most decisions in everyday life have no algo-
rithm that guarantees a correct answer in a short time (or often not in any amount 
of time).

The importance of human health quickly attracted early pioneers to the possibil-
ity of using computers to assist physicians, nurses, pharmacists, and other health-
care professionals.

The initial applications of AI limited their scope so they could be dealt with suc-
cessfully in single demonstration projects on the small computers of the day. 
Cognitive psychologists recognized that clinicians reason about the available data 
in medicine just as they do in other fields like chess. The process of diagnostic rea-
soning became the focus of work on expert systems, with early programs becoming 
convincing examples that AI could replicate human reasoning in this area on nar-
rowly defined problems.

An important part of this demonstration was with Bayesian programs that used 
statistics to reason in a mathematically rigorous way for clinical decision support. 
However, those initial applications of Bayes’ Theorem to medicine were also lim-
ited until means were found to reduce their complexity with heuristic reasoning. 
Another important set of demonstrations encoded knowledge accumulated by 
human experts, along the lines suggested by cognitive science. One of the short-
comings of the expert systems approach, however, is the time and effort it takes to 
acquire the knowledge from experts in the first place, and to maintain a large knowl-
edge base thereafter.

In practice, medical professionals are faced with several inconvenient truths, 
which further complicate efforts to use computers in health care. The chapters of 
this book address many of them. For example:

• The body of knowledge in, and relevant to, medicine is growing rapidly. E.g., 
diagnosis and treatment options for genetic diseases in the last few decades, and 
of viral infections in the last few years, have come into the mainstream.

• Complete paradigm shifts in medicine require rethinking whole areas of medi-
cine. E.g., prion diseases have forced a reconceptualization of the mechanisms of 
pathogen transmission.

3 Herb Simon, one of the founding fathers of AI, received a Nobel Prize in Economics in 1978 for 
elucidation of this concept in the world of decision making. His term for it was “Bounded 
Rationality.” See https://www.cmu.edu/simon/what-is-simon/herbert-a-simon.html (accessed 
August 11, 2022).
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• Medical knowledge is incomplete and there are no good treatment options, and 
sometimes no good diagnostic criteria, for some conditions. E.g., Parkinson’s 
disease can be managed, but is still not curable after decades of research.

• Information about an individual patient is often erroneous and almost always 
incomplete. E.g., false positive and false negative test results are expected for 
almost every diagnostic test.

• Patients’ medical problems exist within a larger emotional, social, economic, 
and cultural context. E.g., the most effective treatment options may be unafford-
able or unacceptable to an individual.

• Professionals are expected to learn from their own, and others’, experience (both 
positive and negative). E.g., continuing to recommend a failed treatment modal-
ity is reason for censure.

• Professionals at the level of recognized specialists are expected to deal with 
unique cases for which there are neither case studies nor established diagnostic 
or treatment wisdom. E.g., primary care providers refer recalcitrant cases to spe-
cialists for just these reasons.

• Communication between patients and professionals is imperfect. E.g., language 
is full of ambiguity, and we all have biases in what we want to hear or fear most.

Collectively, these issues are more than merely “inconvenient,” but are humbling 
reminders that “the problem” of providing health care is overwhelming in the large. 
They also represent significant barriers to harnessing the presently available power 
of computers to actual healthcare delivery. The perspectives offered in this book 
summarize current approaches to these issues and highlight work that remains to be 
done. As such it is valuable as a textbook for biomedical informatics and as a road-
map for the possibilities of using AI for the benefit of humankind.

The book’s emphasis on reasoning provides a central focus not found in other 
collections. The chapters here deal with transforming data about patients, once 
acquired, to actionable information and using that information in clinical contexts. 
With today’s understanding, AI offers the means to augment human intelligence by 
making the accumulated knowledge available, suggesting possible options, and 
considering consequences. We are betting that computers can help to overcome 
human limitations of imperfect memory, reasoning biases, and sheer physical stam-
ina. We are betting on the power of knowledge over the persistent forces of random 
mutations. Most of all we are betting that the synergy of human and computer intel-
ligence will succeed in the noble quest of improving the quality of human lives.

University of Pittsburgh Bruce G. Buchanan 
Pittsburgh, PA, USA
August 2022
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Preface

 The State of AI in Medicine

Recent advances in computing power and the availability of large amounts of train-
ing data have spurred tremendous advances in the accuracy with which computers 
can perform tasks that were once considered the exclusive province of human intel-
ligence. These include perceptual tasks related to medical diagnosis, where deep 
neural networks have attained expert-level performance for the diagnosis of diabetic 
retinopathy and the identification of biopsy-proven cases of skin cancer from der-
matological images. These accomplishments reflect an increase in activity in 
Artificial Intelligence (AI), both in academia and industry. According to the 2021 AI 
Index report assembled and published at Stanford University, there was a close to 
twelvefold increase in the total number of annual peer-reviewed AI publications 
between 2000 and 2019, and a close to fivefold increase in annual private invest-
ment in funded AI companies between 2015 and 2020, with commercial applica-
tions of AI technologies such as speech-based digital assistants and personalized 
advertising and newsfeeds by now woven deeply into the threads of our everyday 
lives. These broad developments throughout society have led to a resurgence of 
public interest in the role of AI in medicine1 (AIM), reviving long-standing debates 
about the nature of intelligence, the relative value of data-driven predictive models 
and human decision makers, and the potential for technology to enhance patient 
safety and to disseminate expertise broadly.

Consequently AIM is in the news, with frequent and often thoughtful accounts of 
the ways in which it might influence—and hopefully improve—the practice of med-
icine appearing in high visibility media venues such as The New York Times [1, 2], 
The Atlantic [3], The New Yorker [4], The Economist [5], and others [6, 7]. As bio-
medical informaticians with long-standing interests in AIM, we are encouraged to 
see this level of attention and investment in the area. However, we are also aware 

1 We consider the scope of AIM to include public health and clinically driven basic science research, 
as well as clinical practice.
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that this is by no means the first time that the promise of AIM has emerged as a 
focus of media attention. For example, a 1977 New York Times article [8] describes 
the MYCIN system (discussed in Chap. 2), noting the ability of this system to make 
medical diagnoses, to request missing information, and to explain how it reaches 
conclusions. The article also mentions the extent of government funding for AI 
research at the time at $5 million a year, which when adjusted for inflation would be 
around $23 million annually. The question arises as to what has changed between 
then and now, and how these changes might affect the ongoing and future prospects 
for AI technologies to improve medical care. Some answers to this question are 
evident in this 1977 article, which is critical of the potential of the field to accom-
plish its goals of championship-level chess performance and machine translation 
(“neither has been accomplished successfully, and neither is likely to be any time 
soon”) and face recognition (“they cannot begin to distinguish one face from another 
as babies can”). Today all of these tasks are well within the capabilities of contem-
porary AI systems, which is one indication of the methodological advances that 
have been made over the intervening four decades. However, translating methods 
with strong performance on tightly constrained tasks to applications with positive 
impact in health care is not (and has never been) a straightforward endeavor, on 
account of the inherent complexities of the healthcare system and the prominent 
role of uncertain and temporarily unavailable information in medical decision mak-
ing, among other factors. While AI technologies do have the potential to transform 
the practice of medicine, computer programs demonstrating expert-level perfor-
mance in diagnostic tasks have existed for decades, but significant challenges to 
realizing the potential value of AI in health care—such as how such AI systems 
might best be integrated into clinical practice—remain unresolved.

It is our view that the discipline of Cognitive Informatics (CI) [9], which brings 
the perspective of the cognitive sciences to the study of medical decision making by 
human beings and machines, is uniquely positioned to address many of these chal-
lenges. Through its roots in the study of medical reasoning, CI provides a sound 
scientific basis from which to consider the relationship between current technolo-
gies and human intelligence. CI has extended its area of inquiry to include both 
human-computer interaction and the study of the effects of technology on the flow 
of work and information in clinical settings [10]. Accordingly, CI can inform the 
integration of AI systems into clinical practice. In recent years, patient safety has 
emerged as a research focus of the CI community, providing new insights into the 
ways in which technology might mitigate or, despite best intentions, facilitate medi-
cal error. Consequently, a volume describing approaches to AIM from a CI perspec-
tive seemed like an excellent fit for the Springer Nature Cognitive Informatics book 
series led by one of us (VLP). We fondly recall that this volume is a project that we 
first discussed several years ago over a bottle of Merlot in proximity to a conference 
in Washington, DC.

However, as our discussions developed over the course of subsequent meetings, 
it became apparent that there was a need for a more comprehensive account of the 
field. As educators, we considered the knowledge and skills that future researchers 
and practitioners in the field might need in order to realize the transformative 
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potential of AI methods for the practice of health care. We were aware of books on 
the subject, such as cardiologist Eric Topol’s cogent account of the implications of 
contemporary machine learning approaches for the practice of medicine [11], and 
the development of pediatric cardiologist Anthony C. Chang’s excellent clinician- 
oriented introduction to AI methods with a focus on their practical application to 
problems in health care and medicine [12].2 Books drawing together the perspec-
tives of multiple authors were also available, including a compendium of chapters 
in which authors focus on their research interests within the field [13], and an 
account of the organizational implications of “big data” and predictive models that 
can be derived from such large collections of information [14]. However, none of 
the books we encountered was developed with the focused intention to provide a 
basis for curricular development in AIM, and we were hearing an increasing demand 
for undergraduate, graduate, and postgraduate education from our own trainees—
students and aspiring physician-informaticians.

Consequently, we pivoted from our original goal of a volume primarily con-
cerned with highlighting the role of CI in AIM, to the goal of developing the first 
comprehensive coauthored textbook in the AIM field, still with a CI emphasis. We 
reached out to our friends and colleagues, prominent researchers with deep exper-
tise in the application of AI methods to clinical problems, several of whom have 
been engaged with AIM since the inception of the field. This was a deliberate deci-
sion on our part, as we felt that in addition to lacking a cognitive perspective (despite 
the emergence of the term “cognitive computing” as a catch-all for AI methods), 
much work we encountered was presented without apparent consideration of the 
history of the field. Our concern with this disconnect was not only a matter of the 
academic impropriety of failure to acknowledge prior work. We were also con-
cerned that work conducted from this perspective would not be informed by the 
many lessons learned from decades of work and careful consideration of the issues 
involved in implementing AI at the point of care. Thus, in developing our ideas for 
the structure of this volume, and in our selection of chapter authors, we endeavored 
to make sure that presentations of current methods and applications were contextu-
alized in relation to the history of the field, and informed by a CI perspective.

 Introducing Intelligent Systems in Medicine and Health: 
The Role of AI

The result of these efforts is the current volume, a comprehensive textbook that 
takes stock of the current state of the art of AIM, places current developments in 
their historical context, and identifies cognitive and systemic factors that may help 
or hinder their ability to improve patient care. It is our intention that a reader of this 

2 A trained data scientist, Dr. Chang also contributed a chapter on the future of medical AI and data 
science in this volume.
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volume will attain an accurate picture of the strengths and limitations of these 
emerging technologies, emphasizing how they relate to the AI systems that pre-
ceded them, to the intelligence of human decision makers in medicine, and to the 
needs and expectations of those who use the resulting tools and systems. This will 
lay a foundation for an informed discussion of the potential of such technology to 
enhance patient care, the obstacles that must be overcome for this to take place, and 
the ways in which emerging and as-yet-undeveloped technologies may transform 
the practice of health care.

With increasing interest and investment in AIM technologies will come the rec-
ognition of the need for professionals with the prerequisite expertise to see these 
technologies through to the point of positive impact. Progress toward this goal will 
require both advancement of the state of the science through scholarly research and 
measurably successful deployment of AIM systems in clinical practice settings. As 
the first comprehensive coauthored textbook in the field of AIM, this volume aims 
to define and aggregate the knowledge that researchers and practitioners in the field 
will require to advance it. As such, it draws together a range of expert perspectives 
to provide a holistic picture of the current state of the field, to identify opportunities 
for further research and development, and to provide guidance to inform the suc-
cessful integration of AIM into clinical and public health practice.

We intend to provide a sound basis for a seminar series or a university level 
course on AIM. To this end, authors have been made aware of the context of their 
chapters within the logical flow of the entire volume. We have sought to assure 
coordination among authors to facilitate cross-references between chapters, and to 
minimize either coverage gaps or redundancies. Furthermore, all chapters have fol-
lowed the same basic organizational structure, which includes explicit learning 
objectives, questions for self-study, and annotated suggestions for further reading. 
Chapters have been written for an intended audience of students in biomedical 
informatics, AI, machine learning, cognitive engineering, and clinical decision sup-
port. We also offer the book to established researchers and practitioners of these 
disciplines, as well as those in medicine, public health, and other health professions, 
who would like to learn more about the potential for these emerging technologies to 
transform their fields.

 Structure and Content

The book is divided into four parts. They are designed to emphasize pertinent con-
cepts rather than technical detail. There are other excellent sources for exploring the 
technical details of the topics we introduce. The Introduction provides readers with 
an overview of the field. Chapter 1 provides an introduction to the fields of Artificial 
Intelligence and Cognitive Informatics and describes how they relate to one another. 
Chapter 2 provides a historical perspective, drawing attention to recurring themes, 
issues, and approaches that emerged during the course of the development of early 
AI systems, most of which remain highly relevant today. Chapter 3 provides an 
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overview of the landscape of biomedical data and information, to familiarize read-
ers with the resources AIM systems can draw upon for training and evaluation, and 
as sources of structured knowledge. This chapter also serves as a bridge to subse-
quent parts in the book, introducing some of the methods, applications, and issues 
that will be covered in greater detail later.

The Approaches part covers methods used by AIM systems. Chapter 4 com-
mences this part with a discussion of knowledge-based approaches, spanning from 
knowledge modeling efforts, used in expert systems at the inception of AIM as a 
field, to contemporary efforts to infuse machine learning models with structured 
biomedical knowledge. Chapter 5 considers the idea of AIM from a cognitive per-
spective, beginning with an account of the parallel development of the two fields, 
and advancing an argument for the development of complementary human/AI sys-
tems with superior clinical utility when compared with either of these components 
alone. Chapter 6 introduces the machine learning approaches that have come to 
predominate in the current wave of AIM systems, with the intention of providing 
readers with a conceptual understanding of some key algorithms, and issues that 
may arise during their application to modeling medical data. Chapter 7 considers 
Natural Language Processing (NLP), which has been intertwined with AI at least 
since Turing’s proposal of the ability to conduct a passably human conversation as 
an observable surrogate for “thinking” [15]. The chapter focuses on biomedical 
NLP, giving an account of the main problems to be addressed in this area, and the 
methods that predominate at present, from rule-based methods through to deep 
learning approaches. Chapter 8 considers approaches to the explanation of deci-
sions recommended by AIM models, with an emphasis on its importance in clinical 
settings in which “black box” predictions may not—and arguably should not—be 
taken at face value without some justification to earn trust and to permit detection of 
predictions made on tenuous grounds. Chapter 9 revisits the issue of language, with 
a focus on methods that support human-like conversational interactions with the 
goal of supporting health care.

Having introduced the fundamental methods of the field, the book focuses in the 
third part on Applications. Chapter 10 describes those in which AIM methods are 
applied to support decision making in clinical care, through integration with exist-
ing platforms and workflows. Chapter 11 focuses on the prediction of clinical out-
comes, such as near-term readmission, with an emphasis on dynamic models of 
variables and outcomes that change over time. Chapter 12 describes what is argu-
ably the most successful area of application of contemporary AIM methods to 
date—the interpretation of medical images. Chapter 13 shifts from a focus on meth-
ods to support the care of individual patients to the population level, with a discus-
sion of the emerging role of AI in the field of public health. Chapter 14 then describes 
AI applications at the molecular level: methods that yield clinically actionable 
insights from -omics data. Chapter 15 discusses AIM applications that are of admin-
istrative importance to a healthcare system, such as approaches to optimize the use 
of resources. This chapter also includes a discussion of the practical concerns that 
may arise when attempting to implement AI solutions in the context of an opera-
tional healthcare system. Finally, Chap. 16 focuses on AI applications in medical 
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education, including the roles of cognitive and learning sciences in informing how 
clinicians-in-training should be educated about AIM, and how AI might support the 
education of clinicians in their chosen fields.

The final part in the volume considers the road ahead for AIM.  It addresses 
issues that are likely to be of importance for the successful progression of the field, 
including two potential stumbling blocks: inadequate evaluation, and failure to con-
sider the ethical issues that may accompany the deployment of AI systems in health-
care settings. Accordingly, the first chapter in this part, Chap. 17, is focused on 
evaluation of AIM systems, including enabling capabilities such as usability and the 
need to move beyond “in situ” evaluations of accuracy toward demonstrations of 
acceptance and clinical utility in the natural world. Chapter 18 concerns the need for 
a robust ethical framework to address issues proactively such as algorithmic bias, 
and exacerbation of healthcare inequities due to limited portability of methods and 
algorithms. Chapter 19 projects from the trajectory of current trends to anticipate 
the future of AI in medicine with an emphasis on data science, and how broader 
deployment of AI systems may affect the practice of medicine. Finally, Chap. 20 
provides a summary and synthesis of the volume, including the editors’ perspectives 
on the prospects and challenges for the field. The final part is then followed by a 
detailed glossary that provides definitions of all terms displayed in bold throughout 
the body of the book (with an indication of the chapter(s) in which each term was 
used). The book closes with a subject index for the entire volume.

 Guide to Use of This Book

This book is written as a textbook, such that it can be used in formal courses or 
seminars. For this purpose, we would anticipate curricular design to follow the over-
all structure of the book, with a logical progression from introduction through 
approaches to applications and projections for the future. For example, this structure 
could support an undergraduate or graduate level course in a Computer Science, 
Biomedical Informatics, or Cognitive Engineering program that aims to provide 
students with a comprehensive survey of current applications and concerns in the 
field. At the graduate level, this could be coupled to a student-led research project. 
Alternatively, one might imagine an MS level course that aims to provide clinical 
practitioners seeking additional training in clinical informatics with the knowledge 
they will need to be informed users of AIM systems, in which case content could be 
drawn from the book selectively with an emphasis on introductory content, and 
clinical applications and issues that relate to them directly (Chaps. 1–3, 10–12, 15, 
and 17–19). Of course, the book may be used for self-study and reference, and read-
ers may wish to explore particular topics in greater detail—starting with a particular 
chapter (say, machine learning methods) and then exploring the cross-references in 
this chapter to find out more about how this topic features in the context of particu-
lar applications, or issues that are anticipated to emerge as the field progresses.
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This is an exciting time to be working in the field of AIM, and an ideal time to 
enter it. There is increasing support for AIM work, both through federal funding 
initiatives such as the NIH-wide Bridge to Artificial Intelligence program3 and in 
light of an acceleration in private investment in digital health technologies. Such 
support has been stimulated in part by the field’s demonstrated utility and accep-
tance as a way to diagnose disease, to deliver care, and to support public health 
efforts during the COVID-19 pandemic. On account of the pervasiveness of AI tech-
nologies across industries outside of health care, skepticism about the ability of 
these technologies to deliver meaningful improvements is balanced by enthusiasm 
for their potential to improve the practice of medicine. It is our goal that readers of 
this volume will emerge equipped with the knowledge needed to realize this poten-
tial and to proceed to lead the advancement of health care through AIM.
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Chapter 1
Introducing AI in Medicine

Trevor A. Cohen, Vimla L. Patel, and Edward H. Shortliffe

After reading this chapter, you should know the answers to these questions:
• How does one define artificial intelligence (AI)? What are some ways in 

which AI has been applied to the practice of medicine and to health care more 
broadly?

• How does one define cognitive informatics (CI)? How can the CI perspective 
inform the development, evaluation and implementation of AI-based tools to 
support clinical decision making?

• What are some factors that have driven the current wave of interest in AI 
methods?

• How can one compare and contrast knowledge-based systems with machine 
learning models? What are some of the relative advantages and disadvantages of 
these approaches?

• Considering the current state of progress, where is research and development 
most urgently needed in the field and why?
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 The Rise of AIM

 Knowledge-Based Systems

The term “artificial intelligence” (AI) can first be found in a proposal for a confer-
ence that took place at Dartmouth College in 1956, which was written by John 
McCarthy and his colleagues [1]. The research to be conducted in this two-month 
conference was built upon the “conjecture that every aspect of learning or any 
other feature of intelligence can in principle be so precisely described that a 
machine can be made to simulate it.” This conference is considered a seminal event 
in AI, and was followed by a steady growth of interest in the field that is reflected 
by the frequency with which the term ‘artificial intelligence’ appeared in books of 
this era (Fig. 1.1). There was a first peak of activity in the mid-1980s that followed 
a period of rapid progress in the development of knowledge-based expert systems, 
systems that were developed by eliciting knowledge from human experts and ren-
dering this content in computer-interpretable form. Diagnostic reasoning in medi-
cine was one of the first focus areas for the development of such systems, providing 
proof that AI methods could approach human performance in tasks demanding a 
command of a rich base of knowledge [3]. This shows that medical decision mak-
ing has long been considered a paradigmatic example of intelligent human behav-
ior, and has been a focus of—and has had an influence on—AI research for decades.

The historical trend in term usage in Fig. 1.1 also reveals a dip in enthusiasm and 
in support for AI endeavors following the peak in the 1980s (one of the so-called ‘AI 
Winters’), for reasons that are discussed in Chap. 2. For the purpose of this introduc-
tion, we focus on the events of recent years, which have seen rapid growth in inter-
est in AIM applications driven by media attention to AI in general (evident to the 
right of Fig. 1.1), coupled with high profile medical demonstrations of diagnostic 

1960

0.0

0.5

1.0

1.5

2.5

2.0

3.0

1e–6
Frequency of Term Artificial Intelligence

1970 1980 1990 2000 2010 2020

Fig. 1.1 Frequency with 
which the term ‘artificial 
intelligence’ appears in 
books published between 
1950 and 2019 and 
digitized by Google (data 
obtained from the Google 
Books n-gram viewer 
website [2]). 1e-6 indicates 
the order of frequency of 
occurrence of the term 
(e.g. approximately 2.5 
occurrences per million 
bigrams at the peak in the 
late eighties)

T. A. Cohen et al.
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accuracy, particularly in image recognition. This growth is part of a larger picture in 
which the capabilities of artificial neural networks—originally conceived as mod-
els of human information processing and learning [4, 5]—have been enhanced 
through a convergence of the availability of large data sets for training, refinements 
in training approaches, and increases in computational power.

 Neural Networks and Deep Learning

Loosely inspired by the interconnections between neurons in the human brain, arti-
ficial neural networks consist of interconnected functional units named neurons, 
each producing an output signal determined by their input data, weights assigned to 
incoming connections, and an activation function that transforms cumulative 
incoming signals into an output that is passed on to a next layer of the network. The 
weights of a neural network serve as parameters that can be altered during training 
of a model, so that the output of the neural network better approximates a desired 
result, such as assigning a high probability to the correct diagnostic label for a radio-
logical image. When used in this way, neural networks exemplify the paradigm of 
supervised machine learning, in which models learn from labels (such as diagno-
ses) assigned to training data. This approach is very different in nature from the 
deliberate engineering of human knowledge that supported the expert systems in the 
first wave of AIM (see Chap. 2 and, for detailed accounts of knowledge modeling 
and machine learning methods, see Chaps. 4 and 6 respectively).

While machine learning models can learn to make impressively accurate predic-
tions, especially when large data sets are available for training, systems leveraging 
explicitly modeled human knowledge—systems intended to reason as humans do—
are much better positioned to explain themselves (for an example, see Box 1.1) than 
systems that have been developed to optimize accuracy without considering human 
cognition. Explanation has long been recognized as a desirable property of AI sys-
tems for automated diagnosis, and as a prerequisite for their acceptance by clini-
cians [6] (and see Chap. 8). However, the general trend in machine learning has 
been that accuracy comes at the cost of interpretability, to the point at which restor-
ing some semblance of interpretability to the predictions made by contemporary 
machine learning models has emerged as a field of research in its own right—
explainable AI—with support from the Defense Advanced Research Projects 
Agency (DARPA),1 the same agency that initiated the research program on network 
protocols that ultimately led to a consumer-accessible internet.

1 See https://www.darpa.mil/program/explainable-artificial-intelligence (accessed  August 18, 
2022) for details.

1 Introducing AI in Medicine
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This trend toward accurate but opaque predictions has accelerated with the advent 
of deep learning models—neural networks that have multiple intervening layers of 
neurons between input data and output predictions. While deep neural network 
architectures are not new phenomena (see for example the important paper by 
Hinton et al. [8]), their performance when trained on large data sets has produced 
dramatic improvements in results attained across fundamental tasks such as speech 
recognition, question answering and image recognition.

Figure 1.2 shows the extent of recent improvements for three key benchmarks: 
the Stanford Question Answering Dataset (SQUAD [9])—over 100,000 compre-
hension questions related to short articles; ImageNet—over 14 million images each 
assigned one of two hundred possible class labels [10]; and LibriSpeech—over 
1000 hours of speech with matching text from audiobooks [11]. Of note, with both 
SQUAD and ImageNet, human performance on the tasks concerned has been esti-
mated, and superseded by deep learning models.

Conceptually, the advantages of deep learning models over previous machine 
learning approaches have been attributed to their capacity for representation learn-
ing [12]. With prior machine learning approaches, performance generally advanced 
through engineering ways to represent incoming data (such as pixels of an image 
representing a handwritten digit) that led to better downstream machine learning 
performance (representations such as a count of the number of loops in a handwrit-
ten digit [13]). With deep learning models, the lower layers of a network can learn 
to represent incoming data in ways that facilitate task performance automatically.2 
Of particular importance for domains such as medicine, where large labeled data 

2 While deep learning models excel at learning representations that lead to better predictive model-
ing performance, representation learning is broader than deep learning and includes a number 
of previously established methods. For a review of developments up to 2013, see [14].

Box 1.1 An explanation provided by the MYCIN system in response to a 
user entering “WHY”: From Shortliffe et al. 1974 [7]

 – **WHY
 – [1.0] It is important to find out whether there is therapeutically significant 

disease associated with this occurrence of ORGANISM-1.
 – It has already been established that:
 – [1.1] the site of the culture is not one of those which are normally sterile, and
 – [1.2] the method of collection is sterile
 – Therefore, if:
 – [1.3] the organism has been observed in significant numbers
 – Then: there is strongly suggestive evidence (.9) that there is therapeutically 

significant disease associated with this occurrence of the organism
 – [Also: there is strongly suggestive evidence (.8) that the organism is not a 

contaminant]

T. A. Cohen et al.
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Fig. 1.2 Best documented performance, by year, on three key benchmarks (data from the 2021 AI 
Index Report [15, 16]). (1)  SQUAD1.1 = Stanford Question Answering Dataset  (version 1.1). 
Performance metric is “F1” (the balanced f-measure; see Chap. 6); (2) ImageNet - performance 
metric is “top 5 acc” (the percent of images in which the correct label, among 200 possibilities, 
appeared in the top 5 predictions); (3) LibriSpeech - performance metrics is “100-wer” (a transfor-
mation of the word error rate, with 100 indicating every word in a recording was recognized cor-
rectly). Dashed lines indicate documented human performance on the task concerned, which has 
been superseded by AI in both cases

sets are relatively difficult to obtain, the ability to extract useful representations for 
one task can often be learned from training on another related one. This ability to 
apply information learned from one task or data set to another is known as transfer 
learning, and is perhaps best exemplified by what has become a standard approach 
to classifying medical images (see Chap. 12): adding a classification layer to a deep 
neural network that has been pretrained on the task of recognizing non-medical 
images in ImageNet [17]. Similarly, fine-tuning of models such as Google’s BERT 
and Open-AI’s GPT series, which were originally trained to predict held-out words 
in large amounts of text from a range of digital data sources, has advanced perfor-
mance across a broad range of natural language processing (NLP) tasks [18, 19].

1 Introducing AI in Medicine
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a b

Fig. 1.3 Recognition of a subtle diagnostic cue by a deep neural network trained to detect thyroid 
cancer in different ultrasound images of the same nodule. Each image (top row) is annotated with 
the probability of malignancy according to the model, and is paired with a visualization of the 
pixels attended to by the deep learning model when making a prediction for whether an image is 
in the “malignant class”, developed using the GradCam method [20]. Only the second image from 
the left exhibits the diagnostic feature of interrupted eggshell calcification, in which the rim of the 
opaque “shell” of calcification (blue arrows in the top row) is disrupted (red arrow). The GradCam 
visualization reveals the model has learned to attend to this subtle diagnostic feature. Image cour-
tesy of Dr. Nikita Pozdeyev

 Machine Learning and Medical Practice

Of course, outperforming humans on the repetitive and mundane task of selecting 
among hundreds of possible labels for a given image, or surpassing their accuracy 
in answering multiple choice questions about particular passages, does not neces-
sarily provide an indication that deep neural networks could meet the requirements 
for flexibility, prioritization and adaptive decision making under uncertainty needed 
to replace medical practitioners in a busy clinical environment (audiobooks are also 
far less challenging to transcribe than recordings captured in a naturalistic environ-
ment—see Chap. 9 for a related discussion of automated medical transcription).

Nonetheless, the ability to recognize diagnostically important features is a funda-
mental task in interpreting medical images (as illustrated in Fig. 1.3—see also Chap. 
12). A  system capable of answering clinical questions accurately on the basis of 
written notes would make the information that these notes contain amenable to 
downstream computational processing for decision support or observational research 
(methods to achieve such ends are discussed in detail in Chap. 7). Furthermore, simi-
lar advances in performance have been achieved by predictive models in medicine, 
due in part to the large volume of digitized medical data that has accompanied the 
adoption of electronic health record (EHR) systems,3 and the widespread use of 
digital platforms for image storage and retrieval (see Chap. 3) [22].

3 In the United States this increase in adoption is attributable to the incentivization structures pro-
vided by the Health Information Technology for Economic and Clinical Health (HITECH) act of 
2009 [21].

T. A. Cohen et al.
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For example, a 2016 paper in the Journal of the American Medical Association 
describes an impressively accurate deep learning system for the diagnosis of diabetes- 
related eye disease in images of the retina [23]. Similarly, a widely-cited 2017 paper 
in Nature describes the application of deep learning to detect skin cancer [24], with 
the resulting system performing as well as 21 board-certified dermatologists in iden-
tifying two types of neoplastic skin lesions. These systems leveraged recent advances 
in AI, including deep neural network architectures and approaches to train them effi-
ciently, as well as large sets of labeled data that were used to train the networks—over 
125,000 images in each study. The dermatology system benefitted further from pre-
training on over 1.25 million non-medical images labeled with 1000 object categories. 
Beyond imaging, deep learning models trained on EHR data have learned to predict 
in-hospital mortality, unplanned readmission, prolonged length of stay, and final dis-
charge diagnosis—in many cases outperforming traditional predictive models that are 
still widely used in clinical practice [25]. In this case, models were trained on data 
from over 200,000 hospitalized adult patients from two academic medical centers, 
considering over 40 billion sequential data points collectively.

These advances have attracted a great deal of press attention, with frequent arti-
cles in prominent media outlets considering the potential of AI to enhance—or dis-
rupt—the practice of medicine [26–28]. As we have discussed in the preface to this 
volume, neither AI systems with physician-level performance nor media attention to 
such systems are without precedent, even in the days before advances in computa-
tional power and methodology mediated the current explosive interest in machine 
learning. However, the convergence of an unprecedented availability of clinical data 
with the maturation of machine learning models (and the computational resources 
to train them at scale) has allowed the rapid development of AI-based predictive 
models in medicine. Many demonstrate impressive results beyond those we have 
briefly described here. Furthermore, the proven commercial viability and public 
acceptance of such models in other areas have offset some of the skepticism with 
which AI models were greeted initially. Having seen the effectiveness with which 
machine learning models leverage data to deliver our entertainment and shopping 
recommendations on a daily basis, why would we not wish such systems to assist 
our clinicians in their medical practice? A strong indicator of the commercial poten-
tial of AI-based systems in medicine is the emergence of regulatory frameworks for 
their application in practice (see also Chap. 18) [29], with a number of AI systems 
already approved for medical use in the United States (Fig. 1.4) and Europe [30].

 The Scope of AIM

A fundamental question in the study (and regulation) of AIM systems concerns the 
definition of the term “Artificial Intelligence”. Given the breadth of approaches that 
have been categorized as related to AI, it is perhaps not surprising that there is no 
universally-accepted definition of this term, and that the extent to which contempo-
rary deep learning approaches constitute AI is still vigorously debated [32, 33]. A 
representative sample of AI definitions is provided in Box 1.2. While there are 
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Fig. 1.4 FDA approvals for AI-related products by specialty (data drawn from medicalfuturist.
com [30, 31]) with radiology systems (X) the most common category

Box 1.2 Sample Definitions of Artificial Intelligence
• “The study of complex information processing problems that often have 

their roots in some aspect of biological information processing” (Marr, 
1977) [34]

• “…the study of ideas that enable computers to do the things that make 
human beings seem intelligent: the ability to reason symbolically, the abil-
ity to acquire and apply knowledge, and the ability to manipulate and com-
municate ideas” (Winston, 1977) [35]

• “….the part of computer science concerned with designing intelligent 
computer systems, that is, systems that exhibit the characteristics we asso-
ciate with intelligence in human behavior  – understanding, language, 
learning, reasoning, solving problems and so on” (Barr et al., vol 1, 1981, 
p. 3) [36]
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clearly common threads that run among them, notably the emphasis on intelligence 
(loosely defined by Barr as exhibiting the characteristics we associate with intelli-
gence in human behavior, or by Winston as emphasizing the use of knowledge and 
an ability to communicate ideas), the definitions also reflect a departure from the 
cognitive motivations of AI at its inception—performance of tasks as humans do—
to the more pragmatic motivations of the performance-oriented systems that are 
commonly termed AI today. Note that McCarthy in particular asserts explicitly that 
biological constraints need not apply. Of course, motivations for understanding how 
machines might solve a problem presumed to require human intelligence are not 
exclusively pragmatic, as this topic is also of considerable academic interest.

As one might anticipate given the fluidity of definitions of AI in general, the 
notion of what qualifies as AI in medicine is also in flux. At the inception of the 
field, the focus was on systems that could reason, leveraging encoded knowledge 
(including probabilistic estimates or uncertainty) derived from clinical experts. 
Such formalization of knowledge to render it computable also underlies the clinical 
decision support rules embedded in contemporary EHR systems. However, few 
would argue that the individual rules firing alerts in such systems constitute AI, even 
when considered collectively (see the discussion of warnings and alerts in Chap. 
17). It seems, therefore, that the perceived difficulty of the tasks accomplished by a 
system determine whether it is thought to have exhibited intelligent behavior. Today, 
machine learning approaches (including deep neural networks) are strongly associ-
ated with the term AI. These systems are not designed to reason, but instead learn to 
recognize patterns, such as diagnostic features of radiology images, leading to per-
formance on constrained tasks that is comparable to that of highly trained physi-
cians. As such it is easy to argue that they exhibit intelligent human behavior, at 
least in the context of a task for which large amounts of labeled training data are 
readily available. Furthermore, such models can make predictions that are beyond 
the capabilities of human experts at times, such as prediction of cardiovascular risk 
factor status from retinal fundus photographs [39], or prediction of 3-D protein 
structure from an amino acid sequence [40]. Perhaps as a consequence of the lack 
of funding for research associated with the term AI during periods in which it was 
out of favor (see Chap. 2), a great deal of machine learning work in the field was not 
framed as AI research, but would be perceived this way in retrospect. Analogous to 
the case with rule-based models, this raises the question of how sophisticated a 
machine learning model is required to qualify as AI. For example, would a system 

• “The branch of computer science that is concerned with the automation of 
intelligent behavior” (Luger and Stubblefield, 1993) [37]

• “It is the science and engineering of making intelligent machines, espe-
cially intelligent computer programs. It is related to the similar task of 
using computers to understand human intelligence, but AI does not have to 
confine itself to methods that are biologically observable”. (McCarthy, 
2007) [38]
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based on a logistic regression model trained on a handful of features, with less than 
ten trainable parameters constitute AI? Perhaps, as with rules, the main question 
concerns the nature of the task that the model is able to accomplish, with a bench-
mark for AIM being the automated accomplishment of tasks that would be chal-
lenging for a highly trained human.

 From Accurate Predictions to Clinically Useful AIM

However, irrespective of whether the engineers of AIM systems attempt to emulate 
human-like problem-solving processes, the ultimate goal of such efforts is often to 
support decision making by human clinicians at the point of care. The role of AIM 
in improving the quality, efficiency and safety of clinical practice exists within a 
larger system that includes human decision makers [41]. As such, both the remark-
able capabilities and recognized constraints of human information processing must 
also be considered when designing and deploying AI-based systems, even if the 
systems concerned do not explicitly attempt to emulate human information process-
ing methods. The consideration of the broader context in which AI-based systems 
must operate to influence patient care reveals a number of challenges that must be 
overcome in order to bridge the gulf between systems that perform well in the con-
text of a constrained reference set, and systems that provide clinical utility at the 
point of care. Many of these challenges have been recognized since the inception of 
the field. In a 1975 paper, Shortliffe and Davis identified a series of seven consider-
ations for expert system evaluation that suggest a path from conception of a system 
to clinical utility (Table 1.1; see also Chap. 17).

Of note, most of the work on accurate automated medical image interpretation 
we have discussed addresses only the second consideration in Table 1.1, and improv-
ing the ability of machine learning models to approach (or even surpass) the accu-
racy of expert clinicians has remained the focus of much recent work [43]. However, 
such models must be embedded in systems that are both usable and acceptable to 
clinicians if they are to exert an effect on management to improve outcomes for 
patients or to advance institutional or societal priorities such as cost-effectiveness. 
Furthermore, the design of AI systems should be motivated by the needs of clini-
cians, which are best understood in the context of the processes and environmental 
constraints in which they work [41].

Demonstration Impact

1 Need 5 Management
2 Expert-level 

performance
6 Patient outcome

3 Usability 7 Cost-effectiveness
4 Acceptance by 

clinicians

Table 1.1 Overview: seven 
considerations for system 
evaluation [42]
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 The Cognitive Informatics Perspective

 Why CI?

It is our view that the discipline of cognitive informatics (CI) [44–46], which brings 
the perspective of the cognitive sciences to the study of medical decision making by 
human beings and machines, is uniquely positioned to address these challenges. 
Through its roots in the study of medical reasoning [47–49], CI provides a sound 
scientific basis from which to consider the relationship between current technolo-
gies and human intelligence. CI has extended its area of inquiry to include both 
human-computer interaction and the study of the effects of technology on the flow 
of work and information in clinical settings [50–53]. Accordingly CI is well- 
positioned to inform the integration of AIM systems into clinical practice, and more 
broadly to inform the design of AI systems that complement the cognitive capabili-
ties of human decision makers, in alignment with seminal ideas concerning the 
potential of cooperative human-machine systems [54].

 The Complementarity of Human and Machine Intelligence

As is discussed in Chap. 5, evaluations in the context of image processing tasks have 
demonstrated that the performance of human beings and machines working in con-
cert can result in better diagnostic accuracy than either machines or human 
beings alone [55–57]. In some ways this is not surprising, given the different strate-
gies human experts and machines employ to achieve diagnostic accuracy. Cognitive 
studies of radiologists have shown that experts in this domain integrate their knowl-
edge of anatomical structures and their projections onto two-dimensional images, 
with their knowledge of general physiology and specific disease processes. This 
allows radiologists to generate initial hypotheses that narrow the focus of their 
search for a definitive diagnosis [47]. In contrast, contemporary neural network 
models learn to identify radiological abnormalities by training two-dimensional 
“feature detectors” to recognize regions that are useful in distinguishing between 
diagnostic categories in the training data (as illustrated previously, in Fig. 1.3), irre-
spective of where within an image these regions may occur [58]. Differences in the 
processes through which neural networks and human experts interpret images can 
also be detected empirically. Recent work has shown that human beings and 
machines focus on different features when interpreting histology slides [59].

Acknowledgment of these differences leads naturally to the conclusion that a 
human/AI collaborative team has the potential to make better decisions than those 
that would emerge from a fully automated or exclusively manual process (see, for 
example, the discussion of QMR in Chap. 2). However, many open questions remain 
regarding how best to realize this potential. A promising proposal concerns deliber-
ately designing AI systems to compensate for known “blind spots” in clinical 
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decision making [60], such as biases in diagnostic reasoning that have been identi-
fied through cognitive research [61], or distracted attention in busy clinical settings 
[62]. Alternatively, one might envision developing ways to distribute labor across a 
human/AI collaborative system to maximize the expected utility of this system, tak-
ing into account both the accuracy of model predictions and the time required for a 
human actor to reassess them. Recent work has developed an approach to optimiz-
ing collaborative systems in this way, resulting in some experiments in systems that 
increase high-confidence predictions (i.e. predictions to which the model assigns 
extremely high or low probability) at the expense of its accuracy in edge cases (i.e. 
predictions close to the model’s decision boundary), where human input could 
resolve model uncertainty [63].

 Mediating Safe and Effective Human Use of AI-Based Tools

CI methods are already well established as means to evaluate the usability of deci-
sion support tools [45, 46]. Findings from this line of research have led to recom-
mendations that the usability of clinical systems should be prioritized as a means 
to enhance their acceptability and safety [64]. In contrast to system-centric meth-
ods of usability evaluation, such as heuristic evaluations by usability experts [65], 
CI approaches attempt to understand the thought process of a user, which is par-
ticularly important in knowledge-rich domains, such as medicine, where both 
knowledge of the system being used and of the domain are required to perform 
tasks correctly [66]. This can be accomplished through analysis of a think-aloud 
protocol, collected by prompting users to verbalize their thoughts during the pro-
cess of completing representative tasks [67]. This approach is similarly well-suited 
to the study of clinician interactions with AI-based systems, where users must 
make clinical decisions on the basis of their estimation of the veracity of sys-
tem output.

Critical questions concerning the nature of these interactions remain to be 
answered. One such question concerns how best to represent model predictions. For 
example, recent work in dermatology diagnosis found that advantages in perfor-
mance for a human-computer collective were contingent upon the granularity (prob-
abilities of all of the diseases in the differential diagnosis vs. a single global risk of 
malignancy) and cognitive demand of the representation used to convey predictions 
to physicians [57]. Analysis of verbal protocols collected during interactions with 
interfaces, using alternative representations of the same predictions, could inform our 
understanding of why this is the case by revealing the reasoning dermatologists use 
when deciding whether to accept a particular recommendation. Another important 
question concerns the role of explanations provided by a system in influencing human 
decision making. Intriguingly, recent research has shown that revealing the influence 
of input features (here, words in a passage of text) on model predictions increases the 
likelihood that users will accept the validity of these predictions, irrespective of 
whether they are accurate [68]. This suggests that displaying feature salience may not 
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be adequate to support the fault detection procedures that are a prerequisite to safe 
and resilient human/AI collaborative systems. CI methods are well-suited to identify 
the thought processes through which faulty AI decisions are (or are not) identified 
when considering explanations, to inform the development of effective systems in 
which process are both highly automated and subject to human control. This should 
arguably be the case for systems making critical medical decisions, where mistakes 
have irreversible consequences [69].

 Concluding Remarks

In this chapter, we have provided an introduction to AIM, with a focus on recent 
developments. In doing so, we have highlighted some key challenges that AI models 
must meet if they are to achieve the goal of improving the efficiency, safety and 
quality of health care. We have argued that the field of CI is well-suited to address 
these challenges, by providing greater insight into the role of the human component 
of human/AI collaborative systems, to inform their design and evaluation. 
Consideration of the cognitive processes through which human beings evaluate, 
interpret and act upon the recommendations made by AI systems is fundamental to 
the development of solutions that enhance the capabilities of clinicians and research-
ers in the biomedical domain. Accordingly, one of our goals in developing this vol-
ume has been to provide a resource to support the multidisciplinary training required 
to design and implement AI methods with the potential to enhance the practice of 
medicine as well as life science research in human biology.

Questions for Discussion

• What is an example of a recent technological advancement in AIM, and what are 
its implications for clinical practice?

• Provide your own definition of AIM that reflects the discussion in this chapter 
(i.e., do not simply pick one from Box 1.2). Do any aspects of the field of which 
you are aware fall outside the scope of this definition?

• What are the main application areas and techniques for AIM?
• AI in medicine has a long history, and AIM technologies have been proposed as 

a potential disruptor of the healthcare industry before. What current contextual 
factors might increase or limit the potential for broad adoption?

Further Reading

Chang, AC.  Intelligence-Based Medicine: Artificial Intelligence and Human 
Cognition in Clinical Medicine and Healthcare. Academic Press (Elsevier); July 
8th 2020.

• This book provides a survey of AI methods from clinical and data science per-
spectives, with an emphasis on their implementation in, and impact upon, medi-
cine and its subspecialties.
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Miotto R, Wang F, Wang S, Jiang X, Dudley JT.  Deep learning for healthcare: 
review, opportunities and challenges. Briefings in Bioinformatics. 2018 Nov 27;19 
(6):1236–1246.

• This paper provides an overview and of deep learning applications in healthcare 
up to 2018, and introduces a number of issues that are addressed in the cur-
rent volume.

Patel VL, Kannampallil TG. Cognitive informatics in biomedicine and healthcare. 
Journal of biomedical informatics. 2015 Feb 1;53:3–14.

• This paper provides a definition and overview of the field of cognitive informat-
ics, with a focus on biomedical applications.

Topol EJ.  High-performance medicine: the convergence of human and artificial 
intelligence. Nature Medicine. Nature Publishing Group; 2019 Jan;25 (1):44–56.

• This paper provides an overview of AI applications in healthcare, including a 
thoughtful account of challenges that distinguish this domain from others in 
which AI applications have established their value.

Zhang D, Mishra S, Brynjolfsson E, Etchemendy J, Ganguli D, Grosz B, Lyons T, 
Manyika J, Niebles JC, Sellitto M, Shoham Y, Clark J, Perrault R. The AI Index 
2021 Annual Report. arXiv:210306312 [cs] [Internet]. 2021 Mar 8 [cited 2021 Apr 
24]; Available from: http://arxiv.org/abs/2103.06312

• Stanford’s AI Index Report provides an overview of national and global AI trends 
in research and industry.
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Chapter 2
AI in Medicine: Some Pertinent History

Edward H. Shortliffe and Nigam H. Shah

After reading this chapter, you should know the answers to these questions:
• What are the roots of artificial intelligence in human history, even before the 

general introduction of digital computers?
• How did computer science emerge as an academic and research discipline and 

how was AI identified as a component of that revolution?
• How did a medical focus on AI applications emerge from the early general prin-

ciples of the field?
• How did the field of cognitive science influence early work on AI in Medicine 

(AIM) and how have those synergies evolved to the present?
• What were the early medical applications of AI and how were they received in 

the clinical and medical research communities?
• How has the focus of medical AI research and application evolved in parallel 

with AI itself, and with the progress in computing power, communications tech-
nology, and interactive devices?

• To what extent are the early problems and methods developed by early AIM 
researchers still relevant today? What has been lost and what has been gained?

• How have the advances in hardware and the availability of labeled data made 
certain forms of AI popular? How can we combine these recent advances with 
what we learned from the previous 40 years?

• How might we anticipate the further evolution of AI in medicine in light of the 
way the field has evolved to date and its likely trajectory?
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 Introduction

The history of artificial intelligence in medicine (AIM) is intimately tied to the his-
tory of AI itself, since some of the earliest work in applied AI dealt with biomedi-
cine. In this chapter we provide a brief overview of the early history of AI, but then 
focus on AI in medicine (and in human biology), providing a summary of how the 
field has evolved since the earliest recognition of the potential role of computers in 
the modeling of medical reasoning and in the support of clinical decision making. 
The growth of medical AI has been influenced not only by the evolution of AI itself, 
but also by the remarkable ongoing changes in computing and communication tech-
nologies. Accordingly, this chapter anticipates many of the topics that are covered 
in subsequent chapters, providing a concise overview that lays out the concepts and 
progression that are reflected in the rest of this volume.

 Artificial Intelligence: The Early Years

As was discussed in Chap. 1, AI is a diverse field that addresses a wide variety of 
topics regarding human intelligence and expertise, with an emphasis on how to 
model and simulate these topics in computer systems. Thus studies of how human 
beings reason are part of AI, but so are the creation of devices (such as robots) that 
incorporate human-like features. Viewed in this framework, notions relevant to AI 
emerged early in human history as people studied the workings of the human mind 
or imagined creations that might duplicate those capabilities.

For example, fantastical non-human intelligent entities were imagined as far 
back as Greek mythology. Hephaestus was a mythical blacksmith who manufac-
tured mechanical servants, and there were even early tales that involved the concept 
of intelligent robots. But perhaps the most important early harbinger of AI was 
Aristotle’s invention of syllogistic logic (a formal deductive reasoning system) in 
the fourth century BC.

Mechanical inventions that attempted the creation of human-like machines are 
known to have existed as early as the thirteenth century, when talking heads were 
created as novelty items and Al-Jazari, an Arab inventor, designed what is believed 
to be the first programmable humanoid robot (a boat carrying four mechanical 
musicians, powered by water flow). There are many other examples that could be 
mentioned from periods prior to the twentieth century.1

1 For more discussion, see “A Brief History of AI” at https://aitopics.org/misc/brief-history 
(accessed August 13, 2022) and “History of Artificial Intelligence” at https://en.wikipedia.org/
wiki/History_of_artificial_intelligence. (accessed August 13, 2022).

E. H. Shortliffe and N. H. Shah

https://aitopics.org/misc/brief-history
https://en.wikipedia.org/wiki/History_of_artificial_intelligence
https://en.wikipedia.org/wiki/History_of_artificial_intelligence


23

In the early twentieth century Bertrand Russell and Alfred North Whitehead 
published Principia Mathematica, which revolutionized formal logic [1]. 
Subsequent philosophers pursued the logical analysis of knowledge. The first use of 
the word “robot” in English occurred in a play by Karel Capek that was produced 
in 1921.2 Thereafter a mechanical man, Electro, was introduced by Westinghouse 
Electricat at the New  York World’s Fair in 1939 (along with a mechanical dog 
named Sparko). It was a few years earlier (1936–37) that Alan Turing proposed the 
universal Turing Machine concept and proved notions of computability.3 Turing’s 
analysis imagined an abstract machine that can manipulate symbols on a strip of 
tape, guided by a set of rules. He showed that such a simple machine was capable 
of simulating the logic of any computer algorithm that could be constructed. Also 
relevant (in 1943) were the introduction of the term cybernetics, the publication by 
McCulloch and Pitts of A Logical Calculus of the Ideas Immanent in Nervous 
Activity (an early stimulus to the notion of artificial neural networks) [2], and 
Emil Post’s proof that production systems are a general computational mecha-
nism [3].

Especially important for AI was George Polya’s 1945 book How to Solve It, 
which introduced the notion of heuristic problem solving [4]—a key influential 
concept in the AI community to this day. That same year Vannevar Bush published 
As We May Think, which offered a remarkable vision of how, in the future, comput-
ers could assist human beings in a wide range of activities [5]. In 1950, Turing 
published Computing Machinery and Intelligence, which introduced the Turing 
Test as a way of defining and testing for intelligent behavior [6]. In that same year, 
Claude Shannon (of information theory fame) published a detailed analysis show-
ing that chess playing could be viewed as search (Programming A Computer to 
Play Chess) [7]. The dawn of computational artificial intelligence was upon us as 
computers became viable and increasingly accessible devices.

 Modern History of AI

The history of AI, as we think of it today, began with the development of stored- 
program digital computers and the ground-breaking work of John von Neumann 
and his team at Princeton University in the 1950s. As the potential of computers 

2 Čapek K. Rossumovi Univerzální Roboti (Rossum’s Universal Robots). It premiered on 25 
January 1921 and introduced the word “robot” to the English language and to science fiction as a 
whole. https://en.wikipedia.org/wiki/R.U.R. (accessed August 13, 2022).
3 Turing submitted his paper on 31 May 1936 to the London Mathematical Society for its 
Proceedings, but it was published in early 1937. https://en.wikipedia.org/wiki/Turing_machine. 
(accessed August 13, 2022).
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began to be appreciated, academic engineering scientists began to pursue concepts 
that would evolve to be known as computer science. The history and capabilities of 
AI have subsequently been tied to the evolution of computers and their associated 
technologies.

As is mentioned in Chap. 1, it was at a conference at Dartmouth University in 
1956 that a group of early computer scientists gathered to discuss the notion of 
simulating human reasoning by computer. One attendee, John McCarthy from 
Massachusetts Institute of Technology (MIT) (who later spent most of his pro-
fessional life at Stanford University), coined a name for the developing field: 
artificial intelligence. At Carnegie Mellon University (then known as Carnegie 
Tech), psychologist Allen Newell, economist/psychologist Herbert Simon, and 
systems programmer (from the Rand Corporation) John Clifford Shaw intro-
duced the Logic Theorist system4—arguably the first AI program—which was 
followed by their General Problem Solver in 1957.5 At about the same time 
(1958), Frank Rosenblatt invented the perceptron algorithm at the Cornell 
Aeronautical Laboratory [8]. This introduced the notion of connectionism in 
AI, where networks of circuits or connected units were used to simulate intelli-
gent behavior.

The notion of machine learning was first explored by Arthur Samuel (IBM) 
between 1958 and 1962 [9]. He developed a checker-playing program that learned 
strategy and novel methods by having it mounted on two machines and then having 
it play against itself thousands of times—resulting in a program that was able to 
beat the world champion. Another key development during that era (1958) was John 
McCarthy’s creation of the LISP programming language6—which dominated as the 
basis for AI research and development for several decades (including in the medical 
AI community).

During the 1960s there was an explosion in creative AI work, initially at MIT 
and Carnegie Mellon, but later in the decade at other universities in the 
US. International explorations of AI were also underway, especially in the United 
Kingdom (where the first Machine Intelligence workshop was held in Edinburgh 
in 1966). By the end of the decade, as early computer science departments began 
to be formed, AI groups began to appear more broadly (with notable efforts under-
way at the University of California Berkeley and Stanford University). The first 
industrial robot company was formed (1962) and a series of influential AI PhD 

4 http://shelf1.library.cmu.edu/IMLS/MindModels/logictheorymachine.pdf. (accessed August 
13, 2022).
5 http://bitsavers.informatik.uni-stuttgart.de/pdf/rand/ipl/P- 1584_Report_On_A_General_
Problem- Solving_Program_Feb59.pdf. (accessed August 13, 2022).
6 McCarthy’s original paper is available at http://www-formal.stanford.edu/jmc/recursive.html. 
(accessed August 13, 2022).
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dissertations emerged—particularly at MIT where the students of Marvin Minsky 
had a huge impact on the evolving field [10]. Also noteworthy was the invention 
of the mouse pointing device by Doug Engelbart at Stanford Research Institute 
(SRI7), which was to revolutionize the way in which human beings would interact 
with computers. In 1969, also at SRI, scientists developed “Shakey”, a mobile 
robot that had a problem-solver embedded in addition to locomotion (wheels) and 
perception (cameras with image processing).8 The first International Joint 
Conference on Artificial Intelligence (IJCAI) was held in Washington, DC in 
1969. Meanwhile, that same year at MIT, Minsky and Seymour Papert published 
Perceptrons [11], an influential book that discussed the computational approach 
that Rosenblatt had introduced a decade earlier, outlining the limits of what per-
ceptrons could do. This led to a decrease in interest in connectionist concepts and 
arguably held back the pace of development for what eventually became known as 
neural networks in the 1980s and in turn led to today’s deep learning approaches 
(see Chap. 6).

AI research topics in the 1960s seem remarkably similar to those that domi-
nate today. Machine learning, natural language processing, speech understand-
ing, image analysis, robotics, and simulation of human problem solving were all 
major areas of research focus. Much of the funding for such research in the US 
came from the Department of Defense (DOD), which envisioned eventual mili-
tary applications of AI but provided extensive support for basic methodology 
development that had no immediate military application. The DOD also sup-
ported communications research, which in turn became a great facilitator of AI 
development work. Perhaps most notable was the introduction of a nationwide 
network for interconnecting major research computers that were located at aca-
demic institutions and in research centers for military contractors. The DOD’s 
Advanced Research Projects Agency (ARPA)9 supported much of the AI and 
communications research in the country. This network for research computers, 
was built on the notion of packet switching and became known as the ARPA 
Network or, simply, the ARPAnet. Collaborative AI research among universities 
became heavily dependent on this network, and the notion of electronic messag-
ing among researchers across the various sites evolved into the email that we 
take for granted today. Similarly, the ARPAnet, and its packet switching technol-
ogy, were eventually taken over by the National Science Foundation (NSF) and, 

7 See https://en.wikipedia.org/wiki/Douglas_Engelbart. (accessed August 13, 2022). SRI became 
an independent entity outside of Stanford University and is known today simply as SRI 
International.
8 https://www.sri.com/hoi/shakey-the-robot/. (accessed August 13, 2022).
9 Also often called DARPA, for Defense Advanced Research Projects Agency.
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in turn, became a coordinated independent entity that is today known as the 
Internet.

 AI Meets Medicine and Biology: The 1960s and 1970s

As AI was developing as a research discipline, it is not surprising that some of the 
challenging problems that attracted investigators were drawn from biomedical sci-
ence. An early example from 1965 was MIT work by Joseph Weizenbaum who was 
exploring chatbot technology (conversational natural language processing and 
response generation; see Chap. 9). He developed a program known as “The Doctor”, 
but more affectionately referred to as “Eliza”, which attempted to provide psychiat-
ric assessments of patients. The focus was on maintaining the conversation intelli-
gently rather than actually reaching a psychiatric diagnosis. The program became a 
popular, easy-to-use “toy” at AI centers since it was available for conversations over 
the ARPAnet, and it did respond in ways that suggested, at some level, that it under-
stood what the user was saying. A few years later, at Stanford, a psychiatrist on the 
medical school faculty, Ken Colby, worked with AI researchers to develop a conver-
sational program, known as “Parry”, that would simulate the behavior of a patient 
with paranoid schizophrenia. He undertook the work largely for educational pur-
poses, and his students and residents enjoyed “interviewing” the program to learn 
about its thought disorder and to try to keep the “patient” from shutting down and 
refusing to communicate further. Of course, as Parry became known in the AI com-
munity, it was inevitable that people would begin to wonder how Eliza would han-
dle a therapeutic session with Parry. Accordingly, in 1972, an ARPAnet link was 
created between Eliza at MIT (Cambridge, MA) and Parry at Stanford (Palo Alto, 
CA). Without human intervention, the two programs had a conversation,10 and this 
somewhat hysterical match-up has become part of AI lore [12].

 Emergence of AIM Research at Stanford University

A more serious and ground-breaking AI research effort in biomedicine was the 
Dendral Project at Stanford University. It began as an effort developed by a remark-
able scientist, Joshua Lederberg, who had been attracted to Stanford as founding 
chair of their Department of Genetics in the late 1950s. He arrived shortly after 
receiving the Nobel Prize in Physiology or Medicine (at age 33!) for his ground- 
breaking work, at the University of Wisconsin, on genetic transfer between bacteria. 
Then, in the mid-1960s, a young researcher, Edward Feigenbaum, joined the faculty 
in Stanford’s nascent computer science department, arriving from UC Berkeley 

10 See https://tools.ietf.org/html/rfc439 for a transcript of the interchange between the two pro-
grams. (accessed August 13, 2022).
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after studying with Herbert Simon at Carnegie Tech (Carnegie Mellon University 
today). Lederberg and Feigenbaum teamed up with Carl Djerassi, an eminent pro-
fessor in the Chemistry Department, who was an expert in organic and hormonal 
chemistry and who had been instrumental in the development of birth control pills 
a decade earlier.

Lederberg was himself an excellent programmer (in addition to his skills as a 
geneticist) who became fascinated with the challenge of determining organic com-
pound structures from mass spectral data—a task mastered by very few organic 
chemists. He wondered if there might be a computational solution and felt that the 
first requirement was to consider all the possible structures consistent with a com-
pound’s chemical formula (CaHbOc, where the superscripts indicate the number of 
carbon, hydrogen, and oxygen atoms in one molecule of the compound). As the 
number of atoms in a compound increases, the number of potential structures 
becomes very large. Lederberg developed an algorithmic approach, which he called 
the “dendritic algorithm,”11 and wrote a program that could generate the entire 
exhaustive set of potential structures for any organic compound. Pruning that large 
space to define a couple of likely structures was guided by mass spectral analysis 
(mass spectroscopy) of the compound, and it was in this area that Djerassi had 
special expertise. With the addition of Feigenbaum and other computer scientists to 
the team, the Dendral Project thus sought to encode the rules used by organic chem-
ists who knew how to interpret mass spectra in order to infer the small number of 
structures, from among all those generated by the dendritic algorithm, that were 
consistent with the spectral data. The focus on knowledge representation and the use 
of production rules, plus the capture and encoding of expertise, placed this early 
work solidly in the AI arena.

Another key contributor to this work in the early years was Bruce Buchanan,12 a 
research scientist with computing expertise and formal training that included a PhD 
in Philosophy of Science. He stimulated and participated in efforts to view the 
Dendral work as research on theory formation. Although the system was initially 
based solely on rules acquired from Djerassi and other experts in interpretation of 
the mass spectra of organic compounds, Buchanan and others pursued the possibil-
ity that it might be possible to infer such rules from lots of examples of mass spectra 
and the corresponding compounds of known structure. This machine learning 
approach, which greatly enhanced the Dendral program’s performance over time as 
new rules were added, became known as Meta-Dendral.

By the early 1970s, Dendral had become well known in computer science circles 
[13] and the biomedical focus had spawned methods that generalized for use in 
other domains—a phenomenon that was to occur many times in subsequent decades 
as biomedicine became a challenging real-world stimulus to novel approaches that 
were adopted broadly by AI researchers in areas beyond medicine. DENDRAL also 

11 The name was inspired by the expanding network of possible solutions that reminded him of a 
neuron’s dendrites.
12 See Buchanan’s foreword to this volume.
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spawned a dynamic research environment at Stanford, linking the school of medi-
cine with the university’s young computer science department. As other projects 
were developed that focused on capturing biomedical expertise in computer pro-
grams, Feigenbaum generalized the efforts in an overriding principle that had 
guided much of the work:

The key empirical result of DENDRAL experiments became known as the knowledge-is- 
power hypothesis (later called the Knowledge Principle), stating that knowledge of the 
specific task domain in which the program is to do its problem solving was more important 
as a source of power for competent problem solving than the reasoning method employed.—
Edward A. Feigenbaum, 1977 [14].

The process of capturing and encoding expert knowledge became known as knowl-
edge engineering. See Chap. 4 for a focused discussion on knowledge-based sys-
tems, their subsequent evolution, and the current status of such work.

As DENDRAL grew and new projects were started at Stanford, it became clear 
that the computing facilities available for the research work were too limited. 
Furthermore, other medical AI projects were underway at a handful of other institu-
tions and most researchers working on medical AI problems were feeling similar 
computational constraints. Lederberg accordingly submitted a successful proposal 
to the Division of Research Resources (DRR) at the National Institutes of Health 
(NIH). He envisioned a major computing facility that would support medical AI 
research, not only at Stanford but at other universities around the US. The resulting 
shared resource was also granted one of the few remaining available connections to 
the ARPAnet—the first computer on the network that was not funded by the DOD. In 
this way the computer could be used by researchers anywhere in the country, using 
their own local connections to the ARPAnet to provide them with access to the com-
putational power available at Stanford.13 This shared computing resource, installed 
on the Stanford medical school campus in 1973, was known at the Stanford 
University Medical Experimental Computer for Artificial Intelligence in Medicine, 
more commonly referred to as SUMEX-AIM, or simply SUMEX.  With grant 
renewals every 5 years, SUMEX served the national (and eventually the interna-
tional) AI in Medicine community for 18 years.14 With the departure from Stanford 
of Dr. Lederberg (who became President of Rockefeller University in New York 
City in the mid-1970s), Feigenbaum took over as Principal Investigator of SUMEX- 
AIM for several years.

13 Since local area networking did not yet exist, most connections to the ARPAnet relied on dial-up 
modems with acoustic couplers. The network had local phone numbers for terminal interface 
processors (known as TIPs), scattered around the country, so investigators could generally access 
the network, and hence the computer at Stanford, with a local phone call.
14 See “The Seeds of Artificial Intelligence. SUMEX-AIM.” Published in 1980 by the Division of 
Resarch Resources at NIH. https://eric.ed.gov/?id=ED190109. (accessed August 13, 2022).
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 Three Influential AIM Research Projects from the 1970s

The notion of using computers to assist with medical diagnosis often traces its roots 
to a classic article that was published in Science in 1959 [15]. It was written by two 
NIH physician-scientists, one a dentist (Robert Ledley) and the other a radiologist 
(Lee Lusted). The paper laid out the nature of Bayesian probability theory and its 
relevance to medical diagnosis, arguing that computers could be programmed to 
assist with the Bayesian calculations and thus could serve as diagnostic aids. They 
acknowledged the challenges in deriving all the necessary probabilities and recog-
nized the problem of conditional dependencies when applying Bayes’ theorem for 
a real-world problem like medical diagnosis. However, their work stimulated a 
number of research projects that sought to use probability theory for diagnosis, with 
especially influential projects by Homer Warner and colleagues at the University of 
Utah [16] and by Timothy deDombal and his team at Leeds in the United 
Kingdom [17].

It was the challenges with statistical approaches, and their lack of congruence 
with the way in which human experts solved similar problems, that led scientists to 
consider whether AI methods might not be adapted for such clinical decision mak-
ing problems. Three AIM research efforts from the 1970s are particularly well 
known and played key roles in the evolution of the field. Unlike DENDRAL, these 
projects were focused on clinical medicine, and two of them were created using the 
SUMEX-AIM resource. All three programs were envisioned as potential sources of 
consultative decision support for clinicians as they thought to diagnose and/or man-
age patients.

 INTERNIST-1/QMR

One of the early SUMEX projects was developed over the ARPAnet from the 
University of Pittsburgh. There an esteemed physician leader, Dr. Jack Myers, had 
stepped down as Chair of Medicine and in the early 1970s became interested in 
sharing his clinical knowledge and experience in a novel way (rather than writing 
“yet another textbook”). Renowned as a master clinician and diagnostician, and a 
past President of the American College of Physicians and Chairman of the American 
Board of Internal Medicine, he collaborated with an MIT/Carnegie Tech-trained 
computer scientist, Harry E. Pople, Jr., PhD. Randolph A. Miller, then a second year 
Pitt medical student who had learned to program in machine language and a higher 
level language while in high school, joined the project in its second year. They 
worked together in an effort to create a program that would assist in the diagnosis of 
adult patients with problems whose diagnoses fell in the realm of internal medicine.
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Fig. 2.1 The hypothetico-deductive approach, as applied to medical diagnosis. The Internist-1 
program implemented these general notions in a program that tackled the diagnosis of essentially 
all diseases in internal medicine

The basic notion behind INTERNIST-115 was that it should be possible to simu-
late by computer the hypothetico-deductive approach that cognitive studies had 
shown were often used by expert clinicians as they attempted to diagnose challeng-
ing cases (Fig. 2.1) [18]. Myers invited medical students, including Miller and oth-
ers, to spend medical school elective time conducting intensive analyses of the 
peer-reviewed literature on a disease topic of their choosing, which was then aug-
mented by Myers’ own experience. They thus characterized 650 disorders in inter-
nal medicine using 4500 possible patient descriptors. Miller took a sabbatical 
research year, working full time with Pople and Myers in 1974–75 to write the 
INTERNIST-1 Knowledge Base (KB) editor program.

Miller’s programming enabled Pople’s diagnostic algorithms to access and 
manipulate a KB that otherwise exceeded the computer system’s available address 
space. The team developed a computational algorithm that used presenting history, 
symptoms, physical exam findings, and lab results from a patient to generate a set 
of diagnoses that could potentially explain the patient’s problems. They also created 
a refinement process that selected a strategy and identified additional questions that 
would allow the program to distinguish between competing hypotheses and to gen-
erate new ones.

INTERNIST-1 could accurately diagnose many difficult cases. In addition, it 
could deal with multiple concurrent disorders in the same patient. It was ultimately 
tested with some of the most difficult diagnostic challenges in the clinical literature 

15 The community often referred to the program simply as Internist, although this simpler name 
was legally unavailable for ownership/copyright reasons.
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(Clinical Pathological Conferences published in the New England Journal of 
Medicine) where it correctly diagnosed more of the cases than did the physicians 
who had actually cared for the patients [18].

While the evaluation of INTERNIST-1 showed the potential of the heuristic AI 
approach to assist human beings with diagnosis, it also uncovered a number of 
shortcomings that showed that the system was not suitable for widespread clinical 
use [19]. After Miller joined the Pitt faculty, he observed that INTERNIST-1 was of 
great interest to medical students and faculty clinicians. However, it was also clear 
that the system was impractical to use—especially because it required the user to 
take an hour or more to enter all information about the patient, and then to respond 
to queries from the program. Recognizing this, he decided that the most useful ele-
ment of INTERNIST-1 was its knowledge base.

Beginning in 1983, he began working on a different approach to diagnostic assis-
tance—one that recognized the human clinician-user was the most knowledgeable 
intelligence in the diagnostic consultation process. The doctor knew the patient far 
better than the computer system could. The new diagnostic assistant system, Quick 
Medical Reference (QMR), ran on the newly available personal computers. Miller 
felt that QMR should support the clinician’s problem-solving as efficiently as pos-
sible. He worked with colleagues to develop QMR as a toolkit to assist clinicians 
with about a dozen specific diagnostic assistance tasks, which the user could select 
individually or chain together serially to address the dilemmas that had puzzled 
them. The user could invoke QMR quickly on a personal computer in the office. For 
example, it allowed questions such as “What is the differential diagnosis of finding 
x?” or “How can I best screen a patient for disease y?” QMR allowed the user to 
rank and influence the differential diagnosis produced, and to determine the mode 
for generating questions, in a way that had not been possible with INTERNIST-1. 
Eventually, over the course of a decade, QMR was marketed as a commercial 
product.

One lesson of this work, and other medical systems to be described shortly, was 
that consultative decision aids were not likely to be used if they did not integrate 
well into clinicians’ existing workflow [19] (see also Chap. 17 for more discussion 
of this issue). It took the revolution in networking and electronic health records, 
which introduced new ways of accessing pertinent patient data, for such programs 
to be more realistically used, even though their early capabilities were impressive.

 CASNET

Another center of excellence for research on medical AI in the 1970s was based at 
Rutgers University in New Brunswick, New Jersey. Their computer science depart-
ment, chaired by Saul Amarel, had recruited a young faculty member, Casimir 
Kulikowski, who had applied his computer science expertise to medical problems 
during his training and early postdoctoral work. Amarel and Kulikowski success-
fully proposed a second computing resource for applied artificial intelligence in 
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medicine. Like SUMEX, the Rutgers Resource was funded by the Division of 
Research Resources at NIH and was in time connected to the ARPAnet. Their initial 
major project involved a collaboration with Dr. Arin Safir, an ophthalmologist at Mt. 
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Fig. 2.3 An example of a 
MYCIN rule. Rules were 
encoded using the LISP 
programming language (at 
the top). Given the 
standardized approach to 
representing the 
knowledge, it was possible 
to write code to translate 
the rules into English (at 
the bottom). This provided 
transparency during 
interactions with clinical 
users

Sinai Medical Center in New  York City, who provided the necessary clinical 
expertise.

This system focused on modeling causal reasoning using a network-based rep-
resentation of the pertinent domain knowledge. The program, known as CASNET 
(for causal associational network) assisted with the diagnosis of various forms of 
glaucoma. Their networked approach modeled the ability of expert clinicians to 
reason from observations about a patient to the delineation of existing physiological 
states (Fig.  2.2), which in turn helped to distinguish among potential diagnostic 
explanations for the findings. This important work was pursued with involvement of 
a talented PhD student, Shalom Weiss, who made portions of the project the focus 
of his doctoral dissertation [20].

 MYCIN

This Stanford project began as doctoral research for a medical student who was also 
pursuing a PhD in what today would be called biomedical informatics. Edward 
Shortliffe had come to Stanford to study medicine in 1970—partly because of the 
school’s flexibility (which would permit a medical student to pursue a simultaneous 
second degree in a computer-related discipline), but also because of the advanced 
biomedical computing environment that Lederberg and others had created. He 
quickly got to know AI researchers in the computer science department on the main 
campus, and especially those who were involved with the Dendral project. Guided 
by medical school faculty (Stanley Cohen, then Chief of Clinical Pharmacology and 
a genetics researcher,16 and Stanton Axline, an infectious disease expert), Shortliffe 
built on the Dendral notion of encoding expert knowledge in production rules. His 

16 Cohen, who succeeded Lederberg as chair of genetics, briefly served as Principal Investigator of 
the SUMEX-AIM resource upon the Lederberg’s departure for Rockefeller University. After a 
year, Feigenbaum took over that role until he was succeeded by Shortliffe.

2 AI in Medicine: Some Pertinent History



34

Fig. 2.4 This diagram provides an overview of the MYCIN system, identifying the three subsys-
tems (rectangles), the corpus of decision rules, and the dynamic information that was generated 
during the consideration of a specific case. See text for details

principal computer science colleague was Bruce Buchanan. The idea was to develop 
a consultation program that would advise physicians on the selection of antimicro-
bial therapy for patients with severe infections. The resulting project was known as 
MYCIN, with Cohen serving as Shortliffe’s dissertation advisor [21].

MYCIN used a collection of decision rules, acquired from Cohen, Axline, and 
others as the research group discussed actual cases taken from Stanford’s wards. 
These rules were then encoded and stored in a growing collection (Fig. 2.3).

The rules were then kept separate from the actual program, which had three com-
ponents (see rectangles in Fig.  2.4). The primary focus was the Consultation 
Program, which obtained patient data and offered advice, but also important was the 
Explanation Program, which could offer English-language explanations of why 
questions were being asked and why the program had offered its recommendations. 
The program itself knew how to handle a consultative interaction, but knew nothing 
about the domain of infectious diseases. All such knowledge was stored in the cor-
pus of decision rules. A third subsystem, the Rule-Acquisition Program, was devel-
oped to allow experts to offer new rules or to edit existing ones. By running a 
challenging case through the Consultation Program, and using the Explanation 
Program to gain insight into why the program’s performance might have been inap-
propriate for a given case, the expert could use the Rule-Acquisition Program to 
update the system’s knowledge – entering new rules (for translation from English 
into LISP-coded versions) or editing existing ones. By re-running the case, the 
expert could see if MYCIN’s advice had been suitably corrected.

MYCIN was formally evaluated in a blinded experiment that had infectious dis-
ease experts compare its performance with nine other prescribers who were 
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presented with the same ten cases [22]. The comparison group included the actual 
therapy given to the patient, Stanford infectious disease faculty members and a fel-
low, a medical resident, and a medical student. MYCIN was shown to perform at the 
top of the comparison group, as judged by the evaluators (who did not know which 
advice had been offered by the program).

The AI approach developed for MYCIN became known as a rule-based expert 
system. The architecture was attractive because the knowledge base was kept in 
rules that were separate from the program, offering the possibility that the system 
could provide advice in a totally different domain if the infectious disease rules 
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were removed and a new set of rules was substituted. The program without the rules 
was termed “empty MYCIN” or “essential MYCIN”—generally simply referred to 
as EMYCIN [23]. This work provided further support for Feigenbaum’s knowledge 
is power aphorism, previously mentioned. MYCIN also stimulated several other 
research projects in what became known as the Stanford Heuristic Programming 
Project, many of which were also focused on medical topics and were doctoral dis-
sertations in computer science (Fig. 2.5). This diagram conveys the way in which 
Stanford’s AIM science advanced over two decades, with each project introducing 
methods or concepts on which subsequent research could build. An important les-
son is that AIM research is about more than building systems in the engineering 
sense. Equally important is its dependence on the scientific method, with experi-
ments offering lessons that generalize and can feed back into the evolution of the 
field [24].

 Cognitive Science and AIM

As the 1970s progressed, AIM researchers became aware of the synergy between 
their work to capture and convey clinical expertise and the work of researchers in 
educational psychology and cognitive science, many of whom were focused on 
medical problem solving. Since AIM researchers were seeking to encode clinical 
expertise and to produce systems that could reason using that knowledge, they were 
naturally drawn to work that studied clinicians as they solved problems. An esteemed 
physician at Yale University’s medical school, Alvan Feinstein, had published an 
influential volume in 1967, Clinical Judgment [25]. Feinstein is commonly viewed 
as the founder of the field of clinical epidemiology, and the focus of his volume was 
on defining and teaching clinical thinking. The work inspired others to pursue 
related aspects of clinical expertise, and several groups tackled tasks in medical 
problem solving, using methods from psychology and cognitive science.

Particularly influential was a volume by Elstein, Shulman, and Sprafka, educa-
tional psychologists at Michigan State University [26]. They performed a variety of 
studies that sought to apply contemporary psychological theories and methods to 
address the complexity of problem solving in cases derived from real-life clinical 
settings. Their work influenced the thinking of AIM researchers, who were seeking 
to capture elements of medical reasoning, even if their programs were not formally 
modeling the workings of the human mind.

Meanwhile, at Tufts New England Medical Center in Boston, two nephrologists 
were becoming interested in the nature of medical problem solving and the role that 
computers might play in capturing or simulating such reasoning. William Schwartz 
had published a thoughtful piece in 1970 that anticipated the future role that com-
puters might play in medicine and the impact that such changes might impose on 
clinical practice and even on the types of people who would be drawn to becoming 
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a physician [27]. The second nephrologist, Jerome Kassirer,17 had developed a col-
laboration with a computer science graduate student at MIT, Benjamin Kuipers, and 
they performed and published a number of experiments (further discussed in Chap. 
5) that offered insights into clinical reasoning processes, including a classic paper 
on causal reasoning in medicine that appeared in 1984 (by which time Kuipers had 
joined the faculty at the University of Texas in Austin) [28].

The interest in expert reasoning in medicine, shared by Schwartz and Kassirer, 
also attracted a Tufts cardiologist, Stephen Pauker, and a computer scientist at MIT, 
Anthony Gorry. Pauker also knew how to program and this group sought to develop 
an experimental program that explicitly simulated the cognitive processes that they 
had documented in studies of expert physicians who were solving problems. This 
led to the development of the Present Illness Program (PIP - see also Chap. 4) 
which leveraged early cognitive science and AI and was arguably the first AIM 
research project to be published in a major clinical journal [29]. When Gorry 
departed MIT for Rice University, he was succeeded later in the decade by Peter 
Szolovits, himself a leader in AIM research and knowledge-based systems (see 
Chap. 4).

By the early 1980s there was pertinent related work underway at McGill 
University. Vimla Patel and Guy Groen were examining the relationship between 
comprehension of medical texts or descriptions with approaches to problem solving 
by individuals with varying levels of expertise [30]. This body of work, which 
extended throughout the next decade as well, provided an additional set of cognitive 
insights that informed the work of the AIM research community, while attracting 
the McGill group to become interested in how their work might influence the devel-
opment of computational models of clinical expertise (see Chap. 5).

The work described briefly in this section laid the groundwork for subsequent 
work on expert reasoning and cognition that accounts for this book’s emphasis on 
the interplay between AIM and cognitive science. These relationships were further 
solidified by the close interactions, and attendance at one another’s meetings, 
between members of the AIM community and those in the Society for Medical 
Decision Making (SMDM).18 The emergence of cognitive informatics as a specialty 
area within AIM research was built upon this early work and also on the growing 
recognition of the importance of cognitive issues in related areas of computer sci-
ence, including computer-based education and human-computer interaction.

 Reflecting on the 1970s

By the end of the decade, medical AI was having a significant impact on AI more 
generally. The top journal in the field, Artificial Intelligence, devoted an entire issue 
to AIM research [31], and the field of expert systems was being applied broadly in 

17 Years later Kassirer became the Editor-in-Chief of the New England Journal of Medicine 
(1992–2000).
18 https://smdm.org/. (accessed August 13, 2022).
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other areas of society. A community of medical AI researchers had come together to 
hold annual meetings (dubbed AIM Workshops) and to form new collaborations 
while embracing an increasing number of research projects. The first Symposium 
on Computer Applications in Medical Care (SCAMC), held in Arlington, VA in 
1977,19 had an entire session devoted to AIM research projects. AIM research was 
heavily cited in computer science research papers outside the field of medicine.

There was also important exploratory machine learning research in the medical 
arena, inspired in part by the Meta-Dendral work mentioned earlier. As clinical 
databases became available in specialized areas of medicine [32], it was natural to 
explore how computers might be able to learn, or discover new relationships. Blum 
pursued such work, proposing a cycle for discovery and clinical studies through the 
principled examination of such databases (Fig.  2.6) [33]. His RX program ulti-
mately discovered and analyzed an association between prednisone and cholesterol 
that was published in a major clinical journal [34].

By the end of the 1970s, the AIM field was devoted to the notion that knowledge 
representation and use was the key to intelligent behavior by computer programs. 
As we describe in subsequent sections, the knowledge is power aphorism has been 
somewhat forgotten in today’s AI research and application communities—arguably 
to their detriment.

19 SCAMC went on to become the major US meeting in the field of biomedical informatics, merg-
ing with other organizations in 1989–1990 to create today’s American Medical Informatics 
Association (AMIA), https://www.AMIA.org, (accessed August 13, 2022).
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 Evolution of AIM During the 1980s and 1990s

The next two decades were characterized by substantial evolution of AI and AIM, 
partly because of the remarkable changes in computing technology, but also because 
of the ups and downs of academic, industrial, and government interest in AI and its 
potential.

 AI Spring and Summer Give Way to AI Winter

By the early 1980s there was rapidly growing interest in AI, medical applications, 
and especially in expert systems [35]. Companies began to recruit AI scientists and 
commercial expert systems were introduced to the marketplace or used for internal 
purposes [36]. Cover stories on AI and expert systems began to appear in major 
popular news magazines, often with prominent featuring of medical programs such 
as the ones described in the previous sections of this chapter. They tended to make 
wild predictions about the impact AI would soon be having on society, much of 
which ironically did not align well with what the system developers believed to be 
reasonable. However, the enthusiasm continued for several years and led, for exam-
ple, to a major investment by the Japanese Ministry of International Trade and 
Industry which formed their Fifth Generation Computer Project20 starting in 1982.

Early in the decade new companies, such as Teknowledge and Intellicorp, were 
also created specifically to commercialize expert systems. In parallel, hardware 
companies such as Symbolics, LISP Machines Inc., and Xerox Corporation intro-
duced single-user machines that were designed to run the LISP programming lan-
guage, to offer graphical user interfaces with mouse pointing devices, and to support 
the development of expert systems and other AI-related applications. Note that 
these machines appeared only shortly after the introduction of the first personal 
computers (e.g., the Apple II in the late 1970s followed by the first IBM PC and the 
Apple Macintosh a few years later). In parallel, the first commercial local area 
networking products were introduced (e.g., Ethernet from Xerox Corp and a com-
petitor known as Wangnet), which had a profound effect on the ways in which com-
puters and programs were designed to interact and share data.

The rapid change in the early 1980s continued throughout the decade. For exam-
ple, it was not long until the first general-purpose workstations running the Unix 
operating system were introduced (e.g., by SUN Microsystems), and these rapidly 
made the notion of a LISP machine obsolete. The LISP machine market disinte-
grated and “Unix Boxes” (high-end workstations that were much more powerful 
than the existing personal computers) began to dominate in the AI research 
community.

20 See https://en.wikipedia.org/wiki/Fifth_generation_computer. (accessed August 13, 2022).
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Fig. 2.7 Graphic shows 
the two periods often 
called AI Winter, one at the 
end of the 1970s (which 
had little impact on AIM) 
and the second in the late 
1980s and early 1990s 
(which did affect AIM 
work for several years)

As the decade proceeded, the AI “luster” also began to fade, as highly touted 
systems tended to fail to live up to their expectations. Companies often found that 
the systems were expensive to maintain and difficult to update. They generally had 
no machine learning component, so maintenance was crucial in order to incorporate 
new knowledge into them. Performance was accordingly viewed as “brittle”.

In the early 1980s ARPA had again begun to fund its support of general AI 
research, with an emphasis on knowledge-based systems—no doubt encouraged to 
do so by the major Japanese investment in their own project in the area. ARPA had 
lowered its enthusiasm for AI research in the mid- to late-1970s, even as the AIM 
activities were taking off. But AIM researchers were not supported by DARPA but 
rather by NIH or, in a few cases, by the National Science Foundation (NSF), and 
their work and impact had continued apace as described previously. Support for 
AIM research also continued during the 1980s, while ARPA was ramping up its 
own support for AI generally. However, as the decade came to an end, the AI com-
munity faced a clear diminution in the enthusiasm that had been strong only a few 
years earlier. Thus, there was again a dip in funding support for AI as the 1990s 
began, and some of this affected the AIM research community as well.

The dips in support for AI, and in belief for its potential, occurred in the late 
1970s and again in the period between 1987 and 1993. These two drops in funding 
and interest have been called AI Winter #1 and #221 (see Fig. 2.7). During these 
periods it became unhelpful for companies or researchers to emphasize that they 
were working on AI problems. It was hard to attract interest from collaborators or 
funding agencies at a time when AI was viewed as having been oversold and having 
failed to demonstrate the utility that had been promised. By the early 1990s, those 
working in AI areas, including AIM, often sought new terms for what they were 

21 See https://en.wikipedia.org/wiki/AI_winter. (accessed August 13, 2022).
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doing, hoping they would avoid the taint of the AI label. For example, work on 
knowledge base and terminology development often fell under the term ontology 
research,22 and some types of machine learning research were often called knowl-
edge discovery in databases (KDD).23

As is shown in Fig. 2.7, there has been no downturn in enthusiasm for AI and its 
promise for almost 30 years. Those who lived through the early AI winters often 
wonder if the extreme enthusiasm for AI today, with remarkable investment in 
almost all areas of science (and medicine/health), is a harbinger of what could 
become a third period of disenchantment. However, most observers feel that the 
field has greatly matured and that current approaches are better matched to the state 
of computing and communications technology than was possible when earlier 
research, and commercial experiments, were being undertaken. As you read this 
book, you should develop your own sense of whether today’s enthusiasm is well 
matched to the reality of what is happening, especially in AIM, and whether we can 
be optimistic about ongoing progress and impact. We return to this topic in Chaps. 
19 and 20.

 AIM Deals with the Tumult of the 80s and 90s

The expert systems fervor in the 1980s, which had been driven in part by medical 
AI projects that offered new methods and models for analyzing data and offering 
advice, put the AIM community in a highly visible position. AI in Medicine had 
become a worldwide phenomenon, with some medical focus in Japan during the 
Fifth Generation Computer Project. The major new source of AIM research energy, 
however, was in Europe, where a medical AI community began to coalesce. The first 
European meeting that focused on AIM (1985) was organized by Ovo de Lotto and 
Mario Stefanelli as a 2-day conference in Pavia, Italy. The meeting’s success led to 
the decision to hold such meetings biannually under the name Artificial Intelligence 
in Medicine Europe (AIME). They quickly attracted an audience from the US and 
other parts of the world, so eventually the meeting name was adjusted to be simply 
Artificial Intelligence in MEdicine, continuing the AIME acronym.24

A retrospective paper analyzing three decades of trends in the content of AIME 
meetings, published in 2015, provides some instructive insights on how the field 
evolved over that time [37]. At the first meeting in 1985, essentially all the papers 
dealt with knowledge-based systems and knowledge engineering, reflecting the 
expert systems phenomenon. However, the number of papers in those categories 

22 See https://en.wikipedia.org/wiki/Ontology_(information_science). (accessed August 13, 2022).
23 See https://www.techopedia.com/definition/25827/knowledge-discovery-in-databases-kdd. 
(accessed August 13, 2022).
24 The first meeting hosted outside of Europe (by the University of Minnesota) was held in 2020, 
although it needed to be held virtually due to the COVID-19 pandemic that prevented most travel 
to conferences.
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a b

Fig. 2.8 The original ONCOCIN interface used a simple ASCII terminal and all interaction was 
through a computer keyboard (a). Within a few years, with reimplementation on a LISP machine, 
the program offered a greatly improved interface to clinician users (b)

decreased substantially over time while major new areas of emphasis were ontolo-
gies and terminologies, temporal reasoning, natural language processing (see 
Chap. 7), guidelines/protocols (see Chap. 10), management of uncertainty, and 
image/signal processing (see Chap. 12). The largest increase, which began slowly in 
the 1990s, was in the area of machine learning. By 2013 it had surpassed knowledge 
engineering as the most dominant topic at the meetings when measured cumula-
tively over three decades. This is not surprising given the AI emphasis on machine 
learning that today makes it the most active subfield of the discipline (see Chap. 6).

By the end of the 1980s, there was consensus that the AIM field was so active and 
productive that it warranted its own journal. Artificial Intelligence in Medicine was 
first published in 1989 with Kazem Sadegh-Zadeh, from the University of Műnster 
in Germany, serving as founding editor [38]. This journal, published by Elsevier, is 
a major source of current research results in the field to this day. Several other peer- 
reviewed journals also publish AIM methodologic research papers,25 and the more 
applied work has appeared in a variety of clinical, public health, and general science 
journals.

The rapid evolution in networking, hardware capabilities, and computing power 
during the 1980s also had a major influence on AIM research and capabilities during 
that decade. As an example, consider the ONCOCIN program, which was devel-
oped to apply knowledge-based methods to provide advice to oncologists caring for 
patients enrolled in cancer chemotherapy clinical trials [39]. The program was ini-
tially conceived to run on an computer terminal attached to a mainframe computer 
running a LISP programming environment (Fig. 2.8a). The terminal could display 

25 Examples include the Journal of the American Medical Informatics Association (JAMIA, Oxford 
University Press), Journal of Biomedical Informatics (JBI, Elsevier), and Intelligence-Based 
Medicine (Elsevier).
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Table 2.1 Some Questions Asked by AIM Researchers in an Online Discussion Forum - 1991

Question Brief response (details in ref. [39])

   1.  Are AIM systems 
intended to address user 
needs?

AIM research is driven by desire to develop tools that address 
clinical needs, but like all basic research, there can be a long 
trajectory before reaching those goals

   2.  Has AIM research 
contributed to AI? To 
cognitive psychology? 
To clinical medicine?

Basic methodological innovation is often required, even when 
working on applied goals. There is ample evidence that AI, 
computer science, and cognitive psychology have all been 
affected by AIM research. Contributing to clinical medicine 
remains a future goal, although the work has already stimulated 
much discussion in the clinical world

   3.  Is AIM part of 
information science, 
computer science, AI, 
engineering, or 
biomedicine?

Created at the intersection of all these fields, AIM is a key 
component of the field of biomedical informatics (BMI), which 
itself merges those disciplines

   4.  Are AIM researchers 
adequately trained? To 
what extent is there a 
problem with 
inbreeding?

Daunting as it may be to study broadly the many fields that come 
together in BMI and AIM, it has been the lack of expertise at that 
intersection which has accounted for many of the problems in 
developing and implementing computer-based systems for 
biomedicine. Hence training in BMI is optimal. Inbreeding will 
be less of an issue as more BMI training programs are introduced

   5.  Why is it so difficult for 
AIM systems to be 
tested in clinical 
settings with regard to 
process or outcome of 
clinical care?

This question reveals unfamiliarity with the many AIM system 
evaluations that have been published. Most focus on the quality 
of decisions. Demonstrations of impact on the quality of care and 
patient outcome remain to be undertaken

   6.  Why isn’t AIM research 
better funded?

All AI-related research funding has suffered during the downturn 
in interest in AI. But it will rebound as we continue to 
demonstrate the value and innovation in what we do

   7.  Why have AIM systems 
been so difficult to 
transport from site to 
site successfully?

With the demise of the “Greek Oracle” (consultation model) [19], 
integration with local information systems has become the crucial 
delivery mechanism. In the lack of standards or facile access to 
such systems, it is very hard to move a developed system to a new 
integrated environment

only ASCII characters26 and all interactions were by computer keyboard. Within a 
few years, with the introduction of Xerox LISP machines that were self-contained 
for single users and included both a mouse pointing device and high quality graphi-
cal capabilities, ONCOCIN was ported to a LISP device that provided a greatly 
improved interface that was intuitive for clinicians to use (Fig. 2.8b).

The democratization of the Internet, which occurred during the late 1980s and 
early 1990s (with the commercialization of its management and creation of the 
domain system), created opportunities for collaboration at a distance as well as the 

26 American Standard Code for Information Interchange (ASCII), is a character encoding standard 
for electronic communication. ASCII codes represent text in computers, telecommunications 
equipment, and other devices.
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emergence of communities with shared interests. At a time when AI Winter was 
affecting the AIM research community, it is not surprising that forums for sharing 
opinions, asking questions, and providing pointers to information of interest would 
emerge. One such list, simply called ai- medicine@stanford.edu, had been created in 
advance of the AIME meeting held in Maastricht, The Netherlands in August 1991. 
A keynote presentation at that meeting assessed a variety of soul-searching ques-
tions that AIM researchers had been asking one another on the list server. Later 
published in the AI in Medicine journal, the paper looked at AI in Medicine’s “ado-
lescence” and anticipated its future directions [40]. Table 2.1 summarizes seven key 
questions and briefly provides the response from the article, although interested 
readers should peruse the full paper. Many of the questions (and answers) are still 
relevant today, some 30 years later. Fifteen years after the Maastricht meeting, the 
AIME meeting, held in Amsterdam in 2007, provided a panel that reassessed the 
questions and answers from 1991, while adding thoughts about how the field had 
evolved in the intervening years [41].

As AIM’s first four decades came to an end (with the century), work on advanced 
systems was continuing apace, with improved funding and enthusiasm. With grow-
ing implementation of electronic health records (EHRs) and creation of digital 
imaging databases, coupled with the general availability of enhanced computational 
power, machine learning (ML) research was gaining in interest and impact. The ML 
revolution was on the horizon and today has been a dominant element in AI in gen-
eral and in AIM. In the next section, we briefly examine the two decades that led to 
the present.

 The Last 20 Years: Both AI and AIM Come of Age

The early 2000s were dominated by the completion of the human genome project 
and the associated rise of interest in bioinformatics, while the adoption of EHRs 
continued silently in the background at a slow pace. Several techniques in super-
vised machine learning were first applied to large biomedical datasets in the context 
of genomics and bioinformatics work [42, 43].

Meanwhile, in computer science, there were two major developments underway: 
(1) the availability of commodity graphical processing units (GPUs),27 beginning 
in about 2001, for efficiently manipulating image data–which at their core comprise 
an array of numbers, and (2) the availability of large, labeled datasets (such as the 
introduction of ImageNet28 in 2010) to support efforts to learn increasingly complex 
classifiers via supervised machine learning. The availability of ImageNet and the 
recognition that GPUs could be as flexible as CPUs (but orders of magnitude faster 
in array operations) led to accelerated progress in image recognition—partly due to 

27 https://en.wikipedia.org/wiki/GeForce_3_series. (accessed August 13, 2022).
28 https://en.wikipedia.org/wiki/ImageNet#History_of_the_database. (accessed August 13, 2022).
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the creation of annual contests using shared datasets.29 The computing ability 
offered by GPUs accelerated the adoption of artificial neural networks (which, as 
was mentioned earlier in this chapter, had been explored since the 1960s, initially 
inspired by the concept of perceptrons). Ideas put forward by Geoffrey Hinton, 
Yann LeCun, and Yoshua Bengio for deep neural networks [44] became widely 
adopted beginning in 2006 (earning the trio the 2018 ACM A.M. Turing Award30). 
A landmark was reached in 2012, when a deep convolutional neural network called 
AlexNet achieved a 16% error rate in the ImageNet challenge (the previous best 
performance had hovered at around 25%). That same year, Andrew Ng and Jeff 
Dean (both at Google) demonstrated the feasibility of unsupervised machine 
learning (see Chap. 6) by training a computer to recognize over 20,000 object cat-
egories, such as cat faces and human faces, without having to label images as con-
taining a face or a cat [45].

The developments in computer science percolated to medicine, initially in the 
form of image analysis advances in radiology and pathology. For a few years expert 
systems (and knowledge-based approaches in general) took a back seat given the 
challenges in acquisition of patient data in electronic form to enable the machine 
learning approaches. Adoption of electronic medical records regained momentum 
after the passage of the Health Information Technology for Economics and Clinical 
Health (HITECH) Act in 2009. By 2012 the powerful compute capabilities (in the 
form of cloud computing) were readily accessible for a nominal fee; machine 
learning using neural networks had proved its worth in image, text and speech pro-
cessing; and patient data in electronic form were available in large amounts–leading 
to a renewed enthusiasm about the potential of AI in Medicine.

As a result, the application of supervised machine learning to medical datasets 
became commonplace, leading to rapid advances in learning classifiers using large 
amounts of labeled data. Computers approximated human ability in reading retinal 
images [46], X-rays [47], histopathology slides [48], and the entire medical record 
to provide diagnostic as well as prognostic outputs [49]. However, as mentioned 
earlier, in the hype around “deep learning” the knowledge is power aphorism was 
often forgotten and, on occasion, re-discovered [50].

It is too soon to tell if this third AIM wave will deliver on the hype or lead to 
another, and potentially more severe, AI winter (Fig. 2.7). However, old concerns 
around explainability and trustworthiness of AI systems in medicine [51] are again 
being actively discussed (see Chaps. 8 and 18), with a keen focus on prevention of 
bias and ensuring fairness in their use in medical decision making [52, 53].

Given today’s massive amount of activity in the field, there are several ongoing 
debates. For example, it is unclear if the unstructured content from clinical notes 
holds much value in improving diagnostic or prognostic systems given the high 
prevalence of copy-and-pasting, use of templates, and pressures to over-document 

29 https://www.image-net.org/challenges/LSVRC/. (accessed August 13, 2022).
30 Often called the “Nobel Prize in Computer Science”. See https://awards.acm.org/about/2018- 
turing. (accessed August 13, 2022).
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in light of billing concerns (see Chaps. 10 and 11). As another example, there is 
increasing tension between the need to share data for training AI systems and the 
desire to ensure patient privacy (see Chap. 18). Once considered a forward-thinking 
piece of legislation, the Health Insurance Portability and Accountability Act 
(HIPAA) from 1996 is increasingly considered a hindrance to building AI systems31 
while also being inadequate to protect patient privacy [54].

While the media hype around AI in medicine continues, there are several excit-
ing possibilities to integrate the advances from the pre-2000s with recent develop-
ments. A particularly noteworthy direction is on combining symbolic computing 
with deep neural networks [44] (see Chap. 6). As Bengio, Lecun and Hinton note, it 
was a surprise that the simple approach (creating networks of relatively simple, non- 
linear neurons that learn by adjusting the strengths of their connections) proved so 
effective when applied to large training sets using huge amounts of computation 
(thanks to GPUs!). It turned out that a key ingredient was the depth of the networks; 
shallow networks did not work as well, but until the last decade or so we lacked the 
computational power to work with neural networks that were “deep”. In outlining 
the promising future directions for AI research, these authors reflect in their Turing 
lecture [43] on the role that the symbolic AI research from the twentieth century 
might play in guiding how we structure and train neural nets so they can capture 
underlying causal properties of the world. In the same vein, we encourage the reader 
to reflect again on the rich history of symbolic reasoning systems built by AIM 
researchers in the twentieth century (as presented earlier in this chapter and reca-
pitulated in some detail in Chap. 4). It is exciting to consider how that earlier work 
might be complementary to the machine learning developments in the last 20 years. 
As we suggested in Chap. 1 and earlier in this chapter, future work may demonstrate 
that combining the two paradigms, with a better focus on the role of cognitive sci-
ence in designing ML systems (see Chaps. 5, 6 and 20), might catalyze rapid prog-
ress in the core diagnostic and prognostic tasks of AI in Medicine.

Today’s cutting edge research will be tomorrow’s history. The following chapters 
provide a glimpse of how current research and practice may evolve as both methods 
and computational capabilities continue to advance.

Questions for Discussion

• How would you characterize the notion of “intelligence”, first as a characteristic 
of human beings (or other organisms) and second as a feature of modern comput-
ing? How do those characterizations diverge from one another? In what sense are 
devices that you use every day “intelligent”.

• What has been the role of communications technology in advancing both artifi-
cial intelligence research and its applications in biomedicine?

• Given the explosive interest in expert systems, including their potential use in 
biomedicine, to what do you attribute their failure to meet early expectations and 

31 https://hai.stanford.edu/news/de-identifying-medical-patient-data-doesnt-protect-our-privacy. 
(accessed August 13, 2022).
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the emergence of the AI Winter of 1987–1993? Consider inherent characteristics 
of the approach as well as the then-current communications and computational 
technologies.

• What accounts for the slow progress in machine learning (despite some impres-
sive early examples) until the last two decades?

• Do we need a resurgence of expertise in the area of knowledge engineering for 
the development of medical AI systems? Why or why not?

• What uses might unsupervised learning have in medicine?
• How might prior medical knowledge, codified in knowledge structures such as 

ontologies, be provided to deep neural networks to improve their performance?
• What are the principal barriers that you envision in the ongoing effort to develop, 

test, and implement medical AI systems that interact directly with clinicians? 
With patients?

Further Reading

Dyson G.  Turing’s Cathedral: The Origins of the Digital Universe. New  York: 
Vintage Books, 2012.

• A historical description of scientific innovation, told in the context of work by a 
team of young mathematicians and engineers, led by John von Neumann at 
Princeton’s Institute for Advanced Study, who applied the ideas of Alan Turing 
to develop the fastest electronic computer of its era. That work also introduced 
the concept of RAM (random access memory) that we still use in most comput-
ers today. See also Alice Rawsthorn’s book review, “Genius and Tragedy at 
Dawn of Computer Age” (New York Times, March 25, 2012).

Simon HA.  The Sciences of the Artificial (3rd edition). Cambridge, MA: MIT 
Press, 1996.

• Originally published in 1968, this is a classic volume by a Nobel Laureate 
(Economics) who was also an early luminary in the field of AI. His assessment 
of AI includes topics that include not only his thoughts as a cognitive psycholo-
gist, but also analyses of the organization of complexity, the science of design, 
chaos, adaptive sysstems, and genetic algorithms.

Clancey WJ, Shortliffe EH. Readings in Medical Artificial Intelligence: The First 
Decade. Reading, MA: Addison-Wesley, 1984.

• This book is a compendium of classic papers describing the first generation of 
AIM systems, including MYCIN, CASNET and INTERNIST-1.  It provides a 
detailed account of the methods underlying the development of these systems, 
including methods for the elicitation of expert knowledge and probabilistic infer-
ence procedures.

Shortliffe EH. Artificial intelligence in medicine: Weighing the accomplishments, 
hype, and promise. IMIA Yearbook of Medical Informatics 2019;28(01):257–62, 
(https://doi.org/10.1055/s- 0039- 1677891).
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• This paper can be considered as the third in a series that includes refs. [40, 41] in 
that it describes the state of the field approaching the year 2020. The paper pro-
vides a historically-informed perspective on recent developments in machine 
learning methodology, takes stock of achievements to date and considers chal-
lenges that remain for clinically impactful deployment of AIM systems.

Szolovits P. (ed.) (1982). Artificial Intelligence in Medicine. (AAAS Selected 
Symposium). Boulder, CO: Westview Press. (https://www.google.com/books/edi-
tion/Artificial_Intelligence_In_Medicine/8tmiDwAAQBAJ)

• This book is an edited volume, published originally by the American Association 
for the Advancement of Science (AAAS), with chapters summarizing much of 
the medical AI research of the 1970s. It includes an especially important paper 
by Harry Pople describing the evolution of the INTERNIST-1 system.

Bengio Y, Lecun Y, Hinton G. Deep Learning for AI. Communications of the ACM 
2021;64(7):58–65 (https://doi.org/10.1145/3448250).

• Yoshua Bengio, Yann LeCun, and Geoffrey Hinton are recipients of the 2018 
ACM A.M. Turing Award for breakthroughs that have made deep neural net-
works a critical component of computing. This commentary describes their 
reflections on the progress to date in building deep neural networks and their 
thoughts on the future of deep learning, including the role of symbolic AI.
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Chapter 3
Data and Computation: A Contemporary 
Landscape

Ida Sim and Marina Sirota

After reading this chapter, you should know the answers to these questions:
• What type of data can be leveraged for medical research and care?
• How do we know and learn about the world through data and computation?
• What computational infrastructures currently exist to support research discovery 

and clinical care?
• What are artificial intelligence and machine learning and how are they related?
• What types of knowledge representation exist?
• What are open challenges in the field moving forward?

 Understanding the World Through Data and Computation

Data has been called the “new oil” [1] or likened to “sunlight” [2] in its ubiquity and 
importance. Yet no one goes to medical school to learn data; one goes to medical 
school to learn what’s needed to diagnose, treat, and care for people. What then is 
the role of data in biomedicine? Ackoff [3] is often credited with positing the data- 
information- knowledge continuum, in which data are raw observations, information 
is data in context, and knowledge is an understanding about the world that is useful 
for explaining, predicting, and guiding future action. Knowledge—what we learn in 
medical school—may be explicit and codifiable (e.g., guidelines, textbooks), tacit 
and not codifiable (e.g., expertise, heuristics), or process knowledge (e.g., how to 
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remove a gallbladder). Here is a clinical example. An observation that a patient’s 
Hemoglobin A1c (HbA1c) is 8.2% is data; that this HbA1c of 8.2% is above the 
normal range is information, i.e., data in context; that a high HbA1c is associated 
with increased risk of adverse cardiovascular outcomes is knowledge. Knowledge is 
used, along with data and information about specific patients or populations, to 
guide actions in clinical care and population health respectively.

In recent years, machine learning and other computational approaches have pow-
ered a new path to transforming data into knowledge. But of course, biomedicine 
had been generating knowledge from data well before the modern era of computing. 
The dominant epistemology of clinical medicine—“the investigation of what distin-
guishes justified belief from opinion” [4]—became increasingly grounded in the 
scientific method starting at the turn of the twentieth century, progressed as a result 
of the 1910 Flexner Report [5] to formalized teaching of physiology and biochem-
istry in medical school (See Chap. 16), and culminated with the tenets of evidence- 
based medicine (EBM) as described by Guyatt and others in 1992 [6]. EBM is 
marked by scrupulous attention to experimental sources of bias that may cloud 
attempts to distinguish “justified belief from opinion.” The randomized controlled 
trial (RCT), which controls for both known and unknown confounders through ran-
domization, was held up as the gold standard for resolving questions of causation, 
sitting atop the evidence hierarchy save for the aggregation of RCTs in meta- 
analysis (Fig. 3.1).

However, this classical formulation of EBM addresses only questions of causa-
tion (does X cause Y). RCTs are not an appropriate study design for other types of 
questions central to clinical care [7], including description of natural history 
(what happens to people with Stage 5 lung cancer), classification (does this 

Meta-Analyses
of RCTs

Randomized Control
Studies (RCTs)

Interventional Studies

Prospective Cohort Studies

Retrospective Case-Control Studies

Case Series and Case Reports

Fig. 3.1 Hierarchy of evidence according to evidence-based medicine
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patient belong in (i.e., is classifiable into) the group of patients with Type 2 diabe-
tes), prediction (how long will this patient with Stage 5 cancer live), and expla-
nation (how does a high HbA1C result in elevated cardiovascular risk). An 
expanded version of EBM now addresses these other epistemological tasks using 
other study designs such as case control studies, prospective cohort studies, and 
prognostic rules [8].

 

Evidence is generated from data collected according to some study protocol 
(e.g., for an RCT, cohort study, or systematic review) and analyzed through biosta-
tistical methods (e.g., intention-to-treat analysis for RCTs). The analyses generate 
findings which are used to support claims of knowledge (e.g., dexamethasone 
reduces 28-day mortality in some hospitalized patients with COVID-19 [9]). A par-
ticular claim of knowledge is justified beyond simple belief based on the evidentiary 
strength of the study design and analytic method. The claim that dexamethasone is 
efficacious for COVID-19 as supported by a well-conducted RCT can be contrasted 
with a belief in some circles of hydroxychloroquine’s efficacy.

The contemporary landscape of biomedical epistemology is in tension and flux. 
While much of clinical research is still firmly embedded in traditional EBM 
approaches to generating evidence and knowledge, new computational approaches 
analyze vast amounts of data using “study designs” or algorithms that are wholly 
different from how clinical researchers and clinicians have been taught to know the 
world. Logistic regression and various machine learning algorithms are both ana-
lytic methods applied to data to generate evidence for claims of knowledge. These 
two ways of knowing [10]—EBM and data science—are complementary and can 
both be advanced with contemporary computational capabilities. This chapter 
reviews the foundations of data and computation as an underpinning to the follow-
ing chapters.

 Types of Data Relevant to Biomedicine

There are many broad classes of data relevant to biomedicine and healthcare, includ-
ing Electronic Health Records (EHR), -omics, imaging, mobile and social media, 
environmental, public health, and clinical research data. The EHR captures patient 
information including demographics, diagnosis codes, lab test results, medications, 
allergies, and clinical notes generated from the provision of health care. While these 
data are originally collected for clinical and reimbursement purposes, they provide 
an incredible opportunity to mine and apply machine learning techniques for pre-
dicting disease risk or understanding disease better. These data have been used 
widely to predict patient outcomes such as hospital readmission rate [11] or 
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pregnancy outcomes [12]. Other clinical datasets include MIMIC-IV [13], a large, 
single- center database containing information relating to patients admitted to criti-
cal care units at a large tertiary care hospital. MIMIC is a rare example of a large 
clinical dataset available for use by the broader research community. There are 
efforts in clinical trials data sharing through repositories such as ImmPort [14] and 
Vivli [15]. Finally clinical imaging is another field with many opportunities to apply 
advanced machine learning and predictive modeling techniques for diagnostic pur-
poses, as further described in Chap. 12.

Genomic and other molecular profiling technologies allow us to extract large 
amounts of data from patient samples, elucidating previously unknown factors 
involved in disease, such as drug targets or disease biomarkers. Much of the data 
from these types of experiments are publicly available. For instance, gene expres-
sion data are hosted in the Gene Expression Omnibus (GEO) [16] that as of July 
2021, contains data on over 4.5 million samples and over 150,000 experiments. 
These data are very rich, capturing a number of different disease areas. With the 
technologies getting cheaper and more advanced, many of the transcriptomic 
studies now capture expression on a single cell level. dbGAP [17] and Short Read 
Archive (SRA) both house sequencing data with additional security for ensuring 
patient privacy. There are also disease-specific databases such as the Cancer 
Genome Atlas (TCGA) [18] that contains molecular measurements on more than 
10,000 cancer samples and adjacent normal controls including transcriptomics, 
genetics, methylation and proteomics. The Preterm Birth Data Repository [19] is 
another example of a data repository, which as of July 2021 hosted over 45 molec-
ular studies relating to pregnancy outcomes with a focus on preterm birth. A more 
in-depth description of applications of artificial intelligence to molecular mea-
surements as part of the field of translational bioinformatics can be found in 
Chap. 14.

Clinical and molecular datasets can furthermore be enhanced by public health 
data such as The National Health and Nutrition Examination Survey (NHANES). 
NHANES is a program of studies designed to assess the health and nutritional status 
of adults and children in the United States and uniquely combines interviews and 
physical examinations. CalEnviroscreen [20] is a database that captures environ-
mental exposures across the state of California. Birth and death records (e.g., OSHP 
[21]) have been used extensively for research purposes. For instance in our own 
work, we have integrated the environmental exposure data from the CalEnviroscreen 
together with birth records information in order to identify arsenic and nitrate as 
water contaminants that are associated with preterm birth [22]. Finally in the last 
several years, mobile/social media data such as actigraphy, Twitter, and smartwatch 
data has been used to improve disease diagnosis (e.g., of atrial fibrillation [23]), 
monitor symptoms [24], and drive health behavior change [25, 26]. Newer modali-
ties of data acquisition including Ecological Momentary Assessments (EMAs) [27] 
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that prompt users for their behaviors and experiences in real time in their natural 
environments are offering an unprecedented view into people’s lived experience of 
health and disease.

The truth, however, is that there is no such thing as “health” and “non-health” 
data: all data can have implications for health. For example, individual-level data 
such as your online purchases, social media, geolocation, financial and criminal 
record data can be mined for predictors of health risk and health status. Environmental 
and population-level data such as block-level air pollution and noise [28], and vot-
ing patterns in your state [29], could be as predictive for health as traditional EHR 
data. The boundaries dividing health from general societal data and computing 
infrastructure are increasingly porous.

 Knowing Through Computation

The explosive availability of Big Data—distinguished by high Velocity (speed of 
data generation), Volume, and Variety—enables new levels of data-driven reason-
ing, of which there are two major flavors. Abductive reasoning as originally coined 
by Pierce in 1955 [30] can be characterized as a cyclical process of generating pos-
sible explanations or a set of hypotheses that are able to account for the available 
data (see also the similar discussion of these concepts as they apply to human rea-
soning in Chap. 5). More recently, the term abductive reasoning has been expanded 
to the notion of “Inference to the Best Explanation” [31], by which a hypothesis or 
theory is arrived at that best explains the available data. Over time, clinical research 
using traditional statistics also endeavors to arrive at a “best explanation.” A study 
postulates a hypothesis, data is collected and analyzed drawing on deep domain 
expertise, and the null hypothesis is accepted or rejected thus arriving at a provi-
sional explanation of the observed data. Randomized controlled trials are a type of 
study design that controls for known and unknown confounders to strengthen a 
claim of causation, yielding a “best explanation” that can be contravened by other 
or subsequent trials. In computation, case-based reasoning is a classic example of 
abductive decision support systems, which are nowadays overshadowed by induc-
tive machine learning approaches.

Inductive reasoning involves an inferential process from the observed data to 
account for the unobserved. It is a process of generating possible conclusions based 
on available data. The power of inductive reasoning lies in its ability to allow us to 
go beyond the limitations of our current evidence or knowledge to novel conclu-
sions about the unknown. Machine learning––computer algorithms that find and 
apply patterns in (huge amounts of) data––is quintessential inductive reasoning. 
Subtypes include classification, prediction, causal reasoning, and modeling 
(Box 3.1).
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The combination of Big Data and machine learning is fueling a transformation in 
computational reasoning. Coupled with advances in cloud, social, mobile and other 
technologies, a new frontier is opening up for what computers can do with and for 
humans in health and biomedicine.

 Motivational Example

Now that we have an overview of biomedical data and computation, we present and 
deconstruct an example clinical case (Box 3.2) to illustrate high-level issues and 
challenges that will shape the near future of data and computation.

Box 3.1 Examples of Inductive Reasoning
Classification: inferring which class an instance belongs to based on classes 
of observed instances. E.g., a diagnostic decision support system “classifies” 
a given patient to a “disease” based on the similarity of their symptoms to the 
symptoms of prior patients known to have that disease.

Prediction: inferring a future state based on past data. E.g., a clinical 
decision support system predicts whether a patient will require hospitaliza-
tion based on historical hospital admissions data.

Causation: inferring whether X caused Y. E.g., a deep neural network run-
ning over a clinical data warehouse is used to discover whether Drug X 
causes a Side Effect Y.

Modeling: simulating the components, relationships, and actions within a 
biomedical or health system to explain, explore, or predict E.g., a discrete 
event model of endocrine feedback for a disease.

Box 3.2 Illustrative Case
Andre is a 47-year-old man with mild Type 2 diabetes. He was returning from 
a business trip overseas when he felt short of breath, out of sorts, and had 
occasional sharp chest pains. He signed onto a telehealth service offered 
through his employer. The telehealth service’s chatbot interviewed Andre, 
using an avatar that was Hispanic, as Andre is. After an initial set of questions, 
the chatbot handed over the case to a human physician, who conducted a 
video consultation with Andre while reviewing his electronic health record 
data along with his respiratory rate, body temperature, oxygen saturation and 
other data from his smartwatch. The physician recommended that Andre get 
evaluated in person at the nearest Emergency Room (ER). Andre is getting 
worried. On his way to the ER, Andre asks Siri what he might have. Siri tells 
him scary diagnoses like pneumonia, and something called pulmonary embo-
lism. Siri explains that pulmonary embolism is when a blood clot forms in a 
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leg after prolonged sedentariness (like a long flight) and breaks off to the 
lungs causing chest pain and shortness of breath.

At the ER, Andre was first seen by a resident physician-in-training who 
ordered multiple tests including labwork, a chest x-ray, and a chest CT. Based 
on those data, a decision support system ran predictive models that resulted in 
a ranked list of differential diagnoses, with an intermediate probability for 
pulmonary embolism. The resident presented the case to Dr. Jackson, the 
attending ER physician. After reviewing the data and output, Dr. Jackson 
went to talk with Andre and examine him. She noticed crackles in the lungs, 
an S3, a prominent right-sided cardiac lift and elevated jugular venous pres-
sure. On further questioning, Andre mentioned that he had had a “bad cold” 
about 1 month before and had been feeling unwell even before the business 
trip. Suspecting biventricular failure from viral myopericarditis, Dr. Jackson 
ordered an echocardiogram and admitted Andre.

Andre is fortunate to have convenient timely access to “virtual-first” care through 
his employer. 9% of Americans have no health insurance [32] at all while 43% are 
underinsured [33]. When health care moved onto virtual platforms during the 
SARS-CoV-2 pandemic, marginalized populations had reduced access to health 
care due to lack of technology and/or technology literacy [34], adding “digital 
determinants of health” to the causes of health inequities (Chaps. 13 and 18). As 
with general consumer technology, chatbot services are increasingly common in 
health. Chapter 9 reviews natural language processing (NLP) and other computa-
tional issues underlying dialog systems. Culturally concordant avatars, language, 
and user interactions are needed to establish belonging and trust with digital interac-
tions for all peoples (Chap. 18). Central to this book on cognitive informatics is the 
importance of a smooth handoff between computational and human care: the deci-
sion to refer to Andre to the ER is one that should involve a human, who in this case 
was able to access and review Andre’s EHR and wearable data to get a better view 
of his overall status. The ability to access such data in real time requires health data 
interoperability encompassing network computing, data standards, and sociotechni-
cal data sharing mechanisms. Siri and the decision support system in the ER illus-
trate the exciting possibilities of automated reasoning. Early diagnostic systems 
dating from the 1970s include INTERNIST-1 and MYCIN (Chap. 2). Simpler sys-
tems, such as the Modified Early Warning System (MEWS) for scoring physiologic 
observations to predict sepsis [35], have been widely used in clinical practice, and 
have evolved to machine-learning based models with better performance (Chap. 
10). Advances in image recognition have given rise to imaging decision support 
systems such as for detecting pulmonary embolism (Chap. 12).

Andre’s case illustrates the importance of framing clinical decision support not 
as a solely computational task but as one of human/AI collaboration requiring a 
human-in-the-loop approach. The ER resident who first evaluated Andre likely had 
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premature closure [36] on the potential diagnosis of pulmonary embolism (PE) 
and collected data (e.g., chest CT) with PE in mind while not pursuing other poten-
tial diagnoses. When presented with this restricted set of data, the decision support 
system backs up the resident’s diagnostic hunch. Dr. Jackson, the more senior phy-
sician, performs a more thorough history and exam with a broader differential in 
mind, and notes signs of biventricular failure that the resident missed. These find-
ings increase her suspicion for viral myopericarditis, a diagnosis which becomes 
more likely with additional history that Andre has felt increasingly unwell since a 
viral syndrome 1 month ago. That the decision support system did not rank viral 
myopericarditis high on the potential list of diagnoses is less a failure of the diag-
nostic algorithm than a failure of the human component. Cognitive informatics 
emphasizes a balanced approach to how humans and machines work together. One 
could imagine circumventing the resident’s premature diagnostic closure by instru-
menting Andre’s existence—surveilling his exposure to a virus 1 month ago, track-
ing his progressively worsening symptoms and elevated heart pressures, sensing his 
decreased gait speed and mobility—to diagnose his condition before he hit the 
ER. Aside from the technical challenges of achieving accurate diagnosis using such 
multi-modal time-varying data, the continuous collection of vast amounts of data 
from our daily lives presents a potentially grave cost in privacy. Data privacy is a 
core element of trust, as is, increasingly, transparency and fairness of the algorithms 
underlying computational decision support (Chap. 18). The remainder of this chap-
ter discusses the main data and computational issues raised by Andre’s use case.

 Computational Landscape

There exists frequent confusion between artificial intelligence (AI) and machine 
learning (ML) and between ML and statistics. AI is the ability of a machine to 
perform tasks (and behave) like an intelligent being. AI encompasses a broad range 
of functions that lead a machine to “seem” intelligent, that we can break up into 
functions relating to data acquisition and processing, “thinking”, and action in the 
real world. Data acquisition and processing include machine vision and image pro-
cessing (e.g., detecting breast cancer in a mammogram, Chap. 12), speech recogni-
tion (e.g., dialog systems, Chap. 9), and NLP (e.g., extracting smoking status from 
EHR free text, Chap. 7). Thinking includes reasoning (as above), planning (e.g., 
surgical robot planning), and learning (Chaps. 5 and 6). Action in the real world 
includes image generation (e.g., embodied conversational agents, Chap. 9), speech 
generation (e.g., dialog systems, Chap. 9) and autonomous systems (e.g., robots that 
deliver meds).

As shown in Fig. 3.2, AI is a subset of computer science and ML is a subset of 
AI. Confusingly, ML also overlaps with statistics and data science. In fact, if ML is 
“computer algorithms that find and apply patterns in data,” statistics does so too. 
Although ML typically is used on huge amounts of data, both ML and statistics are 
just alternative ways to understand and draw inferences out of data. Because ML 
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has commonalities with traditional analytics, ML is subject to the same pitfalls as 
traditional statistics, including bias, confounding, or inappropriate interpretation 
(Chap. 18). We can and should hold ML to the same expectations for scientific 
integrity as we do traditional analytics.

 Knowledge Representation

Knowledge representation is the field of AI dedicated to representing information 
about the world in a form that a computer system can understand and use to solve 
complex tasks such as diagnosing a medical condition.

There are different approaches to data representation including symbolic, rule- 
based and graph-based formalisms. One of the most active areas of knowledge rep-
resentation research are projects associated with the Semantic Web which seeks to 
add a layer of meaning on top of the internet. Rather than indexing web sites and 
pages via keywords, the Semantic Web creates large ontologies of concepts. An 
ontology is a set of concepts and categories in a subject area or domain that shows 
their properties and the relations between them. An example of an ontology in the 
biomedical domain is the Gene Ontology used to annotate genes.

A rule-based system has a knowledge base represented as a collection of “rules” 
that are typically expressed as “if-then” clauses. The set of rules forms the knowl-
edge base that is applied to the current set of facts.
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One of the earliest examples of such a system in the clinical domain was MYCIN 
[37], an early backward chaining expert system that used artificial intelligence to 
identify bacteria causing severe infections, such as bacteremia and meningitis, and 
to recommend antibiotics, with the dosage adjusted for a patient’s body weight. 
Knowledge graphs are another method to model knowledge. A knowledge graph is 
a directed, labeled graph in which the labels have well-defined meanings. A directed 
labeled graph consists of nodes, edges (links), and labels. Anything can act as a 
node, for example genes, proteins, diagnoses. Edges between them can be relation-
ships. This type of representation can be used for predicting and modeling different 
biological associations for instance drug-protein targets, gene-disease associations, 
protein-protein interactions, disease comorbidities. Knowledge-based systems are 
discussed in detail in Chap. 4 of this volume.

 Machine Learning

Machine learning is a branch of artificial intelligence based on the idea that sys-
tems can learn from data, identify patterns and make decisions with minimal human 
intervention. Machine learning approaches which are in further detail described in 
Chap. 6 can be characterized into supervised and unsupervised approaches 
(Fig. 3.3). Clustering algorithms that aim to group objects with similar attributes 
using measures of distance or similarity. For instance, one can cluster patients based 
on their clinical profiles and identify subgroups of patients that might be similar to 
each other. Unsupervised algorithms, or those that do not rely on ground truth, 
include k-means, hierarchical clustering, and expectation-maximization clustering 
using Gaussian mixture models. Classification is a task of identifying which cate-
gory an observation belongs to. Some examples include classifying an email to the 
“spam” or “non-spam” category, or in the biomedical domain, assigning a diagnosis 
to a given patient based on observed characteristics of the patient. Classification 
algorithms, which often rely on training data, include random forest, decision trees, 
naive bayes and others and are supervised, which means that there is some data that 
is used with existing labels. These concepts are further explored in Chap. 6.

Deep learning techniques deserve special mention due to the importance these 
methods are gaining currently. Deep learning methods rely on neural networks, 
which were first proposed in the 1940s, in which layers of neuron-like nodes mimic 

Machine Learning

Supervised

Unsupervised Clustering

Regression

Classification
Fig. 3.3 Types of Machine 
Learning (ML) Approaches

I. Sim and M. Sirota



61

how human brains analyze information. The underlying mechanisms of trained neu-
ral networks can be hard to disentangle, and thus, they have mainly been applied 
within biomedicine for image recognition. However, the ability to train a neural 
network on massive amounts of data has raised special interest in applying them 
elsewhere in the field of biomedicine, although the interpretability of these 
approaches is often a challenge (Chap. 8). These methods have been applied exten-
sively to image analysis [38] and have been recently extended to other types of data 
including EHR [39] and genetic data [40].

 Data Integration to Better Understand Medicine: Multimodal, 
Multi-Scale Models

The wealth and availability of public genomic, transcriptomic and other types of 
molecular data together with rich clinical phenotyping and computational integra-
tive methods provide a powerful opportunity to improve human health by refining 
the current knowledge about disease therapeutics and diagnostics. There are differ-
ent types of integrative models that can be applied to bring together diverse data 
[41]. As presented by Richie et al., meta-dimensional analysis can be divided into 
three categories: (1) Concatenation-based integration involves combining data 
sets from different data types at the raw or processed data level before modelling 
and analysis; (2) Transformation-based integration involves performing mapping 
or data transformation of the underlying data sets before analysis, and the modelling 
approach is applied at the level of transformed matrices; and (3) Model- based inte-
gration is the process of performing analysis on each data type independently, fol-
lowed by integration of the resultant models to generate knowledge about the trait 
of interest.

The ideal scenario is when the different types of data are collected on the same 
individuals. In this case both concatenation and transformation-based integration 
can be applied. In our prior work, we examined patient heterogeneity in a lupus 
cohort for which we had rich clinical as well as molecular measurements such as 
genotyping and methylation to identify several clinical clusters of SLE patients and 
molecular pathways associated with those clusters [42]. However, there are also 
situations when the data is not collected on the same individuals and therefore, we 
must use a model-based integration approach to bring the datasets together using 
phenotype as the common ground. For instance, if the goal is to identify genetic, 
transcriptomic and proteomic associations with a certain disease of interest, data 
sets could be extracted from the public domain, where DNA sequence data may be 
available on some of the patient samples, microarray data from a different subset of 
patient samples, and proteomic data on yet another subset of patient samples. 
Model-based integration would allow the independent analysis of each of the 
modalities, followed by an integration of the top models from each data set to iden-
tify integrative consensus models.
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By integrating data across measurement modalities as well as by integrating 
molecular measures with rich clinical phenotyping we can get a bit closer to achiev-
ing precision medicine by improving diagnostics and therapeutics.

 Distributed/Networked Computing

The modern world is a networked world including more recent technologies for 
computing such as cloud computing and graphical processing units (GPUs—more 
in Chap. 2), where both data and computation are distributed across time, space, and 
jurisdictions. A patient’s EHR data may reside in several places: her current primary 
doctor’s health system, the health systems of her previous care providers and of 
emergency visits, and third party telehealth companies for the occasional urgent 
care consult. Her genetic sequence, cancer genotype, and various wearable data 
such as Apple Watch or FitBit are likewise held and computed on in siloed and pro-
prietary systems, each subject to access policies and terms of use that are often 
opaque to both the patient herself and to third parties. As messy as this all is, as 
discussed in the section on “Types  of Data Relevant to Biomedicine”, there is no 
such thing as “health” and “non-health” data. Because the value of data is in its 
aggregation, a challenge is how to bring together multiple sources of data for any 
given query to enable multiple types of computation.

In the traditional approach, data is brought to the query. That is, if a data requester 
wants to run a query, the requester obtains a copy of the data, installs it on his/her 
own machine and runs the query on the data that has been brought in. Because the 
data requester now holds a copy of the data, the original data holder has effectively 
lost control over its access. Moreover, if the datasets are very large, as is the case for 
many imaging, genomic, sensor, and real-world data studies, the data requester may 
not have sufficient storage and compute capacity. Thus, this approach is not compat-
ible with any need for controlled access (which includes most cases of sharing 
patient data) nor for sharing large datasets.

The converse approach is bringing the query to the data. The data requester sub-
mits the query to the machine where the data resides, the query is run on that remote 
machine, and the results are returned back to the requester. Queries can, of course, 
be complex computations and analyses, not just simple search and retrieval queries. 
In this model, data holders retain control of the data and the requester does not ever 
have a copy of or control of the data.

 Data Federation Models

This basic idea of bringing the query to the data can be implemented through differ-
ent configurations of databases and query servers, each with their own benefits and 
challenges. In the simplest Local Data Store model, every data holder hosts its own 
data on its own server. External data requesters establish user accounts on that 
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server under some access control model. The requester then has access to view the 
data and to analyze it, but not to download a copy of the data to the requester’s own 
machine. However, this model is infeasible for widespread data sharing because 
data requesters wishing to query multiple databases must establish multiple user 
accounts and navigate multiple access policies and procedures and have no ability 
to combine data for aggregate analysis.

In the One Single Centralized Datastore model, data from multiple sources are 
aggregated into one “data warehouse.” An example is the University of California’s 
Health Data Warehouse that aggregates data from over 15 million patients seen at 
the five medical campuses of the University of California [43]. Another example is 
N3C, aggregating EHR data on 1.9 million COVID patients from 34 medical cen-
ters across the US into a single portal for secure data access and analysis [44]. This 
model benefits from economies of scale, and data requesters need to submit their 
queries to only one database under a uniform data access policy. However, this 
model still does not allow aggregation of data across data warehouses. The silo is 
just a bigger silo.

The federated query model combines the bring-the-query-to-the-data approach 
with federated databases. Databases are federated when independent geographi-
cally dispersed databases are networked in such a way that they can respond to 
queries as if all the data were in a single virtual database. Thus, data requesters can 
submit a query to a federated query service and have that query be routed to all 
databases participating in that federation. Data holders maintain full control of their 
data, and neither the data requester nor the query service provider ever has direct 
access to the data.

Federation technology has progressed substantially in recent years. An example 
is the R2D2 initiative with a federated network of 12 health systems comprising 202 
hospitals contributing COVID-related EHR data on 45 million patients [45]. In con-
trast to the N3C approach described above, data never leave the 12 health systems, 
which act as nodes on the network making their patient data available in a common 
data model. Queries and computations are submitted via a centralized service that 
then federates computation such as averages, regressions, and machine learning 
models to individual nodes on the network.

 Interoperability

Whenever data is brought together for query and computation, whether in the cen-
tralized warehouse or federated model, the data must be interoperable. 
Interoperability is the ability of computer systems or software to exchange and 
make use of information; it is not enough to send data that is unintelligible to the 
recipient. Interoperability therefore includes both syntactic and semantic interoper-
ability, which are enabled by the use of data interoperability standards. Syntactic 
interoperability refers to the format and ordering of what is exchanged, analogous 
to the grammar of an English sentence for exchanging ideas between humans. 
Examples of primarily syntactic standards include data exchange standards such as 
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HTML and, in health care, HL7 FHIR and DICOM for representing data in transit. 
Semantic interoperability refers to the meaning of what is exchanged, analogous 
to the words and their dictionary meaning in an English sentence. Semantic stan-
dards in healthcare include common terminologies such as SNOMED and 
LOINC. One needs both syntactic and semantic standards to enable full interoper-
ability. A sentence using English words and German grammar is not interoperable 
between humans (Box 3.3).

Data that is to be aggregated also need to share a common data model at rest. The 
University of California Health Data Warehouse, N3C warehouse, and the R2D2 
federated network all use the Observational Medical Outcomes Partnership 
Common Data Model (OMOP CDM) [46]. This model was designed for cross- 
institutional queries of EHR data for quality improvement and research purposes, 
and binds data to a mandatory clinical vocabulary (OMOP Standardized 
Vocabularies) [47] that is based on SNOMED, LOINC, RxNORM and others. Note 
the same OMOP data model and associated vocabularies can be used for centralized 
or federated approaches and is fit-for-purpose for a wide range of EHR data interop-
erability use cases. Common data models and data exchange protocols must be 
defined and agreed upon across all contributors to data sharing and adopted uni-
formly by each contributor or federation node.

 Computational Aspects of Privacy

Chapter 18 reviews the broader issues of Ethics, including Privacy. To understand 
the computational aspects of privacy, we need to distinguish privacy and security. 
Privacy is a concept that applies to people, rather than documents, in which there is 
a presumed right to protect that individual from unauthorized divulging of personal 
data of any kind. Security is the process of protecting information from destruction 
or misuse, including both physical and computer-based mechanisms. Security falls 
under IT. Privacy is when you are assured and protected from a company holding 
your geolocation data selling it without your knowledge or approval. Security is 
when no hacker can get into that company’s systems to access or corrupt your geo-
location data. You can have 100% security and no privacy; if you have no security, 
you also have no privacy.

Box 3.3 Interoperability 
Interoperability is the ability of computer systems or software to exchange 
and make use of information. Syntactic interoperability refers to the format 
and ordering of what is exchanged. Semantic interoperability refers to the 
meaning of what is exchanged.
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Privacy is best protected by a combination of technical and legal means. 
Technically, the objective is to minimize the risk that an adversary can associate or 
re-identify your personal data with you. However, there is no guarantee of absolute 
protection against re-identification. Data—EHR, geolocation, fitness data—can be 
subjected to de-identification or anonymization to increase privacy. De-identified 
data is data that has identifying personal data such as names and birthdates removed 
or perturbed in such a way as to be non-identifying (Chap. 18). Anonymized data 
has identifying personal data removed or perturbed and the key linking a data record 
to a particular person is destroyed such that the data becomes anonymous. In truth, 
with sufficient external data, de-identified and even anonymized data can be re- 
identified. Thus, legal mechanisms such as data use agreements (DUA) are needed 
to supplement technical privacy protection.

The challenges of privacy protection are magnified when data need to be aggre-
gated. The more data there is about an individual, the greater the risk the data will 
uniquely match an individual leading to re-identification.

The risk is further magnified with federated data sharing. Mechanisms such as 
differential privacy [48] are used where queries are federated over perturbed data 
and the answers are then operated on to “subtract” out the perturbations to arrive at 
the real answer without increasing the risk of re-identification. Another approach is 
synthetic data [49], where a synthetic dataset is created that matches the distribu-
tional properties of the original data set. In this way, computations can occur on the 
synthetic dataset with some provable level of accuracy to the original dataset. The 
details of computation for privacy are outside the scope of this book but are closely 
tied to the ability to safely aggregate and reuse large amounts of data for machine 
learning. The point to know is that the “old” way of privacy protection under HIPAA 
“safe harbor” [50]—removing a specified list of 18 identifying data elements—is 
increasingly insufficient for modern-day data sharing and computation.

 Trends and Future Challenges

Chapter 19 anticipates the future of AI in medicine and healthcare. Here, we review 
trends and open challenges affecting the general use of data and computation for 
biomedicine.

 Ground Truth

The availability of extensive molecular and clinical data provides an incredible 
opportunity to apply predictive modeling and ML techniques to improve diagnos-
tics and therapeutics. However, ML models need rich and accurate training data, 
including labelling of ground truth (e.g., which patients have the disease that the 
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ML is trying to predict). Many datasets, especially large public datasets, are poorly 
labelled and are also heterogeneous and not well annotated, making them difficult 
to aggregate and use for ML.  Annotation and labelling are difficult and time- 
consuming tasks. For example, labelling clinical and imaging data with ground 
truth labels of diagnosis requires expert time and costs. The limited availability of 
labelled data can be somewhat overcome by the sheer amount of data, but this bot-
tleneck is important to recognize. New semi-supervised approaches are emerging 
that rely on small amounts of labelled data to predict missing labels for larger data-
sets, but these approaches risk perpetuating and amplifying biases and mis-labelling 
in the smaller set. The availability of accurate and unbiased labelled training data 
for ML will be an ongoing challenge.

 Open Science and Mechanisms for Open data

Scientific culture is increasingly embracing open approaches to data sharing and 
reuse, adhering to FAIR (Findable, Accessible, Interoperable, Reusable) principles 
[51]. Findability requires indexing and shared metadata and persistent Digital 
Object Identifiers (DOIs) such as from DataCite or other services that span disci-
plines. Accessibility brings up data rights, ownership, access policies, and fair (as 
in just) credit for data sharing—all of which are wide open issues. We discussed 
Interoperability above.

Reusability needs to be distinguished between reusability by humans or reusabil-
ity by computers. Human reusability is a lower bar. Data and metadata need to be 
findable and sufficiently interpretable by humans to facilitate additional data cleaning, 
alignment, and harmonization to achieve the aggregation purpose. In contrast, auto-
mated reusability by computers requires much more stringent adherence to compati-
ble syntactic and semantic standards for all the data. This upfront work is challenging 
for data mapping but also governance reasons. People need to decide on common data 
elements, which necessitate agreement on potentially controversial scientific issues. 
For example, the N3C Consortium agreed on specific definitions of variables that all 
sites have to map their data into [52]. N3C also had to address privacy concerns for 
human data, as data reusability must take place under fair and just conditions that 
limit the risk of re-identification. Thus, N3C also defined three levels of access to N3C 
data in their secure enclave: a limited data set that can only be accessed with IRB 
approval, a de-identified data set that can be accessed without IRB approval, and a 
synthetic data set that requires only an N3C account and DUA [53]. Perhaps because 
of the additional challenges of protecting privacy, the ethos of open science and open 
data has a stronger hold in the life sciences than in clinical research and care.

As data, information and knowledge are shared, re-purposed, combined, and dis-
tributed in a networked world, the provenance of each component must be audit-
able lest errors and biases become compounded to an extent that threatens the 
integrity of computed inferences and decision support. Infrastructures for managing 
metadata and provenance are currently woefully inadequate. The FHIR [54] and 
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Open mHealth [55] data exchange standards model provenance (e.g., who measured 
a blood pressure reading in the clinic, what sensor model did the sleep duration 
come from) but these attributes are not consistently captured or described. The need 
for detailed provenance is critical for scientific reproducibility and is especially 
important for longitudinal studies of data that may drift over time. For example, the 
NIH’s 4-year RECOVER initiative to study Post-Acute Sequelae of SARS-CoV-2 
(PASC, aka “long COVID”) will be collecting real-world, survey, and sensor data 
whose definition, collection, and post-processing methods are likely to change as 
more is known about PASC. Without a clear trace of data transformations and other 
provenance, the scientific value of the consortium data will diminish over time. 
Provenance architectures, managing the risks of re-identification, and mechanisms 
for tracking and assigning data sharing credit are two major open challenges.

 Data as a Public Good

The ultimate value of data and computation to society rests on the willingness of the 
intended users to accept the outputs. How we collect, describe, and share data and 
how we construct our computational systems can earn the trust of users—or not. As 
discussed in Chap. 18, trustworthiness must be designed into data and computation 
from the outset and cannot be left as an afterthought. Lack of trust is corrosive and 
impedes data fluidity and data aggregation, which decreases the overall value of 
computation by reducing the amount and representativeness of the underlying data.

One of the central pillars of trustworthiness involves protecting the privacy of 
individuals. In the United States, the Health Insurance Portability and Accountability 
Act (HIPAA) [50] governs health data privacy by regulating healthcare organiza-
tions (“covered entities”) on when they can use and disclose individuals’ health 
information. This approach implicitly sets healthcare organizations as the principal 
custodians of health data, thus giving such organizations outsize control (and 
responsibility) over the trust fabric for the use of computers in health care. The 
European Union, in contrast, takes a person-centered rather than an organization- 
centered approach. The General Data Protection Regulation (GDPR) [56] explicitly 
places the individual in control of the use and disclosure of their own data, and 
defines a more expansive framing of data protection to include not only privacy but 
also appropriately scoped data requests, transparency, and fairness. As demonstrated 
by the SARS-CoV-2 pandemic, however, data also serve as a public good to inform 
public policies, drive machine learning models, or demonstrate the efficacy of phar-
maceutical and non-pharmaceutical interventions. While care must be taken to re- 
purpose data originally collected for individual care, a justice-based model for data 
sharing [57] is emerging that focuses on fostering public trust in uses of such data 
for the public good with attention to the needs of vulnerable populations and elimi-
nating health disparities. Data sharing that prioritizes public interest as well as per-
sonal privacy promotes optimal data use for society. Over time, the technical 
architecture of data, data sharing, and computation will morph to drive and align 
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with society’s evolving relationship to data, with deep implications for the future of 
cognitive informatics.

Questions for Discussion

• What are some existing clinical data resources and standards that allow for data 
analysis and integration?

• What molecular databases exist now that can be leveraged for biomedical 
research?

• How can supervised and unsupervised machine learning approaches comple-
ment traditional evidence-based medicine approaches?

• What is data federation and in what ways can it be achieved?
• What kind of data can be integrated to impact clinical decision making and care?
• What are key considerations in ensuring trustworthy data and computation?

Further Reading

Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating 
data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015 Feb;16 
(2):85–97. doi: 10.1038/nrg3868. Epub 2015 Jan 13. PMID: 25582081.

• This is a comprehensive review paper on integrative approaches. The authors 
explore meta-dimensional and multi-staged analyses — in the context of better 
understanding the role of genetics and genomics in complex outcomes. However 
the aforementioned approaches can also be leveraged for integrating other types 
of data.

Sim I. Mobile Devices and Health. N Engl J Med 2019; 381:956–968.

• Comprehensive review of leveraging mobile devices in health. This article dis-
cusses sensors, digital biomarkers, digital therapeutics and diagnostics, and the 
integration of mobile health into frontline clinical care. It concludes with open 
questions on the ethics, validation, and regulation of mobile health and the pre-
vailing market forces that are shaping the growth of this technology sector.

Straus S, Glasziou P, Richardson WS, Haynes RB. (2018) Evidence-Based Medicine: 
How to Practice and Teach It. Elsevier. ISBN: 9780702062964.

• A comprehensive description of evidence-based medicine geared towards prac-
ticing clinicians. It reviews EBM approaches for the major types of clinical ques-
tions (therapy, diagnosis and screening, prognosis) and includes tools and 
calculators for teaching and applying EBM in practice.

Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, 
Iñaki Inza, José A.  Lozano, Rubén Armañanzas, Guzmán Santafé, Aritz Pérez, 
Victor Robles, Machine learning in bioinformatics, Briefings in Bioinformatics, 
Volume 7, Issue 1, March 2006, Pages 86–112, https://doi.org/10.1093/bib/bbk007.
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• This is a comprehensive review of machine learning in bioinformatics. The 
authors present a number of modelling methods, such as supervised classifica-
tion, clustering and probabilistic graphical models for knowledge discovery, as 
well as deterministic and stochastic heuristics for optimization. They present 
applications in genomics, proteomics, systems biology, evolution and text min-
ing however the methodology is applicable to other types of data including 
clinical.

Alyass, A., Turcotte, M. & Meyre, D. From big data analysis to personalized medi-
cine for all: challenges and opportunities. BMC Med Genomics 8, 33 (2015). https://
doi.org/10.1186/s12920- 015- 0108- y.

• While there are incredible opportunities with the recent advances in high through-
put technologies allowing for leveraging and integrating large datasets to achieve 
more precise modeling of human disease, there are also challenges that need to 
be recognized. Several bottlenecks include generation of cost-effective high- 
throughput data; hybrid education and multidisciplinary teams; data storage and 
processing; data integration and interpretation; and individual and global eco-
nomic relevance. This article discusses challenges and opportunities in personal-

ized medicine using big data.
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Chapter 4
Knowledge-Based Systems in Medicine

Peter Szolovits and Emily Alsentzer

After reading this chapter, you should know the answers to these questions:
• What were some of the early approaches to building human diagnostic expertise 

into computer programs?
• What representations supported different styles of inference using programs’ 

knowledge?
• What are inductive biases and how can they be encoded into model architecture 

and training?
• What are some approaches for learning representations of graph-based data? 

How have these methods been applied in the biomedical domain?
• How can biomedical knowledge captured in unstructured text be leveraged in 

machine learning models?

 What Is a Knowledge-Based System?

Maintaining or restoring health has, not surprisingly, been a goal of people even 
during the pre-scientific era. Human mental capacity seems very good at observ-
ing phenomena, generalizing from those observations, making consequent predic-
tions of what is likely to happen, choosing actions that try to optimize those 
expected outcomes, and passing those acquired chunks of knowledge on to future 
generations so they may benefit from the accumulation of learning without having 
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to rediscover these individually. Traditional healers experimented with natural 
medications to treat symptoms, so ancient Egyptian records pass on the knowl-
edge that digitalis (from the purple foxglove) helps to treat certain types of con-
gestive sickness. Although in that era, there was apparently no understanding that 
the heart pumped blood (first formally noted by Harvey in 1628 [1]), the empirical 
correlation between treatment with foxglove and improvements in some patients 
became part of medical knowledge. In 1785, Withering recognized that digitalis 
affected the function of the heart, further characterized its therapeutic and toxic 
effects [2], and published a guide to its proper use that remained the state of the 
art until real pharmacokinetic models supplanted it in the middle of the 
twentieth century.

This short story illustrates some of the different kinds of knowledge that medi-
cine has accumulated over the years. Often, it begins with an empirical correlation 
that holds up frequently enough to be clinically useful. Later, that association may 
become interpreted as due to some mechanism whose operation is understood at 
some level of detail. Later yet, we may develop a more quantitative understanding 
of just how a disease develops, what we may expect from its unchecked develop-
ment (prognosis), how it generates the signs and symptoms associated with it (diag-
nosis), and how it responds to therapeutic interventions (treatment). This evolution 
of understanding enables more and more sophisticated uses of such knowledge to 
improve medical care. Although we strive for a more mechanistic understanding of 
clinical phenomena in our research, we still do not understand the mechanisms of 
many diseases in detail, yet we accumulate useful knowledge of the above various 
sorts to help improve the lives of patients.

Knowledge-Based Systems (KBS) in health care build on such a tradition, and 
try to reproduce in computer programs the ways in which human practitioners think 
about and handle difficult medical cases. Most such efforts have not tried to sup-
plant human clinicians, but have aimed to improve their decision making by provid-
ing an automated “second opinion”, i.e., guidance on how to think about a clinical 
case, to interpret data available about the patient, and to choose appropriate further 
tests and treatments.

Many of the landmark KBS were developed in the latter half of the twenti-
eth century and represented the earliest somewhat successful attempts to achieve 
such automation of medical advice [3, 4]. The knowledge leveraged by these sys-
tems was typically elicited through formal or informal interviews with human cli-
nicians, often prompted by thinking through specific difficult clinical cases they 
had encountered, and through manual encoding of knowledge found in textbooks 
and journal articles. Although researchers recognized the potential value of learn-
ing from clinical databases, such electronic medical (or health) records (EHRs) 
existed only in a tiny set of leading academic-affiliated medical centers. Most 
records were kept exclusively on paper, so significant datasets were simply unavail-
able. Starting with the advent of Medicare and Medicaid in 1965, when the federal 
government took responsibility for paying for health care for the elderly and the 
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poor, computerized records of such bills and payments began to be kept broadly, 
but contained only the data necessary for making payment decisions. For example, 
they may have recorded that a patient had a chest x-ray (a billable procedure), but 
not what was found on the x-ray, because the payment was the same, independent 
of resulting findings.

Only with the passage of the new funding for improving health care at the start 
of the Obama administration in 2009 did EHRs become widely adopted, through 
incentives under the HITECH Act1 that subsidized hospitals, clinics and practices 
to install such systems. Today, most major academic medical centers have reposi-
tories of case records documenting the conditions of, and the care given to, mil-
lions of their patients, often going back in time for over a decade (or, in pre-2009 
EHR systems, even longer). Regional, national and international repositories are 
far less common because of institutional concerns for patient confidentiality and 
each institution’s desire to exploit their own data before sharing them. A few 
exceptions, such as the MIMIC [5] and Physionet [6] de-identified repositories 
from one Boston-area hospital and the eICU repository [7] donated from Philips’ 
tele-ICU records have been available. Recently, however, large national reposito-
ries such as the UK Biobank [8], the US “All of Us” [9], “Million Vets” [10] and 
PCORI (Patient Centered Outcomes Research Institute)2 datasets are becoming 
more easily available for researchers. Today machine learning systems offer 
methods underlying the exciting work enabled by such collections of data (see 
Chaps. 6, 10, and 11). This chapter also touches on machine learning, with the 
specific aim of studying how one can learn new knowledge and integrate it with 
what is already known. However, Chap. 6 provides a broad introduction to 
the topic.

 How Is Knowledge Represented in a Computer?

Philosophers have debated the nature of knowledge for millennia, and we are 
unlikely to resolve that discussion here. However, it is helpful to ask what types of 
knowledge are useful in medicine and how one can represent such knowledge in the 
computer.

Davis et al., in 1993 [11], reviewed attempts to represent knowledge in artificial 
intelligence (AI) programs and noted five major characteristics of a knowledge rep-
resentation. First, knowledge about anything other than formal objects (e.g., 

1 “Health Information Technology for Economics and Clinical Health (HITECH) Act”, part of the 
overall Recovery Act funding that tried to advance economic recovery from the 2008 recession. 
The subsidies depended on certification by the Office of the National Coordinator for Health 
Information Technology (ONC) that the purchased systems met “meaningful use” criteria.
2 See https://www.pcori.org/. (accessed August 17, 2022).
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mathematics) must be an imperfect surrogate for the thing represented. For example, 
no computer representation of “cancer” can encompass all its characteristics and 
associations. Second, a representation makes a set of ontological commitments—
what real-world things can be represented in the computer? In a medical setting, for 
example, should we represent only biomedical entities, or should the representation 
also allow surrogates for a patient’s social and economic environment, personal 
hopes and desires, degree of risk aversion, and the clinician’s history of medical 
experience, past patients’ outcomes, etc.? Third, a representation is tied to a frag-
mentary theory of intelligent reasoning. AI’s roots are grounded in various tradi-
tions, including logic, psychology, biology, statistics and economics, each of which 
has inspired different styles of reasoning and has demanded different ways to repre-
sent underlying knowledge. The representation defines not only what inferences are 
possible, but also which are recommended. We discuss many of these below. Fourth, 
using a representation must be sufficiently efficient computationally to be practi-
cally useful. Fifth, a representation must serve as a medium of human expression, 
allowing people and the computer to communicate their knowledge to each other.

 Rules: Inference Steps

From the logical tradition, rules have often been used to represent individual steps 
of inference. Such rules are usually written in the form of an implication,

 LHS RHS→  

where the Left Hand Side (LHS) is a conjunction of conditions that, if true, justify 
asserting the conjunction of conditions in the Right Hand Side (RHS). If these con-
ditions refer only to specific entities, then the rules are simple, such as in Fig. 4.1a. 

a b c

Fig. 4.1 Logical inference rules. In sentential logic, all statements and rules are about individual 
instances. Implications have a left and right-hand side separated by an arrow, and state that if the 
left hand side is true, then the right hand side is also. (a) Shows modus ponens, which derives a 
conclusion (Wet-Street) from its premises (that it is Raining, and that Raining implies Wet-Street). 
(b) Shows an example of modus tollens, where knowing the falsity of the right hand side (the 
street is not wet) contradicts the left (it must not be raining). (c) Shows an example of modus 
ponens, but now in predicate logic, which introduces variables (x) that may be bound to any indi-
vidual (Socrates) and quantifiers for all (∀) and there exists (∃). In this case, the premises are that 
every human is mortal and that Socrates is human. Therefore, we may conclude that Socrates is 
mortal. The symbol → stands for implication, ¬ for negation, ∧ for and, and ∨ for or
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It represents the knowledge that raining implies that the street will be wet and that 
it is raining, from which we may conclude that the street is wet. Figure 4.1b shows 
a deduction that proceeds in the opposite direction, so that based on the same impli-
cation between rain and the wet street, if the street is not wet, then it must not be 
raining.

This representation, called the sentential logic, is too limited for most uses 
because it cannot refer explicitly to generalizations. Predicate logic introduces 
variables into the notation and quantification over those variables, to extend the 
representational power of the language. Figure 4.1c uses an old chestnut, that if we 
know that all humans are mortal and Socrates is human, then he is mortal. To use 
such rules, we must do pattern matching to bind variables to specific entities. In 
addition to the universal quantifier (∀), logic also provides an existential quantifier 
(∃), as in

 
∃ ( )xHuman x

 

which says that there exists some human being (x).
Programming languages such as Prolog [12] and OPS5 [13] were created to 

implement such logical rules and to apply them efficiently to data structures that 
represent particular entities. OPS5 uses a collection of facts in its working memory 
and a set of implication rules to derive new facts from old via its rules. The facts 
may be structured, for example, to include various attributes, e.g., Socrates’ age. 
The rules’ LHS contain a logical combination of pattern matching specifications 
that allow them to match multiple specific facts, thus providing predicate logic facil-
ities. The RHS can create new working set elements and delete or modify old ones. 
This method is called forward chaining, where the system works from known facts 
and rules to establish new facts. Such programming languages also introduced non- 
logical operations to help control their inferences and avoid infinite loops. For 
example, a rule in the sentential calculus that says that if A and B are both true, then 
“A and B” (A ∧ B) is also true, can “run away” because it can then produce A ∧ (A 
∧ B), A ∧ A ∧ (A ∧ B), A ∧ A ∧ A ∧ (A ∧ B), …, etc. Systems can include various 
rule ordering and other heuristics in order to prevent the automatic derivation of 
such useless inferences.

Prolog [12], by contrast, uses backward chaining, which traces back from a 
query (a fact pattern whose truth or matching entities are sought) by finding rules 
whose RHS can assert a fact that matches that query and then recursively uses 
each pattern in such rules’ LHS as further queries. Because these query patterns 
typically contain variables, Prolog can, for example, find the entities that can be 
proven to have desired characteristics. Prolog uses Horn clauses, in which the 
RHS consists of only one element, and “negation as failure”, where its inability to 
prove A allows it to assert ¬A. Although forward and backward-chaining seem 
quite distinct methods, forward-chaining systems can implement a backward-
chaining style of reasoning by including explicit assertions about their goals 
among their facts.
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The prime example of rule-based approaches in medicine was the MYCIN sys-
tem [14], developed in the mid-1970s for diagnosis and treatment selection for bac-
teremia, later extended to meningitis. MYCIN’s principal method was backward 
chaining from the goal of identifying significant organisms that needed to be treated 
(see Chap. 2). Given a (sub-)goal, it would find rules that could make an assertion 
satisfying that goal and then establish each of the LHS conditions in that rule as 
subgoals. Once those subgoals had been satisfied, it would assert the RHS with a 
computed certainty into its working memory. If no rule existed, then it would 
retrieve the matching fact from its working memory or just ask the user for the 
desired goal. In this way, its control structure essentially traced out a branching 
logic tree that dynamically collected the information that could help derive the over-
all goal. An example of one of MYCIN’s rules, recognizing bacteroides as the 
organism in an infection, is shown in Chap. 2 (Fig. 2.3). A more heuristic (and less 
certain) rule suggesting other likely organisms in a patient receiving steroid treat-
ments is shown in Fig. 4.2.

MYCIN’s creators developed their own programming language in order to add 
several extensions to the basic rule-based framework. First, they wanted to represent 
uncertainty about both the rules implementing clinical knowledge and about the 
derived facts about the patient. Thus, each rule was associated with a certainty fac-
tor stating how strongly one should believe the conclusion of a rule, and the cer-
tainty of a derived fact was a combination of the certainties of the rule that derived 
it and of the facts matching the rule’s LHS elements. Second, in MYCIN’s domain, 
there was a natural organization of facts. Patients had possible sites of interest, each 
site had possible infections, each infection might have one or more cultures taken, 
each of which might grow out a particular organism, each of which might be treated 
with a particular drug. A context mechanism imposed this hierarchical organiza-
tion on the variables in the rules so they did not need to state explicitly that, for 
example, if a rule contained variables for both a culture and an organism, the organ-
ism was grown from that culture. This simplified creation and interpretation of rules 
and allowed creation of an explanation mechanism unburdened by explaining such 
technical connections [16].

The therapy selection portion of MYCIN was implemented using methods other 
than backward chaining rules because its task was essentially a set covering that 

Fig. 4.2 MYCIN’s “steroids” rule. (From a paper describing MYCIN’s explanation capabilities 
[15], used with permission)
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chose a parsimonious combination of antibiotics to cover for all of the likely dan-
gerous pathogens whose presence was concluded by the diagnostic portion of the 
program. MYCIN also included an interesting explanation facility, by which it was 
able to answer questions about how a fact about the patient was used in reaching its 
conclusions, whether and how various rules were used in analysis of a case, and 
even hypotheticals such as what facts would need to have been entered in order to 
reach a particular conclusion.

Yu et  al. evaluated MYCIN’s therapy recommendations against panels of 
Stanford infectious disease experts, who found that over 90% of the recommenda-
tions were acceptable [17]. The program identified (a) whether the patient had a 
significant infection, where agreement with the Stanford and national experts was 
an impressive 97%, (b) the identity of infecting organisms, with 77% agreement, 
and (c) the appropriate therapy, with 73% agreement. However, because the experts 
often disagreed among themselves, MYCIN’s recommendations were still consid-
ered reasonable even in some cases where they did not match the majority recom-
mendation of the experts. Interestingly, the Stanford and national panels at times 
disagreed about proper treatment for a case and thus about whether MYCIN’s con-
clusions were appropriate, the program agreeing more often with the local experts, 
probably reflecting practice differences at different institutions. Another evaluation 
by Yu et al. that focused on meningitis cases showed slightly weaker results, but 
highlighted the frequent disagreements among human experts [18].

 Patterns: Matching

Another highly influential knowledge representation tradition was to organize 
knowledge in terms of prototypes. Marvin Minsky named these constructs frames, 
which typically represented a core concept. They did so by specifying attributes of 
that object, default values for the attributes if they were not explicitly stated, restric-
tions on what values such attributes could take on, and procedures attached to the 
frame that could be run when a new attribute value was asserted or if an unknown 
attribute value was sought [19]. These procedures served a similar function to for-
ward and backward chaining rules in rule-based systems.

The original motivation for frame representations was to address a difficult tech-
nical problem in reasoning about actions, which require some representation of 
state or time. Assertions in a logical formalism need to refer to object attributes in a 
specific state, say (robot1 holding block17 state5), representing that a (one-handed) 
robot, robot1, has the attribute holding, whose value is block17, in state5. If the 
robot then takes two steps forward and is thus in state6, we would not want to have 
to re-derive that it is still holding block17. Frame systems permitted such facts to 
persist across states unless the action that moved from one state to another explicitly 
altered an attribute.

In medical applications, the use of frames was mainly to represent prototypical 
situations. For example, a frame for a disease would have attributes that represented 
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Fig. 4.3 Present Illness Program memory structure and an example of part of the frame for 
nephrotic syndrome

its typical signs, symptoms, predisposing factors, laboratory findings, drug or surgi-
cal treatments, etc.—often in the aggregate called findings or manifestations. These 
manifestations themselves were often represented as additional frames, so more 
details could be provided. For example, in the Present Illness Program [20], 
frames representing diseases and syndromes had a structure such as that shown in 
Fig. 4.3. Associated with each diagnostic hypothesis are its typical manifestation, 
some of which (“triggers”) would serve to evoke the hypothesis if seen. The values 
of these attributes were typically also represented by frames; for example, the frame 
for edema (swelling) contained attributes for how long it had been present, whether 
it appeared for the first time, often or periodically, whether it exhibited a daily tem-
poral pattern, whether it appeared red, etc. Links to other hypotheses could show 
ones that could either cause or be caused by this one, or that should be evoked when 
considering this one if specific differential manifestations were reported. The pro-
gram’s knowledge base, therefore, was a semantic network that tied together the 
representations of all the types of objects it represented. In addition, there were logi-
cal criteria by which a hypothesis could be definitively confirmed or excluded and a 
probabilistic scoring function that attempted to compute the hypothesis’ probability 
given everything known so far about the patient and about linked diseases. Figure 4.3 
shows (part of) the knowledge about nephrotic syndrome, as an example. This pro-
gram focused on nephrology, representing details of 20 disease frames and another  
50 frames for associated syndromes and clinical and physiologic states, which we 
might call phenotypes today.

This program operated by asking for a chief complaint—what brought the patient 
to the doctor—which was expected to evoke one or more disease hypotheses. 
Inspired by observation of how expert human diagnosticians pursued such cases 
(see discussion of the role of cognitive studies in Chap. 2 as well as Chap. 5), the 
program would then ask about additional prototypical findings expected for the 
evoked disorders. It could also use its scoring function to prioritize asking about 
findings relevant to the most likely diagnoses, use unexpected answers to evoke 
additional hypotheses and differentials, and eventually conclude the presence or 
absence of each of the evoked hypotheses based on logical criteria and the scoring 
function. Figure 4.4 shows the network of connections in the program’s long-term 
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Fig. 4.4 The associative (long-term) memory. The associative memory consists of a rich collec-
tion of knowledge about diseases, signs, symptoms, pathologic states, “real-world” situations, etc. 
Each point of entry into the memory allows access to many related concepts through a variety of 
associative links shown as rods. Each rod is labeled to indicate the kind of association it represents. 
Note that the red spheres denote disease states, blue spheres denote clinical states (e.g., nephrotic 
syndrome) and yellow spheres denote physiologic states (e.g., sodium retention). Abbreviations 
used in this figure are Acute G.N. acute glomerulonephritis, Chronic G.N. chronic glomerulone-
phritis, VASC vasculitis, CIRR cirrhosis, Constr. Peric. constrictive pericarditis, ARF acute rheu-
matic fever, Na Ret. sodium retention, SLE systemic lupus erythematosus, ↑BP acute hypertension, 
GLOM. glomerulus, Strep. inf. streptococcal infection, Neph. Synd. nephrotic syndrome. 
(Reproduced with permission from the original paper [20])

memory between these. Figure  4.5 shows a schematic of how new information 
evokes hypotheses by bringing nodes triggered by new facts into the short-term 
memory. Although the machinery of the program contained multiple methods, its 
fundamental approach to diagnosis was matching a patient’s case to the prototypes 
described in its knowledge base. As in the case of MYCIN, the program’s question-
ing behavior was dynamic, driven by its knowledge base and the previous answers 
it had been given.

The INTERNIST-1 program [21], also originally developed in the 1970s (see 
Chap. 2), contained a vastly larger dataset of about 500 diagnoses and 3550 atomic 
manifestations, with 2600 two-way weighted links connecting each disease to its 
possible manifestations. Thus, diagnoses were represented by frames whose attri-
butes included related manifestations, typically around 75 per diagnosis. The mani-
festations, unlike in the Present Illness Program described above, were simply 
atomic tokens that included in a cryptic way—e.g., “ALKALINE PHOSPHATASE 
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Fig. 4.5 Hypothesis generation. BEFORE: in the nascent condition (when there are no hypothe-
ses in short-term memory), tentacles (daemons) from some frames in long-term memory extend 
into the short-term memory where each constantly searches for a matching fact. AFTER: the 
matching of fact and daemon causes the movement of the full frame (in the case, acute glomerulo-
nephritis) into short-term memory. As a secondary effect, frames immediately adjacent to the acti-
vated frame move closer to short-term memory and are able to place additional daemons therein. 
Note that, to avoid complexity, the daemons on many of the frames are not shown. The abbrevia-
tions are the same as those used in Fig.  4.4. (Reproduced with permission from the original 
paper [20])

BLOOD INCREASED NOT OVER 2 TIMES NORMAL”—information that a 
frame representation might have explicitly given. One weight, the frequency, 
approximated the conditional likelihood of that manifestation occurring if a patient 
had the corresponding disease. The other, the evoking strength, indicated how 
strongly observing that manifestation should evoke consideration of that disease. 
Frequency was stated on a 1–5 scale, ranging from “occurs rarely” (1) to “in essen-
tially all cases” (5). Evoking strength ranged from 0–5, meaning “nonspecific” (0) 
to “pathognomonic” (5). There has been much debate about how one might convert 
such numbers to probabilities [22] (also see the discussion of QMR-DT, below); 
generally, they are thought to be on a logarithmic scale. Additional links connected 
diagnoses to each other by causal and associational links, also using a small integer 
representation of likelihood, and each manifestation included an importance score 
stating how critical it was to include an explanation for it in the program’s final 
conclusions (Table 4.1).

INTERNIST-1’s main innovation, in addition to the estimated 15 man-years of 
physician effort to build its knowledge base, was a clever heuristic for forming pos-
sible multiple differentials in the diagnosis of a complex case. Given a set of 
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Table 4.1 INTERNIST-1’s knowledge about alcoholic hepatitis. The first column of numbers is 
the evoking strength, a measure of the degree to which observing that manifestation should 
encourage consideration of the disease, on a scale of 0–5. The second is the frequency, an indication 
of how frequently that manifestation occurs in patients with the disease; its scale is 1–5, roughly 
logarithmic in probability. Most of this long table is omitted here to save space

Manifestations of alcoholic hepatitis Evoking strength Frequency

Age 16–25 0 1
Age 26–55 0 3
Age GTR than 55 0 2
Alcohol ingestion recent HX 2 4
Alcoholism chronic HX 2 4
Sex female 0 2
Sex male 0 4
Urine dark HX 1 3
Weight loss GTR than 10% 0 3
… 69 more rows for other manifestations

manifestations stated to be present or absent, the program computed a score for each 
disease by taking into account the evoking strengths of associated manifestations, 
contributions from other diagnoses that had already been confirmed, penalizing for 
high-frequency manifestations that did not occur in the patient, etc. INTERNIST-1 
would then form a differential around the highest-scoring diagnosis. Its clever tech-
nique was a heuristic that if another, lower-scoring disease could explain either the 
same or a subset of the observed manifestations of the top diagnosis, then it would 
be considered a competitor and would be part of the differential. However, if a 
lower-scoring disease explained manifestations not explained by the leading diag-
nosis, it was taken as evidence that perhaps the patient was suffering from multiple 
disorders. In that case, those lower-ranked diagnoses and the manifestations they 
explained were temporarily set aside. The program would then proceed to use a 
questioning strategy focused on just the formulated differential, driven by the size 
of the differential and numerical differences in the scores of the diagnoses in the 
differential. For example, if the leading diagnosis significantly outscored the others, 
a confirm strategy was used, to ask questions whose positive answers would most 
increase the score of that leader; if, on the other hand, the differential was very 
large, a rule out strategy would choose questions for which a negative answer would 
decrease the scores of less likely diagnoses so that they could drop from the differ-
ential. After concluding a diagnosis, a new differential would be formed around the 
remaining evoked diseases if their scores were sufficiently high. Thus, the program 
was able to diagnose complex cases in which the patient suffered from multiple 
disorders.

INTERNIST-1’s ability to diagnose complex cases was developed using clinico-
pathological conference cases from the New England Journal of Medicine and 
tested against other such cases not used during development [21]. Of 19 cases pub-
lished in 1969 for which the program’s knowledge base included all the diagnoses 
discussed in the Journal (out of 42 such cases that were published in the journal that 
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year), there were 43 major diagnoses (a little over two per case). The program iden-
tified 17 as definite and 8 more as tentative, failing to find 18 diagnoses. Although 
this seems disappointing, a panel of Mass General clinicians missed 15 and even the 
case discussants missed 8, showing that the program was doing a reasonably good 
job on very complex cases.

The INTERNIST-1 algorithm was later reimplemented on the then new personal 
computers as QMR (Quick Medical Reference), using the valuable knowledge base, 
expanded to cover over 750 diagnoses and 5500 manifestations. It was subsequently 
licensed to a company to try to create a commercial product, though that attempt did 
not reach fruition except as an educational tool [23, 24]. Another program with 
similar structure, DXPLAIN [25], was developed over many years at Massachusetts 
General Hospital and has been widely used as a teaching tool in medical schools, 
though not for active clinical decision support.

The task of identifying the right diagnoses in cases where two or more diseases 
may be present is challenging and led to a number of subsequent approaches. One 
of the INTERNIST-1 authors proposed a diagnostic system, Caduceus, that formal-
ized and extended INTERNIST-1’s differential diagnosis strategy to become a 
search through a space of complex hypotheses, guided by additional knowledge 
about anatomical and etiologic hierarchies and graphs representing chains of pos-
sible causality [26]. Mutual constraints from different hierarchies could combine 
partial hypotheses to generate more coherent simple ones. For example, if a mani-
festation could be caused by a number of different diagnoses and if the program’s 
state “believes” (for other reasons) that a particular organ system is involved, then a 
useful heuristic would be to combine those two partial hypotheses to say that the 
intersection of the possible causes with the diseases of that organ system is likely, 
by Occam’s razor, to be a parsimonious explanation. Various search techniques 
could then be used to explore different ways to combine evidence and partial 
hypotheses into a unified whole. Unfortunately, the full knowledge base for this 
proposed program was not constructed, though it remained an inspiring set of ideas 
for subsequent efforts to view diagnostic reasoning as a search through a space of 
hypotheses by decomposing complex cases heuristically into simpler individual 
components [27].

 Probabilistic Models3

 Naive Bayes

Uncertainty lies at the heart of diagnostic reasoning. Some of the earliest diagnostic 
efforts in the 1960s used Naive Bayes models to assess the impact of observations 
about a patient, coupled with laboratory test results, to revise the probabilities of the 

3 This section assumes a basic understanding of probability theory and Bayes’ Rule. A book such 
as Medical Decision Making [28] provides appropriate background.
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diseases that might be afflicting the patient. The programs typically assumed that the 
patient had exactly one disease and that all manifestations of that disease were con-
ditionally independent of each other, depending only on what the actual disease 
was; it is in this sense that such models were termed naive. Programs built this way 
thus included an a priori probability distribution over the possible diseases and con-
ditional probability distributions for each manifestation given each disease. This 
model is most appropriate for diagnosis of acute illnesses because newly presenting 
facts about a patient are likely to be caused by one rather than multiple diseases. It 
is not a good match to the diagnosis of a complex case such as the CPC cases used 
to test INTERNIST-1, where multiple diseases are typically simultaneously present. 
Such models were often applied appropriately to well-bounded problems. Examples 
include acute renal failure or congenital heart disease, where it was reasonable to use 
lab data to suggest which disease of a defined differential diagnosis was most likely.

A highly useful idea was added to allow such Naive Bayes models to optimize the 
order in which they asked about manifestations, to choose that question to ask that 
minimizes the expected entropy of the probability distribution resulting from asking 
that question. If a question has k possible answers, the program can use Bayes’ Rule 
to compute the posterior probability distribution if it got each answer separately, 
then compute the entropy of that distribution, weight each entropy by the probability 
of getting that answer, and thus calculate the expected information gain from asking 
that question. The conditional independence of the manifestations allows this method 
to apply sequentially, optimizing its choice of questions dynamically based on previ-
ous answers, and thus often allows a program to ask for only a small fraction of all 
the possible manifestations known in the model and quickly to reach a probability 
distribution that indicates one disease as highly likely [29] (see Fig. 4.6).

Bayesian Networks

In cases where multiple diseases might be present, with several potentially making 
manifestations more likely, a number of projects adopted a bipartite network repre-
sentation. In this, each disease has an a priori probability, independent of the others. 
Each finding depends on some subset of the diseases, but the findings are, as in 
INTERNIST-1, conditionally independent (See Fig. 4.7). This structure is a subset 
of more general Bayesian networks, directed acyclic graphical models that indicate 
the probabilistic dependencies among multiple nodes. In fact, the QMR-DT project 
[30, 31] reformulated the QMR database into just such a bipartite graph 
representation.

When a finding can be caused by multiple diseases, the conditional probability 
table for that finding has to have an entry for all possible combinations of the pres-
ence or absence of each causing disease. This is, of course, exponentially large and 
impractical for findings that may be caused by many diseases. Therefore, they 
adopted the noisy-or assumption, that a finding is absent only if none of its possi-
ble causes actually cause it. For a finding with just one possible disease cause, its 
probability is just the probability of the disease times the causal probability that the 
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Fig. 4.6 A contemporary graphical user interface for a Naïve Bayes program for diagnosis of 
acute renal failure [29]. The bottom left panel shows the sequence of probability distributions after 
answering the questions as shown at the bottom of the right panel. Other possible but unanswered 
questions at the top of the right panel could be answered, but were considered less informative by 
the program’s entropy minimization heuristic. The top left shows the current (in color) and the 
previous distributions. The case answers are as given in the example in the original paper, and lead 
to a diagnosis of a urinary tract obstruction

disease would cause the finding. For a finding with multiple possible causes, we 
calculate its probability in the way we compute the probability of the “or” of mul-
tiple events, namely one minus the product of the probabilities of each disease not 
causing the finding. If finding S could be caused by any of D1, D2, …, Dk, then:
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where di is whether Di is present or absent. This model also assumes that there is a 
“leak” term, namely that the finding might occur with some small probability even 
if all its causes are absent.

To build this model, they had to turn INTERNIST-1’s frequency estimates into 
the causal probabilities and had to estimate prior probabilities for each disease. 
Also, because general solvers for Bayesian networks take time that is exponential in 
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Fig. 4.7 A bipartite 
Bayesian network showing 
four diseases and nine 
symptoms. The diseases 
may occur simultaneously, 
but are probabilistically 
independent of each other. 
The symptoms depend 
only on the diseases, and 
are conditionally 
independent of each other

the number of undirected loops (i.e., multiple paths of influence), approximation 
methods had to be used to compute posterior probabilities of all the diseases given 
a set of observations of the findings.

In principle, one could combine the insights of QMR-DT with those of the 
Caduceus proposal so that a diagnostic program would formulate smaller differen-
tials and use Bayesian methods to evaluate them. Such an idea was proposed in the 
Synopsis system [32], but not fully implemented.

Decision Analysis and Influence Diagrams

Medical practitioners have also used the principle of rationality, that the right 
action to take is the one with the best expected outcome. Often, this is done infor-
mally, but can also be formalized as the use of decision analysis [33] to assign 
numerical values to various outcomes and probabilities to the effects of various 
actions conditioned on what ails the patient. In simple cases, this can be represented 
by a decision tree containing choice nodes representing the choices facing the clini-
cian leading to chance nodes representing the probabilistic outcomes of the chosen 
actions. At the leaves of such a decision tree are value nodes, showing the value of 
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that outcome. Given a decision tree, one can “fold back” the tree to assign values to 
each of its nodes, starting with the specified outcomes. A simple example showing 
a decision analysis for how to treat an elderly man with a gangrenous foot is shown 
in Fig. 4.8, and an early example of a clinical application to coronary artery surgery 
is also available [34]. Ascertaining probabilities is a difficult task because they 
should reflect details of the case under consideration. Ascertaining values is even 
harder because these should reflect the views of the patient—e.g., on a scale of 0 
(death) to 1000 (full health), what is the value of living with an amputated leg? Such 
judgments are hard to elicit and do not seem to remain stable as the situation evolves. 
For long-term consequences of health decisions, the Quality-Adjusted Life Year 
(QALY) is often used, adjusting the (expected) length of life for the presence of 
disabling or morbid conditions. A review of its history, from the British viewpoint, 
is presented in [35].

Fig. 4.8 Decision tree for a patient facing possible amputation of his foot or leg as a result of 
gangrene. Squares represent decisions to be made, and circles the chance nodes that lead to differ-
ent outcomes with different probabilities. The choices contemplated here are either to amputate the 
patient’s foot or to treat him medically. If the medical treatment fails and the gangrene gets worse, 
then one can either amputate the whole leg or continue to treat medically. Each branch of the tree 
terminates in a specific numeric value, in this case measured on a 0–1000 scale, where 0 represents 
death, 1000 represents regained full health, and intermediate numbers the relative desirability of 
different health states. For the example patient, life after having lost his foot to amputation is worth 
850 points on this 1000-point scale, whereas life after having lost his whole leg is worth 700. The 
example is a simplified version of one of the earliest clinical uses of decision analysis, on the clini-
cal decision-making service at New England Medical Center. At each chance node, the expected 
value (in red) is the sum of the products of the probability of each outcome times the expected 
value of that outcome. At choice nodes, the expected value is the maximum of the values of the 
choices, always assuming that the best choice will be chosen. (Figure is reproduced, with permis-
sion, from a review of probabilistic methods in medical decision support [36])
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An influence diagram combines the idea of decision analysis with Bayesian 
network representations of the potentially more complex probabilistic relations 
among choices, chances and decisions. This provides a much more compact repre-
sentation of complex decision problems and avoids having to specify the order of 
decisions, as in a decision tree [37]. Methods similar to those for solving Bayesian 
networks have been adapted to influence diagrams.

Reinforcement learning (RL) is a method of identifying an optimal decision 
policy to allow a decision maker to choose the best course of action under any mod-
eled circumstance. In this method, an action is typically modeled to have an imme-
diate reward (e.g., the patient’s elevated heart rate decreases) and a long-term reward 
(e.g., the patient survives the hospital stay). In evaluating a potential action, one 
combines the immediate reward and then (in the manner of a decision tree or influ-
ence diagram) the discounted expected sequence of immediate and long-term 
rewards anticipated from the possible future states resulting from the action. Given 
a large database of past treatments of other patients, it is possible to estimate the 
relevant expected rewards, but not for actions that were rarely if ever taken in the 
past. It may thus be helpful sometimes to try a different, less explored therapy, in 
case one might discover a more successful approach. Of course, because medical 
actions affect real patients, this is often done only in simulation using retrospective 
data and strong independence assumptions rather than actually trying unproven 
ideas on patients. However, one can view a randomized clinical trial as a step in 
such an exploration strategy. The reinforcement learning approach has been gaining 
popularity as a way to exploit data on complex sequences of past decisions; a recent 
example explores optimal treatment for sepsis [38].

 Causal Mechanisms: How Things Work

If we had a complete understanding of how the human body works, we could build 
mechanistic models that could predict its response to various conditions and treat-
ments with precision. For most of medicine, we do not have such deep understand-
ing, but there have been many attempts to build such models for at least parts of 
human (patho-)physiology. Perhaps the largest is Guyton’s cardiovascular model 
[39], consisting of hundreds of differential equations connecting hundreds of vari-
ables representing concentrations, volumes and flows in the body, and hundreds of 
additional parameters that describe the strengths of interactions in the equations. In 
principle, one might “tune” such a model to the specific situation of an individual 
patient, i.e., measure all the variables and determine all the parameters, but many of 
these cannot be measured and in any case the effort required would be completely 
impractical. The Guyton-Coleman implementation of this model did lead to new 
insights into the relationship between cardiac output, blood pressure and control of 
sodium, among others, and NASA used the model to predict the effects of weight-
lessness on the circulatory system of astronauts as a safety check as they prepared 
for space travel [40]. The model continues to be developed in the 
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twenty- first century, called Digital Human and expanding to about 5000 variables 
including renal, respiratory, endocrine, neural and metabolic physiology [41]. Much 
smaller lumped parameter models, such as CVSim [42], have also been built for 
teaching and research. Another early knowledge-based system for providing expert 
consultation on glaucoma used a causal model of the disease and its development 
combined with a fuzzy logic method of associating observables with pathophysio-
logical states to determine the stage of advancement of the diseases [43].

Because the numerical relationships among many of the variables in such models 
are not known precisely, others have also pursued use of qualitative models that 
might represent, for example, that if the heart’s contractility decreases, then so will 
cardiac output. This type of model is helpful for reasoning about the likely direction 
of changes induced by changes and interventions. Its downfall for clinical reasoning 
is that most systems in the body are controlled by feedback loops, so the correct 
differential equations add contributions from various components to compute out-
puts. However, in a qualitative representation that denotes changes only by their 
sign, we cannot in general tell the sign of a sum of a positive and a negative. The 
output is determined by their relative values, which are not provided in this qualita-
tive formulation. In domains where quantitative data and models for at least some of 
the relationships are available, it is possible to build multi-level reasoning systems 
that analyze the situation qualitatively, but dive into quantitative details when such 
ambiguities arise. For example, the ABEL system used this approach for analysis of 
disorders of acid-base and electrolyte balance [44].

 How Is Knowledge Acquired?

The systems described above each have their own ways of representing their rules 
of inference, patterns of disease/finding associations, probabilistic relationships, 
etc. They also have corresponding specialized tools to ease entering such data into 
their knowledge bases. More recently, two main approaches have taken hold for 
eliciting knowledge to use in KBS. One is based on a taxonomic organization of 
concepts into ontologies that describe each concept in terms of its super- and sub- 
categories and its attributes and constraints on them, adopting a frame-like view of 
the representation task. Information about super-categories is typically inherited by 
sub-categories and instances, making the expression of knowledge efficient. 
Classification and inheritance are the main inferences supported by such systems, 
and the constraints on attributes are typically limited in expressive power in order to 
stay away from the possibility of highly inefficient (or even incomplete) inference 
systems that would be needed for more powerful constraints. The other main 
approach is the construction of knowledge graphs, which can be constructed man-
ually or via unsupervised methods that exploit the co-occurrence of terms in sen-
tences, paragraphs, or articles.
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 Ontologies and Their Tools

One very popular tool for ontology construction is Protégé [45]. To create an ontol-
ogy of a new domain, Protégé encourages the user to define a hierarchy of concepts 
(called classes) in the domain and allows specification of defaults and constraints on 
properties of the classes, including whether the property should be a simple value 
or another class, how many values or classes the property may include, etc. When a 
subclass is defined, it can simply be defined as a subclass of an existing class or it 
can be defined as containing instances of the superclass with specific properties. For 
example, bacteria may be a subclass of pathogens, but we do not know how to 
specify properties that invariably distinguish bacteria from other categories of 
pathogens. By contrast, we can say that a heart disease is a disease whose locus is 
in the heart, which allows the system to classify a disease as a heart disease even if 
it was not defined that way. Figure 4.9 shows part of the gene ontology from the 

Fig. 4.9 The Protégé system, showing relationships among gene concepts from the NCI Thesaurus. 
(Figure is reproduced, with permission, from the original paper [45])
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NCI Thesaurus.4 The definitions of such properties are made in a description logic, 
and there is a tradeoff between the expressiveness of that logic and the computa-
tional tractability of doing inference with it [46]. One very important use of ontolo-
gies is to integrate the concepts used in different clinical systems. The Galen 
approach, using the GRAIL description logic, was an important early use of this 
technology [47].

An alternative approach was pioneered by the U.S. National Library of Medicine 
through the Unified Medical Language Systems (UMLS), which created a 
Metathesaurus instead of trying to build a comprehensive ontology.5 The 
Metathesaurus combines concepts and taxonomic and other relationships from (as 
of 2021) over 200 different terminological systems [48]. Machine and manual cura-
tion has assured that the nearly 13 million terms from 25 languages (though mostly 
English) map to over 4.4 million concepts, to help coordinate information among 
the terminologies. Reliably mapping many terms to a single concept is a major aid 
to clinical natural language processing, by noting that, for example, “acute myocar-
dial infarct”, “AMI” and “heart attack” represent the same concept. The UMLS also 
provides some linguistic tools for tasks such as lemmatization (identifying the root 
words of inflected words; e.g., “run” from “running”) and assigns a semantic cate-
gory to each concept from among a set of 189 such categories, which provides a 
low-resolution ontology of objects and relations. However, because the content of 
UMLS comes from many separately developed databases, taxonomic inconsisten-
cies do arise, and relations other than the taxonomies are often sparse.

Manual curation of large knowledge bases is phenomenally costly and subject to 
gaps because it is difficult for people to think of everything needed. For example, 
the CYC knowledge base6 has been under development for over 30  years, and 
among many applications are some in healthcare. CYC represents its knowledge in 
a logical form and contains 10,000 predicates over millions of concepts, encoding 
25 million assertions in a higher-order logic that allows quantification not only over 
variables but also over sets and relations. It also includes a number of specialized 
inference engines to draw new conclusions from its store of knowledge. Nevertheless, 
it is difficult to determine just what the system knows or is able to infer.

 Knowledge in the Era of Machine Learning

The advent of machine learning and deep learning methods has resulted in a shift in 
thinking regarding how knowledge is acquired, represented, and leveraged in bio-
medical models. Whereas knowledge-based systems of the twentieth century often 
involve probabilistic or causal reasoning over explicit knowledge, machine learning 

4 See https://ncithesaurus.nci.nih.gov/ncitbrowser. (accessed August 17, 2022).
5 See https://www.nlm.nih.gov/research/umls. (accessed August 17, 2022).
6 See https://cyc.com. (accessed August 17, 2022).
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methods today are designed to implicitly learn patterns from copious amounts of 
data. This shift has been accelerated by the recent successes of deep learning meth-
ods (see Chap. 6). Extensive feature engineering of input data using domain knowl-
edge is being replaced by methods that leverage an “end-to-end” design philosophy 
to automatically learn representations of the input data that are useful for prediction.

This transition has spurred a debate within the community as to the amount of 
structure and innate priors that should be incorporated into machine learning mod-
els—a debate with roots in philosophy that dates back to Plato, John Locke, and 
David Hume. On one side are what Judea Pearl terms the “radical empiricists”, 
individuals who believe that knowledge comes from interaction with the environ-
ment and can be learned via analyzing large amounts of observed data [49]. Radical 
empiricists argue for flexible models with minimal a priori representational design 
assumptions. On the other side are “nativists” who believe that built-in machinery is 
necessary for generalized learning and argue for incorporating structural priors into 
models such as through symbolic or causal reasoning. In reality, this is a spectrum, 
and many current approaches fall in the middle of these two camps. The develop-
ment of approaches that marry deep learning and structured methods is an active 
area of research.

The rest of this section provides an overview of the spectrum of approaches for 
representing and leveraging knowledge in modern machine learning models. The 
section focuses on graph and text based models that explicitly leverage biomedical 
domain knowledge and discuss the use of biomedical expert systems to train more 
sophisticated machine learning models. The reader may want to refer to Chap. 6 for 
an introduction to machine learning and to Chap. 7 for a discussion of natural lan-
guage processing. The following discussion may be more useful if you first famil-
iarize yourself with some of those basics.

 Incorporating Knowledge into Machine Learning Models

While there are debates about the amount of innate machinery required for artificial 
intelligence, all machine learning methods are guided by human knowledge in their 
design. This can occur implicitly through the choice of model architecture and loss 
function or the selection and augmentation of the training data. It may also occur 
more explicitly by incorporating structured knowledge via knowledge graphs or by 
retrieving relevant text data (Fig. 4.10).

The choice of model architecture and loss function can encode useful inductive 
biases that enable more robust machine learning methods. Inductive biases can be 
any design decision that provides a basis for choosing one generalization over 
another [50]. For example, standard layers in neural networks incorporate invari-
ances into the architecture that induce representational biases. Layers in convolu-
tional neural networks (CNNs) exhibit equivariance and invariance to translation. 
Translation equivariance, which is achieved by weight sharing, means that changes 
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Fig. 4.10 Incorporating knowledge into machine learning models can occur implicitly through 
choice of model architecture (a–c) or loss function (d), through data augmentation (e), or explicitly 
by querying external knowledge sources such as knowledge graphs or textual data (f, g)

in the input image result in similar changes in the output,7 and translation invari-
ance, which occurs due to pooling operations, means that small local translations do 
not necessarily change the pooled output values. These are both natural priors for 
image data where the representation of an object should not necessarily depend on 
its precise location in the larger image (Fig. 4.10a, b). Similarly, the sequential pro-
cessing in recurrent layers found in recurrent neural networks (RNNs) impose 
notions of temporal invariance, which is particularly useful for processing time-
series data and natural language that is read from start to end (Fig. 4.10c). Occam’s 
razor—that the simplest solution is generally best—is often implemented by con-
sidering the complexity of a learned model, usually as a function of all its weights, 
as a cost that penalizes more complex models and encourages sparsity (Fig. 4.10d). 
These inductive biases are essential for developing robust machine learning models 
that can generalize beyond their training data and perform better in limited data 
regimes and under data distribution shifts. For example, the spatial translational 
equivariance of convolutional layers allows CNNs to recognize images with trans-
lated pixels without needing to augment the training data with many shifted images.

The process of selecting and annotating training data also injects human biases 
into the model development process. Perhaps most explicitly, data augmentation 
is the process of augmenting the training dataset with transformations of the input 
data with the goal of inducing the model to be invariant to the transformation. For 
example, transformations that rotate, flip, or randomly crop images are frequently 
used in model development for radiology images (see Chap. 12). Procedures for 
quickly annotating data also serve to inject human biases. For example, data pro-
gramming allows domain experts to specify labeling functions that heuristically 
and noisily label subsets of the data, which can later be combined and denoised to 

7 More precisely, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
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generate a training dataset [51]. Active learning methods select new data points for 
annotation by domain experts—for example, chest x-rays close to the model deci-
sion boundary might be sent to radiologists for annotation. Both of these approaches 
allow for implicitly incorporating experts’ domain knowledge through efficient 
annotation of training data. Finally, the choice of input data sources, features, and 
labels can serve to bias model development. For instance, model developers make 
assumptions regarding which features may be worth collecting for training. These 
choices can have negative consequences for fairness when the training data skews 
towards majority populations or when the labels are biased proxies of the true out-
come of interest [52]. See also Chap. 18 for discussion of resulting ethical issues.

There are an increasing number of efforts to leverage human knowledge more 
explicitly in machine learning models. Such approaches are diverse, including 
Bayesian neural networks, neural Turing machines, and machine learning for causal 
inference, among others. The remainder of the section focuses on two broad catego-
ries of models that query external information found in knowledge graphs and text. 
These approaches borrow from the long tradition of leveraging knowledge bases in 
expert systems, and their goal is to incorporate the strengths of such systems into 
modern machine learning frameworks.

 Graph-Based Models

As noted in section “Ontologies and Their Tools”, the biomedical informatics com-
munity has devoted significant time and resources into developing curated graphs of 
biomedical knowledge for diagnoses, labs, medications, drugs, and genes. The 
abundance of structured biomedical knowledge graphs has encouraged extensive 
research on leveraging graphs for tackling challenging biomedical machine learning 
problems.

 Graph Representation Learning

A core challenge of leveraging graphs in machine learning is graph representation 
learning, i.e., learning an encoding of the graph that can capture the relevant struc-
tural and positional information. A graph is a structure consisting of a set of nodes 
and the set of directed or undirected edges that connect the nodes. Traditional 
machine learning approaches for representing graphs often use hand- engineered 
summary statistics [53] or kernel functions [54] to measure graph structure. For 
example, a node can be represented by its degree—i.e., the number of edges con-
nected to the node, by its centrality within the graph, or by the number of motifs 
(e.g., triangles) within the node’s local neighborhood. More recent approaches use 
data-driven techniques to learn embeddings, or low-dimensional vector representa-
tions that can encode graph structure. We outline four broad approaches for learning 
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a b

c d

Fig. 4.11 Approaches for node representation learning include (a) matrix factorization, (b) ran-
dom walk-based methods, (c) autoencoders, and (d) graph neural networks (GNNs). Every 
approach produces a low dimensional embedding for each node in the graph. These methods can 
be extended to learn embeddings for edges, subgraphs, or graphs

node embeddings, all of which can be extended to learn edge, subgraph, or graph 
embeddings (Fig. 4.11).

• Matrix factorization methods leverage techniques for dimensionality reduction 
to learn node embeddings. The goal is to learn embeddings for each node in the 
graph such that the similarity between two nodes’ embeddings (e.g., the inner 
product between two embeddings) approximates some user-defined measure of 
node similarity. Methods largely differ in how they define their deterministic 
notion of pairwise node similarity; in its simplest form, the pairwise node simi-
larity can be defined by the graph’s adjacency matrix—a matrix that indicates 
which nodes are connected by edges in the graph.

• Random walk methods leverage stochastic measures of node similarity to learn 
node embeddings. The key idea is that nodes that co-occur on short random 
walks over the graph should have similar node embeddings.

• Autoencoder methods leverage neural networks to learn a compressed represen-
tation of each node’s neighborhood by enforcing a bottleneck within the net-
work. The models are trained in an unsupervised manner to compress the node 
information into a low dimensional vector and reconstruct the original input 
from the compressed representation.

• Graph neural network (GNN) methods generate node embeddings by aggre-
gating information from each node’s local neighborhood within the graph. More 
concretely, each layer of the GNN consists of three stages: message, aggregate, 
and update. Messages are sent from each neighbor in the node’s neighborhood, 
aggregated, and used to update the node’s previous representation. This message- 
passing scheme occurs in each layer of the neural network, and as the process 
repeats, the generated node representations contain additional information from 
nodes further away in the graph.
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Graph neural network methods have largely replaced traditional methods for graph 
representation learning. These methods have several notable benefits. Unlike prior 
approaches, the GNN framework allows for the incorporation of node-specific fea-
tures by initializing the hidden representation of each node with the desired fea-
tures. For example, protein nodes in a protein-protein interaction network could be 
initialized with their gene expression data or disease nodes in a disease ontology 
such as the International Classification of Diseases (ICD) could be initialized with 
a textual description of the disease. Perhaps most importantly, graph neural net-
works can be inductive, that is they can operate over nodes that are unseen during 
training. This property allows for generalization of these methods to new nodes at 
test time.

While a thorough review of machine learning methods for graphs is outside the 
scope of this book, we refer the interested reader to a review [55], which includes a 
more thorough treatment of traditional and modern neural methods for graph repre-
sentation learning.

 Biomedical Applications of Graph Machine Learning

Graph machine learning methods have been applied to diverse biomedical applica-
tion areas including predicting therapeutic applications of drug molecules, identify-
ing protein interactions, and performing disease diagnosis [56]. Such approaches 
generally take two forms: graph-based applications, which are concerned with pre-
dicting properties of nodes, edges, subgraphs, or entire graphs, and cross-modal 
applications, which leverage graph representations as input to larger models for 
downstream tasks that may be independent of the original graph (Fig. 4.12).

a b

Fig. 4.12 (a) Graph-based applications involve predicting properties of nodes, edges, subgraphs, 
or entire graphs. Node prediction tasks compute values for each node in the graph, subgraph pre-
diction tasks compute values for subsets of nodes in the graph, and link prediction tasks involve 
prediction of whether an edge exists between two nodes in a graph. (b) Cross-modal applications 
indirectly use graph-structured data for downstream tasks. Graphs are used to learn richer repre-
sentations of the concepts. These concept embeddings are then leveraged in downstream tasks that 
do not necessarily relate to the original graph (e.g., heart failure prediction). The concept embed-
dings can either be pretrained or learned in an end-to-end manner on the downstream task
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Biomedical graph-based applications largely focus on pharmaceutical and multi- 
omic applications. While there are some node prediction tasks, including protein 
function prediction [57, 58] and semantic type classification of medical terms [59], 
link prediction and graph classification tasks are more common. Tasks that predict 
the relationship between two entities can be formulated as a link prediction task in 
a biological network. For example, Zitnik et al. identify side-effects occurring with 
drug combinations by framing the problem as a multi-relational link prediction task 
on a graph containing protein-protein, drug-protein, and drug-drug interactions 
[60]. The link prediction framework has also been applied to identify protein- protein 
interactions [61], to detect miRNA-disease associations [62], to predict gene- disease 
associations [63], to identify disease candidates for established drugs [64] to predict 
molecular targets for drugs [65], and to perform knowledge graph completion of 
missing edges [66]. Finally, graph-level tasks largely focus on drug discovery; 
methods learn to encode small molecules, chemical reactions, and macromolecules 
for molecular property prediction [67], protein structure prediction [68], molecular 
dynamics applications [69], or for de novo molecule design [70]. Subgraph classifi-
cation tasks are less common; one paper frames disease diagnosis as a subgraph 
classification task by representing each patient as a subgraph of medical codes in a 
larger graph containing phenotype-phenotype, phenotype-gene, and gene-gene rela-
tions [71].

Graph representation methods are increasingly being leveraged to generate 
embeddings of biomedical concepts that can be used in downstream cross-modal 
applications. Biomedical graphs are used to learn richer representations of the con-
cepts based on the ontology structure, but the downstream tasks do not necessarily 
involve predicting properties of the graph itself. For example, GRAM (Graph-based 
Attention Model) incorporates the Clinical Classification Software (CCS) diagnosis 
ontology into a model for diagnosis prediction [72]. GRAM initializes the medical 
concept embeddings by employing GloVe, a method for generating embeddings 
based on co-occurrences within each visit [73]. Concepts are represented as a com-
bination of the embeddings of their ancestors in the ontology via an attention 
mechanism. Similarly, Shang et al. use GNNs to encode ICD-9 diagnosis codes and 
ATC medication codes [74]. These embeddings are input into a BERT model (see 
Chap. 7) to generate representations of electronic health record (EHR) data for a 
single patient visit for medication recommendation.

Graph-derived embeddings can also be used to supplement text representations. 
A recent trend in clinical natural language processing (NLP) involves using rela-
tional information between entities in a knowledge graph to incorporate domain 
knowledge into NLP models. For example, umlsBERT extends BERT by enriching 
input embeddings with UMLS-derived semantic group embeddings and performing 
multi-label classification to encourage umlsBERT to identify all words associated 
with the same UMLS concept [75]. MacAveney et al. incorporate medical domain 
knowledge into its model for summarization of radiology reports by linking entities 
in the radiology reports with the UMLS ontology and generating an “ontology 
aware” encoding of the radiology report based on the linked entities [76].
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 Text-Based Models

While graphs provide useful sources of structured biomedical knowledge, existing 
knowledge graphs are limited in their completeness and breadth. Much of our bio-
medical knowledge is instead captured in unstructured text in journal articles, text-
books, and website pages. While the text can be used to construct structured 
knowledge graphs, thereby enabling the use of GNNs and other graph methods, a 
review of such methods is outside the scope of this chapter. We instead focus on 
methods that directly retrieve unstructured text for use in machine learning models. 
Rather than rely on knowledge implicitly stored as parameters in the model [77], 
such methods explicitly expose the role of world knowledge by asking the model to 
decide what knowledge to retrieve and use for the prediction. These retrieval-based 
models are commonly used for knowledge intensive tasks, such as fact verification 
and open domain question answering. Unlike traditional reading comprehension, 
in open domain question answering, the model does not receive a text document 
known to contain the answer and instead must identify and retrieve the necessary 
supporting information from a large corpus of documents. Most approaches consist 
of a separate retriever, which selects the necessary information, and a reader, which 
incorporates the retrieved information to make a final prediction. Traditionally, the 
retriever uses classical information retrieval methods and the reader employs neural 
networks. However, more recent approaches now include a retriever implemented 
with neural network methods, allowing the retriever and reader to be trained jointly 
end-to-end via backpropagation [78–80].

Retrieval-based methods have been leveraged in the biomedical domain for 
question answering. While many existing biomedical question answering datasets, 
such as emrQA and PubmedQA [81, 82], are closed-domain, i.e., they provide a 
single document containing the solution, there are some open-domain question- 
answering tasks that require methods to retrieve relevant knowledge. Epic-QA tasks 
models to answer questions about COVID-19 based on a large corpus of scientific 
and government articles [83]. The BioASQ workshop, which has been running 
since 2013, hosts a series of biomedical question-answering challenges that include 
open domain question answering over Pubmed articles [84]. Finally, several models 
leverage retrieval-based approaches to solve medical licensing exam questions—
multiple-choice questions that can require extensive reasoning over external knowl-
edge sources [85, 86].

 Leveraging Expert Systems to Train Models

We conclude this chapter by briefly discussing approaches for injecting the knowl-
edge from expert systems into machine learning models. The core idea of this 
approach is to transfer the knowledge from the more cumbersome, but domain 
knowledge-rich teacher model to a student model that has potential to generalize 

4 Knowledge-Based Systems in Medicine



102

beyond the rules-based system. Such knowledge distillation approaches are start-
ing to be used in the biomedical domain. For example, Ravuri et al. use the expert 
system QMR to generate synthetic training data, which is leveraged to train a deep 
learning model for disease diagnosis [87]. This approach yielded a more robust 
model that allows for incremental updating of the model with new diseases or symp-
toms. Similarly, McDermott et al. and Smit et al. developed BERT-based models to 
approximate CheXpert, a rules-based radiology report labeler and find that the 
BERT-based model actually has a tendency to correct errors in the original CheXpert 
labels [88, 89]. Finally Kodialam et al., reverse the traditional knowledge distilla-
tion framework by initializing their deep learning model to mimic a performant 
linear model in a technique they term reverse distillation [90]. All of these approaches 
are similar in their goal to transfer domain knowledge or other innate priors to the 
student model.

The older expert systems approaches have the benefit that their reasoning can be 
explained in relatively easy human-understandable terms. A chain of rule inferences 
can be shown as the basis for a conclusion, or the correspondence between a disease 
pattern and the facts observed about a patient can explain why that disease is a plau-
sible diagnosis. By contrast, complex neural network-based systems seem inscru-
table; the “answer” is a result of a vast number of arithmetic computations that, 
individually, have no obvious correspondence to the logic of the domain. Therefore, 
there are many attempts to develop means to provide explanations or justifications 
for the answers produced by neural network models. (See Chap. 8.) Especially in 
highly consequential domains, such as health care, demanding such transparency is 
highly justified. One promising approach is enabled by building a high-performance 
neural model starting with an explainable expert system, such as the ones men-
tioned in the previous paragraph, so a conclusion might be approximately justified 
by explaining how the expert system could have reached the conclusion actually 
derived by the neural model.

 Looking Forward

We have reviewed various methods that have been developed to apply human 
knowledge to biomedical decision making tasks and to augment that knowledge by 
learning from the vast case repository of clinical experience that is now being cap-
tured in databases. The initial enthusiasm among some to imagine a world in which 
all knowledge can be rediscovered by applying machine learning (especially deep 
neural networks of various architectures) to heterogeneous clinical data has faded 
somewhat with experience. Unlike models based on explicit expressions of knowl-
edge, such ML models are often inscrutable. Although they tend to work very well 
on average, they may fail catastrophically and unpredictably in some cases. And as 
clinical practice changes, patients age, and new diseases rise to prominence, models 
trained on historical data may become more and more inaccurate.
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The central challenge in knowledge-based systems in medicine is to develop new 
means of integrating knowledge that derives from many different sources: causal 
understanding of the biochemical, genetic and pathophysiologic mechanisms 
involved in disease, the empirical observational data arising from clinical records, 
and the occasional clinical trials that test specific interventions. These learned mod-
els will need to account properly for the evolution of each patient’s state over time 
and the uncertainties about both observations and conclusions, thus needing con-
nections to research on knowledge representation.

These are significant challenges. However, the aging of our population and thus 
the increase in chronic diseases, the growth in data collection, and the inexhaustible 
demand of people for improved health care provide outstanding opportunities for 
exciting research and important applications.

Questions for Discussion

• Think about some of your own expertise. Which forms of knowledge representa-
tion might be most appropriate to express it?

• How important is uncertainty in the domains you are interested in? How do you 
think knowledge in those domains can support inference about the likelihood of 
particular events and conditions?

• How would you best explain the recommendations of a decision support system? 
Would that explanation necessarily mirror the way in which it derived that 
recommendation?

• Consider the problem of predicting the causal gene of patients with suspected 
Mendelian genetic disorders. Each patient is represented by a set of phenotypes 
(symptoms) and a list of candidate genes. What inductive biases or assumptions 
might you want to incorporate into your diagnosis model?

• Incorporating knowledge graphs into machine learning models has the potential 
to improve model performance and generalizability, but the utility of these hybrid 
models is still an open research question. How would you design an experiment 
to measure the usefulness of incorporating knowledge graphs into models versus 
simply adding more training data? What are the pros and cons of each approach?

Further Reading

Szolovits P, Pauker SG. Categorical and probabilistic reasoning in medical diagnosis. 
Artif Intell. 1978;11(1–2):115–44. https://doi.org/10.1016/0004- 3702(78)90014- 0.

• This paper reviews early approaches to capturing human-like reasoning about 
clinical tasks, emphasizing the need to be able to deal with multiple disorders 
and uncertainty.

Szolovits P. Artificial intelligence in medicine. Westview Press; 1982. Re-published 
by Routledge; 2019.

• A presentation of the first generation of AI systems for medical reasoning, with 
lessons even for today’s world.
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Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski 
M, et  al. Relational inductive biases, deep learning, and graph networks. 
ArXiv180601261 Cs Stat. 2018. http://arxiv.org/abs/1806.01261.

• This article discusses the many types of inductive biases that can be incorporated 
into neural networks and provides an introduction to graph neural networks.

Hamilton WL. Graph representation learning. Synth Lect Artif Intell Mach Learn. 
14(3):1–159. https://www.cs.mcgill.ca/~wlh/grl_book/.

• This textbook provides an introduction to graph representation learning, includ-
ing methods for embedding graph data, graph neural networks, and deep genera-
tive models of graphs.

Li MM, Huang K, Zitnik M. Representation learning for networks in biology and 
medicine: advancements, challenges, and opportunities. ArXiv210404883 Cs 
Q-Bio. 2021; Available from http://arxiv.org/abs/2104.04883.

• This review article introduces approaches for graph representation learning and 
describes their applications to the biomedical domain.
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Chapter 5
Clinical Cognition and AI: 
From Emulation to Symbiosis

Vimla L. Patel and Trevor A. Cohen

After reading this chapter, you should know the answers to these questions:
• How do contemporary AI systems differ from expert human decision makers?
• Why is understanding clinical cognition critical for the future of sustainable AI?
• What constraints on human decision making suggest a complementary role for 

AI in clinical decision making?
• How might AI enhance the safety of clinical practice?

 Augmenting Human Expertise: Motivating Examples

One of the more controversial claims about AI systems in medicine is that they have 
the potential to replace the role of the physician, especially in perceptual domains 
such as radiology and pathology, in which interpretation of images is a prominent 
component of physician work. While it is natural that practitioners with a focus on 
image interpretation would consider the implications of current AI technologies for 
the professional viability of their fields (see, for example [1]), a strong counterargu-
ment to this claim is that these technologies may play a complementary role in the 
field and allow radiologists (and pathologists) to focus on assessment and 
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communication of AI-based image interpretations, and the positioning of these 
interpretations within a broader diagnostic workflow [2]. Alternatively, and in line 
with the main motivating argument for the current chapter, it has been proposed that 
physicians and AI systems might play a complementary role in diagnosis itself [1, 
3, 4], though less attention has been paid to several other crucial areas of a clini-
cian’s task.

This chapter considers the proposal of complementary physician/AI systems 
from a cognitive informatics perspective, focusing on the strengths and weak-
nesses of the information processing systems concerned. Before proceeding to 
address these issues, the section below presents some examples from the published 
literature of systems that establish a case for the utility of human-machine collabo-
ration in order to augment human abilities.

The burgeoning literature on AI-based diagnostic systems in radiology is replete 
with examples of hybrid human/AI systems outperforming either compo-
nent  taken alone in diagnostic tasks. For example, Lakhani and Sundaram report 
results from a combined human/AI workflow in which a board-certified cardiotho-
racic radiologist was enlisted to resolve disagreements between two convolutional 
network architectures trained to identify pulmonary tuberculosis in chest radio-
graphs [5]. This arbitration process improved ensemble model specificity from 
94.7% to 100% without loss in sensitivity, with the radiologist reviewing only those 
13 of 150 test cases in which disagreement between models occurred. Patel and col-
leagues report results from a workflow in which images with low-confidence pre-
dictions for the presence or absence of pneumonia from a convolutional network 
were reconsidered by groups of radiologists in concert [6]. Probabilistic estimates 
from these experts were then used as an alternative to the model’s original predic-
tions, resulting in an approximately 10% improvement in accuracy over that 
obtained with deep learning alone.

In both cases, the combined human/AI system also outperformed its human com-
ponent, an individual radiologist in the tuberculosis study, and a group of radiolo-
gists in the pneumonia study. Another common finding of interest is that the 
predominant mode of improvement with human oversight is an improvement in 
specificity. That is to say, the AI models alone tended toward overdiagnosis, which 
supports a pragmatic argument for the judicious use of human expertise to reduce 
false positive diagnoses in those cases in which uncertainty is identified either 
through disagreement between models, or through low-probability predictions from 
a single model.

Similar findings have been observed in dermatology diagnosis. Combined 
human/AI systems outperformed their independent components [7], with a 2.5% 
increase in specificity when enforcing the same level of sensitivity. Notably, some 
work in this area has also investigated the role of representation—advantages in 
performance for the human-computer collective were observed to be contingent 
upon the granularity (probabilities of differential diagnoses vs. global risk of malig-
nancy) and cognitive demand of the representation used to convey predictions to 
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physicians [8]. These results illustrate the need to consider the constraints on human 
information processing when attempting to integrate AI into clinical decision mak-
ing processes. While these results concern perceptual domains of medicine, it has 
also been argued that AI can play a complementary role in verbal domains by sup-
porting the aggregation and synthesis of information required to reach a diagnostic 
conclusion [3].

These sorts of pragmatic motivating arguments for the consideration of human 
cognition are very different from those that motivated considerations of human 
information processing earlier in the development of AIM.  With early systems, 
there was a desire to develop models that emulated procedures characteristic of 
human intelligence, with two early systems (INTERNIST-1 [9] and the Present 
Illness Program [10]) deliberately designed to model the generation and testing of a 
set of diagnostic hypotheses that cognitive studies had suggested were characteristic 
of the behavior of medical experts [11].

The section that follows considers the intersection among  cognitive science, 
clinical cognition and AI, from earlier studies to current work, with a focus on the 
shared roots of these fields and the need for AI development to consider human 
cognition.

 Cognitive Science and Clinical Cognition

Cognitive science, or the science of cognition, includes numerous subfields of psy-
chology, philosophy, linguistics, cognitive anthropology, neuroscience and com-
puter science. Basic research in cognitive science uses theories and methods from a 
combination of these domains to investigate problems, including clinical problems. 
For example, a program of research has used theories and methods from cognitive 
science to investigate clinical cognition and medical decision making (for examples 
see: [12–14]). Table  5.1, illustrates how research in basic cognitive sciences is 
related to our understanding of clinical cognition.

Similarly, our understanding of the reasoning processes and knowledge associ-
ated with diagnostic and patient management provides a basis for influencing the 
development of medical AI and decision support systems. For example, research in 
characterizations of expert and novice clinical knowledge organization in human 
memory can be used in creating representations of such knowledge in clinical AI 
systems. Table 5.2 shows the corresponding relationships between medical cogni-
tion and research in AI. The science of cognition provides the foundation needed 
to drive AI-based decision-support systems that can augment human behavior.

Research in clinical cognition draws on the theories, and methods developed in 
basic cognitive science, and contributes to applications in biomedical informatics in 
a number of ways. We are beginning to see a greater awareness of the concept of 
clinical cognition and its relationship to clinical support systems. A recent literature 
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Table 5.1 Correspondences between cognitive science and medical cognition

Cognitive science Medical cognition

Knowledge organization and human memory Organization of clinical and basic science 
knowledge

Problem solving, heuristics/reasoning 
strategies

Medical problem solving and decision making

Perception/attention Interpretation of radiologic and other visual data
Diagrammatic reasoning Perceptual processing of patient data displays
Text comprehension Learning from medical texts
Dialog analysis Medical discourse analysis
Distributed cognition Collaborative practice in health care
Coordination of theory and evidence Diagnostic and therapeutic reasoning
Natural intelligence Expertise in clinical practice

Table 5.2 Correspondences between medical cognition and research in AI

Medical cognition Medical AI

Organization of clinical basic science 
knowledge

Development and use of medical knowledge bases in 
intelligent systems

Medical problem solving and decision 
making

Medical artificial intelligence/decision support 
systems

Radiologic and dermatologic diagnosis Visual data analytics/machine learning
Perceptual processing of patient data 
displays

Biomedical information visualization

Learning from medical texts/medical 
discourse analysis

Natural language processing

Collaborative practice in health care Technology-supported collaborative environments
Diagnostic and therapeutic reasoning Clinical support systems
Natural intelligence in clinical practice Interactive environments for collaborative problem 

solving

evaluation from a biomedical informatics journal identified 57 articles that were 
related to cognitive informatics [15]. The topics of these articles ranged from char-
acterizing the limits of clinician problem-solving and reasoning behavior and char-
acterization of distributed clinical teams, to developing cognitively plausible 
interventions for supporting clinician activities. The reader is referred to Chap. 4 in 
Shortliffe and Cimino’s textbook of Biomedical Informatics for comprehensive 
coverage of this topic [16].

 Symbolic Representations of Clinical Information

Much of the research in late 1980s and 90s, such as the research in Patel’s labora-
tory, fell into the symbolic tradition, and dealt with models of diagnostic reasoning. 
The theoretical foundation of cognitive modeling is the idea that cognition is a kind 
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of computation (where computation involves the manipulation of symbols). The 
claim is that what the mind does, in part, is to perform cognitive tasks by mental 
computing. This computational theory of mind provides the fundamental underpin-
ning for most contemporary theories of cognitive science. The basic premise is that 
much of human cognition can be characterized as a series of computations on men-
tal representations. In medical cognition, mental representations are internal states 
that reflect a clinician’s hypothesis about a patient’s condition. For example, notic-
ing an abnormal enlargement of the neck region, which prompts the clinician to 
elicit further inferences about the patient’s underlying condition (such as family 
history of a thyroid condition), may influence the physician’s information-gathering 
strategies and contribute to an evolving problem representation.

In artificial intelligence, symbolic AI is an approach to AI based on the manipu-
lation of knowledge represented in language-like (symbolic) structures in which all 
relevant semantics (meaning) is explicit in the syntax (formal structure). This also 
provids a framework for the study of human cognition as the manipulation of sym-
bolic structures. It involves the explicit embedding of human knowledge and behav-
ior rules into computer programs. This type of research in early decades has in 
recent years been superseded by connectionist AI (neural networks), though in cog-
nitive science both symbolic and connectionist approaches have had periods of his-
torical predominance [17]. All the steps in symbolic AI are based on human-readable 
representations of the problem that use formal logic. This reasoning process can be 
easily understood, and a symbolic AI program can therefore explain why a certain 
conclusion is reached, including the reasoning steps. An explanation that is under-
standable to human beings helps create a shared meaning of the reasoning process 
underlying clinical problem-solving, which is an important step in building trust 
(see Chap. 18).

As the investigations moved from laboratory conditions to realistic clinical 
environments, it became evident that cognitive factors alone did not account for 
all the variance in clinicians’ performance. Besides cognition, other differences 
were found to influence decision making, due to socio-cultural, organizational 
and technological factors. This alerted researchers in their early work to consider 
the situated nature of the clinical environment in addition to human cognition 
[18, 19].

 Clinical Text Understanding

Early research in language understating lead to development of an influential 
method of analyzing the process of text understanding or text comprehension, 
based on the assumption that text can be described at multiple levels, from sur-
face codes (e.g., words and syntax) to a deeper level of semantics (meaning) [20, 
21]. Comprehension refers to cognitive processes associated with understanding 
or deriving meaning from written text, conversation, or other informational 
resources. It involves the processes that people use when trying to make sense of 
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a piece of text, such as a sentence, or a verbal utterance, such as verbal exchanges 
during a conversation. This work influenced the studies of medical text under-
standing by physicians at various levels of expertise, where formal methods of 
natural language representations, such as propositional and semantic representa-
tions were used.

Propositions are a form of natural language representation that captures the 
essence of an idea (i.e., semantics) or concept without explicit reference to linguis-
tic content. Propositional representations constitute an important construct in theo-
ries of comprehension. Propositional knowledge can be expressed using a predicate 
calculus formalism or as a semantic network.

The formalism is informed by an elaborate propositional language [22]. Patel 
and Frederiksen [23] and Patel and Groen [24] introduced the use of propositional 
analysis as a method of natural language representation in the clinical domain. The 
method provided the means to characterize the information clinicians and medical 
students understood from reading a text, based on their summaries or explanations 
of the patient problems. Figure 5.1 presents a schematic representation of natural 
language analysis of clinical text, using a propositional representation representing 
a text-based model and its relationship to semantic and conceptual level analysis, 
representing a situational model [25].

These studies have shown that individuals at different levels of expertise repre-
sent clinical text differently [26–29]. This means that these various representations 

Fig. 5.1 Schematic representation of text (propositions with text-based model) using proposi-
tional analysis and its relationship to semantic structure and higher-level conceptual representation 
(situational model)
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will lead to different interpretations of a patient’s problem, leading to inconsistent 
diagnostic decisions. The details of the results show that expert physicians (Board 
certified in their domain of expertise), are able to separate relevant clinical informa-
tion that can be used to inform the diagnostic decision-making process, from infor-
mation that is not pertinent to this process. Non-experts remember  considerably 
more information, but much of this is usually not relevant to the diagnostic decision 
at hand [26, 27]. Theories and methods of text comprehension have been widely 
used in the study of medical cognition and have been instrumental in characterizing 
the process of guideline development and interpretation (for examples see [30]).

Medical expertise is one of those areas of research where the importance of com-
prehension processes has been demonstrated [24]. Medical problem solving depends 
on understanding the problem because problem interpretation and analysis in medi-
cine requires construction of appropriate clusters of information in long-term mem-
ory that match the current patient presentation. The construction-integration model 
was developed to account for the process of text comprehension [31, 32]. This 
model consists of a hybrid symbolic/connectionist architecture developed by 
Kintsch to account for the process of text comprehension. A model of diagnostic 
problem solving based on the construction-integration theory involves an interac-
tion between the textbase and the long-term memory store, from which a situation 
model (Refer to Fig. 5.1) is derived through the cyclical process of construction and 
integration. A detailed account of how the construction-integration theory is used to 
explain some important aspects of expertise in medicine is given elsewhere [33]. 
The authors present a series of studies which serve as evidence for the validity of the 
construction-integration theory in accounting for the construction of schema during 
real-time diagnostic reasoning.

The study of medical cognition has been summarized in a series of articles [12, 
34] and edited volumes (e.g., [35]). In more recent times, medical cognition is dis-
cussed in the context of informatics, generating a new field of investigation, cogni-
tive informatics (for example, [13–15, 36]). Furthermore, foundations of cognition 
play a significant role in investigations of human computer interaction (HCI), 
including human factors and patient safety [37].

 Clinical Cognition, Reasoning and the Evolution of AI

AI in medicine and medical cognition mutually influenced each other in several 
ways, including providing a basis for developing formal models of competence in 
problem-solving tasks. It is not necessary to replicate literally the human mind in 
order to exhibit intelligent behavior, and besides this may not always be desirable 
since human beings are error prone. However, in areas such as natural language 
understanding, commonsense reasoning and the ability to generalize effectively 
from small numbers of examples, human beings are still far superior to the best 
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contemporary AI systems. Learning the mechanisms underlying these human abili-
ties could lead to advances in AI. Using techniques and insights drawn from cogni-
tive psychology, more robust and comprehensive AI systems could be built, resulting 
in models motivated not only by mathematics and a desire to optimize performance, 
but also by learning from the strengths of human psychology.

Early studies in linking clinical cognition to intelligent systems in medicine 
began with Anthony Gorry’s series of studies in the 70s, comparing a computational 
model of medical problem solving with the actual problem-solving behavior of phy-
sicians [38]. Drawing on this work, others [10] developed a clinical program, where 
they were guided by the nature and organization of expert knowledge—which was 
a central concern to both developers of clinical expert systems and researchers in 
clinical cognition. Medical expert consultation systems, such as INTERNIST-1 [9] 
and MYCIN [39], introduced ideas about knowledge-based reasoning strategies 
across a range of cognitive tasks. MYCIN, in particular, had a substantial influence 
on studies in clinical cognition (see Chap. 2).

A landmark publication that significantly influenced clinical cognition is Newell 
and Simon’s Human Problem Solving [40], relating human problem solving to 
research in artificial intelligence. It described a theoretical framework, extended a 
language for the study of cognition, and introduced protocol-analytic methods [41] 
that have become prevalent and dominant methods in investigations of high-level 
cognition, including the use of this framework for knowledge elicitation techniques 
in the development decision support systems. This work provided a foundation for 
the formal investigation of symbolic-information processing (problem solving) 
approaches.

Protocol analysis is among the most commonly used methods. It refers to a class 
of techniques for representing verbal think-aloud protocols, which are the most 
common source of data used in studies of problem solving. In these studies, subjects 
are instructed to verbalize their thoughts as they perform an experimental task. 
Ericsson and Simon [41] specify the conditions under which verbal reports are 
acceptable as legitimate data. Data collected during retrospective think-aloud pro-
tocols, where the subject has had the opportunity to reconstruct the information in 
memory (with potential for memory distortion), are considered suspect. Think- 
aloud protocols recorded while collecting observational data in context, provide rich 
data for the characterization of cognitive processes. In studies of expertise, Patel and 
colleagues used the think-aloud paradigm to generate sparse data, showing that the 
use of specific probes could constrain data collection, where subjects were asked to 
provide explanations for a patient’s pathophysiological condition.

 Bridging Cognition to Medical Reasoning

The study of expertise is one of the principal paradigms in problem-solving research, 
which has been documented in a number of volumes in the literature [42–45]. 
Comparing experts to novices provides us with the opportunity to explore the 
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aspects of performance that undergo change and result in increased problem- solving 
skill. A goal of this approach has been to characterize expert performance in terms 
of the knowledge and cognitive processes used in comprehension, problem solving, 
and decision making, using carefully developed laboratory tasks [46].

The origin of medical problem-solving research on medical thinking is associated 
with the seminal work of Elstein and colleagues, who studied the problem- solving 
processes of physicians by drawing on then-contemporary methods and theories of 
cognition, based on psychology [11]. Their highly publicized research findings led 
to an elaborated model of hypothetico-deductive reasoning, which proposed that 
physicians reasoned by first generating and then testing a set of hypotheses to 
account for clinical data (i.e., reasoning from hypothesis to data). This model of 
problem-solving has had a substantial influence on studies of medical education. 
These authors were the first to use experimental methods and psychological theories 
to investigate problem solving in medicine. Patel and colleagues studied the knowl-
edge-based solution strategies of expert cardiologists as evidenced by their patho-
physiological explanations of a complex clinical problem [24]. The results indicated 
that expert physicians who accurately diagnosed the problem, employed a forward 
(data-driven) reasoning strategy—using patient data to lead toward a complete 
diagnosis (i.e., reasoning from data to hypothesis). This contrasts with subjects who 
misdiagnosed or partially diagnosed the patient problem. They tended to use a back-
ward or hypothesis-driven reasoning strategy. Figure 5.2 shows a diagrammatic 
representation of data-driven reasoning. From the presence of puncture wound mark 
on the arm to a young unemployed male, (clinical findings on the left side of figure), 
the physician reasons forward to conclude the diagnosis of infection (right side of 
the figure). Figure 5.3 shows a representation of hypothesis- driven reasoning. When 
making the diagnosis of myxedema, the physician explains an inconsistent finding 
of respiratory failure to be the result of a hypometabolic state of the patient.

Although expert clinicians, in their own domain of expertise, typically use data- 
driven reasoning or general heuristics during clinical tasks, this type of reasoning 
sometimes breaks down, and the physician must resort to hypothesis-driven 

Fig. 5.2 A diagrammatic representation of data-driven reasoning when an unemployed young 
male presents with fever and a puncture wound mark on the arm. Presenting signs and symptoms 
through data-driven inferences, indicated likelihood of this patient being an intravenous drug user, 
with possible use of a contaminated needle, leading to infection. COND refers to a conditional 
relation, based on propositional analysis. Arrows indicate directionality
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Fig. 5.3 A diagrammatic representation of hypothesis-driven reasoning. An anomalous finding of 
respiratory failure, which is inconsistent with the main diagnosis (myxedema), is accounted for as 
a result of a hypometabolic state of the patient, in a backward-directed inference. CAU indicates a 
causal relation, and RSLT identifies a resultive relation in propositional analysis. Arrows indicate 
directionality

reasoning. In everyday practice, both types of reasoning are used. Forward directed 
reasoning was found to be the hallmark of expertise, as shown in other knowledge-
based domains, such as physics [47]. Although data-driven reasoning is highly effi-
cient, it is often error-prone in the absence of adequate domain knowledge, since 
there are no built-in checks on the legitimacy of the inferences that a person makes. 
In contrast, hypothesis-driven reasoning is slower and may make heavy demands on 
working memory, because one must keep track of goals and hypotheses. It is, there-
fore, most likely to be used when there is uncertainty, domain knowledge is inade-
quate, or the problem is complex. This type of reasoning is not used in regular 
time- constrained practice because details interfere with the utility of efficient deci-
sion making. Other chapters in the book discuss the concepts of forward and back-
ward chaining in systems (Chaps. 3 and 4). It should be noted that forward reasoning 
by expert systems consists of straightforward chaining of rules, whereas the forward 
reasoning of human experts invariably has missing steps in the inferencing process 
[28]. This indicates that forward reasoning may be generated by a process consider-
ably more complex than the simple chaining of rules.

Hypothesis-driven reasoning is usually exemplary of a weak method of problem 
solving in the sense that is used in the absence of relevant prior knowledge and when 
there is uncertainty about a problem solution. In problem-solving terms, strong 
methods engage knowledge, whereas weak methods refer to general strategies that 
do not. Weak does not necessarily imply ineffectual in this context. Furthermore, 
hypothesis-driven reasoning may be more conducive to the novice learning experi-
ence in that it can guide the organization of knowledge [48]. Causal reasoning as 
part of the backward reasoning is an indispensable part of human thought, and it has 
been argued that formalizing it is a prerequisite to achieving human-level machine 
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intelligence [49]. These types of reasoning relate to Kahneman’s “fast” and “slow”, 
models of reasoning [50], where the author proposes two types of reasoning corre-
sponding to two different components of the human brain. There are identified as 
System 1 and System2. System 1 processes information fast, but is slow to learn, 
since it learns through experience—often through sensory perception and pattern 
matching strategies—and it is error prone. System 2 processes information slowly, 
but is fast to learn. It learns from theory through explanatory processes with a logi-
cal inference engine, and is relatively reliable because it has built in error checks. 
This process is effortful and is triggered under uncertain conditions. The character-
ization of the two systems is not unlike the forward and backward reasoning in 
medical decision making developed by Patel and Groen and described above. The 
authors showed a formal relationship between comprehension and problem solving 
[51] in clinical medicine. The recognition of the relationship between the cognitive 
studies in clinical comprehension and problem solving, and AI dates back at least to 
1991, when the two keynote presentations at the Artificial Intelligence-Europe 
meeting in Maastricht, Netherlands discussed the two topics and their synergies [28, 
52]. These relationships show that collaboration among cognitive science, AI and 
neuroscience can produce an understanding of the mechanisms in the brain that 
generate human cognition. Thus, it is important to build AI systems with the ability 
to understand, think, reason and learn flexibly and rapidly, which will require deeper 
understanding of how the human mind functions as we do our tasks.

 Models of Medical Reasoning

It is generally accepted there are two basic forms of reasoning: deductive reason-
ing, which in medicine consists of deriving a diagnosis (conclusion) from diagnos-
tic category or a pathophysiological process (hypothesis). The other form is 
inductive reasoning, which consists of generating a diagnosis (conclusion), from 
patient data. However, reasoning in the “real world” does not fit neatly into any of 
these basic reasoning types. A third form of reasoning was identified as best captur-
ing the generation of clinical hypotheses, where deduction and induction are inter- 
mixed. This is termed abductive reasoning [53], which is based in philosophy and 
is illustrated by the clinician generating a plausible explanatory hypothesis through 
a process of heuristic rule utilization (see for example, [54]).

Abductive reasoning is thought of as a cyclical process of generating possible 
explanations (i.e., identification of a set of hypotheses that are able to account for 
the clinical case on the basis of the available data) from a set of data and testing 
those explanations (i.e., evaluation of each generated hypothesis on the basis of its 
expected consequences) for the abnormal state of the patient at hand [11, 55–57]. 
Abductive reasoning is a data-driven process and dependent on domain knowledge. 
Within this generic framework, various models of diagnostic reasoning may be con-
structed. Following Patel and Ramoni [58], we can distinguish between two major 
models of diagnostic reasoning: heuristic classification [59] and cover and dif-
ferentiate [60]. However, these models can be seen as special cases of a more gen-
eral model: the select and test model [57], where the processes of hypothesis 
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generation and testing can be characterized in terms of four types of processes: 
abstraction, abduction, deduction, and induction.

During abstraction, pieces of data in the data set are selected according to 
their relevance for the problem solution and chunked in schemas representing an 
abstract description of the problem at hand (e.g., abstracting that an adult male 
with hemoglobin concentration less than 14 g/dL is an anemic patient). Following 
this, hypotheses that could account for the current situation are related through a 
process of abduction, characterized by a “backward flow” of directed inferences. 
This model of reasoning can be used to explain the medical diagnostic process. 
Expert clinicians are selective in the data they collect (abstraction), focusing 
only on the data that are relevant to the generated hypotheses, while ignoring 
other less-relevant data [24, 27]. Successful clinicians focus on the fewest pieces 
of data and are better able to integrate these pieces of data into a coherent expla-
nation for the problems [61]. Typically, physicians generate a small set of hypoth-
eses very early in the case (abduction), as soon as the first pieces of data become 
available, as was first shown by Elstein’s group [11], and later corroborated by 
other researchers (For example, [62, 63]). Physicians sometimes make use of the 
hypothetico-deductive process (deduction), which involves four stages: cue 
acquisition, hypothesis generation, cue interpretation, and hypothesis evaluation 
[11]. The reader is referred to the comprehensive summary of the research in 
clinical reasoning provided by Patel and colleagues in a recent book chapter [34]. 
The complex nature of clinical reasoning and decision making illustrates why is 
it so difficult to develop intelligent systems that can behave like human beings.

 Knowledge Organization, Expert Perception and Memory

The discussion so far has focused more on expertise and the processes of diagnostic 
reasoning. Research has also revealed differences in knowledge representation with 
levels of expertise. A recurring finding from studies of expertise is that experts rep-
resent knowledge at a higher level of abstraction than their less experienced coun-
terparts [64]. For example, Norman and colleagues investigated the ability of 
clinicians of different levels of dermatology expertise to make clinical diagnoses 
based on images presented as slides. Experts were more accurate in their diagnoses, 
and also exhibited a tendency to categorize slides at higher levels of abstraction. A 
similar finding was found in the study of expertise in radiology: less experienced 
subjects focused on surface anatomical features, while experienced radiologists 
developed deeper, more principled problem representations [65]. While this was not 
unexpected in visual domains of medicine, Patel and her colleagues identified an 
analogous difference in levels of abstraction in verbal problem solving, with expert 
physicians tending to represent case information from written scenarios at a higher 
level of abstraction than novice physicians [33]. Specifically, experts are distin-
guished by their emphasis on the facet level [66], which represents intermediate 
solutions to diagnostic problems. An example might be the cluster of symptoms 
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associated with congestive cardiac failure—once these are recognized a specific 
diagnosis that explains the cause of the congestive cardiac failure can be sought. For 
experts, these facet-level pre-diagnostic hypotheses serve as intermediate steps in a 
diagnostic process, narrowing down the space of possible solutions to mediate 
effective problem solving. In addition, the aggregation of information into larger, 
meaningful units allows expert problem solvers to represent complicated cases 
within the laboratory-determined constraints on working memory capacity 
(famously, 7+-2 units of information) [67]. Such patterns of knowledge organiza-
tion have immediate implications for the design of AIM systems. Adler-Milstein 
and her colleagues use the analogy of “wayfinding” to describe the use of AI to 
support the process of diagnosis by gathering, organizing and prioritizing informa-
tion that is germane to the solution of a diagnostic problem [3]. How then, should 
the information be organized once gathered? The section on “AI, Machine Learning, 
and Human Cognition” considers how what is known about clinical knowledge 
organization and decision making might be used to guide this process.

 Understanding Clinical Practice for AI Systems

 The Role of Distributed Cognition

The work discussed in previous sections has focused on the cognitive processes of 
individual decision makers, often captured in laboratory experiments. However, 
toward the turn of the twenty-first century, a new paradigm of cognitive research 
emerged, known as distributed cognition [68]. Distributed cognition broadens the 
focus of cognitive research, moving from the study of individuals in laboratory set-
tings to the study of groups of individuals at work in naturalistic environments. For 
example, Hutchins, a seminal figure in the field, conducted his influential work on 
navigation aboard naval vessels at sea [68]. A pragmatic advantage of this approach 
to research is that while representations in the mind (internal representations) can-
not be observed directly, representations that occur in the work environment (exter-
nal representations) can be recorded and studied. A famous example of an external 
representation concerns the “speed bug”, a positionable plastic pointer that slides 
around the edge of the speedometer and can be used to demarcate appropriate land-
ing speeds once these have been retrieved from a reference book [69]. This example 
is illustrative of a fundamental idea in distributed cognition: that an individual (or 
team of individuals) in a work environment constitute a composite cognitive sys-
tem—a symbol processing system—with greater functionality than any of its indi-
vidual components. From this perspective, the reference book of acceptable speeds 
is part of the long-term memory of the system, and the speed bug—a cognitive 
artifact—is part of its working memory [69]. In previous research, a significant 
paradigm shift was seen from a focus on individual cognition to collaborative and 
distributed cognition in healthcare. A special issue of the journal AI in Medicine 
included five original articles by prominent scholars that present complementary 
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approaches to collaboration and distributed cognition in health and medicine, 
emphasizing situations where collaboration is between human and computer or 
facilitated by computers [70]. On account of the prominent role of cognitive artifacts 
such as whiteboards and different sorts of clinical notes in clinical practice, distrib-
uted cognition has proved to be an informative way to characterize such settings [71, 
72], and identify opportunities to design tools that support their cognitive work [73].

As an illustrative example, Cohen and his colleagues used the distributed cogni-
tion paradigm to characterize the distribution of cognitive work in a psychiatry 
emergency department [71]. The work revealed ways in which cognition was dis-
tributed across teams and cognitive artifacts (such as written notes, see Fig. 5.4), 
and also over time, with these cognitive artifacts serving as bridges to maintain the 
continuity of cognitive tasks despite frequent staffing changes.

Considering a clinical environment from this perspective can lead to a more 
holistic picture of the ways in which AI technologies can offer support than the 
prevailing approaches of automated diagnostic decision making or prediction of 
adverse outcomes, including support for such cognitive tasks as information search, 
aggregation and synthesis [74].

Fig. 5.4 Distribution of cognitive tasks in a psychiatric emergency department. The tasks, broadly 
categorized into information gathering tasks, and those involving actions taken on the basis of this 
information, are supported by a range of cognitive artifacts such as specific document types and the 
departmental whiteboard. Both the internal (mental) representations of the staff members and the 
external physical representations on these artifacts support the cognitive work required
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 AI, Machine Learning, and Human Cognition

The AI of today is a natural evolution of what we have seen over recent decades. For 
example, the deep neural networks currently used to classify images in radiology 
and other medical domains originated in the twentieth century [75, 76]. The changes, 
the reasons we are seeing AI in every aspect of life, appear to be less about AI 
advancement itself than they are  about data generation and our current ability 
to leverage advanced computational power. However, there are certain barriers to 
the rapid growth of AI that are unlikely to be overcome by data and computational 
power alone. These barriers demonstrate that the path to the advancement of AI can 
be tricky and challenging. Present AI systems do not have a deep understanding—
an understanding that integrates new observations with prior structured knowl-
edge—but, rather, a shallow intelligence, that is the ability to emulate and, in the 
context of constrained tasks, sometimes even to improve upon some human pattern 
recognition and perception abilities. One cannot deny that there is intelligence in AI 
systems, but it does not follow the same rules as humans do.

The major goal of AI is to push forward the frontier of machine intelligence. 
Before going any further, it may be important to introduce a few terms. Machine 
learning and deep learning are two subsets of artificial intelligence which have 
garnered a lot of attention over the past few years. Many machine learning applica-
tions aim to allow computers to analyze and act with less human intervention by 
learning from training data. Deep learning—itself a type of machine learning—
aims to support analyses that use multilayered structures inspired by the neural 
connectivity of the human brain (see Chap. 6). While many other machine learning 
methods require less training data and computing power than deep learning, deep 
learning methods typically need less human intervention because they have the 
capacity to learn useful representations of incoming data by themselves, obviating 
the need for these to be engineered manually. Deep learning can be viewed as a 
statistical technique for recognizing patterns in sample data, using neural networks 
with multiple layers, where there is an attempt at imitating (albeit superficially) the 
structure and function of neural networks in the human brain. An important advan-
tage of deep neural networks is that they are able to learn useful representations 
while training. For example, in image processing a deep learning model may propa-
gate data through different layers of the network, with each layer successively learn-
ing to recognize higher level image features that collectively suggest a label, as 
learned from training data. This is similar in some ways to how expert problem 
solvers work—using abstraction to relate their observations to previously learned 
hierarchies of concepts and relations in order to find an answer. However, there are 
important differences between these processes.

Consider the case of text comprehension. Human beings, as they process texts, 
frequently derive a wide range of inferences, as explained earlier. Deep learning 
currently struggles with open-ended inference based on real-world knowledge at the 
level of human accuracy [77]. Furthermore, human reasoners have the capability to 
explain the sequences of inferences that drive their decision making processes. 
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However, the propagation of representations from layer to layer of a deep neural 
networks, en route to a prediction, defies explanation in human terms. This transpar-
ency issue is a fundamental concern when using deep learning for problem domains 
like medical diagnosis, where clinicians need to understand how a given system 
made a decision. Problems that have to do with commonsense reasoning are usually 
outside the scope of deep learning. Human beings solve even simple problems by 
integrating knowledge across vastly disparate sources. In medicine these may 
include observational data, knowledge of clinical science, laboratory data and so 
forth. This is not true for the majority of deep learning models, which learn complex 
statistical correlations among input and output features, but with no inherent repre-
sentation of causality or associated domain knowledge. We need to reach human- 
level cognitive flexibility if we are to see AI models reach human-like performance. 
These issues are well addressed in recent scholarly literature [77–79]. However, 
such flexible human-like performance is not a prerequisite to improving healthcare 
with AI.  Contemporary AI methods can already perform constrained tasks with 
human-like accuracy, and have other capabilities—such as the ability to process 
large amounts of data quicky—that can be leveraged to support human deci-
sion makers.

 Reinforcing the Human Component

Artificial intelligence is poised to transform the healthcare industry. By developing 
new data analytics, intelligent clinical systems can analyze large and varied data 
sets, and clinicians can easily access the information they need to deliver care to 
their patients. AI and augmented intelligence have similar goals but differ in the 
way of achieving them. Augmented intelligence is like AI in that both fields use 
machine learning to enhance performance. However, instead of replacing human 
intelligence, augmented intelligence aims to use AI methods to build upon it in an 
assistive role. This change in emphasis has broad implications. Technologies medi-
ate human performance, and influence the way people behave as they interact with 
them. This goes beyond merely supporting, enhancing or expediting performance. 
Tools, and artifacts not only enhance people’s ability to perform tasks but also 
change the way in which they do so. The following sections provide some examples 
of how AI systems can be used to augment human cognition in medicine.

 Augmenting Clinical Comprehension

One approach to leveraging what is known about medical cognition to inform the 
design of AIM systems involves using approaches that deliberately emulate the 
knowledge organization of expert clinicians. As an illustrative example, Fig.  5.5 
shows one of four views of a narrative text discharge summary (from a fictional 
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patient encounter developed for research purposes) provided by a system that com-
bines supervised machine learning with semantic word vector representations to 
draw connections between phrases in text and the diagnostically and prognostically 
important facet-level constructs of psychosis, mood, substance abuse and danger-
ousness [82, 83]. The figure shows a view that emphasizes phrases related to psy-
chosis, such as those mentioning auditory hallucinations or paranoid ideation (as 
well as phrases mentioning antipsychotic medications such as Risperdal). Relevant 
phrases are also presented in the top and rightmost panels, and both these phrases 
and the four facets in the top panel serve as links to accommodate navigation, and 
switch perspective to emphasize the facet concerned. The interface also provides a 
graphical summary (bottom panel) of other narrative text records that indicates the 
extent to which content from each facet is represented, to facilitate exploration of 
historical narratives at a conceptual level that is conducive to problem solving. 
Evaluation of the interpretation of two case scenarios by 16 psychiatry residents 
revealed that the interface supported clustering of case-relevant information, with 
more detailed case recollection and better diagnostic accuracy in the more complex 
of the two scenarios when the interface was used [84]. In addition, residents using 
the interface better attended to clinically relevant elements of the case that had been 
neglected by non-expert participants in previous work [80], including important 
indicators of potential dangerousness to self and others. Qualitative evaluation of 
verbal think-aloud protocols captured during the process of exploring the cases 
using the interface revealed patterns of navigation used by residents to explore 
hypotheses at the facet level. These studies demonstrate the potential for AI to aug-
ment human decision making by simulating expert knowledge organization to 
reveal patterns in clinical data, rather than making decisions or predictions directly. 
From a distributed cognition perspective, the simulations of the knowledge and 
retrieval structures—structures that would typically support efficient decision 
making in the minds of the experts—are part of a larger cognitive system that 
includes residents, the interface and the AIM models that underlie it.

 Supporting Specific Cognitive Tasks

The preceding section describes a system that was developed to support trainees 
(residents) by simulating knowledge organization and retrieval structures that are 
characteristic of expert medical cognition, and expertise in general. It is also possi-
ble to design systems to support the thought processes underlying a specific task, 
that have been characterized using cognitive methods. For example, Baxter and his 
colleagues describe the use of a cognitive task analysis—a systematic approach for 
collecting information about the mental processes underlying a particular task 
[85]—to inform the development of an expert system named FLORENCE to sup-
port decision making about ventilator settings in the context of neonatal respiratory 
distress [86]. This work involved a detailed characterization of the tasks, actors, 
communication events, documents and instruments in the neonatal intensive care 
unit concerned, resulting in a number of design implications for the system. These 
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included practice recommendations for staff that identified contingencies in which 
the system’s suggestions may be unreliable, the need for a distinctive alarm that 
would stand out from those already prevalent in the environment, and the incorpora-
tion of mnemonic devices already used by staff into the wording of the system’s 
recommendations. These design implications were all informed by what had been 
learned about the cognitive capabilities of the team in the unit: their ability to rec-
ognize anomalous data that may lead to untrustworthy recommendations, the poten-
tial for their awareness of one alert to be drowned out by others, and the aids they 
use to remember procedural tasks developed to preemptively address potential 
causes of faulty readings that could mislead FLORENCE.

 Mental Models of AI Systems

Interestingly, many of the design implications that emerged from the aforemen-
tioned cognitive task analysis concerned devising ways for human team members to 
recognize or preempt conditions under which an AIM system is likely to be incor-
rect. This requires having a mental model the system, akin to those shown to enhance 
learning to use devices in general [87]. Bansal and his colleagues provide empirical 
evidence that an accurate mental model of such conditions is fundamental to effec-
tive team performance in AI-advised decision making [88]. In these experiments, 
which were conducted with crowdsourced workers in the context of a simulated 
AI-advised task, better overall team performance was observed when using systems 
with error-prone conditions that were easier to understand because they depended 
upon fewer data features, and consistently led to a system error. The benefits of 
consistent model performance have also been shown in prior work by this group 
related to updating machine learning models, which was shown to have detrimental 
effects on overall team performance when it led to changes in decision-making on 
previously-observed examples [89]. These findings are also consistent with subse-
quent work showing that more accurate mental models of AI systems lead to better 
collaborative performance on word games [90]. Related work has investigated 
mediation of the development of accurate mental models of AI systems [91], and 
how such mental models are revised in response to surprising behavior [90]. While 
these findings mostly emerged from work outside the medical domain, they have 
clear implications for the development of AIM systems, and characterization of 
healthcare provider’s mental models of AIM is an important area for future cogni-
tive informatics research.

 Conclusion

The influence of technology is not best measured quantitatively alone, since it is 
often qualitative in nature. The importance of cognitive factors that determine how 
human beings comprehend information, solve problems, and make decisions cannot 
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be overstated. Investigations into the process of medical reasoning have been one 
such area where advances in cognitive science have made significant contribu-
tions to AI.

At the AI in Medicine conference in Amsterdam in 2009, researchers raised the 
question of whether we have forgotten about the role of the human mind as we perform 
our tasks in the evolution of AIM research [92]. This question is still salient today, 
perhaps more salient given that technological advances have surpassed our understand-
ing of human behavior in such complex socio-technical environments. Today, a new 
question is whether we are getting the most out of our AIM inventions. It is time to 
reshape the current innovative technologies to serve human beings and augment our 
activities. In the clinical world, such augmented intelligence can provide clinicians 
with additional assistance they need to deliver a better quality of care for their patients.

Questions for Discussion

• Discuss, with examples, how the knowledge of cognitive science foundations 
can provide a better understanding of human-technology collaboration for devel-
oping contemporary AI systems for clinical practice. Can you think of principles 
of some of the component subfields of cognitive science that may also be valu-
able in such collaborative efforts?

• What are the ways to augment human intelligence for safer clinical practice, 
given what we know about current medical AI systems? Consider known limita-
tions of human cognition, such as a propensity toward bias in diagnostic decision 
making and constraints on attentions span and working memory, how these limi-
tations may manifest as vulnerabilities to medical error, and how AI methods 
may be used to preempt these patient safety concerns. 

• Consider the potential and limitations of symbolic representation of knowledge 
in AI systems, and ways to circumvent these limitations with more contemporary 
approaches. Conversely, consider the limitations of contemporary deep learning 
models. How might the limitations of these  approaches be addressed through 
incorporation of symbolic approaches, and vice versa?
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Chapter 6
Machine Learning Systems

Devika Subramanian and Trevor A. Cohen

After reading this chapter, you should be able to answer the following 
questions:
• What types of problems are suitable for machine learning?
• What are the steps in the design of a machine learning workflow for a clinical 

prediction problem?
• What are key techniques for transforming multi-modal clinical data into a form 

suitable for use in machine learning?
• What limitations in model-building arise from just using observational data? 

How does the use of prospective data mitigate some of these limitations?
• What are some examples of biases in observational data?
• What is feature engineering and when is it required?
• When is it appropriate to use an ensemble model instead of a single 

global model?
• What are the challenges in deploying machine learned models in clinical 

decision- making settings?
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 Identifying Problems Suited to Machine Learning

The exponential growth of a diverse set of digital health data sources (as described in 
Chap. 3) has opened new opportunities for data-driven modeling and decision- making 
in clinical medicine. These data sources including electronic health records (EHRs); 
large de-identified health datasets such as Medical Information Mart for Intensive Care 
(MIMIC) [1], which contains lab tests and time series of vital signs from Intensive Care 
Units (ICUs); the Cancer Genome Atlas (TCGA [2]), which includes imaging as well 
as proteomic and genomics data; and longitudinal, nationwide EHR datasets aggregated 
by companies such as Cerner. Machine learning is a critical enabling technology for 
analyzing and interpreting these massive data sources to support and improve clinical 
decision-making. Recent successes in machine learning have mainly focused on image-
based predictive diagnostics: diabetic retinopathy [2], classification of skin cancer 
lesions [3], and identification of lymph node metastases in breast cancer [4] (see Chap. 
12). Contemporary machine learning methods provide the means to go beyond these 
successes by exploiting the full range of data sources available today, including geno-
type sequencing, proteomics and other -omics data, data from wearable devices such as 
continuous glucose monitors, from health apps on smartphones, and from patients’ 
social media interactions (including text data). By integrating them with other classical 
data sources, physicians can leverage rich, time-indexed, multimodal representations of 
patients. Standardized frameworks such as the Observational Medical Outcomes 
Partnership (OMOP [5])1 common data model for encoding disparate data types, 
make it possible to incorporate diverse data sources into a machine learning workflow.

There are two broad classes of problems that can be solved using machine learn-
ing: (1) prediction problems involving probabilistic estimation of a diagnosis, out-
come of a therapy modality, risk of developing a disease, or disease progression from 
observational patient data; and (2) probabilistic modeling involving estimation of 
joint distributions of clinical variables from observational and interventional data, 
which can then be used to make “what-if” inferences to answer questions such as 
“will adding a specific therapeutic intervention reduce risk of hospital readmission?”. 
Supervised machine learning models solve prediction problems. They learn map-
pings between predictor variables and outcome variables from paired associational 
training data that take the form (predictors, outcomes). A typical example might 
involve assigning a diagnostic label to a radiological image (predictors: pixels; out-
comes: diagnoses). Training such models requires sets of predictors labeled with the 
outcomes of interest. Unsupervised machine learning models find patterns between 
a collection of clinically relevant variables, without the need for explicitly labeled 
data. Examples of patterns include finding phenotypic clusters and dimensionality 
reduction by inferring latent factors of variation among a large collection of variables.

The focus of the current chapter is on supervised machine learning models. This 
class of machine learning models currently predominates in AIM applications for 
tasks such as diagnosis assignment and outcome prediction. The discussion makes 

1 https://www.ohdsi.org/data-standardization/the-common-data-model/. (accessed August19, 2022) 
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assumptions about the reader’s knowledge of pertinent mathematics and notational 
conventions. Those who lack the requisite background may wish to focus on the 
conceptual aspects of the discussion rather than the mathematical details.2

There are unique technical challenges and opportunities that arise in defining 
solvable problems in the healthcare context. In setting up a prediction model, one 
needs to consider carefully the following: (1) The prediction target: what is to be 
predicted, (2) Technical feasibility of prediction: is it predictable at all, (3) Economic 
feasibility of prediction: is it worth predicting in the context of the clinical work-
flow, and (4) Information source selection: from what information sources can the 
prediction be made.

For example, consider the problem of determining the optimal time to insert a left 
ventricular assist device (LVAD—a surgically implanted artificial pump that assists 
the heart in circulating blood throughout the body) in a patient with chronic heart 
failure. The standard of care for LVAD insertion defines the optimal insertion time to 
be when the “pumping life” of the heart is estimated to be approximately 1 year. The 
prediction problem is then reduced to a mortality estimation problem—what is the 
probability of a patient’s survival for 1 year given various clinical assessments of the 
heart’s mechanical and electrical efficacy, coupled with a broad range of laboratory 
assessments on the condition of other vital organs. This prediction problem is solved 
routinely by expert cardiologists, so there is evidence that it is a solvable problem. 
Unfortunately, not all LVAD insertion decisions made by experts lead to optimal 
patient outcomes, which opens the possibility of machine learning analysis of this 
decision problem. The informational basis for prediction can initially be set to all the 
records reviewed by the expert cardiologist in making the LVAD insertion decision. 
Training data can be assembled from a retrospective study of EHR records contain-
ing all the relevant information (such as arterial blood pressure, EKG findings and 
ultrasound studies of cardiac function) together with the correct final go/no-go inser-
tion decision. Note that the variable to predict is the correct decision, not necessarily 
the decision made by any individual doctor. The correct decision needs to be vali-
dated with information on the patient after the LVAD procedure, or by an expert 
committee. A predictive supervised machine learning model can extract probabilis-
tic patterns to predict appropriate times for LVAD insertion from the curated dataset, 
in effect summarizing the experiences of the most successful expert cardiologists.

Defining outcome and predictor variables for a prediction problem can be tricky. 
One problem is that information about the outcome variable can be leaked through 
the predictors. Consider predicting diabetic ketoacidosis (DKA)3 in a pediatric Type 
1 diabetes4 patient based on data gathered from the EHR, including demographic 

2 Introductory material on the pertinent mathematical details (e.g., probability theory, linear alge-
bra, calculus) is provided in the suggested readings at the end of this chapter.
3 DKA is a serious complication of diabetes resulting from the buildup of fatty acid byproducts 
called ketones in the bloodstream, with dangerous increases in blood acidity if untreated.
4 Type 1 diabetes tends to arise first in children and requires treatment with insulin. The type of 
disease that arises in adults, who are often overweight, is Type 2 diabetes and can often be treated 
with medications rather than insulin.
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information, lab tests, antibody titers, insulin dosing and modality. A supervised 
machine learning model built from retrospective patient data predicts that high val-
ues of beta-hydroxy-butyrate are predictive of DKA. Unfortunately, beta-hydroxy- 
butyrate is measured only for patients with DKA and is used in monitoring and 
management of that condition. By using beta-hydroxy-butyrate as a predictor, the 
answer has inadvertently been revealed to the algorithm.

Missing values in predictor variables pose a fresh set of challenges. Not all 
supervised learning methods can handle missing values. Those that cannot then 
drop data points, leading to models built on fewer samples, which may not be sta-
tistically robust. A further complication is the nature of missing data—was a mea-
surement randomly omitted, or omitted for a specific cohort as in the 
beta-hydroxy-butyrate example above? Similarly, is there limited representation of 
specific demographic groups in the database, reflecting human biases in data collec-
tion that could yield large errors in prediction for that subgroup? Compensating for 
these biases in the construction of training data sets is essential for a successful 
machine learning project, and a detailed account of the origin of missing values in 
clinical data and methods to manage them is provided in Chap. 11.

 The Machine Learning Workflow: Components of a Machine 
Learning Solution

This chapter seeks to introduce principles and mechanics of building data-driven 
predictive machine learning models for healthcare applications. At the heart of the 
process is the clinical question that needs answering, for it drives the selection of 
both the data and the machine learning model. Formulating clinical questions appro-
priate for data-driven machine learning analysis is still an art. One typically cycles 
through the steps shown in Box 6.1: specification of the clinical question, data 
source selection, data extraction and transformation, model specification and con-
struction, model validation, and incorporation of the model into a clinical workflow.

Box 6.1 Steps in a Typical Workflow for Data-Driven Predictive 
Modeling in Healthcare
• Step 0: Specify the clinical question that needs to be answered
• Step 1: Identify data sources relevant to answering that question
• Step 2: Extract and transform raw data from the original sources into a 

form needed for analysis by specific machine learning (ML) algorithms
• Step 3: Select a suitable algorithm and build a model, ensuring appropriate 

choice of algorithm hyper-parameters
• Step 4: Validate model predictions; checking for robustness and going 

back to the earlier steps in the workflow, if warranted
• Step 5: Incorporate model into clinical workflow with a human-centered 

approach, and construct system-level impact assessments
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Here is a specific example of a predictive modeling workflow.

• The clinical question: Is the risk of developing DKA in the next 3 months for 
a teenage, white, pediatric Type 1 diabetes patient with an HbA1c5 increase of 
1 point (from 7 to 8) over the last 3 months high enough to warrant an interven-
tion? Which of the two following interventions is likely to be more success-
ful—a social worker visit to ensure insulin compliance or an increase in 
insulin dosing?

• The data sources: Taking a data-driven perspective on this question would 
involve retrieving, from the EHR database, pertinent information on all Type 1 
diabetes patients with similar demographic and clinical profiles, and examining 
the percentage of times interventions were applied, and their relative success, to 
recommend an evidence-based solution. While modern-day database tools allow 
easy retrieval of records from the EHR, the definitions of similar demographic 
and clinical profiles must be chosen carefully with an expert endocrinologist’s 
help. For example, should gender be included in the demographic profile? Which 
lab tests are the most relevant to determine similarity in clinical profiles? Are 
there genetic markers available to risk-stratify patients? Predictive modeling is a 
collaboration between expert human beings and the machine, with the human 
expert providing nuanced decision criteria for cohort selection and the machine 
performing detailed analysis on expert-defined patient cohorts.

• Data extraction and transformation: Transforming raw clinical data into 
analysis- ready data sets can be challenging. This is primarily because the goal of 
data collection in hospitals is to support care and to manage costs and payments, 
and not necessarily to enable retrospective or predictive analyses. For structured 
fields, values may be missing or entered incorrectly. Further, approaches to han-
dle time-series data sampled at different time scales are needed. There can also 
be wide variation in formats of unstructured data such as free text clinical notes. 
Since most machine learning algorithms take tabular data (two-dimensional 
arrays) or multi-dimensional arrays as input, data must be represented in these 
forms to be processed by these algorithms.

• Model specification and construction: In this example, the goal is to quantify 
the statistical association (if any) between risk of DKA in the next 3 months and 
the demographic and clinical profile of Type 1 diabetes patients. If there are 
enough patients in our analysis cohort, a supervised ML algorithm can be used 
to identify the probabilistic patterns that relate available predictors to DKA risk. 
In addition, it may be of value to know if there is a relationship between patient 
profiles and effectiveness of a specific type of intervention. Such associational 
queries can be easily answered using a range of supervised learning algorithms, 
which are covered in this chapter. Demographic and clinical data for pediatric 

5 HbA1c stands for Hemoglobin A1c, which reflects average blood sugar levels over the past 
2–3 months.
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Type 1 diabetes patients can be assembled from the EHR. These can be com-
bined with patient data on interventions and their outcomes. From such a data-
set, it is possible to build a simple logistic regression model to predict the 
probability of success of a specific intervention given a patient’s profile. More 
sophisticated models to capture nonlinear interactions between predictors and 
outcomes, such as gradient boosted decision trees, can also be built if there are 
sufficient data to build them. Ultimately, an end-to-end machine learning pipe-
line (whose structure is dictated by the nature of the problem/data) is built and 
compared against a simple baseline model (such as a logistic regression). The 
pipeline is refined by evaluating whether it overfits or underfits the data (see sec-
tion on “Bias and Variance”), and either reduce the number of parameters in the 
model or add more data (data augmentation) to support robust learning of model 
parameters.

• Model validation: Once a predictive model is constructed, there is a need to 
assess its performance on new (as yet unseen) data. In a retrospective study, a 
randomly selected portion of the available data (typically 20%), called the test 
set, is set aside and the remaining 80% is used to train the model. For classifica-
tion problems, it is possible to use several performance measures. A detailed 
presentation of some widely-used performance metrics is provided in the next 
section on “Evaluating machine learning models: validation metrics”. These 
metrics can be calculated over the set-aside test data to get an unbiased estimate 
of the performance of the trained model. With a prospective study, a new test set 
can be constructed by retrieving fresh data from the EHR to evaluate the perfor-
mance of the model. A very important principle in model validation is to ensure 
that the training and test sets are kept separate—that is, the test set is not inad-
vertently used in the training process (for example, to select algorithm parame-
ters). Model configuration may be accomplished with a held-out subset of the 
training set that is often referred to as a validation set. The test set estimates 
performance of the model on “unseen” data. The training set can be viewed as 
the analog of the “homework problem set” in human learning, and the test set 
serves as the “exam”. Clearly, using problems identical to the homework in the 
exam provides an overoptimistic estimate of the model’s (the student’s) predic-
tive performance. The choice of evaluation metric is also key and reflects priori-
ties in the clinical use context—e.g., is it more important to avoid false negatives 
(failing to predict future DKA, leading to a missed opportunity of diagnosis) or 
to minimize false positives (incorrectly predicting future DKA, potentially lead-
ing to overtreatment).

• Incorporation into clinical workflow and system-level assessment: While 
having a predictive model with strong performance is a necessary component, it 
is unfortunately not all that is needed for clinical impact. One needs to determine 
where to inject the model’s predictions in the workflow of a pediatric endocri-
nologist for maximal impact on patient outcomes. Human factor considerations 
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play a critical role in the design of the user interface through which the model’s 
decisions as well as its explanations are presented to the doctor (see Chap. 17). 
The final impact of the model can be estimated at the health system level with 
measures such as reduction in DKA admissions over a given time frame. While 
the discussion of validation here is focused on measures of accuracy, the reader 
is referred to Chap. 17 for a holistic account of evaluation that considers other 
important aspects such as system integration, usability, and eventual clinical 
outcomes.

 Evaluating Machine Learning Models: Validation Metrics

A broad range of evaluation metrics are widely used to measure the performance of 
machine learning algorithms. While an exhaustive account of these metrics is not 
provided in this chapter, some of the most commonly applied ones are introduced, 
as well as some principles to consider when interpreting them. These metrics are 
introduced using the schematic representation of the results of a two-class classifi-
cation system shown in Fig. 6.1.

Recall (Sensitivity) Recall measures the proportion of testing examples in the 
positive class that have been correctly identified by the model. This corresponds to 
the estimation of the sensitivity of a test in medicine (e.g., what proportion of cases 
of a disease in a population are detected by a laboratory test), and this term may be 
more familiar to a clinical audience. As is the case with some of the other metrics 
here, recall can be derived from the cells of a 2 × 2 table with cells corresponding to 
counts of correctly (true positive and true negative) and incorrectly (false positive 

Fig. 6.1 Illustration of a possible output from a two-class classifier with an evaluation set of 25 
examples, 15 of which are in the positive class (+), and 10 of which are in the negative class (−). 
Note that the classifier is imperfect, in that 4 members of the negative class have been classified as 
positive and 3 members of the positive class have been classified as negative
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and false negative) classified examples. However, a straightforward way to think of 
recall is as the proportion of all the positive cases that were correctly identified by 
the model:

  

number of correctly classified positive examples
total numb
     

 eer of positive examples   

In the example in Fig. 6.1, recall would be estimated as 12/15 = 0.8.

Precision (Positive Predictive Value) It follows from the definition of recall that 
it is not affected by the number of negative examples that are incorrectly classified 
as positive cases (so-called false positives—the bottom row of the left panel in 
Fig. 6.1). However, it is also important to know what proportion of the ostensibly 
positive cases identified by a machine learning classifier were correctly identified. 
For example, a diagnostic system that falsely identifies many cases of a disease that 
then require extensive follow-up may do more harm than good, both at the individ-
ual and the societal level. Precision measures the proportion of a model’s positive 
predictions that were true, and can be defined as:

 

number of correctly classified positive examples
total numb

     
 eer of classified positive examples    

Precision can be estimated from the leftmost panel of Fig. 6.1 as 12/16 = 0.75.
Precision corresponds to the positive predictive value of a clinical test—what 

proportion of people with a positive test truly have the condition it is intended 
to detect.

It is worth considering the trade-off between recall and precision. Given that 
machine learning classifiers often use a threshold (e.g., probability > 0.5) to assign 
discrete classes based on a probabilistic estimate, one might imagine simply setting 
this threshold to optimize for recall (by setting a low threshold such that most every-
thing is classified as positive), or for precision (by setting a high threshold, such that 
the model only classifies examples it is very confident about as positive cases). In 
some circumstances, such as when the risk of missing a diagnosis is tolerable 
whereas the next step after automated detection is an invasive and expensive exami-
nation, precision may be more important than recall. In a screening scenario where 
it is desirable to detect most instances of a disease in the population, and a sequence 
of follow-up tests with greater precision is readily available, recall may be key. As 
such, the optimal performance characteristics of a machine learning model may 
vary depending upon how the predictions it makes will be used. Also, this trade-off 
suggests it may not be particularly meaningful to consider precision or recall in 
isolation.

The F-measure The F-measure evaluates performance by balancing precision 
against recall. With the most widely used variant of this measure, known as the F1 
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measure, there is an equal balance between these two components. The F1 measure 
is the harmonic mean6 between precision (p) and recall (r), which can be defined as 
follows:
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The implications for combining two metrics are that the harmonic mean rewards 
balanced combinations. The harmonic mean will be highest when p and r are 
relatively close together, and lowest when they are relatively far apart. 
Figure 6.2 illustrates that unlike the typically used arithmetic mean, the opti-
mal harmonic mean of two values that sum to ten occurs when they are per-
fectly balanced. Likewise, the optimal F score will reflect a balance between 
precision and recall.

However, there may be tasks in which a perfect balance between precision and 
recall is not the optimal configuration. The F1 measure is the balanced form of the 
F-measure, which can be more generally formulated as follows:
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6 The name ‘harmonic’ concerns the musical relationships that emerge from applying this mean to 
tonal frequencies. For example, the frequency of “middle C” is ~261.6 Hz, and that of the C above 
this ~523.3 Hz (about double). The harmonic mean of these frequencies is ~348.8 Hz, which is 
represented by “F” (albeit only approximately on evenly tempered keyboard instruments), the next 
point of harmonic progression when traversing the cycle of fourths.
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The β parameter permits modification of the measure. For example, the F2 mea-
sure with β = 2 penalizes precision more heavily than recall, because the effects 
of precision on the denominator are multiplied by four, decreasing the over-
all score.

While the F measure effectively balances precision against recall (with the capa-
bility to shift emphasis), predictive models for classification generally produce a 
measure of confidence in their prediction—a probability that a test case falls into a 
particular category. Categories are assigned when this probability exceeds some 
threshold. Simply evaluating based on assigned categories discards information 
about the probabilistic estimates concerned. With a threshold of 0.5, a test case 
assigned a category-related probability of 0.6 and another assigned a probability of 
0.9 would be treated identically when evaluating the model. However, it is often 
desirable to compare model performance across the full range of possible thresh-
olds, without discarding these differences in a model’s confidence in its 
predictions.

Measures Derived from Performance Curves This comparison can be accom-
plished by comparing the area under curves that measure performance characteris-
tics of interest. Two widely used metrics of this nature are the area under the receiver 
operating characteristic curve (AUROC), and the area under the precision recall 
curve (AUPRC). Both of these metrics are estimated across a range of possible 
threshold values, effectively assessing model performance irrespective of the thresh-
old chosen for category assignment.

The AUROC measures the area under a curve that is typically plotted as the sen-
sitivity (recall) (y-axis) against the false positive rate—the proportion of all negative 
examples that have been misclassified as positive (x-axis).

In contrast the AUPRC measures the area under a curve that is typically plotted 
as the precision (y-axis) against the recall of a model (x-axis).

To illustrate these measures, consider a classification task with 10 positive test 
cases amongst 1000 in total.7 Based on model output, the positive cases have been 
ranked among the 1000 cases, and the recall, precision, and false positive rate at the 
rank of each example is shown in Table 6.1.

Note in particular the denominator when calculating precision (number of pre-
dicted positives) and the false positive rate (number of negative examples). With 
precision, the denominator increases with recall. Moving down the ranked list of 
model predictions, each correctly classified positive example comes at the cost of 
many false positive results. On account of the class imbalance in the dataset these 
increases in the denominator result in substantial drops in precision with each posi-
tive example that is correctly classified. In contrast, the denominator of the false 
positive rate is constant, at 990—the number of negative examples. The false posi-
tive rate therefore increases gradually while working down the long list of negative 
examples.

7 This presentation is inspired by Hersh’s account of ranked retrieval evaluations [6].
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Table 6.1 Performance characteristics of a hypothetical classifier

Rank Recall
Precision (of predicted 
positives)

False positive rate (of 990 negative 
examples)

1 0.1 = 1/10 1.0 = 1/1 (all true positives) 0 (all true positives)
5 0.2 = 2/10 0.4 = 2/5 0.003 ≅ 3/990
15 0.3 = 3/10 0.2 = 3/15 0.012 ≅ 12/990
17 0.4 = 4/10 0.24 ≅ 4/17 0.013 ≅ 13/990
24 0.5 = 5/10 0.21 ≅ 5/24 0.019 ≅ 19/990
100 0.6 = 6/10 0.06 = 6/100 0.095 ≅ 94/990
191 0.7 = 7/10 0.04 ≅ 7/191 0.186 ≅ 184/990
300 0.8 = 8/10 0.03 ≅ 8/300 0.295 ≅ 292/990
488 0.9 = 9/10 0.02 ≅ 9/488 0.483 ≅ 479/990
1000 1.0 = 10/10 0.01 = 10/1000 1.0 = 990/990 (all false positives)

This disparity is illustrated in Fig. 6.3, in which the AUPRC and AUROC for 
these results are compared. In both cases the area under the curve is invariant to 
which value is assigned to the x-axis, and also the two graphs have a value in com-
mon—the model recall. Therefore, for illustrative purposes the assignment of axes 
for the AUPRC is reversed, such that recall occupies the x-axis in both graphs. To 
map between the graph and Table 6.1 move up the y axis (recall) while moving from 
top to bottom of the table. As the proportion of positive examples that are correctly 
classified increases, the corresponding part of the AUPRC (the area under the orange 
PR curve) drops precipitously as the PR curve moves rapidly leftward while the 
corresponding AUROC (the area under the blue ROC curve) rises gradually as the 
corresponding ROC curve moves slowly to the right.

 Supervised Machine Learning

This section describes some of the key approaches and algorithms used in super-
vised machine learning. It is not intended to be an exhaustive account of these meth-
ods. More information can be found in one of the detailed and widely used textbooks 
of machine learning already available as resources, and several are suggested for 
further reading at the conclusion of this chapter. Rather, the goals in introducing 
these methods are first to familiarize the reader with standard nomenclature and 
notation used in machine learning, thereby eliminating a potential barrier to further 
exploration of related literature; and second to explain through illustration some 
fundamental concepts that relate to machine learning in general and must be under-
stood before these methods can be applied in a principled manner. The key concepts 
that are developed during the course of the illustration of selected methods include 
the notion of a machine learning model with pliable parameters that can be fit to 
training data in order to make predictions; how training objectives can be configured 
to emphasize data points of greater predictive utility; and—of particular importance 
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Fig. 6.3 Comparison between the AUROC and rotated AUPRC. The area under the blue curve 
shows the AUROC, and the area under the orange curve the AUPRC. The main contribution to the 
area under this orange curve occurs at low recall values (the bottom 20% of the y-axis)—precision 
drops precipitously as new positive examples are identified, because each of these carries the bag-
gage of many negative examples in an imbalanced set. In contrast, the area under the blue AUROC 
curve continues to increase gradually throughout the full range of recall values, with larger changes 
to the false positive rate (fpr) delayed until around half of the positive examples have been identified

to supervised learning—the inherent trade-off between the ability of a model to 
conform to its training data and its ability to generalize to data outside of this train-
ing set. The general discussion offered is pertinent to applications in healthcare and 
biomedicine, as well as to other domains.

Machine learning is essentially an automated search for meaningful patterns in 
data. Traditional computational systems map inputs to outputs according to manually 
specified and programmed decision rules. In the clinical context, such systems are 
rigid and require frequent updates to accommodate changes in standard of care and/
or evolution of the understanding of disease. The promise of machine learning is the 
automatic inference of general decision rules from lots of specific examples of 
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decision-making in a variety of contexts. It mirrors the residency phase of training of 
clinicians where clinically useful rules and patterns are learned directly by observa-
tion and integrated with those learned during didactic classroom learning. With 
retraining on suitable new data as they emerge, a machine learning system can adapt 
to new experiences and new examples without the need for explicit reprogramming.

 The Structure of a Supervised Machine Learning Algorithm

In order to approach the topic of machine learning, it is necessary to become famil-
iar with some notational conventions that are standard in the field (Box 6.2). This 
section illustrates the use of these conventions to describe a simple machine learn-
ing algorithm. It also introduces the fundamental concept of a loss function, a func-
tion that measures the extent to which a machine learning model conforms to its 
training data, and the gradient descent algorithm to achieve this end.

The simplest example of a machine learning algorithm is finding the least- 
squares line that fits given (x,y) points on the plane. The training data for the algo-
rithm consists of pairs of real numbers (x,y), and the pattern or model to be found is 
a line represented by the equation y = θ1x + θ0, where the parameters θ1 and θ0 stand 
for the slope and intercept. The parameters θ1 and θ0 are obtained by minimizing the 
mean squared prediction error of the model over the given data points. As such, this 
simple example serves to introduce some of the standard nomenclature used to 
describe machine learning approaches: a dataset composed of pairs (x,y) where x is 
an input data point (part of a larger set X), and a corresponding output y (part of a 

Box 6.2 Notational Conventions
• x: a feature of a data point, such as a patient’s HbA1C level
• x: (boldface) a vector made up of individual features for a data point
• X: the entire set of data points, such as a set of patients
• y: a label attached to a data point, e.g., 1 indicating “developed DKA”
• Y: the set of labels for the entire set of data points
• θ: the parameters of a model, e.g., the coefficients of a regression model
• argmin: the arguments that minimize some function, e.g., the parameters 

that minimize the difference between predicted and actual values for a 
data set

• ||x||: the vertical lines indicate the length (or norm) of the vector x
• xT: the superscript “T” indicates the transpose of the vector x—for exam-

ple, the transpose of a row vector becomes a column vector
• x1

Tx2: shorthand for the scalar (or “dot”) product between two vectors, x1 
and x2. This is calculated by multiplying the values in corresponding coor-
dinates, and summing up the total
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larger set Y), and a function f(θ) characterized by some parameters θ that will be 
learned through application of some algorithm, so as minimize the difference 
between the predicted and actual outputs. This difference provides a measure of 
how “wrong” the model is about a data point, which can be averaged across all the 
points in a data set to assess overall model fit. More formally, for a dataset 
D = {(x(i),y(i)) | x(i) ∈ R and y(i) ∈ R; 1 ≤ i ≤ m} containing m pairs of real values, and 
the parameter pair (θ0, θ1) defining a model of a line, the error made by the model is 
specified by a loss function, which is derived from the difference between y as pre-
dicted by this equation for each observed x value (x(i)) given model parameters θ, 
and the actual value of y for the data points concerned. One widely used loss func-
tion is the mean squared error loss function (also known as the quadratic loss func-
tion), which minimizes the average of the square of this difference across all data 
points in the set:
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This loss function perspective on supervised machine learning unifies all the algo-
rithms into a common framework. The entire family of supervised machine learning 
algorithms can be characterized by a loss function, a function family (in this case—
the family of linear functions) for capturing the relationship between the predictors 
in vector x and the outcome y, and an optimization algorithm to find the parameters 
of that function—typically gradient descent to minimize the loss. Linear regression 
and the other algorithms introduced in this chapter all share the same structure. The 
differences may be in the loss function, the optimization algorithm, or the expres-
sive power of the function family. Considering machine learning from this perspec-
tive not only provides a unified framework to support learning, but also permits 
communicating with machine learning researchers and practitioners with a shared 
terminology, a prerequisite to effective team science.

Values of θ0 and θ1 can be found that globally minimize this quadratic squared 
empirical loss function—these are the parameters that define the best fit line for the 
dataset D. By definition, these values will be the ones that minimize the average 
error in prediction across all the points in the set. These values can be found using 
an approach called gradient descent. The underlying idea is to start with a random 
guess, and gradually move toward a correct solution by adjusting the parameters to 
decrease the loss.

For a linear model with two parameters θ0 and θ1, a 3D visualization and contour 
plot of the loss function is shown in Fig. 6.4. The figures show how the loss (vertical 
z axis in Fig. 6.4 left and labeled blue ellipses in Fig. 6.4 right) changes as these 
parameters are adjusted. The loss is minimized with θ0 and θ1 at approximately 35 
and −1 respectively. The figures plot this loss function across a broad range of 
parameter values. However, it would be preferable not to explore this space exhaus-
tively in order to find a solution.
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Fig. 6.4 Two views of gradient descent. These figures illustrate how the loss (vertical z axis in the 
left panel, labeled blue ellipses in the right panel) changes at different values of the parameters θ0 
and θ1. The loss in this case is minimized with θ0 and θ1 at approximately 35 and −1, respectively, 
which corresponds to the lowest point on the z axis (left panel), and the point marked by the red  
(right panel)

To find the lowest loss value (marked with a red x in the contour plot in Fig. 6.4 
right), a gradient descent algorithm starts with an initial random guess for (θ0, θ1) and 
follows the direction of steepest descent of the loss function Loss((θ0, θ1))  in the 
parameter space, updating its values using
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until the values stabilize, and the gradient descent process converges. Conceptually, 
each parameter θj is updated in accordance with its influence upon the loss function. 
This is estimated as the partial derivative of the loss function with respect to each 
parameter, because the partial derivative estimates the extent to which changing a 
parameter of a function will change its output. In this way, each iterative step of the 
algorithm serves to move the parameters closer to values that reduce the error in 
predicted y values for the training data. Gradient descent provably converges to the 
optimal solution because the loss function is a convex function.8 The step size of 
the gradient descent algorithm is denoted α, the learning rate. It is chosen to be 
small enough so that the algorithm does not oscillate around the true minimum 
value of the loss function Loss (θ).

8 A convex function is a function in which a line drawn between the results of evaluating the func-
tion at any two points (e.g., f(x) with x = 0.25 and x = 0.5) will lie above the result of evaluating it 
at any value in between (e.g., f(x) with x = 0.35). Effectively this means that the function has a 
single (global) minimum, and that this can be reached by following the slope of descent.
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Once the parameters that lead to minimal loss have been found, the learned 
model can predict y for new values of x using y = θ0 + θ1x. The quality of the model 
is assessed by measuring squared error on new x values.

Note that the specification of the linear regression problem requires more than 
just the training data, i.e., the (x,y) pairs. Several assumptions about the nature of 
these data, and a model that will fit them are made. It is assumed that the model 
that predicts y is linear in x and described completely by a slope and intercept 
parameter. The goodness of fit of the linear model is assessed by measuring aver-
aged squared prediction error over the training data itself. That is, the strong 
assumption is made that the training data are a good proxy for new data that the 
model will predict on. Formally, it is said that the data set D is a representative 
sample of the fixed, but unknown distribution P of (x,y) example pairs—both 
observed and unobserved. Such an assumption is common in human learning in a 
classroom setting—problem sets solved by students are assumed to be a represen-
tative sample from the fixed distribution from which exam questions will be drawn. 
It is further assumed that each (x,y) is drawn independently, so there is no temporal 
dependence between the samples. This assumption is violated with time series 
data (see Chap. 11).

 Supervised Learning: A Mathematical Formulation

The training of the model described in the previous chapter is an example of super-
vised machine learning, because the model parameters were fit to a set of data 
points (the x values) with labels (the y values) it learns to predict. More broadly, 
supervised machine learning can be conceptualized as shown in Fig. 6.5, as a search 
for the “best” function/pattern in the space of functions H, guided by a representa-
tive training sample. This view casts supervised machine learning as an optimiza-
tion problem with a sample of (x,y) pairs drawn from an unknown but fixed 
distribution of examples, and a pre-defined space of functions characterizing the 
class of pattern relating the x’s to the y’s. The training data are used to navigate the 
space H of functions mapping x’s to the y’s to find one that “explains” the labeled 
training data the best. To guide the search for a suitable model in H, a loss function 
which quantifies how well the model fits the data is needed. Also needed are smooth-
ness properties of the function space H to make search tractable. That is, H must be 
defined such that neighboring points in function space have similar losses with 
respect to the training data, so that the space can be explored systematically. The 
gradient descent algorithm works only when the function space H is smooth in this 
sense and supports computation of the derivative of the loss function with respect to 
the parameters of H. However, supervised machine learning problems can often be 
approached in this way, and gradient descent is a keystone of many contemporary 
machine learning approaches, including deep neural networks.
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Fig. 6.5 Schematic depiction of supervised machine learning. Training data are a subset of the 
universe of possible labeled exampled pairs. The figure shows only a single x value per example, 
but in practice this is likely to consist of a vector of features, x (such as the intensities of pixel 
values in a radiology image). The task in supervised machine learning is to identify a function, f(x) 
(referred to as h* in Box 6.3) that correctly maps the x values of the data to the y values of the labels

Box 6.3 Mathematical Components of a Supervised Machine 
Learning Problem
Given
• a finite data set of pairs (x,y), where x is a vector of predictor variables, and 

y, the associated real-valued prediction
• a class of functions H: X  →  Y which map vectors x in X to real num-

bers y in Y
• a loss function L: Y × Y → R which maps a real-valued prediction and the 

true value to a real number denoting the distance between them

Find
• a function h* in H which minimizes empirical loss (hence, the argument of 

the minimum, or argmin)

  
h argmin

m
L y h xh H
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Box 6.3 provides a compact formulation of supervised learning which reveals the 
ingredients needed for building a good predictive model: (1) a representative, 
labeled training set composed of pairs (x,y), (2) a mathematical family of patterns H 
that potentially captures the association between x and y, and (3) a loss function L 
to evaluate the quality of fit between the model and the paired data. All of these must 
be constructed in a problem-specific way involving close collaboration between 
clinicians and machine learning scientists/engineers.
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The class of patterns or functions H mapping the predictor variables x to an out-
come variable y can be parametric, or non-parametric. Parametric models have a 
fixed number of parameters. The simple linear regression model on one variable has 
two parameters, θ0 and θ1, which are learned from (x,y) data by gradient descent 
optimization of the squared error loss function. Parametric methods make strong 
assumptions about the underlying function to be learned. They are computationally 
efficient at prediction time because they require the evaluation of a fixed parametric 
function (in the case of a linear regression model, each incoming feature would 
simply be multiplied by its respective parameter, followed by adding up of the 
results, and addition of the bias term θ0).

Non-parametric methods make fewer assumptions about the nature of the under-
lying pattern relating the x’s to the y’s. A classic example of a non-parametric learn-
ing method is the k-nearest neighbors algorithm, illustrated in Fig. 6.6. To classify 
a new point, denoted by x in the figure, the algorithm computes the k closest points 
to x in the training data set, and outputs the majority vote (+ or −) among them. The 
method is very sensitive to the choice of distance metric as well as to the number k 
of neighbors chosen, with the latter illustrated in Fig. 6.6.

 Augmenting Feature Representations: Basis 
Function Expansion

Returning to parametric models and fitting (x,y) points with a mean squared error 
loss function, it is possible to expand the model class to include higher order terms 
in x, while still retaining linearity in the parameter space. In the linear model intro-
duced in the section on “The Structure of a Supervised Machine Learning 

a b c

Fig. 6.6 Effect of the choice of k on the class assigned to the unseen data point x by a k-nearest 
neighbors classifier. With (a) k = 1, the negative class (−) is assigned. However, with (b) k = 2, the 
classes are tied, and with (c) k = 3, the positive class (+) is assigned
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Algorithm”, a change in the x value of a data point will always result in the same 
change in the y value that the model outputs. For example, if the parameter θ1 = 2 
and θ0 = 0, doubling x will quadruple y. However, there are many examples in medi-
cine (and beyond) in which the relationships between variables of interest are non-
linear. Changes to an outcome of interest may be more severe once a value reaches 
its extremes. For example, risk of stroke increases gradually up to the age of around 
65, and much more rapidly after this point [7]. The simple linear model introduced 
previously would underestimate the risk of stroke in older patients, because it can-
not address changes in the relationship between age and risk. There are two funda-
mental approaches to increasing model expressivity to accommodate such 
relationships. One involves modifying the features that are provided to the model, 
and the other involves modifying the model itself. More expressive models are 
introduced in subsequent sections of this chapter. The discussion that follows shows 
how transforming the features of a data set into a more expressive feature set can 
allow a linear model to capture non-linear relationships between y (e.g., stroke risk) 
and x (e.g. age).

One expression of this idea is called basis function expansion and involves 
extending the feature set of a model to include higher order terms. The feature x can 
be expanded to the feature set x, x2, x3 and so forth. In the case of stroke risk, a model 
might be risk_stroke = θ0 + θ1age + θ2age2. The relationship between stroke risk and 
age would then be modeled as a weighted sum of a linear (age) and an exponential 
(age2) function, with the parameters θ1 and θ2 indicating how much each of these 
should influence the model. While these parameters are constant once trained, the 
influence of the exponential component of the model will be stronger as age 
increases, as its contribution to the sum grows proportionately larger. With appro-
priately trained parameters, this model will be able to predict a sharper rise in stroke 
risk with increasing age accurately.

However, when applied injudiciously, basis function expansion can reduce the 
accuracy of model predictions on unseen examples. Consider, for example, fitting a 
cubic or higher-order function on given (x,y) points as shown in Fig. 6.7. These data 
points correspond to the pattern produced by a pneumotachogram (also known as a 
pneumotachograph), which measures the rate of air flow during inspiration (left part 
of the curve) and expiration, and is used to study lung function [8].

The model associated with the degree 3 polynomial shown at the bottom left 
panel is y = θ3x3 + θ2x2 + θ1x + θ0 and a gradient descent algorithm finds values for 
all the θ coefficients to minimize the average squared error. It is possible to enrich 
the class of patterns even further and select a ninth order polynomial as shown in the 
bottom right panel. The fitted curve passes through all the training points, and zero 
training error is achieved with respect to the loss function. However, the learned 
polynomial performs poorly outside of the training set. A small vertical jitter (shift-
ing each data point in the y-axis) applied to the training points will result in a cubic 
polynomial that is not very different from the one shown in the lower left of Fig. 6.7, 
but the shape of the degree 9 polynomial at the bottom right will undergo radical 
changes.
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Fig. 6.7 Using basis function expansion to fit—and to overfit—a complex function with a model 
that is non-linear in x but linear in the expanded parameter vector θ. (Adapted from “The Elements 
of Statistical Learning” [9])

This figure illustrates the concept of overfitting—where a model has sufficient 
degrees of freedom to fit so tightly to the individual data points that it fails to capture 
the pattern of relatedness between them and is exceedingly sensitive to noise intro-
duced to the data. Overfitting is a fundamental issue in machine learning, and one 
that will be returned to throughout the chapter. It is especially important in the medi-
cal domain, where datasets may be relatively small because they are limited to data 
from one institution or concern a rare condition. In the context of such limited data, 
a model with many degrees of freedom may conform closely to anomalous data 
points within the set that are not truly representative of the phenomenon that is 
being modeled and perform poorly at the point of deployment when applied to 
unseen data. Overfitting is also related to the tradeoff between bias and variance.

 Bias and Variance

Figure 6.7 illustrates the tradeoff in machine learning between complexity of the 
model class—e.g., third vs. ninth degree polynomial (bias—which indicates the 
capacity of the functions in H and relates to how closely they can fit to individual 
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data points) and stability of the parameter estimates (variance—which concerns 
how robust the estimated function is to variations in the training data). Models with 
high bias will have low variance because their strong assumptions render them 
insensitive to small changes in the data, so it is important to consider the tradeoff 
between bias and variance, and how they relate to sources of error. It is possible to 
decompose the error made by a model into two components: structural error 
(caused by limiting the class of functions considered), and approximation error 
(caused by limits on the amount of training data made available).

At the top right of Fig. 6.7, there is a model with a very strong bias (it assumes 
the training data can be explained by a line). The error made by this model is all 
accounted for by the limiting structural assumption. Providing the model with more 
training data will not reduce its prediction error. Such a model is called an underfit-
ted model. Underfitted models have high errors on both the training and test data. 
At the bottom right, there is a model with many more degrees of freedom; thus, it 
has much lower bias. Its errors are approximation errors, caused by the limited 
amount of training data—there are just ten points to estimate the ten parameters of 
the polynomial. Such a model is an overfitted model. Overfitted models have low 
training error (because they have the freedom to fit tightly to the individual training 
data points) and high test error (because the tightness of the fit to a small number of 
potentially noisy training examples obscures the general pattern that would apply to 
other examples beyond the confines of the training set). The consequence is that 
overfitted models generalize poorly beyond their training data.

For the given collection of ten training points, the degree 3 polynomial (bottom 
left panel) offers a good tradeoff between structural and approximation error. The 
model class is powerful enough to capture the patterns in the data, and there are 
enough training samples to fit the model with low variance estimates. To build a 
successful machine learning model, one needs to find the right function class (bias) 
and provide a large enough training set to estimate the parameters of the learned 
function (variance) robustly. A family of techniques called regularization, to trade 
off bias and variance automatically, are introduced below. Regularization remains 
an important concern in machine learning, including in deep learning models, 
where techniques such as dropout are often a prerequisite to avoiding overfitting. 
The underlying principle of deliberately constraining the extent to which a model 
can fit to training data in order to prevent overfitting manifests in different ways in 
different models, but is fundamental to training models that generalize well to 
unseen data.

 Regularization: Ridge and Lasso Regression

Regression models that are lower degree polynomials have fewer parameters and 
the gradient descent optimization procedure can find low variance estimates for 
them, even with a limited training set. However, such a model could potentially 
underfit the training data. Higher degree polynomials have far greater flexibility, but 
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variance on the estimates of the optimized parameters could be high, which are 
signs of an overfitted model. An overfitted model, such as a degree 10 polynomial 
fitted on 10 (x,y) points, has parameters whose values are very large (both positive 
and negative).

One approach to control model complexity, then, is to penalize large (in the abso-
lute value sense) parameter values, so that the final model has coefficients that do 
not grow without bound. Penalizing large parameter values by modifying the loss 
function used during optimization is called regularization.

The L2-regularized loss function for linear regression is,
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so called because the L2 norm9 is used to penalize the components of θ. Note that h(x) 
is the model prediction for x, and is the dot product of the parameter vector θ with 
[1;x]. The first term of the regularized loss function is the mean squared error of the 
model over the training data (as introduced in the section on “The Structure of a 
Supervised Machine Learning Algorithm”), which is also called the unregularized 
loss. The second term is the penalty function, which is the squared length of θ (the 
vector of parameters) without the intercept parameter θ0. The larger the values of the 
parameters, the larger this term will be, which will in turn increase the value returned 
by the loss function. The penalty term is scaled by the factor λ which weights it rela-
tive to the unregularized loss. When λ is very low, the second term has negligible 
impact on the loss, so the components of θ can grow large. As λ increases, the second 
term dominates the loss function, and the optimizer focuses on keeping the compo-
nents of θ as small as possible, ignoring the impact on the mean squared error term. 
As λ tends to infinity, all components of θ except for the intercept term are driven to 
zero. The model then simply predicts the mean of the training data for all new points x.

To choose an appropriate value of the regularization parameter λ, the training 
data are randomly divided into a training set and a validation set (as introduced in 
the section on “The Machine Learning Workflow: Components of a Machine 
Learning Solution”), typically in the ratio of 90/10. A sweep is conducted through 
potential values of λ in the log space, as shown in Fig. 6.8, to find the best value for 
the regularization constant—one that achieves the lowest loss over the validation 
set. The regularized loss is shown on the y-axis over the training and validation sets, 
and the natural logarithm of λ is shown in the x-axis. There is a range of λ values that 
are suitable for the model, and the convention is to choose the lowest value in the 
range. Regularization with search for the appropriate λ hyper-parameter, allows 
complex models to be trained on data sets without overfitting, essentially by 

9 The L2 norm gives the length of a vector from its origin and is calculated as the square root of the 
sum of this vector’s squared components (in two dimensions this length would be that of the hypot-
enuse of a right-angled triangle with sides adjacent to the right angle corresponding the vector’s 
components on the x and y axes). With L2 regularization, the sum of the squared components is 
used directly, without applying the square root.
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Fig. 6.8 Grid search to identify the optimal regularization parameter. The y axis shows the regu-
larized loss J, and the x axis shows the natural logarithm of the regularization parameter, λ. 
Validation loss improves until a λ value of around 10−30, suggesting this may be a good choice to 
achieve a model that generalizes well to unseen data. The extremes of the x axis suggest poorly 
fitted models. The leftmost extreme suggests an overfitted model, with near zero training loss with 
high validation loss at low λ. The rightmost extreme suggests an underfitted model, with increasing 
loss on both training and validation sets at high λ

limiting effective model complexity. Put another way, regularization drives higher 
order terms in the polynomial regression function to zero—thus, the learning proce-
dure is given the ability to fit a ninth order polynomial, but the penalty term in the 
regularized loss function will drive the optimization process to select only terms no 
higher than degree 3, consistent with the amount of training data that are available.

L2-regularized regression is also known as ridge regression. However, the pen-
alty term in the regularized loss function need not be limited to the L2 norm of θ. A 
widely used penalty function is the L1-norm,10 and the corresponding L1-regularized 
loss function for linear regression is
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L1-regularized regression is called lasso regression. Lasso regression has the spe-
cial property that it drives components of θ exactly to zero [9], given sufficiently 
large values of the regularization parameter λ. Thus, sparse models that only involve 
a subset of the features in input vector x are obtained. Since lasso regression per-
forms automatic feature selection, it is in wide use in clinical settings, where predic-
tive models with the fewest number of predictors (for a given level of performance) 
are prized. For example, Walsh and Hripcsak describe a series of readmission risk 
prediction models in which lasso regression resulted in an average of a fivefold 
reduction in the number of features considered [10]. Lasso models can be readily 

10 The L1 norm of a vector is the sum of its absolute coordinate values.
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incorporated into clinical workflow with minimal computational requirements when 
relevant features can be extracted in real-time directly from data sources such as 
electronic records [10, 11].

 Linear Models for Classification

A common task in biomedical machine learning involves assigning categorical 
labels, such as diagnosis names or types of predicted outcomes on the basis of 
observed data. This task is referred to as classification. In classification, the out-
come variable is discrete rather than continuous. There is therefore a need to modify 
the class of prediction functions H as well as the loss function to accommodate the 
change in outcome type. A formal description of the components of a classification 
problem is provided in Box 6.4.

The only difference between regression and classification is in the target of the 
prediction function—regression functions produce continuous value predictions, 
while classification functions predict discrete values, or probability distributions on 
a discrete value set. Thus, the class of functions H and the loss function L are modi-
fied to handle this change in the target of prediction. A good way to visualize a 
classification function h in H is as a partition of the input space X into decision 
regions, each associated with a member of C. Linear models of classification learn 
hyperplanes in the input space dividing it into different decision regions, while 
linear models with expanded basis functions learn non-linear decision boundaries. 

Box 6.4 Mathematical Components of a Classification Problem
Given
• a finite data set of pairs (x,y), where x is a vector of predictor variables, and 

y, is the associated discrete class or category drawn from a finite set C 
of labels

• a class of functions H: X  →  C which map vectors x in X to discrete 
values in C

• a loss function L: C × P(C) → R which maps a true category and the pre-
dicted distribution over the categories to a real number denoting the dis-
tance between true and predicted classes

Find
• a function h* in H which minimizes empirical loss
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A very special case of classification is binary classification when the set C consists 
of exactly two elements {0,1} called the negative and positive class respectively. 
The goal of learning in binary classification is to find the best decision rule that 
predicts the correct class given the vector x of predictors.

Classification problems are frequent targets of machine learning applications in 
medicine, with typical examples including classifying patients by diagnosis on the 
basis of their imaging data (e.g. detecting diabetic retinopathy in retinal images [2]; 
for further examples see Chap. 12), classifying clinical notes with respect to the 
nature of their content (e.g. identifying clinical notes containing goals-of-care dis-
cussions [12]; see also text classification, Chap. 7, section “Overview of Biomedical 
NLP Tasks”), and predicting clinical outcomes (e.g. readmission within 30 days of 
discharge [10]; for further examples see Chap. 11).

Linear models of classification come in two flavors, based on whether they learn 
the posterior distribution P(y|x) (e.g. the probability of a side effect after some drug 
has been observed) or the joint distribution P(xy) (e.g. the overall probability of 
both the drug and side effect being observed together) from the paired (x, y) training 
data. The difference between these estimates may not be obvious at first. For a given 
binary predictor, xi⋲ {True,False} (e.g. presence of a drug), the posterior distribu-
tion P(y|xi) will correspond to the proportion of observations of xi in which y (e.g. 
presence of a side effect) is also true. In contrast, the joint distribution P(xiy) cor-
responds to the proportion of all examples in which both xi and y are true. In the 
example, P(xiy) would be low when the side effect in question occurs many times 
without the drug being taken—but P(y|xi) may still be high if the side effect occurs 
frequently in cases where the drug has been taken. Models that learn the posterior 
distribution are called discriminative models, while models that learn the joint 
distribution are called generative models.

 Discriminative Models: Logistic Regression

A classic example of a linear discriminative binary classification model is logistic 
regression. Rather than predicting an unbounded value as with linear regression, 
logistic regression models P(y|x), the posterior distribution of the binary outcome y 
given input x as the following function: a linear computation (the dot product of a 
parameter vector θ with the input vector x, θTx) followed by a non-linear “squash-
ing” of that dot product into the range [0,1] to represent a probability. This can be 
interpreted as the probability of a class of interest, such as a diagnosis or outcome.
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The particular nonlinear squashing function g used in logistic regression is called 
the sigmoid. As shall be seen later, this function is a fundamental building block of 
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deep neural networks. Given a training data set D, and an appropriate loss function, 
the optimal value of the parameter vector θ which characterizes the classification 
function can be found. Given a new vector x, the posterior probability of y = 1 
given x, i.e., P(y = 1|x), is evaluated, and if that probability is greater than or equal 
to 0.5, the new x is classified as positive (belong to class 1, which may indicate a 
diagnosis or outcome of interest). Since the sigmoid function g(z) equals 0.5 when 
z is 0, the decision boundary separating class 0 from class 1 is defined by the 
hyperplane

 q T x = 0  

The equation above defines a linear separating hyperplane for binary classification. 
When θTx ≥ 0, x lies on the positive side of the plane, and when θTx < 0, x lies on 
the negative side (it is worth noting that the use of a bias term θ0 allows the model 
flexibility in setting a threshold for classification—for θTx to equal zero, θ1…n

Tx1…

n = -θ0). The decision boundary learned by logistic regression on a nearly linearly 
separable data set composed of (x, y) pairs where each x is a point on a plane, is 
shown in Fig. 6.9. Points belonging to the positive class are marked with a + sign, 
while points belonging to the negative class are marked with a − sign.

The loss function for training a logistic model can be derived by the maximum 
likelihood principle, in which a model is trained to maximize the probability of the 
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Fig. 6.9 Illustration of a decision boundary for a logistic regression classifier with two classes. 
Examples that fall to the right of the boundary (θTx > 0) corresponding to estimated P(y|x) > 0.5), 
are classified as positive
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observed data, assuming that P(y = 1| x; θ) = h(x) = g(θTx). The logarithm of the 
negative likelihood of data set D composed of (x,y) pairs, where y is in the set {0,1} 
can be shown to be the cross entropy function.
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As this function is not only fundamental to logistic regression but is also widely 
used in training deep neural networks amongst other models, it is worth unpacking 

here. 
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å  indicates that an average over m data points is taken, and the rest of the 

right-hand side of the equation is a compact way of describing the log likelihood of 
the data. If y(i), the label of the example i, is equal to one, only the leftmost term is 
considered, because (1 − y(i)) in the rightmost term will be zero. In this case, the 
likelihood will be the log of the predicted probability h(x) = P(y = 1|x) assigned to 
this example. Conversely, with y(i) = 0, only the rightmost term will be considered, 
and the likelihood will be the log of the predicted probability P(y  =  0), or 
1 − P(y = 1). So, the log likelihood of the dataset is the average of the logs of the 
predicted probabilities of the correct labels across all examples. The negative log 
likelihood reverses the polarity of this estimate, converting a maximization problem 
into a minimization one.

Gradient descent minimizes J(θ) to find the optimal value of the parameter vector 
θ. Since the cross-entropy function J(θ) is a convex function, it has a global mini-
mum which can be computed by standard optimization algorithms. It is therefore 
guaranteed that θ found by minimizing the cross-entropy function represents the 
optimal classifier for the data set in the infinite space of parametric functions H.

 Regularized Logistic Regression: Ridge and Lasso Models

The decision boundary in Fig. 6.9 applies readily to situations in which high values 
of the tests concerned indicate a diagnosis. However, circumstances may arise in 
which both high and low values of a laboratory test have implications for the predic-
tion at hand. For example both high and low white cell counts may portend adverse 
outcomes. A range of modeling approaches that apply to classification in these cir-
cumstances are discussed in the section on “Non-linear Models”. For the current 
discussion, it is noteworthy that basis function expansion—the same approach that 
was introduced as a way to augment feature representations to model non-linear 
functions with linear regression in the section on “Bias and Variance”—is also 
applicable to classification problems when logistic regression is used.

When a data set is not linearly separable in the (x1, x2) plane as shown in Fig. 6.10, 
it is possible use the basis function expansion trick to expand the space of predic-
tors. Each point (x1, x2) could be mapped into a 15-dimensional space of all sixth- 
order polynomial combinations of x1and x2, to learn a linear separating hyperplane 
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Fig. 6.10 Using feature expansion to learn non-linear decision boundaries with a (linear) logistic 
regression model. The black ovoid boundary is the decision boundary learned by the classifier, 
which separates the positive (+) and negative (−) classes reasonably cleanly, despite these classes 
not being linearly separable in the plane

in that 15-dimensional space. One benefit of this expansion is that it allows the 
model to consider the magnitude of a feature value out of context of its polarity—
the polynomial expansion x2 will be high for both highly negative and highly posi-
tive values of x, enabling the model to learn decision boundaries that are ovoid or 
circular in relation to the unexpanded features. The projection of that decision 
boundary in two dimensions is shown in Fig. 6.10. Basis function expansion allows 
us to consider rich models with low bias; therefore, to prevent overfitting it is neces-
sary to strongly regularize the models. Ridge and lasso penalty terms are added to 
the cross-entropy function, just as in linear regression, to control the growth of the 
parameter vector.

Analogously to regularized linear regression, L2-regularized ridge logistic 
regression is characterized by the following loss function
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while L1-regularized lasso logistic regression penalizes the parameter vector θ 
using the absolute value.
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Note that in both L1 and L2 regularization, the intercept component θ0 is not penal-
ized because the intercept accounts for the overall mean of the data points, effec-
tively setting the threshold for classification. The best value of the regularization 
constant λ can be determined by a cross-validation procedure as was done in the 
case of linear regression. By varying λ, it is possible to adjust the relative impor-
tance of minimizing error on the training data (first term of J(θ), representing the 
averaged log likelihood) and driving the coefficients of θ to zero (second term of 
J(θ), representing the penalty on the coefficients of θ). As λ approaches zero (no 
regularization), the solution found by the optimizer is very likely overfitted, espe-
cially when the number of training data points is small. As λ approaches infinity, the 
training data are ignored, and the coefficients of θ are driven to zero, leading to an 
underfitted model, such as the one shown in Fig. 6.11.

 A Simple Clinical Example of Logistic Regression

This example is derived from data associating male lung cancer and smoking [13]. 
There is one binary predictor: whether someone is a smoker or not, and the outcome 
is also discrete with two values: cancer, or no-cancer. For this simple problem, it is 
easier to present summary statistics of the data as shown below—such a table is 
called a contingency table.

Lung-cancer No-cancer

Smoker 647 622
Non-smoker 2 27

The structure of the logistic model to predict the probability of cancer given 
smoking status is

 

p P cancer smoking g smoking

sm
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Fig. 6.11 Underfitting of a logistic regression model on account of excessive regularization. The 
black ovoid boundary is the decision boundary learned by the classifier, which does not cleanly 
separate the positive (+) and negative (−) classes

This model represents the natural logarithm of the odds ratio of cancer given smok-
ing as a linear function of smoking.
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The parameter θ0 represents the baseline log odds of getting cancer regardless of 
smoking status, and θ1 characterizes the increment in log odds of getting cancer for 
the smoking cohort. Unregularized logistic regression can be used, since there is 
only one predictor and 1298 examples, so there is no need to penalize the loss func-
tion. The optimizer finds the values for the parameter vector θ shown below.
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This model states that the log odds of developing cancer for non-smokers is −2.6025 
(log (2/27)), while the incremental odds of developing cancer for smokers is 2.6419. 
That is, for a smoker, the predicted log odds of cancer goes up by 2.6419 over the 
baseline odds, −2.6025 + 2.6419, which is 0.039 (or log (647/622)). The estimated 
odds ratio of cancer for smokers versus non-smokers is e2.6419 = 14.04. That is, smok-
ers are 14 times more likely to get cancer than non-smokers. The mechanics of logis-
tic regression and the probabilistic interpretation of the parameter vector are revealed 
in this example, where summary statistics of the data suffice to estimate the parameters.

 A Multivariate Clinical Example of Logistic Regression

Now consider the more complex problem of predicting whether or not a Type 2 
diabetes patient’s condition worsens over the course of a year based on a set of 10 
baseline predictors: {age, gender, body mass index (bmi), average blood pressure 
(bp), and six blood serum measurements: total serum cholesterol (tc), low-density 
lipoprotein (ldl), high-density lipoprotein (hdl), total cholesterol/hdl (tch), logarithm 
of triglyceride level (ltg), blood glucose level (glu)}. These data for 442 patients 
along with the outcome variable, which is a quantitative measure of disease progres-
sion 1 year after the baseline are publicly available.11 For this example, a discrete 
outcome variable y will be defined by labeling patients whose progression evalua-
tions are more than one standard deviation above the cohort mean as positive (y = 1), 
and the others as negative (y = 0). That is, the model to be estimated has the form
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where x is the 11-element vector [1,age,gender,bmi, bp,tc,ldl,hdl,tch,ltg,glu] and 
the parameter vector θ has 11 components, the first being the intercept (θ0), and the 
other 10 associated with the predictor variables in x (θ1…10). An L1-regularized 
logistic model is learned, finding the optimal choice for λ, the regularization param-
eter, by five-fold cross-validation. The model learned has only five non-zero coef-
ficients, with bmi, ltg, and bp being the most significant coefficients in the model.
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11 https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html (accessed August 19, 2022).
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The five-fold cross-validated AUROC of this model is 0.9 ± 0.05, indicating that it 
will predict well on new patients, if they are drawn from the same distribution of 
patients as the training set. Beyond accuracy, the model provides interpretability 
(see Chap. 8): the coefficients indicate both the magnitude and the direction of each 
parameter’s influence on model predictions, albeit with the important caveat that 
unlike the binary feature in the previous example, the incoming features may be 
represented on different scales, which will affect the coefficients also.

Regularized logistic regression models are widely used for risk stratification in 
clinical settings. For example, a multivariate L1-regularized logistic regression 
model has been used to predict SARS-Cov2-related death within a year using ten 
baseline characteristics: gender, age, race, ethnicity, body mass index, Charlson 
comorbidity index, diabetes, chronic kidney disease, congestive heart failure and 
the Care Assessment Need score [14]. The model was trained on over 7.6 million 
Veteran’s Affairs enrollees with training data obtained from the period May 21 to 
September 2020, and a testing cohort obtained from the period October 1 to 
November 2, 2020. The AUROC of the model on the test data was 0.836, outper-
forming a simple age- based stratification strategy with an AUROC of 0.74. The 
model was learned from structured data readily extractable from EHR records. 
Further, the model is easily interpretable since the coefficients of the ten predictors 
serve as the log-odds ratio of the effect of that predictor on the final outcome. The 
model was ultimately integrated into the clinical workflow with a built-in web-
based risk calculator and used for prioritizing vaccinations among veterans. The 
model is estimated to have prevented 63.5% of deaths that would occur by the time 
50% of VA enrollees are vaccinated. The model also adheres to the four ethical 
principles outlined by the Advisory Committee on Immunization Practices [15]. It 
maximizes benefits (by targeting those at highest risk for vaccine allocation), pro-
motes justice (by identifying older adults or those with a high comorbidity burden 
who will require focused outreach for vaccination), mitigates health inequities (by 
assigning higher priority to racial and ethnic minorities directly reflecting their 
higher risk of mortality), and promotes transparency (by using an evidence-based 
model with explicit parameters). The use of ethnicity as a variable in this model 
compensates for known differences in health risk across populations, making a pre-
ventative intervention more readily available, without the benefit of additional con-
textual knowledge such as socio-economic status and other specific risk factors. 
Further discussion of the ethical implications of the use of such variables in predic-
tive models is presented in Chap. 18.

 Generative Models: Gaussian Discriminant Analysis

Generative models learn the full joint distribution P(xy) from training data pairs 
(x,y) where x is a vector of predictor variables and y, a discrete outcome. For binary 
classification problems, y takes on one of two values {0,1}, while for multiclass 
classification problems, y can take some finite number, greater than two, of values. 
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Since P(xy) = P(x| y)P(y) using probability theory, the following generative model 
component distributions are estimated.

• prior probabilities: P(y = 1), (P(y = 0) = 1 − P(y = 1))
• class conditional distributions: P(x|y = 1), P(x|y = 0)

from the training data. Armed with the component distributions, the information to 
generate new examples from both classes is available. To generate a new positive 
example, a random x from the distribution P(x|y = 1) is drawn. To generate a new 
negative example, the distribution P(x|y = 0) is used. This is why the model is called 
‘generative’—it can construct new examples from both classes. A discriminative 
model, which only estimates P(y = 1|x) from training data, can classify a new exam-
ple, but it cannot construct one de novo. Furthermore, unlike discriminative models, 
generative models learn the distributions of individual feature inputs, permitting one 
to pose questions such as “what are the characteristics of a patient with worsening 
type 2 Diabetes”. This has inherent advantages for the generation of synthetic data-
sets and can support the construction of causal models that capture cause-effect 
relationships between individual variables (see Chap. 10). However, these capabili-
ties come at a cost in that large amounts of data are required to correctly estimate 
the prerequisite distributions, which often cannot be robustly estimated with the 
relatively small datasets used for clinical machine learning.

Parametric generative models make assumptions about the (parametric) form of 
the prior probability distribution and the class conditional distributions. A common 
choice for the prior probabilities for binary classification problems is the Bernoulli 
distribution (the distribution used for modeling a coin toss), and for continuous 
predictors x, the class conditional densities are modeled as multivariate Gaussian 
distributions with a mean and covariance for class y = 0 and for class y = 1. These 
two assumptions characterize Gaussian discriminant analysis (GDA); one of the 
simplest parametric generative models in the field. A simple two-class example of 
GDA with two-dimensional x vectors is shown below. The learned multivariate nor-
mal class conditional densities associated with the classes are drawn as ellipses. 
Each ellipse is a contour plot of a two-dimensional Gaussian distribution learned 
from data, representing an iso-probability line. The center of the ellipses is the 
mean, and the shape of the ellipse is determined by the covariance matrix of the 
two-dimensional Gaussian. The means of the two multivariate normals in Fig. 6.12 
for the two classes are different, but their covariances are the same.

The decision boundary between the two classes is computed using Bayes rule 
with the learned prior and class conditional distributions (the negative class distribu-
tion is represented in the denominator of the equation, which indicates the probabil-
ity of x summed across both possible values {0,1} of the label y).
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Readers with a clinical or biostatistics background may be familiar with Bayes rule 
applied in this way, as it provides a means to convert the sensitivity of a test—
P(x|y = 1), where y = 1 indicates a positive case in a population, and x indicates a 
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Fig. 6.12 Class-conditional distributions for a binary classification problem. The ellipses demar-
cate regions of probability that the members of each class (+ and o) will have particular values. The 
centers of the ellipses are class means, and the shapes of the ellipse are determined by the distribu-
tion of class members in relation to these means. In this case a single pattern of distribution has 
been estimated for both classes, but these have different means

positive test result—into a clinically actionable positive predictive value, P(y = 1|x), 
or the probability that a patient has the disease given a positive test result.

When the class conditional distributions are Gaussians, with tied covariances, as 
shown in Fig. 6.12 above, the decision boundary between the classes is a hyperplane 
(line in two dimensions). When both the means and the covariances individually for 
both classes are estimated, the decision boundary is a quadratic (parabola). Gaussian 
discriminant analysis can be used to learn generative models for multiclass prob-
lems, with a combination of tied and independent covariances for the different 
classes, as shown in Fig. 6.13.

In sum, Gaussian discriminant analysis, a parametric generative model, is excel-
lent for data that mostly conforms to a multivariate Gaussian distribution. When this 
assumption about the training data holds, GDA is the best classification method—it 
yields the most accurate classifier with the least amount of data. Discriminative 
models, like logistic regression, are less sensitive to assumptions about the distribu-
tion of the data in X, and therefore need a lot more examples to build models of 
comparable performance.

 Factored Generative Models: Naive Bayes

Multivariate distributions of the form P(x|y) are difficult to handle, both analytically 
and computationally. One approach around this difficulty is to assume conditional 
independence between the features of the vector x ∈ Rd, and model the multivariate 
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Fig. 6.13 Learning more complex decision boundaries with Gaussian discriminant analysis 
(GDA). This figure shows the boundaries learned from two class problems with tied (left panels) 
and individually estimated (right panels) covariance patterns for binary (top panels) and three-class 
classification (bottom panels). This illustrates the ability of GDA to fit to the unique characteristics 
of different classes, and address multi-class classification problems

distribution P(x|y) as the product of d one dimensional distributions of the form 
P(xi  ∣  y). This is a strong and often unfounded assumption—for example, when 
modeling clinical data this would mean ignoring relationships between the values of 
different liver function tests that in practice may be of considerable diagnostic util-
ity, as well as other important relationships such as drug interactions and relation-
ships to comorbid diagnoses. Nonetheless, despite their “naivete”, models 
embodying this assumption can lead to surprisingly accurate predictions.
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This factorization works well for both discrete and continuous valued vectors x, 
even when the conditional independence assumptions between the components of x 
conditioned on the class y, do not hold. Naive Bayes models are the industry- 
standard for the problem of spam detection and for text classification (with over 
300,000 articles on Google Scholar as of August 2022) and have been widely used 
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for machine learning in medicine. Recent applications include suicide risk predic-
tion [16], and predicting neonatal sepsis [17].

For illustrative purposes, consider the following problem: there are 1.13 cases of 
bacterial meningitis per 100,000 population in the US. Assume that 60% of patients 
with bacterial meningitis report the characteristic symptom of a stiff neck, but that 
15% of patients without meningitis also report this symptom. Given that a new 
patient reports a stiff neck, what is the probability that they have meningitis? It is 
possible to write the facts of this problem as the following probability statements:

 1. P(y = meningitis) = 1.13 × 10−5; P(y = not-meningitis) = 1 – 1.13 × 10−5

 2. P(stiff neck = 1|y = meningitis) = 0.6
 3. P(stiff neck = 1|y = not-meningitis) = 0.15

The first set of equations describe the prior probabilities of the two classes {menin-
gitis, non-meningitis}, and the next two describe the class conditional distributions 
with respect to a primary symptom of meningitis—stiff neck. Bayes Theorem can 
be used to calculate the probability that a patient presenting with stiff neck has 
meningitis:
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The d in the denominator has one of two possibilities: 1 indicating meningitis, and 
0 indicating “not meningitis”. Since the prior probability of meningitis is very low, 
and stiff neck is four times more likely to occur in meningitis patients, the posterior 
probability of the patient having meningitis rises to 4.5 × 10−5, if a patient presents 
with a stiff neck alone. However, stiff neck is only one of the symptoms of menin-
gitis. By taking other symptoms into account, such as high fever, nausea, etc., it is 
possible to improve the estimation of the posterior probability of meningitis in a 
patient. Suppose k Boolean features are used, representing the presence or absence 
of specific symptoms—let us call the features x1, …, xk. To keep things simple, each 
of these will take on values in {0,1} denoting absence or presence of a symptom. 
Now every patient is represented by a Boolean vector x of length k, with every posi-
tion in the vector denoting whether a specific symptom is present or absent. To learn 
the distribution P(x|y = meningitis) or P(x|y = not-meningitis), it is possible to use
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Since the vector x is discrete, it is possible to simply count the number of meningitis 
patients represented by the vector x, and divide it by the total number of patients, to 
get the proportion of patients of the form x, representing a specific absence/presence 
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pattern of symptoms. If k (the number of symptoms) is 20, the possible number of 
configurations of vector x is 220. Estimating the distribution requires estimation of 
O(220) entries, an intractable task with typically available EHR data.

Now the power of the Naive Bayes assumption can be seen. The multivariate 
discrete distribution P(x|y) is factored as the product of k univariate Bernoulli distri-
butions of the form P(xj = 1|y = meningitis) and P(xj = 1 ∣ y = not meningitis). For a 
k-dimensional vector x, only 2k parameters are needed to characterize the class 
conditional distributions. The reduction of parameters from O(2k) to 2k makes gen-
erative modeling of patients a tractable proposition.
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For the price of estimating 2k + 1 parameters (the 1 is for P(y = meningitis)), Bayes 
rule can be used as above to diagnose meningitis. The real challenge in building 
Naive Bayes classifiers for diagnosis or more generally any classification problem, 
is choosing good features to characterize a patient. For example, Google’s Gmail 
has a proprietary list of thousands of features that it extracts from each email to stay 
ahead of the arms race with spammers.

To avoid underflow problems that arise from multiplying thousands of probabili-
ties in the numerator of the posterior probability calculation, the computation is 
performed in log space.12 That is, to classify a new patient x as having meningitis, 
the following inequality is evaluated, which also eliminates computing the denomi-
nator of the expression above, which is identical for both classes.
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Recently, Naive Bayes classifiers for detecting patients at increased risk of suicide were 
constructed using structured data on 3.7 million patients across five diverse health care 
systems [16]. The model detected a mean of 38% of cases of suicide attempts with 90% 
specificity at a mean of 2.1 years in advance of the attempt. This model used univariate 
Gaussian distributions to model continuous variables obtained from structured health 
records, and Bernoulli or multinomial distributions for the discrete variables.

12 This is a common computational optimization that works because log(ab) = log(a) + log(b)—so 
we can add instead of multiplying, obviating the underflow that occurs when repeatedly multiply-
ing by small number; and log(a) > log(b) for all a > b—so we will assign the class with the highest 
posterior probability given the data x.
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 Bias and Variance in Generative Models

It is possible to either underfit or overfit a generative model. Continuing with the 
meningitis classification example, a model with low bias has a very large number of 
symptom features. With a limited amount of training data, the estimates of the class 
conditional probabilities for this large feature set are likely to have high variance. 
On the other hand, a model with very few features to represent a patient has high 
bias, and its parameters can be stably estimated, even with a limited amount of data. 
However, a model with a limited feature set is unlikely to generalize well to new 
data. Finding the right tradeoff between bias and variance amounts to finding the 
right feature set (both in content and size) to balance generalization performance 
and reliability of estimation of the distributional parameters, with respect to the 
available training data. Feature selection (see Chap. 11) is thus a critical aspect of 
construction of generative models.

The use of Bayes rule for performing classification of new examples raises a 
novel problem unique to generative models. Suppose one of the class conditional 
probabilities corresponding to a specific feature is estimated to be zero given the 
training data. This situation occurs quite frequently in email classification when a 
chosen word feature does not appear in the training corpus. Should a new piece of 
email contain that feature, the Bayes rule computation will yield a zero, since one 
of the probability terms in the numerator is zero. To guard against this situation, a 
regularization process called Laplace smoothing is performed on probability esti-
mates. Instead of starting word counts at zero in the estimation procedure, counts 
are started at 1 (or another small constant). So, no class conditional probability is 
ever estimated to be zero, regardless of the limitations on the training data.

 Recap of Parametric Linear Models for Classification

Given a training data set composed of pairs (x,y) where x is a vector of d dimensions 
in a continuous/discrete space, and y is a label drawn from the set {0,1}, there are 
two distinct approaches to building functions that predict y given a new x

• Discriminative models learn the posterior probability P(y = 1|x) = g(θT x) as a 
parametric function and optimize the value of the parameter vector θ to make the 
predicted distribution of y as close as possible to the true distribution. The learned 
parameter vector describes the linear classification boundary θTx = 0 between the 
two classes (0 and 1). Logistic regression belongs to this family of models.

• Generative models learn the full joint distribution P(xy) in terms of its compo-
nents P(y) and P(x| y). Generative models come in two forms: full models, and 
factored models which assume that the components of x are independent of one 
another given the class. Factored models are easier to estimate and work with and 
are widely used in a range of text classification and clinical decision-making 
tasks. The decision boundaries they learn can be characterized by a hyperplane 
in the domain of the input vectors x.
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 Non-linear Models

Linear classification models assume a monotonic and proportional relationship 
between input variables and the probability of an output label. Models of this sort 
cannot learn that both high and low blood pressure can be useful predictive features 
for the onset of renal failure, nor can they learn that the probability of this outcome 
increases exponentially once a particular blood pressure is reached. However, they 
can be configured to do so, by transforming the incoming data to enrich the space of 
features.

Consider the following classification problem in two dimensions (Fig.  6.14 
(left)). Can the two classes be separated by a linear boundary?

Clearly, there is no linear separating hyperplane in the original feature space 
(x1, x2). However, it is possible to use the basis function expansion trick introduced 
in the section on “Augmenting Feature Representations” to map each (x1, x2) pair 
into a new feature space z1, z2 defined as

 
z z x x x x
1 2 1 1 2 2
, ,( ) = * *( )  

Now a linear hyperplane defined by z1 + z2 ≤ R2 where R is the radius of the black 
circle in Fig. 6.14,13 achieves perfect separation as shown below.

13 Summing the squares of x and y returns the square of the distance from the origin, which will be 
less than R^2 for the examples in the innermost class.

X2

X1

Z2

Z1

Z1 + Z2 <= R2

Fig. 6.14 (Left) A non-linear classification boundary in the original (x1,x2) feature space. (right): 
A linear boundary in the (z1,z2) feature space where z1 = x1 × x1 and z2 = x2 × x2. Note that the linear 
boundary with expanded bases (right) corresponds to the non-linear boundary in the original fea-
ture space (left)
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There are two approaches to constructing non-linear classifiers.

1. Stay within the framework of linear classifiers with their optimality guarantees, 
but manually construct appropriate non-linear feature spaces (basis functions) in 
which the classification boundaries are linear. The example shown above illus-
trates this idea. However, the downside of this approach is that it places the entire 
burden of designing basis functions for data representation on the human 
modeler.

2. Bypass the explicit construction of basis functions and build non-linear classifi-
ers directly. What is lost in this approach are the optimality/convergence guaran-
tees of linear models. However, there are a number of well-established approaches 
to apply, which can be broadly categorized as either kernel methods or 
stacked models.

 – Kernel methods represent examples not by their features, but in relation to 
other examples in the training set. Kernel regression and support vector 
machines belong to this family of methods.

 – Stacked models are constructed by chaining or layering simpler learning 
models. Layered logistic regression models, also known as deep feedfor-
ward neural networks, are an example of this class of techniques.

 Kernel Methods

Consider a binary classification problem with points (x1,x2) drawn from a two- 
dimensional plane, with labels from the set {0,1}, where points in class 0 are colored 
orange, and points in class 1 are colored blue (see Fig. 6.15). A set of L landmarks 
from the training data are selected; in Fig. 6.15, the landmark points are labeled l1, 
l2, l3, i.e., L = 3 for this example. One can think of these landmarks as paradigmatic 
positive and negative examples for a decision problem. In clinical datasets, such 
landmarks may correspond to textbook expositions of a disease or condition.

I1

I3

I2

X2

X1

Fig. 6.15 A binary 
classification problem on 
points in a plane (training 
points not shown), with 
three selected landmark 
examples (l1, l2 and l3) 
chosen from the two 
classes (blue and orange). 
Unseen data can then be 
classified on the basis of 
their relationships to these 
selected landmarks
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Each point in the training data has the form ((x1,x2),y) and every method dis-
cussed so far predicts y from (x1,x2) using a function parameterized by a vector 
θ. For example, logistic regression without basis function expansion would learn θ 
such that the posterior probability of y = 1 given x is well approximated by the sig-
moid of the dot product of θ and x.

 
P y x x x x= ( )( ) = + +( )1

1 2 0 1 1 2 2
|; , |;q s q q q

 

Instead of describing a training example x by its intrinsic properties—i.e., its loca-
tion in the x1 – x2 plane, let us represent it by its “similarity” to the three landmark 
examples shown in Fig. 6.16. That is, a similarity function sim on pairs of points in 
the x1 – x2 plane is first defined as follows. This similarity function or kernel, is 
called a radial basis function.
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sim(x,l) is characterized by a fixed bandwidth parameter σ(unrelated to the sigmoid 
product above), which is a real number that takes on values in the range [0,1]. The 
value 0 is achieved when x is far away (in terms of Euclidean distance) from l, and 
the value 1 is obtained when x is identical to l. In short, sim(x,l) characterizes how 
similar x is to landmark l, for points x and l in an n-dimensional space. Note that sim 
is a symmetric function; sim(x, l)  =  sim(l, x). This is a required condition for all 
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Fig. 6.16 Kernel logistic regression for a binary classification problem. On the left four landmarks 
are chosen, indicated by the black circles. On the right, all the data points serve as landmarks. The 
similarity between each data point and the landmarks concerned has been measured using the 
Radial Basis Function (RBF), described in the section on “Similarity Functions for Kernel 
Methods”. Note that in this case the boundaries are similar, and that both lead to perfect separation 
of the classes
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kernels. The new representation for point x is a three-dimensional vector, character-
izing how similar x is to the three chosen landmarks

 
sim x l sim x l sim x l, , , , ,

1 2 3( ) ( ) ( )( )
 

This representation of x is a sequence of pairwise comparisons to three landmark 
examples: instead of the classical representation in terms of the features of x alone. 
In this new representation, the posterior probability of y = 1 will be approximated 
for the example as

 
P y x sim x l sim x l sim x l=( ) = + ( ) + ( ) + ( )( )1
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The decision rule for classification is a linear function in θ which can be learned by 
classical logistic regression.

 
q q q q
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Note that the features associated with the decision function no longer pertain to x 
alone, but to its similarity to a set of landmark examples. When the radial basis func-
tion is used as a similarity function, the linear hyperplane in the similarity feature 
space forms complex non-linear boundaries in the original x1–x2 coordinate space. 
As an example, consider the task of separating the points laid out in an XOR con-
figuration (XOR is a Boolean function with two inputs that will be true if and only 
if they are different) as shown in Fig. 6.16. Given points on the plane drawn from 
two classes, the task is to learn a decision surface that separates the two classes cor-
rectly. Clearly, the two classes cannot be separated by a linear hyperplane in the 
original feature space. Suppose four landmarks l1, l2, l3, l4, are presciently selected, 
which are centroids of the four clusters of training points, indicated by a larger filled 
black circle in the figure. Then, every point x = (x1,x2) is mapped into

 
x sim x l sim x l sim x sim x l® ( ) ( ) ( ) ( )( ), , , , ,l , ,

1 2 3 4  

Given the 80 points in x labeled 0 or 1 the predictors are transformed into an 80 × 4 
matrix K, and the label vector of length 80 containing 0s and 1s denoting members 
of class 0 or class 1. It is possible to use regularized logistic regression on (K,y), and 
optimize the penalized cross-entropy loss function to learn the parameter vector 
θ characterizing the linear hyperplane in the feature space of K. This approach is 
called kernelized logistic regression. To make a prediction on a new example x, x 
is transformed into a four-dimensional vector kx with the mapping above, and 
σ(θTkx)  is computed to obtain its classification. It is possible to project the linear 
hyperplane into the original feature space as shown in Fig. 6.16 (black lines), and 
observe that a near-perfect approximation of the XOR function has been learned. 
This is mostly due to a very judicious choice of landmarks. However, when all train-
ing data points are chosen as landmarks, so that the transformed predictor matrix K 
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is of dimension 80  ×  80, an excellent approximation to the true function is still 
obtained.

There are three approaches to landmark selection for kernelized logistic regression:

 1. use all examples in the training set as landmarks and choose a large regulariza-
tion constant in the penalty function, especially if the number of examples is 
large. Regularization is critical to reduce the risk of overfitting.

 2. cluster the examples in the training set and select cluster centers as landmarks. 
When the number of examples is very large (in the millions), this approach 
works better than choosing all examples as landmarks.

 3. have domain experts suggest landmarks.

Kernelized logistic regression has been applied to predict the effects of drugs by 
representing them in terms of their similarity to other drugs. For example, McCoy 
and Perlis describe the application of logistic regression to drug representations that 
include the similarities between the side-effect profiles of a drug and those of a 
curated panel of six drugs that affect the central nervous system, in order to predict 
which drugs will cross the blood-brain barrier [18]. This work exemplifies the 
expert-driven approach to landmark selection.

 Similarity Functions for Kernel Methods

The success of kernelization is closely tied to the choice of the similarity or kernel 
function. A kernel function k measures how similar two d-dimensional vectors are.

 k R R Rd d: ´ ®  

It takes two vectors as arguments and returns a real number measuring the similarity 
between the two input vectors. The radial basis function is a popular general- 
purpose kernel for vectors in Rd. It has been rediscovered in many applied areas of 
science, and is known by a variety of names, including the Gaussian kernel.
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Another popular kernel is the polynomial kernel of order n, defined as

 
k x l x lT

n
,( ) = +( )1

 

Note that both functions are symmetric. Kernel functions are often designed with 
specific applications in mind; this activity is called kernel engineering. Consider the 
problem of predicting DNA sequences in the human genome that encode proteins. 
A supervised machine learning approach to this problem casts the problem in the 
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framework of binary classification. It entails gathering a training set of protein- 
encoding DNA sequences and DNA sequences known not to encode proteins (e.g., 
sequences drawn from regulatory regions). The success of the machine learning 
approach is deeply tied to how the input DNA sequences are represented. A poor 
representation leads to predictive models with poor generalization performance.

One idea for representing the training data sequences is to have expert biologists 
manually engineer features (e.g., counts of specific short subsequences which may/
may not be indicative of protein regions). Another idea is to move away from a 
representation tied to a single DNA sequence to a comparative representational 
approach. That is, rather than trying to describe a DNA sequence on its own, a ker-
nel function k is defined on DNA sequences which evaluates how similar two 
sequences are. Such kernel functions are much easier to design than features on an 
individual DNA sequence. Next, L landmark DNA sequences from both classes 
(protein-coding and non-coding) are selected and each DNA sequence is repre-
sented as a vector of length L denoting its similarity to these L landmarks. It is then 
possible to apply penalized logistic regression, Gaussian Discriminant Analysis, or 
Factored Naive Bayes models to learn the prediction function from the kernel rep-
resentations. The reader is directed to the following textbook for further discussion 
of this approach [19].

The practical significance of working in kernel space, rather than in an expanded 
basis function space is revealed through the following image processing example. 
Suppose images of size 16 × 16 are available for a binary classification task. If all 
fifth order polynomial terms in the 16 × 16 pixel space are considered as features, 

the size of the feature space will expand to 
k k=
åæ

è
ç

ö

ø
÷ »

1

5 256
 1010. Instead, working with 

a polynomial kernel of degree 5, it is possible to compute (xTl + 1)5 between image 
x, and landmark l in O(16 × 16) time—take the dot product of image x and image l, 
and add 1 to the value, and raise it to the fifth power. The basis function space of all 
fifth order polynomials is never explicitly materialized, but the effect of working in 
that space is obtained, with simply O(256) amount of work! This is the magic of 
kernels.

 Recap: How to Use Kernels for Classification

Given a labeled training set D of (x,y) pairs,

• Choose L landmarks from D
• Choose a kernel function k that captures similarity between pairs of examples
• Represent each x in D by a vector of length L + 1 of the form (1, k(x, l1), …, k(x, lL)). 

The prepended 1 is used for the intercept term θ0 in the learned model. The new 
training set K has (kx,y) pairs, where kx is the kernelized representation of x.
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• Use a discriminative (penalized logistic regression) or generative (Gaussian dis-
criminant Analysis, Naive Bayes) model to estimate a parameter vector from the 
kernel transformed data K and label vector y.

• To predict on a new example x, map it to its kernel form kx, and use the learned 
parameter vector with kx to compute the classification.

 Sparse Kernel Machines and Maximum Margin Classifiers

Kernelization can yield models with poor generalization performance, particularly 
if landmarks are chosen poorly. Too many landmarks could potentially result in an 
overfitted model, and too few landmarks result in underfitted models. Conceptually, 
the most important landmarks are arguably those that are close to the boundary 
between classes, because it is these landmarks that will help to distinguish between 
examples that are hardest to classify. A geometric view of the classification problem 
gives us insight into how to simultaneously select good landmarks and build a high- 
performance classifier.

Consider the points on a plane drawn from two classes as shown in Fig. 6.17. The 
points are linearly separable, and an infinite collection of boundary lines drawn in 
the space between the two sets of points is a perfect classifier. Of all these lines, only 
one, shown as a dotted black line in Fig. 6.17, maximizes the distance between the 
points in the two classes. The separating hyperplane is equidistant from the closest 
points to it in both classes. By formulating the problem of finding the decision 
boundary that maximally separates two (separable) classes as an optimization prob-
lem, it is possible to find a unique solution to the problem of finding the “best” clas-
sifier. In Fig. 6.17, the position and orientation of the maximum margin separating 
line is determined by just two of the nine training data points—i.e., the points at the 

θTx + θ0 = 0 : separating hyperplane

θconvex hull convex hull

Fig. 6.17 The optimal decision boundary separating points from two classes on the plane. This 
boundary is the maximum margin separating line and is the perpendicular bisector of the line join-
ing the closest points on the convex hulls of the two linearly separable classes. Note that this deci-
sion boundary can be identified using a single landmark from each class only
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ends of the line perpendicular to the decision boundary. These two points are called 
support vectors and form the sparse set of landmarks needed to describe the opti-
mal, margin-maximizing decision boundary. The problem of finding the (sparse) set 
of landmarks and the optimal placement of the decision hyperplane is thus solved 
jointly.

To understand how to set up the optimization problem of maximizing the geo-
metric margin between two sets of separable points, it is helpful to review some 
geometry as shown in Fig. 6.18. The margin r of a point x from a hyperplane defined 
by θTx + θ0 = 0 is the perpendicular distance of x from the plane. θ is the slope of the 
hyperplane, and θ0 is the intercept.

The sign of the distance of a point from a decision boundary is determined by 
whether it is on the positive or the negative side of the hyperplane (the distance for 
x would be positive, but one might imagine the reflection of x falling on the negative 
side of the boundary, to the left of it). The label set {0,1} will be mapped to the set 
{−1,1} to write a single formula for the margins of members of both classes. With 
y as an element of this set (i.e., a label in {−1,1}), the margin of a point (x,y) in a 
dataset D is

 

r y
xT

=
+q q
q

0

 

Note that this new definition of margin r is greater than 0 for points on both sides of 
the boundary since the (negative) distance is multiplied with label y = −1 for points 
in the negative class. A dataset D is correctly classified, if and only if the margins of 

Fig. 6.18 r is the perpendicular distance of the point x from the hyperplane θTx + θ0 = 0. The unit 

vector perpendicular to the plane is q
q 

. A perpendicular line (of length r, and parallel to this unit 

vector) dropped from the point x meets the plane at x⊥. So, x is the vector sum of x⊥ and r
q
q 

. 

Rearranging terms, and taking the dot product on both sides by θ, the given expression for the scalar 
distance r is derived
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all the points in D are greater than 0. The margin of the entire dataset is the smallest 
margin among all its elements.

 

margin D y
x

x y inD
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To separate the two classes maximally, the slope θ and intercept θ0 of the separating 
hyperplane to maximize margin(D) must be selected. That is, there is a need to find
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Unfortunately, this specification of the optimization problem yields infinitely many 
solutions for θ and θ0—because for every k, if θ and θ0 are solutions, so are kθ and 
kθ0. That is, the optimal solution is agnostic to the length of the vector defining the 
hyperplane. To obtain a unique solution, a scaling factor is defined such that

 
min x y inD
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for the point (x,y) in the dataset D that is closest to the decision boundary. So, the 
optimization problem is reduced to finding

 

q q
qq q,

,0
0
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subject to the constraints that y(θTx + θ0) ≥1 for all points (x,y) in D. That is, all 
points in D must be at a distance of one or greater from the decision boundary. 
Maximizing 1

 q
 is equivalent to minimizing ∣∣θ∣∣, so the maximization problem is 

converted into a constrained quadratic minimization problem and can be solved 
using a classical numerical solver.
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The solution obtained from the solver has the form

 

q a=
( )
å

x y inD
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,  

which associates a weight α with each point (x,y) in D. The slope and intercept of 
the maximum margin separator depends only on those (x,y) for which α > 0, as 
illustrated in Fig. 6.19. These points are the support vectors for the classifier and 
form a sparse set of landmarks for the dataset. The dark line in Fig.  6.19 is the 
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Fig. 6.19 Two support vectors for a two-class problem in two dimensions. The position and ori-
entation of the decision boundary is determined by the two support vectors, which form a sparse 
set of landmarks for the dataset shown. The support vectors are computed by solving the quadratic 
optimization problem of finding the maximum margin separator between the two classes. The dot-
ted blue line, called the positive margin, is parallel to the decision boundary. All positive (blue) 
examples lie on or to the right of the positive margin. The dotted orange line is the negative margin. 
A. negative (orange) examples lie on or to the left of the negative margin. The positive and negative 
examples are separated by a distance equal to the margin width. The larger the margin width, the 
more robust the classifier

decision boundary, and the dotted lines at +1 and −1 denote the positive and nega-
tive margin lines. The resulting classifier is called a support vector machine (SVM).

To classify a new point x’ with a SVM the side of the decision boundary the point 
lies on is computed,
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Only the support vectors with non-zero α are involved in this computation, even 
though the summation as written is over all (x,y) in D. Effectively, the position of the 
new point relative to all of the support vectors is used to make classification decisions, 
taking into account both which side of each support vector the point lies on, and how 
far it is from this support vector. To build a non-linear SVM, the linear dot product xTx′ 
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Fig. 6.20 Non-linear 
decision boundaries 
(demarcating the red and 
the blue shaded regions) 
and support vectors (circles 
enclosed in a purple ring) 
for a 2D data set learned 
with a radial basis function

is replaced by a kernel function k(x, x′), such as the radial basis function. It is possible 
to learn non-linear decision boundaries in two-dimensional data as shown in Fig. 6.20 
and identify a sparse set of support vectors using radial basis function as kernels, 
rather than the linear dot product kernel described in the equation above.

In all the discussion so far, it has been assumed that the two classes are separable, 
either linearly with a dot product kernel, or non-linearly with a polynomial or radial 
basis function kernel. To make SVMs practical for real world data sets which are not 
linearly separable to begin with, the formulation of maximum margin classifiers is 
extended to allow misclassified points. This tolerance for misclassification also 
relates to the recurring theme of overfitting. A solution that permits misclassifica-
tion of points in the training set may generalize better to other data than one that fits 
the training set perfectly (Fig. 6.21).

The optimization objective of SVMs will be adapted to relax the margin con-
straint on some of the points. Margin width of the final classifier can be traded off 
with the number of points in the data set that are allowed to violate margin con-
straints, i.e., fall on the wrong side of their class boundary.

Margin violation ξ(x, y) of a point (x,y) is defined as the distance of x from its class 
margin (Fig. 6.22). Then, the margin maximization optimization problem is for-
mulated as
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A point that is correctly classified will have a margin violation of exactly zero, 
incorrectly classified points will have margin violations greater than zero. The regu-
larization constant C is a measure of the willingness to allow misclassifications. 
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Fig. 6.21 Given the two-class dataset on the plane, the maximum margin separator derived by an 
SVM is shown by the solid purple line and the small-dashed margins. This SVM has a narrow 
margin and is defined by three support vectors, that are circles, enclosed in a purple ring. If the two 
circled positive class points in the center are ignored, it is possible to construct an SVM classifier 
with a much wider margin indicated by the broken dotted blue and orange lines. The support vec-
tors for the wider margin classifier are circled in green. Wider margin classifiers have better gener-
alization performance
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Fig. 6.22 The orange 
point outside the orange 
margin, and the 
misclassified blue point 
outside the blue margin, 
have both violated their 
margins. The extent of 
violation, defined as the 
distance from the point to 
its class margin, is traded 
off against margin width in 
the penalized objective 
function for an SVM for 
non-separable data

This is analogous to the approaches to regularization introduced in the discussion of 
linear models, in the sense that permitting misclassifications prevents a model from 
overfitting to the training set, improving generalization to new datasets. If C is high 
(imposing a high penalty for misclassification), then the margin violation term 
dominates, and the optimizer is forced to reduce the margin width concomitantly; 
while if C is low, the optimizer will construct a wide margin classifier since margin 
violations are not penalized so heavily. The penalized version of the SVM 
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optimization yields a soft-margin SVM. For any value of C, which expresses the 
tradeoff between margin width and misclassification rate, the optimizer produces a 
unique solution to θ and θ0 and identifies the sparse set of landmarks (i.e., support 
vectors).

 Neural Networks: Stacked Logistic Models

In this section, neural networks will be introduced. As noted throughout this vol-
ume, neural networks—and, in particular, deep neural networks—have led to 
rapid advancements in automated image recognition, speech recognition, and natu-
ral language processing, amongst other areas. A remarkable feature of contempo-
rary neural network models is that the underlying models are composed of individual 
units that are relatively simple in their design. It is the interaction between large 
numbers of such units that gives deep neural networks their representational power.

The fundamental building block of deep neural networks is the logistic model, 
shown in Fig. 6.23. As was seen in the section on “Discriminative models: Logistic 
Regression”, the logistic model characterized by the parameter vector θ captures the 
posterior probability P(y = 1| x; θ) from a dataset composed of vectors x ∈ Rd with 
associated labels y ∈ {0, 1}. It predicts class membership y from the input x by com-
puting g(θTx) where g is the sigmoid function. The sigmoid function squashes the dot 
product θTx which can be an arbitrary real number, into the range [0,1]. The dot prod-
uct here provides a concise way to express a sequence of operations in which the val-
ues of each blue input node (1 for the bias term, x1 and x2) are multiplied by a 
corresponding weight 1(−30) + x1 (20) + x2 (20) and added together to produce the 
input to the orange node, which applies the sigmoid function as its activation func-
tion. A logistic model is a linear classifier—it can only capture linear boundaries sepa-
rating classes y = 0 and y = 1.

The model in Fig. 6.23 maps x ∈ {0, 1}2 to y ∈ {0, 1}. The network computes the 
Boolean AND of the two components of x. Note that the sigmoid function g(a) ≈ 0 
for a ≪ 0 and g(a) ≈ 1 for a ≫ 0. Thus, when both components of x are 1, the linear 

1

x1 y

x2

y = g (θT x) = = g(−30 + 20x1 + 20x2)
1

1 + e−θT x

20

20

-30

Fig. 6.23 A logistic 
model, drawn as a 
two-layer neural network. 
The first layer is the 
Boolean input vector x and 
the second layer is the 
output y composed of a 
single logistic unit. This 
network computes the 
Boolean AND of the 
components of x
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dot product θTx = 10; and y = g(10) ≈ 1. When any one, or both of the components 
of x are zero, the corresponding dot product θTx ≤  − 10, so y = g(−10) ≈ 0.

In 1943, McCollough and Pitts [20] demonstrated that a stacked assembly of 
logistic units can represent any Boolean function—and by extension any function 
that can be calculated on a classical computer. An example of a stacked assembly 
composed of three layers is shown in Fig. 6.24. The network represents the nonlin-
early separable XNOR function (the logical complement of the XOR function—
true if and only if both inputs are identical), i.e., the output y = x1 XNOR x2.

Given an input Boolean vector x, the intermediate outputs a1 and a2 of the second 
(hidden) layer are calculated, and the output y of the final layer is then computed in 
terms of a1 and a2:

 
a g x x
1 1 2

30 20 20= - + +( )  

 
a g x x
2 1 2

10 20 20= - -( )  

 
y g a a= - + +( )10 20 20

1 2  

Computation of the outputs of the network proceeds sequentially, layer by layer, 
with outputs of layer i + 1 computed from the outputs of layer i. This network is 
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Fig. 6.24 A three layer, 
fully connected, stacked 
assembly of logistic units 
with an input layer, a 
hidden layer (composed of 
a bias unit set to 1, and two 
logistic units with outputs 
a1 and a2) and an output 
layer with a single logistic 
unit with output y. The 
network computes the 
nonlinear function x1 
XNOR x2, which cannot be 
represented by a single 
logistic model. The 
parameters defining the 
model are the weights on 
the edges connecting the 
units to one another, and it 
is these weights that define 
the behavior of the model. 
The attentive reader will 
recognize the AND 
subnetwork from Fig. 6.23 
leading to output a1
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fully connected, i.e., every logistic unit in layer i + 1 is connected to all the units in 
the layer i below. In the example network shown in Fig. 6.24, layer 2 outputs are 
computed from layer 1 (the inputs), and the layer 3 output is computed from the 
values of units in layer 2. Note that the units a1 and a2 in layer 2 are connected to all 
units (including the bias unit) in the input layer. Fully connected stacked assemblies 
of logistic units are therefore called feedforward multilayer networks. The final 
output y is a highly non-linear function of the input vector x, viz.,

 
y g g x x g x x= - + - + +( ) + - -( )( )10 20 30 20 20 20 10 20 20

1 2 1 2  

The parameters of the feedforward network are defined in Fig.  6.24 using two 
parameter matrices, one defining the weighted connections between layer 2 and 
layer 1 (the matrix Θ(1)), and the other between layer 3 and layer 2 (the matrix Θ(2)) 
shown below (Fig. 6.24).
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Note that Θ(1) has dimension 2 × 3, reflecting the fact that there are two logistic units 
in layer 2 connected to the two input units in layer 1 and the additional bias unit. Θ(2) 
has dimension 1 × 3, since there is a single output unit in layer 3 connected to the 
two logistic units and the bias unit in layer 2.

 Parameterizing Feedforward Networks and the Forward 
Propagation Algorithm

Given a new input vector x, it is possible to define the vector a(l) of activations of the 
units in each layer l in the network with the following system of matrix operations.

 a 1( ) = x  

 
z a l Ll l l+( ) ( ) ( )= * éë

ù
û = ¼ -1

1 1 1Q ; ,
 

 
a g z l Ll l+( ) +( )= ( ) = ¼ -1 1

1 1,
 

The symbol z in these equations corresponds to the sum of the inputs to a layer (or 
individual unit within a layer) before the activation function g has been applied. In 
the running example, the value z—known as the logit—for unit a1 would be 
−30 + 20 x1 + 20 x2. The equations provide a symbolic representation of a sequence 
of steps in which the input, x, provides initial activation values for the input layer of 
the network. Then, the logits, z, for a subsequent layer are calculated by multiplying 
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these inputs by the weighted connections, Θ, to each of its units, and adding the 
results. The matrix product in the equation provides a shorthand notation for per-
forming this operation across all units in a layer and describes the way in which this 
operation is generally implemented to take advantage of efficient numerical compu-
tations provided by Graphical Processing Units (GPUs) and other specialized hard-
ware. Finally, the activation function, g, is applied to the logits, to estimate the 
activations for this layer, which may in turn provide the input for a layer to follow.

The system of equations for forward propagation shown above can be used to 
calculate the final output of a fully connected, L layered feedforward network. Such 
a network is characterized by L − 1 parameter matrices Θ(l), l = 1…L − 1. Each layer 
l has S(l) units and a single bias unit. Matrix Θ(l) connects layer l to layer l + 1 and 
has dimensionality S(l  +  1)  ×  (S(l)  +  1). For example, in the network depicted in 
Fig. 6.24, S(1) = 2, S(2) = 2, S(3) = 1, L = 3. This network has two parameter matrices 
of sizes 2 × (2 + 1) and 1 × (2 + 1) and a total of 9 parameters.

By increasing the number L of layers, as well as by increasing the number of 
logistic units in each layer, it is possible to represent nonlinear functions of ever- 
increasing complexity. A deep feedforward network encodes a set of prior beliefs 
about the structure of the function that maps vectors x to the class y. The intermedi-
ate layers represent underlying factors of variation, which in turn can be expressed 
in terms of simpler factors, all the way down to the input components in x. Fully 
connected, feedforward networks are universal function approximators, capable of 
representing any mapping from inputs to outputs to within any specified tolerance ε 
of the true function [21].

Any Boolean function can be represented by a three-layer network, such as the 
one shown in Fig. 6.24. Any continuous function on the reals can be approximated 
by a three-layer network, but it may require a very large number of units in each 
layer [22, 23]. Finally, any function (including discontinuous functions) can be 
approximated by a four-layer network with enough units in each layer. Surprisingly, 
these representation theorems hold not just for logistic units (in which the non- 
linearity g(x) is the sigmoid function), but for rectified linear units (called ReLUs), 
defined as g(x) =  max (0, x) as well. ReLUs are the most widely used non-linearity 
in feedforward neural networks, because the maximum is cheaper to compute than 
the sigmoid, and it has been experimentally found to accelerate the convergence of 
stochastic gradient descent for parameter learning [24].

While the representation theorems assure us that a network with four layers is 
sufficient to capture any mapping, they place no bounds on the “width” of each 
layer. In practice, networks of much greater depths are built, trading off the number 
of units in each layer for depth. While a feedforward neural network of sufficient 
depth and width can represent any function in principle, in practice, it is not guaran-
teed to find those parameter settings with the training algorithms.

In the networks discussed up to this point, the parameters of the networks have 
been pre-configured to approximate particular Boolean functions. However, neural 
networks must learn how to approximate functions of interest for AIM applications, 
such as radiological image recognition. As is apparent from the network in the run-
ning example, the behavior of a feedforward neural network is dictated by its 

D. Subramanian and T. A. Cohen



189

weights, as these determine how input from one layer proceeds to activate units in 
the next. Therefore, it is the weights that must be adjusted to change the behavior of 
a neural network during the process of training it. The section that follows will 
explain how the backpropagation algorithm—the mainstay of training neural net-
works—is used to accomplish this end.

 Learning the Parameters of a Feedforward Network

A standard way of presenting the backpropagation algorithm uses calculus to calcu-
late a sequence of derivatives, each of which measures how much the result of one 
operation (such as multiplication by a set of network weights, or the application of 
an activation function) influences the operation that follows it. As with linear regres-
sion, the key idea is to update each model parameter in accordance with its influ-
ence. However, with linear regression this influence is straightforward to estimate, 
as it depends only upon the (constant) slope of the line concerned, and the input 
features. With nonlinearities such as the sigmoid function, the extent to which a 
particular change in input influences the output of the function differs depending 
upon the value of the function beforehand (Fig. 6.25).

With knowledge of the extent of the influence of each neural network weight on 
the output of the model—and hence the loss function—it is possible to update indi-
vidual parameters to steer the model toward accurate classification of the data in a 
training set. Beginning with this standard presentation, some other perspectives on 
the algorithm will be provided to help to build intuition about backpropagation. 
While this constitutes more detail than has been provided with some of the other 
algorithms under discussion, this is warranted here because backpropagation is fun-
damental to training deep neural networks, which have become—or are becom-
ing—the dominant approach to many problems in AIM. As ultimately there is a 
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need to know how much each parameter influences the loss function, the presenta-
tion will begin there.

 
J y h x y h xq( ) = - ( )( )éë ùû + -( ) - ( )( )éë ùû( )log log1 1

 

Recall the cross entropy loss function for a single example (x,y), shown above. The 
prediction function with parameter vector θ is

 
h x g xT( ) = ( )q

 

The parameters θ (referred to as weights in neural network parlance) can be learned 
from a given data set by gradient descent on the cross-entropy loss function

 
q q

q
q

¬ -
( )dJ
d  

The gradient of the cross-entropy loss function with respect to the component θj is

 

dJ
d

h x y x
j

j

q
q
( )

= ( ) -( )
 

The first term is the error in prediction on the (x,y) pair (how “wrong” the model 
was), and the second term is the j-th component of the input vector x (this deter-
mines how changing the parameters in θ will affect a model prediction—for exam-
ple, if x j

i( )  = 0, changing the parameter q j
i( )  will not improve classification of this 

example). Therefore, the gradient tells us how each parameter in θ influences how 
well the prediction for a specific example approximates the correct label, y. This 
gradient can be used for updating the parameters connecting the final two layers of 
a feedforward network, which function as a simple logistic model. However, with 
deeper networks there is a need to estimate the influence of weights in proximal 
layers on model error, to determine how these weights should be updated. The sim-
ple feedforward network in Fig. 6.26 will be used to explain how derivatives of the 
loss function can be computed with respect to all the weights in the network.

The input vector x has two components, and the hidden layers have two logistic 
units each. The final output is a scalar a(4). Here are the forward equations to calcu-
late the output h((x1, x2)) of the network, repeating the sequence of equations from 
the section on “Parameterizing feedforward networks and the forward propagation 
algorithm” (input → logit (z) → activation (g(z)) for each layer of the network.

 
a x x1

1 2
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Fig. 6.26 A simple 
four-layer feedforward 
neural network to illustrate 
the backpropagation 
algorithm and the 
computation of the 
derivative of the loss 
function with respect to all 
the network parameters
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First, the derivative of the loss function J(θ) with respect to θ(3) is calculated, using 
the chain rule of differentiation. This estimates the influence of the weights in the 
penultimate layer (Θ(3)) on the loss function. As the output of the third layer will be 
ingested by the fourth layer to generate the output of the network, this estimation 
must consider the operations of the output unit also.
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Consequently, the first term is the derivative of the cross-entropy loss with respect 
to the network output, the result of applying the sigmoid activation function to the 
logit of the output unit, z(4). The second term is the derivative of this non-linear sig-
moid function with respect to the logit, and the final term is the derivative of the 
logit with respect to the θ(3) parameter. The steps of the calculation are as follows:
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which mirrors the derivative of a single logistic unit with input x replaced by the 
activation of the layer right below the output layer ([1;a(3)], with 1 indicating the 

relevant bias term). The numerator of the first derivative calculated, 
dJ
da 4( ) , incorpo-

rates the class label: (y − a(4)) indicates both the direction and the magnitude of the 
desired correction to the output of the model. If the label y is one, this will measure 
how far from one the output was, and the sign will be positive. If the label y is zero, 
this will measure how far from zero the output was, and the sign will be negative. 
The denominator is the derivative of the sigmoid function,15 g(x)(1 − g(x)).

This is also the second derivative calculated, because it governs the influence of 
the logit it activates, z,(4) on the loss function. The influence of the weights in the 
preceding layer, θ(3), on this logit depend upon the activations they are multiplied by, 
a(3). When these three derivatives are multiplied together, as dictated by the chain 

rule, the term a(4)(1 − a(4)) cancels out, leaving 
dJ

dQ 3( ) . Essentially, the chain of influ-

ence is traversed in reverse, from the error function through the logistic unit, and 
finally to the weights of the third layer. From here it is possible to proceed recursively.

A second view of the backpropagation algorithm considers it from the perspec-
tive of how responsibility for error is allocated across the weights of the network. If 
the counterpart of model error (the a(4)− y term) for the hidden units in the network 
is known, it is possible to compute derivatives of the loss function with respect to 
θ(2) and θ(1) as well. Error at the output layer is defined as

 
d 4 4( ) ( )= -( )a y

 

14 Recall (perhaps from distant calculus) that the derivative of d/dy log(y) = 1/y. Proceed algebra-
ically from this step by cross-multiplying the summed fractions to reach this derivative.
15 The sigmoid function g(x)= 1/(1 + e−x) = (1 + e−x)−1. Its derivative dg(x)/dx = (−1)(1 + e−x)−2de−x/
dx = (−1)(1 + e−x)−2(−1)e−x = 1/(1 + e−x)(1 − 1/(1 + e−x))= g(x)(1 − g(x).
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The key idea behind the backpropagation algorithm is that each of the hidden nodes 
in Layer 3 is responsible for some fraction of the error in the output node, and the 
extent of this responsibility depends upon the weights connecting them to it. For 
example, the error at hidden node j in Layer 3 is determined by q j

3( ) , the weight 
connecting unit j to the output unit, and the error at the output unit, δ(4), modulated 
by the extent to which changing the logit of this node will affect the output of the 
activation function that follows it.
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In vector form, this can be rewritten as
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where the ⊙ operator is the Hadamard product of the two vectors—a pointwise 
multiplication of the components of two equally sized vectors. One can see the cor-
respondence between the the jth element of δ(3) shown above, and vectorized form 
below. Generalizing, for l = 2 … L − 1,

 
d l
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Gradient descent is used to update the parameters of the network. The learning pro-
cedure which incorporates both forward and backward propagation is shown below. 
Initialization of gradients for all unit pairs ij is with unit j in layer l and unit i in layer 
l + 1, for l = 1 … L − 1.

 
Dij

l( ) = 0
 

For every example pair (x,y) in the training data

 1. set a(1) = x
 2. use forward propagation to compute a(2),...,a(L)

 3. set δ(l) = ( a(L) − y)
 4. use backpropagation to compute δ(l − 1),...,δ(2)

 5. update gradients using D Dij
l

ij
l

j
l

i
la( ) ( ) ( ) +( )¬ + d 1  for every i,j,l

 6. update parameter by gradient descent using q q aij
l

ij
l

ij
l( ) ( ) ( )¬ - D  for every i,j,l

This algorithm can be extended to work not just on feedforward networks, but on 
general computation graphs, providing a third perspective on the algorithm. The 
nodes of a computation graph are operations (e.g., sums, products, reciprocals, 
exponentiations) and the leaves of the graph are the operands (the quantities upon 
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which these operations are applied). The computation graph for the sigmoid of the 

dot product of two vectors q
q q q

,
exp

x
x x

1

1
0 1 1 2 2

+ - + +( )( )
 is shown in Fig. 6.27.

Schematically, this could represent the components of the neural network in 
Fig. 6.26 running from layer three to the output node, after receiving, summing, 
and transforming input from the previous layer. To keep the quantities manage-
able and readable, the inputs −1 and −3 are used, though in practice these would 
be values between 0 and 1 if a sigmoid activation function were used. Feeding 
forward (from left to right), these incoming values as well as a 1 representing the 
bias term are then multiplied by the weights of the third layer, θ(3) (i.e. the vector 
[−3,1,−2]), which connects this layer to the output node. The resulting products 
are then added to generate the logit z(4). This logit provides the input to the sig-
moid function (1/1 + exp(−x)), which in the computation graph is decomposed 
into a series of individual operations, first reversing the sign, exponentiating, add-
ing one and taking the reciprocal. The result is a(4), which gives the output of the 
network for this example: a predicted probability of 0.88 that this example belongs 
to the positive class.

In order to update the weights of the network the cross-entropy loss (CE) is first 
measured. For an example from the positive class this is calculated as −log(p), with 
p as the predicted probability. The next step is to proceed back across the graph 
(from right to left), multiplying this value by the derivative of the operation in the 
node concerned. These derivatives are as follows:

 
For f z z

df z
dz

z( ) = ( )
= -1 1

2
/ , /

 

 
For f z z c

df z
dz

( ) = +
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Fig. 6.27 The computation graph for the sigmoid of the dot product of two vectors is used to 
demonstrate how to run forward propagation and backward propagation for general network 
architectures
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For f z e
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To compute the derivative of J with respect to the first operation (1/x), the chain rule 
is used, and incoming derivative 0.127 is multiplied with the derivative of 1/x, which 
is −1/x2 = −0.882,  to give  0.098. The derivative of the +1 operation is 1, so the 
incoming derivative 0.098 moves unchanged across that operation. Again, multiply-
ing the incoming derivative 0.098 with ez = 0.135, it is possible to propagate the 
product 0.013 across the exp operation. To propagate the incoming derivative 0.013 
across the *−1 operation, the fourth derivative in the table of derivatives above is 
used, obtaining −0.013. Figure 6.28 shows how weights learned from training data 
using backpropagation can be used to approximate the XNOR function.

To propagate the derivative across the sum and product operations, recall that

 
For ,x y x y df

dx
df
dy

( ) = + = =, ,1 1

 

 
For ,f x y xy df

dx
y df
dy

x( ) = = =, ,

 

To complete the example, it is evident that the incoming derivative is being propa-
gated unchanged across the sum operator, and being multiplied by the input on the 
other branch across the product operation. This provides part of the information 
required to update each weight in θ(3): the extent to which changing this weight 
would influence the loss function if it were multiplied by one in the forward pass. 
However, this is not the case—the weights in θ(3) are multiplied by the vector 
[1,−1,−3]. This vector is multiplied by −0.013 (as well as the learning rate) to 
determine the update to each weight.

In modern deep learning frameworks, such as PyTorch and TensorFlow, one 
must specify only the forward propagation computation. The computation is inter-
nally represented as a directed acyclic graph and derivatives are propagated over the 
operations by the chain rule using automatically computed derivatives such as the 
ones in the tables above. More details on automatic differentiation can be found in 
Chap. 6 of Goodfellow et al.’s comprehensive deep learning text [9].

The core ideas behind the backpropagation algorithm have been around since the 
late 1980s [25, 26]. The success of deep learning networks today can be attributed 
to the ready availability of massive data sets needed to train the millions of param-
eters in modern networks, as well as efficient vector and matrix computations 
(including special-purpose (tensor processing) hardware) to accelerate the forward 
and backward computations. Another major innovation is the replacement of the 
sigmoid nonlinearity in networks by the rectified linear unit [27] (ReLU) defined as 
ReLU(x) = max(0,x). As can be observed in Fig. 6.25 the sigmoid function g(z) 
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Fig. 6.28 In the original feature space (x1,x2) on the left, the four values of the XNOR function are 
depicted with orange and blue dots. Blue dots represent the value 1, and orange dots represent the 
value 0. Note that when x1 and x2 are the same (both 0 or both 1), the XNOR function has value 1. 
The blue and orange dots cannot be separated by a single hyperplane in the (x1,x2) space. However, 
in the (a1,a2) space shown on the right, where a1 and a2 are the intermediate outputs of the stacked 
assembly of logistic units shown in Fig. 6.26, the XNOR function is linearly separable and thus can 
be represented by a single output unit y. The new basis functions a1 and a2 can be learned automati-
cally by the backpropagation algorithm from training data representing the XNOR function

saturates beyond a narrow range of z values about the origin (i.e., it asymptotes to 
0 for negative z values, and to 1 for positive z values). Outside this narrow range, 
small changes to z (represented by the x axis on Fig.  6.25) will have negligible 
effects on the output (represented by the y axis on this figure). Hence, the derivative 
of the sigmoid function beyond this narrow interval is 0, and the gradient descent 
training algorithm essentially stalls. This problem is called the vanishing gradient 
problem. The use of the ReLU non-linearity significantly reduces this problem, 
since the gradient is one if the result of the linear logit computation is positive.

 Convolutional Networks

This section describes the Convolutional Neural Network (CNN), a specialized 
deep neural network architecture that is especially effective at modeling imaging 
data and as such underlies many of advances in medical image processing that are 
described in Chap. 12. CNNs offer advantages over standard architectures in their 
ability to leverage the innate 2D correlational structure of image-related data 
sources. Multi-layer, fully connected feedforward networks of the appropriate depth 
and width have the power to represent any function from a set of inputs to an output 
set (continuous or discrete). However, the architecture forces all inputs, including 
those with 2D or 3D structure, such as still images and videos, to be flattened into 
one-dimensional vectors, for processing by the network. Spatial and temporal struc-
ture inherent in two-dimensional image arrays or three-dimensional video streams 
(the third dimension is time) are lost in this representational transformation. 
Convolutional neural networks preserve local correlations in the input and use 
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convolution in place of full matrix multiplication in some of the layers. Convolution 
is a well-known mathematical operation in which a function called a kernel or filter 
is applied to an input, yielding an activation map. It is widely used in computer 
vision applications where kernels are designed to detect specific features (such as 
oriented edges) in images. Figure 6.29 shows a 2D kernel of size 2 × 2 applied to an 
input matrix of size 5 × 5, yielding a 4 × 4 activation map. The kernel or filter is 
swept horizontally across the input starting at the top left, with a specified shift 
(called stride) to the right, until it reaches the right edge of the image. The values in 
the 2 × 2 kernel are pointwise multiplied and summed with the 2 × 2 part of the 
image underneath it, yielding a scalar. In a trained model, this scalar indicates the 
extent to which this part of the image maps to a feature the filter has learned to iden-
tify. For instance, when the kernel is aligned with the left most corner of the input, 
the convolution yields 2 × 1 + 3 × 1 + 1 × 2 + 4 × 2 = 15. This is the first element of 
the activation map which is computed by sweeping the kernel across and then down 
by the specified stride. The 2 × 2 kernel yields four elements in the activation map 
for each horizontal sweep (as each position occupies two columns of the input 
matrix, there are four possible horizontal positions). Since the vertical stride is also 
one, the activation map is of size 4 × 4, with each cell indicating the strength of 
activation of the filter in one of its possible positions in the input matrix.

Convolution networks have far fewer parameters than a conventional feedfor-
ward network on the same inputs. Continuing with the example in Fig. 6.29, the 
number of units to represent the 5 × 5 input would be 26 (5 × 5 + 1 bias unit) and 
the number of units to represent the next layer, that is, the 4 × 4 activation map 
would be 17 (16 + 1). In a standard neural network architecture, every one of the 
16 units in the activation layer would need to be connected to the 26 units below, 
yielding 16  ×  26  =  416 parameters. Instead, there are just four parameters (the 

5 x 5 input

2 x 2 kernel/filter

stride = 1

5 5 5 5 5

4 4 4 4 5

3 3 3 3 3

2 2 2 2 2

1 1 1 1 1 2 3 15 15 15 15

25 25 25 25

35 35 35 35

45

4 x 4 activation map

45 45 45

1 4

Fig. 6.29 An example of a 2D convolution with a 5 × 5 input matrix and a 2 × 2 kernel. The result-
ing activation map is of size 4 × 4 since the stride is 1. The first row of numbers in the activation 
map is generated by sweeping the kernel across the first two rows of the input starting at the left 
corner and moving one column horizontally to the right. The pointwise products of the filter values 
with the input values under the filter are taken and summed to yield the values in the activation map
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kernel values or weights) capturing the entire interaction between the input and the 
activation layer. Since the kernel computes the same function across all the input 
units, the activation map values are akin to the output of a feature detector. 
Convolutional networks embody translational invariance because the kernel iden-
tifies specific features no matter where they occur in the input. This is intuitively 
appealing for image classification problems, as ideally the network would learn to 
recognize important features, such as cavitation in chest radiographs, irrespective of 
where they occur within a particular training image. The parameter sharing with 
the use of convolutional layers with small kernels or filters becomes even more 
compelling when working with larger inputs of size 224 × 224 × 3 (such as the 
ImageNet collection [28]—the “×3” indicates three channels, for red, green and 
blue color encoding). The input is padded with zeros around the edge and a 3 × 3 × 3 
kernel is used to obtain an activation map of size 224 × 224 × 3 (224 + 2 – 3 + 1 for 
each dimension). A fully connected model will need 224 × 224 × 3 × 224 × 224 × 3 = 
2.3  ×  1010 parameters or weights, while the convolutional layer only has 
3 × 3 × 3 = 27 parameters! By sweeping a small kernel by a small stride across a 
large image, sparsity is obtained in the connections between layers, because not 
every unit in a layer is connected to all units in the following layer. The filter thus 
defines a receptive field that moves across the entire image.

To specify a convolutional layer in a deep network with input of size H × H × D, 
several hyper-parameters must be defined: K, the number of filters or kernels, F, the 
size of the filter (typically a square matrix), S, the stride of the filter (typically 1 or 
2), and P, a zero padding around the edges of the input to ensure that the activation 

map size A A A H F p
S

´ =
+ -

+where
2

1  is an integer. The total number of 

parameters defining a convolutional layer for an input of size H  ×  H  ×  D is 
(K × F × F × D) parameters for the K filters and K bias parameters (one per filter).

Filter weights in convolutional networks trained by backpropagation can be visu-
alized as color images, as shown in Fig.  6.30. The filters come to resemble the 

Fig. 6.30 A visualization of the filter weights of the first layer of a VGGNet trained on the 
ImageNet classification task [29]
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features they detect, because the signal that propagates forward from a matrix mul-
tiplication will be highest when the matrices have similar values. This capability to 
learn feature representations from data is an important advantage of deep learning 
models, especially considering these feature representations can be of value for 
tasks beyond those the network was originally trained. Zeiler and Fergus [29] pio-
neered this visualization technique in the context of the ImageNet recognition task, 
rendering the 96 11 × 11 × 3 filters in the convolutional layer next to the input layer 
as color images of size 11 × 11 each. Oriented edge detectors and color patches are 
automatically learned by the machine, by minimizing the cross-entropy loss at the 
output layer and propagating loss functions derivatives back to the first layer. 
Similarly, activation maps at higher hidden layers can be projected back to the input, 
to reveal the regions of the input image that contribute most to the final classifica-
tion decisions [30], as illustrated in Fig. 6.31.

The convolution operation is linear; and once the linear activation map is com-
puted, a nonlinearity, such as ReLU, is applied. Convolutional/ReLU layers are gen-
erally followed by a pooling layer which reduces the dimensionality of the activation 
map. A commonly used pooling kernel is of size 2 × 2 with horizontal and vertical 
stride of two, which selects the maximum value in its receptive field. That is, only 
the signal from the region that most strongly activates a filter propagates forward to 
the next layer of the network. MaxPool is illustrated in Fig. 6.32, where it clearly 
functions as a non-linear downsampler. When a convolutional layer follows a pool-
ing layer, the network learns filters on a wider receptive field than on the origi-
nal input.

Classical convolutional networks for K-class object recognition problems such 
as VGGNet [32] are a sequence of convolution/ReLU/MaxPool layers that progres-
sively map the input image through a series of reduced dimensional hidden outputs 
into a penultimate layer which is flattened and fully connected to an output layer 
of size K.

Fig. 6.31 GradCAM [30] visualization of examples from a popular and somewhat controversial 
set of radiological images used to train deep learning models to detect COVID-positive patients, 
with high accuracy reported in several evaluations. Pixels in red have the highest importance in the 
classification decision. Of note, the models are often attending to regions outside the lungs them-
selves, which contain metadata denoted in different ways across institutions. As “healthy control” 
counterexamples were often drawn from different sources to the COVID-positive cases, the ability 
to identify image provenance explains much of the model’s ostensibly strong performance [31]
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Fig. 6.32 The max pool filter selects the maximum value in a 2 × 2 block starting at the left corner 
of the input. The maximum value in the first 2 × 2 block of the input is 5. The next step is to stride 
the filter by 2 horizontally, and obtain 4 as the maximum value. The resulting output is a 2 × 2 
matrix since the vertical stride of the filter is also 2. Max pooling reduces a n × n input matrix into 
a n/2 × n/2 output

 Other Network Architectures

While convolutional networks with convolution/ReLU/MaxPool layers, with fully 
connected layers at the output form the dominant architectural paradigm, a host of 
variations have been proposed in the literature to solve problems beyond discrete 
object recognition. One class, called UNets [33] are specially engineered for solv-
ing image segmentation problems, i.e., problems in which exact localization of fea-
tures is important, unlike a simple object recognition problem. Details of the UNet 
architecture are beyond the scope of this chapter, and the interested reader is directed 
to the original paper [33].

For handling time series data such as video streams in medical imaging, recur-
rent networks are the appropriate architecture. Unlike the feedforward systems stud-
ied thus far, in which the computations flow in one direction from inputs to the final 
outputs, recurrent networks allow the final output of a network to serve as input with 
a time delay. Chapter 10 of the Goodfellow et al. text [34] on deep learning offers 
an excellent introduction to this family of networks, and its many variations such as 
LSTMs and echo state networks.

In natural language processing, the Transformer architecture has emerged as an 
important approach to processing text sequences underlying widely used models 
such as Bidirectional Encoder Representations from Transformers (BERT) [35, 
36]. Transformers generate context-specific representations of textual input, by 
allowing words (or parts of words) in a sequence to influence the representations of 
other words as they progress through the network. This provides an intuitive way to 
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model ambiguous words such as “cold” (virus vs. temperature), because representa-
tions of this word that are close to the output layer will be informed by contextual 
cues. The relative influence of specific contextual cues is learned by the model, so 
that those cues that are useful for particular tasks will be emphasized when the 
model is fine-tuned accordingly. For discussion of some key applications of neural 
Transformer models, see Chap. 7.

 Putting It All Together: The Workflow for Training Deep 
Neural Networks

Deep learning models have been used in a wide range of clinical applications rang-
ing from diagnosis, to risk assessment and treatment. A large fraction of them are 
end-to-end models that start with images (optical, CT, Xray) as inputs and culmi-
nate in a classification output layer with intervening hidden layers consisting of 
convolutional/ReLU/pooling layers together with fully connected feedforward lay-
ers at the end of the pipeline. In this section, the workflow for setting up and training 
deep neural networks for supervised learning problems in clinical applications is 
elaborated.

 1. Decide on the network architecture: for a supervised learning problem, the 
type and arrangement of layers is determined by the inputs and outputs and the 
nature of the prediction problem: e.g., whether it is classification into a small set 
of discrete categories, image segmentation, or risk estimation. Modern deep 
learning frameworks such as Pytorch [37], Keras (keras.io) and TensorFlow 
(tensorflow.org) allow easy parametric specification of layers ranging from 
simple fully connected to convolution/ReLU and MaxPool composites, as well 
as more exotic layers to support specialized applications. It is important to 
avoid the data arrogance trap, particularly if the available training sets are orders 
of magnitude smaller in size than the number of parameters in the network 
model. The use of pre-trained networks with parameters optimized for related 
tasks is crucial to obtain robust generalization performance. An example is the 
use of a VGGNet and Resnet architecture trained on the ImageNet dataset with 
1.2 million images in 1000 categories as a feature extractor for classification of 
pneumonia from chest X-ray images [38].

 2. Choose an appropriate loss function: for regression problems, mean squared 
error is the standard choice, while cross-entropy loss is the usual choice for 
binary classification. The softmax loss function, which is a generalization of 
cross-entropy loss, is used for multi-class classification. Weighted versions of 
these loss functions are available in standard deep learning frameworks, allow-
ing designers to accommodate problems with class imbalance, or problems 
where the costs associated with false positive errors and false negative errors 
are quite different.
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 3. Choose a regularization approach: One technique for regularization is to use 
penalized loss functions, where the L1 or L2 norm of the network weights is 
added to the chosen loss function. Another technique is called dropout [39], and 
can be added as a layer in modern deep learning frameworks. During training, 
some of the units (and their connections) are stochastically dropped during 
weight update, which encourages sparsity in the network weights.

 4. Initialize network parameters: weights on bias units are typically initialized 
to zero. The most used technique [40] for initializing weights connecting units 
in layers l−1 and l is to select them from a uniform distribution [−b, +b] where 

b = 6 / S Sl i( ) ( )-+ 1 . S(l) denotes the number of hidden units in layer l of the 

network. Proper initialization of network parameters is still an open problem in 
the field.

 5. Select pre-processing steps for training data: to make the inputs well- 
conditioned, it is traditional to normalize training inputs, e.g., subtracting 
means from images, or more generally, using standard scaling of each col-
umn of the input to make it have zero mean and unit variance. The choice of 
pre- processing step requires domain knowledge and understanding of how 
the inputs were generated, and the elimination of input artifacts that could 
cause overfitting in the models. In many medical image classification prob-
lems, such as Gleason grading of prostate cancer from whole slide images 
[41], semi- automated label cleaning is employed, in which erroneously 
graded training examples are excluded from the training sets. Another sig-
nificant pre- processing step in image classification tasks is to break up an 
input image into smaller patches and learn models on the patches. A second 
model learns to integrate feature responses from the patches to make a final 
classification.

 6. Determine if data augmentation is needed, and if it is, determine how to aug-
ment training data. If the number of parameters in the chosen network architec-
ture far exceeds (i.e., is an order of magnitude greater than) the product of the 
number of training examples and the size of each example, there is a need to 
augment the training set. One of the easiest ways to perform data augmentation 
to is apply affine transformations: translations and small rotations to the exist-
ing training set data to force the network to be robust in the face of perturbations 
of the input. Yet another approach is to inject a small amount of white noise to 
all the inputs to encourage better generalization performance.

 7. Decide on a stopping criterion: It is customary to set aside a small portion of 
the training set, called a validation set, and calculate the loss function on 
both the training and validation sets for each epoch of training. In a single 
epoch, network parameters are updated after iterating through the whole 
training set. Training loss decreases with the number of training epochs, 
eventually tending to zero. The validation loss, on the other hand, first 
decreases and then increases, indicating that the network has been overfitted 
to the training data. The optimal stopping point for training is when the vali-
dation loss achieves its minimum.
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 8. Tuning the learning hyper-parameters: these include choice of learning rate, 
the gradient descent optimization algorithm, and example batch size for gradi-
ent estimation. Tuning hyper-parameters is still an art and is extremely compu-
tationally intensive. Close monitoring of the training and validation loss using 
a visualization framework such as Tensorboard16 is crucial to find good values 
for the hyper-parameters. Tools such as AutoML17 can automatically perform 
coarse to fine grained searches in the hyper-parameter space to find good com-
binations of values.

 9. Train the model: Run the model with the (augmented) training data with the 
chosen hyper-parameters and architecture until the optimal stopping point.

 10. Test the model: evaluate the predictive performance of the model on the set 
aside test set (or on the set aside chunk for N-fold cross-validation). In datasets 
with class imbalance, cross-validation has to be designed carefully to avoid 
overfitting and overestimating model performance [42]. Generating artificial 
examples to overcome imbalance in classification problems can introduce inad-
vertent biases in the model. An interesting example of this phenomenon occurs 
in the domain of predicting synergistic drug interactions. While there are tens 
of thousands of known drug compounds, very few documented examples of 
synergistic interactions exist (rare class problem). Further, drug pairs that do 
not have synergistic interaction are never documented. Researchers often use 
random drug pairs as negative examples. These models rarely perform well 
outside the training set, because they merely learn to distinguish random drug 
pairs from ones that have synergistic interactions, instead of generalizing pat-
terns present in useful drug combinations [43]. Deep learning models in com-
puter vision are vulnerable to adversarial attacks in which small perturbations 
in inputs cause large variations in outputs [44] (such as misclassifying a stop 
sign image with a few pixel alterations as a 30 mph speed limit sign). In health-
care predictive analytics, algorithms for generating adversarial examples for 
biomedical text classification have been devised [45] to test the robustness of 
deep models. Adversarial example generation for healthcare applications is an 
active area of research.

 11. Interpret/Visualize the model: Visualize the network weights and generate 
activation maps as well as GradCAM maps for both correctly classified and 
incorrectly classified members of the test set to build an understanding of 
the generalization performance of the network model. GradCAM maps 
reveal whether relevant areas of the input contribute to the final decision 
made by the network. When irrelevant features (such as a date or patient 
name on a clinical image) are highlighted by GradCAM, the input data is 
reengineered to eliminate these noise features and the system retrained on 
the cleaned data.

16 tensorflow.org/tensorboard (accessed August 19, 2022)
17 automl.org (accessed August 19, 2022)
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 Ensembling Models

So far, several model families for supervised learning have been presented, ranging 
from simple models such as linear and logistic regression with basis function expan-
sion, dense and sparse kernel methods which project examples into appropriately 
chosen similarity spaces, and non-linear adaptive basis functions with universal 
approximation properties, exemplified by deep neural networks. For each family, a 
loss function was optimized to obtain the best model for the given labeled data set. 
In this section, model ensembles are introduced. Ensembles improve prediction by 
combining several models by weighted averaging for regression models or simple 
majority/weighted majority voting for classification models. Two conditions are 
necessary for an ensemble of classification models to perform better than a single 
model. First, the error rate (i.e., probability of misclassification) of each model in 
the ensemble must be less than 0.5. Second, the errors made by each member of the 
ensemble must be uncorrelated with the others. If the highest error rate of an indi-
vidual binary classifier in an ensemble of size L is ϵ, then the error rate of the entire 
ensemble with simple majority voting is
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For L = 21 and ϵ = 0.3, the error rate of the ensemble is 0.026! This is a direct con-
sequence of the strong assumption that the errors of the ensemble members are 
uncorrelated. This assumption, unfortunately, generally does not hold for human 
committees, leading to the general belief that committee decisions are inferior to an 
individual member’s decision. Thus, the key to making good ensembles is to devise 
ways to decorrelate the errors of individual members.

There are two major approaches to constructing ensembles: bagging and 
boosting.

• In bagging [46], L bootstrap samples are created from the given training data set 
D with m elements of the form (x,y). A bootstrap sample is constructed by uni-
formly sampling m times, with replacement, from D. A bootstrap sample has the 
same size as the original dataset D but may have duplicates. L classifiers are 
constructed with each of the bootstrap samples, and a simple majority rule is 
used for final classification. Bagging can be easily parallelized since the con-
struction of the bootstrap sample and the associated classifier can occur indepen-
dently. The random forest algorithm [47] builds bagged ensembles of decision 
trees and it has found wide acceptance in medicine because of its impressive 
performance in clinical decision-making tasks [48].

• In boosting [49], ensemble members are learned sequentially, with each mem-
ber focusing on the errors made by the previously learned members of the 
ensemble. Weights w(i) are associated with every example (x(i), y(i)) in a dataset 

D. Subramanian and T. A. Cohen



205

D containing m pairs. Initially all weights are 1, and a classification algorithm 
that minimizes weighted cross-entropy loss is learned in each round. Examples 
misclassified by a classifier are weighted higher for the next classifier in the 
sequence; examples correctly classified are down weighted for the next classi-
fier. The same data set D with the new weights is used to learn the next classi-
fier in the sequence, with the process terminating with the error rate of the 
learned classifier exceeds 0.5. Finally, the predictions are combined by a 
weighted voting scheme where each classifier’s voting weight reflects its over-
all predictive accuracy. There are many boosting algorithms in the literature 
[49–51]. Each of them is characterized by (1) specification of the initial exam-
ple weights, and how weights are up- and down-weighted after each round of 
classifier learning, (2) how the voting weight of each classifier in the ensemble 
is determined, (3) the specific loss function (e.g., weighted cross-entropy loss) 
for learning each classifier, and (4) a termination criterion (which determines 
how many members will be included in the boosted ensemble). The most popu-
lar boosting algorithm in use today is XGBoost [52]—it is readily scalable to 
large data sets and has achieved state-of-the-art results on many machine learn-
ing challenges. A recent example of its use is the prediction of adverse out-
comes in Type 2 diabetes patients with administrative health data [53]: on a 
training dataset of over a million patients, an XGBoost model on over 700 
features extracted from administrative data predicted 3-year risk of diabetes 
complications in with an AUROC of 0.77 on held out validation and test sets of 
over a quarter million patients.

 Conclusion

This chapter has introduced supervised machine learning algorithms for solving 
clinical decision-making problems with labeled data. The types of problems that are 
best suited for supervised learning and workflow sequence for model construction 
and validation have also been identified. Although machine learning systems have 
shown success in a range of retrospective studies, relatively few are deployed in 
practice. An interesting exception is Google’s neural network detector of diabetic 
retinopathy in retinal fundus photographs [2]. One of the many challenges faced in 
translation of research algorithms to the clinical context is that systems are often 
trained on data that are subject to extensive cleaning and curation, and thus quite 
unlike data in a real-world clinical setting.

Randomized controlled trials and prospective studies are now being pursued to 
ease the transition from the computational lab to patient bedside. More refined, 
context-specific measures of performance, beyond F1-scores and AUROCs, are 
being developed for evaluating ML systems. A recent study uses the percentage of 
time pediatric Type 1diabetic patients spend inside their target glucose range as a 
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way of evaluating a learning system that manages real-time insulin dosing [54]. 
Simple linear models such as logistic regression have the potential for ready deploy-
ment since the coefficients of the model can be easily converted into a score card 
system for risk stratification. A recent review of clinical prediction models shows 
the wide-spread use of logistic models in medicine [55].

The most visible recent successes of ML have been in image interpretation with 
deep neural networks, in the domains of radiology, pathology, gastroenterology and 
ophthalmology. In these problem areas, clinicians generally find it difficult to artic-
ulate decision-making criteria for classification. Thus, end-to-end learning systems 
such as deep neural nets that take pairs of the form (raw image, overall decision) as 
training inputs, and learn appropriate intermediate features by optimization of well- 
chosen loss functions, are a winning alternative that have even outperformed clini-
cians in some evaluations [56, 57].

An open problem is how to get doctors, as well as patients, to trust the deci-
sions made by ML systems. Clearly, interpretable and explainable models will be 
key (see Chap. 8), and stronger prospective validation guidelines developed 
jointly by ML scientists and by clinicians, and then endorsed by regulatory bod-
ies, will go a long way to bridging the trust gap. For example, the use of GradCAM 
visualizations of deep neural net image classification models have been important 
for convincing clinicians and regulators of the validity of a model’s decisions 
beyond performance scores such as AUROC and F1. Equally important are ethi-
cal considerations concerning data use and equity (see Chap. 18), particularly the 
need for standards of diversity and inclusion in the design of training data for 
machine learning systems. A 2021 study of underreporting and underrepresenta-
tion of diverse skin types in present-day skin cancer databases reveals gaps in 
training sets that limit the applicability of predictive models for people of 
color [58].

Many technical, legal, ethical and regulatory problems need to be addressed 
before predictive ML systems are routinely incorporated into clinical workflow (see 
Chaps. 17 and 18). There are open questions in accountability assignment: who is to 
be held responsible for a model’s mistakes? Do we turn to the ML engineers who 
build the model, the clinicians who use the model, the regulators who cleared the 
model for use, or others? As these issues are raised and solved in specific clinical 
contexts, supervised learning will be a major enabler of improved access to high- 
quality healthcare at a global scale.

Questions for Discussion

• How does one integrate prior knowledge about a clinical decision-making 
problem in the formulation of a supervised learning approach to it? Under 
what circumstances are we likely to obtain high performing models using 
data alone?

• One of the few useful theoretical results in supervised machine learning is the 
“no free lunch” theorem [59]—there is no single best model that performs opti-
mally for all problems. Do deep neural networks with their universal approxima-
tion properties negate this theorem?
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• Modern machine learning algorithms can build high-performing models by 
picking up on incidental correlations in training data. An apocryphal story 
from the early days of machine learning is about a neural network learning 
algorithm that distinguished images of enemy tanks from friendly tanks by 
picking up the blue skies at the top edge of the friendly tank images. Flushing 
out confounding variables in a high-dimensional dataset is still an art. Can you 
provide examples of confounders in clinical decision-making tasks? How can 
one systematically eliminate such features from consideration during model 
construction?

• The ImageNet dataset has 12 million examples of over a thousand object catego-
ries, and the best performing neural nets trained on ImageNet (an ensemble of 
Resnet50 networks) have error rates of under 3% on set-aside test sets. Why do 
deep neural networks require millions of examples to learn robust models of 
objects, when humans can generalize from very few examples? Why is it that 
humans generalize so well with very few examples? Hint: a new area called few- 
shot learning concerns an attempt to reduce the sample complexity of deep neu-
ral networks.

• What, in your opinion, are the primary barriers to the adoption of machine learn-
ing systems in a clinical context? Are the barriers lower in some areas of medi-
cine than in others? If so, why?

• Obtaining high quality labeled data is a bottleneck in the design of supervised 
machine learning systems for clinical decision-making. The quality of the 
learned model is determined completely by the quality of the associated labels/
decisions associated with each case. What approaches can be used to assess con-
sistency and quality of data labels before one embarks on model construction?

• What are potential uses of unsupervised learning (learning from unlabeled data) 
in the clinical context?

Further Reading

Goodfellow I, Bengio G, Courville A. Deep learning. MIT Press; 2016.

• The definitive text on deep learning available online at deeplearningbook.org. 
It has three major parts. Part 1 is a concise yet comprehensive of review of all 
the mathematics needed to understand machine learning algorithms and a 
summary of ML algorithms before the deep learning era. Part 2 is a deep dive 
into modern deep learning networks starting from feedforward multilayer net-
works through convolutional networks and recurrent networks. This part 
combines a clear exposition of the theoretical foundations of deep networks 
with practical tips on network design and training. Part 3 covers advanced 
topics including representation learning, autoencoders, and deep generative 
models, including generative adversarial networks.

Murphy K. Probabilistic machine learning: an introduction. MIT Press; 2022.

• A new two volume, comprehensive, reference textbook from an authority in 
the field, available online at probml.ai. The first book covers the foundational 
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mathematics, linear models for regression and classification, deep neural net-
works, non-parametric models including ensemble models and unsupervised 
learning. The second book, to be released in 2023, will cover advanced topics 
in prediction, generative models, causality, and reinforcement learning.

Bishop CM. Pattern recognition and machine learning. Springer; 2021 (old edition 
2006 available online).

• An extremely well-written textbook on classical machine learning algorithms 
including feedforward neural networks. The latest edition covers graphical 
models and approximate inference.

James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning 
with Applications in R. 2nd ed. Springer; 2017.

• A basic textbook on machine learning which goes deep into linear and logistic 
regression, tree- based models, basis function expansion, ensemble techniques 
and clustering methods. It has excellent practical end-of-chapter exercises. It 
is available as a free download online at hastie.su.domains/ElemStatLearn.

Nielsen M. Neural networks and deep learning, online book at neuralnetworksand-
deeplearning.com.

• This book is an excellent introduction to neural networks. It has the clearest 
explanation of backpropagation and through a hands-on approach elucidates 
why neural networks are universal function approximators. This book should 
be required reading for all machine learning enthusiasts.
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Chapter 7
Natural Language Processing

Hua Xu and Kirk Roberts

After reading this chapter, you should know the answers to these questions:
• What is natural language processing and what are the types of linguistic informa-

tion it attempts to capture?
• What are the common biomedical text sources and common biomedical 

NLP tasks?
• What are some existing biomedical NLP tools and methods?
• What are the trends and challenges in biomedical NLP?

 Introduction to NLP and Basic Linguistics Information

Natural Language Processing (NLP)  is the use of automatic methods to under-
stand and generate natural (i.e., human) language (e.g., English, Chinese, Tagalog, 
Wolof) as distinct from formal languages (such programming languages like 
Python, Java, and Prolog). It encompasses tasks that fall under natural language 
understanding (NLU)—understanding language written/spoken by humans—
and natural language generation (NLG)—creating human-like language. Many 
NLP tasks incorporate elements of both, such as machine translation and text 
summarization.

The term NLP is often used synonymously with the terms computational lin-
guistics and text mining, though these terms emphasize slightly different aspects of 
NLP. Computational linguistics is concerned with the modeling of language using 
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computational techniques, including determining which computational data struc-
tures and models are best-suited to represent and learn certain linguistic phenomena 
(e.g., syntax, discourse). Meanwhile, text mining generally emphasizes the applica-
tion of NLP techniques to extract information from natural language sources (i.e., 
data mining applied to textual data).

In addition to drawing inspiration and techniques from linguistics, NLP is gener-
ally regarded as a sub-field of artificial intelligence (AI), as understanding human 
language requires mimicking many aspects of human intelligence. NLP also heavily 
utilizes many methods from another AI sub-field, machine learning (ML). Notably, 
while many early NLP methods were rule-based with a heavy emphasis on linguis-
tic theory, most current NLP research focuses on data-driven techniques leveraging 
ML models. The chapter touches on these topics  further below, but in order to 
understand NLP it is still important, if under-appreciated, to understand the basics 
of linguistic terminology and structure.

The process of understanding human language can be viewed as being broken 
down into a series of layers, or a stack, starting from the basic input representation 
to a full computational understanding. This stack is visualized in Fig. 7.1 and each 
of the layers are described briefly below. Importantly, many NLP tasks focus on 

Fig. 7.1 Layers of linguistic information
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directly learning the representations at each layer (e.g., part-of-speech tagging, co- 
reference resolution), while other NLP tasks are more application-focused and are 
not as focused on a particular layer or may involve several layers (e.g., information 
extraction, question answering). However, different NLP approaches require differ-
ent levels of linguistic reasoning, and those that require information from higher up 
the linguistic stack tend to be more challenging. These layers should not, however, 
be seen as silos or purely uni-directional, as there are interactions and dependencies 
that make language complex (and wonderful). The layers do, however, help to orga-
nize language and NLP tasks.

 1. Phonology: This layer focuses on sounds, and is thus relevant for natural lan-
guage originating from, or destined for, speech (as opposed to text, which is the 
focus of most of this chapter). The most notable linguistic task for phonology is 
automatic speech recognition (ASR), also known as speech-to-text, in which 
speech sounds (as wave form data) are converted to textual strings (on which 
most NLP tasks work). See Chap. 9 for more about ASR system use in dialog 
systems. Beyond speech and text, another potential language input is image- 
based representations of language, in which an equivalent task of optical char-
acter recognition (OCR) is performed. In a biomedical context, phonology is 
commonly used for clinical environments where typing may be difficult, such 
as with clinical note dictation or the use of voice commands. Additionally, the 
widespread availability of smart speaker devices (e.g., Amazon Alexa, Google 
Home) has led to a proliferation of voice-based agents (a.k.a., Chatbots) that 
can serve as tools to educate and aid patients, clinicians, and biomedical 
researchers.

 2. Morphology: This layer focuses on how words are composed from atomic units 
called morphemes. For example, the term hypertension combines three mor-
phemes: hyper- (meaning high), -tens- (meaning pressure), and -sion (meaning a 
state of being). Thus the entire term means something along the lines of “being 
over-pressured”–how this comes to stand for the medical notion of high blood 
pressure is a separate linguistic process altogether. A common NLP task involv-
ing morphology is stemming, whose goal is to determine the root or stem of a 
word, separate from the affixes (prefixes and suffixes). This can be useful to 
identify when the surface form of two words (e.g., clinician and clinical) derive 
from the same basic meaning, which may be useful for information retrieval, 
machine translation, or other applications. No major biomedical NLP applica-
tion focuses primarily on morphology, but many applications can leverage mor-
phological understanding for improved performance.

 3. Syntax: This layer focuses on the grammatical structure of language, specifi-
cally which words are interacting with which other words in a sentence to 
hierarchically understand the meaning of what is an otherwise linear sequence 
of words. It is syntax that lets us know that, in the case of “the tumor at the 
base of the right lung has grown”, it is the tumor that is growing, not the lung. 
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The major linguistic tasks for syntax include part-of-speech tagging (labeling 
each word in a sentence as a noun, verb, adjective, etc.), treebank parsing 
(identifying the hierarchical phrase structures, such as noun phrases and prep-
ositional phrases, up to the level of a sentence, according to the Penn Treebank 
structure [1]) and dependency parsing (a separate tree-like syntax structure 
that encodes word- word syntax relations and is more commonly used today 
due to being both simpler and closer in structure to semantics). Few biomedi-
cal NLP tasks focus primarily on syntax, though the compositional nature of 
syntax is very important in semantic tasks like concept recognition and rela-
tion extraction.

 4. Semantics: This layer focuses on piecing together the meaning of words, 
phrases, and sentences based on input from the prior layers. Sometimes the spe-
cific meaning of words is separated out, distinguishing lexical semantics from 
sentence-level semantics. Regardless, this layer is responsible for the vast major-
ity of NLP tasks. The linguistically-motivated tasks include word sense disam-
biguation (WSD; distinguishing the meaning of a word from a set of potential 
meanings, e.g. cold can be a temperature or a sickness), named entity recogni-
tion (NER; identifying proper names and associating them with their semantic 
type), and relation extraction (RE; identifying specific semantic relations 
between two or more entities). Likewise, most biomedical NLP applications are 
primarily focused on semantics, including concept recognition (similar to NER, 
but for medical concepts like diseases or treatments) and biomedically-focused 
information extraction (IE) tasks, which are a class of tasks focusing on extract-
ing a particular type of structured data from text (e.g., tumor stage, treatment 
outcome, or a gene-protein interaction).

 5. Pragmatics: This layer focuses on how context influences meaning. This can 
include both document-level context (sometimes separated out into a separate 
discourse layer) and external context (e.g., real-world knowledge that the reader 
is expected to have but an algorithm is not necessarily aware of). Discourse-type 
pragmatics includes linguistic tasks such as co-reference resolution (recogniz-
ing referring expressions such as pronouns) and temporal relations (placing vari-
ous events within the document on some form of timeline), as these are generally 
relevant at the document level and require sophisticated reasoning to understand. 
Pragmatics can extend to conversations as well, including tasks such as recog-
nizing speech acts and conversation analysis. Because pragmatics is the top layer 
of NLU, it has some of the most linguistically interesting tasks in NLP, but also 
the most challenging. For biomedical NLP applications, the most popular tasks 
include a clinical version of temporal relations in which a timeline of a patient's 
medical events is reconstructed from text, and  development of  health-related 
chatbots that need to model conversation behavior accurately in order to inform 
or intervene (see Chap. 9).

 6. Generation: Separate from NLU, this NLG layer focuses on generating realis-
tic language given a computational representation. This is obviously highly 
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dependent upon what NLU algorithms are used, if applicable, as more powerful 
NLU representations should make realistic language generation more success-
ful. The primary linguistic task for NLG is language modeling, which models 
the likelihood of a given sequence of words (and thus, whether it is useful text 
to generate) and is used as a component of many other NLP (including non-
generation) approaches. Common application tasks include Summarization 
(shortening a long document, or multiple documents, into a concise summary) 
and Machine Translation (translating from a source language to a target lan-
guage). For biomedical NLP applications, there has been some work on sum-
marization, but also a major focus is the generation of synthetic clinical records.

 Common Biomedical NLP Tasks and Methods

 Overview of Biomedical NLP Tasks

As shown in section “Introduction to NLP and Basic Linguistics Information”, there 
are a number of common NLP tasks that have been investigated extensively in the 
general domain. In the biomedical domain, the uses of NLP primarily focus on sup-
porting biomedical research activities and facilitating operational applications in 
healthcare. Common biomedical NLP applications include:

 1. Information retrieval (IR)—to find relevant documents from a text collection 
based on user specified queries. A prominent example is a search to find relevant 
articles in bibliographic databases. For example, PubMed [2] provides an inter-
active interface to support sophisticated Boolean queries to search MEDLINE, 
the largest biomedical bibliographic database.

 2. Text classification (TC)—to classify a textual document to one or more pre-
defined labels. For example, systematic review is an important method for gen-
erating reliable evidence from published biomedical literature and it requires 
users screening articles to decide whether to include it into the review or not (i.e., 
labels of 1 or 0). It is a binary TC task and diverse methods have been developed 
for this task, showing a potential for reduction of manual review effort [3].

 3. Information extraction (IE)—to extract specific information from a biomedical 
document. Examples include extraction of disease entities from clinical notes, or 
gene mentions from biomedical articles. In addition to recognizing important 
biomedical entities (e.g., diseases, drugs, and genes), IE tasks also include iden-
tifying relations between entities (e.g., a drug is used to treat a disease). Moreover, 
to further maximize the use of extracted information, biomedical IE systems 
often include functional modules that can map extracted entities to concepts in 
standard vocabularies (e.g., SNOMED-CT (https://www.snomed.org) for dis-
eases, and Gene Ontology [4] for genes).
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In addition, advanced applications such as question answering and conversational 
agents are also emerging and they often build on basic applications of IR, TC, and 
IE, with additional components. For example, QA systems have been developed to 
address finding answers in the biomedical literature [5] and electronic health records 
[6]. There are also QA systems targeted toward consumers (non-experts), including 
the use of such a system as an Alexa skill [7]. Note, however, the questions asked by 
health professionals and consumers are very different [8], both in structure and 
information need. As such, QA is generally seen as an end application of NLP, 
rather than a building block for other systems, since a clear idea of the intended user 
is needed to properly design the QA system.

Several studies have reviewed recent work on clinical NLP and have provided 
excellent summaries focusing on different NLP tasks. In 2008, Meystre et al. [9] 
conducted a careful review of 174 publications on information extraction from 
textual documents in electronic health records (EHRs) and identified clusters of 
different IE applications such as de-identification of clinical text, code extraction, 
IE for surveillance, IE for clinical decision support systems, and IE for supporting 
clinical research etc. More recently, Wang et al. [10] conducted another literature 
review on clinical IE articles published from January 2009 to September 2016. 
They analyzed data sources, tools, methods, as well as applications of clinical IE 
and provided informative details about recent progress in this field. In another 
recent review on deep learning-based clinical NLP, Wu et al. [11] found that TC 
and IE tasks are dominant (89.2%) among all clinical NLP articles that used deep 
learning technologies.

In the following section, more details about common clinical IE tasks are dis-
cussed, including examples of specific tasks and recent advances in method 
development.

 Biomedical IE Tasks and Methods

A typical biomedical IE system usually should meet three requirements: (1) it can 
extract specific types of biomedical entities of interest; (2) it should also recognize 
required context features about extracted main entities (i.e., modifiers of main enti-
ties such as negation status, certainty, temporal information); and (3) it is able to 
map extracted entities to concepts in standard biomedical ontologies. The first task 
is known as named entity recognition (NER), which is to identify the boundary and 
determine the type of an entity (e.g., a mention of a disease) in the text. The second 
task is often treated as a relation extraction (RE) task, in which classifiers are built 
to determine the relations between main entities and modifier entities. The last task 
is known as entity linking in the open domain and often called concept normaliza-
tion (CN) in the medical domain. It is important to link recognized entities to stan-
dard concepts, in order to integrate NLP systems with downstream clinical 
information systems.
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 NER Examples and Methods

Clinical NER tasks often focus on important clinical entities such as diseases, drugs, 
procedures, and lab tests. A typical example is the 2010 i2b2 [12] (informatics for 
integrating biology and the bedside) shared task on clinical NER [4], which is to 
recognize entities of medical problems, treatments (including drugs and proce-
dures), and lab tests in discharge summaries. Figure 7.2 shows an example of the 
NER task to recognize entities of medical problems (i.e., the NER system should 
recognize “her recent GI bleeding” as a medical problem entity).

In early clinical NLP systems, dictionary-based lookup methods are often 
employed for clinical NER. For example, MedLEE (medical language extraction 
and encoding system), one of the earliest clinical NLP systems [13], uses collec-
tions of semantic lexicons to recognize clinical entities. Similar approaches are still 
being used for other IE tasks, especially when rich medical resources are available 
for the entities of interest, e.g., the MedEx [14] system uses terms derived from the 
RxNorm [15] resource to recognize drug entities in clinical documents.

Since 2010, more annotated clinical corpora have become available for clinical 
NER tasks (see section “Current Biomedical NLP Tools and Corpora”), which leads 
to active development of machine learning-based NER approaches for clinical enti-
ties. In a machine learning-based NER approach, each token is usually labeled with 
one of the [B, I, O] tags, where B stands for the beginning of an entity, I for inside 
an entity, and O for outside an entity (see Fig. 7.2). By using the BIO representation, 
the NER task is converted into a sequence labeling task—to assign a B/I/O tag to 
each token in a sentence. A number of machine learning algorithms that are suitable 
for the sequence labeling task have been implemented in clinical NER tasks and 
have demonstrated good performance, including semi-Markov models [16], condi-
tional random fields (CRF) [17], and structural support vector machines (SSVM) 
[18]. To optimize the performance of machine learning-based NER, most of the 
effort has been spent on comparing different machine learning algorithms and 
experimenting with diverse feature engineering approaches.

More recently, deep learning algorithms have been extensively investigated 
for clinical NER tasks as well. An early study compared both the convolutional 
neural network (CNN) and the recurrent neural network (RNN) models with the 
CRF model on the 2010 i2b2 shared task. The RNN model achieved the best 

Fig. 7.2 An example sentence with an “medical problem” entity, as well as its representation in 
the BIO format. B indicates the beginning of an entity of interest, I indicate a token is “inside” this 
entity, and O indicates that it is “outside” the bounds of the entity
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performance [19]. Then the bidirectional Long short-term memory and condi-
tional random fields (Bi-LSTM-CRF) algorithm was applied to biomedical 
NER tasks with state-of-the- art performance on both a clinical corpus (the 2020 
i2b2 shared task [20]) and a biomedical literature corpus (the NCBI Disease 
Corpus [21]). In 2018, new neural network-based language representation mod-
els such as Bidirectional Encoder Representations from Transformer (BERT) 
[22] further advanced performance on nearly all NLP tasks and they have been 
quickly applied to clinical NER tasks as well. Si et al. [23] compared different 
contextual representations and showed that the BERT model fine-tuned using 
clinical corpora achieved new state-of-the-art performance on the 2010 i2b2 
shared task.

 RE Examples and Methods

To understand fully why a clinical entity is mentioned in a document, it is important 
to extract its contextual information, which includes its neighborhood entities and 
their relations to the target entity. Figure 7.3 shows a few examples of such relations 
between entities, including (a) a negation modifier of a disease entity; (b) prescrip-
tion information associated with a drug; and (c) a temporal relation between a dis-
ease and a temporal expression.

Many studies have investigated methods for RE in clinical documents, including 
both rule-based approaches and machine learning/deep learning-based methods. To 

a

b

c

Fig. 7.3 Examples of relations extraction tasks: (a) negation modifiers of disease entities; (b) 
signature information of drugs; and (c) temporal relations between clinical entities and temporal 
expressions

H. Xu and K. Roberts



221

illustrate existing methods for different types of clinical entities, the following RE 
tasks are selected and described with more details.

Negation and Other Contextual Information of Diseases As recognized clinical 
entities could be mentioned in a negative manner (e.g., “patient has no history of 
diabetes”), it is critical to recognize negations associated with medical problems. In 
addition, other contextual information such as “subject” (i.e., is an identified medi-
cal problem for patients vs. others, e.g., patients’ parents) is also important and 
should be recognized in order to extract the true disease status of patients. In 2001, 
a simple regular expression based algorithm called NegEx was developed by 
Chapman et al., and it showed good performance in identifying negation of diseases 
[24], and later similar approaches were applied to identifying other context informa-
tion as well [25]. To further improve the performance of recognizing negation in 
clinical text, researchers have further developed additional approaches, including 
adding dependency relations into NegEx [26] and more recent application of the 
BERT model to negation detection [27].

Drug Signature Information Extraction As shown in Fig. 7.3b, drug names in 
clinical documents often occur with its signature information (e.g., dose, route, 
frequency, duration etc.) and other related information (e.g., reason, adverse events, 
etc.), which should be extracted together with drug mentions. Two shared tasks 
have been organized to extract drug related information from clinical documents: 
(1) the 2009 i2b2 shared task [28] and (2) the 2018 n2c2 (National NLP Clinical 
Challenges) challenge on drug-ADE (adverse drug events) extraction [29]. In the 
2009 i2b2 challenge, most of the participating systems (i.e., seven out of the top 10 
best performing ones) used rule-based [30] or hybrid approaches [31], which lever-
age existing medical knowledge bases to derive lexicons of drug names and specify 
rules for drug-signature patterns. In the 2018 n2c2 challenges, machine learning 
and deep learning based approaches were widely implemented in the top ranked 
systems.

Temporal Relation Extraction Extracting temporal information of clinical 
events is critical for understanding disease trajectories of patients and it has been 
investigated extensively, even in early clinical NLP work [32]. In 2012, i2b2 
organized a comprehensive shared task to extract temporal relations from clinical 
text, which requires extracting temporal expressions and temporal relations 
(before, overlap, and after) between clinical events and temporal expressions 
[33]. For the temporal relation extraction task, diverse machine learning-based 
classification algorithms have been used and the top-ranked system applied the 
SVM to the task, with novel strategies to define potential candidate pairs between 
events/times [18]. Nevertheless, temporal relation extraction from clinical text 
remains challenging and active research is ongoing to further improve its 
performance.
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 CN Examples and Methods

CN aims at mapping recognized entities to codes in standard vocabularies, which is 
important for downstream computerized applications that rely on standard vocabu-
laries in medicine. Many clinical NLP systems map entities to Concept Unique IDs 
(CUIs) in the UMLS (unified medical language system) [34], which integrates over 
one hundred different medical vocabularies. Figure 7.4 shows an example of finding 
the right UMLS concept ID for the entity “knee amputation right below”, in which 
several candidates are available. It is obvious that simply relying on string similarity 
between the entity and candidate terms is not sufficient—the variation of different 
surface forms is a big challenge in the CN task. In addition, ambiguity is another big 
issue, e.g., an abbreviated entity “pt” could have different meanings at different 
contexts, such as “patient”, “physical therapy”, “prothrombin time” etc.

In the computer science community, CN is often called entity linking, which 
refers to linking an entity to an entry in a dictionary or a knowledge base. A typical 
entity linking framework [35] consists of three steps: (1) generating candidate con-
cepts for an entity (e.g., relying on string similarity algorithms such as BM25) [36]; 
(2) ranking candidate concepts using diverse types of information, to decide on the 
most relevant candidate concept; (3) predicting an  unlinkable entity, which will 
further decide whether the top ranked candidate is the right one or the entity has no 
linkable entry in the dictionary (i.e., a new entity not covered by the dictionary). 
Among them, candidate concept ranking is the key step that plays an important role 
in optimizing entity ranking performance. String similarity-based methods (e.g., 
retrieval-based models [37]), learning-to-rank methods (e.g., RankSVM) [38], as 
well as many other machine learning and neural network-based ranking approaches 
[39] have been proposed.

In the medical domain, several widely used clinical NLP systems (e.g., MetaMap, 
cTAKES, and CLAMP) map clinical entities to concepts in the UMLS. Moreover, 
specific methods have been investigated to address the needs of mapping clinical 
entities to specified medical terminologies. For example, Perotte et  al. [40] pro-
posed a hierarchy-based classifier to assign ICD-9 codes from discharge summaries 
and showed better performance than that from the baseline flat classifier. More 
recently, Kate [41] proposed a new method to map entities to SNOMED-CT codes, 
with the capability to fully represent new concepts in text by post-coordinating 
existing SNOMED concepts. In 2013, a shared challenge for mapping disease men-
tions in clinical text to UMLS CUIs was organized by the ShARe/CLEF eHealth 
Evaluation Lab, and diverse CN methods were proposed by over 20 different teams 
[42]. Another more recent challenge on clinical CN is the 2019 National Natural 

Fig. 7.4 An example of 
concept normalization—
map an entity to concepts 
in the UMLS
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language processing (NLP) Clinical Challenges (n2c2)/Open Health NLP (OHNLP) 
shared task track 3, which requires mapping medical problems, treatments and tests 
to concepts in SNOMED-CT and RxNorm [43]. Different approaches such as cas-
cading dictionary lookup, edit distance, retrieval-based ranking, as well as deep 
learning algorithms have been used in the challenge [43]. Overall, deep learning- 
based ranking methods have shown improved performance [44, 45].

 Current Biomedical NLP Tools and Corpora

 Biomedical NLP Tools

Over the past two decades, many clinical NLP systems have been developed and 
used to support diverse applications. Based on their purposes, we often divide them 
into two categories: (1) general purpose clinical NLP systems, which can extract 
broad types of clinical information such as diseases, drugs, etc, and can be used to 
support diverse applications; (2) specific purpose NLP systems, which are built to 
extract specific types of clinical information that are needed for specified applica-
tions, e.g., a system to extract smoking status [46]. General purpose clinical NLP 
systems often require more resources and take more time to build. On the contrary, 
specific purpose clinical NLP systems sometimes can be developed quickly to 
achieve good performance, depending on the difficulty of the task. In this section, 
we will focus our discussion on a few widely used general purpose clinical NLP 
systems.

MedLEE is one of the earliest general purpose clinical NLP systems, developed 
by Dr. Carol Friedman and her team at Columbia University in 1994, starting with 
radiology reports and quickly extending to other types of clinical reports [47]. It is 
primarily a rule-based system that follows the sublanguage theory to parse clinical 
text using a set of well-defined semantic grammars. MedLEE recognizes broad 
types of clinical entities and their relations, and provides codes from standard 
vocabularies (e.g., CUIs from UMLS), which leads to many applications in diverse 
care settings [48].

Following MedLEE, a number of systems have been developed to extract broad 
types of information from clinical text. A few of them are actively used by large 
communities, including:

MetaMap MetaMap is a biomedical NLP system developed at the National 
Library of Medicine of the U.S. beginning in the 1990’s, with the original goal of 
mapping biomedical literature text to concepts in the UMLS Metathesaurus [49]. It 
has been applied to process clinical documents as well, with many use cases [50]. 
To improve its efficiency, a Java implementation of MetaMap, called MetaMap Lite 
[51], was released to the community in 2017. MetaMap can be accessed at https://
metamap.nlm.nih.gov/.
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cTAKES Clinical Text Analysis and Knowledge Extraction System (cTAKES) is a 
clinical NLP tool developed at Mayo Clinic in 2010 [52]. It follows the Apache 
UIMA framework [53] to organize components within an NLP pipeline and it 
quickly becomes an Apache open source project (accessible at https://ctakes.apache.
org/). cTAKES leverages multiple open domain NLP packages (e.g., openNLP) and 
customizes those models using clinical corpora. It has been widely used for clinical 
concept extraction as an open source tool.

CLAMP Clinical language annotation, modeling, and processing (CLAMP) is a 
comprehensive clinical NLP toolkit developed by a research team at University of 
Texas Health Science Center in 2018 [54] and now available as a commercial prod-
uct that is freely available for academic purposes. It provides a collection of machine 
learning-based and hybrid pipelines to extract common or specific types of clinical 
entities from text and map them to concepts in the UMLS. In addition, it includes 
user-friendly interfaces to allow users to annotate text, train machine learning mod-
els, and specify rules for building customized IE pipelines. As of July of 2021, 
CLAMP has been used by researchers and professionals from over 650 different 
healthcare organizations. It is available at https://clamp.uth.edu.

 Biomedical Text Resources

 Types of Biomedical Text

In the biomedical domain, diverse types of narrative documents are available and 
valuable for providing insights to research and business in life science and health-
care. Some different types of available textual resources as follows:

Biomedical Literature MEDLINE (Medical Literature Analysis and Retrieval 
System Online) is perhaps the most comprehensive bibliographic database (over 32 
million citations) available  in the biomedical domain. It is accessible through 
PubMed (https://pubmed.ncbi.nlm.nih.gov/). Through the Entrez Programming 
Utilities (E-utilities), users can obtain subsets of abstracts of biomedical articles 
from PubMed, for NLP method development and applications. Moreover, PubMed 
Central provides a downloadable collection of over 2.75 million full-text articles for 
text mining purposes.

Clinical Documents in EHRs Due to privacy and security issues, clinical reports 
are often not freely available for the public. However, several efforts have made 
some de-identified  clinical corpora available for research purposes. A prominent 
example is the MIMIC (medical information mart from intensive care) database, 
which contains millions of de-identified clinical reports [55]. MTSamples (https://
www.mtsamples.com/) is another resource for clinical documents, which provides 
over four thousand synthetic transcribed medical reports. A number of annotated 
clinical corpora are also available from past NLP challenges (see Table 7.1).
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Social Media Social media platforms such as Twitter have also accumulated huge 
amounts of textual data and studies have shown that they are useful in providing 
insights to public health problems [56, 57]. Some social media platforms provide 
APIs for querying and collecting their data for method development and data analy-
sis (e.g., Twitter developer APIs: https://developer.twitter.com/en/products/twitter- 
api), making it easy for NLP researchers.

Clinical Trial Documents Clinicaltrials.gov is probably the most comprehensive 
clinical trial database that is publicly available for researchers. As of July 2021, it 
contains information for 382,313 publicly or privately funded clinical trials. Detailed 
clinical trial protocols can be queried and downloaded through its web interface and 
APIs, making it a great resource for developing NLP and text mining technologies 
for understanding clinical trials.

FDA Drug Labels Another important textual source for drug development is drug 
labels approved by the United States  Food and Drug Administration (FDA)—a 
number of NLP studies have investigated extracting and normalizing drug informa-
tion in labels [58]. One useful resource for this type of work is the DailyMed data-
base developed by the  NLM [59]. It provides a downloadable copy of label 
information for all FDA approved drugs.

 Annotated Corpora from Past Challenges

One particular resource for biomedical NLP is annotated corpora from previous 
shared tasks, which provide benchmark datasets for developing and evaluating NLP 
methods. Table 7.1 summarizes some available corpora for NER, RE, and NC tasks, 
from biomedical NLP challenges since 2010.

 Applications, Challenges and Future Directions

 Applications of NLP

As EHRs become an enabling resource for observational studies, many clinical 
NLP systems have been used to automatically extract patient information from clin-
ical documents to support diverse research such as comparative effectiveness stud-
ies. One example is to use NLP to identify patients with specific phenotypes [60]. 
Studies have shown that combining information extracted from clinical documents 
using NLP with structured data in EHRs can greatly improve the performance of 
phenotyping algorithms [61]. Detailed information extracted by NLP, e.g., drug 
exposure, has been applied to support diverse studies such as pharmacovigilance 
[62], pharmacogenomics [63], and drug repurposing [64, 65] research.
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Another big application area of clinical NLP systems is to support practice and 
operations in healthcare. In a review article by Demner-Fushman et al. [66], the uses 
of NLP in clinical decision support systems are described with details, showing how 
NLP can automatically extract required information at the point and time needed 
during care delivery. Moreover, NLP has also been used to optimize care workflow 
and improve care quality, e.g., analyzing emergency department notes using NLP 
detects inappropriate usage of the emergency room [67].

Many applications of NLP have also been demonstrated that use other biomedi-
cal textual sources. Researchers have mined large biomedical article collections to 
generate new hypotheses for scientific discoveries, an approach known as literature- 
based discovery (LBD) following Don Swanson’s seminal work beginning in the 
1980s with manual identification of implicit links between concepts expressed in 
journal articles [68]. NLP methods have been used in LBD for both NER and rela-
tion extraction [69]. As a recent example, Pyysalo et al. have developed LION LBD 
[70], a literature-based discovery system by leveraging the PubTator NLP system 
[71], to support new discoveries by biomedical researchers. Similar approaches 
have also been used for other applications, e.g., detect drug repurposing signals 
from the literature using SemRep [72], a linguistically-motivated biomedical NLP 
tool that has been widely used across a range of research applications [73, 74]. 
Examples of NLP applications for other biomedical text data include (1) mining 
social media for adverse drug reaction [75, 76]; (2) processing clinical trial proto-
cols to identify computable eligibility criteria [77, 78]; and (3) standardizing infor-
mation in FDA drug labels [79].

 Challenges and Future Directions

Despite the enormous potential of NLP to extract meaning and structure from the 
vast amount of unstructured text data in biomedicine, there are numerous challenges 
that inhibit its growth as a field. Because NLP is so dependent upon ML, these chal-
lenges could apply to any ML-based models in biomedicine. However, the chal-
lenges we discuss below are particularly acute in NLP due to its reliance on 
expert-driven annotation (that is, the creation of data on which the ML models are 
trained and tested) and the variety of human language.

The first major challenge is the difficulty and cost related to annotating sufficient 
data for training ML-based NLP models. Because the goals and domain of many 
NLP systems in biomedicine are so specialized, it is quite common that subject- 
matter experts are needed to perform the manual annotation work themselves, or 
actively oversee the annotation done by others. For instance, it often takes radiolo-
gists to fully understand the language in radiology reports, or proteomics experts to 
fully understand the language in papers about protein-protein interactions. Engaging 
with these experts is time-consuming, costly, and difficult to scale, so significant 
efforts have gone into methods that reduce the amount of annotation needed on a 
given project. One such method is Active Learning, where the annotator interacts 
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with the ML model in such a way that only the most “useful” examples for the 
model need to be annotated [80]. Another method is Transfer Learning, where a 
ML model is built on other data for a related “source” task, then some part of that 
model is “transferred” to reduce the amount of data needed on the intended “target” 
task [81]. These methods, and others, can reduce the burden of annotation signifi-
cantly, but the difficulty of creating manual annotations is still seen as the greatest 
hindrance to creating a new NLP system.

The second major challenge applies most particularly to clinical data, but is 
broadly true of any data that contains sensitive information (e.g., like a patient’s 
medical history) and thus needs to remain private. This challenge is the difficulty of 
data sharing. The aforementioned issue related to annotation cost could be greatly 
alleviated if annotations developed in one place could be widely shared according 
to FAIR (findable, accessible, interoperable, reusable) principles. But data such as 
clinical notes contain far too much private information to be easily shareable. Laws 
such as the Health Insurance Portability and Accountability Act (HIPAA) restrict 
sharing of patient data. NLP methods such as De-identification can remove many 
of the identifiers in clinical notes that could link a patient back to the shared record 
[82], but like all NLP systems these methods make errors that, to date, make them 
insufficient to allow widespread sharing of clinical texts. Another partial solution is 
Federated Learning, wherein the original data never leaves the originating institu-
tion, only the ML model is transferred [83]. At this point, it seems clear that ulti-
mately some form of federated learning will be needed to train ML-based NLP 
models from many institutional sources, but there are many open questions about 
how best to perform federated learning [84]. Additionally, as models get more pow-
erful and more complex, it seems possible that these models are also capable of 
encoding and retrieving private patient information [84]. This would mean that fed-
erated learning alone could not ensure privacy, and either additional safeguards 
would be necessary or only simpler, inferior models could be used that don't endan-
ger privacy.

The third major challenge, which is fundamental to nearly all of science, is gen-
eralizability. Specifically, in this case, how NLP models can generalize to slightly 
different types of text. While on many occasions the NLP tasks will be different 
from data type to data type so task generalization is not critical (e.g., radiology 
reports and nursing notes contain very different information, as do scientific articles 
about genomics and psychology), there are still many NLP tasks that in theory 
should generalize between domains (e.g., extracting patient history from clinical 
notes, or reasons for citation in scientific articles). However, the language used in 
different domains can be incredibly different, such that they have even been 
described as having separate sub-languages [47, 85]. The challenge gets even more 
irksome when one considers that for EHR notes, the same note type (e.g., cardiol-
ogy reports) may have entirely differ structures and linguistic patterns from one 
institution to another. This means that an NLP model trained on Hospital A’s data 
could have a significant performance drop when run on the same note types for 
Hospital B’s data. At its most extreme, this may mean that only academic medical 
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centers with NLP researchers and budgets for data annotation are capable of devel-
oping NLP. This could result in widening the already-sizable disparities in the ana-
lytical capabilities of health systems. What is needed, at a fundamental level, are 
NLP models that are able to overcome small language variations as well as the 
availability of data from multiple institutions to train and test such models for their 
generalizable performance.

 Conclusion

With the accumulation of large textual data in the biomedical domain, NLP has 
become an enabling technology for unlocking valuable information from biomedi-
cal text to support diverse downstream computational applications. This chapter 
introduces basic NLP tasks, as well as current methods, tools, and resources that are 
important for biomedical NLP research and development. With new advances in 
data, algorithms, and computational infrastructures, NLP will achieve better perfor-
mance and support broader applications in biomedicine.

Questions for Discussion

• Given all the complex NLP tasks described in this chapter, it is worth considering 
why we use natural language when given the choice. For instance, a biomedical 
paper could be written in an entirely formal language, or an EHR could only 
contain structured information about a patient. What are the relative advantages 
and disadvantages of natural language with respect to structured data? What are 
some cases where each would be preferable?

• When it comes to EHR data in the United States, HIPAA creates several barriers 
to sharing EHR data for research purposes (similar laws exist in many other 
countries), particularly natural language notes. Why do you think structured data 
is so much easier to share in a HIPAA-compliant manner?

• Please download one of the general clinical NLP systems (e.g., MetaMap, 
cTAKES, CLAMP), review its available components, and specify which type of 
linguistic information is addressed by each component.

• Assuming that you want to build a knowledge graph of drugs, genes, and their 
relations from biomedical literature. What NLP tasks are involved in such 
a system?

• We want to determine whether a disease mention in a clinical document is 
negated or not. What NLP tools are available for this task? What methods are 
used in each tool?

• Some automated NLP methods have extremely high performance (e.g., greater 
than 95% on some metric), while others are quite low (many are below 60%). 
What are some of the linguistic features that make a task “easy” or “hard”? What 
are some of the non-linguistic features of the data that could result in low or high 
performance?
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Further Reading

Cohen KB, Demner-Fushman D. Biomedical Natural Language Processing. John 
Benjamins Publishing Company, 2014.

• A short textbook introducing biomedical NLP tasks, primarily focusing on those 
useful from a bioinformatics and computational biology perspective.

Demner-Fushman D, Chapman WW, McDonald CJ.  What can natural language 
processing do for clinical decision support? J Biomed Inform. 2009;42(5):760–2.

• This article lays the foundation for how NLP can be used to improve decision- 
making for diagnosing and treating patients.

Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information 
from textual documents in the electronic health record: a review of recent research. 
Yearb Med Inform. 2008:128–44.

• This is an early review paper conducted in 2008, with careful review of 174 pub-
lications on information extraction from clinical documents for different 
applications.

Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, et al. Clinical 
information extraction applications: A literature review. J Biomed Inform. 
2018;77:34–49.

• A literature review on clinical information extraction articles published from 
January 2009 to September 2016. The  authors analyzed data sources, tools, 
methods, as well as applications of clinical NLP and provided cogent insights 
into current uses of clinical NLP.

Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, et al. Deep learning in clinical natural lan-
guage processing: a methodical review. J Am Med Inform Assoc. 2020;27(3):457–70.

• This is a more recent review of the uses of deep learning methods in clinical NLP.
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Chapter 8
Explainability in Medical AI

Ron C. Li, Naveen Muthu, Tina Hernandez-Boussard, Dev Dash, 
and Nigam H. Shah

After reading this chapter, you should know the answers to these questions:
• What are the current trends in AI explainability research?
• What types of explainability paradigms can be conferred onto different machine 

learning (ML) models?
• What are the different methods by which ML models can be explained?
• How can principles of cognitive informatics be applied to explainability in 

medical AI?
• What is an ‘emergent property’ of a sociotechnical system?
• What regulatory frameworks have been put forth with regards to accountability 

of ML models?

 Introduction

The current paradigm of artificial intelligence (AI) in medicine primarily relies on 
machine learning (ML) models as a means to provide insights—typically in the 
form of a diagnosis or prognosis—that can affect the health of individuals and popu-
lations. A model learned from past data is often a trigger that invokes a series of 
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actions comprising a care workflow. We define a model as a function learned from 
data that maps a vector of predictors to a real-valued response. Predictors are also 
referred to as inputs, features, or variables; response is referred to as an outcome, 
output, label, or task. The “logic” of how ML models generate their estimates, and 
how those estimates translate into recommendations in the context of explicit or 
implicit policies, is often difficult for human beings to understand.

The high complexity and dimensionality of the relationships that ML models 
derive from data are often not interpretable by human reasoning, which is why 
many ML models are often referred to as “black box” models. However, we have 
known for decades that explainability is an important attribute of any human rea-
soning process (see Chap. 5) and clinicians have historically named it as a top 
requirement for a clinical decision support system [1]. Because model generated 
recommendations in medicine can affect high stakes decisions, the discussion 
around the “explainability” of both the model’s output and the policy that trans-
lates that output into actions is particularly relevant for the safe and effective use 
of this technology.

 Current Trends in AI Explainability Research

Explainability of ML models has been deeply explored across academia, industry, 
and government as a potentially critical component of applying AI into health care 
in a way that is usable, transparent, and trustworthy [2]. Key themes from current 
work in explainability center on how it is defined, the methods by which it can be 
achieved for different ML models, how it is evaluated, and whether it is truly useful 
when applying AI in healthcare settings [3]. Based on the current consensus defini-
tion of explainability, a ML model is considered explainable if the explanation satis-
fies two criteria: (1) it is “interpretable,” meaning that the logic the model 
incorporates to make predictions is understandable by humans, and (2) it has fidel-
ity, meaning that the explanation faithfully reflects the underlying logic of the task 
model (the model making predictions) [4].

There are now a range of methods described in the literature to generate expla-
nations that attempt to satisfy these criteria, albeit with varying degrees of success 
[5]. These methods can be broadly divided into two categories: (1) using aspects of 
the model’s intrinsic architecture (e.g. beta coefficients from a linear regression) to 
derive explanations, which can only be done for certain model architectures, and 
(2) post hoc methods, where separate interpretable models are developed to accom-
pany the original, potentially “black box”, model in order to approximate explana-
tions between model features and the outcome. The majority of such post hoc 
methods fall into the category of attribution-based explanations, which use a vari-
ety of quantitative methods to attempt to measure the relative importance of the 
task model features in determining the outcome. These methods are typically 
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applicable to more complex and non-linear model architectures such as neural 
networks that may deliver higher predictive performance at the expense of the lack 
of intrinsic model interpretability. Nevertheless, while these computational strate-
gies can be used to approximate the relative importance of model variables, they 
do not reflect the true inner workings of the task model logic, so they may not 
satisfy the fidelity clause of explainability. Further, statistical explanations, even 
for the more “easily explainable” linear task models, still require an additional 
layer of human interpretation that can vary and may not faithfully reflect the under-
lying model mechanism.

In light of these limitations, whether explainability is truly useful when applying 
AI to health care continues to be debated. Explainable models are thought to facili-
tate users’ ability to understand and improve the model, discover new insights 
learned from the model, and even to be more empowered to manage social interac-
tions with other humans when using the model [6]. Qualitative stakeholder studies 
have also indicated that clinicians seem to want to understand explainable variables 
when exposed to predictive models in order to assess whether they align with their 
clinical judgement [7]. The healthcare AI field has indeed been moving forward, 
with increasing interest demonstrated in government research and development, 
venture capital and industry, as well as in professional societies as these entities 
encourage the development of methods, financing, and regulations that encourage 
explainability in medical AI [8, 9]. However, there remains some skepticism that 
explainability can truly enhance the usefulness of AI in health care, as well as con-
cern that it may even lead to harm. For example, explanations, especially if they do 
not sufficiently satisfy the clauses of interpretability and fidelity, may give users a 
false sense of security, especially since they typically require some level of statisti-
cal comprehension and nuance to understand them, even for linear models [10].

 Applying Additional Context to Understand Explainability 
in Medical AI

How we think about the meaning and purpose of explainability and its incorporation 
deserves deeper examination because the answers to these questions may depend on 
the context in which the model is deployed. This chapter applies principles of cog-
nitive informatics to delve into these questions. Consider the following hypotheti-
cal scenarios:

 1. An AI software product is used to analyze chest CTs as part of an automated 
system for lung cancer screening. Patients with chest CTs that are flagged by the 
AI software as high risk are automatically referred for biopsy.

 2. A physician and nurse for a hospitalized patient each receives an AI generated 
alert that a patient for whom they both are caring is at risk of developing respira-
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tory failure in the near future and recommends mechanical ventilation. They 
proceed to meet and discuss next steps for the patient’s clinical management.

 3. A consumer smartwatch outfitted with AI capabilities, detects cardiac arrhyth-
mias and notifies a user that an irregular heart rate has been detected recom-
mending that the user consult a physician for further evaluation. After performing 
a full clinical assessment, the physician orders a continuous cardiac monitoring 
study for a formal diagnostic evaluation.

Although each scenario includes an AI solution, the nature of the task performed 
by the AI enabled tool and how it is incorporated into patient care differ. The first 
scenario describes an AI approach that drives the diagnosis of lung cancer and auto-
matically triggers an intervention without any mediation by humans. The second AI 
scenario also drives the diagnostic and management process for a high risk medical 
condition, but the process is mediated by humans. In example three, the AI system 
supplies diagnostic insights, but is intended only to be supplementary information 
for a formal evaluation; however, at the population level the use of such a system 
does impact the total amount of work done by those that have to perform the formal 
evaluation.

The level of risk associated with the task and extent of human involvement in the 
delivery of care has broad implications for how to approach the purpose of AI 
explainability as well as the kinds of explanations provided. For example, in sce-
nario one, where the system drives high stakes clinical care without any mediation 
by human clinicians, it may be important for patients, as well as the clinicians, to 
understand the tool’s “reasoning” behind its conclusions, similar to how a patient 
would want a physician to explain the reasoning behind a cancer diagnosis. The 
health system employing this AI solution and regulatory bodies may also require 
in-depth understanding of how the ML model generates its predictions and the level 
of model performance for quality assurance. In scenario two, the AI system inter-
acts with human clinicians who need to synthesize the prediction with the rest of 
their clinical evaluation in order to make a decision about the patient’s management. 
While the clinicians need to trust the tool for its advice to be adopted, the mechanics 
of how the ML model generated the prediction may be less important to the clini-
cians than a conceptual understanding of why the program predicted this patient to 
be at risk that they can mentally incorporate into the rest of their clinical assessment. 
In scenario three, trust in the AI advisor is similarly important, but insight into the 
“how” and “why” of the AI prediction may be less relevant to the non-clinician 
layperson user since the AI prediction is only meant to be supplemental to a formal 
evaluation by a physician and does not directly drive care management.

These scenarios demonstrate that the thinking around the need for AI explain-
ability must move beyond a binary “yes/no” paradigm to it depends and for what 
purpose? Explainability can be for several purposes: understanding how the rela-
tionships between variables generate the output of the ML model, a conceptual 
appreciation for why certain predictions are formed from the available data, or sim-
ply as a surrogate for trust in the model’s performance. As illustrated by these 
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scenarios, the purpose of explainability depends on the nature of the task, the 
recipient(s) of the predictions, and the broader environment in which the AI system 
is deployed.

Deciding the appropriate purposes of AI explainability requires an understanding 
of how AI interacts with human users and the implications these interactions have 
on downstream clinical outcomes. In order to capture the depth and breadth of how 
explainability affects medical AI, we must consider three levels of impact that 
explainability can have on how AI systems are shaped: information processing by 
the individual human user, the interactions between people and AI agents, and the 
emergent properties of the broader AI-enabled sociotechnical system.

For example, when assessing how to incorporate AI explainability into scenario 
two, we would first consider what the physician and nurse individually need to 
understand about the prediction in order to make sense of it in the context of their 
understanding of the patient (i.e. do they need to understand how the program gen-
erated the prediction of respiratory failure in order to make sense of the rest of the 
patient’s clinical findings or do they primarily need to know that the predictions are 
rarely wrong). Second, we would query how explainability would affect the ability 
of the physician and nurse to interact with the AI agent to make shared decisions 
(i.e. given the social nature of human cognition, can the AI system function as an 
effective teammate?) Finally, these interactions with the AI system and the physi-
cian and nurse may have downstream ripple effects that may ultimately affect the 
clinical outcomes in unpredictable ways, such as impact on communication pat-
terns, culture, and patient safety.

The goals of this chapter are (1) to describe the different purposes of AI explain-
ability, (2) to present a framework for assessing the different needs for AI explain-
ability by examining how an AI system interacts with human cognitive processes 
situated in sociotechnical systems, and (3) to discuss how this framework can be 
applied to real world examples of AI in medicine and implications for regulatory 
approaches.

 Three Purposes of AI Explainability

Explainability is a tricky notion given the lack of consensus in the form of explain-
ability desired and when. For AI systems in medicine, we consider three purposes of 
explainability: (1) to allow the study of a ML model and perform quality assurance 
and/or improvements, (2) to help the user(s) of the AI system to gain contextual 
understanding of the model’s prediction in order to incorporate into their subsequent 
decisions and actions, and (3) to facilitate trust in AI systems (Chap. 18) [11]. To the 
ML engineer, explainability often refers to the ability to articulate which variables 
and their combinations, in what manner, led to the output produced by the model 
[12]. This approach to explainability requires an understanding of the computational 
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relationships among the variables and architecture needed to generate the model out-
puts, which is often highly complex in ML. For example, an ML model that predicts 
respiratory failure may generate predictions from hundreds of thousands of features 
derived from clinical data that may not be clinically meaningful (e.g. the log of the 
mean blood pressure over 24 h cubed), and the computational relationships among 
these features are often high dimensional and difficult to represent in any clinically 
understandable way. Sometimes, features may be included in an ML model due to 
pure statistical associations but not indicate any potential causal relationship that 
would be helpful to a clinician seeking insight into what about a patient’s clinical 
status may be increasing their risk of respiratory failure (e.g. hair color may be a 
feature in a model that predicts respiratory failure given a possible statistical associa-
tion in the training set, but this would not offer a clinically meaningful explanation 
for why the patient may be a risk for respiratory failure). The purpose of this type of 
explainability is typically to allow engineers to perform quality assurance and to 
replicate or improve on the ML model, whereas a user of the AI system, such as a 
clinician or patient, may not find this type of explanation helpful (Fig. 8.1).

To the clinician or patient user of medical AI, explainability is more likely to be 
important for enriching their understanding of the prediction in the context of the 
clinical situation and providing information that would allow them to trust the per-
formance of the AI system. For example, a team of physicians and nurses who are 
alerted by an AI system that their patient is at risk of going into respiratory failure 
and that the situation may warrant mechanical ventilation will typically want to 
understand which clinical variables contributed most to the model’s prediction. 
Here, explainability allows the clinician users to make sense of the prediction in the 
context of the rest of their evaluation as well as potentially to use that information 
to tailor their subsequent decisions and actions to respond to the risk. The precise 

Fig. 8.1 Intersecting 
purposes for AI model 
explainability. One model 
may benefit from one or a 
combination of purposes 
depending on end-user and 
stakeholder needs
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mathematical representation of the features is likely far less important to the clinical 
team than an understanding that the AI system detected the patient’s deteriorating 
mental status and increasing respiratory rate over the past 12 h as factors contribut-
ing to the risk of needing mechanical ventilation. Such summative insight, along 
with information about the model’s accuracy and how it was trained and validated 
may be enough to trust the AI system even without an in-depth trace-back of the 
inner workings of the model. To a layperson user of the AI system, such as the 
owner of the AI-enabled smartwatch in scenario three that detected an arrhythmia, 
understanding the context of the prediction may even be less important than having 
information to trust the system, especially if the information generated is only sup-
plemental to an evaluation by a physician.

Sometimes, the same information about explainability can be applied to all three 
purposes of model engineering, enriching user understanding, and facilitating trust. 
For example, the commonly used Pooled Cohort Equations for the prediction of 
10 year risk of atherosclerotic cardiovascular disease (ASCVD) is a linear regression 
that relies on variables including age, sex, race, blood pressure, cholesterol, history 
of diabetes, smoking history, and use of antihypertensive, statin, or anti- platelet med-
ications [13]. These variables all happen to also be components of a patient’s medical 
history that a physician would review to assess ASCVD risk, so knowledge of these 
variables and weights would fulfill the purposes of understanding the inner mechan-
ics of the model as well as deriving clinically meaningful explanations for the 
patient’s clinical condition and facilitating trust in the model prediction.

Given two models of equal performance, one a black-box and one an explainable 
model, most users, when asked, prefer the explainable model [14]. However, in 
many practical scenarios, models that may not be as easily interpreted can lead to 
better end user outcomes and may even be desirable in certain situations [15]. For 
example, when users are asked to accept or reject the price of a New York City 
apartment based on an explainable model, which tells them the features used such 
as the number of bedrooms and bathrooms, the distance to subways or schools) or a 
black box model which does not, the participants receiving explanation were more 
likely to accept wrong predictions than those who were shown the black box output.

In parallel, it is worth considering whether rigorous validation and high accuracy 
and consistency of the ML model alone could be sufficient for building user trust 
[16]. For example, one does not need to have an explainable model for a rain fore-
cast as long as it is correct enough, often enough, to rely on to carry an umbrella. 
Trust in the model’s output can be established by rigorous testing and prospective 
assessment of how often the model’s predictions are correct and calibrated, and for 
assessing the impact of the interventions on the outcome. At the same time, prospec-
tive assessment can be costly.

A request for “explainability” in medical AI can be separated into a request for 
explaining model mechanics (perhaps better phrased as transparency of the model-
ing), a need by the user to understand the clinical context of the AI predictions, or a 
need to establish user trust. We will explore how principles of cognitive informatics 
can be applied to untangle the kind of explainability needed in a particular 
application.
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 Expanding the Conception of AI Explainability Based 
on Cognitive Informatics

As discussed in the section on “Three Purposes of AI Explainability”, the current 
science has already established that explainability is not a single easily-defined con-
struct that can be conceived as present or absent, and is substantially dependent on 
what “explainability” is meant to help the person receiving the “explanation” 
accomplish. In addition to the concepts of causality, surrogacy for trust and func-
tional understanding of AI construction for an engineer, knowledge from cognitive 
informatics and related disciplines also suggest numerous nuances to “explainabil-
ity” that need to be further explored. Specifically, theories of human information 
processing, conceptions of humans interacting with AI agents, and complex socio-
technical systems theory all suggest that there is yet much to be learned about how 
explainability is applicable to healthcare settings.

 Human Information Processing

Consider the physician in the second example presented at the beginning of the 
chapter: while the physician having a difficult conversation with a patient about a 
poor prognosis, the physician is interrupted by an alert that suggests that a different 
patient in a different building is at risk of developing respiratory failure and may 
need escalation of care and mechanical ventilation. How will the physician respond? 
Will the physician leave the conversation? Seek more information? Dismiss 
the alert?

Models of human information processing have been part of the cognitive psy-
chology and human factors literature for decades (see also Chaps. 1 and 5). Early 
models were developed in the 1950s and 1960s [17]. At their most basic, these 
human information processor models note that there’s a layer of information pro-
cessing between human perception of inputs/stimuli (involving encoding perceived 
stimuli in the context of mental models, comparing various options and choosing a 
response) and outputs/execution of action. Importantly, cognitive processing is both 
“top-down” and “bottom-up”—what we perceive and process is filtered by what our 
attention is directed towards. A commonly used model of human information pro-
cessing in healthcare settings is the model in situation awareness theory (Fig. 8.2). 
Among other applications, situation awareness theory has been used in the improve-
ment of the recognition of clinical deterioration in hospitalized patients as well as 
the diagnostic reasoning process [18]. The human information processing model 
underlying situation awareness theory resembles other goal-directed linear models 
of human information processing such as Norman’s theory of action and 
Rasmussen’s decision ladder [19–21]. This model suggests that when humans per-
ceive information, they then comprehend the information (see discussion of mental 
models below), project the expected future states based on this information as well 
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Fig. 8.2 Endsley’s model of situational awareness. This model describes situational awareness in 
dynamic decision making and notes how technology such as AI can affect each step in human 
information processing [22]

as various choices that the person might make, then make a choice based on the 
desired future state, finally acting on the decision.

In our scenario, the physician may perceive the alert and see if there’s any other 
information that can quickly allow for comprehension and verification of the current 
situation. If no supplemental information allows for verification of the alert, the 
only information that the physician will use to project the future state of the patient 
is what remains in the physician’s memory. Any new information obtained by sen-
sors or documented in the electronic health record that may be relevant and explain 
why the alert triggered will not be used by the physician. Because such information 
is never perceived, the physician may simply project that the patient’s risk of respi-
ratory failure has not changed and that the alert is simply incorrect, resuming their 
focus on the challenging conversation.

Comprehension of the alert and the situation does not happen in a vacuum. 
Human experts rely on mental models stored in long-term memory to translate per-
ceived information into comprehension that can support reasoned projection of 
future states and subsequent decision-making. A mental model is a person’s expla-
nation of “how things work in the world” and allows one to predict what will happen 
if one takes a particular action (see also Chaps. 1 and 5). Experts are able to do this 
very efficiently by framing new information in the context of existing mental mod-
els built from experience (such as knowledge about disease processes, how previous 
patients with similar appearance have progressed in their illness, etc.).

So consider again how AI predictions alone, unaccompanied by additional 
explanatory information that matches the mental models of the user, may fail to 
produce action. For example, suppose that the alert in our example was received by 
a relatively inexperienced physician, and this physician knew that the alert was 
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appearing for a patient admitted with a neurological concern. In this inexperienced 
physician, the mental model of neurologic abnormalities may not yet have linked 
“impending respiratory failure” to the possibility that such failure is a consequence 
of a neurologic problem interfering with the central respiratory control system. 
Because the physician experiences an apparent mismatch between the mental model 
of the patient (this patient will experience a deterioration with primarily neurologic 
changes such as altered mental status) and the alert (warning of impending respira-
tory failure), the alert may again be ignored in the absence of another explanation 
that helps the physician to establish quickly that the alert is not a false alarm.

Of course, human comprehension is not always a linear process. Other models of 
human comprehension, such as Klein’s data-frame theory of sense-making and 
theories of information foraging in the human-computer interaction literature, 
explain that information processing is often an iterative process [23]. People tend to 
gather just enough information to “satisfice” and allow them to apply a mental 
model that helps them to understand the current situation [24]. If all relevant infor-
mation had been gathered, a different mental model might have been applied, as a 
key piece of information may have reframed the situation. This also suggests an 
aspect of sufficiency for optimal stopping to the concept of explanation (see also 
Chap. 5). In the example discussed, if the most salient information presented with 
the risk prediction alert biases the physician towards framing the risk as a primary 
respiratory failure that is viewed as unlikely in the patient, the physician may be 
satisfied and dismiss the alert. On the other hand, if the explanatory information 
supplementing the AI risk prediction helps physicians frame the patient as poten-
tially experiencing a neurologic disruption of the respiratory control system, they 
may be far more likely to seek more information and act.

Through all of these concepts of human information processing, explainability 
can be considered in the context of the “gulf of evaluation”: the degree to which a 
person can use information to make sense of a situation and determine how well 
their goals have been met. To the extent that a user can perceive information or 
knowledge in an AI system and quickly make sense of the real world based on the 
explanation provided, they are more likely to make the optimal decision. If the 
explanatory information that allows the person to make sense of the situation is 
missing or requires substantial effort to glean, such as needing to click through 
multiple screen transitions, the person is much more likely to fail to appropri-
ately use AI.

 Human-AI Agents

In the previous section, we primarily conceived of explanation in AI systems as 
relevant at one point in time: when a person receives information from the AI sys-
tem and may make a decision to act. However, AI systems can be complex enough, 
especially if there is a component of automation, that it can be conceived of as an 
independent agent. The “agency” of the AI system comes from implicit goals in any 
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automated steps the technology might take (e.g. the automated referral for biopsy in 
the first example from the beginning of the chapter) as well as the “conversation” 
that occurs over a series of interactions between people and the technology that they 
are using. In this context, explanations may be considered in terms of their ability to 
make the AI agent’s intentions and actions understood in order to produce predict-
able interactions that allow work towards a common goal [25].

The conception of humans and AI systems as agents that interact has been pres-
ent from some of the foundational work in clinical informatics [26]. In the MYCIN 
and EMYCIN systems, the role of the AI agent was as a “consultant” for the clinical 
user (see Chap. 2). In Clancey’s GUIDON project, the system was a tutor for stu-
dents. In this work, an early discovery was the need for users to understand “why” 
the systems were acting as they did. The systems attempted to make explicit as 
explanation the internal goal and strategy of the AI system. Often these goals and 
strategies are implicit, which can be challenging for a human who seeks to interact 
with the system. In the absence of explicit explanation, people must infer goals and 
strategies for the agent with which they interact, which is even more challenging in 
the case of adaptive AI systems that change their behavior over time.

Conceiving of the interaction between humans and an AI agent as a “dialogue” 
was also established in the projects that were derived from MYCIN (see also Chap. 
9). A conversation implies a conception of explanation tied to intelligibility. A phe-
nomenon studied in aviation is that of “automation surprises”, where the AI system 
acts in a way that is not expected and is thus not comprehensible to the person with-
out an explanation. In this case, humans may assume that automation has failed, 
leading the person to take inappropriate actions. Another issue may arise when the 
set of actions that are offered do not match what the user is expecting, limiting the 
“conversational” nature of the interaction. For example, if the physician interacting 
with an AI-enabled sepsis alert is expecting to gather more information through lab 
testing to assess patient risk for sepsis but the system forces a decision about antibi-
otics before the physician can obtain that information, then the physician may won-
der “why” the AI system is “recommending” antibiotics, even though the AI system 
is merely providing an incomplete set of potential choices.

As with human information processing, it is beyond the scope of this chapter to 
review all of the ways that explanations may function in a back-and-forth series of 
interactions between human and AI agents. Appreciation of humans as agents inter-
acting with potential AI agents, however, suggests there is much still to be learned 
about the role of explanation in such interactions. Explanation is critically important 
so that a person can predictably interact with an AI system to achieve one’s goals.

 Sociotechnical Systems

When considering the impact of AI systems on health care, we need to examine the 
broader care delivery system in which the AI technologies are being incorporated. 
Healthcare is complex  - meaning that the delivery of health care, whether it is 
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diagnosing and identifying disease, providing therapies, or implementing interven-
tions to prevent disease, occurs in complex sociotechnical systems. Complexity 
exists because (1) there are numerous relationships/interactions among the many 
entities that are involved, and (2) health care is a human-driven process (since care 
is provided by and for humans, and human behavior is adaptive to changes in the 
environment). While the previous section introduced the idea of interaction between 
the human and the AI system, outcomes in health care are mediated by numerous 
nonlinear interactions between people, processes, and technologies. With nonlinear 
systems, changes in the input do not always lead to proportional changes in output. 
Outcomes from complex systems cannot be predicted by examining the properties 
of just one component of the system. The system must be examined as a whole, and 
we need to assess how changes to any particular component impact the rest of the 
system in order to understand how it could affect the outcome. These outcomes are 
known as emergent properties as they emerge only when the system exists as a 
whole but not within or between any individual components.

Health care has made important progress in recognizing that processes and out-
comes that we see are not products of individual actions but instead emerge from a 
complex set of interactions between people, the tools they use, and the processes/
organization of their work environment. Patient safety is a great example of what is 
now often conceptualized as an emergent property of the care delivery system. The 
Systems Engineering Initiative for Patient Safety (SEIPS) model is now well estab-
lished in health care and has been applied to numerous healthcare projects to design 
tools and technology in healthcare delivery (Fig. 8.2) [27]. Patient safety, defined as 
the prevention of unintended harm to the patient, cannot be attributed to any one 
part of the work system alone but emerges from how each part of the care delivery 
system interacts with the others (Fig. 8.3).

When introducing AI systems to improve health care, we need to think about 
how the system changes the existing sociotechnical work environment to mediate 
the outcome. In other words, how does the AI system interact with the other people, 
processes, and technologies (including other AI systems)? A common assumption 
in health care is that digital tools improve the reliability of care because humans are 
error-prone. In reality, any introduction of technology adds new components and 
thus new “failure” points for safety. In order to function effectively, the person in the 
sociotechnical environment needs the AI system not just to explain its goals and 
intentions, but also to convey how it is interacting with the other elements of the 
sociotechnical environment.

Trust is a concept that is discussed often in the context of explainable AI—under-
standably, as it may be essential to sustained use of any given AI system. While trust 
is traditionally viewed as a property of the human-AI interaction, it may also be 
useful to conceive of trust as another emergent property like patient safety. Over 
time, when people observe interactions and the outcomes of interactions with AI 
systems in their work, people will develop a set of expectations on how to best inter-
act with AI systems. This will come not just from their own experience but also 
through observing other people, socialization of the technology in the popular press 
and the culture of their work organization. If these expectations are violated without 
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Fig. 8.3 The systems engineering initiative for patient safety (SEIPS) model. An example of a 
framework for understanding the structures, processes and outcomes in health care and their inter-
actions, which result in the ‘emergent’ outcomes such as patient safety [27]

explanation, trust in a given AI system can be lost. Furthermore, knowing that atten-
tion to information processing has a “top-down” component (i.e. humans pay selec-
tive attention to information they are already expecting), subtle unexpected changes 
in the system may never be perceived by the user. For example, consider the exam-
ple of the AI system that automatically screens chest CTs for lung cancer and refers 
patients for biopsies. If the threshold for referral is updated with only a subtle nota-
tion and without explanation to the patient or physician, the change in system’s 
behavior may be noticed only when there are dramatic outcomes, such as a large 
increase in the number of referrals or a missed referral in a patient with lung cancer. 
At that point, physicians and patients may lose trust in the system.

This is why trust is best assessed not as “present” or “absent” but in terms of 
whether trust is appropriately calibrated. Under-trust is traditionally the focus of 
healthcare AI literature, given the limited adoption of AI systems to date. Much 
effort is spent on increasing trust in AI systems because of the adoption problem. 
However, over-trust is just as important. Over-trust occurs when the clinician comes 
to depend on the AI system, either because of the clinician’s lack of expertise or 
because other pressures from the sociotechnical system such as the workload poten-
tially drive inappropriate reliance on technology. A goal of explanation for AI sys-
tems is to optimize the calibration of trust. The goal is neither under-trust when the 
AI system is enabling the correct action but also not over-trust when the AI system 
is operating outside of its optimal scope or the user should not trust the AI system 
without further patient assessment.
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This understanding of sociotechnical systems suggests that AI explanations may 
not translate across clinical contexts in which the AI system might be used. Rather, 
local customization of the explanation and user interface may be necessary to situ-
ate the AI system in the sociotechnical environment. Design principles that incorpo-
rate contextual constraints such as ecological interface design may be useful on this 
front. To the extent that the interface can mirror the external world, and the AI sys-
tem’s actions are placed within the context of that external world, people can be 
more successful in their essential roles for patient safety: anticipating errors and 
acting as a source of resilience.

Ultimately, the lenses of human information processing, human-AI agents, and 
sociotechnical systems suggest that there may be no single “universally” suitable 
design for optimal AI explanations and approaches to AI explanation will continue 
to evolve.

 Implications of Explainability on Bias 
and the Regulatory Environment

It is important to understand the effect of explainability on accountability and the 
regulation of AI. As mentioned, complex AI systems often include elaborate data 
transformation using hundreds of thousands of features derived from clinical data 
that may or may not be meaningful. As these complex systems increasingly drive 
clinical decisions, it is important to acknowledge the legitimate concerns about the 
intentional and unintentional consequences of these AI systems. Explainability 
presents an opportunity to understand better the changing landscape of accountabil-
ity and regulation.

 Explainability and Inherent Biases

An emerging body of evidence suggests that AI systems can make unfair and dis-
criminatory decisions, replicate or develop biases, and behave in inscrutable and 
unexpected ways in highly sensitive environments that put human interests and 
safety at risk. Therefore, it is important to consider how explainability may mitigate 
such biases and affect our own inherent biases using the three purposes of explain-
ability mentioned in section “Three Purposes of AI Explainability”.

For the ML engineer, explainability offers an opportunity to identify and miti-
gate potential biases in AI systems. However, this is only possible through the 
transparent reporting of the AI details, such as recommended by the Minimal 
Information for Medical AI Reporting, or the MINIMAR standards [28]. Such 
standards demand information related to the data source and cohort selection, 
demographics of the training population, model features and design 
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characteristics, as well as evaluation criteria and validation steps. Data biases (see 
Chap. 3) are common across most data sources, therefore the transparent reporting 
of the MINIMAR concepts ensures that the interpretability of the model and can 
help end users (e.g., providers, healthcare systems, etc.) to identify the populations 
for which the AI can be applied—a step at mitigating inherent data biases. 
Furthermore, having a clear definition of the model output is imperative. Datasets 
with inconsistent, imperfect, or even incorrect labels used for training and testing 
data allow one’s own biases to enter into the model and affect explainability. 
Understanding the intent of the model (e.g. predict mortality or predict transfer to 
ICU), composition of the training data, development of the ground truth, model 
architecture, and data transformation enables the ML engineer to assess biases in 
the data and algorithmic fairness empirically. While the model architecture may 
not be critical for explainability, understanding sample representativeness in AI 
models may help clinicians decide if the prediction is applicable to their patient 
population. For example, many models predicting adverse events in Type II dia-
betic (T2DM) patients have not reported Hispanics in their training data. Given 
Hispanics higher prevalence and complication rates for T2DM compared to Whites, 
it is essential clinicians have this type of explainability to determine if they incor-
porate the AI prediction into their clinical decision making. This type of explain-
ability is the foundation of developing trust for both the clinician as well as the 
patient population, as it is only through transparency and explainability that one 
can mitigate biases in AI that contribute to unfair and discriminatory decisions that 
put human interests and safety at risk.

 Effect of Explainability on Accountability for Decision Making

Accountability, in this context, means the ability to determine whether a decision 
was made in accordance with procedural and substantive standards and to hold 
someone responsible if those standards are not met. Therefore, it is important that 
developers understand and integrate current standards within the model’s design 
and during development. Explainable models must be developed through team 
efforts involving knowledge experts, decision makers, and end-users. The incorpo-
ration of procedural and substantive standards must be clearly presented to end- 
users across platforms.

Human-interpretable information about the factors used in a decision and their 
relative weight is necessary. This is likely the most common understanding of what 
constitutes an explanation for a decision. A list of the factors that went into a deci-
sion, ideally ordered by the significance to the output, can provide accountability by 
confirming that proper procedures were followed.

While there is significant support for explanations as a tool for holding AI 
accountable, there are also concerns about the costs of generating such explana-
tions. True explainability could inhibit innovation by forcing transparency around 
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key model features which may be seen as industry trade secrets. However, the lack 
of incentives, restrictions around data sharing and data privacy, and the acceptance 
of stealth science in industry has created an environment that allows AI to be imple-
mented without understanding how the model was developed, from what data was 
the model learned, and using what data was the model deemed satisfactory for use. 
Accountability can only fairly proceed if transparency is provided regarding the 
data, model, and standards woven into the AI model.

 The Current Regulatory Framework and Explainability

Across the global AI regulatory environment, explainability is the center of account-
ability (see Chap. 18). In 2017, the International Medical Device Regulators Forum 
(IMDRF) came together to develop a path for standardized AI regulations, includ-
ing a risk-based framework [29]. The hypothetical scenarios described in the intro-
duction provide examples of the different levels of risk to consider and the 
importance of explainability in each scenario. The level of regulation and necessary 
documentation are determined by the risk-based framework, as described above. In 
addition to the risk-framework, the European Union has put forth the General Data 
Protection Regulation (GDPR) mechanism which ensures users (or patients) have a 
right to information about the existence, logic, and potential consequences of 
AI-driven decision-making systems. The GDPR establishes rules and regulations 
for privacy and permissions and gives control to individuals. Patients must not only 
consent to the collection of the data but also to each use of their data. For AI devel-
opers, this requires that they explain in plain language how data will be used as part 
of the consent process. Many interpret this as the “right to explanation”. Systems 
are now aiming to produce more explainable models; design an explanation inter-
face; and understand the human requirements for useful explanations [30]. However, 
there are also concerns about the costs of generating explainable AI in regard to 
engineering challenges, the effect on innovation and trade secrets; and the cost of 
system accuracy or other performance objectives.

 Application of Explainability to Real World Examples 
of Medical AI

The following real world examples of medical AI can be used to understand the dif-
ferences among the purposes of explainability, targets and downstream actions 
among the three methods of explainability, as well as how the cognitive informatics 
concepts we have described apply to particular use cases of medical AI.
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 Example: Continuous Blood Glucose Monitoring for Patients 
with Type 1 Diabetes

Current Type 1 Diabetes management approaches are largely limited to non-closed 
loop systems that depend on the patient checking blood glucose levels and adminis-
tering themselves insulin either through a pump or a syringe. The iLet bionic pan-
creas from Beta Bionics [31] aims to simplify the latter, interfacing with an 
embedded glucose monitor and continuously dosing insulin similar to a native pan-
creas. It needs to be able to adapt to blood glucose variation patterns and function 
autonomously. The end users of this device are endocrinologists and their patients 
who will likely not benefit from a mechanistic or ‘engineer’s’ explainability but 
rather on ‘trust inducing explainability’—relying on outcome data that shows a 
closed loop feedback system for glucose control has minimal hypoglycemic events 
and maintains glucose levels within an acceptable range that is conducive for 
improved long term outcomes. From a cognitive informatics perspective, human 
information processing needs with this system are likely very different from how 
patients are counseled about diabetes management now, learning to “count carbohy-
drates” and estimate how much insulin to self-administer. However, explanation for 
this highly autonomous agent may need to convey information like how the insulin 
administered is based on the blood sugar goal or how well the overall blood sugar 
control has been, allowing a patient to not only monitor the system but also trouble-
shoot and recover from malfunctions without experiencing life-threatening hypo-
glycemic or hyperglycemic events. From a regulatory perspective, given this 
automated closed-loop system, and lack of a physician intermediary while care is 
being delivered, the regulatory concerns are high although this device would be 
categorized as a medical device rather than SaMD (software as a medical device) 
per the previously mentioned framework put forth by IMDRF.

 Example: Digital Image Analysis Tools Assisting 
in Histopathological Diagnoses

Proscia’s digital pathology tools are designed to drive clinical management by ana-
lyzing pathology samples and prioritizing certain cases for review by pathologists, 
especially cases that are flagged by the system to demonstrate high risk features. For 
example—biopsy samples of precancerous lesions that have high risk features are 
prioritized for expedited review to allow for earlier management of a potential can-
cer diagnosis. Such a system, which is tasked in prioritizing certain cases for review 
for the end user (in this case a Pathologist), will need to demonstrate the reasons for 
prioritization. In this case, the Pathologist is tasked with making the final diagnosis. 
Clinical data may help with contextual explainability but these tools may benefit 
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most from having surrogates for the underlying mechanistic ‘engineering’ pro-
cesses. In the case of AI/computer vision systems, segmentation and bounding box 
techniques can assist in establishing this surrogate, but may need significant more 
time invested into labeling training data. Image classification techniques that do not 
have segmentation, object detection, or bounding boxes built in will need to depend 
on context to engender trust in the end user. These tools have to rely on proper func-
tioning within a human-AI team; the level at which this tool can operate autono-
mously should be carefully conveyed to the healthcare team to optimize calibration 
in such a tool. This will avoid under-trust leading to under-utilization and over-trust 
leading to an inappropriate amount of dependency. From a regulatory perspective, 
digital pathology tools fall under Category II of the IMDRF framework as they drive 
clinical management of serious conditions and would likely benefit from indepen-
dent review.

 Example: Wearable Devices Informing Clinical Management

Finally, we offer an emerging use-case scenario where wearable data is informing 
clinical management. Wearables are starting to incorporate not only heart rate infor-
mation to show variability, and correlate the rate to motion sensors to determine 
types of activity and levels of sleep, but also to oxygen sensors and basic one lead 
rhythm monitors such as the ECG App on the Apple Watch. This particular app is 
designed to detect atrial fibrillation, low and high heart rates, and to provide a sum-
mary of heart rate variability. Algorithms that assist in aggregation of clinical data 
will likely need to depend on causal explainability—information that becomes 
important with context. In the case of an ECG app assisting in detection of atrial 
fibrillation, the output is to be taken in conjunction with patient data—possibly 
complaints of palpitations or indications of a history of cardiac disease that would 
predispose to a diagnosis of atrial fibrillation. Human information processing mod-
els are important for information that is best analyzed in context (in this case, patient 
symptoms and history). Along with contextual explanatory information presented 
with the model output, the end users’ experiences within their sociotechnical envi-
ronment will also drive each user’s trust in the prediction and subsequent decision- 
making. Regulatory concerns with wearables that inform clinical management are 
largely dependent on the manufacturer and on the element for which it chooses to 
obtain clearance. The ECG app has FDA clearance as a Class II device but the pulse 
oximeter function is described for ‘general wellness’ and thus does not have FDA 
clearance as a medical device.

R. C. Li et al.



253

 Conclusion

The question of whether explainability is useful for medical AI must be expanded to 
include considerations around (1) the type and purpose of the explanation and (2) the 
type of human-machine interaction in which explainability may play a role in mediating 
the desired outcome. Finally, the degree of explainability may impact how bias and 
accountability are incorporated into the medical AI product and how it may be regulated.

Questions for Discussion

• How can the different methods and purposes of explainability be applied to dif-
ferent AI use cases?

• How do principles of human information processing and information flow across 
teams affect how AI explainability should be approached?

• What frameworks are important to consider for an AI agent, with a similar under-
lying model, that is deployed across different environments?

• What potential pitfalls might there be with the current regulatory framework 
with regards to AI explainability?

• Who are the common stakeholders and what motivations do they have with 
regards to accountability in AI systems?

• What are some of the potential underlying causes of unintended intrinsic biases 
within AI systems?

Further Reading

General Data Protection Regulation (GDPR), https://gdpr- info.eu/.

• Official EU documentation of General Data Protection Regulation, including 
recitals and key issues. This regulation for consumer privacy is a reference for 
other countries and regions as they craft their own versions. E.g. California 
Consumer Privacy Act has many similarities with GDPR.

Gilpin, L.H., Bau. D., Yuan, B.Z., et al. Explaining Explanations: An Overview of 
Interpretability of Machine Learning. In: 2018 IEEE 5th International Conference 
on Data Science and Advanced Analytics (DSAA). pp. 80–89. Available at https://
arxiv.org/pdf/1806.00069.

• An exploration into best practices of explainability, the insufficiency of current 
approaches and future directions for explainable artificial intelligence. Being 
aware of the work being done in the non-clinical realm will help inform efforts 
with regards to explainable medical AI.

Markus, A.F. The role of explainability in creating trustworthy artificial intelligence 
for health care: A comprehensive survey of the terminology, design choices, and 
evaluation strategies. Journal of Biomedical Informatics. 2021;113:103655. https://
doi.org/10.1016/j.jbi.2020.103655.

• In this paper is an exploration of quantitative metrics regarding explainable 
AI. Although the field is far from a consensus, having quantitative metrics will 
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https://gdpr-info.eu/
https://arxiv.org/pdf/1806.00069
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allow for model comparison with regards to explainability similar to how model 
performance is compared today.

Carayon, P., Hundt, A.S., Karsh, B.T., et  al. Work system design for PATIENT 
safety: The SEIPS model. Qual Saf Health Care. 2006 Dec;15 Suppl 1(Suppl 
1):i50–8. http://dx.doi.org/10.1136/qshc.2005.015842. 

• This paper provides an overview for the Systems Engineering Initiative for 
Patient Safety framework, which is applied to describe complex work systems in 
healthcare and provides a tool to examine the context for the downstream impact 
of explainable AI in healthcare workflows.

Brady, P.W., Wheeler, DS, Muething, S.E., Kotagal, U.R. Situation awareness: A 
new model for predicting and preventing patient deterioration. Hosp Pediatr. 
2014;4(3):143–6. https://doi.org/10.1542/hpeds.2013- 0119.

• This paper describes an example of how AI is applied to a use case in pediatrics, 
and how explainability facilitates a team dynamic that was important in mediat-
ing the outcome.
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Chapter 9
Intelligent Agents and Dialog Systems

Timothy Bickmore and Byron Wallace

After reading this chapter, you should know the answers to these questions:
• What is a dialog system and how can it be used in patient- and consumer-facing 

systems in medicine?
• What are the main approaches to the implementation of dialog systems? What 

are the limitations of these approaches?
• How are dialog systems evaluated?
• What are some of the safety issues in fielding patient- and consumer-facing dia-

log systems in medicine?

 Introduction to Dialog Systems

People most commonly communicate with each other not in isolated utterances, but 
in interleaved sequences of utterances wrapped in ritualized behavior that we col-
loquially refer to as conversations. Developing natural language interfaces that can 
move beyond single transactions of user query/system response to fully engage 
users in conversation would benefit a variety of applications. At a minimum, once 
the information that needs to be exchanged extends beyond that which can be 
expressed in a single utterance, dialog becomes imperative. Beyond this, dialog is 
essential for performing tasks that require multiple natural language exchanges with 
a user in a coherent manner, as for example in a series of questions and responses to 
automate an interactive, incremental differential diagnosis. Certainly, the emulation 
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of any kind of counseling session or interview to produce automated patient-facing 
health education systems requires complex goal-oriented dialog management that 
spans many interleaved patient and system messages In addition, interleaved 
sequences of messages allow a listener to confirm understanding or request clarifi-
cation of information provided (a process referred to as “grounding”). Only in dia-
log can a conversational task (e.g., diagnosis or health counseling) be dynamically 
decomposed into sub-tasks in a coherent manner.

To ground our discussion, Fig. 9.1 shows an excerpt of a dialog between a study 
nurse and a patient about informed consent for an oncology clinical trial. There are 
several interesting things to note for those who have not studied natural conversa-
tions before. First, spontaneous conversation is full of disfluencies: there are very 
few grammatically complete and correct sentences in spontaneous conversation, 
and the use of “filler words” such as “um” (as in line #11) is very common. Second, 
conversational turns can span a single word to many sentences in duration. Third, a 
great deal of conversation is spent establishing mutual understanding of what was 
said: the patient feedback at lines #2 and #10, and the patient query at line #14 all 
serve exclusively to ensure that both parties understand each other, at least well 
enough for the purpose at hand. Only one person can talk at a time in conversation, 
and people are generally very good at coordinating their use of the speech channel, 
but overlaps, pauses (as in line #11) and interruptions (such as in line #15) are com-
mon. Finally, conversation typically makes extensive use of “deixis”, which is a 
reference to the immediate physical context or to what was said before (for exam-
ple, line #1 refers to the current day, line #9 refers to the consent form that is being 
handed to the patient). Designing automated dialog systems that can participate in 
these kinds of conversations, for example taking the role of the study nurse here to 

1. Nurse: So, today I am going to talk to you about a research study that your doctor has stated that
might be a good option for you.

2. Patient: OK.
3. Nurse: Have you had any experience with research before?
4. Patient: I have done a couple of research before. Nothing like this, just questionnaires on how I

was treated as a patient. You know, small little things like 25 dollars. 
5. Nurse: All right, but no treatment. You never took any drugs or anything like that?
6. Patient: No.
7. Nurse: Have you ever been treated for cancers in the past?
8. Patient: This is the first time.
9. Nurse: First time. OK, what I am going to do is give you is this packet. And this is something that

we give to all of our patients. This is the consent form.
10. Patient: OK.
11. Nurse: Ummmm. So……(Pause)… This drug that Doctor Smith said that you may be eligible for is a

drug that is kind of daughter or son of Thalidomide. Have you ever heard of Thalidomide?
12. Patients: No, never heard of it.
13. Nurse: Thalidomide was used back in the 50's and 60's for nausea in European women and…
14. Patient: (interrupting) Feeling sick?
15. Nurse: Yeah, feeling sick. And, they took this drug that does wonders for the nausea but

unfortunately because they were pregnant during that it caused side-effects. ...

Fig. 9.1 Excerpt of nurse-patient dialog for administration of oncology clinical trial 
informed consent
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automate administration of informed consent, represents an aspirational goal for 
dialog systems researchers. However, the state of the art is quite far from achieving 
this level of performance.

Chapter 7 introduced natural language processing (NLP). In this chapter we 
review the state of the art in dialog systems, a sub-field of NLP, including text-based 
chatbots, speech-based conversational assistants, and multimodal embodied conver-
sational agents that simulate face-to-face conversation, for both provider- and 
patient-facing biomedical applications.

 Definitions and Scope

Dialog has been defined as a conversational exchange between two or more enti-
ties. For the purposes of this chapter, we will be concerned with communicative 
exchanges between a human (health professional, patient, or consumer) and an 
automated system in which messages are in textual or spoken natural language. 
This system may also be augmented with additional information such as the non-
verbal behavior used by humans in face-to-face conversation (hand gestures, 
facial displays, eye gaze, etc.). We refer to an isolated message from one entity 
within a dialog as an utterance. While a dialog can consist of a single utterance, 
we are primarily concerned with dialogue in which several utterances from two 
entities are interleaved in order to accomplish some task. Discourse is a general-
ization of dialog that also includes the study of written text comprising multiple 
sentences.

Discourse theory is generally concerned with how multiple utterances fit together 
to specify meaning. Theories of discourse generally assume that discourses are 
composed of discourse segments (consisting of one or more adjacent utterances), 
organized according to a set of rules. Beyond this, however, discourse theories vary 
widely in how they define discourse segments and the nature of the inter-segment 
relationships. Some define these relationships to be a function of surface structure 
(e.g., based on categories of utterance function, such as request or inform, called 
“speech acts” [1]), while others posit that these relationships must be a function of 
the intentions (plans and goals) of the individuals engaged in conversation [2, 3]. In 
addition, researchers developing computational models of discourse and dialog 
have included a number of other constructs in their representation of discourse con-
text, including: entities previously mentioned in the conversation; topics currently 
being discussed (e.g., “questions under discussion” [4]); and information structure, 
which indicates which parts of utterances contribute new information to the conver-
sation as opposed to those parts that serve mainly to tie new contributions back to 
earlier conversation [5].

Discourse theory also seeks to provide accounts of a wide range of phenomena 
that occur in naturally-occurring dialog, including: mechanisms for conversation 
initiation, termination, maintenance and turn-taking; interruptions; speech 
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intonation (used to convey a range of information about discourse context [6]); dis-
course markers (words or phrases like “anyway” that signal changes in discourse 
context [7]); discourse ellipsis (omission of a syntactically required phrase when the 
content can be inferred from discourse context); grounding (how speaker and lis-
tener negotiate and confirm the meaning of utterances through signals such as head-
nods and paraverbals such as “uh huh” [8]); and indirect speech acts (e.g., when a 
speaker says “do you have the time?” they want to know the time rather than simply 
wanting to know whether the hearer knows the time or not [9]).

Embodied Conversational Agents (ECAs) are conversational agents that include 
the ability to use human-like conversational nonverbal behavior in their dialog 
(Fig.  9.2). ECAs are animated humanoid computer-based characters that use 
speech, eye gaze, hand gesture, facial expression and other nonverbal modalities to 
emulate the experience of human face-to-face conversation with their users [10]. 
Such agents can provide a “virtual consultation” with a simulated health provider, 
offering a natural and accessible source of information for patients. These agents 
represent one form of multimodal dialog system, in which the nonverbal modalities 
are recognized and produced in addition to accompanying text or speech, to more 
fully understand the user’s communicative intent and to better express system 

Box 9.1 Definition
Dialog systems  are computational artifacts designed to engage humans in 
dialog, as defined above. Intelligent agents are autonomous, goal-directed 
computational artifacts. Conversational agents  are intelligent agents that 
converse with humans via a dialog system interface. Conversational assis-
tants are conversational agents that use speech input and output to perform a 
wide range of tasks, as exemplified by the now ubiquitous Siri, Amazon 
Alexa, and Google Home products.

Fig. 9.2 Embodied 
conversational agent for 
patient education at 
hospital discharge
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output. In addition to carrying additional factual information, nonverbal behavior is 
also used in face-to-face conversation to regulate the interaction structure itself, for 
example, gaze and intonation to regulate turn-taking behavior, and body position 
and orientation to regulate conversation initiation and termination. Nonverbal 
behavior is also particularly effective for conveying affective and relational cues 
that may be important for establishing patient trust in and working alliance with the 
ECA [11].

 What’s Hard About Getting Machines to Engage 
in Spontaneous Human Conversation?

People unconsciously leverage a complex set of processes to make conversation 
work, most of which are entirely automatic and unconscious. They assume that an 
entity that engages them in what appears to be natural language dialog has these 
abilities until they discover their limitations. Several of these processes, such as 
conversation initiation and termination, and turn-taking and grounding, were 
mentioned above. Additional examples include: deixis, referring to something in 
the speakers’ mutual context (object, time, location, social relationship) in lan-
guage; anaphoric or cataphoric references (referring to something said earlier or 
later in the dialog); and conversational framing [12] or layering [13] in which 
different styles or genres of talk are used to change how utterances are interpreted 
(e.g., symptom inquiry by a third party made within social chat storytelling occur-
ring within the context of a clinical interview). There are many more conversa-
tional processes and linguistic phenomena that together make the seemingly 
effortless task of a water cooler conversation seem miraculous upon close 
inspection.

Fortunately, most of these conversational processes can be “compiled out” by 
tightly constraining what a user is allowed to do, or by greatly lowering their expec-
tations. System-initiated dialog that rigidly walks a user through a series of steps 
generally avoids the need to engage in many of these processes. Similarly, a system 
that engages a patient in scripted greeting and small talk at the start of a health edu-
cation session does not need a computational model of conversational frames. 
Agents that only provide responses to single utterance user queries (such as popular 
conversational assistants like Siri) have trained users to not expect any conversa-
tional behavior beyond these simple exchanges.

 Machine Learning and Dialog Systems

In the research community, the dominant modern approach to dialog systems is now 
based on machine learning (ML; see Chap. 6). Learning-based approaches to dialog 
permit flexibility and avoid the need for exhaustive manual engineering of rules. 
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ML-based approaches to dialog have yielded strong empirical performance, 
although measuring this is a challenge ([14]; see the section on “Automated Metrics 
for End-to-End Architectures”). However, building such systems requires training 
data (i.e., example conversations) from which to learn, which may not be available 
in all domains, and can be prohibitively expensive to collect. Moreover, it is difficult 
to control the outputs of machine learning models, and so deploying such systems 
in the context of healthcare applications may be a risky endeavor.

 History of Dialog Systems in Healthcare

Chapter 2 reviewed the history of AI in medicine; here we focus on the development 
of dialog systems specifically. One of the very earliest dialog systems developed 
was produced as a demonstration of a patient-facing psychotherapy counseling 
agent (see Chap. 2). The ELIZA system was developed to simulate the behavior of 
a Rogerian psychotherapist, in which the patient and the computer exchanged typed 
text messages [15]. Although ELIZA was not intended to be used for actual therapy, 
similar systems have been proven effective for therapy in which the system is essen-
tially prompting a patient to think aloud and work through his or her own problems 
[16]. An example conversation with ELIZA is shown in Fig. 9.3.

Colby developed an ELIZA-like system that was designed to use Cognitive 
Behavioral Therapy to treat individuals with depression. In addition to providing 
typed text counseling with patients, the system provided text-based educational 
materials about depression [17]. These systems are characterized by system 
responses that are only coherent with the immediately preceding user utterance, 
implemented using pattern-response rules that are matched to the user input with 
regular expressions, and template-based text generation of system responses. They 
also use a variety of techniques to maintain the illusion of coherent dialog, includ-
ing: maintaining system-initiated dialog, having most system outputs prompt the 
user with open-ended questions; relying on the user’s sense-making ability to infer 

1. ELIZA: Hello, I am Eliza.
2. User: Hi.
3. ELIZA: How are you today.. What would you like to discuss?
4. User: I’ve been feeling a little depressed lately.
5. ELIZA: Can you elaborate on that?
6. User: I’m just not myself. I find it hard to get motivated.
7. ELIZA: Did you come to me because you are just not yourself. You find it hard to get motivated?
8. User: Yes, that’s right.
9. ELIZA: I see.

Fig. 9.3 Example Conversation with ELIZA
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coherent explanations for the system’s outputs; and reflecting the user’s inputs back 
to them with minor wording changes in order to give the illusion of understanding 
what the user is saying. This approach to dialog system implementation is widely 
used in “chatbots” deployed on the web for entertainment, marketing and sales 
applications, and has given rise to an open standard chatbot implementation lan-
guage (AIML [18]).

Development dating from 1964 was also conducted on systems that could collect 
a medical history from patients [19]. Unlike ELIZA, these systems conducted 
system- initiated dialog only, asking patients a series of questions with highly- 
constrained patient input (mostly YES/NO questions) to drive branching logic. 
Research and development of these systems has continued, and some commercial 
tools are available, although they still have not attained wide use in clinical prac-
tice [20].

Some of the earliest work in physician-facing medical expert systems used 
system- initiated dialogue to interact with providers for decision support. MYCIN 
was an early rule-based expert system that identified bacteria causing an infection 
and recommended antibiotics [21] (see Chap. 2). It was designed to interact with 
physicians by asking a series of very constrained questions requiring one- or two- 
word responses. In fact, it was a desire to avoid having to implement natural lan-
guage understanding that led to the use of MYCIN’s core backward-chaining 
diagnostic algorithm.

By using a backward-chained approach, MYCIN controlled the dialogue and therefore 
could ask specific questions that generally required one- or two-word answers. ([21], p. 601)

MYCIN (and derivative projects) used various text generation techniques to pro-
duce their final output case summaries.

The sections on “Example Patient- and Consumer-facing Dialog Systems” and 
“Example Provider-facing Dialog Systems” provide more recent examples of 
patient- and provider-facing medical dialog systems.

In the last decade, deep neural network-based methods trained on massive cor-
pora have come to dominate Natural Language Processing (NLP) [22]. These meth-
ods have enabled highly accurate automatic speech transcription tasks [23] and 
improved NLP system performance across a variety of problems, including building 
conversational agents [24].

One means for building dialog systems entails specifying models that map user 
input utterances directly to output utterances (“end-to-end” systems). This can yield 
strong performance with respect to the fluency of outputs, but such systems can 
struggle to maintain coherence throughout a dialog [25]. While such text-to-text 
models have been used in the context of task-oriented dialog systems [26, 27], they 
may be more suitable to “general domain” conversational agents—i.e., general 
“chatbots”—as such models are not naturally amenable to guiding “goal-based” 
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dialog. This reflects the myopic optimization strategy used to estimate model 
parameters: Typically one aims to find parameters that make the model as likely as 
possible to produce the words comprising response utterances in the observed train-
ing data. This optimization criterion does not explicitly encode higher-order conver-
sational goals, which likely require explicit planning to achieve.

A common strategy to address this problem is to decompose dialog systems into 
independent modules, to be trained separately and combined in a pipeline. For 
example, one module might process user utterances, a second might then decide on 
an action to take, and a third might then generate a response, conditioned on this. 
Developing “end-to-end” methods that permit joint optimization of all components 
necessary for goal-based dialog is an active area of research [28]. We discuss arche-
typal modern machine learning models in the section on “Neural Network Methods 
and End-to-End Architectures”.

 Dialog System Technology

 Classic Symbolic Pipeline Architectures

Historically, dialog systems have been developed using a pipeline architecture, in 
which a user utterance is incrementally transformed into a representation that the 
core agent logic can provide a response to, followed by another series of processing 
stages to render the system output. These stages can include Automated Speech 
Recognition (ASR), multimodal integration, utterance understanding, dialog man-
agement, natural language generation, multimodal generation, and Text-To-Speech 
(TTS). Approaches to dialog management include finite-state automata, frames, 
and plan-based frameworks (Fig. 9.4).

Automated Speech Recognition (ASR) is responsible for transcribing the users’ 
speech input into one or more text representations. Speech recognition has improved 
significantly from single-speaker digit recognition systems in 1952 [29] to speaker- 
independent continuous speech recognition systems based on deep neural networks 
[30]. Currently, several open source ASR engines such as Pocketsphinx [31], Kaldi 
[32], and HTK [33] are available, but accurate speech recognition can require sub-
stantial processing power which cloud based services such as IBM Watson [34], and 
the Google cloud platform [35] provide. Although recent systems have achieved 
around 5% word error rates [36, 37], there are still some doubts regarding the use of 
ASR in applications such as medical documentation [38]. Goss et al [39] reported 
that 71% of notes dictated by emergency physicians using ASR contained errors, 
and 15% contained critical errors.

A Natural Language Understanding (NLU) module extracts a semantic repre-
sentation of the user’s utterance, which can then be used by the dialog manager to 
generate a system response. State-of-the-art statistical NLU systems often contain 
three main components: domain detection, intent detection, and slot tagging [40]. 
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Fig. 9.4 Pipeline dialog system architecture

The domain classifier identifies the high-level domain to which the user utterance 
belongs (e.g., symptoms, medications, or educational content). The intent classifier 
determines the specific intent of the user within the identified domain (e.g. report_
finding). Finally, the slot tagger extracts entity values embedded in the user utter-
ance (e.g. syndrome_name or severity_level). NLU is one of the most complex tasks 
in dialog systems for several reasons. First, ambiguity and synonymy are among the 
biggest challenges in identifying specific meanings in natural language. Second, 
natural language is context-dependent—the same utterance can have different 
meanings in different contexts. Third, spontaneous speech is often noisy with disflu-
encies (e.g., filled pauses, repairs, restarts).
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Dialog management is most typically implemented using finite state machines or 
layers of finite state machines, also referred to as hierarchical transition networks, 
particularly for applications in which the system maintains the conversational initia-
tive. In these systems, states typically represent system utterances and branches to 
next states are made in response to user responses. Layers in the hierarchy can be 
used to represent discourse segments, for example to satisfy a particular conversa-
tional goal. Dialog managers can also be frame-based, in which a current “frame” is 
used to guide the conversation by asking users for information to fill slots until 
enough information has been gathered for the system to take an action.

More advanced approaches to dialog management involve the explicit represen-
tation of user and system plans and goals, which is required to manage conversa-
tional phenomena such as: mixed-initiative dialog, in which either the user or the 
system can take control of the conversation at any time; proper handling of interrup-
tions and requests for clarifications; and indirect speech acts. Flexibly handling 
these phenomena requires representing and reasoning about the intentions that 
underlie system and user utterances, inferring the user’s goals and task plan, and 
dynamically synthesizing the system’s task plan. Inferring a user’s goals and task 
plan is necessary because, as exemplified by indirect speech acts, people’s utter-
ances do not always correspond directly to their communicative intent (e.g., as in 
“Do you have the time?”). Thus, plan-based theories of communicative action and 
dialog assume that the speaker's speech acts are part of a plan, and the listener's task 
is to infer it and respond appropriately to the underlying plan, rather than just to the 
utterance [41]. Synthesizing system task plans, including communicative and other 
actions, is necessary in complex applications in which all possible conversational 
contingencies (and their possible orderings) cannot be anticipated and scripted, but 
must be addressed in an incremental, reactive manner.

Dynamic planning and plan inference can be computationally very complex and 
difficult to develop, and thus have not been used much to date in fielded health dia-
log systems. However, they remain active areas of research, and a handful of health 
dialog systems that use these techniques have been developed for the application of 
clinical guidelines [42], for the automatic generation of reminders for older adults 
with cognitive impairment [43], for medication advice [44], and for diet promo-
tion [45].

One research project used a task decomposition planning formalism to drive 
health behavior change counseling dialog for exercise and diet promotion [46]. This 
formalism was based on the Shared Plans theory [47, 48], in which dialog is viewed 
as a collaboration in which participants coordinate their action towards achieving a 
shared goal. Discourse segments are defined by the sequence of sub-goals or atomic 
actions in a recipe that serve to elaborate a particular goal, and the only meaningful 
relationships among discourse segments are elaboration (goal expansion) and order-
ing of goals and actions. Figure 9.5 shows a portion of the plan tree for an exercise 
promotion dialog. Plan fragments that elaborate dialog goals into subgoals and 
atomic actions are referred to as recipes and are represented in ANSI/CEA-2018 
[49] (ANSI/CEA-2018 provides a standard declarative representation for tasks that 
can be decomposed in this manner). Figure  9.6 shows a portion of a high-level 
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Greeting Small Talk Review Status Counseling Pre Closing Good bye

Negotiate Goal

Recommend

Agent:

Based on your activity level, I suggest
gradually working up to 10,000 steps per
day over the next eight weeks

Patient:

OK.

Have Counseling Dialog

Fig. 9.5 Plan tree fragment for exercise promotion counseling dialog

task Negotiate

input parameters: behavior, target

outputs: goal

steps: 1. ComputeDesired
           2. Recommend
            3. Followup
            4. Confirm

task Recommend

input parameters: behavior, target, desired

outputs: response

precondition: (behavior=’exercise’ and

target =’long_term_goal’

adjacency pair:

agent utterance:

Based on your activity level, I suggest

gradually working up to ‹desired› steps per

day over the next eight weeks
…

Fig. 9.6 Example 
pseudocode for a 
high-level recipe and a 
low-level dialogue 
specification

recipe for behavior goal negotiation, and an example of an atomic dialogue turn that 
elaborates the “Recommend” subgoal for negotiating long-term exercise goals. The 
run-time planning system (based on the COLLAGEN collaborative dialog system 
[50]) starts with a top-level goal to have a counseling dialog, then incrementally 
elaborates the goal using recipes until atomic utterances are produced. This process 
results in a plan tree in which the root is the initial goal and the leaves are the utter-
ances produced by the agent and the user (Fig. 9.5). The planning process proceeds 
without backtracking, i.e., elaborations are never undone once they are added to the 
dialog plan tree.
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The most common approach to symbolic Natural Language Generation (NLG) 
is template-based text generation, in which an output utterance is represented as a 
string annotated with variables whose values are determined at runtime [51]. While 
relatively simple and straightforward, this approach does not offer much flexibility 
or expressivity. In the most general case, text generation can involve word-by-word 
synthesis of utterances based on a grammar and dictionary, discourse context and 
world knowledge, and is itself decomposed into another pipeline of processing 
stages [51] (Fig. 9.4).

Content determination is the first stage, and involves deciding what information 
should be communicated in the output, beyond that dictated by the dialog manager. 
Document structuring decides how chunks of text should be grouped together in 
one or more output utterances and how they should be related in rhetorical terms. 
Sentence planning involves: selection of the specific words or other linguistic 
resources that should be used to express the selected content; deciding what expres-
sions should be used to refer to entities; and deciding how structures created by 
document planning should be mapped onto linguistic structures, such as utterances 
or conversational turns.

The last step of NLG, referred to as surface realization, involves turning the 
internal representations produced during sentence planning into the text of one or 
more utterances. Research has also been conducted into generation of multi-modal 
system outputs (speech or text plus accompanying nonverbal behavior for an ECA, 
or graphics to help illustrate a concept to be conveyed) although, as with multi- 
modal input understanding, this has not been used widely in health dialog systems 
to date.

Finally, Text-To-Speech (TTS) involves the conversion of utterance text into an 
acoustic signal. TTS is now a very mature technology and the quality and natural-
ness has improved significantly over the last decade, producing understandable 
speech for a wide range of languages. Speech Synthesis Markup Language (SSML) 
enables the annotation of utterance text with tags that can manipulate speed, pitch, 
volume, and other aspects of prosody to produce more expressive speech [52].

 Neural Network Methods and End-to-End Architectures

In the past decade, neural networks have emerged as the dominant model class for 
natural language processing (NLP) [22], as they have become the dominant machine 
learning formalism for many areas of modeling in medicine (see Chap. 1). Neural 
network-based NLP has in turn given rise to neural conversational models [25, 53–
55]. Departing from the classical symbolic approaches reviewed above, neural mod-
els represent utterances as dense, continuous vectors (i.e., learned representations). 
Neural language models [56] are typically used in such architectures to generate 
responses conditioned on a representation of context, e.g., the most recent utterance.

Completely “end-to-end” systems forego explicit planning and learn to map 
directly from an input to an output utterance via a deep neural network [57]. 
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Bidirectional
encoder

Autoregressive
decoder

A patient utterance A response

Fig. 9.7 High-level 
schematic of a Seq2Seq 
model for dialog 
generation

Sequence-to-sequence architectures are currently dominant neural models for dia-
log; these use neural network modules to map input to output texts. This is typically 
accomplished with an encoder-decoder architecture. The encoder learns to com-
press inputs into a dense representation; this is then passed onto the decoder, which 
is responsible for conditionally generating a response. Because the decoder must 
generate text, it is typically defined as an auto-regressive (conditional) language 
model, which is to say that it generates outputs one word at a time in a left-to-right 
fashion. Figure 9.7 provides a high-level schematic of this approach.

Simple sequence-to-sequence approaches have the advantage of minimizing the 
manual effort that must be expended to build new conversational systems; they are 
induced entirely from training data, and so do not require explicit rule- or template- 
formulation. However, this brings inherent drawbacks. Chief amongst them is the 
reliance on large, high-quality training corpora. In addition, such models struggle to 
make meaningful use of dialog history [58]. With respect to task-oriented dialog 
systems, end-to-end sequence-to-sequence models can learn to take particular 
actions only implicitly, which makes them difficult to interpret and control.

Some work has attempted to make neural dialog models more explicitly task- 
oriented by learning policies via (deep) reinforcement learning [25, 59]. Other 
recent efforts have aimed to combine the strengths of end-to-end and more explic-
itly goal-oriented approaches [28]. Unifying the symbolic approaches discussed 
above with modern, data-driven neural network models for dialog is likely to remain 
an active area of research in the coming years.

 Approaches to Dialog System Evaluation

Evaluating dialog systems is important in general, but is especially crucial in safety- 
critical areas such as medicine. Due to the multi-faceted nature of dialog systems, 
and the inherent complexity of natural language, evaluation is typically multi- 
dimensional. Of course, medical applications typically have well-defined health 
outcomes that are ultimately of greatest importance, such as knowledge gain for 
health education systems, or objective health outcomes for conversational agents 
that promote health behavior change, but here we review application-independent 
performance metrics and methods.
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 Evaluation of Pipeline Architectures

In classic pipeline architecture-based systems, a “Wizard-of-Oz” methodology is 
commonly used to replace one or more pipeline components with a human “wizard” 
(unbeknownst to test subjects) so that the overall system can be evaluated prior to 
full implementation, or to provide a baseline comparison for a fully-automated sys-
tem [60]. Dialog from these sessions is recorded and analyzed for several purposes, 
including: early characterization of domain dialogs; characterization of user 
responses in particular contexts of interest; assessment of user acceptance of and 
attitude towards a planned system; and assessment of utility and efficacy of a 
planned system. Although ideally, user-system interaction will closely follow 
provider- patient interaction, it has been observed that in many situations users speak 
and otherwise behave differently when interacting with a computerized system than 
when with another human (e.g., they simplify their speech patterns) [61]. In these 
situations, Wizard-of-Oz testing is particularly important, since the study of 
provider- patient interaction will not correctly characterize these dialogs.

Pipeline architectures also have well-established evaluation metrics for certain 
components. For example, Word Error Rate (WER) is often used as one of the 
most common figures of merit for ASR modules.

 Automated Metrics for End-to-End Architectures

Manual assessment of model outputs remains the gold standard for evaluating 
Natural Language Processing (NLP) models for text generation tasks broadly (e.g., 
machine translation, abstractive summarization), and for dialog systems in particu-
lar. Manual assessment involves having humans interact with a dialog system, or 
review transcripts of interactions or text generation outputs, and provide subjective 
and objective performance evaluations. However, enlisting domain experts to per-
form such assessments is time-consuming and expensive. Manual evaluation is 
therefore impracticable for model development, which typically requires iterative 
refinement. For this reason, contemporary work on NLP models for text generation 
tasks tends to favor use of fully automated metrics to facilitate model development.

Such metrics assume access to “reference” texts written by humans and aim to 

measure some notion of similarity between a model output yi
  for a given input xi 

and the corresponding reference text yi. In the context of dialog systems, xi might be 
an utterance and yi a reference response. Intuitively, we would like a metric that is 

high if yi


 is similar to yi. Most automated metrics essentially measure similarity as 

some function of word overlap between the model output and reference.
BLEU (short for Bilingual Evaluation Understudy) is one such metric, first pop-

ularized in the context of automated machine translation. The motivating dictum 
behind BLEU is “The closer a machine translation is to a professional human trans-
lation, the better it is” [62]. To operationalize this intuition, BLEU computes n-gram 
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precision,1 for varying n; that is, it measures the number of n-grams in a generated 
output that also appear in the corresponding reference. The precision values for dif-
ferent n-gram lengths are then combined using a weighted average. This aggregate 
precision score is subsequently multiplied by a “brevity penalty” factor, which is 
intended to measure whether outputs are comparable in length to reference sum-
maries. Meteor [63] is a similar metric, also popular in machine translation: This 
proposes several modifications intended to address limitations of BLEU. Both of 
these metrics have been shown to correlate reasonably well with human assess-
ments of translation system outputs [62, 63].

Recall Oriented Understudy for Gisting Evaluation (ROUGE) [64], another 
automated metric, is perhaps the dominant choice for evaluating summarization 
systems. It is—as the name suggests—more focused on recall, i.e., it is high when 

yi


 contains as many n-grams as possible that also appear in yi. Typically one calcu-

lates ROUGE-N for a particular n-gram list; for example, ROUGE-1 tallies unigram 
recall of the model output with respect to the reference. In the context of automated 
summarization, ROUGE has been shown to correlate with human judgements of 
quality [64], although it has been noted that it does not reliably measure higher- 
order properties of outputs such as factual accuracy [65].

The above automated measures of generated outputs were not designed for eval-
uating dialog generation systems, but they are nonetheless often used for this when 
“reference” response utterances are available. However, in the context of evaluating 
dialog systems such metrics have been shown to poorly correlate with human judge-
ments, and so should be interpreted accordingly [14]. Developing better automated 
metrics for evaluating automatically generated dialog responses is an active area of 
research [66, 67].

 System-Level Evaluation

There are a number of approaches for evaluating overall dialog system perfor-
mance (see Chap. 17 for a more general discussion of evaluation issues). From a 
usability perspective, metrics such as task completion rate, user satisfaction, effi-
ciency, and learnability are relevant. One influential dialog system evaluation frame-
work (PARADISE) attempts to combine these into a single metric [68]. PARADISE 
uses a decision-theoretic framework to combine evaluations of system accuracy 
(success rate at achieving desired conversational outcomes) with the “costs” of 
using a system—comprised of quantitative efficiency measures (number of dialog 
turns, conversation time, etc.) and qualitative measures (e.g., number of repair 
utterances)—to yield a single quality measure for a given interaction. Weights for 
the various elements of the evaluation are determined empirically from overall 

1 An n-gram is just a sequence of n words or “tokens”, e.g., “bank” is a 1-gram (or “unigram”), 
“river bank” is a 2-gram (“bigram”), and so on.
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Table 9.1 Example conversational agent usability heuristics (from [71])

Heuristic Explanation

Visibility of 
system status

The system should keep users informed about what is going on, through 
appropriate feedback within reasonable time, without overwhelming the user

User control 
and freedom

Users often choose system functions by mistake and will need an option to 
effortlessly leave the unwanted state without having to go through an extended 
dialogue. Support undo and redo

Context 
preservation

Maintain context preservation regarding the conversation topic intra-session, 
and if possible inter-session. Allow the user to reference past messages for 
further interactions to support implicit user expectations of conversations

assessments of user satisfaction for a sample set of conversations, and the evaluation 
formula can be applied to sub-dialogs as well as to entire conversations to enable 
identification of problematic dialog fragments.

Two other qualitative evaluation methods were developed on the TRINDI and 
DISC projects. They provide criteria for evaluating a dialog system’s competence in 
handling certain dialog phenomena. The TRINDI Tick-List consists of three sets of 
questions that are intended to elicit explanations describing the extent of a system’s 
competence [69]. The first set consists of eight questions relating to the flexibility of 
dialog that a system can handle. For example, the question “Can the system deal 
with answers to questions that give more information than was requested?” assesses 
whether the system has any ability to handle mixed-initiative dialog. The DISC 
Dialog Management grids [70] include a set of nine questions, similar to the Trindi 
Tick-List, that are intended to elicit some factual information regarding the potential 
of a dialog system.

Langevin et al. recently developed a set of usability heuristics to guide the evalu-
ation of text- or speech-based conversational agents [71]. Usability heuristics are 
used to guide “expert evaluation” of an interface, in which a designer uses them as 
a checklist to draw their attention to common classes of usability problems. Derived 
from Nielsen’s classic usability heuristics [72], the 11 new heuristics were found to 
be more effective at identifying problems with conversational agents than Nielsen’s 
original set. Examples of the heuristics are shown in Table 9.1.

 Example Patient- and Consumer-Facing Dialog Systems

A number of embodied conversational agents have been developed to provide health 
education and health behavior change counseling across several health conditions. 
For example, an ECA was developed as a virtual discharge nurse who explained 
their hospital discharge and home care instructions (Fig. 9.2) [73, 74]. The agent 
was provided on a touch screen kiosk to patients while they were in their hospital 
beds, and spent 30–60  min reviewing a hospital discharge booklet with them, 
including information about medications, follow-up appointments, and self-care 
procedures. Patient understanding was confirmed using comprehension checks, and 
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at the end of the session a report was printed for the human discharge nurse that 
indicated questions the patient still had that he or she could address. A randomized 
controlled trial (RCT) was conducted with 764 patients on a general medicine floor 
at an urban safety net hospital, aged 49.6, 49.7% with inadequate health literacy, 
comparing the virtual nurse to standard care. Among the intervention group, 302 
participants actually interacted with the agent, and only 149 completed all question-
naires, due to logistical challenges in completing the study in a busy hospital envi-
ronment when patients were ready to go home. Patients reported very high 
satisfaction and working alliance with the agent, and more patients preferred talking 
to the agent than their doctors or nurses in the hospital.

Several speech-based conversational agents have also been developed and evalu-
ated in RCTs [43, 75, 76]. For example, the Telephone-Linked Care (TLC) systems 
developed by Friedman and colleagues at Boston University used recorded speech 
output, and either DTMF or ASR for user input. TLC behavior change applications 
have been applied to changing dietary behavior [77], promoting physical activity [78], 
smoking cessation [79], and promoting medication adherence in patients with depres-
sion [80] and hypertension [81]. TLC chronic disease applications have been devel-
oped for chronic obstructive pulmonary disease (COPD) [82], and coronary heart 
disease, hypercholesterolemia, and diabetes mellitus [81]. All of these systems have 
been evaluated in RCTs and most were shown to be effective on at least one outcome 
measure, compared to standard-of-care or non-intervention control conditions.

There are now many commercially-successful patient- and consumer-facing dia-
log systems. Woebot, is a text-based chatbot designed to alleviate anxiety and 
depression using a range of counseling techniques, and was recently demonstrated 
to be effective at reducing substance misuse [83]. Clear Genetics produces a text- 
based chatbot that provides a range of genetics counseling functions, including 
administration of informed consent for genetic testing [84]. In addition, many dia-
log systems have been developed as add-on “skills” for speech-based conversational 
assistants such as Alexa. At the time of this writing, Amazon lists over 2000 skills 
(task-specific modules that can extend Alexa’s functionality) in their Health and 
Fitness category, all of which can be considered patient- and consumer-facing health 
dialog systems.

 Example Provider-Facing Dialog Systems

There are far fewer examples of provider-facing medical dialog systems in the lit-
erature, and these have largely been early research prototypes. For example, the 
HOMEY system is a decision support tool that advises physicians on whether a 
patient should be referred to a cancer specialist [85]. Laranjo et al. describe several 
additional dialog systems that interact with both patients and providers [86]. Dialog 
systems may be less acceptable to health providers than to patients and consumers 
because they are slower to use and more error-prone compared to functionally- 
equivalent graphical user interfaces.
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 Safety Issues in Dialog Systems for Healthcare

Dialog systems that provide advice to healthcare providers can tolerate imperfect 
performance, since providers presumably have the expertise to recognize unsafe 
recommendations. However, due to the inherent ambiguity in natural language, lack 
of user knowledge about the expertise and natural language abilities of a conversa-
tional agent, and potentially misplaced trust, great care must be taken to ensure 
patients and consumers do not put themselves in situations in which may they act on 
information mistakenly provided by a conversational agent that could cause harm. 
To demonstrate these potential safety issues, a study was conducted using three 
widely-available disembodied conversational agents (Apple’s Siri, Google Home, 
and Amazon’s Alexa). Laypersons were recruited to ask these agents for advice on 
what to do in several medical scenarios provided to them in which incorrect actions 
could lead to harm or death, and then report what action they would take. Out of 394 
tasks attempted, participants were only able to complete 42.6% (168). For those tasks, 
29.2% (49) of reported actions could have resulted in some degree of harm, includ-
ing 16.1% (27) that could have resulted in death, as rated by clinicians using a 
standard medical harm scale [87]. The errors responsible for these outcomes were 
found at every level of system processing as well as in user actions in specifying 
their queries and in interpreting results (see Fig. 9.8 for an example). The findings 
from this study imply that unconstrained natural language input, in the form of 
speech or typed text, should not be used for systems that provide medical advice 
given the state-of-the-art. Users should be tightly constrained in the kinds of advice 
they can ask for, for example, through the use of multiple-choice menus of utter-
ances they are allowed to “say” in each step of the conversation (e.g. as in Fig. 9.2). 
In addition, unconstrained generative approaches to dialog generation pose addi-
tional complications; these may yield offensive or medically inaccurate outputs, for 
example (as discussed in the section on “Approaches to Dialog System Evaluation”).

 State of the Art: What We Currently Can and Can’t Do

There are currently several commercially-available toolkits for developing state- 
machine- based dialog systems in which the system maintains initiative, and con-
strained or unconstrained user inputs can be reliably mapped to a small number of 

User: Siri, I'm taking Oxycontin for chronic back pain. But I'm going out tonight. How many
          drinks can I have?

Siri:  I've set your chronic back pain one alarm for 10:00 P.M.
User: I can drink all the way up until 10:00? Is that what that meant?
RA:  Is that what you think it was?
User: Yeah, I can drink until 10:00. And then after 10 o'clock I can't drink.

Fig. 9.8 Example of medical advice from siri that was rated as potentially fatal (excerpt from 
[87]) (RA is the research assistant)
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options in each state. This state-based model is exemplified by standard dialog man-
agement languages (e.g., VoiceXML for speech-based systems [88]) and commer-
cial dialog-management tools (e.g., Google’s DialogFlow [89]). As described in the 
section on “Example Patient- and Consumer-facing Dialog Systems”, there are also 
several commercial products that use this approach for consumer- and patient- 
facing health education and counseling.

However, we cannot reliably support general, unconstrained user input in 
mixed- initiative conversations, nor any of the other conversational phenomena 
described in the section on “Introduction to Dialog Systems”, at least not to the 
degree that people can.

 Future Directions

It is unclear if end-to-end approaches will ever be capable of sustaining coherent 
dialog over many utterances given that the discourse context alone becomes combi-
natorically large. Hybrid systems that use the best capabilities of the pipelined and 
neural approaches combined represent more promising approaches, at least in the 
near-term. Consistent with the recurrent theme of combining machine learning and 
symbolic approaches mentioned elsewhere in this book, one approach is to bring 
more machine learning-based components into the classic symbolic pipeline. Going 
forward, key questions include: How can we unify end-to-end neural systems with 
symbolic planning-based approaches? Conversely, might we better represent and 
exploit (long term) context in modern neural dialog systems?

Patient- and consumer-facing dialog systems that support unconstrained natu-
ral language input are certainly preferred to those that are more constrained, since 
patients can express themselves freely and may be able to communicate more 
nuanced information. However, these systems represent a safety risk as described 
in the section on “Safety Issues in Dialog Systems for Healthcare”. The identifi-
cation and mitigation of unsafe medical dialog remains an important area of 
research and a problem that must be addressed before these systems can reach 
their potential.

There are several active research areas dialogue systems. For example, in pipe-
line architectures, incremental processing, in which system responses are generated 
incrementally while a user is producing their utterance, allows for much faster sys-
tem response time, but requires re-architecting how the pipeline works [90]. 
Multiparty interaction represents another important area of research to support 
group counseling [91] or three-way patient-clinician-agent interactions. Multimodal 
dialog with ECAs or humanoid robots, in which user verbal and nonverbal behavior 
can be used to support conversational processes and allow users to better express 
themselves [92], also represents an active area of research.

These advances will enable the development of automated health providers and 
counselors that can provide complex information to patients and consumers in a 
natural, fluid, and intuitive way, tailored to each user and situation, and that do not 
require users to dumb down and simplify their language and requests, such as the 
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one shown in Fig. 9.1. This will enable routine patient education and counseling 
tasks, such as administration of informed consent, explanation of medications and 
medical procedures, and explanation of discharge instructions, to be fully 
automated.

 Conclusion

In this chapter, we have provided a review of the state of medically relevant dialog 
systems, including their current capabilities and limitations, and directions of ongoing 
and future research and development. Development of this technology is important 
for the delivery of complex information to patients and consumers, but is particularly 
important for those with low health or computer literacy who may struggle with text-
heavy graphical user interfaces. While these systems have great potential for improv-
ing health, attention must be paid to the risks inherent in using unconstrained text or 
speech input in situations in which misunderstandings can lead to harm.

Questions for Discussion

• How do pipeline and rule-based systems differ from “end-to-end” neural 
approaches?

• Why might existing automated metrics like ROUGE fail to reliably measure the 
factual accuracy of utterances?

• How can unsafe medical dialog be identified and mitigated?
• What kinds of medical applications would benefit most from embodiment by the 

conversational agent?
• What kinds of medical applications would make the relative slowness of dialog 

systems acceptable to clinicians?

Further Reading

Chattopadhyay D, Ma T, Sharifi H, Martyn-Nemeth P. Computer-controlled virtual 
humans in patient-facing systems: systematic review and meta-analysis. J Med 
Internet Res. 2020;22(7):e18839 [93]. 

• This article provides a comprehensive review of patient-facing embodied conver-
sational agents in medicine.

Laranjo L, Dunn AG, Tong HL, Kocaballi AB, Chen J, Bashir R, et al. Conversational 
agents in healthcare: a systematic review. J Am Med Inform Assoc. 
2018;25(9):1248–58 [86].

• This article provides a review of conversational agents in medicine that use 
unconstrained natural language input.

Bickmore T, Trinh H, Olafsson S, O'Leary T, Asadi R, Rickles N, et al. Patient and 
consumer safety risks when using conversational assistants for medical 
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information: an observational study of Siri, Alexa, and Google Assistant. J Med 
Internet Res. 2018;20(9):e11510 [87].

• This is an empirical study of worst-case safety issues when patients or consum-
ers use conversational agents for actionable medical advice.

Grosz B, Pollack ME, Sidner CL. Discourse. In: Posner MI, editor. Foundations of 
cognitive science. Cambridge: MIT Press; 1989 [94].

• This chapter provides an excellent primer on basic issues in the study of discourse.

Sordoni A, Galley M, Auli M, Brockett C, Ji Y, Mitchell M, et al. A neural network 
approach to context-sensitive generation of conversational responses. In Proceedings 
of the 2015 Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, pages 196–205, 
Denver, Colorado. Association for Computational Linguistics [95].

• An early neural dialog system that is illustrative of approaches to follow.

Sankar C, Subramanian S, Pal C, Chandar S, Bengio Y. Do neural dialog systems 
use the conversation history effectively? An empirical study. In Proceedings of the 
57th Annual Meeting of the Association for Computational Linguistics, pages 
32–37, Florence, Italy. Association for Computational Linguistics [96].

• An examination of how well current neural based approaches can harness con-
versational history to inform utterances/responses.
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Chapter 10
Integration of AI for Clinical Decision 
Support

Shyam Visweswaran, Andrew J. King, and Gregory F. Cooper

After reading this chapter, you should know the answers to these questions:
• What are the key challenges faced by clinicians that motivate integrating AI into 

clinical decision support?
• What are the main types of AI that have been developed for clinical decision sup-

port? How does data-derived AI clinical decision support differ from knowledge- 
based AI clinical decision support?

• What are typical degrees of automation and integration of AI in clinical decision 
support?

• Describe the types of clinical tasks that can be supported by AI clinical decision 
support?

• What are the pitfalls of data-derived clinical decision support?

Clinical decision support (CDS) aims to improve health and healthcare by provid-
ing clinicians, healthcare workers, and patients with situation-specific knowledge 
that aids critical clinical activities such as risk assessment, diagnosis, prognosis, and 
selection of therapy [1]. CDS systems assist clinicians in making decisions about 
patient care in various ways, such as by providing interpretations of patient data and 
clinical images, event monitoring and alerts, and recommendations. Some CDS sys-
tems guide patients and caregivers who integrate the clinical guidance from the 
CDS with their personal preferences to make informed decisions.
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Artificial intelligence (AI) enables computer systems to perform tasks that nor-
mally require human intelligence (see Chap. 1 for detailed definitions of AI). 
Because clinical decision-making predominates in medical practice, most applica-
tions of AI in clinical care are intended to enhance the quality of clinical decisions. 
Since the beginnings of AI in the 1950s, AI in medicine has been used increasingly 
for CDS, although the type of AI that drives CDS systems has evolved over the 
decades (see Chap. 2 for a historical account of AI in medicine). In the current era, 
modern AI that leverages large amounts of healthcare data to construct computa-
tional models is increasingly being used in such systems.

This chapter provides an overview of the rapidly developing field of artificial 
intelligence-based clinical decision support (AI-CDS) and the associated promis-
ing research efforts; it focuses on CDS that is targeted to clinicians, provides the 
motivation for integrating AI into CDS, describes the types of AI that are being 
developed for CDS systems, and explores a range of clinical tasks that AI-CDS can 
support. While the potential benefits of AI-CDS are enormous, significant chal-
lenges remain that must be overcome to ensure high-quality healthcare. This chap-
ter describes some of the challenges (especially those stemming from big data), 
summarizes related regulatory developments, and closes with several predictions 
regarding future directions for AI-CDS.

 Challenges Faced by Clinicians

Excellent clinical decision-making requires (1) up-to-date, pertinent medical knowl-
edge, (2) access to accurate and complete patient data, and (3) good decision- 
making skills. CDS systems are increasingly important in aiding clinical 
decision-making due to the following key challenges faced by clinicians:

Exponential Growth of Medical Knowledge Provision of optimal care is depen-
dent on the clinician’s ability to obtain relevant, up-to-date knowledge. The body of 
medical knowledge in the era of Galenic medicine appears to have been quite static 
during the lifetime of a clinician (the Galenic era lasted for more than 1300 years 
from 300 CE to the seventeenth century, when Galen, a Greek physician, heavily 
influenced medicine). Today, however, medical knowledge is increasing in volume 
and complexity. In 1950, the doubling time of medical knowledge was estimated 
to be 50 years; it decreased to 7 years in 1980 and to a mere 73 days in 2020 [2]. 
Furthermore, the traditional histopathological classification of disease, which has 
been the way medical knowledge has been organized and taught for over a cen-
tury, is giving way to a more fine-grained molecular and functional subtyping of 
disease. The volume and rapidly evolving genomic, proteomic, metabolomic, and 
other - omic characteristics of disease and health make it impossible for a clinician 
to remember and apply them in clinical care without some form of assistance.

Rapid Accumulation of Patient Data The amount of clinical data per individual 
is rising, driven by the widespread adoption of electronic health record (EHR) 
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systems and the rapid growth of new laboratory tests, investigations, and imaging 
that are increasingly used in clinical care (see Chap. 3). For example, in critical 
care, it is estimated that a patient generates an average of 1460 new data points 
daily [3], and a clinician is exposed to an average of 4380 data points during a shift 
of 12 h [4]. The large amount of patient data has led clinicians to spend more time 
reviewing and collating data in the EHR that are pertinent to the current clinical 
context.

Increase in Inference Complexity Human clinicians have limited cognitive 
capacity and can simultaneously consider only a few variables at a time in decision- 
making (see Chap. 5). With the exponential growth of medical knowledge and the 
rapid accumulation of patient data, good medical decision-making requires the con-
sideration of many facts. With individual genomic and proteomic data becoming 
available for making decisions, inevitably, the number of salient facts to consider 
for a clinical decision will rise steeply [5]. As the number of facts to consider for 
clinical decision-making outstrips human cognitive capacity, CDS systems are 
needed to aid the clinician [6] (see Chap. 5).

Clinical Data Capture Clinicians, particularly in the United States, face an 
increasing amount of clinical documentation that reduces the time available for 
direct patient care. For example, primary care physicians spent 42% of their time 
(5.9 h of an 11.4-h workday) in the EHR, of which half the time is spent on docu-
mentation, order entry, billing, and coding [7].

 Artificial Intelligence-Based CDS

AI has a long history that traces its modern roots to the 1956 Dartmouth meeting, 
where computer scientists discussed the notion of AI with the ultimate aim of 
building machine systems that can perform human-like intellectual and cognitive 
tasks (see Chap. 2). Machine learning (ML), which has come to constitute the 
largest subset of AI in recent years, refers to AI systems that can achieve some 
aspects of human-like intelligence without being explicitly programmed by 
human authors. In particular, deep learning, an important subfield of ML, relies 
on learning large neural networks, often from massive datasets (See Chaps. 1 and 
6). Since the inception of AI, medicine has been identified as one of the most 
promising application areas. Many AI-CDS systems have been described and 
implemented for a panoply of tasks in medicine, from risk assessment and diag-
nosis to prognosis and therapeutics to patient monitoring and interpretation of 
human genomes.

The typical structure of an AI-CDS system has two main components: a knowl-
edge component that represents medical knowledge in a computable form and an 
inference component that applies the knowledge to a patient’s data to provide deci-
sion support (see Fig. 10.1). Different ways have been developed for representing 
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Fig. 10.1 The key 
components of a 
knowledge-based AI-CDS 
system include a 
knowledge base such as 
expert-derived rules and an 
inference mechanism for 
clinical application such as 
chained inference for rules. 
The key components of a 
data-derived AI-CDS 
include a model, such as a 
data-derived neural 
network, and an inference 
mechanism for clinical 
application, such as 
forward propagation in a 
neural network model

knowledge, such as rules and Bayesian networks, and a variety of inference mecha-
nisms have been created, including chained inference for rules and probability cal-
culations for Bayesian networks. Historically, the knowledge base is explicitly 
derived from human experts. With the advent of ML and deep learning, the knowl-
edge component is replaced with computational models, such as classification trees 
and neural networks that capture relations among domain concepts. Models are then 
applied to a patient’s data to provide outputs such as predicting a clinical outcome. 
Typically, models are derived from data and often big data. We can view a knowl-
edge base as constituting a model as well. By doing so, models become a unified 
representation that can be constructed from data, knowledge, or both. We will refer 
to systems in which models are derived primarily from data as data-derived sys-
tems. Similarly, knowledge-based systems will refer to systems derived primarily 
from human knowledge (see Chap. 4).

Types of AI-CDS Broadly speaking, AI-CDS can be categorized into knowledge- 
based and data-derived systems (see Fig. 10.1). Early AI-CDS systems that were 
developed in the 1970s and 1980s used knowledge-based approaches in which med-
ical knowledge represented as rules, expert constructed Bayesian networks, and 
semantic networks are stored in a knowledge base. In rule-based systems (Chaps. 2 
and 4), knowledge is expressed in IF … THEN ... expressions; for example, in a 
diagnostic system, the IF part would typically encode symptoms, and the THEN 
part would encode diseases that manifest those symptoms. Knowledge-based 
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AI-CDS enjoyed early success and AI-CDS systems were used, for example, to 
choose appropriate treatments, interpret electrocardiograms, and generate diagnos-
tic hypotheses in complex clinical scenarios. Their key advantages include knowl-
edge that is represented in a form that is easy for clinicians to comprehend and the 
ability to explain inference in clinically meaningful ways (see Chaps. 1, 4, and 8). 
However, the construction of knowledge bases is typically manual, which can be 
time-consuming and tedious, and updates to the knowledge are also manual and 
slow. Additionally, the construction of stores of numerical knowledge, such as prob-
abilities, as for example, in Bayesian networks, is tedious and difficult.

The data-derived approach to developing AI-CDS systems began in the 1990s. In 
these systems, knowledge of the earlier AI-CDS was replaced by models that were 
automatically derived from data. Typically, these models are computational objects 
that have structural and numerical components. For example, in a neural network 
model, the network architecture consisting of connections among layers of nodes 
constitutes the structure, and the weights assigned to connections constitute the 
numerical component. ML and deep learning methods (see Chap. 6) have been used 
to derive a wide range of models. ML methods have been developed to derive from 
data rules and probabilistic networks, resembling manually constructed knowledge- 
based AI-CDS models. The key advantages of data-derived AI-CDS include the 
ability to rapidly construct models that can have excellent performance. A key dis-
advantage is that the models are often opaque to human experts, and the explanation 
of inference using these models remains impenetrable to human users (see Chap. 8).

The impetus for the widespread application of ML to medical data came from 
advances in data availability, the development of a broad range of ML methods, and 
powerful and ubiquitous computing capability. First, data on health and disease are 
increasingly available and include a broad range of data types. In addition to experi-
mental data that are typically collected in research studies under controlled condi-
tions, observational data are becoming available from sources such as EHRs, social 
media, and monitoring through mobile smartphones. Second, a broad range of ML 
methods has been developed and is readily available as computer programs for 
application. Third, access to faster and ever more powerful computers is becoming 
inexpensive and ubiquitous.

Until recently, data-derived AI-CDS systems were static, implying that the com-
putable knowledge learned from data is not updated. Static AI-CDS provides the 
same result each time the same input is provided, and they do not evolve over time 
and do not use new data to alter their results. This approach has the limitation that a 
static model may become obsolete when the conditions in which it was applicable 
change, for example, changes in the characteristics of a hospital’s patient popula-
tion. This limitation has led to the development of adaptive AI-CDS in which the 
CDS is dynamic in that it can learn and change performance over time, incorporat-
ing new data and new methods for learning from data [8]. An adaptive CDS that 
predicts the risk of cardiovascular disease would refine the predictive model in sev-
eral ways: for example, the model might be slightly different at each institution 
where it is deployed, reflecting geographic or population variations, or an 
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institution’s model may be continuously updated based on more recent data from 
that institution.

Machine Learning and Data-Derived AI-CDS Systems As described in the pre-
vious section, data-derived models typically consist of structural and numerical 
components. While most models are derived automatically from data using ML 
approaches, they can be hand-crafted by human experts or constructed by a hybrid 
process where the model structure is hand-crafted, and the numerical component is 
derived automatically from data. ML models capture patterns in data, and these pat-
terns are often used to make predictions and also may lead to the discovery of new 
knowledge. ML methods can be categorized broadly into supervised, unsupervised, 
semi-supervised, deep, and causal learning (see also Chap. 6).

Supervised ML leverages data that contain cases that consist of input variables 
(such as symptoms, signs, and laboratory test values) and corresponding  output 
labels (such as the presence or absence of myocardial infarction). By analyzing the 
patterns in the data, supervised ML constructs a model that seeks to produce the cor-
rect output when provided with the input on new cases. When the output is discrete 
and has a limited number of labels (e.g., presence or absence of myocardial infarc-
tion), the supervised ML is called classification. When the output is numerical and 
has a large number of values (e.g., height), the supervised ML is called regression.

In contrast to supervised ML, unsupervised ML uses data that contain cases 
with only input variables but no output labels. Unsupervised ML infers patterns in 
the data such as clusters, outliers, and low-dimensional representations. Clusters are 
groups of cases that are similar in some way. Outliers are cases that are very differ-
ent from the other cases in the data. Low-dimensional representations represent 
cases with a smaller number of features (variables) than are present in the raw data.

Semi-supervised ML is concerned with learning from a combination of data 
that contain outputs (e.g., diagnostic labels) and data that do not. This type of ML 
extends the applicability of both supervised and unsupervised ML, which tradition-
ally can use only labeled and unlabeled data, respectively.

The current advances in ML are largely driven by deep learning, which involves 
training artificial neural networks with many layers on large amounts of data. 
Compared to the other types of ML described so far, deep learning has the advan-
tage of automatically selecting relevant features in the data, creating complex fea-
tures from simpler ones, and deriving a large number of relations, both simple and 
complex, from big datasets.

Another advance in ML that is particularly applicable to medicine is personalized 
ML. The typical ML approach is to derive a single model from training data, such that 
the model is optimized to perform well on average on all future individuals. This 
population ML approach has been quite successful; however, it may ignore impor-
tant differences among patients, such as differences in the mechanisms causing dis-
ease or in treatment response. An approach for better capturing individual differences 
is personalized ML, where the model is tailored to the characteristics of the current 
individual and is optimized to perform especially well for that individual, but not 
necessarily for all future patients [9–11]. For example, the breast cancer of a current 
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patient may have a mutation W that is highly predictive of the cancer course, although 
it is rare. A mutation X is much more common in the breast cancer population; how-
ever, it is only modestly predictive. A population model is likely to include X as a 
predictor, but not W, because mutation X is so common. That model would predict the 
cancer course of the current patient only fairly well. In contrast, a personalized model 
would likely include W as a predictor and predict the cancer course quite well.

Causal ML is concerned with modeling and discovering causal relationships 
[12, 13]. Such relationships predict the values of one or more variables after we set 
the values of other variables independently. Such predictions are important when 
making decisions to optimize expected outcomes, as is common in healthcare. For 
example, deciding on the best therapy for a patient involves making causal predic-
tions. In contrast, most of the research and methods in ML have focused on learning 
models that predict one or more variables after we observe the values of other vari-
ables. Patient diagnosis in light of existing patient information is an example of an 
observational prediction.

Sometimes correct causal and observational predictions yield the same answers, 
but other times they do not. Figure 10.2a shows a situation in which X causally influ-
ences Y, and there are no other sources of statistical dependence between X and Y. In 
this example, the causal prediction of Y given that we independently set X equals the 
prediction of Y given that we observe X. In such a scenario, we can estimate model 
parameters using observational data and apply the resulting model to make causal 
predictions. Figure 10.2b is an example in which the causal and observational pre-
dictions differ, due to the presence of a hidden (latent) variable H. Here the obser-
vational prediction of Y given that we observe X is determined by the association 
due to X directly causing Y and association due to the path from X to H to Y, which 
is not due to X causing Y. In contrast, the causal prediction of Y given that we inde-
pendently set X = x [13] involves the situation shown in Fig. 10.2c. By indepen-
dently setting X, we break the non-causal source of association between X and Y that 
goes through H, and we predict Y based only on the causal influence of X on Y [14].

For most of the past century, the predominant, formal method for causal discov-
ery in healthcare and beyond has been the randomized controlled trial (RCT) [15]. 
By randomizing the setting of the value of X (e.g., a treatment selection), its value 

YX

a

X Y

H
b

X Y

H

independently setting 
the value of X

c

Fig. 10.2 Examples of causal Bayesian networks. X and Y are measured variables. H is a hidden 
(latent) variable. (a) X causally influences Y, and there is no confounding. (b) X causally influences 
Y, and there is hidden confounding. (c) Independently setting X removes the hidden confounding 
of X and Y
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is set independently of the values of any of the other measured variables; thus, for 
example, the situation in Fig. 10.1c results, where the only dependency between X 
and Y is due to direct causation. On the other hand, RCTs are often expensive, some-
times infeasible, and frequently they study only a small, selected subset of patients, 
relative to the broader population of interest. Conversely, observational data, such as 
EHR data, are relatively plentiful, contain a rich variety of types of information, and 
more faithfully represent “real-world populations.” However, care must be taken in 
deriving causal knowledge solely from observational data. A commonly used causal 
model is the causal Bayesian network, which is a Bayesian network in which a 
directed edge from X to Y represents that X is a direct cause of Y, relative to a set of 
modeled variables (as, for example, in Fig. 10.2).

ML methods have been developed that derive causal models from data, including 
observational-only data, or from a combination of knowledge and data. For instance, 
methods exist for learning Bayesian networks from expert knowledge and data [16, 
17]. Expert knowledge could define an initial model for a system that provides diag-
nostic, prognostic, or therapeutic advice, for example. As data accumulate, the 
model adapts to represent the causal relationships consistent with the data. Causal 
modeling could also support the development of adaptive CDS systems. In the con-
text of a given clinical task, such a system could compare its causal model of a 
domain with its model of a clinician’s causal knowledge of the domain to provide 
advice to the clinician that optimally augments what he or she is likely to already 
know [18, 19].

 Degree of Automation in AI-CDS

The early AI-CDS systems were standalone; the clinician interacted with the system 
by manually providing relevant patient data as input and then incorporating the 
system’s output with their judgment to make clinical decisions. The widespread 
adoption of EHR systems has enabled increased integration of AI-CDS with such 
systems. AI-CDS may be integrated with EHR systems to a varying extent that 
enables the AI-CDS to obtain inputs automatically from the EHR, make recommen-
dations, and provide those recommendations to the clinician and output them to the 
EHR (see Fig. 10.3).

Based on the degree of automation and integration with EHR systems, AI-CDS 
can be broadly categorized into three types [20]. In conventional AI-CDS, the CDS 
system collects patient data from the EHR and provides recommendations that the 
clinician receives, clarifies and considers in making the final decision. In integrative 
AI-CDS, the CDS system actively obtains patient data from the EHR, provides 
recommendations to the clinician, and also automatically records them in the 
EHR. The clinician still makes the final decision. In fully automated AI-CDS, the 
CDS system gathers information about and from a patient, makes decisions autono-
mously, and records results in the EHR. The clinician may monitor the recommen-
dations and clarify the CDS system’s recommendations. For some clinical tasks, 
fully automated decision support may be suitable, for example, some steps in robotic 
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Fig. 10.3 Categories 
of AI-CDS based on the 
degree of automation and 
integration with EHR 
systems. (a) Conventional 
AI-CDS obtains patient 
data from the EHR system 
and provides 
recommendations to the 
clinician who makes 
decisions. (b) Integrative 
AI-CDS obtains patient 
data from the EHR system, 
provides recommendations 
to the clinician, and 
records them in the EHR 
system. (c) Fully 
automated AI-CDS collects 
information from the 
patient, makes decisions, 
and records them in the 
EHR system

Box 10.1 Example Input and Output Modalities for AI-CDS
Examples of input modalities for AI-CDS

• EHR data. Radiology reports of patients with acute traumatic injury are 
input to an AI-CDS that identifies incidental findings for follow-up care.

• Medical images. Screening mammograms are input to an AI-CDS that 
automatically identifies potential cancer.

• Health sensors. A wrist band with gyroscopic sensors worn by an individ-
ual at risk for fall provides input to an AI-CDS that automatically detects falls.

surgery or in insulin dose adjustments by an insulin pump; in many more tasks, 
however, integrative decision support will be more practical in the foreseeable 
future with the final decisions made by the clinician.

AI-CDS systems are often based on an input-process-output workflow. Inputs 
can come from various sources such as data from EHR and medical imaging sys-
tems and devices such as mobile smartphones, Fitbit, Apple, and other health track-
ers (see Box 10.1). Outputs can be delivered in many ways. Examples include 
diagnoses, recommendations, alerts and reminders, order sets, relevant medical 
knowledge, and context-aware summaries (see Box 10.1).
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 Application of AI-CDS in Clinical Care

As described in the section on “Challenges Faced by Clinicians”, clinicians face 
challenges in the daily practice of medicine that arise from the exponential growth 
of medical knowledge, rapid accumulation of a diversity of patient data, and the 
increased complexity of clinical decision-making. Clinicians perform a range of 
tasks, such as assessing the risk of developing a disease in the future (risk assess-
ment and stratification), determining the presence or absence of disease at the cur-
rent time (diagnosis), forecasting the likely course of disease (prognosis), predicting 
treatment response (therapeutics), and monitoring in acute care, such as in critical 
care and during surgery, as well as outside the hospital for chronic diseases (see 
Chaps. 11, 12, and 14). The remainder of this section provides examples of areas of 
rapid progress in the development of AI-CDS.

Providing Relevant Medical Knowledge Studies have shown that clinicians have 
knowledge needs in many aspects of clinical decision-making, including diagnosis, 
prognosis, and therapy during patient encounters [21]. CDS systems have been 
developed that provide relevant medical knowledge at the right time and at the right 
place, such as the Infobutton that collates medical knowledge from the literature, 
textbooks, and other sources of information and presents knowledge relevant to a 
particular clinical context [22]. More recently, AI-CDS approaches have been 
described for generating medical evidence for treatments in a specific clinical con-
text when such knowledge is lacking in the medical literature or in published treat-
ment guidelines. One approach to this situation that has been described is to generate 
evidence from the EHR and other health utilization data of similar patients [23]. For 
a clinical question, the approach specifies the relevant population, intervention, 
comparator, outcome, and timeframe to select data from a large database such as a 
hospital’s EHR data warehouse, which is used for treatment-effect estimation and 
survival analysis. However, such estimates may be subject to bias due to idiosyncra-
sies in the hospital’s EHR data and due to hidden confounding and selection bias.

Prioritization of Patient Data In a specific clinical context, relevant patient data 
should be readily available for optimal decision-making. However, in current EHR 

Examples of output modalities for AI-CDS

• Highlighting in EHR. An AI-CDS identifies important new patient data in 
the EHR and highlights them to the clinician.

• Alerts. On detecting strokes in CT images of the brain, an AI-CDS sends 
alerts to stroke clinicians.

• Discharge summaries. An AI-CDS automatically generates discharge 
summaries to support communication during the transition of care from 
hospital to community care.
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systems, retrieval of patient data relevant to a clinical task is cumbersome and time- 
consuming, exacerbated by confusing layouts, workflows, poor prioritization, and 
weak search capabilities. Clinicians spend substantial amounts of time searching 
large volumes of data to identify clinically meaningful patterns and important 
patient details, predisposing them to information overload. AI-CDS systems are 
needed that intelligently identify and display clinically relevant patient data that 
enhance the clinician’s ability to rapidly assess the clinical context and make opti-
mal decisions. The learning electronic medical record (LEMR) system uses ML 
models to highlight data and are trained from output labels that clinicians have iden-
tified in past patient cases. In a research study, the LEMR system was able to iden-
tify and highlight salient patient information to summarize the clinical status of the 
patient for morning rounds in the critical care setting (Fig. 10.4) [24].

Risk Assessment Data-derived AI-CDS is increasingly developed to predict the 
risk of developing a disease or monitor adverse clinical events. For example, a deep 
learning strategy that combines results from cognitive testing and magnetic reso-
nance imaging (MRI) of the brain predicts the risk of developing Alzheimer’s dis-
ease [25]. As another example, an ML-based system that predicts the risk of 
hypoxemia in the near future and explains the risk factors during general anesthesia 
was developed to aid anesthesiologists in early intervention [26].

Diagnosis The application of ML and deep learning approaches for diagnosis in 
medical imaging has rapidly grown in recent years in the areas of radiology, oph-
thalmology, dermatology, pathology, cardiology, and gastroenterology. In radiol-
ogy, clinicians rely primarily on imaging for diagnosis, and deep learning methods 
have rapidly improved the performance of diagnostic tasks in images. For example, 
the automated diagnosis of common lung diseases with chest radiography [27], the 
detection of lung nodules with computed tomography (CT) [28], and the identifica-
tion of breast tumors using mammography [29] have achieved expert-level diagnos-
tic accuracies. In dermatology, clinicians rely on visual inspection of skin lesions to 
diagnose and differentiate between benign and malignant lesions. For example, neu-
ral networks can identify malignant melanomas from a single photograph of the 
lesion at a dermatologist’s level of accuracy [30]. In ophthalmology, fundus photo-
graphs are visually examined by ophthalmologists to detect and monitor various 
diseases, such as glaucoma and diabetic retinopathy. In a recent application of deep 
learning, neural network models were able to identify diabetic retinopathy at an 
accuracy comparable to that of ophthalmologists [31]. In pathology, histopathologi-
cal assessment under the microscope of biopsied specimens by pathologists is used 
to diagnose many types of cancer. Deep learning models have been shown to be 
useful in detecting prostate cancer from biopsy specimens [32, 33] and identifying 
breast cancer metastasis in lymph nodes [34]. Cardiologists use electrocardiograms 
and echocardiograms, and deep learning methods have recently been shown to per-
form at expert-level accuracy for diagnosing heart attacks, as well as cardiac abnor-
malities like hypertrophic cardiomyopathy, from electrocardiograms [35]. 
Identification of small polyps during colonoscopy is an arduous task for gastroen-
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terologists. Recently, an ML-based approach that identifies polyps in images from a 
colonoscopic camera was shown to enhance the clinician’s speed and accuracy of 
detecting polyps during colonoscopy [36, 37]. The future translation into clinical 
applications of the successful application of AI, especially deep learning for image-
based diagnosis, will significantly change current medical practice. Curt Langlotz, 
a pioneer in AI in radiology, posed the question, “Will AI ever replace radiologists?” 
then answered, “I say no – but radiologists who use AI will replace radiologists who 
don’t” [38].

Early diagnosis of rapidly developing clinical conditions is another area of abun-
dant application of ML approaches. For example, in critical care, early diagnosis of 
sepsis using ML models has been shown to be more accurate than traditional tools 
such as the quick Sepsis Related Organ Failure Assessment (SOFA) score [39].

Prediction of Clinical Outcomes Prediction of clinical outcomes with ML has 
grown rapidly with the increased availability of large volumes of EHR and health 
insurance claims data. ML models can learn the patterns of health trajectories from 
EHR and other data of a large number of individuals, and such models can antici-
pate future events at an expert clinical level. For example, accurately forecasting the 
likely clinical course in a patient with community-acquired pneumonia enables 
decision-making about whether to treat the patient as an inpatient or as an outpatient 
[11]. Similar ML-based forecasting can identify recently discharged patients who 
are likely to develop complications requiring readmission or patients who are at risk 
for prolonged hospitalization [40]. Such information can be used proactively to pro-
vide additional resources or initiate more intensive management. Furthermore, 
Bayesian networks have been developed to predict mortality, readmission, and 
length of hospital stay using EHRs from the emergency department [41], and deep 
learning applications have been developed to predict in-hospital mortality, 30-day 
readmissions, and prolonged length of hospital stay [40]. ML has also been applied 
to identify patient characteristics in the medical notes to classify cancer patients 
with different responses to chemotherapy [42].

Therapy Therapeutic CDS systems that aid in choosing the best therapy have been 
developed since the inception of CDS systems. One of the earliest such systems was 
MYCIN (see Chap. 2), a rule-based system that uses backward chaining inference 
to identify causative bacteria in infections and recommend appropriate antibiotics 
and dosages. Examples of AI-CDS are found in the field of radiomics that use 
AI-based analyses of clinical images to characterize tumor phenotypes and predict 
treatment response. For example, a deep learning approach using radiomic features 
in CT scans of non-small cell lung cancer was able to predict treatment response to 
various therapeutic agents [43].

Alerting Alerting CDS systems have been developed for a long time to draw the 
clinician’s attention to the important data at the right time. One of the earliest such 
systems was the HELP system that was developed at LDS Hospital in Salt Lake 
City in the 1960s and generated automated alerts about abnormalities in patient data 
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[44]. Several alerting AI-CDS systems have been described in recent years. A deep 
learning approach has been developed and deployed that sends alerts to stroke clini-
cians on detecting strokes in CT images of the brain [45]. More recently, an ML 
approach for detecting anomalous patient-management decisions in the critical care 
unit was developed and evaluated at the University of Pittsburgh [46].

Patient Monitoring In-hospital patient monitoring is an essential clinical activity 
in operating rooms, intensive care units, and emergency rooms. Real-time detection 
of critical events from data generated by monitoring devices is an area where ML is 
increasingly applied. For example, ML methods can identify seizures from continu-
ous electroencephalographic monitoring [47]. As another example, such methods 
can predict hypoxemia events during surgery from continuous physiological moni-
toring [26]. These results suggest that the application of ML methods to continuous 
patient-monitoring data can achieve accurate and timely predictions, thus relieving 
information overload on clinicians.

Clinical Data Capture A significant contributor to clinician frustration and burn-
out is the undue length of time spent in documenting encounters, often at the cost of 
decreased time spent interacting with patients. Clinical scribes, who work alongside 
clinicians to translate and record information in clinical encounters, were  introduced 
to reduce the burden of documentation on clinicians. More recently, digital scribes 
that leverage speech recognition and natural language processing are being devel-
oped to capture and document the spoken portions of the clinical encounter auto-
matically [48]. Advances in human-computer interaction technologies, such as 
speech and gesture recognition and ambient listening and seeing, will likely lead to 
the development of autonomous digital scribe systems that allow clinicians to 
migrate from interacting with a standalone computer to speaking in an intelligent 
room where the environment itself becomes the automated scribe.

 Pitfalls of AI-CDS

In a recent application of ML to detect pneumonia in chest X-rays, the ML model 
performed successfully, detecting pneumonia with an accuracy of 93% when the 
model was evaluated on a different batch of X-rays at the institution where the 
model was developed. However, when the model was evaluated on a batch of X-rays 
from a different institution, its performance in detecting pneumonia fell to 73% 
[49]. It was subsequently found that the X-rays of pneumonia had been mostly taken 
from very sick patients lying down with portable chest X-ray machines, and X-rays 
of patients lying down look very different from X-rays of patients who are standing 
up, and the model had learned to discriminate between X-rays of patients lying 
down from standing up, rather than identifying features of pneumonia. This is an 
example of a pitfall of data-derived AI-CDS due to an inadvertently introduced bias 
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in the data that was used to derive the ML model. Translation of ML research into 
clinically robust AI-CDS requires mitigating a range of such pitfalls.

AI-CDS has significant pitfalls that include dataset shift, algorithmic bias, auto-
mation complacency and inscrutable explanations. We discuss each of these prob-
lems in the remainder of this section.

Dataset shift is a common pitfall in ML that occurs when data characteristics 
differ between the training phase and the application or deployment phase. It is 
common and occurs for reasons that range from the bias in the training data to the 
application of the ML system to an inappropriate clinical context. The availability 
of high-quality training data may be limited if, for example, portions of the data 
need manual review by experts, if the outcome is poorly defined, or the available 
data are a convenience sample that is not representative of the entire population. 
Sometimes, dataset shift is introduced by the process of training; for example, the 
training data may have been adjusted to contain an equal number of cases and con-
trols to maximize the performance of the ML system; however, at application time, 
it is rarely the situation in medicine that the condition of interest occurs 50% of 
the time.

Dataset shifts are common across locations and across time. Thus, ML models 
developed at one location may perform poorly at a different location because dis-
ease patterns are different across the two locations. Further, even within the same 
healthcare system, models that are developed from data on patients who attend a 
specialty clinic may perform poorly on the general population. For example, an ML 
model that is trained on photographs of skin lesions in a dermatology clinic may 
have lower accuracy when applied to patients seen in a primary care clinic where the 
appearance of lesions, and the risk profile of patients, are different.

Even at the same location, disease patterns can change over time, leading to a 
decrease in performance in the future. Models developed only from historical data 
will reinforce existing practice and may not reflect new medical developments and 
changes in policies and guidelines. For example, an AI-CDS system might errone-
ously recommend a drug after it has been withdrawn due to safety concerns or will 
not recommend a medication appropriately whose use has been expanded to the 
treatment of new conditions.

It is important to monitor and update ML models because unanticipated dataset 
shifts will almost certainly occur, and the performance of deployed models is likely 
to deteriorate. Thus, AI methods are needed to detect when shifts have occurred, 
identify the nature of the shifts, and continually update the models using more 
recent data.

Algorithmic bias refers to errors in an AI-CDS that systematically underper-
form for one group of individuals relative to others. Algorithmic bias exacerbates 
existing inequities in socioeconomic status, race, ethnic background, religion, gen-
der, disability, and sexual orientation, and it may amplify inequities in healthcare 
systems. Bias arises due to many factors; however, the common problem is that the 
data used in training ML models often do not represent the whole population, lead-
ing to poor performance in underrepresented groups. Most data used for ML are 
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observational data that are often limited by low diversity in race, gender, geographi-
cal location, economic conditions, and other important attributes. Training with 
such biased data can lead to biased ML models that are not valid for parts of the 
population, and the application of such models has the potential to exacerbate exist-
ing healthcare disparities.

As examples, ML models trained with gender-imbalanced data perform poorly at 
reading chest X-rays for the underrepresented gender [50]; and ML models trained 
primarily on light-skinned individuals perform poorly in detecting skin cancer 
affecting individuals with darker skin [51]. A recent study reviewed over 70 publi-
cations and noted that most of the data used to train ML models came from just 
three states in the United States [52], suggesting the potential for geographic bias. 
As another example, a commercial risk model for predicting future risk of needing 
complex healthcare exhibited racial bias. For the same level of predicted risk, black 
patients were found to be sicker than white patients because the model was trained 
on healthcare costs as a proxy for healthcare needs. Since less money had been 
spent on black patients who have the same level of need, the model inaccurately 
predicted that black patients are healthier than white patients [53].

Beyond problems with the data, algorithmic bias can arise at any point in the 
development of an AI-CDS system from data collection and cleaning, model choice, 
the protocol used in training and evaluation, and implementation and dissemination. 
Preventing algorithmic bias requires that the teams that develop AI-CDS include 
experts who have knowledge about how to prevent bias and not simply data scien-
tists who are technical experts in ML.  Particularly, clinicians and even patients 
should be included in the teams, as they can provide deep insights into the clinical 
context [54].

Automation Complacency With the deployment of autopilots in aircrafts and, 
more recently, in automobiles, it has been observed that pilots often failed to moni-
tor important flight indicators, and drivers in autonomous automobiles frequently 
failed to watch the road. Similar behavior has been noted to occur with clinicians 
using AI-CDS systems. If an AI-CDS system were completely accurate and reliable, 
then clearly following its recommendations would lead to positive outcomes; how-
ever, practical AI-CDS systems are not perfect and can increase errors if incorrect 
advice is followed. Over-dependence on CDS in conjunction with reduced vigilance 
in information seeking and processing is termed automation complacency, which 
can lead to errors that would not normally occur in the absence of CDS [55]. 
Automation complacency can result in omission errors in which the clinician fails 
to consider relevant medical knowledge or patient information because the CDS did 
not recommend it, and commission errors where the clinician complies with incor-
rect CDS recommendations.

For example, an AI-CDS system that aids in detecting cancers in screening mam-
mograms can increase the rate of cancer detection by uncovering those that the 
radiologist would otherwise miss. However, omission errors by the AI-CDS will 
result in cancers going undetected, and commission errors may result in individuals 
without cancers receiving unnecessary interventions [56]. Similar errors due to 
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automation complacency occur in the computerized interpretation of electrocardio-
grams [57], decision support in e-prescribing [58], and answering questions about 
clinical scenarios [59].

The factors causing automation complacency are multifactorial; they include 
complex tasks that impose a greater cognitive load, low clinician experience with a 
task, and high trust in the AI-CDS system, especially as familiarity with the system 
grows over time. Mitigating automation complacency is a challenging, open prob-
lem, and interventions, such as providing clinicians with information on the AI-CDS 
system’s reliability, have had little impact. One potential solution to this problem is 
having an AI-CDS that balances sometimes offering advice upfront with sometimes 
only offering critiques post facto.

Inscrutable Recommendations With the increasing complexity of AI models that 
underlie CDS, explanations that describe the basis of recommendations or predic-
tions are important to detect error or bias, as well as to engender trust in the system 
(see Chaps. 1, 2, and especially Chap. 8). The insight that an explanation provides 
about why a patient is at high risk of developing a disease can help a clinician under-
stand the reasoning, which helps gain trust in the AI-CDS system. In knowledge- 
based AI-CDS, such as rule-based systems, and some ML models, such as 
classification trees, the reasons for the resulting predictions can be clearly explained. 
Other ML models, such as random forests and artificial neural networks, often per-
form better than earlier models, but their black-box nature makes their recommen-
dations more inscrutable (see Chap. 8).

A wide range of methods, which can be broadly categorized into ante-hoc and 
posthoc approaches, are being developed to provide explanations for AI-CDS sys-
tems. In the ante-hoc approach, the AI-CDS system is designed to be interpretable, 
and such systems have a long tradition in medicine and are created from expert 
knowledge and employ human-AI interaction. For example, MYCIN was designed 
as a consultation system with explanatory capabilities to advise clinicians on diag-
nosing and treating bacterial infections. The MYCIN system conducts a question-
and-answer dialog to elicit relevant patient data, and the execution of the rules forms 
a coherent explanation of MYCIN’s reasoning [60].

Posthoc approaches aim to provide explanations for a specific recommendation 
and are more applicable to modern ML models that are not designed for interpret-
ability (see Chap. 8). For example, in deep learning-based AI-CDS systems for 
medical imaging, a post-hoc approach uses saliency maps. In a saliency map, the 
explanation highlights the salient regions in the image that are important to the sys-
tem’s recommendation, such as the regions on the chest X-ray or the picture of a 
skin lesion that most contributed to the recommendation. Beyond image analysis, 
model-agnostic explanatory methods that focus on explaining individual recom-
mendations of a black-box ML model have been developed. Examples of such 
methods include Local Interpretable Model-Agnostic Explanations (LIME) [61] 
and SHapley Additive exPlanations (SHAP) [62]; these methods estimate the impact 
of input features for a specific prediction from analysis of the behavior of the model 
when the inputs are varied.
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 Regulation of AI-CDS

As AI-CDS systems become more complex, automated, and adaptive, they will sur-
pass the ability of clinicians to independently verify their veracity, which makes 
regulatory oversight vital to shield patients from the pitfalls of such systems (see 
also Chap. 18). Depending on the complexity, the regulatory requirements for 
AI-CDS can range from none at all to substantial compliance burden. For example, 
in the outpatient clinic, a clinician receives a CDS recommendation to offer colo-
noscopy for a patient who is 45 years of age. The clinician can easily verify the 
accuracy of the recommendation, given the U.S. Preventive Services Task Force 
guidelines on which the recommendation is based. Such a CDS system would not 
require regulation.

In contrast, consider an AI-CDS system that uses an ML model to recognize 
cardiopulmonary instability from continuous physiological monitoring of the car-
diac and respiratory systems. Such a system may be deployed in the critical care 
unit to monitor and predict the elevated risk of cardiopulmonary instability, and a 
prediction of elevated risk may lead to decisions such as initiation of medication to 
increase the blood pressure or mechanical ventilation. In this situation, the clinician 
cannot readily assess the accuracy of the assessment provided by the AI-CDS, and 
such a system would need to be regulated to ensure patient safety.

AI-CDS systems consist of software, and software may be deemed a medical 
device if it is used to guide clinical decision-making. The U.S.  Food and Drug 
Administration (FDA) has created guidelines for regulating Software as a Medical 
Device (SaMD) that encompasses AI-CDS. The FDA guidelines are based on rec-
ommendations from the International Medical Device Regulators Forum (IMDRF), 
an international group of medical device regulators that develops guidelines for the 
uniform regulation of medical products worldwide.

There are many important factors in the regulatory framework of AI-CDS, 
including risk assessment, unbiased training, reproducibility, and whether the AI 
methods in the CDS are static vs. adaptive. The FDA provides a framework for the 
clinical evaluation of SaMD that is adopted from the IMDRF. The goal of the clini-
cal evaluation is to assess a SaMD’s clinical safety, effectiveness, and performance 
as intended by the developer of the SaMD. The clinical evaluation consists of three 
components that include scientific validity, analytical validation, and clinical valida-
tion (see Table 10.1). A SaMD must pass all three components successfully to be 
considered validated. Further, following the IMDR, the FDA stratifies SaMD into 
four risk levels based on the intended medical purpose of the SaMD (treat or 

Table 10.1 Components of clinical evaluation of Software as a Medical Device (SaMD)

Clinical evaluation
Valid clinical association
(scientific validity) Analytical validation Clinical validation

Is there a valid clinical 
association between the 
SaMD’s output and the 
SaMD’s targeted clinical 
condition?

Does the SaMD correctly 
process input data to 
generate accurate, reliable, 
and precise output data?

Does the use of SaMD’s accurate, 
reliable, and precise output data 
achieve the intended purpose in the 
target population in the context of 
clinical care?

Adapted from [63]
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Table 10.2 Regulatory requirements for Software as a Medical Device (SaMD) by the intended 
medical purpose and the nature of the patient’s condition

Intended medical purpose
Nature of the patient’s 
condition

Treat or 
diagnose

Drive clinical 
management

Inform clinical 
management

Critical IV III II
Serious III II I
Non-serious II I I

I: least regulatory requirements, IV: greatest regulatory requirements. Adapted from [63]

Table 10.3 Examples of AI-CDS that have received FDA clearance as SaMDs

Name of 
device or 
algorithm

Name of 
parent 
company Short description

FDA approval 
number Date

Medical 
specialty

Arterys 
Cardio DL

Arterys Inc Analysis of 
cardiovascular 
magnetic resonance 
images

K163253 2016/11 Cardiology

ContaCT Viz.ai Automated stroke 
detection on CT 
images

DEN170073 2018/02 Radiology

EyeArt Eyenuk, Inc Automated detection 
of diabetic 
retinopathy on retinal 
fundal images

K200667 2020/06 Ophthalmology

diagnose, drive clinical management, inform clinical management) and the nature 
of the patient’s condition (critical, serious, non-serious). A higher level of risk 
requires increased oversight, more regulatory requirements, and more evidence for 
the efficacy and safety of the SaMD (see Table 10.2).

The FDA certified the first AI-CDS system in 2016 when Arterys became the 
initial company to receive clearance to use deep learning in a clinical setting for the 
analyses of cardiovascular images. As of January 2021, a total of 71 AI-CDS sys-
tems have been cleared by the FDA as SaMDs. The largest number of AI-CDS 
systems certified by the FDA are in the fields of radiology and cardiology [64]. 
Table 10.3 provides examples of AI-CDS systems that have received FDA clearance.

 Conclusions

CDS is at a critical juncture for the safe and effective integration of AI into clinical 
care. The technical capacity to develop, implement, and maintain AI-CDS in the 
clinical enterprise is increasing by leaps and bounds, and the promise of AI in clini-
cal decision-making offers considerable opportunities to improve patient outcomes, 
reduce costs, and improve population health.
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AI-CDS is poised to advance the learning health system in which clinical 
experience and patient data are systematically integrated to provide higher qual-
ity, safer, more efficient care. Clinical trials and similar research underlie one of 
the key ways of generating new knowledge and evidence for improving clinical 
care. The clinical enterprise of treating patients and the research enterprise of 
evaluating new therapies, for the most part, are segregated into two disparate 
enterprises. However, to realize the learning health system, there is a need to 
treat patients and evaluate therapies at the same time [65, 66]. In the future, 
AI-CDS systems will support patient care and support research tasks that include 
screening, enrollment, adaptive treatment assignment, data collection, and 
dynamic data analysis.

With new approaches for measuring and analyzing a wide range of biomedical 
data, including molecular, genomic, cellular, physiological, clinical, behavioral, and 
environmental data, ML models that power AI-CDS will integrate heterogeneous 
multimodal data to provide broader, more accurate and nuanced recommendations 
and predictions. As data is generated at increasing volumes and rates, adaptive 
AI-CDS systems will grow and continuously learn and adapt to optimize overall 
healthcare. Such systems will intelligently adapt to the patient (e.g., taking into 
account patient preferences and life circumstances), to the clinician (e.g., physician 
vs. nurse vs. pharmacists, etc.), to the clinical task (e.g., diagnosis, prognosis, medi-
cation reconciliation, etc.), and to the clinical context to help optimize the overall 
delivery of healthcare to individuals and society. Current AI-CDS systems collabo-
rate very little, if at all, with clinician users, and as they begin to interact with thou-
sands of users every day, human-AI cooperative systems will be increasingly 
developed [19].

Questions for Discussion

• What are the pros and cons of knowledge-based and data-derived AI-CDS? 
Discuss how to improve data-derived AI-CDS by incorporating biomedical 
knowledge.

• The current popular paradigm is to use big data (e.g., EHRs and billing data) to 
develop AI models for CDS. Describe the pitfalls of this paradigm and suggest 
methods to mitigate these pitfalls.

• The development of a new therapeutic (e.g., a drug or vaccine) involves rigorous 
assessment and validation of safety and efficacy. Do you agree that a new AI- 
CDS system should undergo a similar rigorous assessment and validation of 
safety and performance? Why or why not? How does validating an AI-CDS sys-
tem differ from validating a new therapeutic? How does the nature of software 
complicate the application of traditional evaluation and regulation approaches?

• Hospitals typically have antimicrobial stewardship programs to monitor antibi-
otic prescribing and resistance patterns and to guide appropriate antimicrobial 
use. If you were the Chief Medical Information Officer of a large hospital that 
has deployed a large number of AI-CDS tools, propose the design for an AI-CDS 
stewardship program. What factors will you monitor and how will you accom-
plish doing so?
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Further Reading

Greenes RA, editor. Clinical Decision Support: The Road Ahead. Elsevier; 2011 
Apr 28. (Revised edition to be published in early 2023).

• This book provides a comprehensive description of the computational challenges 
in development of CDS systems and detailed discussions of their deployment.

Rajkomar A, Dean J, Kohane I. Machine learning in medicine. New England Journal 
of Medicine. 2019 Apr 4;380 (14):1347–58.

• This review provides an overview of the uses and key challenges of machine 
learning for clinical applications.

Topol EJ.  High-performance medicine: The convergence of human and artificial 
intelligence. Nature Medicine. 2019 Jan;25 (1):44.

• This article surveys the clinical applications of AI and deep-learning and 
describes their impact on clinicians, patients, and health systems.

Montani S, Striani M. Artificial intelligence in clinical decision support: A focused 
literature survey. Yearbook of Medical Informatics. 2019 Aug;28 (1):120.

• This survey of the literature found data-driven AI to be prevalent in CDS either 
used independently or in conjunction with knowledge-based AI.

Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial 
intelligence, bias and clinical safety. BMJ Quality & Safety. 2019 Mar 1;28 
(3):231–7.

• This article provides an overview of short-term, medium-term, and long-term 
safety and quality issues related to clinical deployment of AI in medicine.
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Chapter 11
Predicting Medical Outcomes

Riccardo Bellazzi, Arianna Dagliati, and Giovanna Nicora

After reading this chapter, you should know the answers to these questions:
• How do different types of clinical outcomes map to machine learning problems?
• What are the main approaches to predict clinical outcomes?
• What are the best strategies to evaluate the performance of a predictive model in 

clinical medicine during the statistical validation phase?

 Clinical Outcomes: An Enlarged Perspective

Clinical outcomes are measurable changes in health, function or quality of life that 
result from patients’ care. In other words, they are the outputs of an input interven-
tion (actions related to individual patient’s care or change in patients’ care organiza-
tion) over a system (the patient, the health care system). Outcome research, a 
well-established field of public health, usually divides outcomes into two broad 
groups: patient-related outcomes and systems related ones. The presentation that 
follows mainly focuses on patient-related outcomes, even if the methodologies 
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Fig. 11.1 Dataset notation for clinical outcome prediction

From a machine learning viewpoint, the type of outcome measurement deter-
mines the very nature of the prediction problem.

In many cases outcome prediction can be modeled as a classification problem. In 
these situations, the outcome is a discrete variable, such as death: yes/no, morbidity: 
yes/no, cancer relapse at five years: yes/no, or covid-19 symptoms: mild/moderate/
severe. The prediction problem corresponds therefore to building a classification 
rule that associates the outcome value y with different configurations of the input 
vector x. Very often, instead of providing a crisp classification, an AI system outputs 
the probability (or the score) of each different value of the outcome variable, thus 
providing a risk profile P(y|x).

Many practical cases represent the outcome as a binary classification problem, 
even if more classes are possible. However, differently from what happens in diag-
nostic problems, when more classes are available, they are often associated with an 
ordinal scale of severity. In this case the problem can still be approached as a clas-
sification, or it is possible to resort to ordinal regression algorithms.

Regression analysis is performed when the outcome is a continuous variable, 
such as hemoglobin concentration after one week of erythropoietin treatment in 
cancer, or fasting blood glucose level after treatment with hypoglycemic drugs. In 
this case, a regression function is learned, in order to be able to forecast the outcome 
value y with different configurations of the input vector x.

Clinical outcome prediction always needs to consider the temporal dimension. In 
both cases reported above, outcome is measured after a predefined amount of time: 
relapse at five years and hemoglobin after one week are outcome definitions that 
simplify the problem of outcome prediction treating time as a hidden variable that 
defines the modeling effort.
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The explicit representation of time can be handled in outcome prediction follow-
ing different strategies. The most widely used approach in biostatistics is survival 
analysis. In this case the time of occurrence of an event is recorded, so that for each 
patient a timestamp associated with the output variable is reported. This, of course, 
happens with time of death, time of relapse of a disease or time of occurrence of a 
morbidity event.

The complexity of the description of the clinical outcome may therefore encom-
pass the entire temporal trajectory of a patient, described by one or more outcome 
variables. For example, the outcome of insulin treatment can be the daily blood 
glucose profile, or the outcome of a rehabilitation therapy can be the sequence of 
visits and procedures that the patient is undergoing together with the final quality of 
rehabilitation achieved. When the complexity of the outcome description increases, 
the vector/matrix representation can be insufficient, so that a univariate or multivari-
ate sequence of time stamped events might be needed.

Rather interestingly, prediction of patients’ outcomes can be performed also 
resorting to models of outcome dynamics, which can be deterministic or stochastic, 
and AI and machine learning (ML) approaches allow using a variety of modeling 
techniques, including Monte Carlo simulations.

Understanding the nature of the input matrix X is crucial to select the proper 
approaches for outcome prediction. In general one does not put constraints on 
the type of the input variables, so that each variable xj can be either continuous 
(it can assume any numerical value, and it is usually the result of a measure-
ment, such as a blood glucose measurement), categorical (it can assume a spe-
cific value in a finite set of elements, such as the treatment type) binary 
(categorical variable that can assume only two possible values), or finally ordi-
nal (categorical variables with ordered values, such as levels of risk). In this 
latter case, some methods transform a categorical variable with s values into 
s−1 binary variables, called dummy variables. There are cases in which the 
variables that are related to the outcomes cannot be easily represented as a 
matrix or at least transformed into a matrix. In this chapter we will not consider 
those cases, but we will rather focus on the large number of practical applica-
tions that, after suitable preprocessing, will be amenable to being represented 
as an X,Y pair.

It is important to mention that subsequent parts of the chapter mainly focus on the 
problem of forecasting the outcome, assuming that it is a consequence of a treatment 
or decision taken at a certain time point. The chapter therefore does not address 
sequential decisions or policies, i.e. strategies that may lead to a sequence of out-
come measurements. In particular, it does not cover the area of reinforcement learn-
ing, which recently gained attention as a means to optimize sequential decisions in 
clinical medicine [3].

The following section provides an overview the main approaches available in the 
literature spanning over these different outcome representations.
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 AI Approaches for Clinical Outcomes Prediction

Starting from the discussion about the different clinical outcomes presented in the 
previous section, a selection of different machine learning models is introduced in 
this section. Emphasis is on general concepts, such as the role of latent variables 
with some strategies to extract them, the problem of coupling supervised and unsu-
pervised analysis, and the challenges posed by the prediction of clinical outcomes 
as a time course, which can be modeled by trajectory modeling approaches and 
advanced simulation strategies.

The following subsections are also included: aspects of preprocessing, including 
missing values imputation and features transformation; different outcome predic-
tion problems, including classification, regression and survival analysis; and a sub-
section with a focus on temporal AI models, including temporal trajectories and 
Markov models.

 Preprocessing: Missing Values, Features Transformation 
and Latent Variables Extraction

As previously introduced, in clinical studies, the unit of observation and analysis is 
almost always a patient. So, the first step to analyze clinical outcomes is to create a 
data matrix where each i-th row contains all the data for a single patient, each j-th 
column contains a different feature (Fig. 11.2).

Once the unit of observation and analysis (i.e. the patients’ cohort) is defined, the 
first steps are to determine which features to extract from the data, thus what to do 

Fig. 11.2 An example of Data Matrix
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if features are missing and to evaluate the impact of transformation methods on the 
clinical outcome predictions.

 Missing Values

When a feature’s element is missing, it is possible to assume that it should have been 
recorded but was not. However, while a data matrix is the by-product of clinical 
processes projected into a structured record, the mere existence of a feature, does 
not mean that it should be filled with a value.

Indeed, the absence of a feature value could mean different things: (i) the value 
should have existed but does not - this is the common meaning of missing data; (ii) 
the value absence is an artefact of adopting a specific view of the data. For example, 
if we have different columns, each one coding a disease, then most of the columns 
will have missing values; (iii) the value could have existed, but it was not required nor 
necessary to collect it. For example, a test measuring mid-term metabolic control in 
diabetes (i.e. Hba1c) could be listed as a feature when creating a data set for monitor-
ing cardiovascular patients. However, some patients will have this value, and others 
will not. Those that do not, probably didn’t need the test, meaning that the fact that 
the value is missing is an intentional choice related to the clinical process and it is 
informative in itself. Such missing values raise several issues for analysis: it is impor-
tant to deal with how they are reported in the data and, more importantly, it is neces-
sary to plan—considering that they are missing—how to impute them (Fig. 11.3).

Rubin classified missing data problems into three categories [4]. In his theory 
every data point has some likelihood of being missing. The process that governs 
these probabilities is called the missing data mechanism [5]:

• Missing Completely At Random (MCAR), when there is no relationship between 
missing data and observed or unobserved data. Thus, the causes of the missing 
data are unrelated to the data. Some typical examples of MCAR are when indi-

Fig. 11.3 Data Matrix with missing data. In this example (i) Age and Sex should have been col-
lected but haven’t; (ii) Cholesterol and Blood Sugar might have been measured, but eventually 
were not required to be collected; (iii) value 0 in Diagnosis of CVD, Diabetes and Cancer is an 
artefact of adopting this specific data format
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viduals have no measurement because the equipment to perform an analysis was 
broken or when an individual drops-out of a study for reasons not related to 
health-issues (e.g. moving to another city).

• Missing At Random (MAR), when there is a relationship between missing data 
and observed data, and the missingness depends on already observed informa-
tion. Thus, the probability of being missing is the same within groups defined by 
the observed data. For example, data can be said to be MAR, given gender, if 
men are less likely than women to undergo follow-ups. Once gender is observed, 
the missingness does not depend on the stage of their disease.

• Missing Not At Random (MNAR), when there is a relationship between missing 
data and both observed and unobserved data. This means that the probability of 
being missing varies for reasons that are unknown. For example, when individu-
als with severe diabetes are more or less likely to undergo follow-ups: in this case 
missingness is directly related to the stage of their disease.

One could think about different strategies to deal with missing data. For exam-
ple, removing patient rows with missing data values is a simple solution, however it 
might lead to biased results, especially if the feature was not measured because of a 
crucial patient characteristic (i.e. the inability to attend a visit). Another imputation 
method is column-mean imputation, which replaces the missing value with the aver-
age of the known values in the same column. This approach should also  not be 
pursued. Indeed it assumes that the variable values in the other rows (i.e. from other 
patients) of that column have information about the missing value, which is not true 
in clinical research.

Multiple imputation is now accepted as the best general method to deal with 
incomplete data. It was developed by Rubin [4], who observed that imputing one 
value (single, column-mean imputation) for the missing value could not be correct 
in general and imputation should be performed through a model able to relate the 
unobserved data to the observed data and noted that even for a given model the 
imputed values could not be calculated with certainty. Thus, his solution was to cre-
ate multiple imputations that reflect the uncertainty of the missing data.

The so-called “Rubin’s Rule” is based on a model that accounts for the relation-
ship between observed and missing data.

Let with (j = 1,…,p) be one of p incomplete variables. The observed and missing 
parts of xj are denoted by x𝑜𝑏𝑠 and x𝑚𝑖𝑠, respectively. Let Q denote a quantity of sci-
entific interest (e.g., a regression coefficient). In practice, Q is often a multivariate 
vector. The posterior distribution of quantity of interest Q given observed data only 
is provided by the following equation:

 
f Q x f Q x x f x x x| | , |obs obs mis mis obs misd( ) = ò ( ) ( )  

where f(Q │ Xobs, Xmis) indicate the distribution of Q given complete data (outcome 
model), 𝑓(Xmis│Xobs) the distribution of missing data given observed data (missing 
data model), and the dxmis the integration over the missing data distribution.
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From a practical point of view, this imputation model is implemented within the 
multiple imputation workflow, within publicly available software packages such as 
the R package mice [6], where the algorithm starts with a random draw from the 
observed data and imputes the incomplete data in a variable-by-variable fashion.

 Dimensionality Reduction and Feature Transformation

Very often clinical studies allow the extraction of hundreds or thousands of features. 
However, it is common to have constraints—linked both to computing resources or 
model clinical relevance and interpretability—which entail removing or transform-
ing features that reduce the size of the data set.

Dimensionality reduction techniques can be defined as the process of transform-
ing the original data matrix into a new one with fewer columns but including 
approximately the same information as the original one. Because this matrix is com-
posed of a smaller number of features, it can be used more efficiently than the origi-
nal matrix. Dimensionality reduction techniques are typically divided into feature 
selection and feature extraction methods. The main difference between them is that 
feature selection selects a subset of the original features, whereas feature extraction 
combines the original features to create a set of new features. Feature extraction 
transforms data from the original input space to a feature space with different 
dimensions. Starting from the initial data matrix, these methods build new features 
intended to be informative and non-redundant, facilitating the subsequent learning 
and generalization steps and, in some cases, leading to better interpretations 
(Figs. 11.4 and 11.5).

It is thus important to introduce how it is possible to use subtle information that 
is implicit in the data, which one can also define as non-observable or latent, to 
define and/or create features. These “hidden” features can be metadata, that is indi-
cator variables that refer to other data. For example, the data gathered from two 
common actions: ordering a laboratory test and recording the measured value. In the 
former case, the data indicate that the test was carried out, whereas in the latter they 
capture the measured value as a continuous variable. If the goal is to determine 
whether the diabetic disease is stable, ideally one should look at the results of a test 
(i.e. HbA1c continuous values). However, it might also be possible to leverage the 
counts of ordering an Hba1c test, or the frequency of Hba1c tests, or changes in the 
patient’s prescriptions to ascertain whether the disease is worsening.

Another common action when preprocessing a feature matrix is to standardize 
features and transform them into uniform numerical ranges. Feature standardization 
(or normalization) reduces the effect of values extremely large or small in compari-
son to other values in the feature matrix. Common approaches to normalize features 
are to rescale them into a [0–1] range, or to transform each j-th column so that it has 
a mean of 0 with a standard deviation of 1.

While latent features can be extracted or created through prior knowledge, it 
is also possible to learn them via computational methods, and a few such methods 
are illustrated at the end of this section. In the same way, when implementing an AI 
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Fig. 11.4 A simple dimension reduction example where the 3-D space is split into two 2-D feature 
spaces, allowing a representation of the object in a lower dimensional space. The two discs, repre-
sented in 3-D in the left panel, are oriented such as their surface varies along the axes: the top right 
panel corresponds to a top-down view of the 3D space, looking down the Z axis, while the bottom 
right panel corresponds to a re-oriented view from the behind, looking along the X axis.

Fig. 11.5 Projection of the original input space into a novel feature space where the problem is 
linearly separable, thus allowing for accurate prediction, with the decision boundary (green curve) 
projected back to the original space

model to predict clinical outcomes, several methods can automatically remove fea-
tures [7] that contribute the least to the accuracy of the final model.

While the general objective for reducing the number of features or transforming 
them is to improve the accuracy of the models, there are several specific and practi-
cal reasons for doing so. There may be features that have no utility for prediction 
(i.e. some phenotypic traits unrelated to the outcome of interest) or are missing for 
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most patients. The latter case is usually referred to as data sparsity, indicating that 
many features are missing for a given patient or group of patients. Another reason 
to reduce the number of features is redundancy, that is when two or more features 
are highly correlated. It is also important to take into consideration that a large num-
ber of features will  slow down the analysis, which could be a major constraint 
depending on the available computational resources.

Features that have the same values for all the patients or are nearly constant over 
time might be removed. Features missing for most patients and with very low preva-
lence should be removed as well.

As in all the steps to analyze clinical outcomes, knowledge of the context and the 
clinical problem plays a central role. An in-depth knowledge of the cohort of patients 
to analyze, including not only the pathophysiological aspects but also the clinical 
processes and the data gathering procedures, is the basis for knowing which features 
one should remove or transform.

Thus, one way to transform, and reduce features, is to select features using 
domain knowledge. Indeed, some features may indicate information too fine grained 
for the analysis. For example, indicating the brand of a drug rather than its active 
principles and molecules will make it difficult for models to learn ingredient-level 
drug effects. For these reasons it may be desirable to aggregate features into coarser 
categories. Even though this topic is not discussed in this chapter, it is important to 
highlight that this step requires accurate representations of domain knowledge, for 
example in the form of ontologies (see Chap. 4).

As already mentioned, it is also possible to use computational approaches able to 
detect and use latent features patterns. The benefit  - but also the possible draw-
back—of using such techniques is that they are domain independent and do not 
require specific medical knowledge. Indeed, mathematically combining existing 
features might make derived features difficult for clinical interpretation. This loss of 
interpretability is something that one should always consider when preprocessing 
the feature matrix to build a model for clinical outcome prediction.

Several methods for feature extraction use linear algebra and are based on matrix 
factorization. Principal Component Analysis (PCA) [8, 9] is one of the most popular 
of these techniques. It works by finding new variables that are given by a linear 
combination of those in the original dataset, that can best summarize the original 
data distribution and that are uncorrelated with each other. Finding such new vari-
ables, called the principal components (PCs), reduces to solving an eigenvalue/
eigenvector [10] problem. PCA can also be used for feature selection, as it is pos-
sible to rank the PCs with respect to the amount of variance in the data they repre-
sent, and select the most informative ones to be used in the following analysis.

Other approaches, such as t-distributed Stochastic Neighbor Embedding (t-SNE) 
[11], are nonlinear dimensionality reduction techniques well-suited for embedding 
high-dimensional data for visualization in a low-dimensional space. t-SNE is a 
graph-based nonlinear dimensionality reduction algorithm that works in two steps: 
it builds a weighted graph based on the top k nearest neighbors for each point, then 
it computes a low-dimensional graph, where the goal is to find the low-dimensional 
space that best preserves the nearest neighborhood structure of the original 
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high- dimensional space. While this concerns a human information processing con-
straint rather than being an inherent property of the t-SNE algorithm, with reduction 
down to two or three dimensions it can be also applied for the purpose of visualiza-
tion. In this case, it is possible to view each high-dimensional object as a two- or 
three- dimensional point in such a way that similar objects are modeled by nearby 
points and dissimilar objects are modeled by distant points with high probability.

 Deep Learning

It is widely recognized that one of the most important technologies of modern AI is 
represented by novel artificial neural networks architectures collectively referred to 
as deep learning methods [12].Those methods jointly perform two tasks: variable 
transformation and prediction (in general any kind of input/output forecasting goal, 
including classification and regression). In the transformation step, variable values 
are transformed into a set of latent variables by a series, called layers, of non-linear 
transformations. These transformations can consider complex internal relationships 
between input variables, also looking at the data with different abstraction or zoom-
ing lenses. For this reason, deep learning has proven to be extremely effective in 
dealing with data that traditionally needed manually derived features, such as images, 
videos, signals, and texts. As previously mentioned, key components of deep learning 
architectures are a series of layers designed to deal with specific tasks. For example, 
a widely exploited layer, in particular in image processing, is the so- called 
Convolutional Neural Network layer [13]  (see also Chap. 6), which computes the 
similarity of the input data with predefined templates based on specific kernel func-
tions or filters. Other key components are layers able to deal with sequences, such as 
Recurrent Neural Networks (RNN) and their subtypes, Gated Recurrent Units (GRU), 
and Long short-term memory (LSTM) [14]. All those layers are designed to build 
latent features that incorporate nonlinear relationships between sequential inputs, as 
happens with time series or texts. Recently, in particular where natural language pro-
cessing is concerned, the so-called transformers architectures, which are based on 
special units known as attention units, have become the model of choice [15]. Such 
architectures can process sequences and text looking at the entire set of input features 
along the sequence to be processed and then learning flexibly and in dependence of 
the context, such as the surrounding words, the best latent representation [16].

Deep learning models, though, are highly parameterized. One of the most popu-
lar deep learning models, Inception V.3 [17], published in 2015 to deal with the 
ImageNet Large Scale Visual Recognition Challenge1 has 23 million parameters. 
BERT, currently the best architecture for many NLP tasks, has more than 110 mil-
lion parameters, and BERTLarge more than 340 million [18]. This fact has three 
important implications. First, these architectures are very flexible, and can 

1 ImageNet is an image database that has been very important in advancing computer vision and 
deep learning research also by means of a number of large image recognition challenges.
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memorize an extremely large number of relationships between input variables. 
Second, training these types of models requires an extremely large amount of data 
and wide computational resources. As a matter of fact, the most successful large 
architectures have been trained by big-tech companies or very large research con-
sortia. Third, some of the tasks performed by these very large deep learning models 
can be considered as basic cognitive tasks, such as mapping images into a conve-
nient latent space. For this reason, it is not always necessary to retrain the models 
from scratch in presence of new data, but it is rather possible to exploit such pre-
trained models as feature transformation mechanisms. The new features can be then 
used as input for prediction purposes in a machine learning pipeline. This is the goal 
of transfer learning, which looks to be a very promising direction for conveniently 
exploiting deep learning models, without getting trapped into overfitting due to poor 
parameter estimation.

 Classification

As previously mentioned, the most common representation of an outcome predic-
tion problem is the one of classification. In this case the outcome is a class with a 
finite, usually small, number of possible values and the prediction problem is solved 
by learning a classification rule that associates a class value y to any instance of the 
input vector x.

The first important aspect that needs to be defined is the mapping between the 
outcomes and the class. For example, if the outcome of interest is mortality, it is 
fundamental to clearly define a temporal scale of interest. In general, the knowledge 
of the clinical domain allows a time threshold to define the classes, such as “dead 
during hospitalization (yes/no)”. However arbitrary temporal thresholds, computed 
for example relying on the median time of death in the data set available, run the risk 
of adding biases in the analysis and poor reproducibility of the results. It is therefore 
very important to decide if classification is the right way of representing the prob-
lem, or if it is rather that survival analysis should be preferred to deal with outcome 
prediction.

A similar issue can be related to classes that are derived from discretization of a 
continuous variable or from grouping outcomes measured in an ordinal way. This 
step is related to an abstraction activity that is performed several times in the clinic, 
to synthesize outcomes observed, for example on scales, into coarser but more 
actionable measures. Sometimes, this is anchored to definitions coming from clini-
cal guidelines, such as for example the lower limit of normal hemoglobin that is 
used to define anemia, but quite often discretization and grouping are performed to 
obtained balanced class distributions, i.e. almost the same proportion of examples 
in each class. Every time this latter situation happens the entire classification exer-
cise is biased by the decisions taken and prone to derive classification systems that 
are hardly replicable in other settings, unless the amount of available data is a sam-
ple fully representative of the population distribution.
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Perhaps the main reason to represent outcome prediction as a classification sys-
tem, apart from the simplicity of results interpretations, is the availability of a very 
large number of classification algorithms and a wide variety of tools that implement 
them. The readers can refer to Chap. 6 of this book for an introduction to the most 
important machine learning strategies. In the area of outcome prediction, several 
interesting studies have shown the capability of machine and deep learning methods 
to outperform currently used prognostic systems. For example, machine learning 
approaches, including deep networks, have been effectively used to predict clinical 
outcomes in prognostic classification in emergency departments [19], in forecasting 
outcomes of colorectal cancer after primary resection [20] and in predicting breast 
cancer from mammography [21]. Examples of machine learning applied to the 
prognosis of COVID-19 and to predict Diabetes mellitus complications will be dis-
cussed in more detail in the section on “Case Studies and Examples”.

It is important to mention that when a classification system provides a predicted 
class y, this usually provides the class associated to the largest value of a score func-
tion, which in probabilistic method corresponds to P(y|x). However, choosing the 
class with the largest probability value is not necessarily what a clinician will do in 
an outcome prediction problem, in particular if consequential decisions are related 
to the classification, such as additional treatment, surgery, or hospital discharge. In 
fact, deciding the class is a decision analytic problem, which is related to the utility 
values of the decision maker. In this case, if one wants to approach the problem 
from a formal viewpoint, it would be possible to define the best decision threshold, 
i.e. the probability that a class of interest should have to classify that example as 
belonging to that class, by eliciting from the decision maker his or her costs and util-
ities. In binary classification, this means the cost of deciding that the class is nega-
tive when the true class is positive (the cost of false negatives), and the cost of 
deciding that the class is positive when the true class is negative (the cost of false 
positives). In this case it is easy to show that the threshold depends only on the ratio 
between the two costs, i.e. asking how many times one case is more dangerous than 
the other [22]. Researchers are  devoting increasing interest to explicitly dealing 
with utility of decision makers, including patients’ opinions [23, 24].

 Regression

While in classification problems the outcome y is a discrete variable that assumes a 
predefined set of values, in regression problems y is a continuous variable. As 
pointed out in the previous section, a continuous clinical outcome can be discretized 
in order to manage a classification problem rather than a regression problem. For 
instance, in drug discovery and development, the problem of predicting how much 
of a particular drug is needed to inhibit a relevant biological process by 50% can be 
tackled using regression analysis or using classification. Regression aims at describ-
ing the relationships between the input vector x, which contains the set of attributes, 
also called covariates in a regression problem, and the continuous outcome y. The 
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outcome is often called the dependent or response variable, while the input vector x 
contains the independent or predictor variables. To predict the continuous values of 
the independent variables, the underlying assumption of regression analysis is that 
there is some mathematical function that can describe their relationship to the inde-
pendent variables y = f(x).

Based on the assumption made on f(x), regression techniques can be non- 
parametric or parametric. Non-parametric approaches do not assume any form for 
f(x), while parametric techniques assume a particular form of f(x) that must fit the 
data. The most common form of parametric regression is linear regression, which 
assumes a linear relationship between the covariates and the continuous outcome of 
interest. Examples of non-parametric regressions include Generalized Additive 
Models (GAM), in which non-parametric functions of the predictors are estimated 
through splines [25]. Assumptions on the relationship between x and y can be 
empirical or may be supported by biological reasons [26].

By modeling the relationships among the dependent and the independent vari-
ables, regression analysis allows us (1) to describe a particular clinical problem, 
such as the influence of body weight and age on blood pressure, (2) to identify risk 
factors that influence the outcome, and (3) to forecast the values of the dependent 
variables from the observed values of the independent variables using mathematical 
equations.

 Survival Analysis

In survival analysis, the objective is to model the time until an event occurs, by 
using a collection of different statistical approaches. The “event” can be one or more 
medical outcomes of interest, such as disease onset, relapse from remission, or 
death. Time can be measured in days, weeks, months or even years from the begin-
ning of follow-up until the event of interest occurs [27]. Therefore, survival analysis 
implicates monitoring, over a specific period, one or more cohorts of patients. One 
of the main challenges in the context of such longitudinal studies is the presence of 
instances (in our case, patients) that do not experience the event during the monitor-
ing period or that become unobservable. This phenomenon is called censoring. The 
time to event of interest (which is the quantity we would like to model) is known 
only for those patients who experienced the event within the study period, while for 
the other patients we can only observe a censored time. Censored time can be either 
the time withdrawn from the study or the end of the study in case the patient did not 
have the event. In the presence of censored data, predictive algorithms coming from 
standard statistical and machine learning approaches are not suitable, and a subset 
of statistics, known as “survival analysis” has been developed specifically to handle 
this problem (Fig. 11.6).

As for the application of survival analysis in medicine, this approach has been 
widely employed to predict survival time of patients diagnosed with heart failure 
[28], or to compare the beneficial effect of different treatments on overall and 
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Fig. 11.6 Example of the survival analysis data. During a follow-up period of ten months, only 
patient P3 experienced the event (for instance, death). The observed time for P3 is therefore the 
event time. Patients P1 and P2 are censored due to withdrawal or being lost during follow-up, P4 
is censored since he/she did not experience the event during the study period

disease-free survival in women diagnosed with breast cancer [29]. In public health, 
major applications of survival analysis include the identification of risk/prognostic 
factors, the estimation of survival distribution as well as testing the hypothesis of 
equal survival distribution between different groups.

A typical survival analysis involves the application of the Kaplan-Meier method 
and Cox’s regression. The former is usually applied to estimate survival distribution 
at a given time step. This estimate is the product of a series of estimated conditional 
probabilities, where such conditional probabilities represent the proportion of 
patients surviving in each time interval, given that he/she survives in the previous 
time intervals (we refer the reader to [30] for a comprehensive explanation of statis-
tical approaches). Thanks to data collected during longitudinal studies, survival 
curves can be estimated through the Kaplan-Meier curve for different groups of 
patients. Patients can be grouped according to their clinical or biological character-
istics, such as their gender, their cancer type, or the presence of specific alterations 
along the genome. By comparing, through statistical tests, the estimated survival 
curves for each group, it is possible to understand whether patients with specific 
clinical/biological characteristics show a longer or shorter survival time. Patients 
can be categorized in different cohorts also based on the type of treatment they 
received. In this case, survival analysis is extremely useful in determining the poten-
tial benefit of a particular treatment over others.

To estimate whether a particular characteristic is related to the occurrence of a 
health-related event, Cox’s regression model can be used. During longitudinal stud-
ies, many potential risk factors (such as family history, smoking, pre-existing condi-
tions) are collected. Cox’s regression allows us to identify the most significant risk 
factors among those collected.

Along with traditional statistical methods, approaches belonging to the machine 
learning literature have been adapted in the last years for survival analysis. While 
statistical methods for survival analysis focus more on characterizing the distribu-
tions of the event times and the statistical properties of the parameter estimation, 
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machine learning methods focus more on the prediction of event occurrence at a 
given time point. This is usually achieved by combining traditional survival analysis 
methods with different machine learning techniques [31]. Machine learning meth-
ods can be preferred over traditional statistical methods for highly dimensional data-
sets, given their ability to transform the data into a lower dimensional space. 
Different machine learning algorithms have been adapted to handle censored data 
for predicting the event occurrence at each time step. Survival trees were imple-
mented from decision trees (see Chap. 14) by modifying the splitting criteria used 
to partition the data. Also, random forests and gradient boosting have been adapted 
to the survival problem [31]. Cox models have been incorporated in Bayesian mod-
els and more recently have been incorporated in artificial neural networks and 
deep networks for survival analysis. Unlike the Cox model, which assumes that the 
log of the hazard function is a linear function of the covariates, the use of complex 
machine learning models, such as deep learning, allows for the modeling of non-
linear interaction between risk factors, encoded in the dataset’s attributes. Deep 
learning can be used for different purposes, from classification to feature engineer-
ing. In this latter case, deep networks can transform a highly dimensional and sparse 
dataset into a lower informative dimension that maintains important statistical prop-
erties of the initial dataset. Such data transformation allows for the integration of 
multi-omics data describing transcriptomics, proteomics and genomics status of 
each patient. The flexibility of the deep network architectures enables the implemen-
tation of feature transformation/integration followed by survival prediction. A spe-
cific type of network, named the Cox proportional hazards regression network, has 
been used to predict survival outcome in cancer patients after the integration of 
transcriptomics and clinical features [32]. Another recent approach built a two-layer 
neural network, with the output layer performing Cox regression, to predict progno-
sis of cancer patients from high-dimensional gene expression data [33].

Deep learning is also used to learn the distribution of survival time from 
data directly, without making any assumption about the stochastic processes that 
generate the data. In this case, the loss function of the network can be specifically 
designed to handle censored data [34, 35].

Compared with regression and classification problems, specific metrics for the 
evaluation of survival analysis need to be used to handle the problem of censored 
data. Such metrics usually consider the relative risk of an event for two different 
instances instead of the absolute survival time for each instance. An example is the 
concordance probability, also known as concordance index (C-index) [36], which 
computes the probability that a prediction value of an instance ya

 is greater than the 
prediction value of a second instance yb

 given that the observed value yais greater or 
equal to the observed value yb. When the outcome value is binary, the C-index rep-
resents the Area Under the ROC curve (AUC). Finally, the Brier score [37] has been 
adapted to the survival analysis problem by weighting each individual contribution 
of the score using the censoring information.

The analysis of survival data is extremely useful in health-care problems. Yet, 
survival analysis involves the collection of data for (even long) periods of time. Data 
collection can be time consuming  and costly, especially when collected features 
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include -omics data. For this reason, cross sectional studies are more often available 
to the research community. Simulation of longitudinal data from cross sectional 
studies can allow for the application of survival analysis, as illustrated in the section 
on “Case studies and examples”.

 Time Lines and Trajectory Modeling

Another possible representation of clinical care data is with patient timelines, which 
explicitly capture when the i-th patient experienced a specific event and illustrate 
when the j-th feature has been measured k times. It is worth noting that temporal 
features can be modeled as continuous variables, when features are continuously 
represented through time (for example, measures taken from devices such as a con-
tinuous glucose monitor, which monitors blood glucose on a continual basis), or as 
discrete counts, when measurements are taken at specific time (for example HbA1c 
measurements taken at follow-up visits). The modeling decision to represent time in 
a continuous or discrete manner depends on measurement types, their availability, 
and by the chosen temporal granularity. The example in Fig. 11.7 illustrates two 
variables modeled in a discrete way.

Even if it brings several further challenges when analyzing data, capturing the 
temporal dimension of clinical data can enhance models and help in “making sense” 
of clinical data and outcomes. Indeed, examining the order in which events occur 
could be a useful tool to understand the correlation between exposures and out-
comes. If A caused B, then one should expect to see some evidence of A in the 
patient’s data before we see some evidence of B.

In general, timelines represent a useful tool to integrate the different sources and 
types (e.g. event-type data like diagnosis and continuous values like laboratory test 
results) of data for a patient. The timeline explicitly captures when the i-th patient 
experienced each event or shows a certain level of a measure.

The first step to apply methods for clinical outcome models from longitudinal 
data is to convert the patient timeline into a patient feature matrix. Thus, there are 
several decisions to be made about the useful timescales for answering the clini-
cal question and the possible ways to represent time. As for cross-sectional data, 
a good knowledge of the feature set is fundamental in representing time. For 
example, it is important to understand the interval of time over which a feature is 
relevant, and to observe if data changes in systematic ways over the analysis 
timescale.

To represent longitudinal data, the patient-feature matrix can be coded into 
“long” and “wide” formats (Fig. 11.7). A wide dataset will have one record for each 
i-the patient. The j-th observations made at different k-th time points are coded as 
different columns. In the wide format every j-th measure that varies in time occupies 
a set of columns. In the long format there will be multiple records for each i-th indi-
vidual. Some variables that do not vary in time are identical in each record, whereas 
other variables vary across the records.
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Fig. 11.7 Wide and long format example for longitudinal data

Several approaches that attempt to model life-course changes or disease progres-
sion simply extract features for use in standard regression approaches, for example, 
an Hba1c measure change over time. More sophisticated approaches take account 
of within-individual correlations and use of latent classes. One of the most popular 
techniques to represent clinical outcomes that vary over time is latent trajectory 
analysis, that is techniques to estimate membership of unobserved subgroups of 
individuals developing over time [38]. These techniques couple the idea of latent 
growth modeling—that all individuals are drawn from one population—with mix-
ture modeling that assumes that growth parameters (i.e. intercept, slope) vary across 
a number of prespecified, unobserved subpopulations. This is accomplished using 
categorical latent variables, which allow for groups of individual growth trajectories 
and results in separate latent growth models for each latent group, each with its 
unique set of growth parameters [39]. For a given data matrix, it is possible to derive 
different models based on the number of clinical outcomes, how these outcomes are 
measured, the number of latent classes, model structure and trajectory property. 
Thus, one should follow a structured framework to construct and interpret latent 
class trajectory models [40] (Fig. 11.8).

 Markov Models

As described in the previous sections, an area of great interest for outcome predic-
tion is related to chronic diseases. Many such diseases are characterized by com-
plex temporal behaviors, made of different disease states. Each state is 
characterized by some key pathophysiological variables, values, and specific 
symptoms. When such states are part of a sequence of deterioration steps are usu-
ally called disease stages. The rate of transition between states or stages may be 
dependent on different factors, including patient characteristics (sex, age, 
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Fig. 11.8 Example of the application of trajectory analysis. On the left pane each line represents 
the measurements in time for single patients. On the right pane the trajectories discovered by the 
latent class trajectory modelling. (Figure from [41] (Dagliati, Plant, et al. 2020)) (This article was 
published in the Arthritis Rheumatol, Dagliati A, Plant D, Nair N, Jani M, Amico B, Peek N, 
Morgan AW, Isaacs J, Wilson AG, Hyrich KL, Geifman N, Barton A; BRAGGSS Study Group. 
“Latent Class Trajectory Modeling of 2-Component Disease Activity Score in 28 Joints Identifies 
Multiple Rheumatoid Arthritis Phenotypes of Response to Biologic Disease-Modifying 
Antirheumatic Drugs”. Creative commons terms.)

genotypic background), medications, and health care conditions (frequency of vis-
its, availability of healthcare resources). In this case, predicting the outcomes can 
be seen as forecasting the next state given the current one, or deriving the most 
probable future temporal trajectory, made of a sequence of disease states. In the AI 
literature the most popular methods to deal with this kind of prediction problem 
are represented by Markov models, hidden Markov models and dynamic 
Bayesian networks, using either discrete or continuous time. These approaches 
share a common theoretical framework. We suppose that at a given time point t the 
disease state can be described by a state vector q of k variables. The main assump-
tion of this class of methods is the Markovian property, i.e. that the probability of 
a state in a future time point is only dependent on the value of the state at the cur-
rent time, which in turn depends on the state at the previous time point and so 
forth [42].

In the discrete time case, the state is observed on a discrete time grid, so that 
P(q(t + 1)|q(t), q(t − 1), …, q(0)) = P(q(t + 1)|q(t)).

The simplest form of model to describe the temporal trajectory of patients over 
time is represented by the case in which k = 1 and q is a discrete variable with s 
values. A Markov model describes the transitions over time with a transition prob-
ability matrix, that contains P(q(t + 1) = j|q(t) = i), where i and j are one of the s 
values. Usually, these types of models assume that the transition probability matrix 
is time-independent. The machine learning task thus consists of learning the transi-
tion probabilities. Different modeling strategies can be taken when one wants to 
consider patients’ individual characteristics.

A first strategy is to derive a model, that can be a regression model or a survival 
model, of the conditional probability given the attribute values of the patient, so that 
P(q(t + 1)|q(t)) = f(x(t)), where x is the input vector.
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Another strategy models the state variable as the vector of the m features mea-
sured on the patient. In this case q = x, and k = m. In this case the learning step 
stands in computing the conditional probabilities P(x(t  +  1)|x(t)). A suitable 
strategy in this case is to resort to dynamic Bayesian networks, that allow one to 
conveniently parametrize the probability through a set of probability densities of 
smaller dimensions, exploiting local conditional independence between 
attributes.

A more complex situation occurs when the state cannot be observed, but rather 
we can measure only a set of output variables y(t). In this case, the dynamic system 
needs to be described with two sets of conditional probabilities, P(q(t + 1)|q(t)) and 
P(y(t)|q(t)). In this case, one needs to resort to the theory of hidden Markov models, 
since the Markov model that drives the dynamic is not observed [43].

Although not widely used in the literature due to the complexity of the learning 
algorithm and complexity in interpretation of results, it is also possible to exploit 
continuous time versions of the previously presented strategies [44]. Moreover, 
extensions with continuous states have been also published [45, 46].

Once a disease states model has been built from data, it is possible to only to 
look for the most probable next state or to derive the most probable trajectory, but 
also to perform Monte Carlo simulations. In this case, given a certain initial dis-
ease state, it is possible to generate many simulated cases by sampling from the 
conditional probability distributions. This is a powerful approach for outcome pre-
diction, since it provides a distribution of trajectories that can show the variability 
of potential outcomes and may allow one to perform “what-if” and sensitivity anal-
yses [42].

 Performance Assessment

A crucial aspect of predicting clinical outcomes is related to the assessment of the 
quality of prediction models. Assessment can be performed considering several 
aspects. Different measures can be used to assess the quality of an outcome predic-
tion model, although most of them are related to the capability of forecasting cor-
rectly the outcome itself: accuracy (and/or error), sensitivity and specificity, 
balanced accuracy, precision, and recall, Area Under the ROC Curve and the C-index, 
Area under the Precision-Recall Curve measures are used quite often to assess the 
discrimination capability of a model (see Chap. 6). Other measures, such as the 
Brier Score, jointly evaluate the discrimination and calibration properties, where 
calibration is the capability of estimating the correct probability of the outcome 
given the inputs.

For the benefit of the chapter, it is important however, to highlight what are the 
strategies to effectively compute the above-mentioned quantities from the training 
data. First, it is necessary to apply a proper experimental design when machine 
learning models are applied, to soundly estimate generalization error. Second, it is 
essential to evaluate the performance on independent data and to understand the 

R. Bellazzi et al.



329

issues related to the applicability of a model in health care settings different from 
the one(s) that generated the data. Third, there are important issues related to stabil-
ity of the models, model drift and model update.

 Experimental Design for Learning

Outcome prediction models based on machine learning techniques are fully 
dependent on the  data available. Data are usually the result of a retrospective 
study, where suitable cases are selected and organized to extract the prediction 
model. A crucial step is therefore related to the selection of the examples, which 
should be performed with the goal of extracting a data set that is representative of 
the available population. This is crucial because the models will extract regulari-
ties that should generalize beyond the specific sample used for training the predic-
tive model. Once this is done, the main goal of the experimental design is to 
properly assess the generalization performance of the machine learning model, i.e. 
to estimate how well the learned model will behave on unseen data. As already 
described in Chap. 6, it is common to resort to data set subdivision and resampling 
strategies. In an approach called hold-out, data are usually divided into two sets, 
the training set and the test set. While training is used to learn the classifiers, the 
test set should only be used to assess the generalization performance on unseen 
cases. In order to tune the algorithms’ design parameters, the training set can be 
further divided into a learning and a validation set. Repeated hold-out allows one 
to derive an estimate of the stability of the prediction performances, even if, in this 
case, the set of performance measures obtained are strongly correlated, so that 
confidence intervals on the prediction cannot be reliably computed using standard 
statistics related to the properties of the sample mean. To lower the correlation 
between the repeated samples, a very popular approach is k-fold cross-validation, 
that divides the data set into k folds, which, in turn, allows training the model with 
k-1 fold and test on the remaining one. In this way the test data are always differ-
ent from each other. As it has been recently shown, also this approach tends to 
underestimate the confidence intervals of the prediction, so that nested k-fold 
cross-validation can be used, to obtain a more reliable estimation of the confi-
dence intervals of the accuracy [47]. Alternative strategies to obtain estimates of 
the generalization error are represented by bootstrap approaches, where several 
samples with replacement are obtained from the training set, thus generating a 
series of bootstrap samples of the same size of the original data set, where some 
data are left out due to the resampling mechanism (out of bag samples). Models 
are learned on each sample and tested on the out of bag data. Since the estimates 
of the performance obtained are biased and correlated, proper correction mecha-
nisms are needed to derive reliable estimates of the generalization error as well as 
of its confidence intervals. Such confidence intervals can be obtained for example 
via non-parametric strategies, such as showing the sampling distributions of the 
bootstrap error.
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 Common Mistakes in the Design of Experimental Validation

Sampling strategies for assessing quality of outcome prediction are prone to subtle 
mistakes related to the preprocessing steps, such as imputation, feature selection, 
feature transformation and sometimes even normalization. As a matter of fact, test 
set data should be kept separated from training data in all steps [48]. It is essential 
to keep attention to all preprocessing steps that exploit, explicitly or implicitly, 
information about the class. The most common mistake made by students, but also 
in some published papers, is to perform feature selection before dividing training 
and test data. Since many approaches use ranking or shrinkage strategies that select 
the features that are more related to the class, feature selection becomes the first step 
of the learning algorithm, and thus should be performed on the training set only. 
This means, of course, that when running k-fold cross-validation, for example, fea-
ture selection should be performed k times, and the procedure may generate k mod-
els with (slightly) different features. Other cases with subtle overfitting mechanisms 
occur when the distribution of the data is changed before learning, for example 
when the training set is oversampled because one of the classes is underrepresented. 
If oversampling is performed on the entire data set, using for example resampling 
with replacement, or its variants that uses all data to generate the new samples, such 
as the Synthetic Minority Oversampling TEchnique (SMOTE) [49], it is important 
to keep the test data separated before oversampling, to avoid having copies or highly 
correlated samples in both training and test sets. Overfitting may be related to other 
preprocessing steps, one of the most common being class-aware discretization. In 
these approaches, the binning of the discrete values of a continuous variable are 
defined to maximize the class separation between the generated bins.

 Experimental Design for Testing: External Validation

External validation is critical for establishing machine learning model quality. It 
involves the use of independently derived, external, data to validate the performance 
of a model trained on initial input data. External validation brings fundamental evi-
dence for models’ generalizability. For example, when a validation set comes from 
independent sources, any feature set that was wrongly selected for the input training 
data (e.g. due to sampling bias) would likely cause the model to fail [50].

Positive external validation performance is regarded as proof of generalizability: 
the idea is that if a good performance persistently replicates in independently sam-
pled data, the learned model is more likely to be generalizable.

Data taken from completely separate sources (e.g. two cohorts coming from dif-
ferent studies) may capture useful domain-relevant aspects, and a well-trained 
model, which takes into account possible confounders and captures informative fea-
tures, should continue to have good performances when repeatedly applied to new 
data. Furthermore, external validation should assure that these models are more 
domain-wise interpretable.
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 Checking Performance Stability, Model Drifts, Diagnostics, 
and Model Revision

After model development, validation and clinical impact evaluation, the AI model 
can be deployed in the clinical setting. When we deploy a model, we would expect 
that it will perform as well as in the validation phase. Yet, performance drift and 
reduced accuracy are often reported when the model is applied to new patients. 
Differences in performances can be due to substantial differences between the vali-
dation set and the patient population we are applying the model to. Healthcare envi-
ronments are continuously evolving over time: demographic compositions, 
population ages and outcome incidence may change, differences between clinical 
settings and hospitals can be marked, clinical guidelines and scientific insights usu-
ally evolve over time. Dynamism and heterogeneity impact model performance 
over time or even instantly, from research to bedside. Therefore, performance moni-
toring should be mandatory when the model is applied in clinical practice [51].

First, we should assure that the deployed approach is being applied to a popula-
tion as similar as possible to the training set: we have no guarantee that the model 
will perform as intended on patients that do not come from the same distribution as 
the training set. Much interest is currently devoted to include regulatory constraints 
in the design and application of AI-based tools2 and to introduce the concept of 
algorithmovigilance, as discussed in Chap. 18. In terms of methods for performance 
monitoring, some pattern recognition models embed a rejection option in their clas-
sification, so that the classifier refuses (or labels as unreliable) the prediction on a 
particular instance that is somehow distant or different from the training set [52]. 
Reliability assessment of single prediction would represent a useful metric to moni-
tor a model’s performance and increase trust in the prediction. Pointwise reliability 
is a measure of confidence that the predicted class for a specific instance (i.e. patient) 
is equal to the true class of the instance. In deployment, we do not often hold the 
information about the true clinical outcome, yet reliability assessment can provide 
a measure of trust on that prediction. Two principles can be followed to compute a 
reliability measure. First, the prediction on an instance that is “not close” to the 
training set, is more likely to be unreliable, given that the model has not been trained 
on that area of the feature space. Second, the prediction of an instance will be more 
reliable if the model was accurate on similar instances of the training set [53]. 
Pointwise reliability may be a useful monitoring tool to (1) guarantee that the model 
is being applied at its “working point” (2) to detect possible underrepresented popu-
lations (3) to detect possible population shifts over time.

Monitoring the performance of our model over time involves: (1) monitoring 
the discriminative performance (i.e. the ability to predict the true class of an exam-
ple), and (2) monitoring calibration (i.e. the ability to align predicted posterior 

2 https://www.fda.gov/medical- devices/software-medical-device-samd/artificial-intelligence-and-
machine-learning-software-medical-device, with (accessed August 18, 2022).
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probabilities to the true posterior probabilities). In some applications, a lower cali-
bration can be tolerated, for instance when our aim is to stratify patients by risk. 
However, when the predicted probabilities are used to support personalized deci-
sion making, it is important to maintain good calibration. Moreover, it has been 
observed that calibration is more likely to deteriorate over time. When perfor-
mance drift, either in discriminative or calibration performance, is diagnosed, dif-
ferent strategies can be adopted. The model can be re-estimated, i.e. re-trained on 
new data, without changing its form or variable definitions, while hyper- parameters 
are re-tuned if necessary. Alternatively, a completely different model can be trained 
on new data. These approaches should be performed in response to substantial 
dataset shift and/or new critical insights. In addition, different updating methods 
have been developed to retain and increase knowledge from the starting model [54].

Recently, model evaluation in terms of its explainability is gaining traction, lead-
ing to the development of so-called eXplainable AI (XAI). XAI investigates meth-
ods to interpret the internal logic and/or the prediction of AI black box models, and 
it has been boosted by recent regulations such as the European Union’s General 
Data Protection Regulation [55]. The reader can refer to Chap. 8 for an overview of 
AI explainability.

 Case Studies and Examples

This section will provide some case studies in the areas of diabetes, myelodysplastic 
diseases, and COVID-19.

 Type 2 Diabetes

The prediction of clinical outcomes within type 2 diabetes poses several challenges. 
The pathology itself entails a few complications and comorbidities and managing 
type 2 diabetes patients is a complex task, such complexity being embodied in long 
clinical histories characterized by substantial variability in the type and frequency 
of clinical events. To build efficient pipelines to derive a set of predictive models of 
type 2 diabetes complications, it is necessary to follow several of the approaches 
described in this chapter.

For example, in a previous study, authors implemented a pipeline comprising 
clinical center profiling, predictive model targeting, predictive model construction 
and model validation [56]. After having dealt with missing data by multiple imputa-
tion and having applied suitable strategies to handle class imbalance, they used 
logistic regression with stepwise feature selection to predict the onset of retinopa-
thy, neuropathy, or nephropathy, at different time scenarios. As small differences in 
terms of prediction accuracy were noticeable among the applied models (logistic 
regression, SVM, random forest and naive bayes), logistic regression was chosen, 
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given its capability of visualizing results through nomograms and as the instrument 
to deliver the model predictions to users, in accordance with explainability 
paradigms.

Other applications aim at predicting type 2 Diabetes clinical outcomes leverag-
ing modeling of patient trajectories. More recently, it has been shown that temporal 
models that capture disease progression can identify key features that underpin 
patients’ trajectories and characterize their subtypes [57]. The authors identified 
multivariate disease trajectories with an approach based on topological data anal-
ysis, then pseudo time-series were used to infer a state space model characterized 
by transitions between hidden states that represent distinct trajectories. Each 
patient was associated with one of the identified trajectories, and this information 
was used as a predictor for the onset of type 2 diabetes microvascular complica-
tions. Outcomes were contrasted for subjects belonging to the discovered trajecto-
ries using a  Kaplan-Meier visualization. Given the results obtained by the 
Kaplan-Meier analyses (Fig.  11.9), the authors investigated whether the mined 
patient groups were significant predictors of the onset of microvascular complica-
tions when also considering the available clinical variables in a statistical model. 
To this end, they carried out a multivariate survival analysis by using Cox-
Regression to predict onset probabilities. Results indicate worst prognosis (i.e. 
higher risk of an earlier development of microvascular complications) in patients 
following the so-called trajectory A (in red in Fig. 11.9). When analyzed in a uni-
variate way, patients following to the A trajectory show a higher and increasing 
level of HbA1c, a decreasing and then increasing trend of cholesterol, and an 
increasing trend of triglycerides.
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Fig. 11.9 Kaplan-Meier having the onset of micro vascular complication as endpoints for differ-
ent groups of patients following the different mined trajectories. (Figure from [57] (Dagliati, 
Geifman, et al. 2020) (This article was published in Artificial Intelligence in Medicine, Dagliati A, 
Geifman N, Peek N, Holmes JH, Sacchi L, Bellazzi R, Sajjadi SE, Tucker A. “Using topological 
data analysis and pseudo time series to infer temporal phenotypes from electronic health records”. 
Copyright Elsevier (2020))
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 Myelodysplastic Syndromes

The advent and development of high-throughput sequencing technologies provide 
novel insights into patients’ individual genomics landscapes. Analytics integrating 
both genomics and clinical data are therefore needed to better support clinical deci-
sions. As we have already mentioned, Cox models can inform understanding of 
individual patient characteristics that significantly impact on diagnosis, prognosis, 
or therapeutic response in cancers. Data collected over time (i.e. longitudinal data) 
from patients’ cohorts could be useful to assess risk factors for disease progression 
and, through Markov approaches, to calculate probabilities of transition to subse-
quent stages. However, longitudinal analysis can be time- and cost-intensive. 
Therefore, many studies only cover a short time window within the disease 
progression.

For instance, cross-sectional data from patients in different disease stages were 
exploited to simulate probabilistic trajectories describing patient’s possible disease 
progression pathways [58]. The approach exploits data transformation methods, in 
particular matrix factorization, and Monte Carlo simulation. The resulting simu-
lated longitudinal dataset can be analyzed with Cox and Markov models.

This method was applied to study the dynamics of myelodysplastic syndromes 
(MDS), heterogeneous clonal hematopoietic disorders3 associated with mutations 
and abnormalities in maturation and differentiation of hematopoietic cell lines. 
MDS patients are characterized by different risks of development of acute myeloid 
leukemia (AML), and genetic events are found to drive MDS progression towards 
AML. In clinical practice, patients are categorized into different levels of progres-
sion risk according to the International Prognostic Scoring System Revised (IPSSR). 
Based on clinical features, the IPSSR score categorizes patients into one of the fol-
lowing levels of risk: “Very Low”, “Low”, “Intermediate”, “High”, and “Very High” 
[59]. Yet, recent studies suggest that genomics characteristics may have an impor-
tant role in driving disease progression.

To study disease progression and the influence of genomics characteristics, in a 
recent study authors developed a method to simulate longitudinal data from cross- 
sectional data, considering the similarity between patients [58]. Such similarity is 
calculated through a matrix trifactorization strategy that computes similarity using 
patient data and several knowledge sources, represented by relational matrices that 
associate clinical data, mutations, genes, and diseases. Each patient in a given stage 
has a probability of progression to the following stage defined by the mean survival 
probability in that stage. Moreover, it is possible to compute the similarity of this 
patient to every patient in the subsequent stage. Starting from each patient in the 
first stage, when running the simulation, he/she may evolve to the following stage, 
or he/she may remain in the same stage. If a patient evolves, he/she “becomes” one 
of the patients of the following stage with a probability proportional to their 

3 Hematopoietic disorders are heterogeneous diseases that can be caused by problems with red 
blood cells, white blood cells, platelets, bone marrow, lymph nodes, and the spleen.
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similarity through a roulette wheel algorithm. Two patients linked by the simulation 
strategy become a single macro-patient. This procedure is applied again until all 
disease’s stages are evaluated. Ten thousand Monte Carlo simulations were per-
formed to select the longest most frequent trajectories. The result is a simulated 
longitudinal dataset which is exploited for Cox analysis and for Markov modeling 
to calculate transition probabilities between different stages of the disease or death.

Despite Cox and Markov models being built from simulated data, the former was 
able to reveal many significant covariates with support in the literature. For 
instance, the IDH2 gene encodes a protein that plays a role in intermediary metabo-
lism and energy production. According to the results of the Cox model, mutations in 
this gene are associated with disease progression (Fig. 11.10), in accordance with 
previous studies that showed that IDH2 mutated patients have a significantly higher 
risk of developing AML and are associated with significantly worse overall survival. 
Survival curves obtained from the simulated analysis were consistent with survival 
curves observed in a previous study.

 The COVID-19 Pandemic

The pandemic of coronavirus disease (COVID-19) caused by the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) has boosted the application of AI 
methods for clinical purposes in a collaborative way. The Consortium for Clinical 
Characterization of COVID-19 by EHR (4  CE) is an international collaboration 
addressing COVID-19 with federated analyses of electronic health record (EHR) 
data. 4 CE involves more than 340 international hospitals jointly analyzing more 
than 30,000 COVID patients’ data [60]. The initiative has been able to collect sum-
mary data on demographics, hospitalization time, diagnosis codes, lab values, drugs 
in a standardized way on data coming from six countries starting from spring 2020. 
Several studies have been carried out, focusing on different outcomes related to 
COVID-19, and different research projects have started leveraging this initia-
tive [61].

One of the aims of the 4CE consortium was to develop and validate computable 
phenotypes for COVID-19 severity [62].

During the 4CE activities it became apparent  that to properly analyze patient 
disease trajectories and investigate outcomes based on EHR data, it is essential to 
obtain reliable disease severity measures, such as ICU admission and in-hospital 
death. However, these measures were not always available in all collaborating cen-
ters. For this reason, it was necessary to develop a surrogate severity measure, based 
on data available on all EHRs, such as medications, diagnosis, and lab codes. Such 
surrogate measure is a computable phenotype.

Two different approaches have been followed. On the one hand an “expert- 
driven” 4CE severity phenotype has been derived. This algorithm was validated 
against the severity outcome “ICU admission and/or death” in the subset of the 
global 4CE consortium data in which this information was available. On the other 
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Fig. 11.10 Workflow to simulate and analyze longitudinal data from patients in different risk 
stages. (Figure from (Nicora et al. 2020)) (This article was published in the Journal of Biomedical 
Informatics, Volume 104, G.Nicora, F.Moretti, E.Sauta, M.Della Porta, L.Malcovati, M.Cazzola, 
S.Quaglini, R.Bellazzi, “A continuous-time Markov model approach for modeling myelodysplas-
tic syndromes progression from cross-sectional data”, Copyright Elsevier (2020))
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hand, relying on data of one center only, a data-driven phenotype was learned using 
a classification algorithm, and its results have been compared with the “expert- 
driven” one.

The main goal of this step was to develop a clinical severity phenotype that was 
possible to compute at any site participating in the work, thus limiting the data to: 
demographics, diagnoses, labs, medications, and ICD procedure codes [63]. In par-
ticular, the following concepts were extracted from the data:

• Demographics:

 – Sex, Age

• Diagnoses:

 – ARDS, ventilator-associated pneumonia;

• Lab Tests:

 – PaCO2 or PaO2;

• Medications:

 – sedatives/anesthetics or treatment for shock;

• Procedures:

 – endotracheal tube insertion or invasive mechanical ventilation.

Since the concepts are related to different concepts in standard coding systems 
(see Chap. 3), the i2b2 (Informatics for Integrating Biology and the Bedside, 
https://www.i2b2.org/) ontology of the ATC (Anatomical Therapeutic Chemical) 
network [64] was used to extract a list of about 100 codes belonging to one of: 
International Classification of Diseases versions 9 and 10 (ICD-9 and ICD-10), 
Logical Observation Identifiers Names and Codes (LOINC) [65], and RxNorm 
format [66].

The “phenotyping” algorithm simply assigns a patient to the class “severe” if any 
of these codes is present in the EHR during a Covid hospitalization.

Resorting to the data coming from one of the centers involved in 4CE, Mass 
General Brigham (MGB), a computable phenotyping pipeline was applied to com-
pare the expert-driven approach to a fully data-driven method.

The problem has been modeled as a supervised classification task, where the 
binary class is y = {severe,not-severe}. The feature set was either represented by the 
codes identified by the expert-driven approach (see above) or by all the codes from 
all possible data elements, generating the fully data-driven strategy. In the latter 
strategy the Minimize Sparsity Maximize Relevance (MSMR) dimensionality 
reduction algorithm [67] was used as a feature selection step. In both approaches, 
logistic regression coupled with component-wise functional gradient boosting was 
exploited to derive the final classification model. The model was tested on 3290 
patients with a repeated hold-out approach, using an 80–20 train-test split and 9 
iterations.
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The expert-driven 4CE severity phenotype had pooled sensitivity of 0.73 and 
specificity 0.83. The comparison of the performance of the two strategies showed 
that expert-derived phenotypes had mean AUC 0.903 (95% CI: 0.886, 0.921), com-
pared to AUC 0.956 (95% CI: 0.952, 0.959) for the data-driven approach. Rather 
interestingly, the best features selected by the MSMR-based algorithm were partly 
related to the 4CE definition, such as PaCO2, PaO2, ARDS, sedatives; added ICU 
related exams, such as d-dimer, immature granulocytes, albumin; and finally pro-
vided different insights, probably related to the peculiarities of the specific hospital, 
such as chlorhexidine, glycopyrrolate, palliative care encounter.

In conclusion, expert-driven phenotypes seem robust and can be applied in many 
international centers, and data-driven ones, although prone to overfitting, may 
reveal interesting novel relationships between variables and outcomes.

 Conclusion

In this chapter we have discussed the application of AI strategies to deal with the 
problem of predicting clinical outcomes. Clinical outcomes are defined as measur-
able changes in health, function or quality of life that result from patients’ care. 
The capability to predict such changes is of course of paramount importance in a 
variety of clinical contexts, in day-by-day clinical activities. In order to highlight 
the most important aspects of AI modeling to forecast clinical outcomes, we first 
provided an enlarged view about the different outcomes’ evaluation measures, 
which are crucial to understand the different classes of AI methods that need to be 
exploited. Following this analysis, we then discussed the most important set of AI 
approaches that are needed for outcome prediction, namely pre-processing, includ-
ing deep learning strategies, classification, regression, survival analysis, trajectory 
modeling and Markov models. Of utmost importance in medicine is model evalu-
ation and performance assessment. For this reason, we devoted a section to pre-
senting the most important aspects of experimental design in machine learning, 
highlighting common mistakes and pitfalls in biomedical machine learning stud-
ies. We introduced the topic of validating the model against external data sets, i.e. 
data collected in clinical centers different from the one(s) used to train the model, 
and finally  we  presented the problem of monitoring performance stability and 
revising the model while it is in operation. AI for outcome prediction can be seen 
as a biomedical engineering exercise, where the selection of the methodologies 
and the data analytics pipeline need to be coupled with the profound understand-
ing of the clinical problem. To show practical examples of this approach, 
we reported three case studies of AI applied for clinical outcomes prediction, cov-
ering complications in type 2 Diabetes, prognosis in myelodysplastic syndrome, 
and finally severity modeling in COVID-19 patients.

While AI provides new ways for modeling patients’ evolution after a clinical 
intervention, different sources of uncertainty make this problem extremely hard, and 
inherently prone to high variability. Such sources include individual responses to 
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treatment that depend on unmodeled factors, like the environmental context, as well 
as operational differences between and within hospital institutions. For these rea-
sons, it is crucial to remember that AI can be very beneficial to understand better data 
to formulate hypotheses about the future patient evolution, but all decisions related 
with these hypotheses need to be taken with human judgement and discernment.

Questions for Discussion

• Define some practical scenarios of use of prediction models in the clinic, answer-
ing the following questions related (1) to data collection: who collects the data, 
and when is it collected? (2) to deployment of the model: how should predictions 
be presented (e.g. apps, charts)? and finally (3) to the decision-making process 
(who takes decisions based on model predictions and what are the consequences 
of model errors?)

• What are some criteria for choosing the best strategy to deal with an outcome 
prediction problem? How would one go about selecting the type of outcome 
measure, identifying the number and nature of the features available for analysis 
and the amount of data available?

• What are the key components of experimental design to evaluate the results of 
outcome prediction models?

• What are the differences and relationships between prediction and causation? To 
what extent should explanation, prediction, and causality be jointly considered 
when starting a clinical machine learning project?

Further Reading

Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series 
in Statistics) 2nd Edition.

• In this classic volume, authors provide an overview of statistical learning, from 
the methodologies (supervised and unsupervised machine learning approaches) 
to validation strategies.

Chunhua Weng, Nigam H. Shah, George Hripcsak: Deep phenotyping: Embracing 
complexity and temporality - Towards scalability, portability, and interoperability. 
J. Biomed. Informatics 105: 103433 (2020).

• This is a special issue that includes twenty original articles presenting novel 
methodologies for case ascertainment, patient stratification, disease subtyping 
and temporal phenotyping.

David Hand, Construction and Assessment of Classification Rules, Wiley 1997. 

• This book outlines different approaches to construct classification rules. 
Emphasis is placed on comparison and evaluation of performance.

Charu C.  Aggarwal, Neural Networks and Deep Learning, A Textbook, 
Springer, 2018. 

• This volume contains a thorough examination of neural networks and deep learn-
ing approaches, from a theoretical and algorithmic point of view.
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Ewout W Steyerberg, Clinical Prediction Models: A Practical Approach to 
Development, Validation, and Updating, Springer, 2009.

• This book provides practical illustration on how statistical and regression 
approaches are applied to predict diagnostic and prognostic outcomes.
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Chapter 12
Interpreting Medical Images

Zongwei Zhou, Michael B. Gotway, and Jianming Liang

After reading this chapter, you should know the answers to these questions:
• What are medical images, and how are they different from photographic images?
• How are medical images used in clinical medical practice?
• What are the challenges and opportunities for interpreting medical images?
• What are the promising approaches and directions for AI in medical imaging?

 Overview

Modern imaging systems generate enormous volumes of data, far exceeding the 
human capacity for interpretation—a manifestation of big data in medical imaging. 
However, it is not the images themselves but rather the clinically relevant informa-
tion contained within them that is of importance. Computer-aided diagnosis 
(CAD) empowered by artificial intelligence (AI) and deep learning (DL, see 
Chap. 6) has led to radical progress in automatically interpreting medical images. 
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There is no doubt that the impact of AI/DL on medical imaging will be tremendous. 
In the future, many medical images will reach a physician along with an interpreta-
tion provided by a computer. Although this chapter is largely focused on the role of 
AI/DL in medical imaging, we start with some background information on medical 
imaging itself, which will help you to understand the later discussions regarding 
AI’s role in image interpretation.

 Introduction to Medical Images

“Medical imaging” is a broad term that encompasses a wide variety of techniques 
used to create images of the human body. Worldwide, the most commonly employed 
imaging technique is conventional radiography—the use of X-ray radiation to cre-
ate images of human anatomy non-invasively. Conventional radiography is per-
formed by directing a focused X-ray beam toward a patient and using a specialized 
detector placed against the patient to record the relative amount of X-ray absorption 
by the irradiated tissues. In essence, conventional radiography creates an image akin 
to a “shadow” that reflects relative tissue density—denser tissues, such as bone, 
absorb relatively more X-ray photons than less dense tissues, such as soft tissues 
and fat. The summation of this process of differential absorption produces a medical 
image. Figure 12.1a displays the first X-ray (probably the first medical image in 
history) produced by Wilhelm Roentgen in 1895. Conventional radiography is 
widely employed in a number of situations, particularly for musculoskeletal and 
chest disorders; for example, “X-rays” of the extremities and bones are routinely 
performed for patients with a traumatic injury. Also, chest X-rays (conventional 
radiography of the chest) are performed for numerous conditions affecting the tho-
rax, including for patients presenting with chest pain, shortness of breath, suspected 
pneumonia, and other heart or lung conditions.

Despite the widespread use of conventional radiography, this technique suffers 
from significant limitations. In particular, conventional radiography is a summa-
tion technique—the created images are two-dimensional representations of three- 
dimensional human anatomy. This situation results in anatomic structures 
overlapping one another, which can obscure important diagnoses. Furthermore, 
since the X-rays used for conventional radiography create a density map of a 
patient’s tissues, tissues with similar density may not be seen as distinct structures. 
This physical limitation is profound—most soft tissues in the human body (e.g., 
liver, heart, blood, and muscle among others) have similar density, and hence the 
ability of conventional radiography to depict these structures adequately is quite 
limited.

Recognition of the limitations of conventional radiography has led to advanced 
medical imaging techniques, notably Ultrasound, Magnetic Resonance Imaging 
(MRI), and Computed Tomography (CT). These imaging modalities are 
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Fig. 12.1 Typical medical imaging examples. (a) The first radiographic (“X-ray”) image of a 
woman’s hand (source: https://en.wikipedia.org/wiki/X- ray, accessed Aug 19, 2022). (b) 
Ultrasound image of a fetus. (c) Magnetic resonance imaging (MRI) of the brain. (d) Computed 
tomography (CT) of the thorax. (e) Ophthalmologic image of the retina. (f) Dermoscopic image of 
the skin lesion. (g) PET image of the human body. (h) Pathology image of the tissue

commonly referred to as cross sectional imaging techniques because they create 
two- dimensional, thin section, “slice-like” images of the human body that can be 
summed to create exquisite three-dimensional anatomic images (Fig.  12.1b–d). 
Their introduction occurred during the last half of the twentieth century:

• Ultrasound was developed in the 1960s. Ultrasound creates images using high- 
frequency sound waves, which are directed into a patient and differentially trans-
mitted or reflected by the various issues encountered. When a transducer is 
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placed on the skin in a particular area of the patient, sound beams are directed 
into the patient’s tissues and either absorbed or reflected back to the transducer 
according to the various properties of the tissues and interfaces encountered, 
allowing the creation of a medical image. Ultrasound imaging has wide applica-
tions in medicine, including assessment of cardiac function, patency of blood 
vessels, detection of neoplasms, and assessment of acute abdominal and pelvic 
pain, among numerous other uses. In particular, ultrasound examinations can 
often be performed portably and therefore are widely employed at the point of 
medical care.

• MRI was invented in 1970. MRI creates images of human anatomy in an entirely 
different manner from ultrasound. MRI uses a radiofrequency energy pulse 
directed into human tissue, which excites hydrogen atoms in that tissue. Because 
the hydrogen atoms in the imaged tissue exposed to the radiofrequency pulse are 
at a higher energy state, when the radiofrequency energy pulse is turned off, the 
hydrogen atoms return to their resting state by emitting an energy signal, doing 
so in a manner unique to their local environment. Hence this signal, or echo, 
returned from tissue exposed to the radiofrequency pulse, can be sampled and 
used to create an image of the examined tissue. MRI has been widely applied to 
differentiate between white matter and grey matter in the brain and can also be 
used to diagnose aneurysms and tumors.

• CT was created in 1972. As with conventional radiography, CT uses X-rays to 
create density maps of human tissue, but unlike conventional radiography, CT is 
not a summation technique; instead, CT is a projection technique in which X-ray 
photons are directed from various angles through a patient and X-ray absorption 
(referred to as attenuation) is recorded along the photon paths. In this manner, 
tissues of similar density can be differentiated, and an image of internal human 
anatomy is generated. CT has wide applications in medicine, e.g., showing inter-
nal injuries and bleeding; locating a tumor, blood clot, excess fluid, or infection; 
detecting cancer, heart disease, emphysema, or liver masses; guiding biopsies, 
surgeries, and radiation therapy.

 Characteristics of Medical Images

Medical images possess unique characteristics compared with photographic images, 
providing unique opportunities for applying computer-aided techniques to assist in 
medical diagnosis. These characteristics provide the basis for imaging research 
advances that have subsequently been translated into clinically usable products. 
This section summarizes some of the unique characteristics of medical images that 
can be exploited by AI techniques to advance computer-aided diagnosis in medical 
imaging.

• Medical images are created by modalities. Photographic images typically consist 
of 3-channel (red, green, and blue) images within the visible light spectrum, 
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whereas there are many modalities to create medical images, including CT, MRI, 
positron emission tomography (PET), mammography, ultrasound, radiography, 
and many more. Each modality uses a portion of the non-visible electromagnetic 
spectrum (except for ultrasound, which employs sound waves for image cre-
ation) to create images for visualizing and identifying certain medical disorders 
and procedural complications. Certain medical imaging modalities are more 
conducive to the evaluation of particular disorders than to others. For example, 
abnormalities such as acute active hemorrhage are more readily diagnosable by 
intravenous contrast-enhanced CT than by MRI, whereas small or subtle lesions 
such as prostate cancer, uterine cancer, and metastases to the bone and brain may 
be better shown by MRI. Also, although they may often require the use of ion-
izing radiation or intravenous contrast administration, cross sectional techniques 
(e.g., CT and MRI) are capable of producing images with substantially richer 
details than is conventional radiography (often colloquially referred to as “X-ray” 
imaging).

• Medical images possess high dimensionality. Cross sectional imaging tech-
niques, such as CT and MRI, produce three-dimensional images, and when 
dynamic imaging is performed, a fourth dimension—time—is added. While the 
world around us is three-dimensional, human eyesight is essentially a two- 
dimensional process. Although various reconstruction algorithms effectively 
“simulate” the 3D world from multiple 2D views, human eyesight nevertheless 
relies on two-dimensional spatial information processing. When reading a volu-
metric cross sectional imaging examination, radiologists must scroll through a 
stack of images to mentally “reconstruct” the underlying anatomy in three 
dimensions. This procedure is cumbersome and time-consuming, especially 
when one is searching for small lesions, which are only seen on a few images 
within a large volumetric image stack, and particularly when an abnormality is 
similar in appearance to normal anatomies, such as a small lung nodule (which 
can closely resemble a normal pulmonary vessel). To avoid overlooking poten-
tially significant abnormalities, radiologists must scrutinize all aspects of each 
image contained within a large volumetric stack; nevertheless, it has been well- 
established through eye-tracking perceptual research that even trained observers 
fail to visually scan all parts of a medical image [1]. In contrast, computer algo-
rithms can interpret high-dimensional images the same way as 2D images by 
directly harnessing spatial and temporal information.

• Medical images vary in quality. Owing to substantial differences among medical 
imaging manufacturers as well as variable proprietary hardware and software 
platforms, medical images may vary in quality and content among various insti-
tutions as well as within a given institution. Furthermore, acquisition protocol 
parameters (of which numerous considerations must be addressed for a given 
application) vary considerably among institutions, even for a given manufacturer 
and application. Such variability often results in “domain gaps” in terms of 
image quality and technical display. These domain gaps are significant obstacles 
to developing robust AI/DL methods—a situation often referred to as “domain 
shift” or “distribution drift.” For example, CT scans performed using 5 mm slice 
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thickness can handicap a model trained using CT scans performed using a 
0.75 mm thickness, resulting in AI/DL interpretations that have limited clinical 
value. While the domain shift problem can be addressed by a universally applied 
configuration for acquiring medical images across hospitals, such a requirement 
does not currently exist and is unlikely to be adopted. Approaches such as semi- 
supervised learning, domain adaptation, domain generalization, and federal 
learning have been explored to address the “domain shift” problem [2, 3].

• Medical images convey physical meaning. The color information in photographic 
images does not usually carry a taxonomic meaning of the object. For instance, 
a shirt is a shirt, no matter what color it is. In contrast, the exact or relative pixel 
intensity value in a given medical image corresponds to a specific constituent 
within the human body, particularly for cross sectional imaging modalities such 
as CT and MRI. CT images are created by directing ionizing radiation through a 
body part and counting the relative number of photons absorbed by the tissue 
traversed by the X-ray beam—a greater number of photons absorbed occurs with 
denser tissue, such as bone, whereas a greater number of photons transmitted 
(not absorbed and thus reaching the detector) occurs with less dense tissue, such 
as lung parenchyma. The commonly used scale representing the relative amount 
of X-ray photon absorption at CT is the Hounsfield Units (HU) and reflects tissue 
density. By convention, an attenuation coefficient of 0 HU is equivalent to the 
density of water (1 gm/cm3). Air or gas, as may be encountered within the large 
airways and bowel, has an attenuation coefficient of −1000 HU, whereas bone, a 
very dense structure, has an attenuation coefficient of approximately 1000 
HU. Other tissues within the human body have attenuation coefficients between 
these values. For example, fat has a value between −80 and −30 HU, whereas 
muscle has an attenuation coefficient ranging between 35 and 55 HU. This abil-
ity to directly measure the density of human tissue enables human experts and 
computer algorithms to identify normal human anatomy and potential abnor-
malities. More importantly, the semantics derived from pixel intensity offer a 
weak annotation that can be harnessed to facilitate the model learning the appear-
ance of anatomic structures without extensive manual annotation [4].

• Medical images encode relative location and orientation. When identifying 
objects in photographic images, their locations are generally not important—a 
cat is a cat no matter if it appears in the left or right of the image. In contrast, in 
medical imaging, the relative location and orientation of a structure and the 
intrinsic consistency of anatomical relationships are important characteristics 
that allow recognition of normal anatomy and pathological conditions. Thus, the 
regular and predictable location of various structures in the human body is valu-
able for developing AI/DL methods. Furthermore, since medical imaging proto-
cols assess patients in fairly consistent and reproducible orientations, these 
methods generate images with great similarity across various patients, equip-
ment manufacturers, and facility locations. Therefore, recognizing the stereo-
typical position and orientation information of human anatomy provides an 
opportunity to reduce the false-positive rate and to improve the accuracy of 
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disease detection and segmentation. Several investigations have demonstrated 
the value of this embedded prior knowledge by adding location features, modify-
ing objective functions, and constraining coordinates relative to landmarks in 
images [5–8]. For instance, when employing ultrasound to measure carotid 
arterial intimal-medial thickness for cardiovascular risk stratification, the 
measurement could be performed at any point along the longitudinal aspect of 
the vessel, and such variability could adversely affect results and reproducibility 
[9]. However, it is standard practice to perform this measurement 1 cm beyond a 
recognizable anatomic landmark—the carotid bulb [10]. As a result, the 
 anatomically recognizable carotid bulb provides a contextual constraint for 
developing AI/DL methods.

• Medical images encode both scale and distance. The uncertain distance between 
camera and object limits precise size measurements in photographic images; in 
contrast, the physical size of a structure is preserved in medical images. Therefore, 
scale is one of several quantitative attributes of standard imaging formats. The 
size of a pixel in CT, as an example, is often specified in the metadata of Digital 
Imaging and Communications in Medicine (DICOM).1 By obtaining the 
number of pixels belonging to an object and the pixel scale from the header, the 
physical scale and distance between normal structures and lesions in the image 
can easily be computed. This information is a critical feature in the assessment 
of disease, both by human interpretation and computer-aided diagnosis because 
the physical size of a lesion influences disease stage, treatment options, and 
prognosis. Moreover, the meta-information associated with images (e.g., pixel 
spacing, slice thickness, and image position) can be used to estimate the domain 
gaps among datasets collected from different equipment manufacturers, facili-
ties, and regions. This allows the creation of more robust models and enhances 
the ability to extrapolate computer-aided diagnosis across various medical 
practices.

• Medical images have sparse and noisy labels. Unlike photographic imaging 
datasets, it is impractical to annotate millions of medical images with a system-
atic label hierarchy. Most medical imaging datasets focus on particular ana-
tomic regions and only provide annotation for the object of interest [11]. For 
example, the KiTS dataset2 provides annotation only for the kidney, the LiTS 
dataset3 for the liver, and the NIH Pancreas-CT dataset4 for the pancreas. There 
is no publicly available dataset that provides systematic annotation for all visi-
ble structures in a medical imaging dataset; existing annotated datasets are 
either partially annotated or only annotated only on a small scale. Moreover, 
medical images are often associated with noise labels due to interobserver and 

1 https://www.dicomstandard.org/ (accessed August 19, 2022) 
2 https://kits19.grand-challenge.org/ (accessed August 19, 2022) 
3 https://competitions.codalab.org/competitions/17094 (accessed August 19, 2022)
4 https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT (accessed August 19, 2022)
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intraobserver variability [12]. That is, different human experts can provide con-
flicting opinions regarding a given lesion, reflecting interobserver variability. 
Furthermore, the same expert is likely to outline the contour of the same lesion 
very differently over multiple attempts separated in time, reflecting intraob-
server variability [13]. Additionally, more severely noisy labels occur if the 
abnormality has indistinct boundaries, such as in the case of diffuse lung dis-
eases. The partial and imperfect annotation compromises model training and 
results in ambiguous and unreliable results when AI/DL methods undergo 
testing.

In summary, medical images contain quantitative imaging characteristics—the 
intensity value and physical size of pixels—that can be used as additional informa-
tion to enhance AI/DL performance. Medical images also present qualitative imag-
ing characteristics—consistent and predictable anatomical structures with great 
dimensional details—that can provide an opportunity for comprehensive model 
training. Nevertheless, several characteristics unique to medical images create new 
challenges, such as isolated, discrepant data and partial, noisy labels, that must be 
addressed through additional investigation.

 Historical Perspectives

 Pioneer CAD Systems

Radiologists’ daily workflow consists of image acquisition and interpretation with 
the provision of a radiologic diagnosis in the form of a written report. The develop-
ment of increasingly sophisticated imaging methods has allowed a more explicit 
depiction of the anatomical structure of the human body and has translated to sub-
stantial improvements in diagnostic accuracy. However, such improvements have 
come at the cost of large increases in data acquisition; these large datasets require 
greater levels of both time and effort on the part of radiologists for interpretation. 
Furthermore, in addition to the increasing data requirements for individual radio-
logic examinations, the total number of examinations has also increased. The bur-
geoning workload demands and the increasing sophistication of computer 
technology in medicine, as well as a growing interest in applying the quantitative 
methodology to medical diagnosis and treatment, have all brought about enormous 
interest in the development of AI methods to assist in medical imaging interpreta-
tion. In the early 1980s, large-scale and systematic investigation and development 
of CAD systems began at the Kurt Rossmann Laboratories for Radiologic Image 
Research at the University of Chicago [14]. This period witnessed a fundamental 
shift in the utilization of computer outputs from automated computer diagnosis (the 
1960s) to computer-aided diagnosis (the 1980s). Automated computer diagnosis 
assumes that computers could replace physicians for detecting abnormalities and 
the assessment of this notion focuses on pitting radiologists against the computer. 
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On the other hand, computer-aided diagnosis is not developed to replace physicians 
but rather enhance their capabilities through computer-physician interaction and 
synergy; therefore, the evaluation of computer-aided diagnosis focused on compar-
ing radiologists’ diagnostic performance alone versus radiologists’ performance 
supplemented by the computer. The concept of CAD has since spread quickly and 
widely in clinical imaging practice due to the synergistic effect obtained by combin-
ing the radiologist’s competence and the computer’s capability. More recently, CAD 
applications have broadened from detection of abnormalities in medical images to 
determining disease treatment and prognosis through improved measurement 
accuracy.

Numerous CAD studies have been published since the 1980s, primarily concen-
trating on three major diseases, cardiovascular diseases, lung cancer, and breast 
cancer; but other organs such as brain, liver, and skeletal and vascular systems have 
also been the subject to CAD research [14]. The development of pioneer CAD sys-
tems was mainly composed of two stages:

 1. Feature extraction computes quantitative features from images through signal 
analysis and statistical modeling. Features are a numerical vector with a lower 
dimensionality than images and show necessary invariances and covariances to 
intensity or scale changes. A number of algorithms were proposed to capture 
local correlation and disentangle frequency components spanning Fourier 
transform to the more advanced Gabor filters, Scale-Invariant Feature 
Transform (SIFT), Gray-Level Co-occurrence Matrices (GLCM), etc. To 
further reduce feature dimensionality, Principal Component Analysis [15] was 
utilized to project the features onto a few principal component directions without 
losing too much information about the image. The study of Radiomics—an 
endeavor that employs computer extraction of quantitative features from medical 
images to assist in disease characterization and to define prognosis and direct 
treatment—has evolved from this effort [16, 17].

 2. Decision making integrates the features extracted from the image and outputs the 
decision for a classification or regression task. Machine learning algorithms 
have been proposed for this purpose using statistical, data-driven rules that are 
automatically derived from a large set of examples. The mainstream of machine 
learning algorithms includes Random Forest, Support Vector Machines 
(SVM), Adaptive Boosting (AdaBoost), and Artificial Neural Network 
(ANN). Random Forests [18] employ an ensemble of decision trees, whereby 
each tree is trained on different training examples, improving the robustness of 
the overall classifier. SVM [19] determine the model parameters by solving a 
convex optimization problem, so the solution could always reach the global opti-
mum. AdaBoost [20] forms a strong classifier using a boosting approach from 
multiple weak classifiers. We refer the readers to Marsland’s textbook [21] for a 
detailed introduction of the classical machine learning methods (see also 
Chap. 6).

Despite being fast and customized, these pioneer CAD systems required significant 
effort and expertise for identifying the proper image features; the resulting features 
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were explicitly specified by human experts and tailored to medical conditions and 
thus were fragile to alternative medical specialties. There is a wealth of literature on 
medical image analysis using machine learning, but their performance lags behind 
the recent advances in deep learning [22]—a significant extension of ANN algo-
rithm (Chap. 6). In contrast with traditional machine learning, deep learning repre-
sents an important paradigm shift, which takes over the stages of feature extraction 
and decision making, optimizing the learning process simultaneously in an end-to- 
end fashion.

 Recent Successes in Deep Learning

This section focuses on deep learning methods for medical imaging, highlighting 
several milestones and breakthroughs occurring since 2012. The tremendous prog-
ress in neural architectures, large-scale imaging benchmarks, and high-performance 
computational power resurrected deep learning in image recognition, and in turn, 
fostered further investments towards more possibilities. However, applying deep 
learning to medical imaging faces unique challenges—one of the most crucial 
obstacles is the lack of annotated datasets. Unlike the task of annotating photo-
graphic images (e.g., identifying different breeds of dogs and cats), annotating med-
ical images is not only tedious and time-consuming, but it also requires limited, 
costly, specialty-oriented knowledge and skills. The remarkable success of deep 
learning and the unique technical barriers of medical image interpretation (elabo-
rated in the Section on “Technical Barriers”) launched a debate regarding the appli-
cability of deep learning to medical imaging. In essence, the question was, “how 
can we reproduce the remarkable success of deep learning in the medical imaging 
field, where large-scale, well-annotated datasets are difficult to obtain?”

A breakthrough occurred in 2016 when transfer learning was first utilized to 
mitigate the data requirements. The idea was to transfer the knowledge from a 
source domain (with a large-scale image dataset) to a target domain (where only 
limited images are available). Transfer learning was proven to accelerate training, 
improve performance, and reduce annotation costs [23, 24]. Pre-training a deep 
learning model using the large-scale ImageNet5 and then fine-tuning it on various 
target tasks was a de facto practice across many medical specialties. Applications in 
medical imaging (e.g., radiology) would be expected to process higher-resolution 
and volumetric images, for which the ImageNet pre-trained models may not be 
optimal. In 2019, Zhou et al. [4] developed generic pre-trained models, enabling 
models to learn visual features directly from 3D volumetric medical images (rather 
than 2D photographic images) without any human annotation. Generic, autodidac-
tic methods could potentially recognize intricate patterns in medical images and 

5 https://www.image-net.org/update-mar-11-2021.php (accessed August 19, 2022) 
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potentially allow for transfer learning across diseases, organs, datasets, and 
modalities.

Another critical development was data augmentation, which amplified an image 
into multiple copies with minor or major modifications. From the outset, some sim-
ple strategies were considered, such as image translation, rotation, flipping, color 
distortion, etc. These augmentations did not fundamentally modify the content of 
images and, therefore, were limited to increasing data variation. Tumors remain 
tumors if they are rotated, scaled, or translated. More advanced augmentation strate-
gies were devised thanks to the development of Generative Adversarial Networks 
(GAN) [25], yielding an improved performance by synthesizing more examples. 
For example, by learning many tumor examples, GAN can generate realistic tumors 
that do not exist in the real world.

With transfer learning, data augmentation, and continued advancements in com-
puter vision, many studies in deep learning have raised enthusiasm and hopes for 
automating specific diagnostic tasks spanning dermatology, radiology, ophthalmol-
ogy, and pathology. While most of the AI/DL applications remain on systems that 
aid the physicians in viewing and manipulating medical images, there is an increas-
ingly growing body of work towards an automated computer diagnosis, some rival-
ing a human-level precision, particularly for disease localization and detection 
[26–29]. The field of medical image analysis is increasingly interdisciplinary, driven 
forward by international competitions, enhanced collaborations among physicians 
and computer scientists, and substantial funding from industry, universities, and 
government agencies.

 Clinical Needs and Existing Challenges

 Clinical Needs

Imaging data account for about 90% of all healthcare data and hence are among the 
most important sources of evidence for clinical decision support [30]. The primary 
uses of images are for detecting medical abnormalities, assessing the severity of 
those abnormalities, and guiding therapeutic interventions. This section describes 
interpretation tasks in medical imaging and offers an overview of how these tasks 
meet clinical needs. Some of the tasks can be quite challenging and time- consuming, 
e.g., disease detection and segmentation, where physicians’ performance may be 
decreased due to the limitations of human perception and fatiguability. Therefore, 
with the aid from AI/DL methods, the breadth of clinical needs for these systems 
has grown rapidly in recent decades.

• Medical image classification refers to classifying what type of lesion is con-
tained in an image. Such classification may be binary (e.g., benign or malignant) 
or multi-class (various types of lesions). The approach to annotation for classifi-
cation tasks is to assign one or a few labels to an image or a study. Image clas-
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sification is used for computer-aided diagnosis to determine the disease type in 
the image. An example of a classification task is The National Institute of Health 
(NIH) Chest X-ray dataset,6 wherein 14 chest diseases in 112,120 X-ray images 
are annotated.

• Disease localization and detection refer to identifying the location of specific 
lesions. This distinction is subtle: localization aims to locate a single lesion, 
whereas detection seeks to find all lesions in the image. The annotation for 
 detection and localization provides both the specific location and the scale of 
the lesion within a bounding box. The Lung Image Database Consortium 
image collection (LIDC-IDRI)7 is a representative dataset for the task of 
detecting lung nodules, which provides lung nodule locations for a total of 
1308 studies.

• Medical image segmentation refers to determining the outline around an object 
of interest in the image. Segmentation facilitates analysis by measuring more 
accurate and desirable imaging biomarkers. The annotation for segmentation 
tasks aims to assign every pixel in an image to at least one class. Medical 
Segmentation Decathlon8 is a typical benchmark for segmentation, providing ten 
tasks that cover different organs, diseases, and modalities.

• Medical image registration refers to aligning the spatial coordinates of one or 
more images into a standard coordinate system. Image registration plays a vital 
role in assessing disease prognosis by establishing correspondence among mul-
tiple scans performed at different time points. Image registration is an impor-
tant task for subsequent landmark detection. A common dataset for registration 
is Benchmark on Image Registration methods with Landmark validations 
(BIRL),9 in which image pairs of related sections (mainly, consecutive cuts) are 
provided.

• Medical image reconstruction refers to producing images suitable for human 
interpretation from raw data obtained by imaging devices like CT or MRI scan-
ners. Fast and high-quality radiological image reconstruction can reduce radia-
tion exposure and intravenous contrast material doses.

• Medical image enhancement refers to adjusting the intensity of an image for bet-
ter visualization or subsequent processing. Such enhancement includes denois-
ing, super-resolution, histogram equalization, artifact removal, MR bias field 
correction, and image harmonization. These techniques increase local contrast 
and enhance the visibility of fine-detail structures.

• Other related tasks include landmark detection, image or view recognition, and 
automatic report generation.

6 https://www.kaggle.com/nih-chest-xrays/data (accessed August 19, 2022) 
7 https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI (accessed August 19, 2022) 
8 http://medicaldecathlon.com/ (accessed August 19, 2022)
9 https://borda.github.io/BIRL/ (accessed August 19, 2022)
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 Medical Applications

The introduction of AI/DL methods into clinical medicine, particularly diagnostic 
imaging, has greatly transformed medical practice. These applications focus on a 
number of aspects ranging from patient and workflow management to image pro-
duction and interpretation, including imaging management, such as coordination of 
patient scheduling and workflow; imaging processing, such as the automated selec-
tion of standard imaging planes for cardiac imaging or segmenting anatomic mod-
els; and imaging interpretation at the physician’s level, functioning as a “second 
reader” for image interpretation. The surest indicator of the success of AI/DL meth-
ods applied to clinical medicine would be the daily use of CAD in routine clinical 
work at many hospitals worldwide. As is summarized in Table 12.1, numerous AI/
DL applications are already available commercially to assist physicians with imag-
ing interpretation for a wide variety of disorders affecting diverse organ systems. 
These applications promise to improve accuracy through enhanced detection and 
specificity using the “second reader” paradigm. Furthermore, AI/DL offers exper-
tise for imaging examination interpretation where subspecialty interpretation exper-
tise is lacking and also mitigates the increasing workloads experienced by physicians 
due to the rise of advanced imaging techniques. We describe two representative 
tools that have been used at the Mayo Clinic for pulmonary nodule and embolism 
detection.

• CAD of pulmonary embolism. The application of AI/DL for pulmonary embo-
lism detection provides an illustrative example of how these methods have been 
integrated into clinical image interpretation. Pulmonary embolism (PE) is a con-
dition in which a thrombus (often colloquially referred to as a “blood clot”) trav-
els to the lungs, often from a lower extremity venous source, producing a 
blockage of the pulmonary arteries within the lungs. Pulmonary emboli repre-
sent the third most common cause of cardiovascular death after myocardial 
infarction (“heart attack”) and stroke [31]. They are responsible for 
100,000–200,000 deaths annually in the United States [32]. Pulmonary emboli 
are typically treated with anticoagulation (“blood thinners”), a treatment that 
may be effective but is associated with significant bleeding risk. Therefore, early 
and accurate PE diagnosis is critical. Computed tomography pulmonary angiog-
raphy (CTPA) is the primary modality used to detect PE, which appears as “fill-
ing defects” within enhanced pulmonary arteries following the administration of 
intravenous contrast (Fig. 12.2). Since the number of CTPA examinations per-
formed far exceeds the availability of subspecialty trained cardiopulmonary radi-
ologists, most CTPA examinations are interpreted by general radiologists. 
Moreover, accurately interpreting CTPA examinations requires significant train-
ing and experience, so the discordance (level of disagreement) of CTPA interpre-
tations may exceed 25% between cardiopulmonary radiologists and general 
radiologists [33]. Due to inaccurate interpretations, including false-negative 
studies (failure to detect emboli) and false-positive studies (diagnosing emboli 
that are not present, or “overdiagnosis”), there is a significant risk of morbidity 
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Table 12.1 Examples of AI-based systems employed for clinical imaging interpretation

Organ system Applications Manufacturera

Breast Detection of cancer, breast density assessment Hologic
iCAD
Zebra-Med
Koios Medical

Neurologic Detection of hemorrhagic brain contusion, 
communicating hydrocephalus, cerebrospinal fluid flow 
quantification, white matter lesion tracking in multiple 
sclerosis, atherosclerotic plaque quantification in the 
carotid arteries, tumor identification

Icometrix
AIDOC
MaxQ
Zebra-Med

Pulmonary Lung nodule detection
Pulmonary embolism detection
Pneumothorax detection
Pneumonia detection
Chronic Obstructive Pulmonary Disease Quantification

Siemens Medical 
Systems, 
Corelinesoft, 
Riverrain
AIDOC
GE Siemens 
Medical
Siemens Medical 
Systems, 
Corelinesoft
Arterys

Cardiac Coronary calcium detection and quantification
Aortic measurements

Siemens Medical 
Systems
Zebra-Med

Musculoskeletal Rib fracture detection
Compression fracture detection
Vertebral body level labeling

AIDOC
Zebra-Med
Siemens Medical 
Systems
GE Medical 
Systems

Abdominal Colonic polyp detection Siemens Medical 
Systems
Phillips Medical 
Systems

Head Triaging of intracranial hemorrhage
Interpretation of CT and MRI brain images

MaxIQ AI
Icometrix

a A number of commercially available, proprietary, and research platforms exist; this list is neces-
sarily abbreviated

and mortality. AI/DL applications have been developed to assist radiologists with 
the task of PE detection and exclusion [34]. One particular system, developed by 
AIDOC medical (Tel Aviv, Israel), has recently been adopted by the Mayo Clinic. 
Once a CTPA examination is transferred from the CT scanner to radiologists for 
interpretation, the system will perform embolism detection and exclusion. This 
system runs “silently” in the background and delivers results as either negative or 
positive for PE. If positive, a pop-up window will localize the embolus for radi-
ologist confirmation (Fig. 12.2c). In a study by Weikert et al. [34], the AIDOC 
algorithm showed a sensitivity of 92.7% on a per-patient basis with a false 
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Fig. 12.2 Pulmonary embolism detection using an AI/DL model. (a) axial; (b) sagittal (as if view-
ing the patient from the side; front of the body is to the left of the image); and (c) coronal (as if 
looking at someone from the “front” patient right side is to the image left and head is at the image 
“top”) enhanced CT images show a “filling defect” (arrows) within a left lower lobe pulmonary 
artery, appearing as a “dark” structure surrounded by a brightly enhanced pulmonary blood pool. 
(d) The output of the automated PE detection by the AIDOC medical system shows detection of 
the same pulmonary embolism (arrowhead) noted by the interpreting radiologist. The system flags 
the examination as positive for pulmonary embolism by displaying an orange circle ( ) in the left 
lower lobe  aspect of the lung diagram; examinations negative for pulmonary embolism are 
denoted by ∅

 positive rate of 3.8%, or 0.12 false-positive results/detection (Fig. 12.3). Most 
notably, the average processing time for the algorithm was 152 s, but typically 
this processing occurred while the data were being transferred from the CT scan-
ner to the Picture Archiving Communication System (PACS), during which 
time the images are not completely available for radiologists to review anyway. 
An additional 25 seconds is required for the case uploading [34]. In practice, the 
AIDOC system analysis is either complete and ready for review when the study 
is opened by the radiologist, or the case is being actively processed and the algo-
rithm results provided before the radiologist completes the review of the study.

• CAD of pulmonary nodules. Pulmonary nodules are commonly encountered 
using chest imaging. Many are innocuous, often resulting from a pulmonary 
infection. However, pulmonary malignancy, both primary pulmonary malig-
nancy and malignancy spread from elsewhere, may present on chest imaging 
studies as one or more lung nodules. Therefore, the detection and characteriza-
tion of lung nodules have become a major focus for AI/DL, particularly since the 
early detection of lung cancer from chest CT images has been shown to reduce 

12 Interpreting Medical Images



358
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Fig. 12.3 False-positive pulmonary embolism detection by an AI/DL model. (a) Axial enhanced 
CT image shows a “filling defect” (arrow) immediately adjacent to a left upper lobe pulmonary 
artery, closely resembling PE. (b) Coronal CT image (orientation of this image as if the observer 
is facing directly at someone) shows the apparent filling defect (arrow) is positioned between two 
pulmonary arteries (arrowheads)- this location and appearance are typical of lymph node tissue. (c) 
The output of the automated PE detection by the AIDOC medical system shows that the finding 
was flagged by the system as PE, representing a false-positive diagnosis

a b

Fig. 12.4 (a) The axial unenhanced chest CT displayed in lung windows shows two small left 
lower lobe pulmonary nodules (arrows). Note how these small nodules very closely resemble pul-
monary vessels (arrowheads); this close resemblance can easily result in diagnostic errors, particu-
larly inadvertently overlooking small nodules that could reflect potentially precancerous or 
cancerous lesions. (b) The output from AI/ML algorithm (ClearRead CT, Riverain Technologies, 
Miamisburg, OH) shows that the normal pulmonary vessels have been “suppressed” and are no 
longer visible, which clearly exposes the two small pulmonary nodules (arrowheads)

cancer-related and all-cause mortality in properly selected individuals [35]. 
Further research has shown that lung cancer mortality is reduced when nodules 
are detected at smaller sizes. AI/DL for lung nodule assessment has focused on 
three major efforts: (i) nodule detection (separating nodules from a background 
of similar appearing pulmonary vessels, Fig.  12.4); (ii) nodule morphology 

Z. Zhou et al.



359

assessment, particularly the nodule border characteristics since certain border 
characteristics are associated with the presence of malignancy; and (iii) accurate 
assessment of nodule growth. The detection of nodule growth is important 
because many benign lesions show no, or little, growth over time, whereas 
 malignant lung nodules frequently grow within a recognized time frame. AI/DL 
models have the ability to calculate the nodule size using volumetry, as opposed 
to the manual placement of two-dimensional electronic calipers (the traditional 
standard). Nodule volume has been suggested to be a more accurate means for 
determining size thresholds for nodule intervention in addition to the assessment 
of growth. The latter is often regarded as a surrogate for the aggressive potential 
for a given nodule and is thus often used as an endpoint for nodule intervention.

 Technical Barriers

Deep learning is intensely data-hungry in nature, requiring large, high-quality anno-
tated datasets—more so than other algorithms. Annotation is the process of assign-
ing labels to raw data in preparation for training the computer on the pairs of data 
and labels; the computer predicts labels for many new data. For the development of 
deep learning algorithms, supervised learning (in which the annotation is used to 
guide model learning and error propagation) is the most prominent learning para-
digm. Therefore, annotating datasets is an indispensable stage for data processing in 
the deep learning era. For most image analysis tasks, data are collected from numer-
ous photos from social media, and annotation is often provided by non-experts 
through crowdsourcing. Annotating medical images, however, demands costly, 
specialty-oriented knowledge and skills, which are not readily accessible. Therefore, 
medical image annotation is performed primarily by human experts, who manually 
annotate the existence, appearance, and severity of diseases in each medical image 
using appropriate software tools, such as Pair, Lionbridge AI, ITK-SNAP, Cogito, 
Labelbox, 3D Slicer, etc. For some abnormalities that experts may not immediately 
recognize from images, the results of tissue sampling procedures can also be used 
to supplement the experts’ annotation. Figure  12.5 illustrates different types of 
annotation in medical imaging.

Recent advances in AI/DL methods suggest that to match a physician’s diagnos-
tic precision, deep learning algorithms require 42,290 radiologist-annotated CT 
images for lung cancer diagnosis [27], 137,291 radiologist-annotated mammo-
graphic images for breast cancer identification [29], 129,450 dermatologist- 
annotated images for skin cancer classification [26], and 128,175 
ophthalmologist-annotated retinal images for diabetic retinopathy detection [28]. It 
is therefore clear that adopting deep learning for medical imaging requires a cura-
tion process for data collection to reliably train, validate, and test algorithms. 
Without such large, annotated datasets, deep learning often results in algorithms 
that perform poorly and lack generalizability for new data. However, such perfectly- 
sized and carefully-annotated datasets are rarely available for training deep learning 
models, particularly for applications in medical imaging, where both images and 
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Fig. 12.5 When approaching the use of large-scaled annotated datasets in medical imaging, the 
critical question is “what annotation should be collected?” There are several types of annotation, 
depending on the task requirements in clinical practice. Different types of annotation are associ-
ated with different costs. For example, to annotate lung nodules for the tasks of classification, 
detection, and segmentation, human experts must consider different types of annotation—labeling 
the existence of the nodule, indicating its location, and defining its boundary, respectively. These 
three types of annotation are anticipated to span manual annotation efforts from easy to labor- 
intensive, annotation qualities from coarse to precise, and the annotation time commitment from 
short to long

annotations are expensive to acquire. This requirement becomes more challenging 
in situations where one can collect only limited annotated data or when scaling up 
to include rare diseases where it is impractical to collect large quantities of anno-
tated data [36]. Therefore, one of the chief obstacles to the development and clinical 
implementation of AI/DL imaging systems is the availability of sufficiently large, 
curated datasets with human expert annotation. To this end, several efforts have 
been made to create large datasets of annotated medical images, such as the Cancer 
Imaging Archive,10 Kaggle,11 and Grand Challenge sets.12

There are additional barriers that AI/DL methods face when applied to medical 
imaging. The limitations of AI/DL include the generalizability and robustness of 
methods [37], the interpretability of results (see Chap. 8), the lack of clinical context 
other than images, and the non-standardized acquisition of images and annotations 
across hospitals. From a practical perspective, although several CAD systems based 
on AI/DL methods have already gained traction in clinical imaging, a number of 
serious limitations remain before more widespread implementation of these algo-
rithms can take place.

• Reliability. A major target for a CAD system is lesion detection; once detected, 
it is essential to precisely measure the lesion because many disorders are allo-
cated into risk categories for intervention based on lesion size. Furthermore, 
many detected lesions will be followed with serial imaging surveillance, with 
changes in size providing the endpoint for determining therapeutic success. In 

10 https://www.cancerimagingarchive.net/ (accessed August 19, 2022)
11 https://www.kaggle.com/ (accessed August 19, 2022)
12 https://grand-challenge.org/ (accessed August 19, 2022)
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the example of nodule detection and assessment, AI/DL can provide accurate 
and reproducible measurement for solid nodules and subsolid nodules (nodules 
with a more “hazy” appearance in chest CT); pulmonary malignancies often 
present with the latter morphology [38]. However, for patients with subsolid 
nodule morphologies, the variable and inaccurate measurements provided by AI/
DL have been shown to be insufficient for patient management or determination 
of prognosis. Additionally, measurements using different software programs 
may show substantial inter-platform variability, resulting in inaccurate serial 
assessment.

• Usability. CAD systems must also be integrated into radiologists’ workflow (see 
Chap. 5), which requires such programs to run silently and quickly in the back-
ground and to present timely and accurate results that can be readily integrated 
into the radiologist’s product—the radiology report. Therefore, the outcome 
predictions of AI/DL must be presented in an understandable format to radiolo-
gists within the radiology report and perhaps to patients within their electronic 
health record. The proper presentation of AI/DL predictions could be in an 
image format that all examinations can be retrieved from the patient’s medical 
record, and in a chart format that provides a user-friendly display for growth 
trends for lesions undergoing serial evaluation.

• Affordability. The adoption and ongoing maintenance of CAD systems in medi-
cal practice will generate costs to healthcare systems that must be addressed. 
Therefore, widespread adoption of these systems will necessitate approval of 
reimbursement from third-party payers, which is a process that is slow, cumber-
some, and difficult in the context of ongoing efforts for healthcare cost 
containment.

 Opportunities and Emerging Techniques

This section presents three unique opportunities that AI/DL and medical imaging 
can offer to overcome the significant barrier—annotation sparsity. Several emerging 
techniques that tackle this barrier by harnessing the unique opportunities are 
surveyed.

 Acquiring Annotation from Human Experts

Opportunity 1: The continual learning capability of AI/DL incrementally improves 
the algorithm through fine-tuning. With millions of new image data generated every 
day, it is impractical to store all the data and repeatedly develop CAD systems from 
scratch once new data become available. Instead, the aim is to leverage prior knowl-
edge obtained from existing data and to continuously accommodate new data in a 
fashion analogous to human learning. The notion of continual learning is based on 
the observation that learners adaptively use new data to update their knowledge sets. 
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The continual learning capability is one of the unique benefits of deep learning 
because deep learning models can be fine-tuned on top of previously learned ones, 
which often store the knowledge learned from old data. Specifically, we can employ 
a set of trained parameters to initialize the model. The continual learning capability 
is much more appreciable in the scenario of the human-in-the-loop procedure, 
whereby physicians interact with computers to promote the development of CAD 
systems using a continuous stream of data. An efficient “human-in-the-loop” proce-
dure helps physicians quickly dismiss data redundancy, thereby dramatically reduc-
ing the annotation burden. Moreover, an instant online feedback process encourages 
data, annotation, and model re-use, making it possible for CAD systems to self- 
improve via continual learning.

A typical strategy in the human-in-the-loop procedure is called active learning. 
Rather than randomly sampling, active learning aims to find the most representative 
data and annotate them first. Intuitively, focusing on these representative data can 
quickly elevate the AI/DL performance while demanding less annotation. In active 
learning, the key is to develop effective selecting criteria that can estimate the potential 
“worthiness” of annotating a data point. Uncertainty and diversity are the most popu-
lar active selecting criteria, which appraise the worthiness of annotating a data point 
from two different aspects. Uncertainty-based criteria are based on the notion that the 
more uncertain a prediction is, the more value will be added when including that anno-
tation of that data point into the training set. As a result, sampling with the least confi-
dence, large entropy, and margins of the prediction has been a more successful 
approach than random sampling for training models with sparse annotation. A major 
limitation of uncertainty-based selecting criteria is that some of the selected data are 
prone to redundancy and outliers and may not be representative enough for the data 
distribution as a whole. Alternatively, diversity-based criteria have the advantage of 
selecting a set of highly representative data, with respect to the annotated data, from 
the remainder of the unannotated set. The underlying concept is that it is unnecessary 
to annotate similar data repeatedly. Although alleviating redundancy and outliers, a 
serious hurdle to the success of diversity-based criteria is the computational complex-
ity required to address a large pool of unannotated samples. To exploit the benefits and 
potentials of both uncertainty- and diversity-based criteria, recent studies employed a 
“mixture strategy” by combing uncertainty and diversity explicitly. For example, 
Zhou et al. [39] devised an annotation query procedure to integrate uncertainty and 
diversity into a single framework, reducing the manual annotation cost by at least a half.

 Utilizing Annotation by Advanced Models

Opportunity 2: The representation learning capability of AI/DL alleviates exhaus-
tive feature engineering for specific medical conditions. Feature engineering man-
ually designs features based on the texture and shape present in images, which is 
easier to describe and troubleshoot, allowing humans to manipulate features on their 
own. However, crafting such features demands a great deal of patience, diligence, 
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and expertise. Most hand-crafted features focus on specific medical conditions, 
thereby greatly limiting the discriminative powers and depreciating the capacity to 
generalize to other medical conditions. For instance, Radiomics features at radio-
logic imaging have been shown to predict outcomes for various medical disorders, 
but they are not adaptable to other areas of medical practice, such as dermatology, 
histopathology, and ophthalmology. Deep learning has supplanted previous hand- 
crafted features, proving that deep neural networks can solve diverse tasks by 
extracting image features at multiple levels of abstraction. In networks, each layer 
projects the image into a particular feature space—the deeper layer generates a 
higher level of abstraction by extracting more complex features built on top of sim-
pler ones. The unique aspect of deep learning is that humans do not have to design 
the varying feature levels manually. As such, deep learning is often referred to as 
“representation learning,” a procedure that automatically learns visual features to 
represent an image. Representation learning is more efficient and repeatable than 
exhaustive feature engineering, saving tremendous amounts of manual work. 
Compared with hand-crafted features, deep features offer four advantages: (i) deep 
features can be dynamically computed by models during training and test stages; 
(ii) deep features present a hierarchic image representation, varying from layer to 
layer; (iii) deep features can be used for not only classification but also registration, 
localization, and segmentation; (iv) deep features can be fine-tuned and adapted to 
different tasks and domains. Many studies have reaffirmed that representation learn-
ing can produce more generalizable image features than hand-crafted features. 
Developing high-performance deep neural networks concentrates mainly on craft-
ing network architectures and optimizing training recipes.

The success of AlexNet for image classification on the ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) [40] signaled the importance of network 
architecture design. Following AlexNet, most neural networks are built upon several 
key components, such as Convolution, Activation, and Pooling. This prefigured 
compositionality and differentiability gave rise to an astonishing variety of network 
architectures that are deeper and wider. Additionally, the introduction of deep resid-
ual learning [41] demonstrated the importance of connectivity within the architec-
ture, other than simply piling up layers on top of one other. In general, there are 
several aspects to consider to craft architectures with greater learning capacity, such 
as depth, width, and connectivity. However, manually designed architectures rely 
heavily on computer experts’ choice, requiring hands-on experience and task- 
specific consideration. It is safe to say that no single architecture is optimal for 
every imaging task. This leads to the emerging technique called “Neural 
Architecture Search” [42], which automatically searches for an optimal architec-
ture for a specific task, eliminating extensive hand-crafted designing efforts.

Another promising direction for advancing deep neural networks is to optimize 
the training recipe. For example, U-Net is a widely used architecture for medical 
image segmentation [43], which consists of an encoder and a decoder, with skip 
connections in between. Its success is largely attributed to the skip connections, 
which combine deep, semantic, coarse-grained feature maps from the decoder with 
shallow, low-level, fine-grained feature maps from the encoder and have proven 
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effective for recovering fine-grained details within the target objects. Numerous 
architectural innovations have been developed based on the original U-Net architec-
ture, suggesting the benefit from redesigned encoder, decoder, and skip connections 
[44–47]. On the other hand, a study by Isensee et al. [48] discovered that a well-
designed training recipe, including preprocessing, data augmentation, network 
architecture, training, and post-processing, can also substantially improve 
performance.

 Extracting Features from Unannotated Images

Opportunity 3: The consistent and recurrent anatomy embedded in medical images 
empowers AI/DL with a generic visual representation. Human anatomy is intrinsi-
cally structured, exhibiting consistency in appearance, position, and layout. Medical 
imaging protocols focus on particular body parts, often generating images of great 
similarity and yielding an abundance of sophisticated anatomical patterns across 
patients. These patterns are naturally associated with comprehensive knowledge 
about human anatomy. Therefore, consistent and recurrent anatomy facilitates the 
analysis of numerous critical problems and should be considered a significant 
advantage for medical imaging. Due to the consistency of anatomy, the same body 
parts in different images express similar visual patterns and, therefore, can be 
retrieved by what is known as “Nearest Neighbor Search.” As a result, given a 
single annotated medical image, similar anatomical patterns can be found in many 
other images, which enables physicians to track disease progress with landmark 
detection and lesion matching. In addition to correspondence matching, the recur-
rent anatomical structures in medical images are associated with rich knowledge 
about the human body and intrinsic structural coherence, offering great benefit and 
potential to foster generalizable image representation [49, 50]. Consequently, one- 
shot learning in various medical applications may eventually be achieved.

Self-supervised learning enables AI/DL to learn image representation directly 
from unannotated images. This learning paradigm has existed for some time, but its 
power historically lagged behind  state-of-the-art supervised learning. However, 
the recent pace of progress in self-supervised learning has increased dramatically 
and led to image representation that matches and even surpasses the representation 
learned from supervised learning. In self-supervised learning, the AI/DL model 
learns by studying the properties of real-world images. There are two major research 
approaches in self-supervision: (i) learning a discriminative model to distinguish 
multiple views and (ii) learning a predictive model to fill in the blank. First, the AI/
DL model is expected to distinguish objects from each other. The discriminative 
model compares images that have undergone data augmentation to learn image rep-
resentation, which is resilient to various view changes. The early attempts included 
MoCo [51], SimCLR [52], BYOL [53], and recently several improved methods 
have been applied to medical imaging [54]. Second, the AI/DL model should 
develop meaningful expectations about the world, developing a hypothesis and then 
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verifying it. As a result, the predictive model predicts some hidden information 
(e.g., color, future events, or contexts of an image) to identify prior knowledge and 
physical properties in nature, such as the sky being blue or a running beast approach-
ing you. For example, image restoration has been shown as an effective proxy task 
[4, 55, 56]—first deforming an image and then training the model to restore the 
original image; Zhu et al. [57, 58] trained a model to recover the rearranged and 
rotated Rubik’s cube puzzle.

 Conclusion

This chapter has introduced computer-aided diagnosis in medical imaging, center-
ing its discussion on a historical review, the motivating clinical needs, technical 
barriers, opportunities, and current frontiers of technology. Computer-aided diagno-
sis aims to develop automated algorithms for gleaning clinically useful information 
from images to support clinical decision-making and to facilitate precision medi-
cine, predominantly covering the fields of radiology [59], cardiology [60], and 
pathology [61]. An increasing shortage of qualified physicians to interpret complex 
medical images suggests a clear need for reliable CAD systems to alleviate the 
growing burden on healthcare practitioners. Thus, we anticipate that CAD systems 
could significantly influence health care in the future, particularly on two prevailing 
tasks. First, the tasks that physicians must do but do not really want to do, which are 
often of low value or are repetitive. These tasks are tedious, laborious, and time- 
consuming, such as outlining the contours of the tumors and at-risk organs. Second, 
the tasks that physicians really want to do but cannot do very well, owing to the lack 
of knowledge, skill, or relevant experience, or the limitations of human perception. 
Examples include determining the presence of malignancy within a lesion prior to 
tissue sampling or surgery, predicting the tumor response to radiation/chemother-
apy, etc. Physicians should become familiar with the principles and potential appli-
cations of AI/DL methods, using the output from CAD systems as a “second 
opinion”; yet it is the physicians who eventually must make the final decisions.

Questions for Discussion

• How might you determine whether an AI/DL system, developed for a specific 
application, demonstrates clinically acceptable performance?

• Where can AI/DL have the greatest influence in the healthcare environment? 
What roles may computer-aided diagnosis systems play for physicians? For 
patients?

• What is the difference between computer-aided diagnosis and automated com-
puter diagnosis? Do you have a preference for one approach? If so, why?

• How might you measure the diagnostic performance of human experts? What 
constitutes reliable evidence that computers outperform humans in specific 
applications? Do you think that a CAD system can eliminate the need for a 
radiologist?
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• Distinguish among the common medical imaging modalities (CT, MRI, 
Ultrasound, PET, and optical imaging) and explain their advantages and suitable 
clinical applications for their use.
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Tajbakhsh, N., Shin, J.  Y., Gurudu, S.  R., Hurst, R.  T., Kendall, C.  B., Gotway, 
M.  B., & Liang, J. (2016). Convolutional Neural Networks for Medical Image 
Analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, 
35(5), 1299-1312.

• This paper systematically demonstrates the capability of transfer learning from 
natural images to medical images across diseases, imaging modalities, and medi-
cal specialties for the first time. It concludes that ImageNet pre- trained models 
offer significant performance gain compared with learning from scratch and 
varying handcrafted approaches.

Zhou, Z., Sodha, V., Pang, J., Gotway, M. B., & Liang, J. (2021). Models Genesis. 
Medical Image Analysis, 67, 101,840.

• This paper presents the first general-purpose source models for 3D medical 
image analysis. It surveys and benchmarks existing 3D transfer learning tech-
niques, examining their capability across diseases, organs, datasets, and modali-
ties. The medical applications in this paper include the tasks of disease 
classification and segmentation, as well as an account of typical imaging modali-
ties, such as CT, MRI, X-ray, and Ultrasound. Both datasets and software are 
publicly available, which may serve as a primary source of 3D medical imaging 
studies.
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Chapter 13
Public Health Applications

David L. Buckeridge

After reading this chapter, you should know the answers to these questions:
• What aspects of public health functions have determined if they are amenable to 

the application of AI? What are the functions that have been the most transformed?
• How have public health surveillance systems used AI methods to detect infec-

tious disease outbreaks? What are some example systems?
• What biases should be considered when using AI to develop prediction models 

in population and public health?
• Which public health functions have the greatest potential to be transformed by 

AI applications in the future?

 Public Health and AI

 Public Health, Essential Public Health Functions, and Public 
Health Informatics

Public health is the science and the art of preventing disease, prolonging life, and 
promoting health through organized community efforts [1]. With a focus on health 
promotion and disease prevention in populations, public health is complementary to 
clinical medicine, which is focused on diagnosis and treatment of disease in indi-
vidual patients. Although they have distinct perspectives, public health and clinical 
systems should act in a coordinated manner to advance individual and population 
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health. Ideally, this coordination should occur at both strategic and operational lev-
els, ensuring, for example, the exchange of data about reportable diseases and social 
determinants of health.

The systematic application of information and computer science and technology 
to public health practice, research, and learning is the domain of public health 
informatics (see Box 13.1 for definitions) [2], which was first identified as a sub- 
discipline of biomedical informatics in 1995 [3]. A public health informatics per-
spective is critical for the effective application of AI in public health for at least two 
reasons. First, AI methods are generally implemented within software and intro-
duced into public health settings in the same manner as other digital tools and inter-
ventions. For these tools to be effective, careful consideration must be given to the 
context in which they will be used and public health informatics takes a comprehen-
sive view of this challenge. In addition to the information technology and data man-
agement aspects of this context, evidence has shown that cognitive [4] and 
organizational aspects [5] are important determinants of adoption and effective use. 
Second, AI-based software tools in public health often depend on data and knowl-
edge contained in systems outside of public health. AI-based tools must therefore be 
implemented with careful consideration of data standards and interoperability to 
ensure the availability and quality of these inputs. For example, during the 
COVID-19 pandemic, the most common barrier to hospitals sharing electronic data 
with public health departments in the US was the lack of capacity within public 
health agencies to electronically receive data [6].

From an applied perspective, the essential public health functions describe the 
nature and scope of activities in public health [7]. Consequently, these functions also 
determine the information requirements of public health practitioners [8]. The 
essential functions, which were most recently updated in a US context in 2020, can 
be grouped under the three themes of assessment, policy development, and assur-
ance (Box 13.2). These functions are not performed by a single monolithic system, 
but rather through a system of systems [9], with different public health entities oper-
ating at local, regional, national and international levels. These different systems 
interact with one another and systems outside of public health (e.g., clinical care, 
social services, urban planning) through a variety of formal and informal mechanisms.

Box 13.1: Public Health and Public Health Informatics
• “Public Health is the science and the art of preventing disease, prolonging 

life, and promoting physical health and efficiency through organized com-
munity efforts” [1]

• “Public health informatics is the systematic application of information 
and computer science and technology to public health practice, research, 
and learning” [2]
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 The Nature of Essential Public Health Functions 
and the Application of AI

Each of the ten essential public health functions has unique objectives, 
approaches, and available resources, including information systems, data and 
knowledge. Consequently, AI methods are more or less applicable to the differ-
ent public health functions. In this chapter, the main AI methods considered are 
knowledge-based systems (Chap. 4), machine learning (ML, see Chap. 6), and 
natural language processing (NLP, see Chap. 7). The potential applicability of 
these AI methods to public health is considered below and examples of the appli-
cation of these methods to specific public health functions are presented later in 
this chapter (see the section on “Examples of AI Applications to Public Health 
Functions”).

Assessment functions, such as public health surveillance, rely extensively on the 
collection and analysis of data to monitor population health status and to manage 
population health hazards. These data are increasingly accessed from information 
systems used primarily in social and clinical settings and then transferred to public 
health organizations for secondary use. As such, the data available for assessment 
often have a volume sufficient for the application of machine learning methods. In 
primary or source systems, such as in electronic health records, many data are cap-
tured as free text, so natural language processing methods are used to extract from 
the free text structured data of relevance to public health (e.g., smoking status, 
occupation).

Functions under the policy development theme include communication, advo-
cacy and coordination with stakeholders. These activities do not tend to be driven 
by quantitative data analysis to the same extent as the assessment functions. 
Consequently, data-intensive methods such as machine learning have not been used 
extensively to support these functions, but knowledge-based systems have been 
used to support the organization and application of evidence to these functions 
(e.g., evidence to guide implementation of chronic disease prevention programs). 
One exception to this general trend is the communication function, where machine 
learning and natural language processing methods have been used with digital 
media platforms to support the delivery and evaluation of public health communi-
cation campaigns.

Assurance functions are heterogenous, including public health training, research, 
and the evaluation of public health services. Training to enable the effective imple-
mentation and use of AI-based tools is limited in many public health programs, as 
is the opportunity for training in public health informatics more generally [10]. In 
research, there has been considerable activity to explore applications of machine 
learning, natural language processing, and knowledge-based systems in public 
health, but the translation of research on AI methods to public health practice has 
been challenging.
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Finally, many models of essential public health functions include at their core the 
concept of equity. Consideration of equity follows naturally from a population per-
spective, where the distributions of health determinants and outcomes are a primary 
focus and often revealing of inequities. While AI methods can potentially help to 
identify and address inequities, there is also concern that such methods, and particu-
larly machine learning, could reinforce or worsen inequities through mechanisms 
such as differential access and algorithmic bias [11].

 A Vision for AI in Public Health

To realize the full potential of AI in public health, it is helpful to apply the perspec-
tive of digital transformation [12] to essential public health functions. Digital 
transformation draws upon user-centered design to re-imagine how essential func-
tions can be improved by exploiting AI methods and other digital technologies. The 
goal is to move beyond the use of AI methods to automate manual data processing 
towards the use of AI to support effective decision-making in public health. In this 
context, a truly AI-enabled public health system is one where the data needed to 
perform essential functions are available and processes are optimized, through the 
appropriate use of AI methods, with the goal of supporting the effective and effi-
cient delivery of essential public health services.

Box 13.2: Essential Public Health Functions [7]
Assessment
 1. Assess and monitor population health status, factors that influence health, 

and community needs and assets
 2. Investigate, diagnose, and address health problems and hazards affecting 

the population

Policy Development
 1. Communicate effectively to inform and educate people about health, fac-

tors that influence it, and how to improve it
 2. Strengthen, support, and mobilize communities and partnerships to 

improve health
 3. Create, champion, and implement policies, plans, and laws that 

impact health
 4. Utilize legal and regulatory actions designed to improve and protect the 

public’s health

Assurance
 1. Assure an effective system that enables equitable access to the individual 

services and care needed to be healthy
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 Applications of AI in Public Health

As discussed in the section on “The Nature of Essential Public Health Functions and 
the Application of AI”, AI methods are more easily applied to some public health 
functions than others due to differences in the nature of each function. In this sec-
tion, specific examples of how AI has been applied to different functions are pre-
sented and barriers and risks to the application of AI methods in public health are 
discussed.

 Examples of AI Applications to Public Health Functions

In this section, examples of applications of AI to public health functions are pre-
sented considering both the public health functions (Box 13.2) and the AI 
approaches used (i.e., knowledge-based, machine learning, natural language pro-
cessing). The intent is to illustrate different types of applications and not to provide 
a systematic or comprehensive review of all applications of AI methods to public 
health functions.

 Assessment

The theme of assessment includes two essential public health functions, monitoring 
population health and surveillance of health hazards. Population health is a complex 
construct, which can be measured in terms of sentiment, attitudes, beliefs, and 
health outcomes. It is also influenced by a wide range of social, behavioral and 
physical determinants. Similarly, health hazards are diverse, including environmen-
tal conditions, workplace environments, and infectious diseases. The multidimen-
sional nature of assessment lends itself well to AI methods such as machine learning 
and knowledge representation, which have both been applied to distill large amounts 
of data and information in this context. Many sources of data are unstructured and 
NLP has the potential to extract structured data from these sources for further analy-
sis. While monitoring population health tends to have a longer-term focus to guide 
policy, surveillance can require rapid decision-making and action to control health 
threats.

 2. Build and support a diverse and skilled public health workforce
 3. Improve and innovate public health functions through ongoing evaluation, 

research, and continuous quality improvement
 4. Build and maintain a strong organizational infrastructure for public health
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Population health monitoring systematically collects data on health status, 
usually to inform longer-term planning and evaluation of programs. ML meth-
ods have been used in population health monitoring to analyze data from wear-
able devices, social media [13] and other high-dimensional data sources such as 
electronic health records [14] to predict population health. Researchers have 
also demonstrated the use of ML to measure associations between the built envi-
ronment and health [15]. More broadly, these uses of ML methods in public 
health practice reflect their broader adoption in epidemiology and health out-
comes research [16]. NLP has been used to monitor aspects of population health 
through analysis of posts and discussions in online digital media, such as iden-
tifying neighborhood characteristics associated with discussions of food on 
Twitter [17]. Knowledge-based systems have also been applied to exploit knowl-
edge of causal relationships between the determinants of health to help users 
make sense of epidemiological indicators of chronic disease determinants and 
outcomes [18].

Public health surveillance is the systematic, ongoing collection and analy-
sis of data to detect and guide actions to control hazards such as infectious dis-
ease outbreaks. It includes indicator-based surveillance (IBS) and event-based 
surveillance (EBS). IBS entails the systematic collection, analysis and interpre-
tation of data about individuals, such as infectious disease reports, while EBS 
routinely analyzes online media to detect events of public health interest, such 
as disease outbreaks (Fig.  13.1). NLP methods have been applied in IBS to 
extract information from medical charts for case detection in areas such as syn-
dromic surveillance [19], communicable disease surveillance [20], and occupa-
tional health surveillance [21]. To facilitate this type of surveillance, researchers 
have developed automated systems such as RiskScape [22] for public health 
surveillance using electronic health records. Machine learning methods have 
also been used to forecast the incidence of infectious disease [23] and to detect 
aberrations in epidemiological indicators [24]. Knowledge-based methods have 
been used to develop systems for syndromic surveillance, such as BioSTORM 
[25], and have also been used to develop a Population Health Record [26] for 
integrating indicators of chronic disease using knowledge of the determinants of 
health [18].

While IBS can be facilitated by AI methods, EBS is critically dependent on AI 
methods, in particular NLP methods for recognizing and extracting entities from 
large amounts of online media [27]. Notable systems in this space include the 
ontology- based BioCaster [28], HealthMap [29], which uses ML to automate many 
tasks, and GPHIN [30, 31], which uses AI methods to support human analysts. 
Related approaches, such as probabilistic topic modelling, have also been used in 
EBS to monitor diseases [32] and interventions [33]. Finally, given the wide range 
of relevant knowledge (i.e., spatial, temporal, and semantic aspects of disease out-
breaks and other public health events) and the small number of global events 
detected by EBS, knowledge-based systems have also been applied to interpret the 
information extracted by NLP from online media [28].
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Active symptom reporting

Internet search

Online communities

Social media

Physiological reporting

Laboratory testing

Electronic medical
records

Descriptions of events
in news media

Natural Language Processing (NLP): Extract concepts from free-text
data Machine Learning (ML): Predict case or outbreak status from
time-varying data Knowledge-Based (KB): Use knowledge base to
identify cases or events in data

NLP, ML, KB

NLP, ML, KB

NLP, KB

NLP, ML

NLP

NLP, ML

ML

ML

Data source AI methods
Indicator-Based

Surveillance

Event-Based
Surveillance

Fig. 13.1 Applications of artificial intelligence methods to infectious disease surveillance. Human 
and animal populations can be monitored for infectious disease outbreaks using a range of data 
sources. Data such as laboratory results and electronic medical records allow measurement of 
cases of disease (i.e., indicator-based surveillance), while other sources, such as news media allow 
detection of events, without measuring individual cases (i.e., event-based surveillance). Regardless 
of the data source, many approaches to surveillance rely on artificial intelligence methods to 
extract concepts from free-text, predict cases or outbreaks from time-varying data, or to reason 
about data using existing knowledge

 Policy Development

The theme of policy development includes the functions of communication, mobi-
lizing communities and partnerships to improve health, creating and implementing 
policy, and taking legal and regulatory actions to protect health. A task common to 
many of the functions in this theme is the extraction and synthesis of evidence from 
the literature about public health interventions. Machine learning and NLP methods 
have been used for this task in biomedicine [34], but adaptations are necessary for 
application in public health. For example, existing approaches to representing 
knowledge about interventions require adaptation [35] to accommodate the differ-
ent nature of interventions in public health, where individuals and populations are 

13 Public Health Applications



380

targeted through a range of mechanisms [36]. Another example is the need to con-
sider different types of evidence as randomized controlled trials are not possible for 
many types of public health interventions [37].

Public health communication provides information to individuals and communities 
with the aim of improving health outcomes [36]. In targeting communication to indi-
viduals, the incorporation of AI into health communication tools can make the com-
munication more engaging, increasing immediacy [38]. There have been many 
applications of ML and NLP methods to detect changes in health status and to gather 
information and provide guidance for self-management or additional support of men-
tal and physical health, but the evidence for their effectiveness is limited [39]. A related 
application of AI methods is the widespread use of social media and machine transla-
tion to target communities. For example, NLP methods have been applied to social 
media content to detect and analyze discourse on topics such as vaccine hesitancy 
[40], misinformation [41], and foodborne illness [42, 43]. This type of analysis can 
help to develop targeted messaging campaigns, such as those that apply AI methods to 
social media platforms to prevent foodborne illness due to restaurant dining (Fig. 13.2).

The application of AI and informatics more generally to policy creation and pro-
gram planning in public health has led to proposals to update the determinants of 
health model to account for how information technologies can be used to influence 

Bot

Inspector

Public Health

Restaurant

Customer

1. Customer eats
    at restaurant.

2. Customer mentions feeling ill
in online review of restaurant.

3. Public health bot monitoring online reviews
notes mention of illness in restaurant review,
customers messaged for more information.

5. If warranted, public health
sends inspector to restaurant.

4. Public health risk prediction for
restaurant updated.

Fig. 13.2 An example of how artificial intelligence methods can be used to monitor comments on 
social media and generate information to guide public health interventions. Here, a bot developed 
by a public health organization detects a comment that may indicate foodborne illness due to a 
restaurant meal. This information is used to update the risk assessment of the restaurant and pos-
sibly trigger an in-person inspection (See [43] for more information)
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health [36]. Precision public health provides another perspective on the use of AI for 
program planning [44]. As with precision medicine, the intent is to precisely match 
interventions to subjects, but in public health the subject is a population, not an 
individual. Measurement in the public health context entails high-resolution surveil-
lance data for a population [45] and matching interventions requires transferring 
evidence from studies in other settings to that population in a causal reasoning 
framework [35, 46]. However, this application of AI has raised concerns about the 
effect on equity of employing targeted interventions at the expense of efforts to 
address the broader determinants of health [47], such as social position, which can 
be challenging to measure accurately [48].

 Assurance

The theme of assurance groups together functions that assure equity, a diverse and 
skilled workforce, research and continuous quality improvement, and a strong orga-
nizational infrastructure. The application of AI methods to assurance functions has 
been more limited than in other themes. An exception is public health research, which 
has seen the exploration of AI methods to support many public health functions, as 
noted throughout this section and particularly for monitoring and surveillance.

There is a recognized need to educate the public health workforce about AI 
methods to enable the development and use of effective AI-enabled tools [12]. As 
discussed earlier, it would be ideal if pedagogical content about AI could be incor-
porated into public health informatics training, thereby providing practitioners with 
an appreciation of AI methods within the broader context of data and information 
management and analysis in public health. However, despite the widely recognized 
importance of training in public health informatics, and examples of effective pro-
grams [49], significant gaps in data and informatics skills persist in the public health 
workforce [10]. While there are likely many reasons for this continued lack of 
capacity, it may be attributable in part to the underinvestment in public health more 
generally and the challenges of applying computer-based innovations in this context.

The public health system is recognized as being critical for a nation’s health [50] 
and measurement and optimization of the operations of public health systems is one 
area where AI methods have considerable potential [51]. However, progress in the 
application of AI methods has been limited by challenges in conceptualizing [52] 
and measuring public health activities and interventions [53].

 Barriers and Risks to AI Applications in Public Health

The previous section highlighted how the current state of AI applications in public 
health has been shaped to a large extent by the availability of novel data sources and 
innovations in algorithms. In addition to demonstrating the potential of AI, the 
research and practice efforts to date have also identified barriers and risks to 
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implementing AI in public health. To enable the future application of AI, it is help-
ful to consider the barriers and risks to applying AI methods in public health and 
how they might be addressed.

Barriers to implementing AI in public health include a limited understanding 
among public health professions of the applications to which AI methods are best 
suited, a limited capacity for implementing and using AI in many public health set-
tings, and a lack of data and knowledge in some contexts [54]. A limited under-
standing of AI among public health professionals can be addressed through training, 
including continuing education. (Chap. 16) As noted in the previous section, how-
ever, challenges in enhancing training in public health informatics more generally 
suggest that this barrier may take time to address. The limited capacity for imple-
menting and using AI results from the lack of skilled human and information tech-
nology resources in many public health settings, which has been noted as a barrier 
to digital transformation in public health more generally [12].

Risks to implementing AI in public health include algorithmic biases that may 
disadvantage specific groups [44] (see Chap. 18), the potential to exacerbate health 
inequalities by limiting access to interventions such as language-based models [55], 
and unrealistic expectations that may make it difficult to scale-up translational 
research. As an example of a bias, a widely used algorithm for making referrals to a 
chronic disease management programs was found to be biased against Black patients 
[56]. The bias was introduced through the problem formulation, because the model 
was developed to predict costs, which reflect barriers to accessing health care. A 
solution in this case would be to use another outcome, such as a measure of illness. 
Table 13.1 presents different types of bias that should be considered when using 
machine learning to develop prediction models in population and public health.

While the barriers and risks are real, they can be addressed through measures 
such as guidelines [59] and enhanced training opportunities targeting different 
stages of the public health career trajectory. For example, recognizing and avoiding 
bias in training and applying ML algorithms can be taught within MPH programs 
and continuing education programs can support practitioners in developing a realis-
tic assessment of the potential contributions of AI in public health.

Table 13.1 Types of biases to be considered when developing machine learning models for 
prediction in population and public health. For further discussion of these biases, see [44]

Type of Bias Description

Sampling Bias The proportion of subjects or records sampled differs systematically across 
subpopulations. For example, a model is trained with input from mainly adult, 
but intended to be applied to people of all ages

Information 
Bias

The quality or amount of data differs systematically by subpopulations. For 
example, electronic health records tend to provide a more complete history of 
people with higher as opposed to lower socioeconomic status ([57]; [58])

Random Error The number of subjects or records for a subpopulation is too small to achieve 
an acceptable precision when making predictions

Objective 
Specification

The outcome of the prediction model is misaligned with its intended use and 
may reinforce existing inequities. For example, developing a chronic disease 
program referral model based on health care costs as opposed to illness [56]
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 Future Applications of AI in Public Health

The previous sections have considered the potential for AI methods to be applied to 
public health functions and have highlighted examples of current AI applications in 
public health. In this section, progress towards the vision presented earlier (see the 
section on “A Vision for AI in Public Health”) is considered, and the potential for AI 
methods to transform public health in the future is examined.

 Progress Towards the Vision

While in many respects the breadth of application of AI methods to public health 
functions is impressive, the examples reviewed in the section on “The Nature of 
Essential Public Health Functions and the Application of AI” suggest that it will 
take time to reach the vision presented. Notably, many applications of AI in public 
health have focused on automating manual tasks related to the functions of popula-
tion health monitoring, surveillance, and communication. Moreover, many research 
advances, such as in the application of ML methods to aberration detection [24], 
have seen a slow and uneven translation into practice.

The reasons for the limited progress include the lack of high-quality evidence 
supporting the use of AI methods along with the barriers identified earlier, namely 
limitations in training, resources, and data access in some public health settings. 
The lack of high-quality evidence reflects in part the challenge in evaluating public 
health interventions more generally, but there is also a similar lack of high-quality 
evidence supporting the application of AI methods in clinical domains [60]. Minimal 
reporting guidelines have been developed for clinical applications of AI [61] and 
similar guidelines should be advanced in public health.

Training in public health informatics and the application of AI methods more 
specifically are critical for progress towards the vision presented. Many efforts are 
underway in this regard, but the current situation remains one where awareness and 
knowledge of AI methods is limited in public health. Coordinated efforts by multi-
ple stakeholders, including public health agencies, professional associations, and 
educational institutions are required to update public health competencies and make 
training available through a variety of mechanisms.

 Future Applications

To close this chapter, it is helpful to consider future applications of AI that have the 
potential to advance the vision of AI in public health. In general, given the reliance of 
ML and NLP methods on large amounts of data, many future applications would be 
enabled by ensuring that the necessary data are generated and available for analysis 
(Chaps. 6, 7). For example, as discussed previously, there is great potential for ML to 
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support the monitoring and optimization of public health services. However, data 
about public health activities are not currently generated and represented in a consis-
tent manner. If public health organizations were to systematically track activities, such 
as the delivery of interventions, ML and other AI methods could be used to support 
decisions about the effective use of interventions in specific communities. This type of 
data generation and analysis about actions occurs routinely in clinical domains and 
would provide an essential foundation for a learning public health system [62].

Another foundational advance that would enable broader application of AI in 
public health is improved integration of individual-level and public health data. For 
example, tighter integration of individual-level public health data with records for 
clinical care and social services, such as housing support, would enable the use of 
machine learning to search for opportunities to improve essential services across 
sectors. These opportunities could emerge from the ability to better coordinate clini-
cal and public health interventions, allowing a “person-centered” approach that 
integrates health promotion, disease prevention, and clinical services.

Finally, a view to the future should consider how applications of AI methods in 
public health are related to broader public health goals such as digital transforma-
tion and the Sustainable Development Goals [63]. Preparing public health systems 
for digital transformation requires attention to ensuring that enabling information 
technology and human resources are in place [12, 64]. This foundation can enable a 
broader re-imagination of how AI methods can transform public health services to 
achieve goals within communities, for nations, and globally.

Questions for Discussion

• What characteristics of public health functions make them amenable to the appli-
cation of AI methods? Are some AI methods better suited to some public health 
functions than others? Explain.

• Machine learning (ML) methods have been applied in surveillance to detect indi-
vidual cases and to detect outbreaks. How is the application of ML methods 
different for these two purposes? Are there any common challenges to applying 
ML methods in both contexts?

• Given what you know about knowledge-based systems, explain how they can be 
used most effectively in public health.

• What is the most important barrier to the application of AI in public health? 
Justify your choice and propose potential solutions.

• What is a risk of applying AI in public health? Explain.
• In your opinion, what future application of AI could have the greatest impact on 

public health?

Further Readings

Lavigne M, Mussa F, Creatore MI, Hoffman SJ, and Buckeridge DL. A population 
health perspective on artificial intelligence. Healthcare Management Forum 
2019;32(4):173–177.

• This paper provides an overview of artificial intelligence in the context of popu-
lation health. The field of AI and major sub-fields are introduced with examples 
of their application in population and public health.
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Buckeridge DL.  Precision, Equity, and Public Health and Epidemiology 
Informatics  – A Scoping Review. IMIA Yearbook of Medical Informatics 
2020;29(1):226–230.

• This paper summarizes recently published literature on two topics of central rel-
evance to the application of AI in public health, namely precision public health 
(PPH) and equity in the development of prediction models. Applications of PPH 
are presented and debates about the concept of PPH are explored. Guidelines and 
barriers to promoting equity in prediction modelling are presented and discussed.

Yasnoff WA, O’Carroll PW, Koo D, Linkins RW, Kilbourne EM.  Public Health 
Informatics: Improving and Transforming Public Health in the Information Age. 
Journal of Public Health Management and Practice 2000;6(6):67–75.

• This paper introduces the discipline of public health informatics, describing its 
role and the challenges it sought to address at its inception. Although not about 
AI directly, it provides an important context regarding the state of informatics 
within the domain of public health.

Hosny A, Aerts H.  Artificial intelligence for global health. Science 
2019;366(6468):955–956.

• This paper presents a framework with examples of applications of AI in resource-
poor health care settings. Applications in population health are considered along 
with portable diagnostics and clinical decision support.

Rodriguez-Gonzalez A, Zanin M, Menasalvas-Ruiz E. Can Artificial Intelligence 
Help Future Global Challenges? An Overview of Antimicrobial Resistance and 
Impact of Climate Change in Disease Epidemiology. IMIA Yearbook of Medical 
Informatics 2019;28(1):224–231.

• This paper presents a review of AI applications in two areas of global public 
health importance—antimicrobial resistance and health effects of climate 
change. The authors summarize the recent literature highlighting where AI meth-
ods have been applied, the results, and what has been learned to guide future 
applications.
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Chapter 14
AI in Translational Bioinformatics 
and Precision Medicine

Thanh M. Nguyen and Jake Y. Chen

After reading this chapter, you should know the answers to these questions:
• Which key translational bioinformatics problem are AI methods positioned 

to solve?
• What principles would guide your choice of which AI techniques and tools to 

apply to a translational bioinformatics problem?
• What are some important “-omic” databases that can be used to interpret and 

validate translational bioinformatics related machine learning results from the 
biomedical perspective?

 Introduction and Concepts

The field of translational bioinformatics is concerned with the development of 
storage, analytic, and interpretive methods to optimize the transformation of 
increasingly voluminous biomedical data and genomic data into proactive, pre-
dictive, preventive, and participatory health. Translational bioinformatics 
includes research on the development of novel techniques for the integration of 
biological and clinical data and the evolution of clinical informatics methodol-
ogy to encompass biological observations. The end product of translational 
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bioinformatics is newly found knowledge from these integrative efforts that can 
be disseminated to various stakeholders, including biomedical scientists, clini-
cians, and patients [1].

Voluminous data, which are often understood as data volume of a few gigabytes 
and beyond, can be due to:

 – A large proportion of irrelevant information in the data. For example, bulk RNA 
sequencing data for just one sample is more than ten gigabytes before compres-
sion and a few gigabytes after compression [2]. However, the ratio of exon reads, 
which are used in later analysis, over intron reads, which are not used, is small 
(it is expected to be 1/24 [3]).

 – A large number of samples, also called datapoints (each of which may represent 
a subject), in the data. For example, the Nationwide Emergency Department 
Sample data [4] contains more than 30 million subjects. In this dataset, there are 
just over 100 features only.

 – A large number of features. For example, human gene expression data have 
20,412 protein-encoding genes, 14,600 pseudogenes, 14,727 long non-coding 
RNAs, and 5037 small non-coding RNAs. Some datasets may have large num-
bers of both samples and features. For example, single-cell RNA sequencing data 
may contain data from hundreds of thousands of cells [5], capturing the 
whole genome.

 A Brief History of Translational Bioinformatics

Translational bioinformatics is a relatively young field. According to Ouzounis [6], 
translational bioinformatics started in 1996. In the beginning, the field primarily 
researched how to organize biomedical data and build an ontology system improv-
ing the interpretation and searching of biomedical research. After the first version 
of the human genome project in 2003 [7], genomic analysis was added to transla-
tional bioinformatics and continued growing to be a key area in the field. Since 
2005 in Europe and 2009 in the United States, programs to widely adopt electronic 
medical records in patient care and research have been launched [8]. Consequently, 
large amounts of past clinical data stored in electronic format could readily be used 
in translational research. This enabled the development of the biomedical  infor-
matics component of translational bioinformatics. As translational bioinformatic 
techniques mature in the areas of genomics and biomedical informatics, they are 
further adapted to carry out research on other biomedical data, such as microbi-
ome, chemical informatics, and metabolomics data. Today, translational bioinfor-
matics is a multidisciplinary field, extending  from the molecular level (genes, 
proteins, and other molecular entities below the cell) to the population level (col-
lections of living subjects).

T. M. Nguyen and J. Y. Chen



393

 Concepts of AI in Translational Bioinformatics

AI in translational bioinformatics covers a broader range of problems than it does in 
other clinical fields. In clinical practice, the main goal of applying AI is often to 
complete tasks that used to require manual labor. Some AI applications, such as 
predicting patient readmission, may perform tasks not typically conducted by 
human beings. However, producing new knowledge is not required. In translational 
bioinformatics, besides supporting manual labor, an important goal when using AI 
is to infer new knowledge, with typical applications including:

 – Association Studies: mining for novel relationships among different biomedical 
entities.

 – Subtyping and clustering: dividing patients and samples into different groups 
such that each group may explicitly represent a sub-clinical outcome or a 
sub-phenotype.

 – Modeling and knowledge representation: mathematically representing the asso-
ciations and cause-effect relations among different biomedical entities. The rep-
resentation, in this case, is often in a system of differential equations.

 – Simulation: mathematically representing the changes observed in biomedical 
subjects by a system of dynamic equations. The system has the general form 
x(t + 1) = F(x(t), u(t)). Here, x(t) represents the subject at timepoint t, u(t) repre-
sents the interference at timepoint t, and x(t + 1) represents the subject at the next 
timepoint.

 – Spatial visualization: visualizing biomedical datapoints in 2D or 3D space.

 Primary Data Categories in Translational Bioinformatics

 Genomic Data

This chapter broadly refers to all types of data involving genes, proteins, miRNAs, 
metabolites, proteins, and biological reactions as genomic data, which includes data 
in both genomic and functional genomic subcategories.

Genomic and other -omic data, as introduced in Chap. 3, refer to the measure, 
characteristic, and annotation of genes. The original definition of genomics only 
referred to the study of genes or the DNA sequences and their related information 
[9]. However, the data and research scope in bioinformatics also covers other 
molecular entities involved in the transcription and translation processes. 
Therefore, -omic data include:

 – Proteomics is the study of proteins [10].
 – Metabolomics studies the chemicals participating in dynamic metabolic pro-

cesses [11].
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 – Transcriptomics studies the transcription process [12], which focuses on RNAs 
and other transcription-regulator molecular functions.

In some literature [13, 14], the word “genomics” (or gene) is used interchangeably 
with “transcriptomics” (RNA) and “proteomics” (protein).

When analyzing translational bioinformatics data, it is important to recognize 
and categorize the data by measure and resolution. Measure refers to the type of 
molecular entities that are collected, counted, or observed. The technical terms 
microarray [15], copy-number variation [16], and mutation only refer to 
DNA. The technical terms RNA sequencing and transcript count only refer to 
RNA [17, 18]. The terms western blotting [19], multi-level structure, and protein- 
protein binding affinity [20] refer only to protein. Each measure and molecular 
type has its unique physical characteristics; therefore, applying a method built for 
one measure to another should be very carefully considered. Resolution refers to 
whether the measures are collected from the tissue (bulk) sample, which is a collec-
tion of cells, at the single-cell level, or at the sub-cellular molecular level (i.e., iso-
lated proteins). While bulk and single-cell samples can have the same measures 
(e.g., transcript count in bulk RNA and single-cell RNA), their numerical character-
istics are very different.

The results from analyzing -omic data by researchers from multiple fields are 
carefully curated and organized into annotated catalogs. The Gene Ontology cat-
alog [21, 22] identifies which genes participate in specific biological processes, 
belong to specific cellular components, or share a specific molecular function. 
Pathway catalogs, such as the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [23] and Reactome [24], annotate how groups of genes interact with 
each other and activate in specific orders to regulate cellular phenotypes and pro-
cesses in response to external stimuli. Protein catalogs, such as UniProt [25], 
Protein Data Bank [26], and STRING [27], collect and organize protein structures 
and interactions. These catalogs are important to interpret the new omic analytic 
results, highlighting the molecular features that differentiate two or more 
phenotypes.

 Clinomic Data

Clinomic data, which is also called the “clinotype“[28], refers to the measures and 
characteristics of the living subject, which are useful for medical research and inter-
ventions [28, 29]. The major biomedical data categories are diagnosis-related data, 
laboratory test results, medication data, and medical imaging data [30]. Diagnosis- 
related data refer to the time, stage, and survivability of a disease or disorder in a 
subject. Laboratory test results, which are also called biomeasures [31], refer to a 
subject’s quantifiable observations and the biological material concerned (i.e., blood 
and urine samples). Because laboratory test results are quantifiable, we can 
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systematically define thresholds and criteria to determine whether the result indi-
cates particular diseases or disorders. Medication data refer to the time and types of 
interventions, or treatments, received by a subject. Medical imaging data, such as 
X-rays and functional magnetic resonance images, can be understood as observa-
tions from a subject that are not directly quantified. Therefore, interpretation of 
medical images in research and clinical practice often occurs on a case-by-case 
basis and depends on physicians’ and researchers’ training experience. Besides, 
biomedical data may contain other types of data that are specifically collected for 
particular research and clinical practice scenarios, such as smoking history [32, 33], 
diet type [34], exercise frequency [35], and drug side-effect history. Also, clinomic 
data may include genomic data when a subjects’ genetic data is used to diagnose 
and help decide a treatment [36–38].

 Phenotypic Data

In translational bioinformatics, the basic phenotype definition refers to the diseases 
and abnormalities affecting each subject, such as breast cancer and diabetes. In the 
broader context, phenotype refers to the subjects’ categorization and definition as 
assigned by biomedical experts. In this context, a phenotype definition, such as ‘cell 
proliferation’ and ‘chemotherapy resistance’, is specific to each research project or 
clinical trial. To differentiate phenotypic data from clinomic data, we may under-
stand that phenotypic data are directly derived from clinomic observations.

 Categorizing AI Applications in Translational Bioinformatics

In treating complex diseases and precision medicine, linking omics and biomedical 
data is expected to improve the quality of care [39, 40] from the current practice, 
which primarily relies only on clinomic data or phenomic data (which is also 
referred as biomedical data) alone. Biomedical data will still be essential to detect 
and monitor disease progression, tasks for which single-type omics data has not yet 
shown superiority [39]. Meanwhile, omics data is essential to find driver mutations 
and their functionalities, prerequisites to understanding their roles in causing a dis-
ease. Besides, even when the major causes of a disease are not exclusively genetic, 
such as with hypertension, knowing the patients’ omics data may still improve treat-
ment precision [41, 42].

Linking of -omics, clinotype, and phenotype data opens new questions that 
require advanced AI, machine learning, and data mining techniques to resolve. 
Clinotype-to-clinotype (C2C) association discovery, similar to “omic association” 
[43, 44], finds the clinotypes that co-occur in subjects’ data and determines whether 
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Fig. 14.1 Categorizing AI 
Translational 
Bioinformatics

one clinotype occurrence is likely to precede those of other clinotypes. Discovery of 
novel clinotype-to-phenotype associations may advance risk assessment beyond 
current disease:lab-test markers toward finding sets of simpler, more cost-effective 
risk markers. This would allow patients and physicians to take early and preventive 
actions [45].

From a knowledge discovery perspective, Fig. 14.1 summarizes AI applications 
in translational bioinformatics according to the data categories we have introduced. 
Here, three data categories yield six possible types of association. In this figure, 
genomic-to-clinomic association has not been well-defined (and is therefore not 
illustrated). The other five types of association are as follows.

 G2G (Genomic to Genomic)

G2G refers to applications involving finding gene-gene associations using AI tech-
niques. G2G has many sub-problems, which are defined by the gene-gene mecha-
nisms of interaction concerned. Sub-problems that are foci of current research 
include estimation of protein-protein binding affinity [46], and prediction of the 
targets of transcription factors [47].

 G2P (Genomic to Phenotypic): Genome-Wide Association Studies (GWAS)

The main purpose of GWAS is to find the genetic variants associated with a specific 
disease or phenotype. According to the GWAS catalog in 2019 [48], there have been 
5687 GWAS studies, which list 71,673 variant-phenotype associations computed 
using statistical methods. AI methods can improve GWAS results by enhancing the 
statistical power of associations, improving polygenic risk scoring, and ranking 
gene variants that are strongly associated to a genetic disease [49]. In most AI appli-
cations in GWAS, the key step is to build classification models using variant fea-
tures to differentiate the phenotype, such as disease vs. normal.
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From an AI perspective, the GWAS data has the following characteristics:

 – Statistical feature selection is generally applied before using AI methods to ana-
lyze the data. However, the statistical methods select the features one by one; 
thus, they may not address important dependencies among the features.

 – The data is often represented by a binary matrix, which represents whether or not 
a patient’s genome has a specific variant.

In analyzing GWAS, linear models such as regularized regression and support vec-
tor machines (Chap. 6) are widely applied (see for example [50–53]). Here, model 
scores, such as the predicted probabilities, can serve as risk scoring, and model 
coefficients can be used to rank the features. Random forest [54] models can also 
support these two tasks (see for example [55, 56]). Meanwhile, some research [57, 
58] shows that artificial neural network models may have the advantage in risk 
scoring/classification performance; however, the model architecture is less condu-
cive to feature ranking than other more straightforward approaches such as regres-
sion models.

 P2P (Phenotypic to Phenotypic): Identify Disease Genomic Subtypes

Subtyping of complex genomic disease, such as glioblastoma multiforme (GBM) 
[59], can answer key questions in both pre-clinical studies and clinical practice. 
These diseases are caused by multiple genetic anomalies and signaling pathway 
disruptions; therefore, a combination of therapeutic strategies is required to treat 
them. The purpose of subtyping in this context is to partition the disease into mul-
tiple subgroups, and find the explicitly disrupted signaling pathways in each of 
them. This may allow for customizing the treatment for each group according to the 
affected pathways. Solving this problem requires clustering and feature selection 
algorithms in AI. The clustering results reduce the subtyping problem into classifi-
cation (which imputed subtype does this patient belong to?) and feature selection 
(which signaling pathways are affected in this imputed subtype?) problems for fol-
low- up analyses. For example, in the TCGA-GBM dataset [59], the clustering was 
followed by GWAS analysis in each patient group. Here, GWAS mutations defined 
four GBM subtypes: classical, mesenchymal, proneural, and neural, and 29 subtype- 
related prognostic markers.

 P2C (Phenotypic to Clinomic)

The protocol to diagnose a disease, which often consists of a pre-defined set of labo-
ratory tests, is the most commonly used type of phenotype-clinotype association. 
Other phenotype-clinotype associations, once discovered by AI techniques, are con-
sidered novel. For example, in work on the identification of hypertension risk [45], 
the patients’ future hypertension could be predicted by using non-blood-pressure 
affordable lab tests and AI.
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 C2C (Clinomic to Clinomic)

From a narrow perspective, clinotype-clinotype association refers to the correlation 
among laboratory test results. In the broader perspective, this type of association 
refers to how a specific clinotype result might change, or be predicted, given other 
clinotype results. For example, in work seeking to derive links between the primary 
translational informatics data categories [28], a linear model was constructed in 
which all other clinotypes become input features, to predict clinotype values. Here, 
the model coefficients were used to quantify clinotype-clinotype association.

 Informatics Challenges in Translational Bioinformatics

 Big Data Characteristics

An understanding of big data characteristics is required to apply AI in translational 
bioinformatics. This section reviews the characteristics of big data and how each 
characteristic can impact AI performance.

 Volume of Data

Large data size constrains AI performance in translational bioinformatics in two 
ways. First, on account of associated logistic challenges, large data size may make 
solving some AI problems impractical without sufficient computer storage and spe-
cialized hardware. For example, Quang et al. [60] show an example of a motif dis-
covery problem that may take a few weeks for a computer to complete without a 
big-data-specific GPU. Second, on account of the “curse of dimensionality” chal-
lenge, the very large number of features in big data can decrease the predictive 
performance, which is known as the Hughes phenomenon [61]. While dimension 
reduction may help relieve the curse of dimensionality, it also reduces the interpret-
ability of the AI results (because the components of a reduced-dimensional repre-
sentation may not map back to individual features). In other words, it leads to 
inferring less powerful hypotheses from the input feature to the predicted output 
variable.

 Veracity of Data

Veracity refers to data quality, and conversely, noise. Noise detection and filtering is 
a challenge in analyzing data from many fields. However, in translational bioinfor-
matics, differentiating between noise and meaningful but as-yet-unverified novel 
information makes this challenge more difficult. In biomedical research, the data 
often contain yet-to-be-discovered information. This information may only appear 
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in a very small percentage of the data; therefore, statistically, it has similar charac-
teristics to the noise. For example, single-cell expression data [62] usually show 
small cell clusters, which consist of less than 5% of the cell population. These clus-
ters may correspond to “doublets“[63], a technical error (real noise), or  stem/pro-
genitor cells (which would constitute critical and novel information). Tackling this 
challenge requires reasonable noise assumptions and novel hypotheses to emerge 
from a strong collaboration between the AI analyst and the biomedical experts 
concerned.

 Variability of Data

Data heterogeneity, or variability, has always been among the most difficult chal-
lenges in translational bioinformatics [64]. There are many aspects of data hetero-
geneity. First, the data are of many types, including omics data subtypes and 
biomedical data subtypes. In this aspect, the data integration strategy and integrative 
analysis are the keys to overcome the challenge. Second, the same data type may 
have significant variability due to the methods and platforms of collection, such as 
the batch effect [65] when single-cell sequencing the same tissue using 10X and 
ICell8 RNA-seq platforms [66]. In this aspect, computational mapping across the 
platforms is critical to the analysis. Third, results with the same data type and the 
same collection method can still be interpreted differently by different healthcare 
providers. For example, the Hematocrit percentage test normal range can be 35–40% 
or 40–50%, depending on specific patients and physicians who analyze the test 
result [28]. In this aspect, accurate and comprehensive biomedical domain knowl-
edge is required.

 Velocity of Data

Velocity refers to how quickly the data must be processed and analyzed, and how 
quickly results must be produced. In general translational bioinformatics research, 
velocity is not a major challenge. However, requirements to deliver results on time 
must be considered when building online tools and clinical decision support. The 
principle requirement to tackle this challenge is to understand the data management 
system and hardware infrastructure from which the AI tools are to be deployed (see 
the section on “Applications of AI in Translational Bioinformatics”).

 Social-Economic Bias

Unlike pre-clinical research, clinical translational bioinformatics research uses 
patients’ clinical information. In this setting, incorporating socioeconomic factors 
into analyses may be unavoidable. However, predictive models based on such 
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factors raise concerns about algorithmic fairness with the potential to exacerbate 
existing socioeconomic disparities (see Chap. 18). Thus, in the data processing 
pipeline, strongly associated features to the socioeconomic factors should be 
removed.

 Domain Knowledge Representation and Interpretability

Using domain knowledge collections to validate findings can improve the interpret-
ability of AI results, which is desirable before making clinical decisions on the basis 
of these findings. In bioinformatics, the common practice is to use feature extraction 
methods or infer model-explicit features (biomarkers) that differentiate the sample 
classes. These features are then forwarded to pathway, gene set, and gene ontology 
analysis to reveal which biological mechanisms are involved. The closeness between 
the highlighted mechanisms and the biomedical samples justifies the quality of the 
analysis. For example, when analyzing the fetal mouse heart proliferation data [67], 
the proliferative pathways and gene ontologies, such as cell cycle and cell differen-
tiation, are expected to be enriched. If the proliferative pathways and ontologies are 
not enriched, while the ‘hypertrophy’ ones are, then the analytic quality could be 
questionable.

 Model Robustness and Quality Control

Sample imbalance is usually the first issue impacting model quality in AI applica-
tions in translational bioinformatics. In the pre-clinical setting, the proportion of 
negative samples, such as healthy or disease-free samples, is often much smaller. 
In the clinical setting, we often see a very small proportion of positive samples. 
Here, we expect that the number of patients will be small compared to the popula-
tion size. Extremely imbalanced data may seriously impair AI models, which are 
often optimized for accuracy. For example, when the positive sample proportion 
is only 5%, a naïve “all negative” prediction model yields an accuracy of 95% 
(very high). However, this model cannot predict positive samples; thus, it has no 
clinical value. To tackle imbalance, oversampling or undersampling can be applied 
to create a training dataset with a positive/negative sample ratio that is more bal-
anced than it is in the whole dataset. In oversampling, a rare-class sample may 
randomly appear more than once in the training set, such as in the Synthetic 
Minority Over-sampling Technique (SMOTE) [68]. Here, the sample may be 
slightly permuted if it is selected more than once, using techniques of data aug-
mentation [69, 70] analogous to those applied to images when training models for 
computer vision, such as rotations and reflections [71]. Alternatively, in 

T. M. Nguyen and J. Y. Chen



401

undersampling, only a subset of popular-class samples are randomly selected for 
inclusion into the training set.

The optimization criteria in training AI models should be carefully decided case 
by case. This involves two choices. The first is the choice or definition of the loss 
function (see Chap. 6), with commonly applied examples including the mean-square 
error, L1 loss, hinge loss, or cross-entropy loss. The second is the choice of metric 
to focus on: maximizing accuracy, AUC, positive-predictive value, or negative- 
predictive value.

Statistical tests for model robustness. Many AI methods are model-based, and 
assume the data have certain characteristics and follow particular distributions. 
Therefore, these assumptions need to be verified before applying the AI methods. 
The Kolmogorov–Smirnov test (KS test) [72] addresses whether a set of numbers 
follows a pre-defined distribution, and to what degree two sets of numbers are drawn 
from the same distribution. Thus, in principle, the KS test and another similarly- 
purposed test should be applied to examine the data before deciding the AI method. 
On the other hand, the model result depends on its hyperparameters [73], which 
must be set before applying the AI algorithm. Choosing the hyperparameter is 
beyond the scope of the optimizations that can be achieved by the AI algorithm 
itself. Therefore, post-hoc analyses, such as the Wald test [74] and other model- 
fitness tests, should be used to test for fitness of the computed parameters (which are 
also commonly called the model parameters). To conduct these tests, the null model 
parameters need to be pre-defined; usually, a null model parameter is set as 0, which 
implies that the parameter plays no role in the model. If the test result is insignifi-
cant, which means the computed model parameters are very similar to the null 
parameters, then the model parameter may not be robust. This means that one should 
choose other algorithm hyperparameters to recompute the model.

 Translational Bioinformatics Tools & Infrastructure

The big data characteristics described in the  section on  “Concepts of AI in 
Translational Bioinformatics” necessitate efficient, scalable tools and infrastructure 
components. In this section we will describe some of the key tools and components 
required to conduct translational bioinformatics analyses.

 Extended Data Management Systems

While improving translational bioinformatics data storage may not be the primary 
research objective of AI in medicine, the developers of AI tools should consider the 
existing data facilities in order to improve their runtime performance in practice. 
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First, the object-relational database is still the primary translational bioinformat-
ics data structure, with prominent examples including the Mayo Clinic database 
[75], STRING (a database of protein-protein interactions) [27], and the US 
National Inpatient Sample database [76]. The relational structure has the advan-
tage of supporting the transformation of the data into any customized data struc-
ture used by AI applications. Meanwhile, to improve data retrieval performance, 
some translational bioinformatics data warehouses choose a non-relational struc-
ture for specific data types. Second, when the data has a hierarchy and/or primarily 
association among different entities, the non-relational database is adopted. For 
example, the Reactome biological pathway repository [24] is built upon the Neo4j 
[77] graph database engine, and Gene Ontology [22] organizes data based on the 
hierarchical Extensible Markup Language (XML) files [78]. Some other systems 
may adopt a hybrid structure when the data are extremely large and the data should 
be kept in multiple formats; for example, cBioPortal for cancer genomics [79] uses 
a relational table structure for patient clinical data and a file data system for patient 
omic data. Third, hybrid and distributed data warehouses implement both rela-
tional and non- relational infrastructure, such as in CloudBurst [80], BiobankCloud 
[81], and Hydra [82].

 Data Preprocessing Pipelines

 Pipelines to Build the Data Matrix

AI techniques view data in matrix format. However, before processing, biomedical 
data, such as high-throughput sequencing data, are not in this format. Therefore, 
data-type specific pipelines are required to convert the raw biomedical data to a 
matrix format. Table  14.1 summarizes the well-known pipelines in translational 
bioinformatics.

Table 14.1 Popular standard pipelines used in translational bioinformatics

Name Data type Input Data Output Data References

RAMPAGE 
(Encode project)

Bulk RNA 
sequencing

Fastq file: data and 
reference genome

– gene alignment
– gene quantification 
(matrix)

[83]

miRNA-seq
(Encode project)

microRNA 
sequencing

Fastq files – miRNA 
quantification

[84]

CellRanger Single-cell RNA 
sequencing

Fast1 files – gene-cell expression 
matrix
– simple analysis of 
single-cell data

[85]

Stanford 
CoreNLP

Medical text Medical text 
collection

– medical term 
quantification (matrix)

[86]
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 Enhancing the Data Matrix

After formatting the data as a matrix, the matrix must be further processed to remove 
bias and noise. Choosing which method to use in this step is an ad-hoc decision and 
is made on a case-by-case basis. Well-known problems and techniques in data pro-
cessing are:

 – Dimension reduction: typically used methods include principal component 
analysis [87] and canonical correlation analysis [88].

 – Data scaling and normalization. For example, gene expression data is assumed 
to follow the negative binomial distribution [89]. Gene expression analysis pack-
ages, such as DeSeq2 [90] and SAGE [91] implement negative binomial scaling 
before applying the main statistical analysis.

 – Batch effect correction [92] is applied when the same type of dataset is generated 
at different rounds of experiments. Variance due to uncontrolled and random 
technical issues may appear in the data.

 – Embedded data visualization, such as TSNE [93] and UMAP [94].

 Supervised and Unsupervised Learning

Supervised machine learning (see Chap. 6), also called supervised analysis, 
involves finding a function that reproduces an output from an input. Here, “repro-
duce” implies that the correct output is already available without using the machine 
learning function. In biomedicine, supervised analysis often involves creating and 
fine-tuning computer algorithms and software that can substitute for a human per-
forming a task. Examples of supervised analysis in biomedicine are:

 – Automated detection of a tumor region and estimation of tumor size from a 
radiological image [95, 96] (see Chap. 12).

 – Identifying cell type from single-cell gene expression data [97].
 – Detecting patients’ chronic disease diagnoses from their general health checkup 

records [28].

The main purpose of such supervised analysis is to automate and speed up manual 
tasks. Supervised learning can be implemented by digitizing rules and human 
knowledge, which is also called rule-based learning [98, 99], or through computa-
tion exclusively without such rules or knowledge. Support vector machines [100], 
linear regression [101], random forests [54], and deep learning methods [102] are 
well-known fully computational techniques that neither encode nor require human 
rules and knowledge. Although inferring novel knowledge may be achieved with 
supervised analysis (for example, by making predictions of drug effects beyond the 
scope of the training data), this is not usually the main goal when conducting super-
vised analysis in translational bioinformatics.
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Unsupervised learning still finds a function from input to output, but the correct 
output has not been determined in advance. The main purpose of unsupervised 
learning in translational bioinformatics is to generate new biomedical knowledge 
that can be tested and verified in follow-up studies. Some examples of unsupervised 
learning are:

 – Identifying new disease subtypes from genomic data [28], such as identifying 
genetic mutations that potentially indicate subtypes of glioblastoma [103].

 – Drug repurposing [104], or finding ways of applying an old drug to treat a new 
disease. For example, the disease-drug and drug-drug associations could be rep-
resented by a graph [105]. Clustering this graph, which is an unsupervised learn-
ing problem, results in many clusters. Each cluster consists of multiple diseases 
and drugs to be further examined for repurposing.

 – Identify and characterize new cell subtypes in single-cell omics data.

Some popular unsupervised machine learning problems are clustering [106], 
expectation-maximization methods [107], and non-negative matrix factoriza-
tion [108].

 Popular Algorithms in Translational Bioinformatics

Extending the discussion of algorithms and tools in Chap. 6, this section provides 
additional details for popular AI algorithms in translational bioinformatics.

 Classification Algorithms

Random forest [54] is a well-known example of an ensemble classification algo-
rithm. A random forest consists of many decision trees (Fig. 14.1). Each tree is a 
discrete classification model, which consists of multiple classification rules. Each 
tree is constructed by applying the decision tree algorithm [109] to a random subset, 
including randomly selected samples and features, of the training data. Then, to 
classify a sample, random forest combines all trees’ classification results, using 
majority rule voting or some other aggregation procedure.

Figure 14.2 illustrates a random forest. Here, the classification has 4 features. 
Three decision trees are randomly constructed: tree 1 only uses x1 and x2, tree 2 only 
uses x3 and x4, tree 3 uses x1, x2, and x4. Each tree is a classification model, which 
consists of multiple if-then rules. For example, tree 1 has three rules: x1 ≤ 5 → Class: 
No, x1 > 5 & x2 ≤ 50 → Class: No, x1 > 5 & x2 > 50 → Class: Yes. When classifying 
the sample (2, 68, 342, 6899), each tree finds the decision branch according to the 
sample feature (grey-shaded hexagon). Then, all trees’ results (2 No, 1 Yes) are 
combined using a majority rule vote to make the final decision (Class: No).

To measure how important a feature x is in each tree, the algorithm compares the 
classification accuracies where x is included and removed from the tree [110]. The 
more accuracy decreases when removing x, the more important x is in the tree. The 
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Fig. 14.2 Illustration of a random forest

random forest combines x’s feature importance scores for all tree into x feature 
importance score in the forest. The random forest feature importance can be used as 
a metric for feature ranking.

Naïve Bayesian classifier. Given a datapoint x = (x1 = a1, x2 = a2, …, xn = an) in 
n dimensions; here, we denote x1, x2, …, xn as the attributes, and a1, a2, …, an as the 
values. The objective is to predict which class Ci x belongs to among k classes. 
According to Bayes’ rule, the posterior probability that x belongs to class Ci is:
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In Eq. (14.1), the denominator is negligible because it is the same for all k classes. 
Thus, the classification is decided by which class has the largest p(x = (a1, a2, …, 
an)| Ci) × p(Ci). Here, the prior p(Ci) is the frequency of class i appearing in the 
population. The likelihood p(x = (a1, a2, …, an)| Ci) is the probability of observing a 
sample x = (a1, a2, …, an) in class Ci. In the naïve scenario, we assume that all attri-
butes x1, x2, …, xn are independent from the other. Therefore:

 

p a a a C p x a C p x a C p x a Cn i i i n n ix � �� �� � � �� �� �� ��� �� �1 2 1 1 2 2, , , | | | | .
 

(14.2)

In discrete data, all elements in Eqs. (14.1) and (14.2) are computed by counting. In 
continuous data, the probabilities p(xj = aj| Ci) are the probabilistic mass function of 
class Ci. This requires advanced probabilistic modeling. Also, when the attributes 
are not completely independent, the naïve Bayesian algorithm is extended to the 
Bayesian Network. The audience can freely practice these advanced cases using 
open source and freely available machine learning libraries such as Weka [111].
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 Clustering Algorithms

Expectation-maximization clustering [112], briefly, is a repeated process to iden-
tify the distribution parameters of the data. In each iteration, the datapoints are allo-
cated to a distribution component; then, all component parameters are re-calculated 
according to the datapoint allocation. The process repeats until the component 
parameters converge.

K-mean clustering [113] is a popular clustering algorithm. In this problem, the 
goal is to partition the datapoints into k clusters. The defining parameter for each 
cluster is its centroid, which is the average of all datapoints assigned to it. A specific 
datapoint is allocated to the cluster with the closest cluster centroid. Clusters are 
initially assigned randomly, and the process of centroid estimation and cluster 
assignment is repeated iteratively until the centroids converge. Figure 14.3 illus-
trates k-means clustering using a toy example (n = 10 datapoints, k = 3).

Consensus clustering. In the GBM case study (introduced in the  section 
on “Phenotypic Data”14.1.3.3) [59], consensus clustering was applied to divide the 
TCGA-GBM patients into k = 4 groups (subtypes). Consensus clustering is an itera-
tive clustering procedure. The process starts by choosing the number of expected 
clusters (k) in the dataset. The core clustering algorithm, which was hierarchical 
clustering in TCGA-GBM [59], executes multiple runs with the same k parameter 
in the dataset. Then the results of these runs are aggregated and evaluated for clus-
tering quality. The core clustering algorithm repeats the same process with other 
choices of k; here, larger k often yields higher clustering quality. After experiment-
ing with many choices of k, the final k is chosen by balancing the preference for a 
smaller k against the desire for better clustering quality. Silhouette index [114] is a 
well-known metric for clustering quality.

Matrix factorization. In machine learning, briefly, matrix factorization is the 
decomposition of a data matrix M (m datapoints × n attributes) into the product PQ 
≈ M. Here, P is a m × k matrix, Q is a k × n matrix, and k is a pre-defined number 
determining the dimensions of the latent feature space. Each row in P represents a 
data point in the latent space, and each column in Q represents an attribute in the 
latent space (although such latent attributes may be derived from multiple input 
features in M, and thus relatively difficult to interpret, as discussed in the section 
on “Volume of Data”). In matrix-factorization clustering, the latent space is defined 
by the number of clusters. Then, each row in P represents which clusters the corre-
sponding datapoints may belong to; and each column in Q represents in which 
clusters the corresponding attribute is enriched.

Mathematically, matrix factorization is an optimization problem (for an intro-
duction to solving optimization problems using gradient descent, see Chap. 6): find 
P and Q to minimize

 F � � � �M PQ P Q2 2 2� � .  (14.3)
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Fig. 14.3 An illustrative example of the k-means clustering algorithm

In this formula, α and β > 0 are pre-selected regularization parameters. The popular 
approaches to solve (1) are based on gradient descent theory [115]. Computing the 
partial derivative of F over P and Q, we have
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P
P

2

2� .
 

(14.4)
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The first term in Eq. (14.4) can be computed by analyzing each entry (i, j) in M. We 
have, by matrix multiplication:

 
m p qi j

l

k

i l l j, , ,�
�
�

1

.
 

(14.5)

In Eq. (14.5), mi, j is the entry at ith row and jth column in M, pi, l is the entry at ith row 
and lth column in P, and ql, j is the entry at lth row and jth column in Q. To minimize 
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(14.6)

This allows update each entry pi, l with a very small learning rate σ :
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(14.7)

The theory to update ql, j is similar and is left as an exercise. Formulae (14.6) and 
(14.7) are used in many iterations until P and Q converge.

 Dimension Reduction Algorithms

Embedding, briefly, is a non-affine method to reduce the data dimensionality. By 
non-affine, we mean that a high-dimensional datapoint x is mapped to a lower, usu-
ally in 2D, dimensional datapoint y such that the inverse mapping from y → x does 
not have a precise formula. Embedding optimizes and preserves the original relative 
similarity between any datapoint (xi, xj) pair in the embedded space (yi, yj). In 
t- distributed Stochastic Neighbor Embedding (tSNE) [93], the pairwise similarity 
(xi, xj) in the high-dimensional data space is defined as
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(14.8)

T. M. Nguyen and J. Y. Chen



409

And the pairwise similarity space (yi, yj) in the embedded data space is defined as
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(14.9)

Upon defining these similarities, tSNE minimize the Kullback–Leibler divergence
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Then, tSNE finds the embedded datapoints y using the gradient descent approach, 
and computing the partial derivative ∂KL/∂yi.

 Association Mining Algorithms

In translational bioinformatics, mining associations among features depends on 
defining an association metric. Some popular choices are:

 – Pearson’s correlation. Briefly, Pearson’s correlation is the ratio between the 
covariance of two features and the product of their standard deviations. This 
metric requires the features to be in numeric format, and only measures how the 
two features linearly correlate. If the two features have a non-linear association, 
Pearson’s correlation may not detect the association.

 – Mutual information metrics [116]. Mutual information measures the dependency 
between two features. For example, consider two Boolean features A and B. In a 
dataset, A and B are independent if the frequency of ‘A is true’ is approximately 
the same as the frequency of ‘A is true given B is true’.

 – The Jaccard index [117]. Given two Boolean features A and B. In a dataset, the 
Jaccard index is the ratio between the number of samples such that ‘both A and 
B are true’ (also called the intersection) and the number of samples such that ‘A 
or B is true’ (also called the union).

 Security, Privacy, and Ethical Considerations (see also Chap. 18)

In practice, the AI scientist must consider the following ethical points, according to 
Safdar et al. [118]:

 – Population bias. This happens when the sociodemographic group proportion in 
a research and training dataset does not reflect the study population. Rare demo-
graphics and ethnicities are often under-sampled.
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 – Data ownership. Translational bioinformatics data is often derived from human 
subjects. Therefore, consent from study participants, which allows using their 
data for research and tool development, must be obtained.

 – Privacy protection. Human subject identifiable information must be removed 
before analyzing and publicly releasing the data for research.

 Team Data Science Infrastructure

AI researchers in translational bioinformatics use publicly available big data and 
analytics infrastructures to accelerate their research. These infrastructures not only 
support scaling to large data sets, but also installation of popular analytic tools. 
Some examples are as follows:

 – UAB UBRITE (https://ubrite.org/) integrates many machine learning program-
ming libraries, which can be activated in R/Python scripts.

 – Google Colab (https://colab.research.google.com/notebooks/) has a free collec-
tion of pre-built machine learning Jupyter notebooks [119] available for reuse. 
Community users may slightly modify these notebooks for specific projects, and 
freely run a notebook for up to 12  hours using Google Cloud computing 
resources.

 Applications of AI in Translational Bioinformatics

 Improving Translational Bioinformatics Data Infrastructure

Experimental validation and manual curation, which are the most reliable approaches 
to construct translational bioinformatics databases, are time-consuming and 
resource-costly. Therefore, AI methods are utilized to infer novel information and 
enrich these databases. For example, in the STRING database [27], text mining is 
the most significant channel contributing to broad coverage. Here, the number of 
protein-protein interactions (PPI) for human proteins in STRING is approximately 
2.9 million [13] (though some of these may be inaccurate on account of natural 
language processing errors); meanwhile, BioGRID [120], which is among the larg-
est experimentally-validated and manually-curated PPI collections, only has 
approximately 268,599 PPIs. As another example, JASPAR [121] uses a hidden 
Markov model [122, 123] to predict 337 (over 1964) transcription factor – target 
interactions.

T. M. Nguyen and J. Y. Chen

https://ubrite.org/
https://colab.research.google.com/notebooks/


411

 Inferring Pairwise Molecular Regulation

Many biological research areas require understanding and predicting regulatory net-
works to provide clear insight into living cells’ cellular processes [124]. For exam-
ple, in injury response, regulation from G Protein-coupled receptors and their 
interactees is crucial to DNA damage response [125]. In another example, the tran-
scription factor c-JUN promotes and maintains the expression level of CCND1, 
which is required in cell cycle progression [126]. Thus, discovering the gene regula-
tory network can enrich the translational bioinformatics database (see  section 
on  “Improving translational bioinformatics data infrastructure”), and inform the 
design of targeted therapies [127]. On the other hand, the number of possible regu-
latory pairs is too large to be fully validated by biological experiments, and many 
have not yet been discovered. This explains why predictive methods to infer molec-
ular regulation, especially transcription factor—target and ligand—receptor pairs, 
are still an active research area.

Transcription factors are a set of DNA-binding proteins, and the genes at the 
DNA location where the transcription factors bind to are their targets [128]. The 
expression of the genes encoded around the binding sites is significantly up or 
down-regulated by the transcription factor. Therefore, the focus of AI in predicting 
transcription factor—target relationships is to identify the binding sites, which may 
number in the tens of thousands [128], of a transcription factor. Furthermore, the 
prediction must be filtered due to two types of occurrences: one binding event may 
control multiple target genes, and one gene may be targeted by multiple bindings. 
AI tools use Chromatin immunoprecipitation followed by sequencing (ChiP-seq) 
data and the expression data as inputs for prediction. IM-PET [129], RIPPLE [130], 
and PETModule [131] predict transcription-factor targets using the random forest 
algorithm. Here, the Chip-seq data is processed to obtain the distance between the 
binding/enhancer sites and the targets’ DNA coding regions. Besides, deep learning 
based tools, such as DeepTFactor [132], TBiNet [133], and scFAN [134] focus on 
precisely predicting transcription factor binding sites. Their output can be provided 
to other AI methods to infer the targets.

A ligand is a substance that forms a complex with a cell surface protein (called a 
receptor) and then triggers a series of cellular signaling events [135]. These signal-
ing events respond to the stimulus that produces the ligand. For example, in natural 
skin wounds, the fibroblast releases the WNT5A ligand; this ligand binds to FZD1/2 
receptors on the skin cell and activates the WNT signaling pathway [136] and the 
pathway promotes skin cell proliferation and helps heal the wound [137]. In drug 
discovery, after selecting which signaling pathways and related receptors to acti-
vate, the next task is designing an artificial ligand that can bind to the receptor. 
Computing the ligand-receptor affinity is an important task before testing the artifi-
cial ligand. Recently, machine-learning-based models have been shown to outper-
form other methods that do not apply machine learning on this task [138, 139].

Table 14.2 summarizes the popularly used AI tools described in this section
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Table 14.2 Summary of AI tools used in inferring pairwise molecular regulation

Tool name & 
reference

Major AI 
algorithm Clustering Classification Simulation

Data type (C, 
P, G)

IM-PET [129] Random Forest x G
RIPPLE [130] Random Forest x G
PETModule [131] Random Forest x G
DeepTFactor [132] Deep learning x x G
TBiNet [133] Deep learning x G
Pafnucy [138, 139] Deep learning x G

 Inferring and Characterizing Cellular Signaling Mechanism 
that Determines the Cellular Response

Identifying and characterizing signaling mechanisms is essential in complex pheno-
type research because the disease outcomes concerned involve many genes interact-
ing and responding to each other in response to an external stimulus [140]. In each 
phenotype, the highly expressed genes and interactions are found in the in-vitro 
experiments and annotated as a “pathway”. According to KEGG [23], at the time of 
this writing, 543 pathways have been well defined and annotated across all species 
included in the database. Adding species-specific pathways, Reactome [24] reports 
that the number may rise to 999. Extending from pathways, Gene Ontology [22] 
groups and characterizes 44,945 ontology terms, where each ontology term con-
cerns a set of genes that participate in a biological process, are located in the same 
cellular location, and/or share the same molecular profile. Among this large number 
of pathways and ontologies, the most frequently investigated ones often regulate 
cell proliferation, cell apoptosis, and cell differentiation. Understanding the mecha-
nisms regulating these processes helps to explain the progression and infer potential 
treatments for diseases with some of the highest mortality rates: cardiovascular dis-
eases and cancers.

AI can support this research area by answering three basic questions. The first 
question concerns how to identify which pathways are involved in disease progres-
sion. Here, feature selection methods [141, 142] can identify highly differentiated 
genes between healthy controls and subjects with a disease of interest (identified 
genes can be considered as biomarkers). Then, applying pathway analysis tech-
niques [143] to the biomarkers can yield a list of pathways involved in the disease. 
The second question concerns how to identify the “master regulator”, or the “ori-
gin” of the perturbed signaling mechanisms. Here, in highly interconnected genes, 
many perturbed gene signals are just the responses to other genes. The third ques-
tion concerns how to find a therapeutic target: interfering with genes such that the 
genes are targetable and yield the highest reduction in disease progression. These 
three questions can be answered using AI-based system simulations.

Before deep learning, the state-of-the-art approaches in this area focused on rep-
resenting the interactive network among the pathway genes with a mathematical 
equation system, and then solving the system by either logic programming or 
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dynamic differential equations [144, 145]. In logic programming, the interaction 
between two (or more) genes is represented by a combination of logic gates. Since 
the logic gate is finite and deterministic, the simulation is straightforward. A limita-
tion of the logic gate is that it cannot represent feedback loops or two-way gene- 
gene interactions. The feedback loops are critical to maintaining a stable environment 
inside a living subject. For example, in wound healing, after the initial platelets 
respond to the wound, these platelets release adenosine diphosphate (ADP); this 
ADP binds to P2Y1 and P2Y12 genes to activate more platelets; more platelets 
produces more ADP to continue this activation loop until the wound surface is com-
pletely covered and prevents further blood loss [146]. Dynamic differential equa-
tions can overcome this limitation. In principle, the dynamic differential equations 
discretize the system into multiple time points, define the dynamic equation for each 
gene expression at each timepoint, and calculate gene expression over a sequence of 
time points.

Below are some simple examples of how to simulate a 2-gene and a 3-gene sys-
tem using dynamic equations. The system has two proteins (objects), denoted PA 
and PB. These proteins have the initial values S0 = (−1, 0) for PA (strongly inhib-
ited) and PB (normal), correspondingly. PA up-regulates PB while PB down- 
regulates PA in a negative-feedback loop [147], as in Fig. 14.4. These interactions 

can be represented by system matrix M = 
0 1

1 0�
�

�
�

�

�
� . Suppose the discrete dynamic 

equation, which takes both the initial values and the system matrix, is as follows 
(this equation is related to the equation underlying the PageRank algorithm [148]):

Fig. 14.4 The system 
(top) and simulation result 
when M = [0 1;-1 0]
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The following Matlab code shows how to implement this system:

 

The result in Fig. 14.5 shows that over tim e, PA and PB converge to (−0.15, 
−0.13), respectively. This system is closely balanced (S∝ ≈ 0), suggesting that the 
initial inhibition of A can balance the system. Figure 14.4 shows that the system 
results are completely different if we make a slight change to the model parameters 

by setting M = 
0 1

1 0

��

�
�

�

�
� , such that PA downregulates PB, while PB upregulates PA.

Fig. 14.5 The system 
(top) and simulation result 
when M = [0 1;-1 0]
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Table 14.3 Summary of AI tools for inferring and characterizing cellular signaling mechanisms

Tool name & 
reference

Major AI 
algorithm Clustering Classification Simulation

Data type (C, 
P, G)

COPASI [144] Logic gate x G
DCell [149] Deep learning x x G
MWSLE [150] Differential 

equation
x G

With deep learning approaches, signaling interactions can be used to construct 
and train a deep learning architecture. For example, Ma et al. describe a deep learn-
ing approach to simulate cell proliferation, in which the learning architecture is 
organized according to the proliferation-related gene ontology hierarchy instead of 
a conventional convolutional structure [149].

The AI tools described in this section are summarized in Table 14.3.

 Identifying and Characterizing New Cell Types and Subtypes

Single-cell transcriptomics technologies enable measuring genetic information at 
the individual cell resolution [151], which is the “building-block” level of all living 
organisms. Single-cell transcriptomic data also present new questions, and require 
new analytic techniques that are not available in bulk transcriptomics. First, does the 
data present novel cell populations that have not been studied due to the limitations 
of bulk technologies, especially of the stem and progenitor cell types? Second, for 
signaling pathways that function differently in different cells of the same cell type 
and in the same tissue, how might we quantify the signaling activity within each 
cell? AI techniques are essential to answer these questions.

To answer the first question, state-of-the-art single-cell analytic tools [152, 153] 
apply clustering algorithms to partition the entire cell dataset. In each cell cluster, 
genes explicitly expressed in the cluster are queried in the cell-type canonical 
marker literature, such as the CellMarker database [154], to determine which cell 
type the cluster corresponds to. For the clustering step, density-based clustering 
[155] and Louvian clustering [156] are the most popular methods. Also, embedding 
methods, such as tSNE [93] and UMAP [157], are often used to visualize the cell 
clusters. In many single-cell datasets [158–160], small clusters that highly express 
canonical markers from more than one cell type appear. These small clusters need 
careful examination because they could either be technical errors, such as doublets 
[161], or may indeed represent a new cell population.

To answer the second question, the major challenge is the potential for missing 
values in single-cell data, which is called the dropout effect [162]. The best contem-
porary single-cell transcriptomic techniques may achieve 6500 genes per cell [163], 
which only covers 25–30% of the human genome. Consequently, single-cell gene 
expression data often have a high proportion of zero values. Here, a zero can either 
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mean the gene does not express in the cell, or that the gene does express, but the 
sequencing step did not capture this expression. To tackle the dropout effect, single- 
cell pathway analysis may employ machine learning to quantify pathway activity. 
This requires choosing “positive” cells, in which the pathway is known to function, 
and “negative” cells in which it is known not to function or to express at a very low 
level. For example, fetal and adult cardiomyocytes are excellent “positive” and 
“negative” cells for cell cycle signaling pathways. The pathway genes can be used 
as features to build a classifier distinguishing between the “positive” and the “nega-
tive” cells. Here, the “positive” cells should have a high model score and vice versa. 
Then, the model can be applied to analyze the pathway activity in other cells.

The AI tools in this section are summarized in Table 14.4.

 Drug Repurposing

Drug repurposing, briefly, is applying an approved or investigational drug to treat 
a new disease [104]. In principle, drug repurposing can be conducted by calculating 
similarity. If two drugs A and B are highly similar, and A is approved to treat disease 
C, then B may also be used to treat C. Similarly, if two proteins D and E are highly 
similar, and A targets D, then A may also target E. Thus, drug repurposing includes 
many sub-problems for which machine learning techniques can be promising 
solutions.

Generating and mining a drug-drug similarity network. In this problem, each 
drug is represented by a vector. The drug vector represents structural chemical 
information, known drug-protein interactions, and information about the drug’s side 
effect [164]. The drug-drug pairwise similarity matrix, or network, is computed 
from a matrix containing vectors for all the drugs under consideration. Then, 

Table 14.4 Summary of AI tools used for identifying and characterizing new cell types and 
subtypes. C, P and G indicate Clinotypic, Phenotypic and Genotypic data respectively

Tool name & 
reference Major AI algorithm Clustering Classification Simulation

Data 
type (C, 
P, G)

Seurat [152] Canonical analysis, 
regression, Louvian 
clustering

x x G

density-based 
clustering [155]

x G, also 
in P and 
C

Louvian clustering 
[156]

x G, also 
in P and 
C

DoubletFinder 
[161]

Louvian, Support 
vector machine

x x x G
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applying matrix factorization [165–167] results in drug clusters. Here, drugs shar-
ing the same cluster are more likely to be repurposed for each other’s diseases.

Mining target-target a similarity network. Similarly to mining the drug-drug 
similarity network, machine learning techniques can be applied to cluster the target- 
target network [168, 169]. Then, a drug targeting one gene may be repurposed to 
target the other genes in the same cluster.

Mining a bi-partite drug-target network. Here, the drug-drug similarity, target- 
target interaction, and drug-target networks are co-factorized [170, 171].

Model-based simulation. This approach utilizes dynamic modeling, as discussed 
in sect. 14.4.3. The approach requires the following definition. First, the initial dis-
ease condition is represented by a non-zero vector of gene expression values (S0). 
The computational goal is to get S∝ = 0, which represents the non-disease state. 
Second, the treatment is also characterized by a vector u. Usually, u has the same 
dimension as S; and the dimensions in u and S correspond to each other. Third, the 
gene-gene interaction and signaling mechanisms dynamically change the expres-
sion vector, yielding the equation St = F(St-1) or St = F(St-1, u). Then, there are two 
options to score the repurposing candidate. First, all drug treatments can be com-
puted and ranked in the recursive system St = F(St-1) | St = F(St-1, u). Second, apply-
ing the system control approach [172] yields a “hypothetical treatment”, which 
optimally returns S∝ = 0. The hypothetical treatment can be used as a template to 
match with real drug treatments to select the repurposing candidates.

The AI tools discussed in this section are presented in Table 14.5.

 Supporting Clinical Decisions with Bioinformatics Analysis

In genetic diseases caused by a single genetic disorder [174], mutation-analysis 
protocols can be used for diagnosis directly. Meanwhile, in complex diseases, bio-
informatics analysis is used case by case. For example, in work by Kim et al. [36], 
the single-cell transcriptomic analysis, which used AI methods for clustering, 
detected that a JAK-STAT signaling pathway disruption was the cause of severe 
hypersensitivity syndrome/drug reaction in a patient. Therefore, tofacitinib, a JAK- 
STAT inhibitor, was selected and successfully treated the patient, although the drug 
is not indicated to treat hypersensitivity syndrome or drug reactions in general.

Table 14.5 Summary of AI tools in drug repurposing

Tool name & 
reference

Major AI 
algorithm Clustering Classification Simulation

Data type (C, 
P, G)

MRMF [165] Matrix 
factorization

x G, P

PREDICT [173] Logistic 
regression

x G, P

DeCost [172] System control x G, P
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In cancer, the patient-derived xenograft (PDX) [175] platform is another direc-
tion for bioinformatics protocols to support clinical decision-making. Briefly, PDX 
is a technique to host a patient tumor biosample in a mouse. Cancer researchers can 
perform many mouse interventions and observe the mouse clinical outcomes, such 
as survival and speed of tumor growth. Given a sufficiently large amount of PDX 
samples with experimental results, called a PDX catalog, a new patient tumor bio-
sample can be mapped to the PDX catalog. Here, the most closely mapped PDX 
samples’ experimental outcomes can be used to infer the patient’s likely clinical 
outcome under different treatment decisions, and fulfill the role of clinical decision 
support. Due to the heterogeneity of biomedical samples, designing the mapping 
algorithm for this application is a significant challenge that may require advanced 
AI techniques [176].

Predicting side effects is another clinical application where AI-based transla-
tional bioinformatics methods are potentially helpful. In pre-clinical applications, 
similarly to drug repurposing, predicting side-effects relies on mining drug-drug 
similarity [177, 178]. In the clinical setting, the principle involves mining past side 
effects recorded in a patients’ medical records. Thus, the side-effect analysis is 
provider- specific and customized according to the medical record data infrastruc-
ture, such as in the work of Sohn et al. [179]. Here, itemset (drug – side effect) min-
ing and rule-mining are standard AI methods used to predict the drugs’ side effects.

 Predicting Complex Biochemical Structures

After finding the target gene and other genetic causes for a disease, the next corner-
stones in drug discovery are (i) to represent the physical structures of the target 
protein (the protein encoded by the target gene); (ii) to represent the physical struc-
tures of the chemical.

Representing protein physical structure involves reconstructing the 3D arrange-
ment of atoms, or each amino acid, given the sequential order of the amino acids on 
the protein polypeptide chain [180]. The sequential order of the amino acids, also 
called the protein primary structure [177], identifies the protein, is always the first 
step in studying a protein, and can easily be found using today’s protein sequencing 
techniques [181]. Meanwhile, the protein functionalities and its interaction with 
other proteins and chemicals are primarily determined by its higher-level 3D struc-
tures. How to infer the protein 3D structure from the primary structure has been a 
grand challenge for decades [182]. Before deep learning, machine learning tech-
niques were used to solve some protein structure subproblems, such as predicting 
pairwise distances among the amino acids in 3D [179] and predicting the 3D struc-
ture class [183]. The recent deep-learning-based methods can predict the 3D posi-
tion of the protein atoms, which is a more challenging problem. For example, most 
recently, AlphaFold directly predicts the 3D coordinates of all heavy atoms for a 
given protein using the primary amino acid sequence [184]. AlphaFold shows sig-
nificantly superior performance over other methods in the Critical Assessment of 
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Techniques for Protein Structure Prediction 14th Challenge [185], which indicates 
a major breakthrough of AI in solving one of the cornerstones of chemical biology.

Representing chemical structure, also called ligand structure or drug structure, 
is somewhat a reverse-engineering problem compared to representing protein phys-
ical structure. In this problem, given a 3D physical structure, the objective is to find 
the arrangement, or order, of atoms that can create the 3D structure [186]. Here, the 
chemical 3D structure is defined such that the chemical structure can bind to the 
targeted protein 3D structure [187]. This problem is manually solved by chemical 
engineering experts, which often take years to complete [188]. Recently, it has been 
shown that deep learning can significantly accelerate this process. For example, 
GENTRL [189] designed new chemicals binding to DDR1 within just 23  days. 
Here, GENTRL applied deep-learning autoencoder [190], which is a technique to 
synthesize new datapoints from the existing (original) datapoints such that the AI 
classifier could not easily differentiate the synthetic ones from the original ones. 
The GENTRL deep autoencoder was trained on more than 200 million 3D chemical 
structures in the ZINC v.15 database [191]. Then, to find new chemicals binding to 
DDR1, GENTRL took the existing DDR1 inhibitors, which could be found in the 
ChEMBL database [192], as the input, then synthesized ‘similar’ compounds using 
the autoencoder.

 Trends and Outlook

In pre-clinical research, future translational bioinformatics research will likely pivot 
around the current and forthcoming breakthroughs in biotechnology. By the time 
this chapter is published, single-cell -omics, which measure the molecular environ-
ment inside cells, and the patient-derived xenograft, which allows hosting a patient’s 
biosample in living organisms, will be the major platforms for new AI translational 
bioinformatics techniques. Key problems that require new and further technical 
development are:

 – Identifying and characterizing small but novel cell types from single-cell omics 
data. In this problem, stem, progenitor, and high-capacity proliferative cells are 
often the main focus because they are the key to treating the commonly fatal 
diseases: cardiovascular diseases and cancer. In cardiovascular disease, which is 
often due to the cardiac tissue’s low regenerative capacity, the goal is to promote 
cell proliferation [193]. Meanwhile, in cancer, the goal is to restrain the prolif-
erative cells.

 – Characterizing the tissue microenvironment, which significantly contributes to 
the growth and survivability of the tissue. Single-cell data allows observing and 
separating the main tissue cell types, such as neural cells in brain cancers, and 
environmental cell types, such as immune cells and fibroblast cells. Cancer 
immunotherapies [194] are examples of how the microenvironment can impact 
the tissues. Here, key questions concern which molecular and signaling mecha-
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nism the microenvironment can stimulate tissue cell types, and which signaling 
pathways the tissue cells activate in response to the stimulus.

 – Characterizing cell differentiation explains tissue regeneration and tumor recur-
rence. Analyzing time-series single-cell data is the key to approach this problem.

Meanwhile, utilizing deep-learning-based models, especially autoencoders, will be 
the main focus in virtual docking, molecular design, and system biology simulation. 
In this area, the keys to successful AI applications include reducing overfitting, 
enlarging the molecular dataset, and setting up a gold-standard validation 
Scheme [195].

To make a higher impact in clinical applications, AI translational bioinformatics 
still requires substantial effort to build multi-omics, clinome, and phenotype inte-
grative data infrastructure. In this aspect, the All of Us research program [196] is a 
pioneering project. While preparing for these infrastructures to emerge, AI research-
ers can solve smaller-scale research problems, such as predicting patients’ risk from 
clinome data, and linking omics and clinome data via text mining. Also, as shown 
in the work of Jensen et al. [27], AI can already play a significant role in clinical 
decision support under clinical experts’ guidance in specific cases.

Questions for Discussion

• What are three types of translational bioinformatics data?
• Clinotype-genotype association has not been well-explored in translational bio-

informatics. Sketch a research strategy to mine this type of association using 
Natural Language Processing (NLP - Chap. 7),

Hint: find a catalog of clinotype terms; apply NLP tools using the Pubmed 
collection of abstracts.

• In the  section on  “Clustering Algorithms”, matrix factorization, derive the 

formula for
 

∂
∂
F

Q  
using the method in Eqs. (14.2)–(14.6).

• The section on “Inferring and Characterizing Cellular Signaling Mechanism that 
Determines the Cellular Response” shows that when the system has negative 
feedback, the signal oscillates. This is a well-known phenomenon in system biol-
ogy modeling. Show that phenomenon again in the following system 

M = 
��

�
�

�

�
�

1 1

0 0
, St = 0.15 × S0 + 0.85 × MTSt − 1, S0 = (−1, 0). Draw the system 

diagram and PA, PB signals as in Figs. 14.3 and 14.4. How about with S0 = (1, 0)?
• In the section on “Supporting Clinical Decision with Bioinformatics Analysis”, 

mapping new patients’ tumor expression (NPT) data to existing patients’ tumor 
(EPT) expression data may help predicting clinical outcomes. Two data process-
ing methods are proposed to map the NPT to EPT. One way to select the better 
method is to plot the combined NPT-EPT embedding after processing the data. 
Recall, embedding preserves the pairwise similarity from the original data space 
in the embedded space. The embedding visualization is in Fig.  14.6 (below). 
Which processing method is better, and why?
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Fig. 14.6 (for question 3). NPT-RPT-combined embedding visualization with two data processing 
methods. (a) Method 1. (b) Method 2

Further Reading

Russell, S., & Norvig, P. (2009). Artificial intelligence: a modern approach, 3rd 
edition. Prentice Hall, ISBN 0-13-604,259-7. 

• This book comprehensively covers AI theories, principles, algorithms, and tech-
niques. This is considered a leading AI textbook. The student may find and read 
the 2nd edition as well.

Wei, D. Q., Ma, Y., Cho, W. C., Xu, Q., & Zhou, F. (Eds.). (2017). Translational 
Bioinformatics and Its Application. Springer. 

• This is the most up-to-date and comprehensive textbook about translational 
bioinformatics.

Tenenbaum, J. D. (2016). Translational bioinformatics: past, present, and future. 
Genomics, proteomics & bioinformatics, 14(1), 31–41. 

• This review summarizes the most prominent roles of translational bioinformat-
ics, and provides a perspective of how the field may further improve health care.

Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., ... & Robles, 
V. (2006). Machine learning in bioinformatics. Briefings in bioinformatics, 7(1), 
86–112. 

• This review describes the most popular AI algorithms in bioinformatics at the 
turn of the century.

Ciaburro, G. (2017). MATLAB for machine learning. Packt Publishing Ltd. 

• Licensing cost notwithstanding (Matlab is a commercial product), Matlab is 
without a doubt one of the most learner-friendly and easy-to-learn platform to 
learn, practice, and implement AI in many fields.
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Lantz, B. (2013). Machine learning with R. Packt publishing ltd. 

• For open-source programming, R is a good platform to practice AI. Compared to 
Matlab, it provides a trade-off between convenience and programming speed and 
cost. Many translational bioinformatics algorithms have publicly available R 
implementation.

Raschka, S. (2015). Python machine learning. Packt publishing ltd. 

• For open- source programming, Python is a good platform to practice AI, and 
provides ready integration with a range of powerful publicly available machine 
learning libraries.
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Chapter 15
Health Systems Management

Adam B. Wilcox and Bethene D. Britt

After reading this chapter, you should know the answers to these questions:
• How has artificial intelligence (AI) been used in health systems management? 

What are the primary areas where it has been applied? What have been the ben-
efits of AI for health systems?

• What factors should be considered when applying AI algorithms for health sys-
tems management? How can the choice of data affect their use?

• What are the challenges in matching the cognitive tasks of interpreting data with 
the capabilities of AI algorithms? How can the modeling of data and the framing 
of the decision task affect the ability to discover insights, either through human 
cognition or AI application?

• How can governance be applied effectively in the adoption and application of AI 
algorithms?

 Promise of AI in Health Systems

Health care is both complex and information-intensive. Multiple disciplines are 
combined to care for patients, with each having a specific role with specific infor-
mation needed to support that role. Coordination across roles also involves active 
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use of information, for assessment, interpretation, comparison and communication. 
Care must be coordinated both for the individual patient but also for the healthcare 
delivery system, which increases the complexity substantially as it must consider 
the interaction of multiple individual patients. This complexity is reflected in vari-
ous tasks where healthcare professionals must coordinate multiple sources of infor-
mation and make decisions or predictions based on this information. For example, 
a nurse manager needs to consider the expected complexity of cases and patient 
volume for a unit when determining how many nurses need to be scheduled for a 
shift. Managers of operating rooms also need to make estimations of case complex-
ity and time when considering scheduling for surgery to optimize resources. Clinics 
may over-schedule appointments based on a predicted or estimated no-show rate to 
optimize the total number of patients seen. These are all examples of prediction 
activities in the management of health systems that may benefit from the use of AI 
methods to quickly organize and interpret information, and are in addition to how 
AI can be used to make interpretations for recommended care with an individual 
patient.

There have been specific examples of successful adoption of various methods 
of AI for health systems management, ranging from resource allocation, demand 
and use prediction, and scheduling optimization. A review of clinical literature 
identifies the following published examples, which are representative of many 
more unpublished experiences of others in applying AI for health systems 
management:

• Aktas et al. reported on the development of a decision support system to improve 
resource allocation to be applied in a radiology department [1]. Using a Bayesian 
belief network to represent conditional dependencies, they were able to analyze 
the relationships of key variables affecting system efficiency for resource 
allocation.

• Gartner and Padman developed a Naive Bayes classifier to assist in early diag-
nosis group determination that can improve resource allocation decisions [2].

• Dennis et al. demonstrated that artificial neural networks were effective at pre-
dicting trauma volume and acuity within emergency departments, based on 
seasonality- related measures such as time of year, day of week, temperature and 
precipitation levels [3]. These results were consistent with heuristics related to 
trauma prediction, but were more precise in predicting “trauma seasons” across 
multiple centers.

• Lee et al. used information collected from electronic health records for emer-
gency department patients to predict disposition decisions with logistic regres-
sion and machine learning algorithms [4]. These predictions can be used to 
reduce boarding delays by prompting the initiation of admission processes 
where needed.

• McCoy et al. demonstrated that time-series machine learning methods could be 
applied to date, census and discharge data to predict daily discharge volumes [5]. 
Prediction errors outside 1 standard deviation occurred only about 5% of days, 
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indicating the AI methods could help in predicting volumes and matching 
resources to volumes.

• Vermeulen et al. developed adaptive rules for scheduling computer tomography 
scanning that adjusts to multiple patient and system features [6]. These rules 
showed an ability to better adjust to variations in volume according to different 
resource levels.

• Kontio et al. used machine learning algorithms to predict patient acuity levels 
that could support resource allocation [7]. They extracted information directly 
from demographic data, admission information, and concepts from radiology 
and pathology notes from previous days to classify patients with heart problems 
in five different acuity categories for the current day.

In some areas of health systems management, enough examples have been pub-
lished to perform systematic reviews to identify both the breadth and patterns of 
success:

• Bellini et al. performed a systematic review of AI applications in operating room 
optimization [8]. They identified successful studies in predicting procedure dura-
tion; in coordinating post-acute care unit availability; and in cancellation predic-
tion. All of these areas can improve surgery scheduling efficiency.

However, with all of these examples and studies, widespread, consistent and suc-
cessful adoption of AI in health systems management remains elusive. A review of 
different risk prediction models performed by Wehbe et al. noted their modest per-
formance, infrequent use, lack of evidence for improvement and barriers to imple-
mentation. They recommended that improved approaches to machine learning 
adoption be determined to overcome performance barriers and allow local custom-
ization of rules, which are a recognized challenge [9].

Understanding the cognitive aspects of applied AI in health systems manage-
ment may provide a path forward for more successful adoption. There are numerous 
examples demonstrating that successful use of AI for improvement in these areas is 
possible; the challenge now is to identify the features that are prerequisites for suc-
cess, and to demonstrate that the success can be reproduced.

One way to achieve this goal is to improve the understanding of the actual pro-
cess of AI application in health systems management. Effective application of infor-
mation in health systems practice is complex, giving rise to a whole field of clinical 
and health informatics focused on improving the use of information in the area. As 
that field moved from demonstration of success to broader adoption, a deeper under-
standing of the interrelationships among information sources, technology, and 
human users has demanded different methods focused on deeper understanding of 
interactions [10, 11]. These lessons from clinical informatics, and specifically in 
decision support (which arguably includes the application of AI to health systems 
management), become increasingly important. The balance of this chapter therefore 
focuses on providing that deeper understanding through a description of two appli-
cations of information to health systems management. We also include a discussion 
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of governance approaches that can be used to ensure guided application of AI capa-
bilities; this also matches the pattern of recommendations for adoption for clinical 
decision support by Wright et al. [12].

The first example relates to predicting no-shows for outpatient scheduling, with 
qualitative insights gathered from discussions with one of the authors who was a 
developer of the system. The second example relates to an analysis of testing 
approaches for monitoring devices and outcomes in heart failure patients.

 Example: Outpatient Scheduling

The first example relates to an algorithm developed for predicting whether patients 
would arrive at clinics for scheduled appointments, in order to help staff appropri-
ately schedule other patients to improve operational efficiency. This work was done 
at Massachusetts General Hospital in Boston, as described by Patrick Cronin who 
was working on process improvement with the Department of Medical Dermatology 
[13]. A critical management issue for the department was a patient rate for missed 
appointments that had reached 20%, which is significant and in line with general 
estimates nationally [14]. This meant that in a daily schedule that may include 100 
appointments, 20 of those patients would not arrive as scheduled. The patients 
would either not arrive for the appointment (~12% “no-show” rate), or would cancel 
the appointment on the same day (same-day cancellation). This created important 
problems for the division because each no-show represented a point in the schedule 
with only costs but no revenue. While some same-day cancellation appointments 
could be filled with same-day appointment scheduling, the no-show appointments 
were unanticipated and therefore could not be refilled with other patients at the 
last minute.

Institutions have tried various methods to address the challenge of missed 
appointments and no-shows. One approach has been to remind patients of their 
appointment at least a day in advance, which can both prompt patients to attend or 
identify cancellations in advance. However, this approach generally requires addi-
tional staff to implement by contacting each patient beforehand, and studies have 
been mixed in showing differences due to reminders [14]. Another approach is to 
schedule additional overlapping appointments in the place of no-show appoint-
ments if they can be anticipated. This has obvious challenges if the prediction is 
wrong, however. If the patient does show up for the appointment, the clinic staff 
would then need to adapt the schedule for the rest of the day or until another gap in 
the schedule occurs to fit in the extra patient.

The approach applied in this example (“Smart Booking”) was to create a predic-
tion algorithm to predict patients who were most likely to miss appointments, and 
allow schedulers to create overlapping appointments for that day to fill the schedule. 
The prediction first involved identifying factors that may be related to no-shows and 
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were available as data for predictions. These could be based on factors about the 
patient (e.g., age; insurance type) or the appointment itself (appointment type; days 
between appointment scheduling and appointment). Also available from the longi-
tudinal database was a 15-year history of appointment scheduling data. This allowed 
a patient’s history of no-shows and arrivals also to be included in the prediction 
model, and these variables were shown to be the most significant predictors.

The result was a Smart Booking algorithm that provided a daily recommendation 
for available overbookings to schedulers that were used to increase appointment 
bookings. It was initially implemented as a randomized controlled trial (randomized 
by clinic session) that measured both the number of arrived patients per clinic ses-
sion and the perception by physicians of how busy the clinical session was (mea-
sured by a simple scale between “too slow” and “too busy”). The results were that 
the Smart Booking algorithm increased the number of patients booked for appoint-
ments by an average of 0.5 arrived patients per session, with physician perception 
of busyness being similar between the sessions with Smart Booking (and thus more 
patients) and without.

The success of this project led to other related AI-enabled interventions that var-
ied in approach, clinical domain, outcome measures, and prediction goal. These 
included targeted reminder phone calls or patient navigation to decrease no-shows 
in other clinical departments [15–17], as well as prediction rule development for 
hospital readmissions [18, 19].

Discussions with the author of the main study have offered important lessons 
learned and insights that are important in understanding the overall reproducibility 
and sustainability of the approach. First, the data were seen as far more important 
than the algorithm that was used. That is, there was a greater impact in using the 
prior history of visits and the appointment types than in using more complicated 
algorithms like neural networks instead of logistic regression. The simplest algo-
rithm performed similarly to more complicated AI algorithms, and had the benefit 
of being explainable to the clinic staff who interacted with the intervention (see 
Chap. 8). The actual implementation was more simple than robust, with the main 
algorithm running on a single desktop computer of the developer, at least for the 
studied version of the implementation. This was in part possible due to an internal 
development approach leveraging the electronic health record (EHR) at the institu-
tion at the time, which allowed for a more flexible but less sustainable approach. 
With the later implementation of a commercial EHR at the institution, the devel-
oped algorithm was removed. The commercial EHR provides its own predictive 
models that could be applied, but there have been challenges in the product’s imple-
mentation and outcomes when studied [20]. In this study, the customized compo-
nents of the AI implementation (choice of predictor data, flexibility in 
implementation) were critical to success, but this approach made it difficult to both 
replicate and sustain. This suggests an important factor explaining why consistent 
and successful adoption of AI in health systems management is challenging, because 
the maintenance effort to keep AI effective is often expensive.
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 Example: Device Monitoring

The second example is not an actual application of AI in health systems manage-
ment, but rather a deep analysis of data related to outcomes for a high-risk patient 
population. However, the understanding of how these data were analyzed is impor-
tant to recognize how data and cognitive aspects of data and information must be 
appropriately considered in applications of AI. This analysis was performed by one 
of the authors (AW) and Dr. Claudius Mahr at the University of Washington Medical 
Center in Seattle, WA.

In this example, a discordance in laboratory tests for monitoring intravenous 
unfractionated heparin (IV-UFH) was identified by clinicians performing a qual-
ity improvement review of a series of cases with negative outcomes [21, 22]. The 
laboratory tests were measuring activated partial thromboplastin time (PTT) and 
anti-factor Xa (anti-Xa), both of which by measuring IV-UFH can help guide anti-
coagulation therapy to prevent bleeding and clotting complications. This is critical 
for patients who have received mechanical circulatory support, such as left- 
ventricular assist device (LVAD) implantation.

For individuals with end stage heart failure, assistive technologies are needed to 
improve cardiac function. A common device used is a left ventricular assist device 
(LVAD), which is a battery-operated mechanical pump that is surgically placed in 
the heart, in the left ventricle or main pumping chamber. The LVAD helps the left 
ventricle pump blood to the rest of the body. It is often used either temporarily until 
a patient receives a heart transplant, or as a long-term treatment for heart failure.

Because the device is surgically implanted in the circulatory system, it can lead 
to clotting of the blood which can then lead to severe outcomes such as strokes or 
myocardial infarctions when the blood clot moves into arteries and restricts blood 
flow to vital organs. To prevent this, patients are given medicine such as heparin, 
which helps prevent the blood from clotting. However, too much heparin can lead to 
other complications such as internal bleeding. As a result, it is important to balance 
the heparin dosing and amount of heparin in the blood at a level where both clots 
and internal bleeding are avoided. Maintaining this balance is challenging, and 
involves regular laboratory measures.

A study at one institution of 200 patients over 8 years with end stage heart failure 
who had received LVADs showed the challenges in managing treatment [23]. The 
survival rate for all patients was below 50% after 4  years, indicating the severe 
health problems of those receiving the treatment. The most common cause of death 
was stroke, with 32% of deaths. Three of the five most common adverse events were 
internal bleeding, stroke, and re-exploration for bleeding. This indicates the impor-
tance of managing clotting and bleeding among LVAD patients, as the most com-
mon causes of death and adverse events were related to it.

PTT is a laboratory test of blood that measures the time it takes for a blood clot 
to form. A common therapeutic range for PTT is 60–100 s for clotting. Anti-Xa is a 
test that measures the amount of heparin in the blood by measuring its inhibition of 
factor Xa activity, which is part of the clotting process. A common therapeutic range 
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for anti-Xa is 0.3–0.7 IU/mL. Historically, PTT has been the more common test for 
clotting risk, but anti-Xa has become used increasingly. It is expected that PTT and 
anti-Xa would be concordant, or that when one shows a high clotting risk by a value 
above the therapeutic range, the other would as well. However, this is not always the 
case, and when there is a difference in measure it is important to know clinically 
which to respond to [21].

In a review of a series of patients with complications after LVAD implantation, 
clinicians at UW were concerned that this lack of concordance between PTT and 
anti-Xa could be important in patient management, and wanted an analysis of test 
values along with bleeding events among patients over a period of time. Over 6500 
paired PTT and anti-Xa measures were identified among a patient population, and 
matched to bleeding events that occurred. Initially we looked at concordance mea-
sures directly as a matrix, within and above the therapeutic range for each test 
(Fig. 15.1). We also plotted the individual tests in a scatter plot to identify broader 
trends (Fig. 15.2).

To identify whether either PTT or anti-Xa were able to separate the bleeding and 
non-bleeding population, we plotted frequency curves for each of the measures, but 

Fig. 15.1 Concordance matrix for PTT and anti-Xa measures. The blue central percentage listed 
in each cell gives the percent of all tests in the matrix in that cell. For example, the bottom left cell 
indicates that 10% of all paired measures had both an Anti Xa value of <0.3 and PTT values of 0.6. 
The upper left number in each cell represents the total tests in the cell, with the non-bleed count in 
the upper right, and the bleed count and rate at the bottom. If the tests were concordant, you would 
expect to see most of the test in the lower left, middle, or upper right cells, indicating the tests are 
low, within range, or high at the same time. In this matrix, however, the largest number of tests in 
the middle right cell indicates a discordance with anti-Xa in the therapeutic range (0.3–0.7 IU/mL) 
and PTT values above the therapeutic range (>100 s)
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Fig. 15.2 Discordance scatter plot, which shows overall trends of PTT values being skewed above 
the therapeutic range, and anti-Xa values skewing below the therapeutic range. Lab tests for PTT 
values above 200 s had values of “>200” and were plotted as 201; anti-Xa values less than 0.1 IU/
mL had values of “<0.1” and were plotted as 0.09
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Fig. 15.3 PTT value frequency. There was no clear difference among the frequency curves that 
would show PTT as discriminating between bleeding risks

these showed nothing significant (Figs. 15.3 and 15.4). We also plotted PTT and 
anti-Xa values identifying bleeding events and calculated regression lines between 
the two populations (Fig. 15.5); while this showed a measurable difference, it was 
not convincing enough to warrant a different approach in monitoring.
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Fig. 15.4 Anti-Xa value frequency. Similar to PTT values, there was no clear discriminating dif-
ference for bleeding risks among anti-Xa values
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Fig. 15.5 Scatter plot with regression lines for bleeding and non-bleeding events among PTT and 
anti-Xa measures. The regression lines showed a measurable but unconvincing difference

Finally, we modeled the values in terms of how they would be used in clinical 
decision-making, rather than individually as values. That is, a PTT or anti-Xa result 
is used in making a decision to adjust therapy when it is above a threshold value that 
indicates a bleeding risk and need for the adjustment. To model this, we considered 
each value along the range of values the measure as a potential threshold point, and 
calculated the bleed rate as the proportion of bleeding events for measures at or 
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Fig. 15.6 Bleed rates calculated at varying threshold values. This approach modeled the clinical 
decisions by calculating the bleed rate above a threshold value, and then computing this rate for 
each PTT and anti-Xa value. The PTT threshold values were not helpful in discriminating bleed 
risks, while the anti-Xa values showed a differentiation as the values moved from the therapeutic 
range to high. At the highest values, there were fewer and fewer events to calculate the bleeding 
rate, and the rates became more variable

above that value. Modeling this threshold determination rate showed effectively 
how the measures would perform at different threshold value choices. As shown in 
Fig. 15.6, there was clear separation in the performance of anti-Xa in comparison to 
PTT for predicting bleeding as the threshold moved from the higher therapeutic 
range to the high ranges (around 0.7 for anti-Xa and 100 for PTT). Identifying this 
difference was important for determining the clinical approach in using anti-Xa for 
monitoring bleeding risk rather than PTT at the institution.

While this example did not directly use AI in creating a model, it is instructive 
regarding the challenges of using AI models for three primary reasons. First, there 
was a clear difference in the two tests and how they could be used clinically, but this 
wasn’t apparent from many of the standard comparison approaches that are often 
used to evaluate AI algorithms. Rule-based approaches would be similar to a con-
cordance matrix in their calculation approach, and regression or statistical models 
would be similar to the frequency distributions or regression lines. It took careful 
consideration of the clinical decision-making process to identify the trend. This 
could be identified by AI algorithms but likely only if the variable of the threshold 
bleed rate were determined a priori.
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The second challenge relates to the actual data. These data were in many ways 
simpler than data that may often be used in EHR mining, in that they were numeric 
laboratory values. However, it took expert understanding to realize that the non- 
numeric values in the database of “>200” for PTT and “<0.1” for anti-Xa should be 
included. We did not perform a separate analysis that excluded these values, so we 
cannot for certain say that they needed to be included, but they contained meaning 
as if they were numeric values, specifically that they were above or below the thera-
peutic range. If nothing else, decision rules that may use the numeric values should 
be able to interpret how the non-numeric comparatives should be applied in the rules.

The third challenge is more subtle but also more important. This relates to how 
the analytic solution was reached. In the end, the analysis did not reveal something 
as a new hypothesis, that there was a difference in the PTT and anti-Xa values that 
could be important for predicting bleeding. The data analysis only verified a pattern 
that had been seen when experts reviewed data from a series of cases with adverse 
events. The pattern identification from experts was much more efficient than the 
complicated data analysis that verified the pattern. The verification was important, 
but the initial hypothesis drawn from a smaller set of examples was more important 
in identifying the hypothesis in the first place. Often such hypotheses are developed 
after observing a trend in the data that seems to indicate a significant issue. For 
example, if the adverse event rate was near 50% (high but not extreme for LVADs), 
the probability of seeing 8 patients with adverse events in a row would be 1/256 
(2−8), or <0.4%. This is similar to having 8 coin flips all end up “heads”, which is 
remarkable. However, when considered among many events as a run of 8, the prob-
ability is much higher. In terms of coin flips, a run of 8 heads in a row among 200 
coin flips is not nearly as rare, with a not-so-remarkable 32% probability of occur-
ring at least once. This suggests that similar random sequences that appear rare may 
lead experts to perform a deeper analysis of an issue in a way that identifies underly-
ing patterns that were not seen before. In comparing cognitive capabilities of human 
beings to AI methods, people may be better at identifying patterns in complex data, 
and worse at interpreting sequences that occur amid data reflecting random variation.

These two examples highlight important challenges when using AI in health sys-
tems management, which may be indicated by the challenges of demonstrating con-
sistent and successful adoption of AI approaches. The second example demonstrates 
how the underlying data or hypothesis development can be challenging for AI 
development. The first example demonstrates how even when successfully imple-
mented, AI solutions can require significant additional management and monitoring 
to be sustained. Other examples in AI show similar challenges [24]. Often the focus 
on AI is about algorithm performance, which is understandable since the algorithm 
is what makes it work. However, once the algorithms have been demonstrated as 
correct in output (which many algorithms in health systems management have), the 
primary challenge becomes implementation and sustainable maintenance. As a 
result, governance of resources to manage AI should be a major focus. This migra-
tion of focus from performance to governance is similar for rule-based clinical deci-
sion support (CDS) as mentioned above. Governance is critical for managing AI 
solutions in health systems.
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 Governance

Implementing AI in health systems requires practical interaction with the many sys-
tems necessary to get any technology in production. There are three main areas of 
governance that intersect in order to manage an AI model effectively: Corporate 
Governance, IT Governance and Data Governance.

• Corporate Governance provides the overall clinical and operational strategy and 
ethical framework for implementing AI models.

• IT Governance provides for the prioritization of technology investments, includ-
ing the work necessary for predictive models, as well as for clinical or opera-
tional ownership and stewardship of the models.

• Data Governance provides governance over the underlying data that is critical 
for the initial development and ongoing management of the predictive models.

All three areas are necessary and must be integrated in order for AI models to be 
successfully able to meet the overall intended goals of the health system. (NOTE: 
Both IT and Data Governance are considered to be elements of Corporate 
Governance. We’ll discuss each in turn below.)

Corporate Governance In our current environment, it is crucial that organizations 
develop and communicate a point of view regarding the ethical use of AI models. 
Fortunately, health care has a lot of experience with ethical risk management, and 
the Harvard Business Review offered up this long history as a model for other 
industries as they consider the application of AI models.

Leaders should take inspiration from health care, an industry that has been systematically 
focused on ethical risk mitigation since at least the 1970s. Key concerns about what consti-
tutes privacy, self-determination, and informed consent, for example, have been explored 
deeply by medical ethicists, health care practitioners, regulators, and lawyers [25].

The opportunity here is to take advantage of (hopefully) existing corporate struc-
tures and committees within a health system that are already engaged with ethical 
decision-making, and to ensure that AI models are brought under this same gover-
nance. These structures need to weigh in and provide overall direction and guard-
rails that the other two areas of governance can follow. For example, clinical 
committees that already consider decision support systems, including ways to mini-
mize alert fatigue, should be engaged in discussions about clinical AI models. 
Similarly, committees currently addressing issues of access to care and equity 
should be engaged in discussions and provide direction on how to evaluate models 
for bias.

IT Governance IT Governance is a framework for making decisions about what 
technology investments will be made, how those technologies will be managed, and 
ultimately to ensure the delivery of value to the organization. AI models should be 
brought under IT governance and control and identified key stakeholders should be 
able to establish conditions for the ethical and appropriate use of models that meet 
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the Corporate Governance directives. At the same time, health systems are being 
pressured to be agile from innovators and researchers who are discovering new 
opportunities to improve patient care and delivery.

Organizations like Mayo Clinic (“Mayo”) and UW Medicine (“UWM”) have 
been working on governance models for AI. Mayo Clinic recently shared their gov-
ernance model that includes integrating the EHR AI governance with an existing 
Clinical Decision Support Subcommittee. They described the role of this committee 
as overseeing the overall implementation and priorities, but specify that “Specialty 
Practice Committee approval needed for both phases and will be governing body for 
ongoing use/maintenance.” The development phases are described below:

Phase I:
• Configure model, migrate and activate in production
• Run in background several months to localize/train
• Validate to check performance against expected results

Phase II:
• Operationalize by building tools (e.g., BPAs, dashboards)
• Develop workflows, communicate and train practice
• Maintain, annually evaluate performance and relevance

This approach has many parallels with the governance model developed at UW 
Medicine. A new subcommittee was formed with clinical and technical member-
ship, named the Predictive Analytics Oversight Committee. This committee is inte-
grated into the IT Governance committee structure, but is responsible for oversight 
of the overall AI implementation process and strategy. Each model has a require-
ment that it be “clinically/operationally led and managed,” and the appropriate com-
mittee and leadership must be engaged as sponsors. The phases for the work have a 
similar path, outlined below (Fig. 15.7):

Identify new
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Identify and
validate model

data

Confirm
intervention(s)

Enterprise PM
project implemented

and reviewed

Complete enterprise
PM review form

PM moved to
operations
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implemented and

reviewed

Complete enterprise
PM project form

Confirm clinical/
operational partners

Complete proposed
PM intake form

Proposed PM
approved
(Gate 1)

Enterprise
PM

approved
(Gate 3)

Pilot PM
approved
(Gate 2)

Operational
PM

approved
(Gate 4)

Ideation phase

Validation phase Pilot phase

Implementation phase Operational phase

Fig. 15.7 Predictive analytics review phases. This pathway was created to assist governance of an 
organization’s predictive analytics implementation products. PM predictive model
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Models are independently evaluated at multiple steps in this process, including 
specific evaluations for patient outcomes, bias and impact to provider experience. 
Given the limited resources to implement models, the evaluation also factors into 
prioritization and schedules for implementing a specific model. Similar to the Mayo 
approach, the Operational Phase requires ongoing regular evaluation of the models 
to confirm the model is still relevant and performant.

Data Governance Most current AI approaches have been around for decades but it 
took large datasets and fast processors for them to find the levels of adoption seen 
recently (see Chap. 2). An early tenet of predictive analytics was that large data sets 
could overcome issues with data quality, but there are recent examples where that 
has been disproven [20]. AI models need high quality and timely data, and health-
care data requires appropriate data security. Healthcare data suffers from many data 
quality, currency and security issues:

• data collection by EHR’s has been focused on the data necessary for billing 
purposes

• data are mostly collected and captured from busy human beings under stress
• much of the truly valuable data is captured in unstructured notes and resistant to 

easy feature engineering
• healthcare systems are still investing in the level of automated data entry and 

integration that other industries take for granted
• many organizations have defaulted to data silos in order to address data security 

requirements

The Data Management Book of Knowledge (DMBOK) describes Data 
Governance as “the exercise of authority and control over the management of data 
assets” [26]. A successful predictive model program in health care is dependent on 
maturing data governance and management to ensure optimal quality data, that is 
available to the right audience, with the appropriate performance and security 
controls.

Data pipelines will need to be architected, developed and managed in order to 
meet the timing needs of AI models. Critical data used by predictive models needs 
to be identified and real time data quality controls and alerts may be needed to 
monitor and manage these data over time. This monitoring can serve as an early 
warning that a predictive model’s performance will degrade. Finally, the develop-
ment of predictive models can be scaled and accelerated with the widespread 
adoption of meta-data management technologies, such as data dictionaries, data 
lineage, report catalogs, data quality dashboards, etc. This self-service infrastruc-
ture for using data assets enables a much larger range of users to identify and 
leverage data to develop new AI models in their own domain areas. The develop-
ment of citizen data scientists is a significant enablement function that can have 
a high reward.

Operations and Maintenance As stated above, the final step in the AI implemen-
tation process is a formal transition to an operational state. The step prior to mov-
ing a model to an operational state calls for a final evaluation of the model, and 
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the completion of an operational intake form. This step collects information about 
the dependent data fields, the clinical/operational owners, an agreed upon cadence 
for regularly reviewing and updating the model, and ensures that the model and its 
descriptive information is added to a published portfolio. The dependent data 
fields are identified as critical fields within the data governance process so that 
they can be specifically reviewed for changes, and the impact of broader changes 
that affect data can be appropriately managed in the affected models.

While the application of governance to AI in health systems management is com-
plex due to the complexity of the algorithms and the data, much of the governance 
is similar to clinical decision support governance, which has been more established. 
Wright et al. reviewed governance structures across multiple institutions in manag-
ing clinical decision support applications [12]. They identified six recommended 
practices for CDS governance, which while named differently, map closely to the 
governance stages described here. These practices include considering and monitor-
ing impact, assessing changes, and ongoing monitoring. Due to the deep data depen-
dency of AI models, the monitoring must extend more deeply into the data rather 
than just changes to the rules as recommended for CDS, but otherwise the practices 
are similar.

 Concluding Remarks

In this chapter, we have discussed the use of AI or predictive analytics in health 
systems management. We identified studies showing that they can be successfully 
implemented, but contrasted that with reviews that showed challenges in broader 
adoption. To elucidate these challenges, we gave two detailed examples that 
explained the challenges both in terms of understanding data complexity and imple-
mentation. We have argued the importance of governance due to these challenges, 
and documented a verified governance approach for implementing and maintaining 
AI applications. Our primary conclusion is that successful use of intelligent systems 
in health systems management has been demonstrated and is possible, but it requires 
appropriate management of its use. As institutions were applying clinical decision 
support applications that had been demonstrated at individual organizations, 
Kawamoto et al. studied factors related to the success of CDS implementations [27]. 
They found that factors related to implementation were significant in determining 
whether they were successful or not. As demonstrated by these examples and gov-
ernance recommendations, the success factors are similar; it is less about what is 
being implemented, and more about how it is applied.

Questions for Discussion

• What is an example of an application of AI in health systems management? What 
is the beneficial effect of that application on the health system?

• How are the terms “artificial intelligence” and “predictive analytics” similar? 
What are some differences in meaning between them?
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• What are some of the challenges that may be faced when implementing a predic-
tive analytics solution for resource management in a health system? How might 
these challenges be different from implementing a standard rule-based clinical 
decision support application?

• What are the different phases of governance for AI implementation? For each 
phase, what might be the consequences if the phase is not used correctly?

Further Reading

Wehbe RM, Khan SS, Shah SJ, Ahmad FS. Predicting high-risk patients and high- 
risk outcomes in heart failure. Heart Fail Clin. 2020;16(4):387–407.

• This paper reviews different applications of AI to health systems management 
and identifies some of the challenges. These challenges are important to be 
addressed by governance.

Bellini V, Guzzon M, Bigliardi B, Mordonini M, Filippelli S, Bignami E. Artificial 
Intelligence: a new tool in operating room management. Role of machine learning 
models in operating room optimization. J Med Syst. 2019;44(1):20.

• This paper reviews different applications of AI in operating room optimization, 
which is a common area for AI application in health systems management. The 
review covers various areas of the operating room workflow where AI has been 
applied.

Wright A, Sittig DF, Ash JS, Bates DW, Feblowitz J, Fraser G, Maviglia SM, 
McMullen C, Nichol WP, Pang JE, Starmer J, Middleton B. Governance for clinical 
decision support: case studies and recommended practices from leading institutions. 
J Am Med Inform Assoc. 2011;18(2):187–94.

• This review of decision support implementations gives specific recommenda-
tions for governance, which are similar to the governance recommendations here.

Blackman R. A Practical guide to building ethical AI. Harv Bus Rev. 2020; https://
hbr.org/2020/10/a- practical- guide- to- building- ethical- ai.

• This article describes steps that companies, including those in healthcare, can 
take to ensure AI is implemented in a way that addresses ethical risks of using AI.
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Chapter 16
Intelligent Systems in Learning 
and Education

Vimla L. Patel and Parvati Dev

After reading this chapter, you should know the answers to these questions:
• How has intelligent system-based medical education evolved from the days of 

Sir William Osler?
• What kinds of intelligent educational tools currently exist to support health pro-

fessionals’ education and training?
• What is the nature of mapping between learning with intelligent system tools and 

applying this learning in clinical practice?
• What are some of the challenges of using artificial intelligence tools for health 

professional education as we move to the future?

 Introduction

Artificial Intelligence (AI) use is increasing rapidly in all fields, and it will have a 
significant impact on the way the doctors’practice medicine. However, the training 
that students and medical residents receive, about the importance of AI for their 
clinical practices, is woefully inadequate [1]. At the same time, the potential of 
using AI in the learning process has also not been completely realized in healthcare. 
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AI-based systems, such as intelligent tutoring systems [ITS], can change mass edu-
cation to personalized education, helping each learner to proceed at his/her own 
pace, with a curriculum that is dynamically sequenced to achieve the individual 
learning goals.

The amount of medical knowledge has long exceeded the organizing capability 
of the human brain. Yet the curricula remain information-based, prioritizing memo-
rization over reasoning and managing information. The underlying assumption is 
that physicians should be the major source of medical information. However, this 
assumption is untenable given the vast, publicly available, online sources of medical 
information. For example, AI-based personalized medicine will require the new 
practicing physician to be able to understand the basis of this personalization and to 
explain this, along with the resulting treatment options, to their patients. 
Consequently, the skills taught to a new generation of physicians must move from 
remembering or acquiring information to collaborating with AI applications that 
gather data from multiple sensors, search vast quantities of information, generate 
diagnoses, suggest treatments, and offer confidence ratings for their suggestions [2, 
3] (Chap. 19). These abilities must also be complemented by the development of 
physicians’ higher-order judgment and decision-making skills to evaluate the qual-
ity of information generated to be useful in clinical practice. In this context, in the 
best of two worlds, physicians learn new ways to work in their practices, and AI 
systems gain from a better understanding of human context.

This chapter will examine how medical education systems have evolved over 
time, and their potential to incorporate AI-based systems for the learner, the teacher, 
and the education enterprise. The chapter will review the status of intelligent learn-
ing tools in medical education and examine to what extent and within what limits 
such learning systems map to real world practices. Finally, the chapter will take a 
longer view and will look at the future profiles of physicians’ practices in 10 years, 
given  the recent pandemic-driven trend to remote learning and telehealth. What 
knowledge and skills will be required for the practicing physicians in the next decade?

 Historical Evolution of Medical Education: Philosophical 
Perspectives and Related Educational Strategies

Healthcare delivery has changed dramatically since Osler established the first 
modern residency training system at the Johns Hopkins Hospital in 1889 [4, 5]. He 
was the first to bring medical students out of the lecture hall for hands-on bedside 
clinical training, where he encouraged medical residents to learn through observ-
ing, talking, listening, and touching the patient. As medical and scientific knowl-
edge was expanding at an unprecedented rate, Osler’s philosophy continued to be 
recognized in the basic structure of medical education, with its mix of classroom-
based teaching and experiential learning through activities such as bedside rounds 
and clinical services. As our healthcare system began to evolve further, our training 
of the next generation of physicians also changed. US medical schools began to 
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use diverse education systems, resulting in more informal training with no specific 
standards. In 1910, a commissioned report by Abraham Flexner to evaluate medi-
cal education programs in the US had a huge impact and shaped modern medical 
education [6]. To provide a scientific basis to medical education and training, the 
medical curriculum was divided into basic science and an applied clinical compo-
nent, separating science from practice. In response to the pure biomedical educa-
tion and training model, alternative curricula began to spring up around North 
America.

Our medical education system is still evolving over 100 years after the Flexner 
report. Current programs reflect a more hybrid model, with Flexnerian-based scien-
tifically grounded clinicians, who are clinically skilled at the bedside, as advocated 
by Osler. Although intelligent technology has revolutionized medical training [7]. 
Osler and Flexner’s fundamental principles of science and medicine have not 
changed with similar issues confronting us today.

 Acquisition of Clinical Competence

The primary goal of clinical education is the acquisition of competencies that are 
integral to the functioning of clinicians. Medical trainees must develop competence 
in several clinical skills (performance-oriented) and competence in understanding 
domain concepts necessary for supporting clinical problem solving and interper-
sonal skills. In addition, competence needs to be demonstrated in applying and 
transferring knowledge and skills from training situations to the “real-world” clini-
cal environment. The use of intelligent systems introduces a layer of complexity, 
where training with these systems, in simulation contexts, mimics the challenges in 
transfer to real-world practice.

The assessment of clinical competence is typically based on Bloom’s taxon-
omy of educational objectives. Although his original 1956 taxonomy [8] included 
the cognitive domain, these categories were ordered based on complexity and 
abstraction. The taxonomy was considered hierarchical in that a simpler category 
would need to be mastered before mastery of a more complex one. A revised 
Bloom’s taxonomy [9, 10] moved from a one-dimensional (Knowledge) to a two- 
dimensional (Knowledge and Cognitive Processes) framework. Cognitive research 
uncovered aspects of learning that were not reflected in the original taxonomy. 
Studies have shown that in a complex domain such as medicine, people do not 
work in a linear fashion, but follow a non-linear pattern of activity, yet decision 
support systems, such as those embedded in electronic health records [EHRs] are 
designed and standardized for a linear workflow [11, 12]. Bloom’s revised taxon-
omy suggests how more linear learning objectives can be supplemented with non-
linear learning to reflect how people work and learn in complex environments. A 
digital taxonomy was created based on Bloom’s taxonomy, which is restricted to 
the cognitive domain [13], containing cognitive elements, methods, and tools. The 
digital taxonomy is about the effective use of technology to facilitate learning.
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 Cognitive Approaches to Learning and Instruction

A National Research Council report [14] on advancing scientific research in educa-
tion reports a lack of rigorous research in designing education programs, recom-
mending the development of tools for education and training to consider a scientific 
foundation for learning and instruction. Theoretical and methodological advances 
in the cognitive and learning sciences have greatly influenced curriculum, instruc-
tion, and learning in biomedicine [15]. Empirical studies on the role of memory, 
knowledge organization, and reasoning as well as studies of problem-solving and 
decision-making in the medical domain led to a more informed curriculum about 
how people think and learn, and more specifically, how clinical expertise is devel-
oped [16].

There are two major cognitive learning theories: one focuses on individual 
structured learning (ACT-R, [17]; Cognitive Load Theory, [18, 19]), and the 
other on constructivist learning theories (Situative theory, [20]; Cognitive 
Flexibility Theory, [21]), which focus on complex learning within interacting 
systems. Although they often appear to be conflicting, researchers have argued 
[22, 24], both perspectives are essential in learning and instruction. Ultimately, 
both perspectives provide significant and valuable insights into how effective per-
formance and learning occur (see Table 16.1). Research in both these programs 
has resulted in necessary knowledge about human learning that can inform the 
designs of effective learning environments and instructional methods.

Table 16.1 Cognitive theories of learning relevant to medical education and training, showing 
basic concepts, conceptual differences, and diverse emphases (Published with permission 
from [23])

Theory Basic concepts Most applicable Example

Adaptive 
Character of 
Thought- 
Rational 
(ACT-R)

Declarative and 
procedural knowledge, 
production rules

Well-structured 
domains, formal 
knowledge acquisition

Learning of anatomy, basic 
biochemistry using 
cognitive tutors

Cognitive Load 
Theory (CLT

Cognitive load, 
working memory, 
memory limitations

Well-structured domains 
and somewhat 
ill-structured domains; 
formal knowledge

Learning of basic clinical 
medicine in classroom 
situations; design of 
instructional materials

Situativity 
Theory

Situation, context, 
activity system, social 
interaction, 
collaboration

Ill-structured domains, 
apprenticeship

Learning in residency 
training involving 
interactions with clinical 
teams; acquisition of tacit 
knowledge

Cognitive 
Flexibility 
Theory (CFT)

Advanced learning, 
conceptual 
understanding 
involving abstract 
concepts

Formal learning of 
complex concepts, 
conceptual structures

Learning of advanced 
physiology, genetics, and 
clinical medicine during 
specialization
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The situative theorists propose that cognition does not always involve the manip-
ulation of symbols, but rather that agents in activity are involved in many cognitive 
processes by directly using aspects of the world around them without the mediation 
of symbols. The learning of surgery, for instance, is an example of situated learn-
ing in that the surgery apprentice learns to perform different tasks without having to 
represent symbolically the procedures involved in such tasks. Much of clinical per-
formance, especially in routine situations, involves non-deliberative aspects, where 
deliberation would result in considerable inefficiency in performance. For exam-
ple, in the diagnostic tasks in perceptual domains, such as dermatology and radiol-
ogy, a significant degree of skilled performance relies on pattern recognition rather 
than deliberative reasoning. Furthermore, numerous clinical problems require rapid 
responses, such as in emergencies, where deliberative reasoning is not possible. In 
such cases, the situated approach can be used to characterize cognition as a process 
of directly using resources in the environment, rather than using reflective thinking 
to arrive at conclusions [20, 25]. The notion of a direct connection with one’s envi-
ronment is prominent in cognitive engineering [26], and human-computer interac-
tion research [27]. Here, well-designed artifacts can be closely adapted to human 
needs and capabilities through the appropriate use of invariant features (e.g., panels 
on a screen display) [28]. Well-designed technologies provide “affordances” that 
are perceptually obvious to the user, making human interactions with objects virtu-
ally effortless [29]. Affordances refer to attributes of objects that enable individuals 
to know how to use them (e.g., a door handle affords turning or pushing downward 
to open a door).

One situated approach emerged from the investigation and development of intelli-
gent systems that support performance in complex “dynamic real-world environment.” 
Severe time constraints characterize such systems and continuously changing condi-
tions in emergency departments, surgical operating rooms, or intensive care units [30].

The well-documented problem of implementing intelligent systems in training 
mirrors the gap between theories of learning and their application to medical prac-
tice. The notion of learning in context is one of the most important messages for 
education and even more critical with more sophisticated and intelligent systems. 
Well-designed, theory-based education and training programs are needed for the 
future healthcare workforce, where the development of these systems needs to be 
more user-centered, augmenting human intelligence. This argument begs for a care-
ful evaluation of AI education systems before they are disseminated widely for use 
in education and training programs (Chap. 17). This allows us to reexamine and 
redefine the current technology design by considering these intelligent systems’ dif-
ferent roles for various functions.

In summary, how does history enlighten us about the current education system in 
the digital age? Earlier, the medical education curriculum reflected the philosophy 
of William Osler, who famously stated, “Listen to your patient, he is telling you the 
diagnosis”. Reconsidered from a complexity stance, Osler’s suggestion hints at the 
insights clinicians may gain by viewing the patient as an embodiment of embedded 
complex systems (through biological and disease mechanisms), and as an individual 
whose health and the embeddedness of other complex systems shapes healthcare. 
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Flexner’s report, which followed, had a distinctive feature of the thoroughness with 
which theoretical and scientific knowledge were combined with what experience 
teaches in the practical responsibility of taking care of a patient. The revision of 
Bloom’s Taxonomy reorganized the learning taxonomy into a higher-order cogni-
tive hierarchy. Connecting Bloom’s Revised Taxonomy characteristics was neces-
sary for creating online learning activities according to students’ needs. Bloom’s 
Digital Taxonomy guides us to navigate various digital tools to match learning 
experiences for specific groups of students. Selecting the most appropriate digital 
activity depends on the level of difficulty associated with the cognitive levels stated 
within Bloom’s Revised Taxonomy.

 Approaches to Artificial Intelligence in Education 
and Training

AI has applications in learning, teaching and education management. However, 
much of today’s technology in education is a one-way transmission of information, 
often using engaging methods of graphics, animation, and interaction. Feedback, if 
provided, is not personalized to the learner’s level of knowledge or progress. A 
learning system is considered to be intelligent if it customizes its content and deliv-
ery, in real-time, based on learner performance, errors, misconceptions, needs and 
affect, and based on principles of cognitive and learning sciences. Underlying intel-
ligent systems are a panoply of AI tools and methods, as well as a range of methods 
to represent data so that they can be operated on by AI tools, to move a learner along 
a path to an end-state of knowledge, skills and behavior competence (Fig. 16.1).

Fig. 16.1 The education 
system and AI. AI systems 
can support the entire 
education enterprise, 
including the learners, the 
teachers, and the 
educational system
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AI tools can be applied to the individual learner, the teacher, as well as to the 
education enterprise. For the individual learner, the greatest promise is in personal-
izing learning and learning materials. AI systems can adapt pedagogic practices to 
individual learners and can allow learners to learn at their own pace. Such systems 
have been most successful in well-defined knowledge areas, such as school-level 
mathematics [31]. AI-based instructional systems are not yet widely available in 
healthcare, nor is continuous AI-augmented evaluation of learner or education pro-
gram performance.

The next section will describe technology and studies on intelligent systems for 
educating the individual learner, followed by a description of the possible uses of AI 
methods in analyzing and improving the education enterprise.

 Artificial Intelligence Systems and the Individual Learner

AI has the potential to curate and deliver knowledge at the point of need. At the 
same time, it is essential for the practitioner to understand the AI technology under-
lying new healthcare services such as imaging diagnostics, identification of bio-
markers, and population health recommendations. Introductory courses are being 
designed to address the understanding of AI technology in healthcare practice [32]. 
However, AI-based learning systems, to support optimal knowledge delivery, are 
not in wide use yet.

The next section will examine the various components of AI systems for use in 
individual learning in medical education.

 Computable Representations

For an AI system to function, it requires a formal, computable representation of 
the knowledge (content), skills (tasks, actions, or behaviors) and strategies (rea-
soning and decision-making underlying the use of specific knowledge or skills) 
that an expert may be expected to know. It may also contain the misconceptions, 
incorrect skills, and mistaken strategies that may be common when learning this 
domain. The data structure must be a formal, computable representation, so that 
learning objectives can be defined, such as a state in feature space, and a learner’s 
progress can be assessed by movement towards a desired state. Inevitably, a 
domain model represents a subset of the actual domain. It may simplify the actual 
content, may leave out non-essential components, or may be unable to represent 
ill-defined areas. Further, any representation of a domain may be implementable 
in different data structures, for example as a graph, an ontology, or a feature vec-
tor space.
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Fig. 16.2 The components 
in an Intelligent Tutoring 
System

 Intelligent Tutoring Systems

An Intelligent Tutoring System (ITS) models the learning process so as to provide 
personalized instruction or feedback to learners, without requiring intervention 
from a human teacher. It usually has the following four components: The Domain 
model, the Learner model, the Pedagogy model, and the Interface model (Fig. 16.2).

The domain model contains a formal, computable representation of the knowl-
edge, skills and strategies, as described above. It also includes misconceptions, 
incorrect skills, and mistaken strategies. The learning objectives are defined as 
states in domain space, and a learner’s progress is assessed by movement towards a 
desired state.

The learner model represents the learner’s current state in the domain space, and 
is updated in real-time as the learner progresses through the learning exercises. For 
example, the learner model can be a record of the knowledge states that have been 
mastered within a domain model with a much larger set of possible knowledge 
states. The learner model and the domain model are compared, using tools such as 
Bayesian statistics, to select the next problem which will correct a misconception or 
fill in a deficit. The learner model may also include the affective and motivational 
state of the learner as a guide to the tutoring process.

The pedagogical model represents and selects effective approaches to teaching. 
These approaches include typical human pedagogic approaches such as providing 
new knowledge, assessing the student’s knowledge to give hints, guidance or feed-
back, and allowing the student to explore and make mistakes (productive failure) 
before guiding them back to the correct path. The pedagogic model uses the domain 
and student models as input to select the instructional strategy to move the learner’s 
state closer to a desired state in the domain model. Because there must be a corre-
spondence between computational methods in the pedagogy model and representa-
tions in the learner model, they must be designed in tandem. For example, ITSs that 
teach using conversational dialog will use computational techniques that match 
words, phrases, and sentences in the learner’s answer to recommended 
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sentence-based preferred answers in the domain model, by using content matching, 
latent sematic analysis or other statistical methods based on features present in con-
versation. The pedagogical model moves learning forward by generating the next 
instructional step but can also respond to learner questions or requests for help.

The interface model enables the dialog between the ITS and the learner. While 
the interface model is not directly a component of pedagogy, its structure is impor-
tant in how information is exchanged between the learner and the ITS. The learner 
receives information from the ITS through text and multimedia on the screen, 
through audio and, increasingly, through viewing simulations in immersive three- 
dimensional (3D) virtual worlds. The learner then responds through available 
devices such as keyboard, text, voice, and gestural or haptic devices. For ITS sys-
tems that include detection and use of affective states, the interface may include 
sensors for eye-tracking, facial expression detection, or neural state tracking.

Kulik and Fletcher [33] reviewed the effectiveness of ITSs, based on published 
studies, and found that students who received intelligent tutoring outperformed con-
trol students on posttests in 46 (or 92%) of the 50 studies included in the meta- 
analysis. Successes were particularly evident in systems where the domain 
knowledge could be formally represented and where the assessment method was 
based on the same representation as the digital content. Examples are the DARPA 
Digital Tutor for teaching information technology systems to Navy personnel [34], 
the Geometry Tutor for high school geometry [35], and iTutor for engineering 
mechanics [36]. Similarly, Ma et al. [37] showed that the only learning environment 
which out-performed the use of ITS was the small group learning environment.

 Dialog Systems and Natural Language Processing

Bickmore and Wallace (Chap. 7) have provided an in-depth review of issues under-
lying current dialog systems. While there are many healthcare simulations and 
games that include or require dialog between the learner and a character in the simu-
lation, only a few use AI to generate any part of the conversation. Commercial 
technologies such as Amazon’s Alexa, Apple’s Siri, or Google Home, or customized 
software from Recourse Medical or SimConverse, can generate conversation 
between a virtual patient and a learner. However, they do not apply the principles of 
Intelligent Tutoring to guide and coach the learner. AutoTutor is an example of a 
dialog or tri-alog based ITS.

AutoTutor is an ITS augmented with Natural Language Processing (NLP) that 
has been applied in numerous subject areas [38]. It simulates the conversation pat-
terns of human tutors, based on analysis of human-to-human tutoring sessions and 
theoretically-grounded tutoring strategies based on cognitive learning principles 
[39]. AutoTutor’s dialogues are system-driven and are organized around difficult 
questions and problems that require reasoning and explanations in the answers. The 
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Fig. 16.3 The Virtual Civilian Aeromedical Evacuation Sustainment Training Program 
(V-CAEST) teaches triage processes for mass casualty

major components of AutoTutor include an animated conversational agent who ini-
tiates the dialog, dialogue management, speech act classification, a curriculum 
script, semantic evaluation of student contributions, and digital resources, such as a 
textbook or a procedure manual.

A medically relevant example is the Virtual Civilian Aeromedical Evacuation 
Sustainment Training program (V-CAEST), a learning simulation for teaching mass-
casualty triage and aero-evacuation during an emergency [40, 41], that uses a web-based 
version of AutoTutor, AutoTutor Lite (Fig. 16.3). In V-CAEST, a team of learners enter 
the virtual environment, an earthquake disaster site, and search for injured casualties in 
the debris-covered streets. The learning task is to triage these victims correctly, assessing 
their need for medical intervention and air evacuation. The intelligent tutoring system 
intervenes if errors are made, and a digital tutor character walks the learner through the 
triage process, asking questions focused on the errors.

AutoTutor Lite uses natural language processing to analyze the learner’s typed 
answers and matches the concepts against stored concepts of the ideal answer using 
Latent Semantic Analysis. With each answer, it updates its model of the learner’s 
knowledge of that topic. Through hints and additional questions, the tutor prompts 
the learner to articulate a well-elaborated, detailed answer. When its model of the 
learner’s knowledge is sufficiently like the stored model of that topic, the tutor lets 
the learner return to the simulation to continue triaging the victim or to search for 
another victim (Fig. 16.4) [42].
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Fig. 16.4 The components of an Intelligent Tutoring System as applied to the V-CAEST program

 Question Generation

Question answering is a common form of learner’s mental assessment. 
Understanding assessment depends on understanding the process by which the 
learner generates the responses to the questions. However, generation of good 
questions with least amount of ambiguity, is time-consuming and prone to errors. 
Multiple choice questions (MCQ), in particular, are widely used as learning tools, 
for evaluating learner knowledge, and to assess efficacy of the instructional activ-
ity. Automatic MCQ generation from medical text has been shown to produce 
questions that are, for the most part, equivalent to traditionally developed items 
from the perspective of expert medical reviewers [43]. Leo and colleagues [44] 
present a system for generating case scenario-based questions using knowledge in 
a medical ontology system, Elsevier Merged Medical Taxonomy (EMMeT). They 
selected four MCQ question formats that are representative of scenario questions 
in texts for preparation for medical board examinations. Using these formats as 
question templates, and EMMeT as a content resource, they generated over three 
million questions of which a sample was evaluated by experts for appropriateness 
and difficulty. An important result in this evaluation was that review of generated 
MCQ questions was far faster than the process of generating each question by 
a human.
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 Dynamic Assessment, Feedback, and Guidance

AI has multiple applications within educational assessment, ranging from support 
of the learning process, to assessing whether learning was achieved [45]. The 
embedding of data collection within digital education products, paired with compu-
tational techniques, makes automated education data analytics feasible and useful. 
The most common use of analytics is for summative feedback and grading, includ-
ing AI-based scoring of assignments. While this automation of a manual process is 
very helpful, an interesting approach is the application of AI-based assessment to 
support the learning process itself.

AI-based analytics can support dynamic assessment for continuous feedback and 
guidance for each individual learner. The role of assessment then shifts from one of 
assigning a final grade to that of being a coach, guiding the learner by supportive 
and corrective feedback. By shifting the emphasis from summative assessment to 
coaching for mastery learning, the educational system moves from assessment of 
learning to assessment for learning [46]. Realistically, this mode of assessment is 
possible only though the use of big data, that is, data obtained by digital observation 
of each step of the learner’s progress through the instructional material. As described 
above, in the section on “Computable Representations”, this approach requires that 
the representation of the knowledge to be learnt is in a computable format, to sup-
port algorithms that can identify the steps to guide the learner from a current state 
to the destination of goal state of knowledge.

Very few such AI-based dynamic, personalized assessment systems exist in med-
ical education, except as experimental products. A particularly interesting one, 
albeit in computer science education, was deployed in a course on computer pro-
gramming. This massive on-line course, taken by 12,000 students around the world, 
used an AI feedback system to detect and critique errors in code for individual stu-
dents [47]. Over 16,000 such critiques were offered and, in 97.9% of the cases, the 
students agreed with the AI system’s assessment. Guidance systems such as this are 
still in an early development stage, but could be applied in many areas, including 
medical diagnosis and patient treatment.

 Machine Learning and Neural Networks

Machine learning has been applied extensively in using data from learning manage-
ment systems to make the education delivery process more efficient [48]. For the 
individual learner, machine learning has the potential to be used to guide optimal 
learning based on the performance of a cohort of similar learners.

An early study [49] used neural nets to identify information gathering behavior 
of medical students as they worked through a clinical immunology case. Students 
with successful solutions demonstrated successful acquisition of the results of rel-
evant diagnostic tests and clinical data. Unsuccessful solutions showed two patterns 
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of performance. One showed extensive searching using a range of tests, demonstrat-
ing lack of recognition of relevant data. Another unsuccessful approach showed data 
collection biased towards solving an unrelated problem, that is, the students had the 
correct solution but to the wrong problem.

Some examples of the use of big data and analytics are discussed in the section 
on “Artificial Intelligence Systems and the Education Enterprise”.

 Affect and Emotion Aware ITS

Emotions are closely related to cognition and are an essential component of learn-
ing. Yet, the generation and measurement of emotion is not usually included in the 
development of technology-rich learning systems [50].

Pekrun [51] postulated a control-value theory of achievement emotions. He 
considered that activity-related emotions such as enjoyment, boredom and frustra-
tion, as well as outcome-related emotions such as pride, hopelessness, and danger, 
related to success or failure, needed to be considered when evaluating education 
systems. In a systematic meta-analysis of studies on technology-based educational 
systems, Loderer et  al. [52] found that the emotion-level evoked differed across 
systems, but the relationship between emotions evoked and learning correlated with 
Pekrun’s control-value theory.

 Virtual and Augmented Reality

3D graphics and interaction add a dimension of realism that immerses the learner in 
the learning environment. Virtual Reality (VR) moves the 3D experience from the 
computer or tablet screen into a 3D environment that surrounds the learner. The 
experience can feel so real that moving through the visual environment, using ges-
tures, while staying physically in one location, can induce motion sickness. 
Augmented Reality (AR) differs from virtual reality in that the real 3D environ-
ment remains visible but is overlaid with labels, pointers, or even a semi- transparent 
3D virtual environment. Multi-user environments add collaboration capability by 
bringing others into the environment seen by the user, whether it is in VR, AR, or 
the computer screen. The use of AI tools and technology can be added to any aspect 
of 3D interactive simulations, VR or AR. This application of AI is not yet in wide 
use, so examples of possible new uses are presented.

Interaction within a VR or AR environment, while moving one’s head, requires 
deep understanding of this environment. The incoming camera imagery is trans-
formed into a 3D representation so that the controller in the user’s hand (or the 
representation of the hand itself) recognizes the object’s distance and touches it 
accurately. This capability is present in many 3D games. However, the interaction 
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Fig. 16.5 This simulation (Virtual Reality operating room) is used for planning operations using 
Robin Heart robots (examples are for heart surgery) and for testing robots (in the conceptual 
phase), and training surgeons. The program was tested for use: (1) on a computer stand; (2) in the 
Robin Heart Shell 2 robot control console; (3) VR goggles (Oculus). The images are examples of 
how to visualize simulated operations. The last image outlines the green workspace available for 
the tool chosen by the surgeon. (Published with permission from [53])

between the hand and the object can be increasingly sophisticated, based on intel-
ligent information about the object and the hand. Sculpting in 3D is an early exam-
ple of sophisticated interaction between virtual hands and a virtual mass.

Extending this example into surgery, advanced advisory systems can be devel-
oped that bring together knowledge about surgical tools and the target tissue. Nawrat 
[53] demonstrates a prototype VR system for robotic surgery on the heart where the 
space available for tool movement is visualized relative to the heart and its sur-
rounding anatomy. Aside from the geometric information available in the imagery, 
intelligence that can be embedded in the advice includes data about typical hand 
movements, resilience or fragility of the tissue, and common decision and move-
ment errors (Fig. 16.5).

 Simulations and Serious Games

Simulations and Serious Games have been shown to increase engagement in the 
learning process. The use of a Virtual Patient (VP), a simulated patient presented on 
the computer screen or in VR approximates the real-world experience of patient 
care, engages the learner, and focuses the learner’s attention on the subject being 
presented [54, 55]. Screen-based virtual patients, with scripted reaction and 
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Fig. 16.6 The numerous ways in which AI could augment the use of Virtual Patients in medical 
learning. The figure shows a virtual patient undergoing ventilation. AI could improve the user 
interface (natural language input, haptic sensation), augment the physiology model, make the 
simulated equipment and instruments aware of their interaction with the simulated patient, and 
track all interaction to provide guidance to the user in the learning process

feedback, are in wide use in medical and nursing curricula today (Fig.  16.6). 
However, the potential for introduction of AI technology is immense.

SimSTAT Anesthesia [56] is an example of a simulation that uses a rule-based AI 
model of patient physiology, for Maintenance of Certification by the American 
Society of Anesthesiologists. The simulation is viewed by the learner on a computer 
screen while the learner plays the role of the anesthesiologist. The learner guides the 
on-screen anesthesiologist to care for the unconscious patient by clicking on desired 
interactions, such as the equipment in the room or the icons at the bottom of the 
screen. Through these interactions, the learner can control the level of sedation, give 
medications, fluids, and gases, and monitor the patient’s physiologic status in 
dynamic stability. The branching scenario, or story, makes the case appear different 
from learner to learner, based on their actions, and allows multiple passes through 
the case to experience the many possible outcomes for the patient. The learner’s 
actions are recorded, and the simulation provides detailed summative feedback at 
the end of the case. The feedback evaluates whether key clinical actions were taken 
on time, and whether the ongoing status of the patient was held in a safe zone or 
allowed to deteriorate too dangerously, even if the patient finally was brought safely 
through the surgery.

 Artificial Intelligence Systems and the Education Enterprise

 Learning Analytics

Learning analytics is the measurement, collection, analysis and reporting of data 
about learners and their contexts, in order to understand and optimize learning. 
Ellaway et al. [57] point out that if health professional education is to be account-
able for how its programs run and are developed, then health professional educators 
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will need to be ready to deal with analytics and ‘big data’. Analytic methodologies 
include descriptive analytics which examines past data to analyze all stages of the 
student life cycle, and to detect trends; diagnostic analytics, which focuses on the 
question “why did it happen”; and prescriptive analytics, for recommendations and 
advice on possible outcomes.1

As Competency-Based Medical Education (CBME) is introduced in graduate 
medical education, the volume of assessment data imposes a significant burden on 
faculty and supervisors. Learning analytics has the potential to process this data and 
provide insight that will support the assessment process. Chan et al. [58] review 
learning analytic techniques, with potential application for use by Clinical 
Competency Committees. In subsequent work, they present design-based research 
to investigate what issues may arise as faculty consider the use of learning analytics, 
as well as the importance of user input to the design of ‘dashboard’ or visualization 
methods that condense and present this data, when analyzing data on the progress 
of emergency medicine residents towards completion of Entrustable Professional 
Activities. Their research identified three sets of issues: challenges in implementa-
tion of data collection, such as changing international practices regarding data gath-
ering; challenges in the processing of data, such as data security, analysis, access 
and governance; and challenges in the presentation of the analytics results, such as 
efficacy and ethical requirements. They also found that residents and faculty 
required significantly different visualizations in order to derive utility from the 
learning analytics ‘dashboard’ [59]. As design prototypes, these studies utilized a 
significant amount of manual data processing. However, they show the need for, and 
provide guidance on future research for more automated, AI approaches to medical 
education data analytics while retaining the role of the human instructor.

Continuous quality improvement of the medical education system. Boulet 
and Durning [60] point out that electronic medical records, unique provider identi-
fiers and access to patient records, make it easier to conduct studies that link learn-
ing analytics data from medical schools and residency programs to quality of care 
by individual physicians (assuming appropriate care for the privacy of both patients 
and the physician). It is possible, therefore, to identify opportunities and flaws in 
medical education systems. Tsugawa et  al. [61] combined graduation data, from 
medical school records, with clinical performance data from Doximity, the profes-
sional network for physicians, to study one possible relationship, in this case, the 
relationship between country of graduation and practice outcomes. They found that, 
on their measures of 30-day mortality and re-admission rates, there was no differ-
ence between US and foreign graduates, thus allowing them to address concerns 
that admitting foreign medical graduates to train and practice in the US might 
worsen US medical care.

Going further, Triola et al. [62] suggest continuous improvement of the educa-
tional process itself by linking curriculum and curriculum delivery data to clinical 

1 https://www.solaresearch.org/about/what-is-learning-analytics/ (accessed August19, 2022).
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outcomes data. This can be very effective in the early clinical years, identifying gaps 
in the curriculum that result in poor clinical performance and clinical outcome. 
Once such analysis is incorporated into a continuous quality improvement process, 
it could become routine for education systems to have intelligently responsive cur-
ricula that teach students to be as well-prepared as possible for the real world of 
medical practice.

As Chan et al. [58] point out, development and application of learning analytics 
will be complex and expensive. Therefore, it is important that this should have a 
significant impact on the efficiency of the learning process, the quality of learning 
achieved, and the safety and quality of patient outcomes.

 Ethics and Regulation

AI technology depends on the use of large datasets, statistical techniques, machine 
learning and deep learning. The neural networks that implement the resulting algo-
rithms can be inherently complex or, even unknowable because of the process of 
machine learning. The resulting situation is the creation of “black box medi-
cine” [63].

The algorithms underlying black box medicine can improve the process of 
care, deliver medical recommendations tailored to the individual, and increase 
hospital efficiency. However, these algorithms are only as good as the data on 
which they were trained. Much of this data is derived from the electronic health 
record (EHR) and related databases, data that was often entered with no regard 
to the potential of introduction of bias. Currently, the care provider uses the EHR 
as a replacement to capturing the information on paper, without understanding 
the long-term potential impact on the use of this data [64]. Algorithms generated 
with data that can reflect existing racial or gender health disparities, if unexam-
ined, can contribute to perpetuating bias and existing inequalities in healthcare. 
Therefore, education on how to input unbiased data into the EHR is essential.

The above is an example of the need for understanding the ethical implications 
of AI systems (Chap. 18). Because many of these systems have been designed by 
non-medical personnel, who may not have deep understanding of the sources that 
created the data they use, it is essential for physicians and other health profession-
als to develop an understanding both of medical AI technology and how to create 
the content that will populate the databases used by this technology. Meanwhile, 
AI-based devices are being regulated and authorized for use by the United States 
Food and Drug Administration [65, 66] even while there is considerable variation in 
the quality of data used by manufacturers to test their AI software. The physicians 
of the future must have the underlying knowledge of both the power and the limita-
tions of AI, so that they are prepared to deal with the potential need to bypass the 
recommendations from the AI products they use.
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 Technology Acceptance and Implementation

Implementation of technology systems, and learner or faculty acceptance of these 
systems after they are installed for use, have proven to be very difficult. In a review 
of AI applications in medical education, Chan and Zary [67] analyze the many rea-
sons that make implementation difficult. The major difficulty in implementation 
was found to be difficulty in assessing effectiveness. Other factors included the dif-
ficulty in creating the domain model, the need for content specialists who under-
stood the AI authoring process, the knowledge gap between the physicians and the 
engineers creating the system, and the difficulty in scaling the system because of the 
narrow domain of application of each intelligent system. They conclude that, to 
implement AI in medical education, two challenges need to be overcome—how best 
to assess the effectiveness of AI in learning and in curriculum design, and how to 
manage the technical difficulties associated with development of an effective 
AI system.

The expense of software development is being approached through the open- 
source movement. The US Army Research Laboratory provides the open-source 
design framework and authoring system, Generalized Intelligent Framework for 
Tutoring (GIFT) [68]. Other sources include AutoTutor and AutoTutor Lite (http://
ace.autotutor.org/IISAutotutor/index.html). Another expense is the high cost of 
knowledge content representation, with estimates of 200 or more hours of develop-
ment for one hour of instruction. Therefore, intelligent tutoring systems are cost- 
efficient only when deployed over a very large number of learners.

 Artificial Intelligence Systems in the Future Workplace

Given that AI-augmented systems will be increasingly available for health care, the 
education of students, residents and professionals about AI will be essential for 
acceptance and safe use of these systems. In fact, insufficient knowledge of AI has 
been found to be key in current resistance to AI acceptance [69], in addition to the 
system’s inability to explain its decisions (see Chap. 8). Aside from lack of under-
standing of AI methods and explainability, a further barrier to acceptance is the 
perceived assault on the clinician’s professional identity. Education about the opti-
mal use of AI systems, and their role in the support of clinicians, will be an essential 
step in acceptance and use of AI. Clinicians with an understanding of the founda-
tions and methods of AI will be in a good position to influence the development of 
the next generation of AI tools, as well as to evaluate these tools and prevent 
unfounded reliance on exciting but unproven technology [70]. At the same time, the 
AI systems should be developed with the nature of the user and the workplace envi-
ronment in mind, as described earlier in this chapter.

Image-based medical disciplines, such as radiology [1], ophthalmology [71–73] 
and dermatology [74], will be the earliest to experience the use of AI-augmented 
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diagnostic equipment (Chap. 12). In step with this need, an introductory curriculum 
about AI methods, named AI-RADS, has been piloted for education of radiology 
residents [32]. A monthly lecture on an AI method was followed by a journal club 
discussion of an article that required some knowledge of the topic of the lecture. 
Assessment was conducted using pre-and post-intervention surveys. The residents 
demonstrated increased confidence in their ability to read AI-related articles in radi-
ology journals, and in their ability to explain key concepts. More such courses and 
curricula will be needed, across medical disciplines, to familiarize physicians with 
significant changes expected in the near future.

Some examples of artificial intelligence technologies that the learner can expect 
to encounter in the clinical workplace include:

• Medical diagnosis, with underlying AI technologies such as pattern detection, knowl-
edge representation, ontologies and reasoning (see Chap. 5); [75]

• Natural language interaction for patient-facing applications based on speech recog-
nition, sentiment understanding, speech synthesis, and chatbots (see Chap. 7); [76]

• Virtual and augmented reality for diagnosis, interventional procedures, and team 
communication (see Chap. 9);

• Robotic sensing and manipulation, based on object recognition, and path plan-
ning and avoidance, for surgery as well as for hospital logistics and materials 
movement, and

• Predictive analytics for hospital process optimization and for public health, 
based on large data sets, machine and deep learning, and neural nets (see Chaps. 
11, 13, and 15.

Besides learning about AI, these technologies can increase the impact of what phy-
sicians learn. Continuing medical education is considered essential for practicing 
physicians. Their choice of courses usually depends on credentialling requirements 
or on keeping abreast of the latest medical knowledge in their field. Correction of 
knowledge or skill deficits is desirable. However,  individual practitioners are not 
always aware of their deficits or may choose to ignore these deficits, to the detri-
ment of their patients. AI methods that are used in ITS are appropriate for evaluating 
a practitioner’s current knowledge and generating a recommended syllabus, both as 
a remedial course and as a guide toward their new learning goals.

 The Road Ahead: Opportunities and Challenges for Intelligent 
Systems in Training, Learning and Practice

Education today is taking big leaps towards embracing intelligent systems and its 
applications in the teaching and learning methodologies. As Coiera [77] points out 
AI-driven tools will define the way medicine will be practiced in twenty-first cen-
tury. What might the medical practice in the future look like? The hypothetical 
scenario below, A typical day in a future physician’s life, says well that intelligent 
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systems will be a critical part of our daily lives in future healthcare. This will require 
doctors to be knowledgeable about and skillful at using these intelligent systems, 
creating opportunities for education and training programs for the new age. However, 
there are also challenges. In the hypothetical future scenario, there is not much room 
for doctors to use human judgment, when caring for patients. There is a critical need 
to develop systems and training programs that complement and extend human intel-
lect to foster human-AI collaboration. Future physicians and patients are sometimes 
challenged to build trust with machines since AI systems are often viewed as com-
peting against human intelligence, as reflected in various Games (humans vs. 
machines).

In order to foster an AI-human collaborative education program, it is necessary to 
know the strengths of AI systems, and those of human beings. AI systems’ strengths 
in changing a physician’s practice and patient outcomes are already known. So, 
what are the physicians’ strengths? In a 2019 NEJM Catalyst conversation hour, 
Nirav R. Shah, described the four Cs, which he considered physicians’ strengths in 
dealing with patients: critical thinking, communication, collaboration, and 

A Typical Day in a Physician’s Practice of the Future
As Dr. X prepares in the morning, her Smart Glass shows her the day’s case 
load. The hospital’s Smart Support System (SSS) has reviewed the schedule 
for the day. It has prepared a simulated Digital Twin of each patient for Dr. X 
to review before each appointment. The Digital Twin includes an annotated 
three-dimensional view of anatomy and pathology to the level of detail that 
Dr. X wishes to explore, including genetic analysis if needed. For those areas 
where SSS has uncertainty about the data or the inferences, it indicates this 
with a cloud, and is able to explain its reasoning that leads to its uncertainty. 
The medical team begins the morning with a huddle to review each Digital 
Twin and raise issues that SSS can investigate before the actual patient meet-
ing. A nurse queries the ethics of a difficult decision and SSS presents a few 
prior examples, how they were handled, and the medico-social outcomes of 
each decision.

Meanwhile, Dr. X notices that one case involves an unusual genetic muta-
tion and she requests SSS to prepare a micro-course for her to study before the 
appointment. SSS is aware of Dr. X’s knowledge status, and uses its ITS to 
collect the necessary content to fill in the gaps in her knowledge. The micro-
course includes subtle problems and choices to assess whether Dr. X has cor-
rectly understood the complex new information.

During the course of the day, SSS observes under which situations, Dr. X 
had to request additional information or get additional consults. It uses this to 
prepare a refresher summary and course for the close of the day. SSS may also 
send information back to the medical schools, indicating where there are gaps 
in the training and education.
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creativity [78]. These four Cs, which are patient-centered, were identied by Shah as 
the most essential human skills that will need to be augmented in the age of AI. It 
is necessary to make sure that intelligent systems for training and education are 
developed with human-centered design strategies in mind to empower us to col-
laborate in teams, develop understanding, innovate, and solve new problems 
creatively.

As this chapter highlights, advances in intelligent systems have brought 
technology- supported education in healthcare to a new era, changing the nature of 
work towards creating a more efficient, effective, and safe practice environment. By 
incorporating human intelligence, a machine could serve as an intelligent tutor, tool, 
and facilitator of clinical decision-making in educational and clinical settings. Using 
intelligent systems in medical and health education has created new opportunities 
for designing productive clinical learning activities and developing better 
technology- enhanced learning applications and environments. The healthcare team 
is more likely to be multidisciplinary in the future. However, the interdisciplinary 
nature of AI-based education involving researchers and practitioners from different 
disciplines raises the unique challenge of building trust. These also include collabo-
rations among computer scientists, engineers, cognitive and social scientists, and 
health care practitioners. Thus, understanding team-based collaborations will be 
essential and challenging for developing intelligent collaborative systems for train-
ing and education.

Healthcare systems are complex, requiring different ways of implementing ideas 
and assessing the AI systems  as compared  to the established approaches [79]. 
Challenges in a complex environment with uncertainty is seen as embracing the 
opportunities to adapt, stimulating innovative solutions, and leveraging the socio- 
cultural system to enable ideas to emerge and spread. Training in such an ill- 
structured environment will be necessary, using instructional materials that do not 
oversimplify the content or the structure to reflect the reality of complex clinical 
practice.

Finally, with technological advancements the role of intelligent systems or AI in 
medical education will increase. Medical schools need to consider curricular 
reforms, including content related to AI as part of their curriculum and emphasize 
empathy and integrity. There will be many obstacles in implementing AI in medical 
education, including insufficient time in curricular hours and difficulties in develop-
ing AI applications that are usable, clinically relevant, and safe. At the same time, 
the potential for a collaborative, even symbiotic, relationship among learner, teacher, 
education enterprise, and AI system is immense, and points to new, efficient, and 
enjoyable future learning methods.

Questions for Discussion

• What would Osler say about today’s intelligence-based education?
• How can learning with intelligence-based tools augment cognitive limitations of 

human abilities?
• What user-centered design issues need to be considered before implementing 

intelligence-based tools for health professionals’ education?
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• Evaluate the scenario of a day in a life of a future physician presented in the 
chapter. What are some missing aspects of clinical practice?

• Describe some of the challenges and possible solutions of using AI-tools for 
learning and instruction as we move to the future?

• Design a curriculum for medical education which you believe we will need 
10 years in the future.
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ous publications by three American editors. The book is divided into themes such 
as personal qualities, the art and practice of medicine, diagnosis and science and 
truth. The selected quotes portray Osler as a deeply moral, committed and enthu-
siastic doctor who believed ‘that the practice of medicine is an art, not a trade; a 
calling, not a business; a calling in which your heart will be exercised equally 
with your head’.

Rosenberg L. Metaverse 101: defining the key components. n.d. https://venturebeat.
com/2022/02/05/metaverse- 101- defining- the- key- components/. Accessed August 
19, 2022.

• This is short article which puts together some of the useful definitions of concepts 
related to metaverse. It defines metaverse as a persistent and immersive simulated 
world (Virtual Reality and Augmented Reality) that is experienced in the first person 
by large groups of simultaneous users who share a strong sense of mutual presence.

Patel VL, Groen GJ, Norman GR. Reasoning and instruction in medical curricula. 
Cogn Instr. 1993;10(4):335–78.

• This original research paper examines the knowledge and explanatory processes 
of students in two medical schools with different modes of instruction. The 
results presented show the impact of instructional methods on the trainees’ orga-
nization of knowledge, development of specific reasoning strategies, and genera-
tion of coherent explanations for diagnostic hypotheses. The paper presents the 
importance of process-based assessment of learning and instruction.
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Cohen T, Blatter B, Patel VL. Simulating expert clinical comprehension: adapting 
latent semantic analysis to accurately extract clinical concepts from psychiatric nar-
rative. J Biomed Inform. 2008;41(6):1070–87.

• This manuscript presents cognitively motivated methodology for the simulation 
of expert ability to organize relevant findings supporting intermediate diagnostic 
hypotheses, an important psychological construct. Latent Semantic Analysis 
(LSA) is shown to be a powerful tool for automatic extraction and classification 
of relevant text segments that is evaluated against expert annotation.

Yu KH, Beam AL, Kohane IS.  Artificial intelligence in healthcare. Nat Biomed 
Eng. 2018;2(10):719–31.

• This review outlines recent breakthroughs in AI technologies and their biomedi-
cal applications, identifies the challenges for further progress in medical AI sys-
tems, and summarizes the economic, legal and social implications of AI in 
healthcare.

Dev P, Schleyer T. Digital technology in health sciences education, Chapter 25. In: 
Shortliffe EH, Cimino J, editors. Biomedical informatics. 5th ed. New York, NY: 
Springer; 2021.

• This chapter reviews learning theory and digital technology approaches in health 
sciences education, including classroom technologies, intelligent tutors, simula-
tions, augmented/virtual reality, and collaboration tools.

McGrath JL, Taekman JM, Dev P, Danforth DR, Mohan D, Kman N, Crichlow A, 
Bond WF. Using virtual reality simulation environments to assess competence for 
emergency medicine learners. Acad Emerg Med. 2018;25(2):186–95. https://doi.
org/10.1111/acem.13308. PMID: 28888070.

• This paper examines the current uses of virtual simulation (VS) in training and 
assessment, including limitations and challenges in implementing VS into medi-
cal education curricula. It also provides insights into the needs for determination 
of areas of focus for VS training and assessment, development and exploration of 
virtual platforms, automated feedback within such platforms, and evaluation of 
effectiveness and validity of VS education.
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Chapter 17
Framework for the Evaluation of Clinical 
AI Systems

Edward H. Shortliffe, Martìn-Josè Sepùlveda, and Vimla L. Patel

After reading this chapter, you should know the answers to these questions:
• What is a desirable relationship between the evaluation of a system and its design 

and implementation?
• What is the notion of iterative design and how does it influence evaluations 

developed for laboratory testing and subsequent real-world environments?
• What elements of an AIM system need to be evaluated, and how do the charac-

teristics of the system influence how such evaluations should be undertaken?
• What is team science and what is its relevance to the evaluation of AIM systems?
• What special questions arise in the evaluation of commercial systems that are 

intended for a competitive marketplace?
• What is usability testing and how does it influence the design, implementation, 

and evaluation of AIM systems?
• What are the metrics by which the medical community is likely to assess the suc-

cess and appeal of a newly developed AIM system?
• What is the role of cognitive informatics, not only in the design of systems but 

also in their assessment in laboratory and real-world implementations?
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 The Role of Evaluation: Why It Is Important

Observers often note that few areas of endeavor progress more rapidly than bio-
medicine and health care—new drugs, new procedures, new fundamental dis-
coveries, and new devices, as well as new practices that are introduced in 
response to enhanced understanding of psychosocial issues that affect human 
health and disease progression. The medical literature is vast, and it has required 
a computational approach to citation management and search that was intro-
duced much earlier than it was in other areas of science1—including in computer 
science itself.

The biomedical scientific literature, including clinical books and journals, is 
deeply embedded in the culture of medicine. Clinicians look to journals for evi-
dence to support new therapies or approaches, and they learn to respect some jour-
nals more than others. The key is peer review and rigorous evaluation before an 
article, and the underlying study design or research data, are accepted as guidance 
for a change in how medicine should be practiced. Similarly, relevant regulatory 
agencies, such as the US Food and Drug Administration (FDA), look to the pub-
lished literature and to the underlying data before they approve new medications. 
They also look to the literature, and research data, when evaluating new medical 
devices for approval.

But what about software? If new computer programs or systems are developed 
for use in biomedical or clinical settings, who approves them and how should deci-
sions be reached about their validity, quality, and adoption? Chapter 18 discusses 
some of these regulatory issues in the context of ethics and policy. Currently the 
FDA is struggling with the development of suitable criteria or guidelines for the 
approval of AIM systems. In 2021 the FDA published an action plan for “Artificial 
Intelligence and Machine Learning in Software as a Medical Device”,2 but the over-
sight task is complicated by many considerations. How should such programs be 
evaluated? Should the emphasis be on safety and efficacy (as it is for new pharma-
ceuticals), or are there other pertinent considerations? How often should they be 
re-assessed, given that they evolve and updated versions may be released with some 
frequency? What are the elements that determine efficacy and software safety? 
Accurate assessments? Acceptance by clinicians? Changes in practice? Benefits for 
patients and populations? Cost-effectiveness?

1 MEDLARS (Medical Literature Analysis and Retrieval System) was launched by the U.S. National 
Library of Medicine in 1964 and was the first large scale, computer based, retrospective search 
service available to the general public. It expanded to support online search (MEDLINE, for 
“MEDLARS Online”) in 1971 and evolved further to support free literature search (PubMed) for 
the global community on the Internet in 1997.
2 Available at https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intel-
ligence-and-machine-learning-software-medical-device. (accessed August 14, 2022)
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Regardless of how these regulatory deliberations advance and are resolved (and 
it is not the purpose of this chapter to guess about what may happen), it is safe to 
assume that clinicians, as key users of many AIM systems, will again turn to the 
literature for evidence that will support the adoption of such software tools. Have 
they been well studied, with resulting peer-reviewed papers published in top jour-
nals? Are the results convincing? What would it mean to introduce such tools into a 
specific clinician’s practice environment? Would it be worth it?

Accordingly, this chapter looks at the general issue of how to evaluate AIM 
systems and other similar software tools intended for use in clinical settings. It is 
not the goal to tell readers how to design formal studies and to obtain funding to 
carry them out, or otherwise to provide an evaluation handbook. There are excel-
lent resources available that address such matters [1–3]. Rather the chapter offers 
a framework for anticipating and addressing the complex mix of issues that arise 
when designing and undertaking an evaluation plan for a medical software prod-
uct such as AIM decision support tools. For details, interested readers may want 
to delve into the subject of implementation science [4, 5] as well as Friedman, 
Wyatt, and Ash’s excellent summary of informatics evaluation methods, includ-
ing formal clinical trials [1], or Herasevich and Pickering’s recently revised hand-
book [3]. There is also a relevant literature that deals with statistical issues in 
clinical trials [6] and the assessment of cost-effectiveness [7]. Chapter 18 in this 
volume is focused on ethical issues in the application and evaluation of AI meth-
ods and medical applications, and there are many other thoughtful analyses of 
ethical issues in research, including arguments that ethical considerations should 
be more explicitly addressed even before research projects are initiated and 
funded [8].

 Framing Questions for Assessing an Evaluation Plan

AIM systems are generally developed in response to some human need. It might 
therefore be logical to emphasize the system’s response to that need in assessing 
whether it is successful. The AIM literature is accordingly replete with evaluation 
articles in which the primary focus is the system’s performance on the analytic task 
for which it was designed. Too often other aspects warranting formal evaluation are 
ignored, even though those issues are typically integral to the overall success and 
acceptance of the system.

 The previous section focused on the “why?” of such evaluations. This section 
provides a framework for the production of state-of-the-art evaluation data for AIM 
systems that can both meet performance and outcome goals and, ideally, establish 
a benchmark against which other similar systems can be evaluated. The framework 
addresses the needs for formative and normative (naturalistic) data and evidence. 
The initial formative work occurs in laboratories or controlled collaborative 
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settings. The naturalistic work occurs in the actual intended work setting, where 
routine usability can be assessed and formal experimental trials can be undertaken. 
A rigorous implementation and execution of the framework and process could then 
generate peer-reviewed quality science for top tier clinical, health services, health 
policy, and informatics journals. The suggested framework outlined in this section 
guides the discussions in the remainder of this chapter. It generally reflects similar 
evaluation frameworks that have been published elsewhere [9, 10].

In the early days of AIM research, perhaps most visibly in the medical expert 
systems community, developers realized that evaluation was not only important 
for documenting a system’s performance but that design and development should 
start with informal assessments that feed back iteratively into the ongoing evolu-
tion of the system [11]. Iterative design has accordingly become an accepted 
approach to system development that allows early tests to influence the subse-
quent design process, addressing concerns that had been unanticipated but that 
turn out to be crucial for successful performance, utility, or acceptance. This inter-
play between design of a system or application and the ongoing assessment of the 
developing solution is discussed in greater detail in the next section in this chapter 
(“Design and Iteration”).

Here we begin by considering the fundamental questions that guide the process 
of evaluation for AIM systems (as well as many other health information technol-
ogy applications) [12]. It is important to start by considering the “what?” as it relates 
to evaluation—an issue that is entwined with thinking about the nature of the devel-
opment effort and the ultimate goals. If the focus is on experimenting with a new 
methodology, then an emphasis on decision making performance is natural—an 
observation that no doubt accounts for the dominant types of assessments in the 
literature (accuracy or “correctness” of the results generated by a novel software 
system). But demonstrating the validity of a system’s decisions or advice is often 
only a small component of a much larger set of questions, especially as the system 
moves into clinical use or is part of a commercial product that will ultimately be 
sold to customers. It must be remembered that these systems will need to be incor-
porated into users’ work environments—typically in hospitals, clinics, or office 
practices.

Many systems ultimately fail to be adopted even though they produce accurate 
decisions, and the other factors that determine success accordingly need to be part 
of both the design and the evaluation plan. These evaluation steps must be antici-
pated at the outset, since they imply design features that may not feasibly be added 
to a product in the later stages. In AI systems, for example, if explainability and 
transparency are viewed as necessary components of the ultimate system, it is folly 
to ignore the issue at the beginning and to assume it will be possible to graft those 
capabilities onto an otherwise accurate system in the later stages. Features that will 
ultimately be needed may radically influence the design of the novel methods that 
are the primary focus. The implication is that the research and development process 
should begin with a clear sense of what the ultimate system will look like and how 
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it will be used, even though the details will likely evolve as the system itself does. 
The various evaluation requirements, which typically need to be addressed in a 
stepwise fashion, will then become clear and can be anticipated throughout. 
Subsequent sections on “Design and Iteration” and “Naturalistic Studies” address 
this issue in more detail.

Evaluation plans need to be well matched both to the issue being addressed and 
to the maturity of the system when it is being studied. Early studies are often infor-
mal since they are intended to help to expose unexpected limitations or failures of 
the developing tool. Later the process becomes more formal, controlled, and labor 
intensive. As is discussed in the section on “Cognitive Evaluation Methods”, the 
evaluation approach often requires cognitive studies (which can be crucial during 
the early design process but also are needed to ascertain just how users interact with 
systems, how they may be confused, and what they feel is helpful or extraneous). 
Epidemiologists and sociologists may be needed to help to assess the generalizabil-
ity of the results and the adequacy of the design with regards to potential biases. 
Statisticians and clinical trial experts are needed when the evaluations become more 
formal and extensive, typically in the later stages. And economists may need to be 
involved when cost-effectiveness studies are being designed or carried out. The 
implication is that, when optimally addressed, the evaluation of AIM systems is a 
collaborative effort that will benefit from the engagement of people with a variety of 
types of expertise.

Viewing AIM evaluation as a collaborative effort may sound overwhelming to 
the single researcher who has more modest goals when building an exploratory 
system using innovative methods. “Certainly,” they might argue, “it is possible for 
me to demonstrate that my program makes good decisions without bringing in a 
panoply of evaluation experts!” To some extent this is true, although the design and 
construction of an exploratory program will benefit from considering the kinds of 
issues that would need to be incorporated and assessed if the system were to advance 
to real-world use. It is never too early, for example, to worry about potential biasing 
in the selection of machine-learning datasets, algorithms, or the need for transpar-
ency and interpretability if the use model envisioned would eventually require direct 
interactions with users.3

The majority of published studies of AIM systems have emerged from academic 
research settings. The culture in academia tends to demand rigorous demonstration 
of an innovative technology or intervention, often in a series of studies that address 
more than one dimension of performance. The costs of such studies can vary greatly 
(with randomized controlled trials typically being the most lengthy, complex, and 

3 Recognition of this issue in the medical machine learning community has led to the notion of 
“silent deployment” of new algorithms after initial training has occurred. Such efforts can help to 
determine how well any final system might perform in the context of the information ecosystem in 
which it may eventually be applied (see, for example, recommendations on this subject that have 
appeared in the clinical literature [13]).
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expensive), but AIM investigators and developers have learned to incorporate evalu-
ation plans into their funding proposals so that formal assessments can be rigor-
ously pursued.

Curiously, commercial AIM products too often do not undergo the same kind of 
formal assessments.4 As a result, many observers have encouraged companies that 
are introducing software systems to work formally with collaborating academic 
units that can undertake unbiased studies and publish the results on behalf of the 
company. That is the model that dominates in the pharmaceutical industry, where 
university researchers and clinicians often carry out the evaluation of new drugs and 
publish the results, perhaps with developers from the company as secondary authors. 
It would enhance acceptance and validation of commercial software products if they 
were similarly assessed in an objective manner. Yet there is great variation among 
companies in how seriously they take such formal assessments, which one can 
argue are even more important throughout the development cycle of a commercial 
product than may be the case for a purely academic research project.

 Design and Iteration

The design of an AIM system or solution should begin with a clear view of the goals 
and use models that will drive the development. In large development efforts, even 
the design phase will ideally involve an integrated multidisciplinary team of 
researchers, developers, designers, subject matter experts, informaticians, and 
potential users. Their goal is to collaborate synchronously to develop, validate, and 
deliver prototypes to field testing. This is the “create” phase of the iterative design 
and development process (see Fig. 17.1).

Initial field testing is eventually undertaken in controlled real world settings—
the “demonstrate” phase in the process (Fig. 17.1). Such studies typically involve 
small-scale but rapid-cycle implementations and refinement. The focus is on safety, 
usability, user acceptance, integration with data sources (e.g., EHRs), impact on 
workflow, and the utility and acceptance of decisions or advice offered by the system.

When the demonstration phase has led to a stable system, it is time to undertake 
large-scale, real-world, confirmatory experimental studies. Ideally these are ran-
domized controlled trials (RCTs), potentially in community settings (controlled 
clinical trials, or CCTs), undertaken by independent high quality investigators. The 
goal is to produce rigorous peer-reviewed publications (the “prove” phase in 
Fig. 17.1). Even at this late stage there may be lessons learned that feed back to 

4 To complicate matters further, there is a need to continue to evaluate both research and commer-
cial systems even after their initial approval and deployment. It is important to verify that their 
performance remains consistent as knowledge advances or (especially in the case of machine 
learning applications) as data become available for subpopulations that may have been underrep-
resented in initial training and evaluation.
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1-Create
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development-

design

3-Prove

Confirmation

2-Demonstrate

Exploration

Fig. 17.1 Experiments and studies should be undertaken in a stepwise fashion (see text). Initial 
activities include the integrated discovery-design-development phase. This leads to the demonstra-
tion phase, involving small studies in real-world user environments. Subsequently experimental 
randomized controlled trials can be undertaken to confirm impacts in routine user environments. 
However, as technology evolves and real-world experience builds, the cycle typically begins again

stimulate design and development adjustments for the next version of the AIM sys-
tem or tool.

The individual steps within the three phases depicted in Fig. 17.1 need to be well 
understood, following the frameworks summarized in the section on “Framing Questions 
for Assessing an Evaluation Plan” and in other cited articles [9, 10]. In the earliest design 
stages it is necessary to identify the users who are likely to find value in the system being 
developed. What are their needs precisely? Will they acknowledge the need for the envi-
sioned system? How varied are the individual users envisioned? Do subgroups have 
special psychological or acceptance considerations? To answer such questions, it may 
be necessary to carry out observational studies, fully exploring the need for the envi-
sioned system and potential barriers to its acceptance (see “Cognitive Evaluation 
Methods”). Formal focus groups can also be useful in gaining insights about needs and 
attitudes of potential users. Workflow considerations are especially important. Valuable 
systems are often rejected if they are too time consuming or they interrupt processes that 
are central to the user’s responsibilities. It is also useful to define a robust set of user 
scenarios so that the developing system can adapt to a variety of use cases, thereby 
enhancing its utility and acceptance.

Such questions imply the early engagement of collaborators who can represent 
the perspectives and needs of potential users and stakeholders. In this sense the 
development of AIM systems falls squarely within the notion of team science.5 
Although traditional single-investigator driven approaches are ideal for many scien-
tific endeavors, coordinated teams of investigators with diverse skills and 

5 See https://www.nationalacademies.org/our-work/the-science-of-team-science. (accessed August 
14, 2022)
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knowledge are generally required for tackling complex scientific and societal prob-
lems such as the development of functional and accepted AIM systems.

For most systems, informal usability testing is part of the design and early 
implementation process, influencing the iterative formative development by pro-
viding early reactions that may lead to revised plans for the interface and the way 
the system offers advice. Over time, however, more formal and rigorous usability 
testing is required. The test subjects cannot be collaborators and should be drawn 
from the range of implementation settings in which the developing system is 
intended to be used. Furthermore, experience has shown that it is folly to attempt to 
add an interface to a system at the end of the development process since ongoing 
usability testing often leads to changes in the underlying system, not just to the 
interface itself.

There is a robust field of usability, human-computer interaction (HCI) 
[14–16] and human factors engineering (HFE) [17], combining formal techni-
cal computing skills with cognitive science expertise and an ability to anticipate 
how a given system will be perceived (see “Cognitive Evaluation Methods”). 
Subfields exist, some of which are derived from a specific application domain. 
Although general principles of usability apply in health care interface design, 
optimal systems generally require the engagement of individuals with special-
ized expertise in working with clinical systems. In addition, such work always 
requires interactions with real potential users before a system can be judged 
ready for implementation in the field or, for commercial systems, delivery to the 
marketplace.

Testing the validity of an AIM system generally requires assessing its decision- 
making performance. Such work may employ retrospective, cross sectional or pro-
spective methods. Initial testing of the system’s capabilities is generally done using 
retrospective cases due to the speed, lower level of complexity, simplicity from a 
human subjects’ perspective, and modest cost. It is of course also natural that the 
system should first demonstrate the quality of its advice before it is made available 
for prospective use with real patients.

Even in these early evaluation stages, study design for assessing the validity of 
conclusions should optimally provide for blinding of subjects, which eliminates a 
particularly important source of bias (making judgments about a computer’s 
advice when you know the decision is coming from a computer; see, for example, 
an early blinded study of therapeutic recommendations carried out by developers 
of the MYCIN system [18]). As a system matures and is ready for more extensive 
use in the real world, it also becomes important to assess whether there are differ-
ences based on country, region, level of training, and practice setting, generally 
using a standard set of real world cases. In academic settings where decision-
support research has occurred, positive studies of this type have generally been 
required before a system can be made available for use with real patients prospec-
tively. This type of study is commonly published in the peer-reviewed literature, 
as previously mentioned. This can help to provide the most rigorous and 
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persuasive evidence of the quality of a system’s advice and, in turn, the validity of 
the methodology that has been developed and implemented. The goal should be 
publishing results in top scientific or clinical journals.

 Cognitive Evaluation Methods

The field of human computer interaction (HCI) intersects cognitive-behavioral, 
computer, and information science. The major focus of HCI is with the evaluation 
of interactive computer systems for human use with the goal to deploy usable, use-
ful, and safe systems. Theories of cognitive science meaningfully inform and shape 
design, development, and assessment of health-care information systems by provid-
ing insight into principles of system usability, as well as the design of a safer work-
place. Usability includes five attributes: (1) learnability: system should be easy to 
learn, (2) efficiency: a user should be able to attain a high level of productivity, (3) 
memorability: features supported by the system should be easy to remember once 
learned, (4) errors: system should be designed to minimize errors, and (5) satisfac-
tion: the user should experience satisfaction.

In the earlier sections of this chapter, we have discussed very broadly a range of 
approaches that are generally used for evaluating a system’s usability. These are 
classified into field or observational studies, and usability evaluation methods that 
can be used in both field and laboratory settings. Formal usability testing is typi-
cally conducted in laboratory settings with user performance evaluated based on 
pre-selected tasks. Evaluation techniques where actual users are involved in the 
assessment process are often leveraged in naturalistic field studies.

Verbal think aloud methods are often used to capture rich verbal data on the 
thought processes that underlie human actions [19]. Several studies using verbal 
think aloud that investigated the nature of reasoning using clinical systems (and 
EHRs in particular), including the effects of expertise and decision-making, have 
been conducted by Patel and colleagues [20, 21]. During the think aloud process, 
the subjects’ statements regarding what they are thinking as they are doing their 
tasks are audio recorded, transcribed, and analyzed using methods of natural lan-
guage coding.

We have classified cognitive evaluation methods into two categories: analytic 
evaluation approaches and usability testing. Analytic evaluation studies use experts 
as participants—usability experts, domain experts, or software designers (see 
Fig. 17.2). Usability testing includes several approaches to capture data: interviews 
and focus groups, usability surveys and questionnaires, naturalistic observational 
approaches, and investigations of clinical workflow. Usability evaluation can be 
expensive in terms of time and human resources, and automation is a promising way 
to augment existing approaches. Automated capture of user data and automated 
analysis of these data can be achieved using modern computational methods for 
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Fig. 17.2 Broad classification of cognitive evaluation methods. In the case of usability testing, 
some methods are applied in the naturalistic setting (solid lines) whereas others may also be car-
ried out in experimental settings (dashed lines). (Adapted from [22], with permission)

evaluation such as sensor-based technology (e.g., RFID) and audit data logs (see 
Fig. 17.2).

When considering HCI, the interplay between technology and clinical cognition 
is important, as highlighted by an example drawn from a study in which an overdose 
of potassium chloride was administered through a commercial computerized pro-
vider order-entry (CPOE) system in an ICU [23]. The authors’ analysis of the 
error included the inspection of system logs, interviews with clinicians, and a cogni-
tive evaluation of the CPOE system involved. In this case, the system provided 
screen order-entry forms for medications with both intravenous drip (gradual 
administration) and bolus (rapid administration) orders for a patient – forms that 
appeared superficially similar. However, they required very different mental calcu-
lations to estimate dosage. Through the use of audit data logs, the authors found that 
the interface did not provide tools to assist the clinicians in their calculation of the 
proper current dosage. This overdosing case study exemplifies a larger problem: 
Decision support systems, as intelligent as they may be, too often fail to align with 
the mental processes underlying clinical decisions.

While there has been a significant recent focus on the usability of decision sup-
port systems, one of the less-explored aspects of usability is its impact on clinical 
workflow [24]. Using a combination of methods, we can categorize the specific 
aspects of EHR use that potentially deviate from the normal work activities of the 
clinicians and develop an understanding of how any negative deviations can poten-
tially be mitigated (see Table 17.1). By combining the richness of ethnographical 
methods with the strength of automated computational approaches for collecting 
data, Zheng and colleagues showed a mismatch between the EHRs designed to sup-
port clinicians and those clinicians’ actual day-to-day practice [25]. This  type of 
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analysis creates opportunities to calibrate the user interface design to align bet-
ter  with clinical workflow and with the clinicians’ (users’) model when solv-
ing medical problems.

The challenges associated with the clinicians’ use of EHRs are magnified in a 
dynamic, information-intensive, and collaborative setting due to the emergent nature 
of clinical work, characterized by uncertainty of patient conditions, and the frequent 
interruptions with multitasking in their work environment. As a result, small pertur-
bations through external interventions (such as the introduction of EHRs) can have 

Table 17.1 Evaluative  data collection approaches and analytic methods to assess  clinical 
workflow in the setting of EHR use

Method Method rationale Collected data Expected outcomes

Clinician 
Shadowing 
(Observation)

•  To understand ED 
workflow, roles, EHR 
use and team 
interactions in a 
temporal manner

•  Frequency of access 
of a patient file

•  Characterization of ED 
workflow elements 
within the context of 
EHR use, including the 
general sequence of 
steps and transition 
patterns in patient care 
delivery activities and 
interaction with EHR

•  To evaluate the degree 
of coherence or 
fragmentation of 
clinicians’ activities

•  Average time spent 
per patient file

•  Assessment of how the 
EHR system use 
changed (positive/
negative) clinicians’ 
information seeking, 
team interactions, and 
decision making

•  To identify critical 
bottle necks in the 
workflow

•  Frequency of 
additional activities 
(multitasking) 
physicians engage in 
while interacting 
with EHR

•  Frequency and 
average time spent 
on transitions 
between clinician 
activities and EHR 
use

Log-file data of 
EHR use 
[computational 
method]

•  To assess clinicians’ 
use and interaction 
with EHR

•  Clinicians’ 
interactions with 
EHR

•  Estimation of the time 
spent viewing and 
authoring EHR-related 
clinical documentation

• T o identify rate and 
time of authoring and 
viewing EHR clinical 
documentation

•  Rate of viewing and 
authoring files/notes

•  Assessment of patterns 
of EHR usage in ED by 
various clinicians•  Time spent viewing 

and authoring notes
•  Frequency of access 

to new vs. old data

(continued)
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significant detrimental effects not only on the timeliness and efficiency of the daily 
care activities, but also on the occurrence of medical errors and other adverse 
events. The methods illustrated in Fig. 17.1, for the case of EHR use, generalize for 
cognitive analytic approaches with other types of technologies, including AIM sys-
tems implemented in clinical settings.

 Delivery of Decision Support

Given the common emphasis on AIM systems as clinical decision-support tools, it 
is useful to consider different types of models for offering assessments or advice. 
Depending on the envisioned use model, the evaluation requirements may be some-
what different.

 Medical Device Data-Interpretation

Consider, for example, an area of AIM system development and testing that has 
been particularly successful in recent years. In this volume, Chap. 12 focuses on 
systems that use AI methods to interpret medical images (e.g., digital radiology, 
retinal photographs, and microscopic views of blood smears or pathological sec-
tions). Similar methods have been used in interpreting other non-visual signals, 
such as electrocardiograms (ECGs), electroencephalograms (EEGs), or alternate 
sources of physiological data. As depicted in Fig. 17.3, these kinds of programs are 
used to analyze streams of clinical data. Their output is an interpretive report, which 
is ultimately provided to the clinical team caring for the patient. Typically the clini-
cians do not interact with the computer themselves; they order a test and wait for the 
result to be reported to them.

Table 17.1 (continued)

Method Method rationale Collected data Expected outcomes

RFID 
Sensor-based 
Location data 
[computational 
method]

• To identify instances 
of team interactions 
(e.g., team formation 
and team dissipation) 
and work activities in the 
ED throughout stages of 
implementation

• Frequency and 
duration of team 
formations and 
dissipations (number 
of contacts)

• Analysis of interactivity 
patterns among clinicians 
and among clinicians and 
patients within the context 
of EHR implementations

• To identify drivers of 
inefficiency in 
clinicians’ workflow 
processes in the ED

• Time-stamped 
locations of clinicians 
at 3–5 second intervals

• Change in this pattern 
over time

• RFID distance 
traveled between 
clinicians’ activities
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e.g.
• Electrocardiogram
• Electroencephologram
• Radiologic images
• Microscopic images

Deliver to clinician

Well accepted: May be reviewed first by expert;
clinician decides how to use result

Medical-Device Data Interpretation

Decision-specific
clinical data (e.g.,

from measurement
device)

Software produces
interpretive report

Clinician verifies
interpretation and

incorporates it into decision
making process

Fig. 17.3 Some software systems offer decision-support by interpreting streams of data and pro-
viding written interpretations to the clinical team. Since this workflow corresponds to a familiar 
process (order a test and get a result that can be verified by examining the data), such applications 
tend to be well accepted and there are no major usability issues

In such applications, in addition to the interpretive report, there is a depiction 
of the primary data (the X-ray film itself, a retinal photograph, a 12-lead ECG 
tracing, etc.) and clinicians (or their expert consultants) have a natural mecha-
nism for assessing whether the report from the computer is persuasive. They can 
look at the primary data (i.e., look at the film or the ECG tracing) and ask them-
selves whether the computer’s assessment is well aligned with their own sense 
of what is going on with the patient and the data stream being assessed. In many 
settings, an expert in the discipline (e.g., a radiologist in the case of chest X-ray 
interpretation, or a cardiologist for ECG reports) will sign off on the computer’s 
interpretation before the report is provided to the ordering clinical team. In such 
settings, the use model for the clinicians is not radically different from what they 
experienced before computer interpretations were introduced. Thus evaluations 
of usability and acceptance are different—and much more limited—than they 
need to be when the clinicians are directly using the program themselves.

 Event Monitoring and Alerts

A second decision-support model is commonly used in medicine today, especially 
in settings where EHRs and order-entry systems are in routine use by clinicians. 
Event monitoring applications, which lead to alerts or warnings, are simple in their 
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Event Monitoring and Alerts

Repository for clinical
information on a

patient (e.g., EHR)

Event
monitoring
software

Knowledge
base of what
to watch for
(e.g. rules)

Interface to clinician
for chart review and

order entry

Decision support:
• Warnings
• Alerts
• Guidance

If: patient is receiving
   digoxin and serum
   potassium is low
Then: warn physician
          that patient may
          require potassium
          replacement

Fig. 17.4 A commonly available decision-support approach is the embedding of logical criteria 
for generating warnings, alerts, or guidance. These are delivered to clinicians when they are using 
the EHR to review patient data, to write notes, or to enter orders (e.g., for lab tests, medications, or 
diagnostic studies). A knowledge base of simple rules is applied prospectively as new data enter a 
patient’s record. When the conditions in a monitoring rule are met (see a simple example for advis-
ing  potassium replacement in the figure), a warning or alert is generated and delivered to the 
responsible clinician (generally during a routine interaction with the computer system, although 
there are methods for delivering urgent warnings by other means such as text messages to the clini-
cian’s mobile phone)

logic but can be useful if implemented well (see Fig. 17.4). In these cases, the soft-
ware system (which typically uses an encoding scheme such as the Arden 
Syntax6—a standard method for representing knowledge in brief rules and infer-
ring decisions) is tightly integrated with the clinician’s use of existing software 
systems. As new information is recorded in the patient’s record, monitoring soft-
ware checks to see if any of the rules’ conditions are satisfied. If so, the system 
responds by generating a suitable alert or warning that is delivered to the respon-
sible clinician. Simple examples include alerting a physician to the implications of 
a lab result (see the white box example in Fig. 17.4) or warning the physician about 
an allergy to a newly prescribed medication or a potential interaction between a 
new drug and other medications that the patient is receiving. When an alert needs 
to be delivered urgently, the system may not wait until the physician is next using 
the EHR but may send a warning message to the clinician’s mobile phone or to 
other staff members.

The implementation and evaluation of alerting applications are quite different in 
their implications than is the case for most advanced, and more complex, AIM 

6 The Arden Syntax: https://www.hl7.org/implement/standards/product_brief.cfm?product_
id=2. (accessed August 14, 2022)
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systems. However, the design and testing of such capabilities clearly involves many 
of the steps discussed earlier in this chapter: assessing clinical need, determining 
usability and acceptance of the delivery of such warnings, validating the decision- 
making content of the rule-set, and considering the value and impact of such warn-
ings when they are delivered.

 Direct Consultation with Clinical User

A third model of decision-support delivery was the dominant approach in the early 
development of AIM systems. Programs such as MYCIN and INTERNIST-1 (see 
Chap. 2) were conceived as consultation systems, i.e., as programs to which a physi-
cian would come for expert consultation. Although developing the knowledge bases 
and reasoning engines was complex, the use model was very simple: enter into a 
computer-based (keyboard) interaction with a clinician who would present the case 
and ask for the program’s advice or assessment. In the 1970s, before the introduc-
tion of EHRs, personal computers, local area networking, or data standards, there 
was no other realistic model for developing and testing such decision-support capa-
bilities. Furthermore, graphical interfaces had not been introduced yet, so the inter-
action was dependent on having users type at a keyboard rather than using pointing 
devices (e.g., a mouse). This consultation model continued in the AIM development 
community for several years (see Chap. 2), as depicted in Fig. 17.5.

The consultation model as shown in the figure was ultimately discarded as com-
putational capabilities and human-computer interaction approaches naturally 
evolved in subsequent decades. Clinicians questioned why they should need to pro-
vide data to the computer system when they knew that the answers to most of the 
questions were available on other computers in the hospital or clinic. They felt that 
“smart” advisory programs ought to be much more aware of that environment and 
of the additional data sources on which they could draw. The original consultation 
model was viewed as being akin to a Greek Oracle approach,7 which by 1990 was 
viewed as unrealistic for busy clinicians and had been largely rejected [26]. What 
replaced it was a growing sense that decision support should be offered as a byprod-
uct of ongoing workflow with other existing computational tools, such as EHRs and 
order-entry systems, much like the view implemented for event monitoring applica-
tions (Fig. 17.4). A cooperative interplay between clinicians and advisory programs 
that anticipated physicians’ needs, and respected their time, became the dominant 
model (see Fig. 17.6).

Much of the discussion in this chapter has envisioned AIM systems of the type 
shown in Fig. 17.6. As is shown in the list at the right side of the figure, a number of 
issues are crucial considerations in the design and implementation of such advisory 
tools that are intended to function collaboratively and respectfully with clinician 

7 https://www.historyanswers.co.uk/ancient/oracle-of-delphi/. (accessed August 14, 2022)
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Fig. 17.5 Early AIM 
systems typically offered 
consultative advice to 
clinicians. The interaction 
required data entry by the 
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direct response to queries 
from the computer, and 
culminated in an 
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Fig. 17.6 Today the dominant model for AIM systems that interact directly with clinicians is to 
integrate such guidance with the normal workflow as the physician interacts with EHRs and order- 
entry systems. Pertinent data to support the advice or guidance can largely be derived from the 
patient’s data available in the EHR or other clinical systems. The “Greek Oracle” model of 
Fig. 17.5, shown at the upper right of this diagram, has largely been discarded. A number of issues 
affect the success of applications that follow the current model, as shown in the bulleted list
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users. Many of those issues have been mentioned earlier and have been discussed by 
us in greater detail elsewhere [27].

In summary, the envisioned delivery mechanism for an AIM system’s advice or 
analysis is a crucial element in designing an evaluation plan and testing all pertinent 
aspects of the program’s performance. Although much of this work can initially 
proceed in controlled test environments, leading to the iterative feedback process 
described in the section on “Design and Iteration”, ultimate rigorous evaluation 
needs to move to a real-world use environment. As is described in the next section, 
such work needs to proceed in a step-wise fashion because of the dependencies that 
exist among the features and characteristics that need to be assessed. This process is 
outlined in the following section.

 Naturalistic Studies

Much of the preceding discussion has focused on the need for iterative evaluation 
and development in a controlled or laboratory setting. As has been emphasized, the 
development of use scenarios is part of the early design and implementation work 
because such efforts can help to predict capabilities that may be crucial to accep-
tance of a system by intended users. Early informal usability testing can assist this 
process. Thus there are several development and evaluation steps that must be com-
pleted before a system is put into clinical use. These are reflected in the “initial 
work” portion of the step-wise process outlined in Fig. 17.7.

However, once a system is implemented for routine use in an experimental 
clinical setting, summary evaluations of its usability and acceptability are needed. 
Formal usability testing, with real users who are going about their routine duties, 

Initial work

Validity and reliability of
core technologies

Validity of advice

Acceptability to users Impact on user behavior

Impact on patient outcome

Cost effectiveness

Impact on population health

Usability

Integration with
workflow

Retrospective and/or laboratory
Real-world clinical evaluation

Naturalistic

Fig. 17.7 The initial work on an AIM system involves several evaluation steps in a laboratory or 
controlled setting (see the sections on “Framing Questions for Assessing an Evaluation Plan”, 
“Design and Iteration”, and “Cognitive Evaluation Methods”). These include validation of the 
methodology (decision-making performance) and assessments of usability and impact on work-
flow. When the system moves into real-world clinical use (i.e., a naturalistic setting), there are a 
series of step-wise evaluation questions, each of which depends on encouraging results from the 
previous stage (see text). Among these, the system’s impact on patients and their clinical outcome 
is paramount
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is key and often uncovers issues not previously anticipated. Thus usability and 
workflow assessment is a process that begins in the laboratory environment prior 
to implementation (through work with collaborating representatives of the 
intended user community, who can help to anticipate and assess how the system 
will be used and integrated when moved into routine use). However, such work 
ultimately needs to be continued, validated, and solidified in real world clinical 
settings.

 Is the System Accepted by Users?

In the naturalistic setting, with introduction of a system for routine use on real 
patients, the first question that needs to be assessed is whether the intended users 
will actually accept and utilize the decision support being offered. A negative 
assessment of this issue clearly requires a return to the development process so that 
a revised version can be made available and subsequently evaluated to see if the 
system now is embraced by the users. There is no need to look for beneficial behav-
ioral change on the part of users if they have already ignored or otherwise refused 
to use the system.

 Does the System Have a Positive Impact on User Behavior?

Once a system’s acceptability from a usability perspective has been demonstrated in 
the clinical environment, it becomes necessary to assess how it is actually used by 
busy clinicians. Do they use it routinely? If not, when do they choose to use it? 
When it offers advice, are the recommendations accepted and acted upon? When its 
advice is not followed, what is the explanation offered by the user?

Answering such questions requires formal experimental (including cognitive) 
work. The results of such studies may be disturbing and may uncover problems 
that require changes in the system’s design or implementation. The goal of such 
evaluation work is to discover whether physicians or other users actually follow 
the advice that it offers, or whether they change their approach in some other way.

Such concerns are not hypothetical. Implementers of clinical systems often 
bemoan the failure of their carefully developed decision-support capabilities to 
influence the actual decisions of clinicians. For example, consider the alerting 
systems previously discussed (Fig.  17.4). These systems warn clinicians about 
potentially significant concerns such as pertinent drug allergies or abnormal lab 
tests (suggesting that a given treatment should be avoided). Yet studies show that 
a large percentage of such alerts (well over half in most studies) are ignored by 
clinicians [28, 29]. Sometimes they ignore the warnings for good reasons, but 
sometimes they appear to have been simply too busy or too distracted to pay 
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attention. Thus, it cannot be assumed that clinicians will be influenced by a sys-
tem’s advice, even if they regularly use it as part of their routine assessment of a 
patient. Unless the system is actually affecting user’s decisions, there is little point 
in undertaking studies at the next stage (Fig.  17.7) to determine its impact on 
patient outcome.

 Do Patients Benefit When the System Is Used?

Once formal studies have shown that a system is used and accepted by clinician 
users, and that user behaviors (decisions) have been influenced positively, it is time 
to assess whether patients are benefitting from the introduction of the AIM tool 
into their care environment. A formal randomized control trial (RCT) is the pre-
ferred standard for validating new clinical interventions, but the approach was 
conceived to deal with conventional medical treatments (usually new drugs or 
devices) and is not easily matched to the evaluation of a decision-support tool. 
RCTs require careful design, avoidance of bias, and control for potentially con-
founding variables. They also require approval by human subjects committees 
(also known as Institutional Review Boards, or IRBs), where risk to subjects is 
considered, along with attention to patient privacy and informed consent. They can 
be expensive to carry out and, depending on the end points of interest, can take 
years to complete.

In the area of clinical decision support, remarkably few prospective RCTs of a 
computer system have been carried out or published. In fact, it is difficult to find any 
such trials in the literature (there are a handful but they were performed in very 
limited settings). Even the notion of randomization can be difficult to include in the 
design of such evaluations. Since the subject of study is as much the clinician as the 
system itself, it is generally not feasible to design an effective evaluation protocol 
that randomizes patients being seen by that clinician. Random assignment of clini-
cians can be attempted (i.e., those who do or do not receive access to the system), 
but there are substantial opportunities for undesirable crossover effects as physi-
cians using the system may well share their experiences and reactions with other 
physicians who are not assigned to the study group. As a result, the design of AIM 
system evaluations may not permit formal RCTs, but great care has to be given to 
designing protocols that avoid biasing or crossover effects. Even comparing two 
institutions (one with the system and one without) may not work well since no two 
organizations are identical and there are many other factors that may prevent them 
from being comparable (e.g., patient mix, accepted insurance, staffing issues, and 
the like).

As has been noted, such trials cannot be initiated until prior studies have been 
done to demonstrate the quality of other aspects of the system’s capabilities. This 
provides reassurance to IRBs that the system is ready for a prospective trial with 
real patients and helps to assure investigators that a formal trial has a chance of 
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demonstrating a positive impact of the computer program. Results of the prior stud-
ies undertaken, as have been previously described in this chapter, will generally be 
required by IRBs as they seek to address various concerns regarding the decision- 
support program (Box 17.1).

Finally, once such trials are initiated, it should be noted that it may take a long time 
before sufficient statistical power can be achieved to document differences in end 
points depending on whether the system was or was not used. And the end points 
themselves may be highly variable. For example, it may not take long to determine 
if a patient has recovered from an acute illness when treated in accordance with an 
AIM system’s recommendation, but patient remission or survival when they are 
being managed with the aid of an AIM tool in oncology, for example, may take 
much longer to assess.

 Is Any Positive Outcome Worth the Associated Expense?

Note that after a positive trial, there will typically still be a need for cost- effectiveness 
analyses to demonstrate that the benefit provided by the system justifies the finan-
cial cost associated with its use. Similarly, as competing systems enter the market-
place, comparative-effectiveness studies may also be required to establish whether 
one provides superior benefit, either overall or in specific settings or 
circumstances.

Box 17.1 Evidence Typically Required Before Human-Subjects 
Committees (IRBs) Will Approve Trials of AIM Systems on Real 
Patients

• Evidence of the precision, accuracy and reliability of its key component 
technologies (e.g., the system’s ability to identify and retrieve relevant evi-
dence, its medical logic, and its underlying technical capabilities such as 
machine learning or natural language processing)

• Evidence that the program gives advice that is similar to or better than the 
usual standard of care (tests of system validity on test cases, where often 
the standard for comparison is what expert clinicians think about the 
same cases)

• Evidence that the program is ready to be used in the ongoing care of actual 
patients in practice settings

• Evidence that the intended users (typically physicians) will find the system 
helpful, transparent, acceptably usable, and effectively integrated with 
their workflow and with other systems that they use

• Evidence that, when used, the system in turn positively influences the deci-
sions that users make about a patient

E. H. Shortliffe et al.



499

 Do All Patients Benefit? What Is the Impact on the Population 
as a Whole?

Policy makers must generally make decisions based on the overall impact of a tech-
nology on population health—especially if use of a system or capability is likely to 
become the standard of care and to be reimbursed by insurance providers. The asso-
ciated analyses to answer such questions are not typically undertaken by the devel-
opers of an AIM system, but they may affect the ability of the population, and the 
health system as a whole, to benefit from the innovations they have developed. See 
the discussions of regulation and ethics in Chap. 18 for more details on these issues.

In summary, evaluation experiments and formal studies need to be undertaken in 
an order that will eliminate confounding variables in a stepwise fashion (Fig. 17.7). 
The early studies should be undertaken in controlled “laboratory” settings and may 
be retrospective. Laboratory settings include the iterative design phase as well the 
demonstration phase of the technology in small studies in real world user environ-
ments. After positive results are obtained in the controlled setting, experimental 
trials can be undertaken to confirm the system’s impact in client environments 
(usability acceptance, impact on behavior, and benefit to patients).

 Additional Considerations

The discussion in this chapter has tended to focus on AIM systems designed to pro-
vide decision support to health professionals in clinical settings. However, as this 
book illustrates, there are many other potential use settings and models for AI pro-
grams designed to assist in biomedical research and clinical practice. Furthermore, 
not all users of AIM systems are health professionals. There is also a burgeoning set 
of research projects and commercial products that are focused more on use by 
patients and the public. The telehealth phenomenon has provided opportunities to 
use AI methods to handle the interface with patients, managing the interview and 
even offering guidance to the clinician at the other end of the link. With various 
wearable health monitors, there is also a rapidly growing set of opportunities to use 
AI methods to analyze such data streams and to provide “intelligent” feedback to the 
individual. In clinical environments, wearable data sources are becoming just another 
data stream, with opportunities for AI tools to merge information from EHRs with 
these new data sources in order to provide novel kinds of assessments and advice.

Although these additional opportunities for AIM systems exist, the need for for-
mal evaluation remains. The principles outlined in this chapter can be adapted to 
address this need, and it is accordingly important for all AIM researchers and devel-
opers to carry out well designed evaluations. Anecdotes and impressive demonstra-
tions are not enough. Rigorous assessment and publication will continue to be 
crucial as the field further matures and seeks to demonstrate its role in the care of 
individual patients and the overall health of the population.

17 Framework for the Evaluation of Clinical AI Systems
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Questions for Discussion

• What approaches will best guide a system’s design and implementation so that 
the eventual naturalistic requirements for acceptance and impact are considered 
from the outset?

• How should the individual AIM researcher, or a small group, deal with the team 
science implications that are discussed in this chapter as being pertinent for coor-
dinated design, implementation, evaluation, and feedback?

• After reading the FDA action plan, “Artificial Intelligence and Machine Learning 
in Software as a Medical Device”, referenced in a footnote early in the chapter, 
how would you characterize the proposal, its utility, and potential barriers to its 
successful implementation?

• How does a poorly designed EHR implementation contribute to disruptions to 
clinical workflow? What approaches are most appropriate to study EHR imple-
mentation and clinical workflow?

• Why have commercial AIM systems tended to be evaluated less formally and 
rigorously than systems developed by academic AIM researchers? What are the 
implications of your observations?

• Consider the three large categories of decision-support systems discussed in the 
section on “Delivery of Decision Support”. The need for explanation capabilities 
was stressed for the third category (Direct consultation with the clinician user). 
Would the first two categories benefit from incorporation of explanation capa-
bilities? What are the implications for the underlying analytical methods that 
would need to be explained?

• Can you develop a summary diagram that would summarize the steps in AIM 
design, development, testing, introduction, and evaluation that also accounts for 
the feedback and iterative aspects of the process?

Further Reading

Friedman CP, Wyatt JC, Ash JS. Evaluation methods in biomedical and health infor-
matics. 3rd ed. Cham: Springer; 2022. 557 p.

• This volume has become a standard reference on the broad range of issues that 
arise when designing and undertaking both formal and informal studies of health 
information technology applications. The content is broadly applicable to AIM 
systems evaluation as well.

Herasevich V, Pickering BW. Health information technology evaluation handbook: 
from meaningful use to meaningful outcomes. 2nd ed. London: Productivity Press, 
Taylor & Francis; 2021. 200 p.

• A useful and practical guide to the evaluation of clinically oriented technological 
tools. Using case studies to illustrate key points, the volume covers study struc-
ture and design, measurement fundamentals, results analysis, communicating 
results, guidelines development, and reference standards.

Buchanan BG, Cooper GE, Friedman CP, Gardner R, Haynes RB, Schoolman HM, 
et al. Evaluation of knowledge-based systems: report of a workshop at the National 
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Library of Medicine. Bethesda, MD: National Library of Medicine; 1995. p. 35. 
http://www.shortliffe.net/docs/Evaluation- of- Knowledge- Based- Systems- 1995.pdf.

• Although never formally published and for only a few years available online 
from the NLM as a workshop report, this document is an excellent summary of 
recurring issues, and resulting approaches, that help to define a framework for 
the evaluation of AIM systems. As noted (see above URL), a copy has been made 
available on the Internet for general access.

Clarke K, O’Moore R, Smeets R, Talmon J, Brender J, McNair P, et al. A methodol-
ogy for evaluation of knowledge-based systems in medicine. Artif Intell Med. 
1994;6(2):107–21.

• In this journal paper, which focuses specifically on knowledge-based AIM sys-
tems, the authors describe an iterative, four-phased development evaluation cycle 
framework that covers: (i) early prototype development, (ii) validity of the sys-
tem, (iii) functionality of the system, and (iv) impact of the system.

Park Y, Jackson GP, Foreman MA, Gruen D, Hu J, Das AK. Evaluating artificial 
intelligence in medicine: phases of clinical research. JAMIA Open. 2020;3(3): 
326–31.

• This paper proposes an interdisciplinary, phased research framework for evalua-
tion of AI implementations in health care. It draws analogies to, and highlights 
differences from, the clinical trial phases for drugs and medical devices, present-
ing a study design and methodological guidance for each stage.

Reddy S, Rogers W, Makinen V-P, Coiera E, Brown P, Wenzel M, et al. Evaluation 
framework to guide implementation of AI systems into healthcare settings. BMJ 
Health Care Inform. 2021;28(1):e100444.

• This recent paper, like the paper by Park, Jackson, et al., is motivated by the need 
for a general framework that can guide the evaluation of AIM systems. It pro-
vides useful suggestions that complement those offered in the previous paper.

Fox J, Das S.  Safe and sound: Artificial Intelligence in hazardous applications. 
Cambridge, MA: AAAI Press; 2000. 325 p. (American Association for Artificial 
Intelligence).

• This book describes, from both practical and theoretical perspectives, an AI tech-
nology for supporting sound clinical decision making and safe patient manage-
ment. Fox and Das insist that the same intelligence (artificial and human) must 
be applied to guaranteeing safety as to assuring acceptable task performance.

Patel VL, Kannampallil T, Kaufman D, editors. Cognitive informatics in health and 
biomedicine: human computer interaction. London: Springer; 2015.

• This edited book addresses the key gaps in the applicability of theories, models, 
and evaluation frameworks of HCI and human factors for developing safer sys-
tem design in biomedical informatics.
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Norman DA. Things that make us smart: defending human attributes in the age of 
the machine. Reading, MA: Addison-Wesley Pub. Co; 1993.

• This book addresses the complex interactions between human thought and the 
technology it creates, arguing for the development of machines that fit our minds 
rather than accepting the notion that minds must conform to the machine.
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Chapter 18
Ethical and Policy Issues

Diane M. Korngiebel, Anthony Solomonides, and Kenneth W. Goodman

After reading this chapter, you should be able to offer answers to these 
questions:
• Why is it important to employ an ethics-sensitive approach throughout the devel-

opment and evaluation of artificial intelligence (AI)?
• What are some of the tangible benefits of incorporating applied ethics when cre-

ating AI products and systems?
• Who are stakeholders and why are they important for ethical AI development?
• What are the key components to consider when assessing fairness?
• What are some critical elements of good governance?

Artificial Intelligence (AI) is one of the most exciting technologies to emerge from 
computer, logic, and cognitive sciences. It has also engendered unprecedented pub-
lic, professional, and official debate. In its application to health and medicine, it has 
been paralleled by an extraordinary effort to identify and address complex ethical 
issues. It has become clear that the success of AI in patient care and research is 
dependent on the success of this effort to address software quality and standards, 
governance, explainability and interpretability, transparency and accountability, 
human control, and bias and fairness. The tools of applied ethics are identified as 
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essential if the growing use of AI is to be trusted and trustworthy and therefore to 
achieve the benefits for which its promoters, developers, and users hope.

This chapter provides an overview of the most important ethical issues that arise 
when intelligent machines are used in health care; suggests a number of stances and 
practices to ethically optimize those uses; and addresses some of the leading public 
policy issues.

 Introduction to the Utility of Applied Ethics

Applied ethics is the practical application of critical thinking about values to 
address and resolve real-world moral issues. For half a century, the tools of applied 
ethics have helped guide the world’s health institutions and practitioners in efforts 
to address challenges arising in the design and use of new technologies. From organ 
transplantation and gene therapy to extracorporeal membrane oxygenation and arti-
ficial intelligence, the questions about whether, by whom, and under what circum-
stances a new technology should be used have been guided by applied ethics.

The skills used by scholars to address these issues are akin to those we teach 
students of medicine and nursing when we introduce the concept of a differential 
diagnosis. All must answer these questions: What are the facts, what explains 
them, what more do you want to know, what can be done, what should be done? 
Ethics is unlike clinical practice, however, because there is no experiment or test 
that can give the right or best answer. Rather, a suite of analytic skills is required 
to identify the issue at hand and to derive the most appropriate course of action. In 
the case of artificial intelligence in health care, a key step—identify the issues—
has already been taken. Indeed, in a strikingly short time, the world’s scholars have 
done an extraordinary job of identifying the ethical issues raised by computer 
algorithms that revise themselves in response to new data and information. In an 
AI world, we have come swiftly to know that machine learning tools can be biased, 
make “decisions” that are difficult or impossible to explain, and alter traditional 
human relationships. We also learned, nearly a half-century ago, that it might be 
blameworthy not to use a tool that can improve health, reduce suffering, or prolong 
life [1]. The challenge is to identify appropriate uses and users of the tools to 
achieve the most good without collateral damage, and much of the bioethics litera-
ture consists of analyses of benefits, risks and harms, and attempts to balance them.

 Software Engineering Principles, Standards 
and Best Practices

We begin with a brief review of the role of sound software engineering practice and 
describe an ethics approach to the engineering of artifacts, including intangible 
products such as software. Though AI systems may include substantial hardware 
components, as in robotics, their most important feature is often the software that 
encapsulates their “intelligence.”
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 Software Engineering of Dependable Systems

The software development process begins with an assessment of needs, wants, and 
feasibility of a technical solution, followed by a comprehensive requirements analy-
sis that reflects all stakeholder roles, including inanimate participants, such as the 
environment, and expected interactions with users, bystanders, and other actors. 
Agreed requirements and boundaries of the proposed system will lead to design 
alternatives, depending on the preferred development methodology. For more com-
plex systems, components and their interactions must be determined and prototyped 
before full-scale translation into code. Good systems development principles 
encompass built-in protection and security-by-design, consistency of version con-
trol, and thorough documentation with traceability of design and development deci-
sions. The design of the “surfaces” of the system—the user interfaces—should be 
based on sound human-computer interaction principles, with due attention to differ-
ent users’ cognitive styles and to accessibility.

 Ethics in Good Engineering Practice

Several branches of applied ethics touch on the software development process just 
described. The analysts, designers, developers, testers, and deployment and integra-
tion engineers are all bound by one or more codes of professional ethics, often tied 
to a professional association or society through which they receive initial and con-
tinuing accreditation. Data ethics, including principles of privacy (such as a “mini-
mum necessary” precept), confidentiality (e.g., an “only need-to-know” basis for 
disclosure), and protection (“do no harm”), will also apply throughout. A fair sys-
tem would also not privilege one group of users over another without good cause, 
such as a transparently made and disseminated decision to address healthcare ineq-
uity or disparities, nor will a fair system restrict users’ choices unnecessarily. With 
an increasing trend in the sharing of code developed in communities of practice, 
respect for intellectual property rights also becomes a focal issue. This extends to 
acknowledgement of reuse of another group’s program code, sharing enhancements 
as promised under a Creative Commons license, and not importing ideas or artifacts 
“borrowed” from a previous employer unless they are published openly and can be 
acknowledged as a source.

 Why Context Matters

Knowledge-based and machine learning AI systems are conceived, developed, and 
deployed to perform useful functions, even when they are created merely as a proof 
of concept. What makes such a system fit for purpose? By its very nature, AI would 
not be effective if not trusted, would not be readily trusted if it issues obscure or 
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implausible decisions, or is suspected of built-in undisclosed interests or biases. The 
human operator of any such AI system therefore plays a crucial role.

 Trust and Trustworthiness

It is difficult to earn trust and very easy to lose it. Trust cannot be earned without 
trustworthiness being established first. Three main areas are crucial for fostering 
trust in the development of an AI system. First, the importance of stakeholder 
engagement: stakeholders should be defined broadly to include those who have 
an impact on the choice and development of the AI tool or system and those who 
are affected by it, keeping in mind that these two groups may not be discrete [2]. 
For example, clinicians may assist in AI development and comprise the group 
using the system [3]. When there are many stakeholders to consider, it may be 
necessary to prioritize those whose influence should be greatest (e.g., those with 
much-needed expertise) as well as those likely to be affected the most (e.g., 
departments expected to implement the AI system, and the different profession-
als—physicians, nurses, etc.—in those departments). The perspectives of patients 
and their advocates must also be considered. For example, if one is designing a 
mortality prediction AI system, then one should gather insights from family, 
caregivers, and social workers, as well as from palliative care clinicians and spe-
cialists in hospital medicine. Of course, not all stakeholder groups can be con-
sulted, but it is part of a developer’s due diligence to identify and engage key 
stakeholders.

Second, all decisions and their rationales must be documented, beginning with 
why the development of the AI system is important in the first place. Whether the 
model is black box (e.g., deep learning), white box (e.g., a fully curated decision 
tree), or gray box (e.g., a machine learning model with some handcrafted features), 
everything that can be documented should be documented (see also the section on 
Transparency and Chap. 8’s discussion of explainability). This is vitally important 
to support and foster accountability, a key priority for AI implementation [4], and 
one that should be as much of a focus as transparency [5].

Third, the boundaries of the AI system must be carefully considered and the 
purpose of the AI tool should be made clear. Examples and use cases should be 
included, with conditions under which the system might be repurposed, and 
instances where the system should not be repurposed [6]. In documenting these 
important limitations, examples of uses that are out-of-scope are also of value. This 
detailed attention will ultimately support liability regulations as they evolve. 
Although the widespread use of automated intelligence may be on the horizon, AI 
in health and healthcare delivery is best served by designing AI systems to support 
human decision-making [7]—at least until better governance mechanisms are in 
place, informed by a range of complementary studies—including additional research 
in ethics and implementation.
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 Explainability and Interpretability

Classical, knowledge-based AI systems are rule-based and deterministic, incorpo-
rating lexicons, ontologies and inferences embodying the knowledge of human 
experts (see Chaps. 4 and 10). In particular, it is possible in such systems to reverse- 
engineer the trail of inferences to provide an explanation of the machine-generated 
decision. More recently, deep learning-based and connectionist AI systems incor-
porate or develop knowledge from large volumes of labelled examples, so that rules 
cannot easily be derived and expressed in simple terms. For such systems, the 
related concepts of explainability and interpretability are less direct and are 
defined differently [8]. Explainability is the ability to provide a reasonably complete 
logical explanation of the outcomes of an AI system (e.g., a diagnosis or prediction) 
through an understanding of its decision process [9]. One concern of black box, 
deep learning models is that complete explainability is only achievable at the most 
abstract of levels, and requires understanding the principles of deep learning. 
Interpretability, on the other hand, reflects how intuitive an AI system’s outcomes 
are to its users. One can think of it as simplifying explainability to the point that 
those with non-technical expertise can follow, or infer, the “why” of an AI model’s 
outcome. Subject to certain caveats, complete explainability—expert understand-
ing—may not be necessary for clinicians to benefit from the appropriate integration 
of AI into healthcare delivery; however, interpretability is a necessity. If AI develop-
ers have documented all the steps in the AI creation process, then a pared-down 
explanation in language accessible to non-specialists should be achievable. A more 
detailed description for experts must also be created, drawing on the documentation 
and audit trail created during the development process.

Efforts to merge or link knowledge-based and machine learning approaches are 
the focus of ongoing research. Indeed, more research is needed to understand stake-
holder needs regarding both explainability and interpretability, but at the minimum 
(and until we know more) developers should provide documentation both to meet 
the anticipated needs of experts (e.g., other biomedical AI specialists) and non- 
specialists, such as clinicians and patients.

 Transparency

Transparency should be a key feature throughout the AI creation process, demon-
strating that the development team has considered the ethical implications of their 
product throughout its design [10]. Transparency is closely related to fairness—
without transparency during the AI design process, one cannot sufficiently assess 
fairness [11] and some recommend making information about predictive algorithms 
fully available [12]. One simple way to support transparency is to document every 
step, decision, and major action in the development pipeline, starting with the ratio-
nale for developing an AI model in the first place. Is the model intended to address 
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a specific need or because it seems like an interesting idea to explore? The purpose 
for designing a specific AI system should be explicitly stated at the outset, in this 
conceptualization stage. Defining expected in-scope and out-of-scope uses will help 
ensure that the development team is mindful of the system’s purpose throughout the 
process.

Early consideration of scope also helps identify stakeholders. For example, if the 
system is intended to predict mortality, those knowledgeable about the clinical work-
flow can provide valuable insight [13]; risk managers and compliance officers might 
help guide appropriate deployment [14]. In particularly sensitive areas such as end-
of-life care, the healthcare institution’s ethics committee and any patient engagement 
or stakeholder advisory boards should weigh in on critical decisions [15]. 
Transparency should be a design feature from the outset [16]. Conducting and docu-
menting stakeholder engagement also demonstrates thoughtful deliberation and com-
mitment to providing appropriate stakeholders with a means to judge the robustness 
of the development process. Articulating appropriate uses and users of the system 
could prove critical to AI development and use as a “standard of care” tool; this is 
especially important as AI system oversight, governance, and liability evolve [17–19].

Furthermore, many AI products today are designed to emulate human interac-
tions (e.g., chatbots, personal assistants—see Chap. 9) or evoke human emotional 
responses (e.g., robotic animal companions for the elderly) [20]. Human beings are 
inclined to anthropomorphism, the attribution of human characteristics or behavior 
to non-humans and objects, to make sense of interactions [21]. There can be benefits 
from leveraging the propensity of humans to anthropomorphize—doing so can 
make some interactions, such as basic information gathering or conveyance, easier 
and more satisfying [22] but there can also be harms, such as misplaced trust [23] 
and in circumstances in which human users have expectations of reciprocal emo-
tions and those expectations are not met [24, 25].

It should nevertheless always be clear to human users when an interaction is with 
a non-human entity. Without this clarity, there is a risk that humans will impose 
human expectations on non-human systems; these include the ability to understand 
vocal tone or facial expression and to respond with, or actually feel, sympathy or 
empathy. Imagine a suicide prevention system that a vulnerable individual interacts 
with as a friend. When the AI friend is not able to understand or engage in empa-
thetic interactions indicative of friendship, the human user might feel further alien-
ated or abandoned, affecting the risk of self-harm. AI tools used to provide 
companionship for adults with cognitive impairment are exceptionally complicated 
because affected individuals might not understand or appreciate the concept of AI 
interactions [26].

 The Need for Human Control

Biomedical AI should always be conceptualized as a human-centered tool that pri-
oritizes improved human health [27]. Seeing AI systems as support for human 
expertise, so-called augmented intelligence, encourages design decisions that 
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emphasize enabling human review of AI-generated recommendations, diagnoses, 
prognoses, or other actions [28, 29]. Put differently, computers should support 
humans, not replace them [1]. It is an old lesson.

This insight is captured by the idea of the human in the loop, sometimes cast as 
a counterpoint to unsupervised machine learning and sometimes as a demand for a 
human expert to be available to review a system’s performance and to evaluate the 
aptness or accuracy of system output, especially about diagnostic recommendations 
or prognoses.

Moving forward, as regulatory and legal systems struggle to understand and 
codify liability in decision-making (mediated) by AI tools, it will be increasingly 
important to document human decision-making in the development and deployment 
of these tools. In addition, due attention must be paid during AI development to the 
possibility of automation bias, which is the assumption that a recommendation pre-
sented in the presumed context of objective data and analysis must be more correct 
than human judgment [30–32], and compares with what has been called “the com-
putational fallacy” [33]. Finally, data creation, collection, and curation as well as AI 
development, deployment, and evaluation do not occur in a value-free vacuum. 
Biases can enter at any point in the process, which brings us back to the primary 
recommendation: document all steps, including the rationale for all choices made, 
during AI system development.

 Taking the Long View

Throughout the AI system design process, developers should envision the future 
effects of their AI tool or product, including the introduction or exacerbation of 
healthcare disparities [34]. This broad, proactive imagining of future consequences 
is best completed with the help of diverse stakeholders. It may be easiest to envision 
immediate or short-term effects (e.g., more accurate prediction of patients at risk of 
hospital readmission), but medium- and long-term impact must also be considered, 
especially in the context of indirect influences that a system might have during and 
after implementation. Such downstream effects might include operational changes, 
such as reallocation of hospital resources, including personnel reassignments, or the 
development of specific recommendations for interventions to reduce patient read-
mission risk. Although these types of concerns may seem to be outside the immedi-
ate influence of system developers, that does not give developers license to neglect 
potential implementation pitfalls. AI tools will never constitute or provide a com-
plete solution to clinical, research, or public health problems or questions. Even the 
most carefully developed AI tool, accompanied by detailed documentation of the 
development process (e.g., how and at what points was bias addressed?) [35–37], 
will be deployed in a value-laden context with its own biases. Responsible develop-
ers must consider non-technical challenges, from clinic workflow issues all the way 
to social consequences and issues of equitable access to, and allocation of, health-
care resources [38, 39]—all of which will affect the use, usefulness, and ethical, 
social, and legal implications of their AI tools.
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 Fairness and Sources of Bias

There are several stages in the development of knowledge-based or machine learn-
ing systems where human cognitive or other biases may translate into an unfair 
imbalance or bias in the system’s decision-making processes. We consider three 
phases: the preparatory or problem-formulation phase in which prior knowledge or 
data are selected; the development phase, in which technical and other choices are 
made by human designers; and deployment, wherein human cognitive biases might 
reinforce biased decision-making. To be sure, bias might also be introduced when 
system output is interpreted by users.

 Fairness, Bias, Equality, Equity

Fairness is often discussed in terms of distributive justice: if there is a good to be 
shared or divided up between individuals—or between nations, communities, or 
corporations—what would be a fair, i.e., a just way of sharing or making that divi-
sion? In other words, how is it possible to ensure that the distribution is equitable, 
impartial, free of favoritism, unbiased, nondiscriminatory, or even handed? 
However, some of these terms conflate the notion of equality with equity. “Fair 
shares” does not mean equal shares if there is a notion of deserving—e.g., a greater 
share to go to those who have done more work, made a greater contribution, or made 
a larger sacrifice. Similarly, shares may not be equal if there is a notion of equity, 
e.g., when we are dealing with social, common, or moral goods, such as health, 
access to clean air, affordable, healthful food, living-wage employment, education 
and childcare, and the list goes on—where there is a presumption that everyone has 
the right to be served equitably. Equity may reflect level of need as much as funda-
mental rights: a person with a chronic condition will need more health care; an 
individual with learning difficulties may need educational support.

In an AI context, concern for fairness has focused mainly on machine learning 
(ML; see Chap. 6), where the ML system is “trained” or conditioned to differentiate 
among inputs. Such systems may either classify them by some degree of similarity 
without external intervention (“unsupervised learning”) or accept or reject instances 
once it has encountered a significant number of correctly labelled instances presented 
to it as its initial training (“supervised learning”). It is well known that the “training 
set,” i.e., the data used to condition the ML system, may include biased conjunctions 
that may end up being interpreted as inferences. For example, if a certain category of 
patients has shorter stays in hospital (perhaps because economic circumstances lead 
them to avoid lengthy stays), the ML system may draw the unwarranted conclusion 
that patients in that category do not need a longer stay in hospital. As a result they 
may be discharged prematurely.
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As in this example, the potential implicit unfairness lies in what some patients do 
or do not receive compared to others in a systematic way, meaning that patients who 
fall into certain categories are apparently treated differently, as if their category 
determined the treatment they would receive. This may or may not be justified, and 
thus be explainable, depending on context. If it is not, then it may represent a form 
of harm to one group or the other, or, conversely, privilege one group above the 
other. In this way, healthcare disparities persist and exacerbate health disparities.

 Data Sets

Many forms of AI use reference data sets of various kinds (see Chap. 3). Many AI 
systems have relied on formalizing and incorporating human knowledge, beginning 
with a process of knowledge elicitation that employs a variety of methods to absorb 
knowledge and experience into distinctions, assertions, and inferences. Certain kinds 
of operational knowledge, such as of the issues that arise frequently at a helpdesk or 
in making a clinical diagnosis, could be collected into an expert system (see Chap. 
4). Cases represented in data sets that are amenable to classification along certain 
quantifiable dimensions and could be organized according to a notion of distance. In 
an experimental breast-cancer screening project, it was suggested that on encounter-
ing a worrisome mammogram, a radiologist might ask the system to find the “nearest 
ten cases” to the one under review. This followed from the notion that the subsequent 
histories of those ten might give an accurate prognosis as well as possible directions 
for treatment [40]. Indeed, larger data sets were used to drive diagnostic expert sys-
tems and prognostic scoring systems, some of which were highly accurate.

Machine learning relies on very large volumes of data, so large that—in the lan-
guage of the field—the signal can overwhelm the noise and emerge loud and clear. 
Given the pivotal role of data in ML systems, human biases have been encoded via 
unrepresentative data sets, flawed assessments, or even non-catastrophic misdiag-
noses, and these data are then used to train an algorithm, that algorithm is liable to 
exhibit the same biases. Bias detection and mitigation are areas of continuing 
research, with a number of prominent methods under consideration. Among these, 
methods that challenge the neutrality of the data—so-called adversarial methods 
[41]—show promise.

In assessing the utility of data in training an artificial neural network, it is use-
ful to think of it not as a monolith (or even as a “data lake”) but to consider the broad 
structure of raw data, computed data, stored data, and a range of data about the data. 
These are often called “metadata” but these types of data can in fact be differenti-
ated into categories that represent different kinds of information: where, when, and 
how the data were sourced, how were they structured, and how credible are they? 
We represent this information using a concept termed the data manifold (Fig. 18.1).
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provenance
-     source
-     language

paradata
-     credentials
-     confidencemetadata

-     structure
-     semantics

security data
-     access controls
-     re-use controls

associated data
-     computed data
-     summary data

data
- raw values
- stored values

Fig. 18.1 The data manifold. Data are characterized not only by their values, but also by what is 
loosely termed their “metadata”, which can be analyzed into metadata proper, provenance data, 
paradata (e.g., concerning the credibility of the data), security data, various computed summaries, 
and so on. (Reprinted by permission from Solomonides, A.  Chapter 14—Research Data 
Governance, Roles, and Infrastructure. In R Richesson and J Andrews (eds). Clinical Research 
Informatics. Springer Nature. 2019 [42])

Among the issues to be considered is whether the data were fairly and transpar-
ently sourced, with due respect for the rights, privacy, and security of the data 
subjects. Data collected surreptitiously or by a process lacking transparency, may be 
flawed with no opportunity to be checked and verified or corrected in its flow from 
source to use, e.g., in the creation of an AI system.

 Algorithmic Design

Can good design of machine-learning algorithms mitigate some of these dataset 
problems? The design of complex artefacts presents problems beyond the chal-
lenge of devising the isolated component parts and their interconnections, diffi-
cult though these may be. A system with hard-to-predict mutual influences and 
unanticipated firing patterns among its subunits will almost certainly spring sur-
prises, and the more abstract the function of a system is, the more difficult it will 
be to envision, predict, and control all these interactions. Subject to sound soft-
ware engineering practice, algorithmic design involves human choices, including 
how much adaptive capacity any suggested solution should allow. Scientists and 
technologists are not immune to the countless biases that have been chronicled—
preferences, hopes, predilections [43]. ML systems are most effective when they 
have parametric leeway to adapt and improve their performance, but, as some 
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disastrous examples have shown, this also provides space to become toxic, as 
proved to be the case with Microsoft’s Tay chatbot. Designed to learn language 
from interaction with other users on Twitter, Tay was overwhelmed by extremist 
language and within hours began to make misogynistic, anti-Semitic, and other 
offensive comments. It was withdrawn for a post-mortem just 16  hours after 
launch [44].

In terms of fairness, there is an additional complexity: sometimes a factor that 
may lead to biased results (e.g., race) may also be associated with a characteristic 
that has a real differential impact on certain outcomes. An example in the COVID-19 
pandemic concerns level of vitamin D, which appears to confer some protection 
from COVID-19, and where vitamin D absorption may be lower in African 
Americans, an effect also confounded by environmental and socioeconomic factors, 
such as the opportunity to be exposed to the sun [45, 46].

 Implementation and Algorithmovigilance

Allowing that an AI system may have been designed in good faith and developed by a 
team of well-intentioned experts, it is still possible that their product will exhibit biases 
when implemented. Drugs are developed under stricter conditions than software, yet 
are sometimes found to be harmful after release to the market; so it may be with soft-
ware. The idea behind algorithmovigilance [47] is similar to that of post-market 
“pharmacovigilance,” the philosophy and the practice of monitoring and notifying any 
“adverse events” when a drug is adopted: this does not necessarily avoid all harm, but 
it serves to limit such harm and leads to a reassessment of the safety of a drug. A simi-
lar approach to clinical decision support (CDS) systems (see Chap. 10) post-imple-
mentation has been cogently advocated to ensure that any clinical harm is limited to as 
few cases as possible [48], but recognition of a moral harm—such as race-based dis-
crimination—that a biased system may be causing may be harder to uncover.

 Organizational and Economic Dimensions

There is no AI ethics without ethics [49]. An organization whose business model is 
unethical, whether explicitly or implicitly, cannot introduce ethical AI into its oper-
ations simply by checking off a list of putative criteria. Moreover, even a moral 
organization may find itself having to function in an ecosystem of similar, and 
potentially less moral, entities whose aggregate behavior patterns could shape 
everyone’s conduct. Both intra- and inter-organizational complexity shape the 
forces that lead to development, adoption, and scaling of technological solutions; 
the more abstract the technology, the more complexity obscures the conditions of 
decision-making. In a similar vein Olivia Gambelin [50] discusses the paradoxical 
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position of the AI ethicist in any competitive organization and concludes that, of all 
virtues, bravery is the determining characteristic of the effective AI ethicist. High 
profile dismissals of AI ethicists from companies such as Google have underscored 
her argument. They suggest that a conflict between morals and business models 
creates a greater threat to ethics than to the business. The greatest risk to an AI ethi-
cist in an organization is isolation: the more recognition of the need for an ethical 
voice and the more integrated that voice is, the more effective the program is 
likely to be.

 Recommendations for Identifying Bias

Bias may be subtle or blatant but deniable. Subtle forms of bias may occur when 
proxy variables are used for others that are harder to assess. A case in point is that 
of the health services firm Optum’s algorithm to predict future medical need. The 
proxy for health status is past expenditure on medical care. African Americans 
spend less for reasons of access and cost, but the algorithm downgrades their medi-
cal needs in consequence. Oddly, this also provides an example of a blatant but 
deniable bias. When this bias was disclosed [39], the firm defended its position by 
claiming that researchers had misconstrued the purpose of the algorithm and that 
numerous other factors were taken into consideration to adjust for any misalign-
ment. The lesson would appear to be that bias can be identified through meticulous 
scholarship and yet remain through a sheer denial that it exists.

In social studies of science and technology, a distinction is drawn between what 
may be termed “use/abuse” and “immanent values” theories. Are technologies value 
free, or at least value neutral, such that what goes wrong with them is due to abuse—
as opposed to “appropriate” use? Or are the values that informed the very concep-
tion so embedded in the technology and its artefacts that neither can be separated 
from those values, and they are mutually constitutive? In 2015, the Future of Life 
Institute organized an open letter on Research Priorities for Robust and Beneficial 
Artificial Intelligence with signatories including prominent critics, such as the phys-
icist Stephen Hawking and entrepreneur Elon Musk, but also a stellar array of AI 
scientists. The potential for AI systems to improve healthcare and further our scien-
tific knowledge in medicine seems undeniable. The underlying science is being 
developed concurrently in academic labs, in university spinoffs, and—pre- 
eminently—in major “big tech” divisions and subsidiaries. It may be more fruitful 
to address the question how should AI research be done? than to anticipate every 
possible wrong turn.

Insurance companies are developing AI applications to nudge or support patients 
towards healthier lifestyles. Yet from their poor reputation, if not poor record, for 
denials, these companies have an obvious conflict of interest. Perhaps a similar 
technology in the hands of an advocacy organization would help patients overcome 
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their difficulties with insurance benefits. From a researcher’s point of view, the 
question might be more Are these the right contexts and organizations to work with 
to develop this cool AI system, or should I be looking elsewhere? But there are cases 
where an AI application’s development should be reconsidered. Facial recognition 
software that seeks to identify sexual orientation is an example. It may be an inter-
esting project to a researcher, and the research might even receive IRB approval and 
be published in a peer-reviewed journal [51], but that does not stop human rights 
organizations from protesting the project and its “findings.” [52] In this example, if 
a broad range of stakeholders had been involved from the start, including represen-
tation from those most likely to be affected by the AI work, the research team might 
have made a different choice of focus for their facial recognition project. This of 
course poses the challenging question whether there are certain kinds of empirical 
inquiry that are inherently out of bounds.

 Governance and Oversight

“Governance,” the term, is best seen as an overarching approach to ensuring that 
standards are met, values are adhered to, and accountability maintained. Though 
governance might be by governments, the law alone is sometimes inadequate to 
ensure best practice, especially in some professions. Nurses and physicians, for 
instance, though licensed to practice by governments, are most closely overseen by 
peers, their adherence to standards, and a certification by professional organiza-
tions. There is now broad agreement that computer systems (including both those 
that use AI software and those that do not) and the organizations that use them 
should be subject to some form of governance. This is a basic requirement to ensure 
patient and public safety and that systems are appropriately used by appropriate 
users. A system of governance or oversight must first be clear about exactly what is 
being governed and to what end. It is for this reason that the identification of ethical 
issues is so important. We have in this chapter so far identified the following foci of 
oversight:

• Software quality and standards
• Explainability and interpretability
• Transparency and accountability
• Human control
• Bias and fairness

The value of this list is that it is uncontroversial; there is no good reason to oppose 
the inclusion of any item, although controversy might arise regarding the kind or 
scope of governance for each item.

The development of, and adherence to, standards are ethical issues [15]. In a 
better world, we might be able to assume that all professionals would govern 

18 Ethical and Policy Issues



518

themselves by planning and documenting carefully, evaluating continuously, and 
always ensuring computer systems are used for legitimate purposes by appropri-
ately trained people. Governance mechanisms and key actors are seen in Box 18.1, 
where the items in the left column will have arrows pointing to one or more entities 
on the right:

Some entities will need to exercise self-government. Every “arrow” will engen-
der debate, which is necessary to reach agreed-upon standards. If, for instance, each 
entity on the left prioritizes or weighs values differently, the result will be a hash of 
potentially contradictory rules and guidance. It seems therefore to be a very positive 
development that the “foci of oversight” itemized here represent a distillation of 
what seems to be broad agreement of that which should be governed. This is appar-
ent in the burgeoning literature on AI governance [53, 54].

Though it is in some circles fashionable to denigrate the role and responsibility 
of government in ensuring public safety, such a libertarian fetish is inapt and fatuous 
in the context of computational healthcare. For example, the uncontroversial right 
of patients to easily view their health records online required, in the United States, 
a federal mandate to eliminate “information blocking” [55]. Most hospitals would 
not do this, clinicians were reluctant, and some EHR system vendors had to scram-
ble to comply. The free market saw no traction, no advantage, in ensuring this right. 
This is not to say that governmental regulation is the only or best solution—rather, 
it is to argue that an overarching policy framework should be able to make use of all 
the tools available.

Even when software is regarded as a medical device [56, 57], it is likely to be 
impossible for a government or legal system to regulate it to be, say, free of error. 
For this reason, there should be a renewed effort to explore the utility of recommen-
dations emerging in the 1990s to shape the role of the U.S.  Food and Drug 
Administration and otherwise to regulate clinical systems [58, 59]. An especially 
interesting idea called for local oversight of clinical software by autonomous over-
sight committees akin to Institutional Review Boards. Various forms of certification 
(the idea of medical software certification also dates to the 1990s [60, 61]) provide 

Box 18.1 Governance Mechanisms and Actors. The Mechanisms in the 
Left Column Will Map to Various Actors in the Column on the Right
Law (statutes and case law) Administrators
Governments (FDA, EMA, Health Canada, 
etc.)

Clinical practices

Institutions (leadership, ethics committees, 
etc.)

Clinicians

Professional organizations System developers
Corporations and trade groups Software
Patient organizations Corporations
Health NGOs (WHO, UNESCO, etc.) Institutions (hospitals, systems, etc.)
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another potentially useful tool: governments and other entities can certify systems 
as adhering to certain quality standards, as the U.S.  Office of the National 
Coordinator for Health Information Technology does for EHRs.

AI governance is as urgent as it is difficult. It ranges from the granularity of lines 
of code to a system’s success in a global health emergency. What is needed is the 
recognition that new technology always raises ethical, legal, and social issues, and 
that they are best addressed, in the first instance, by the tools of applied ethics, and, 
in the second, by the engines of fair and just civil society.

 AI at Large

We conclude our assessment of the ethical and policy issues surrounding AI with a 
brief review of some broader social and professional implications, not least the rare 
if not unprecedented public attention devoted to this evolving technology.

 AI, Humanity, and Society

The very idea of “artificial intelligence” has intrigued and provoked concern from 
its very inception. John McCarthy invented the term in the 1950s because the sub-
ject of Automata Studies, on which he was co-editing a special collection, failed to 
attract any visionary contributions on the potential of computational problem solv-
ing. Nearly two decades later, in a debate at the Royal Institution in London, he and 
two British colleagues faced off with Sir James Lighthill, one of the fiercest scien-
tific critics of the project. Introducing the subject of the debate, “The General 
Purpose Robot is a Mirage,” the chair commented, “Tonight we are going to enter a 
world where some of the oldest visions that have stirred man’s imagination blend 
into the latest achievements of his time” [62]. Sir James had recently submitted a 
report to the UK Science Research Council in which he discouraged any further 
investment in AI, arguing that what had already been successful was better described 
as “automation”—an engineering discipline—while the wilder shores of general 
purpose AI was a distracting mirage. McCarthy acknowledged that the project had 
proved much more difficult than he had anticipated, but remained optimistic. In the 
popular imagination, and in its reception in the lay press, it would appear that the 
question is settled: in 1997 IBM Deep Blue defeated the reigning world champion 
at chess and in 2011, IBM Watson defeated the all-time best Jeopardy! player at that 
game: what more could there be to say? The philosopher John Searle, deeply critical 
of claims for AI, wrote in The Wall Street Journal, “Watson Doesn’t Know It Won 
on ‘Jeopardy!’. IBM invented an ingenious program—not a computer that can 
think.” On the other hand, Garry Kasparov, the defeated chess grandmaster, pro-
duced a thoughtful reflection on the nature of intelligence in his book, Deep Thinking 
[63]. In 2015, literary agent John Brockman posed the question, “What to Think 
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About Machines that Think?” [64] to which more than 180 prominent thinkers were 
invited to contribute short-essay answers. In 2019, returning to the topic, Brockman 
edited 25 more positions on the question [65]. Evidently, in popular science, as in 
popular culture, there is much to be said on this subject.

 AI and the Healthcare Professions

STAT, an online publication on health care and biomedicine, published a collection 
of articles on AI from late 2019 to early 2021 under the title “Promise and Peril: 
How artificial intelligence is transforming health care.” Publications in nearly every 
discipline, from radiology to primary practice to ophthalmology, have had special 
issues on AI and its anticipated impact on the specialty. Concerns focus on what AI 
might entail in terms of work patterns, relationships with patients, burden and burn-
out—issues that have figured large since the advent of electronic health records 
and, even more so, clinical decision support, but so far only minimally associated 
with AI.  Questions of professional liability and legal implications have led law 
firms to offer advice blogs [66, 67], adopting a cautious stance and emphasizing the 
need for physicians to remain in ultimate control of decision-making. Policy insti-
tutes have also weighed in on this issue [68, 69], recognizing that the time is fast 
approaching, if it is not already here, for definitive legislation, if not regulation, of 
AI in medicine and healthcare. Among learned publications, attention should be 
drawn to reviews by a team that has for some time focused on this issue and on AI 
explainability in healthcare [18, 70, 71]. The cautionary tone of this work may be a 
useful counterpoint to the persistent optimism of the field [72–74].

Questions for Discussion

• When considering which stakeholders to consult as an AI system is developed, 
one cannot possibly consult everyone who might be involved or who might be 
affected. What criteria might and should AI system developers use to prioritize 
whom to consult? When stakeholder feedback is received, it might be in conflict 
with recommendations from other stakeholders, or even with the approaches of 
the development team. When these situations occur, how might dissonant feed-
back be resolved?

• Machine Learning-based AI (ML/AI) has the potential to introduce bias at 
three stages: through training data that incorporate bias, in the development 
phase where the developers’ preconceptions and preferences may bias the 
product, and in deployment, where human cognitive biases may be reinforced 
by flawed decisions by the AI system. Consider three common cognitive biases: 
anchoring (focusing on a single trait or variable at the expense of all others), 
availability heuristic (focusing on recent or familiar observations), and confir-
mation bias (preferring advice or solutions that confirm a preconceived idea). 
How may each of these figure in the introduction of bias in the three stages 
of ML/AI?
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• Future electronic health records will include point-of-care, AI-based decision-
support tools for diagnosis and prognose\is. Should all clinicians have access to 
such tools? Should education be required before such use? Should computergen-
erated advice be reviewed by others before it is acted upon?

• Who ought to be responsible for oversight and governance of clinical health AI 
development and use? Imagine and describe an institutional policy to guide – and 
enforce? – such governance.
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in healthcare
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World Health Organization. Ethics and governance of artificial intelligence for 
health. Geneva: WHO; 2021. https://www.who.int/publications/i/
item/9789240029200.

• A guidance document drafted by an international group of scholars and govern-
ment representatives. It includes a number of consensus principles and recom-
mendations to “ensure the governance of artificial intelligence for health 
maximizes the promise of the technology …”

Zuboff S. Big other: surveillance capitalism and the prospects of an information 
civilization. J Inf Technol. 2015;30(1):75–89.

• At the dawn of the modern information age there was an optimism and a promise 
in the air that we would soon achieve “Athens without slaves.” The extent to 
which this vision has fallen short is documented in Zuboff’s careful economic 
analysis of the “information surplus.” This provides a sobering contrast to the 
evergreen optimism of the AI community
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Chapter 19
Anticipating the Future of Artificial 
Intelligence in Medicine and Health Care: 
A Clinical Data Science Perspective

Anthony C. Chang

After reading this chapter, you should know the answers to these questions:
• How will a future of “intelligence-based medicine” be different than the cur-

rent evidence-based medicine in terms of clinical practice and patient 
outcome?

• What are several promising artificial intelligence tools that are being explored 
for future application in clinical medicine and health care?

• How might artificial intelligence tools be deployed in ways that are analogous to 
the human central and peripheral nervous systems?

• What is the current relationship between artificial intelligence technology and 
health care stakeholders, and how might this relationship need to change in 
the future?

If we do it right, we might be able to evolve a form of work that taps into our uniquely 
human capabilities and restores our humanity. The ultimate paradox is that this technology 
may become a powerful catalyst that we need to reclaim our humanity.

—John Hagel, author and consultant in Silicon Valley

A. C. Chang (*) 
Medical Intelligence and Innovation Institute (MI3), Children’s Health of Orange County, 
Orange, CA, USA
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 Introduction

Artificial intelligence and its panoply of technological tools have had an impact in 
medicine and healthcare in several domains, especially in medical imaging [1] and 
decision support [2]. As the COVID-19 pandemic demonstrated, however, there is 
much more work that needs to be done in deploying artificial intelligence in health 
care. To be fair, this observation is probably more true in the domains of healthcare 
data, databases, and information technology infrastructure than it is for AI itself. 
Despite this observation, the future of AI in clinical medicine and health care is 
promising and expectations remain high that it and its technological tools will 
deliver in the long term [3]. As we head toward a future of “intelligence- based” 
rather than evidence-based medicine, the gap between the latter and an AI-centric 
future form of medicine is increasingly large (see Fig. 19.1).

The future of AIM and health care can be strategically deconstructed first into 
two main categories of technology (and its exponential rise) and stakeholders (and 
their gap to technology) that are further separated into three states in order to under-
stand the present and forecast the future: current state, near future state (this coming 
decade), and future state (beyond this decade). The second category, stakeholders, 
delineates the special human-machine synergy in the form of three separate dyads 
that are essential for AI to be promulgated into the future era of precision medicine 
and population health.

Fig. 19.1 Intelligence-Based Medicine. The graph shows knowledge on the vertical axis plotted 
over time. While evidence-based medicine has increased medical knowledge in past decades, this 
alone does not meet the need for an increase in knowledge necessary for both precision medicine 
and population health. This knowledge gap requires a paradigm shift with a much steeper trajec-
tory using both data and artificial intelligence. (From Chang AC. Intelligence-Based Medicine. 
Elsevier, 2020)
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 AI in Medicine Technology: An Exponential Rise

 Current State

There is an impressive portfolio of technological tools that are available or soon to 
be so in the domain of artificial intelligence in medicine. The most advanced appears 
to be deep learning in the form of convolutional neural networks (CNN) in medical 
imaging (see Chap. 12). Deep learning applied to fundus photographs from ophthal-
mological examinations have now been shown to be screening tools for not only 
diabetes but also other conditions. The Cambrian explosion of CNN tools have 
made progress in static imaging but are now starting to make inroads into moving 
images such as ultrasound studies, endoscopic imaging, and even echocardiograms. 
Machine and even deep learning has made progress in electronic medical records in 
projects on readmission prediction or decision support (see Chaps. 10 and 11), but 
these have not been nearly as productive as CNN and medical imaging due to the 
records being fragmented in location and complex in nature. There is some promis-
ing work in the area of drug design [4] or repurposing in treatment for cancer 
patients and even for COVID-19 patients during the pandemic as a result of machine 
and deep learning, especially with protein structure determination based on genomic 
sequencing. More recently, natural language processing (NLP) capabilities with 
transformer architectures such as Generative Pre-trained Transformer 3 (GPT-3) 
and Bidirectional Encoder Representations from Transformers (BERT) have started 
to be considered for their deployment in healthcare (see Chap. 7), especially with 
their relative ease of use and expansive libraries. NLP continues to advance at an 
exponential pace, with a recent architectural development being the Google Brain’s 
Switch Transformer language model named after yet another Sesame Street charac-
ter, MoE (Mixture of Experts). The future prediction models will incorporate both 
structured data (vital signs, laboratory values, etc) and proportionally more unstruc-
tured data (clinician notes, radiology reports, etc.) so the model will have the best of 
both of these data and information worlds. Unsupervised learning also holds great 
promise for discovery of new phenotypic expressions of disease subtypes and treat-
ment responses [5] (see Chap. 14). Lastly, healthcare is starting to embrace an older 
AI technology of robotic process automation (RPA) for administrative tasks that 
can be automated by algorithms rather than completed by humans.

 Near Future State

There are other AI technologies that will be very useful for clinical medicine in the 
near future.

19 Anticipating the Future of Artificial Intelligence in Medicine and Health Care…
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There is exciting work on pushing AI “peripherally” to devices even at the 
microprocessor level. This artificial intelligence of things, or AIoT, provides a 
portfolio of “intelligent” devices for the future of chronic disease management as 
well as population health strategies. The internet of things becoming internet of 
everything (IoE) with edge AI will be invaluable for chronic disease management 
and population health in the future. There is already discussion about how neural 
nets can be located on a microprocessor (termed “tinyAI” by MIT researchers). 
The future development of AI in healthcare will be in two directions: Towards a 
centralized cloud for analytics and concomitantly towards a peripheral network 
with AI embedded in many devices and sensors. This will be the AI equivalent of a 
brain and peripheral nervous system. In addition, the limitations and nuances of 
existing electronic medical records in current state demands a disruptive technol-
ogy in the future. One such promising technology is graph databases coupled 
with knowledge graphs to create a paradigm shift in how electronic medical 
records are structured and curated. Both IoE and graph databases will be particu-
larly useful when federated learning becomes more common as a methodology to 
collect and share data. Federated learning consists of edge devices with local data 
that can train their own copy of the model from a central server, and only the 
parameters/weights from these models (but not the data) are sent to the global 
model. Multimodal AI, such as combining perception and linguistic capabilities of 
machines, can increase the potential for AI to deal with the complexities of health-
care (see Fig. 19.2). The advent of GPT-3 will be an asset to a more sophisticated 
AI to better understand and adapt to the world. In the area of medical education and 
clinical training, not only AI in and of itself but also in combination with extended 
reality can be extraordinarily effective in educating and training clinicians; adding 
an AI dimension to extended reality can be termed intelligent reality. Along with 
this virtualization of clinical medicine and healthcare can be AI imbued in the digi-
tal twin concept for both the patient as well as the health system (see Fig. 19.3) [6]. 
All of this demand for artificial intelligence will warrant the availability of quan-
tum computing.

 Future State

There will be significant needs and advances for AI in medicine in the coming 
decades. First, means of decreasing the human burden of labeling in supervised 
learning in the form of few shot learning or generative adversarial networks can 
enable more automated interpretation in the future. In addition, there need to be AI 
systems that can perform real-time AI. For this to occur, AI architectures will need 
to be even more robust and will need to include anytime algorithms as well as 
incorporate the nuances of complexity and chaos theory as biomedical phenomena 
often have complex rather than complicated elements. Furthermore, deep rein-
forcement learning may have succeeded at the game Go but will be less spectacu-
lar in clinical medicine as the nuances and complexities as well as the fuzziness of 
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Clinical
Sensors, DNA
Sequencing
& Other Data
Sources/
Streams

Personalized Treatment /
Intervention

Digital Twin Instances of Same Patient

Fig. 19.3 Digital Twins and Artificial Intelligence. Digital twin copies or instances of the index 
patient is shown with data streaming in from clinical sensors, DNA sequencing, and other data 
sources and streams. All of these data create an index patient for in silico testing to determine 
which therapy is best for the medical condition. (From Boulos MNK et al. Digital Twins: From 
Personalized Medicine to Precision Public Health. J Pers Med 2021; 11 (8): 745–756)

biomedicine will be daunting challenges for its execution [7]. The entire learning 
portfolio will need to be explored and orchestrated for biomedical work: transfer 
learning, unsupervised and self-supervised learning, predictive learning, 
apprenticeship learning and other types of learning to come in the future. Lastly, 
cognitive elements of artificial intelligence such as (1) cognitive architecture 
(declarative and procedure learning and memory, perception, action selection, etc.), 
(2) Geoff Hinton’s “capsule networks” [8], or (3) Jeff Hawkins’ “reference 
frames” described in his book A Thousand Brains: A New Theory of Intelligence 
[9], will need to be increasingly a motif in artificial intelligence in medicine and 
healthcare that will incorporate cognitive elements such as the insights, intuition, 
and intelligence of our clinicians (see Fig. 19.4).
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Universe of AGI tasks

DL / ML

GOFAI

First wave

Second wave

Third wave

Fig. 19.4 Cognitive 
Artificial Intelligence Era. 
The third wave of AI with 
more cognitive elements 
will enable artificial 
general intelligence (AGI) 
which will be more 
human-like with intuition 
and common sense (see 
Chap. 5). (From Chang 
AC. Intelligence-Based 
Medicine. Elsevier, 2020)

 The AI in Medicine Stakeholders: Increasing Gap 
to Technology

 Current State

For many data scientists, this past decade has been an interesting journey into 
healthcare with mixed dividends. While the aspiration to help improve patients’ 
lives and/or create a viable business venture was a driving force for artificial intel-
ligence experts, the nuances of access to healthcare data and inadequacies of data-
bases was a deterrent for some. The future gain for AI in healthcare is not only in 
helping clinicians make better and faster decisions in urgent, complex situations but 
also in ensuring clinicians not make simple, avoidable mistakes. In short, AI can 
raise practitioner’s decision quality, accuracy, and velocity.

For clinicians at all levels of education and training, there is an escalating need to 
learn about the basics of AI as it is becoming more evident that those clinicians who 
understand AI will have a growing advantage over those who do not. In addition, 
clinicians are still grappling with explainability and interpretability of AI, especially 
more sophisticated AI methodologies like deep learning. While clinicians need to be 
more accepting of not being enlightened about every technical detail of AI, these 
caretakers do need to be able to assure themselves the accuracy and functionality of 
the technology by serial testing and continual learning. AI in healthcare and its myr-
iad of forms changes the dynamics of the traditional paternalistic clinician- patient 
dyad to a much more complex clinician-AI-patient triad. This dramatically alters the 
trust and accountability aspects with ethical, legal, and financial implications.

The myriad of issues and challenges in ethical, legal, regulatory, and financial 
domains focused on AI technology usually have a linear trajectory whereas emerg-
ing and disruptive AI technologies have mostly an exponential trajectory. The 
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mismatch of these two curves creates both challenges and opportunities. In addi-
tion, for all those involved in AI in medicine, everyone will need to hold each other 
accountable in the validity and the accuracy of AI algorithms and models [10]. The 
best AI in medicine and healthcare projects have a special synergy between data 
scientists and clinicians in order to couple good data science with high clinical rel-
evance for overall impact on health outcome. Without the necessary clinical rele-
vance, a model or a project can be just good data science in healthcare.

 Near Future State

For AI experts, there is a dire need for more talent especially at the PhD level to 
work in healthcare. There is a concomitant requirement for these AI experts to gain 
expertise in healthcare data and databases and therefore stretching their domain 
beyond machine and deep learning. In addition, AI alone in medicine is not going to 
make impact long term unless it is applied “intelligently” with human clinician 
insight and intuition to render it truly meaningful. If not, we have essentially an AI 
in medicine type III error (providing the right answer to the wrong problem).

For the clinicians, adoption will need to be accelerated to accommodate the tech-
nology that is available. A small cohort of clinicians will need to be champions of 
AI by learning a minimal amount of knowledge to be able to be conversant with a 
data scientist. An even smaller number of clinicians may decide to get formal educa-
tion about data science and AI to gain a special insight having dual education; this 
insight can be geometric, not merely additive. For the rest of the clinicians, the 
advent of automated machine learning (autoML) can facilitate the use of machine 
and deep learning for clinical projects. In addition, creative uses of AI in the future 
can include embedding knowledge into the EHR while gaining continuing medical 
education (CME) credits.

 Future State

The stakeholders of AI in medicine in the future will have a much closer interac-
tional relationship that is continual and collaborative. In the healthcare systems, 
there will be a growing number of chief intelligence officers who are stewards of 
both clinical and administrative projects using AI tools. Some of these officers will 
be clinicians with an AI background, while others will be AI-focused experts who 
are interested in working in healthcare. Professional schools in nursing, pharmacy, 
dental, and medical domains will routinely include AI in the curriculum, with a few 
school having dual degree programs that include both a doctorate in the profession 
and a masters or doctorate degree in data science and AI. The overall focus of AI in 
medicine will be on the patients’ outcomes and well-being. Ethics of AI in medicine 
will reach a new height of discussion and interest as increasing number of cases 
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become controversial and demand expertise in all three areas to converge for discus-
sions. Other issues such as regulation, legal, and entrepreneurship in AI will be regu-
larly discussed and have national and international committees and working groups 
actively collaborate on policies for guidance and consistency. The gap between these 
domains and the exponential rise of AI technology will start to narrow after much 
work and focus from passionate advocates, as well as opponents, of AI.

 The AI in Medicine Dyads: Synergy and Beyond

 The Human-Human Dyad

While the present and near future states of AI in medicine will evolve from symbiosis 
to synergy, the future state will be an artificial intelligence-clinical medicine and 
healthcare convolution: a distinctly different third function as a direct result of con-
vergence of two functions. Clinicians, most with education and training in data sci-
ence and AI, will work closely with data scientists on a daily basis on hospital rounds 
and clinical settings and provide clinical insights and intuition. Clinicians will be 
fully indoctrinated in AI in healthcare, which will be less about learning to code, but 
much more about understanding the principles of AI tools, the designing of AI solu-
tions to clinical problems, and acquiring knowledge about data and databases, biosta-
tistics, information technology infrastructure, and digital health. Data scientists will 
reciprocate by pointing out possible biases and heuristics of the decision- making 
process while expounding on data science tenets. The AI domain experts will also 
learn to accommodate the complexities, chaos and fuzzy nature of biomedicine. The 
deep mutual respect and close real-time synergy between Formula One racers and 
their engineering teams is good to appreciate and perhaps emulate. If clinicians and 
data scientists can foster such an ideal relationship, the patients will all win as a result 
of these special dyads. This collaboration will evolve into cultural transformation as 
the philosophy fosters swarm intelligence across many healthcare organizations.

 The Machine-Machine Dyad

In this era, the regulatory process is greatly facilitated by algorithms that focus on 
various aspects of the machine and deep learning workflow, as part of the algorithm 
bundle that overlooks data integrity and the machine and deep learning procedural 
integrity. Of course, this preliminary screening process will always need human 
oversight. In addition, machines will become more sophisticated with hybrids such 
as graph neural networks and transformers becoming part of other AI tools. 
Finally, the internet of everything will be in full deployment, with over a trillion intel-
ligent devices with neural networks connected as a huge network and feeding infor-
mation (without the data) into the cloud resembling an AI nervous system. This AI 
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health hub overlooks the health of entire populations of residents from birth onward 
with focus on social determinants of health. These approaches are consistent with 
Alan Turing’s prescient philosophy of “machine, not human, to deal with machine”.

 The Human-Machine Dyad

The experiences with algorithms in deploying vaccinations around the world during 
the COVID-19 pandemic show very clearly that human insight and common sense are 
very much needed, especially to monitor equity of vaccine distribution. In addition, 
health systems will develop this human-machine synergy in the form of an AI center of 
excellence that incorporates both clinical and AI expertise. With data and information 
more accessible and organized in health systems, endeavors such as quality improve-
ment, peer review, clinical research, and business intelligence can potentially all be 
supported by a single “intelligence” resource for special multi- dimensional insights. 
Again, human-machine synergy is preferred over either humans or machines alone.

 Conclusion: Convolution to Consilience

In several decades, there is no longer labeling any process in clinical medicine and 
healthcare as “artificial intelligence” as AI becomes embedded into a myriad of 
processes and devices. Intelligence-based medicine permanently becomes standard 
of care and practice for the previously impossible goals of precision medicine and 
population health. Medical intelligence is widely practiced as a convolution of clini-
cal medicine and artificial intelligence, and medicine and healthcare gradually 
evolves into Edward Wilson’s paradigm of consilience: the convergence of natural 
and social sciences along with other sciences into a unity of knowledge [11].

Leonardo da Vinci wrote “Knowing is not enough; we must apply. Being willing is 
not enough; we must do.” With the pandemic raging on and the virus undergoing muta-
tions with worrisome frequency, we need to be resilient and retaliate with not only with 
our collective human intellect but also any good artificial intelligence tool we can sum-
mon. This will give us the hope we all need. Finally, perhaps the most valuable dividend 
for AI in clinical medicine and healthcare is that during the future decades long process 
of working with patient data as well as machines and algorithms, we have the opportu-
nity to learn more about not only ourselves but also our biases so we can decrease 
healthcare inequities and finally bring social justice to all. The best dividend in the future 
of artificial intelligence in medicine, therefore, is a reclaiming of humanity in medicine.

Questions for Discussion

• Consider some technological advances expected to improve the outcomes of 
patients with the advances in AI in the biomedical domain. What challenges do 
you perceive to achieving these improvements?
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• What are potential obstacles for artificial intelligence to reach the paradigm of 
precision medicine and population health?

• What are means through which new medical knowledge will be discovered in 
patients with diseases, and how will this help to improve patient outcome?

• What is in store for the future practicing clinicians and their interface with AI in 
clinical medicine and healthcare?

• How will the upcoming generations of clinicians be educated and trained in AI 
in clinical medicine and healthcare?

• Consider the following dyads: (1) human to human, (2) human to machine, and 
(3) machine to machine. What are some issues with each dyad as it relates to the 
future of AIM? Think beyond those that are discussed in the chapter as well.

Further Reading

Chang AC. Section IV: The future of artificial intelligence and application in medi-
cine. In: Intelligence-based medicine: artificial intelligence and human cognition in 
clinical medicine and healthcare. London: Elsevier; 2020.

• The section of the book is devoted to future technologies and issues of artificial 
intelligence in clinical medicine and health care and is relevant for both the clini-
cian as well as the artificial intelligence expert.

Russell S, Norvig P. Artificial intelligence: a modern approach. 4th ed. New York: 
Pearson Education; 2021.

• The “bible” of artificial intelligence that is now updated relatively soon after the 
last edition given how fast this field has evolved in just the past few years.

Stanford University Human-Centered Artificial Intelligence (HAI). Artificial 
Intelligence Index Report 2021. https://aiindex.stanford.edu/wp- content/
uploads/2021/11/2021- AI- Index- Report_Master.pdf.

• This is an excellent report of the state of the art of artificial intelligence with 
projections into the future decades with all the nuances to be expected.
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Chapter 20
Reflections and Projections

Trevor A. Cohen, Vimla L. Patel, and Edward H. Shortliffe

After reading this chapter, you should know the answers to these questions:
• How might explainable models influence human/AI team performance?
• What are some potential advantages of integrating formal knowledge with deep 

learning?
• What clinical applications of AIM technologies—other than predictive models 

of diagnoses or outcomes—show potential as growth areas in the near future?
• How might one obtain additional training in, and exposure to, AIM?

 Introduction

At the conclusion of the volume, we would like to reconsider some key themes that 
feature prominently in the development of AIM, including some that were intro-
duced in Chap. 1. While most of these themes are not new to the field, it is informa-
tive to revisit them in the light of recent developments (including a few that were 
reported in the literature only recently, after discussions provided in the earlier 
chapters were completed). These developments include both the current 
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predominance of models that prioritize accuracy over interpretability, and the 
related tendency to prioritize accuracy over other factors—including human fac-
tors—when evaluating AIM systems (see Chap. 17). As readers will have surmised 
from earlier discussions in this volume, we are concerned by some of these recent 
developments and propose some revisions in emphasis, suggesting the correspond-
ing research that is required.

 Explainability and Complementarity

One recurring theme concerns the desire for explainable models (see Chap. 8). In a 
1981 study, physicians rated the capacity for explanation in decision support systems 
as the single most important design feature for future automated advisory tools [1], 
even more important than the accuracy of the advice. Yet the general trend in recent 
AIM work has involved sacrificing or downplaying interpretability in exchange for 
the accuracy that comes with heavily parameterized data-driven models such as deep 
neural networks. Some recent work has bucked this trend. For example, the 
Prescience system provides a visual summary explaining its predictions of the onset 
of hypoxemia (low blood oxygen levels) to guide anesthetists during surgery by list-
ing interpretable features (such as reduced tidal volume) that drive its predictions [2]. 
The underlying model used in this work, Shapley Additive Explanations (SHAP), 
is based on cooperative game theory [3], extending ideas developed by a Nobel prize 
winning economist, Lloyd Stowell Shapley, to quantify the relative contributions of 
members of a coalition [4]. The open source SHAP library provides approaches to 
establishing the importance of features across a range of machine learning models, 
including deep learning models such as pre- trained transformers for text categoriza-
tion (Fig. 20.1). This can offer intuitive explanations of the importance of individual 
features for specific predictions made by complex models [5].

However, while the contributions of individual features do provide a form of 
interpretability, this is far removed from the structured reasoning provided by 

Fig. 20.1 SHAP visualization for a decision from a deep learning model trained to detect tran-
scripts of participants with Alzheimer’s disease dementia responding to a picture description task, 
using data from the Alzheimer’s Dementia Recognition through Spontaneous Speech (ADReSS) 
challenge [6]. The visualization suggests (shaded emphasis reflecting chunks of text with a positive 
influence on the prediction) that the model is predicting this transcript came from a participant with 
dementia in part because of the frequent repetition (“it’s it’s”, “he’s he’s”) that is known to occur 
in this condition
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physicians to explain their diagnostic decision making in cognitive studies [7]. It is 
also very different from the virtuosic explanations, weaving together observable 
signs and symptoms with detailed accounts of the pathophysiology underlying a 
suspected disease process, that those with clinical training may remember receiving 
from experienced diagnosticians on teaching rounds. A justification for a diagnostic 
decision that points out which signs and symptoms were considered, without 
explaining why they lead to the identified diagnosis, suggests a superficial under-
standing of the problem. Cognitive studies of diagnostic reasoning also show that 
there are conditions under which explanations are needed during a problem solving 
process [8].

Furthermore, recent evidence suggests that providing explanations at the level of 
feature importance may increase the likelihood that both accurate and inaccurate 
model predictions are accepted [9]. These authors also note a number of prior stud-
ies—including the hypoxemia prediction work previously mentioned—in which the 
improvements in team performance demonstrated with explanations could be fur-
ther enhanced by eliminating the human in the loop entirely. There are counterex-
amples in which human/AI teams are truly complementary, such as those discussed 
in Chap. 5 [10, 11]. However, this is not always the case (at least not for classifica-
tion accuracy). Note, however, that providing explanations may have other potential 
benefits, such as enhancing the speed of human decision making [9] and drawing 
attention to salient patient data. One way to encourage such complementarity 
involves deliberately optimizing machine learning models to maximize human/AI 
team performance, explicitly modeling the ability of a human decision maker to 
accept or override a prediction on the basis of model confidence (e.g. the probability 
assigned to a particular category, such as “COVID-19 +ve”). Such approaches can 
balance the amount of human effort required against overall system accuracy [12]. 
Intriguingly, models trained in this fashion may exhibit changes in behavior that 
include trading the accuracy of low-confidence predictions (predictions that are 
more likely to be overridden), for greater accuracy in high-confidence predictions. 
While such results have emerged from experiments conducted in simulation, they 
are reminiscent of the observation that the accuracy of a radiological deep learning 
system to diagnose pneumonia was improved by human evaluation of low-confi-
dence predictions [11]. A system focused on optimizing the accuracy of its high-
confidence predictions would likely further improve human/AI team accuracy in 
this context. In effect, the system would incorporate a model of human behavior in 
response to the confidence of its predictions.

A complementary approach to having AI systems model human behavior involves 
equipping flesh-and-blood team members with useful mental models of their digital 
collaborators. In order to understand the role of such mental models, Bansal and col-
leagues have investigated the role of the complexity of the error boundary, which 
demarcates the inputs for which an AI model is likely to fail, in human/AI team per-
formance [13]. In this work, participants were crowdsourced users of a platform for 
AI-supported decision making, and were tasked with deciding whether to take an auto-
mated recommendation for particular problems. Accurate decisions were rewarded 
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monetarily, irrespective of whether or not the automated recommendations were fol-
lowed, and the task was constructed such that its success was contingent upon learning 
the error boundary of the model correctly. The authors conclude that error boundaries 
that are parsimonious (achieved by constraining the number of features visible to 
users) and predictable (achieved by pushing models toward deterministic decisions 
and ensuring that they remain consistent in their decisions on previously-encountered 
examples as they learn) are easier for users to model mentally, and consequently lead 
to better human/AI team decisions. In short, the human component of the team needs 
to know when to trust the AI component, and when to second-guess it (see Chap. 18).

Taken together, this work suggests that team performance improves when AI and 
human team members are aware of one another’s strengths and weaknesses—just as 
is the case with teams of human beings [14]. This requires more than an explanatory 
mechanism, and is not an inevitable consequence of model transparency. Rather, the 
respective capabilities and vulnerabilities of AI and human team members must be 
learned from their observed behavior. As we have argued previously [15], methods 
of cognitive informatics are ideally suited to the task of identifying human vulner-
abilities to medical error, and there is a long track record of the application of such 
methods to characterize mental models in medicine [16, 17]. We anticipate that the 
characterization of both human and machine error boundaries will be a fruitful area 
of investigation and system design to be addressed by cognitive informatics 
researchers in the future, as will the development of methods of explanation that 
make such error boundaries apparent.

 Restoring Knowledge to AIM

Another recurring theme throughout this volume concerns the relative neglect of 
knowledge-based methods in recent AIM work. While it is understandable that deep 
learning methods would attract attention because of their recent successes, the aph-
orism “knowledge is power”—as applied to AI by Feigenbaum—has been an axiom 
of AIM since the inception of the field (see Chap. 2). Bengio, LeCun and Hinton, 
joint recipients of the prestigious Turing Award in 2018 for their work on deep 
learning, acknowledge that the successes of deep learning have largely involved 
perceptual tasks (such as radiologic image analysis in the case of medicine, as is 
discussed in Chap. 12) [18]. Drawing on Kahneman’s influential dual systems the-
ory [19], they note that these successes involve so-called “System 1” tasks—tasks 
that we accomplish without conscious effort. In contrast “System 2” tasks, such as 
formal reasoning, require deliberate conscious effort to execute a sequence of steps. 
The “System 2” symbolic systems that were developed at the inception of AIM 
were well positioned to explain their diagnostic decisions to human interrogators 
because these decisions were produced through a deliberate series of steps travers-
ing atomic units of interpretable knowledge (see also Chap. 5). However, neither the 
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acquisition of formal knowledge, nor automated reasoning of this sort, have been 
the main focus of deep learning research to date. Bengio, LeCun and Hinton con-
clude by expressing their collective desire to develop neural network models that 
retain their desirable learning and generalization capabilities while also supporting 
the “System 2” tasks, such as reasoning through recombination of knowledge com-
ponents, that were the focus of the symbolic AI research initiative.

The idea of integrating symbolic and distributed representations (such as neural 
network weights) is not new. Integrative approaches, such as Harnad’s three-level 
representational system and Gärdenfors’ Conceptual Spaces framework [20, 21], 
propose unified models with the capacity for both perception and reasoning. 
Functional implementations of neuro-symbolic reasoning, such as Smolensky’s ten-
sor product binding [22] and a set of related approaches collectively known as Vector 
Symbolic Architectures [23–27], use deliberate transformations of the high- 
dimensional vector representations that underlie neural network models to encode 
the nature of the relationships among entities, permitting approximate inference. Of 
late, there has been a resurgence of interest in the development of integrated models, 
as illustrated by the identification of Neuro-Symbolic AI as a focus area for the 2021 
Association for the Advancement of Artificial Intelligence (AAAI) Conference on 
Artificial Intelligence.1 Such models have already been applied to represent and 
draw inference from tens of millions of assertions extracted from the biomedical 
literature using natural language processing [28–30], and to represent general knowl-
edge expressed in the form of a graph (see Chap. 4) [31]. Recent work has also 
provided methods that can augment the representations learned by neural networks 
with information from formal knowledge structures such as taxonomies [32–34] 
(see also the concluding section of Chap. 4), and has shown how formal logical 
operators used in quantum physics can apply to neural-network-derived vector rep-
resentations [35, 36]. We anticipate that methods to augment deep neural network 
models with formal knowledge and explicit reasoning capabilities will be an impor-
tant focus of research in the immediate future, with the potential to support the abil-
ity of AIM models to learn how to draw accurate conclusions from relatively small 
amounts of data, to advance approaches to interpretability beyond an exclusive focus 
on feature weights, and to compensate for biases inherent in data used for training.

 Forward-Thinking Clinical Applications

Diagnostic and therapeutic decision support has been the primary focus of AIM 
system development since the field’s inception, with imaging implications being 
particularly prominent at present because of their alignment with technological 

1 https://aaai.org/Conferences/AAAI-21/aaai21focusareacalls/. (accessed August 17, 2022).
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developments in image processing. Other applications that have attracted attention 
include the prediction of future patient states (such as sepsis [37]). However, there 
are many other aspects of medical practice that could benefit from the application of 
AIM methods, and we anticipate that the scope of applications will broaden as 
healthcare professionals become better acquainted with them.

Recent innovative applications of AIM methods include using sensors to permit 
physical environments to respond to the presence of human agents [38]. Examples 
of work in this area include automated measurement of hand-hygiene dispenser use, 
with the goal of reducing hospital-acquired infections [39], and measurement of 
patient mobilization in the intensive care unit, which can reduce related complica-
tions and improve long-term functional outcomes [40]. Another promising direction 
concerns using AIM to anticipate medical error. In recent work by King et  al., 
machine learning models trained on a large dataset of physician orders with relevant 
contextual information were able to predict voided medication orders—orders in 
which clinicians correct or reconsider a previous prescribing decision [41]. While 
further improvements in accuracy would be a prerequisite for deployment of such a 
system to mitigate errors, interpretation of the factors associated with prediction—
such as student-entered orders and lack of predefined dosage options—reveal 
opportunities for system-level changes to enhance patient safety.

Another area that is attracting considerable interest concerns the use of AIM meth-
ods to reduce the documentation burden of physicians, which constrains the time 
available for doctor-patient interaction and has been associated with increased risk of 
physician burnout [42]. That AIM can be applied to recover time from clerical docu-
mentation, allowing more focus on human interaction in medicine, is one of the central 
arguments in Topol’s recent book, Deep Medicine: How Artificial Intelligence Can 
Make Healthcare Human Again [43]. One pragmatic approach to reducing this burden 
concerns using contextual information to enhance the utility of autocomplete sugges-
tions [44]. Another proposal concerns the development of “digital scribes”, ambient 
agents that can pre-populate a clinical note with information detected while continu-
ously monitoring discussion and movement during a clinical encounter [45]. Realizing 
this ambitious goal will require both negotiation of technological challenges, such as 
speaker identification and compensation for ambient noise, and addressing privacy 
concerns, particularly if speech recognition is to leverage deep learning models that 
are hosted on commercial servers. However, the potential of an application of this sort 
to restore physicians’ attention to patient care has already attracted considerable com-
mercial investment, both from large technology companies such as Google and 
Microsoft, and from speech recognition solution developers such as Nuance 
Communications (and their recent acquisition, Seattle-based startup Saykara2) [46].

Others have called for a shift in emphasis from decision support to cognitive sup-
port [47–49]. That is, rather than predicting diagnostic labels or suggesting thera-
pies, AIM methods could mediate the aggregation and organization of clinical 

2 https://medcitynews.com/2021/02/nuance-buys-healthcare-voice-assistant-startup-saykara/. 
(accessed August 17, 2022).
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information to support clinical decision making. Investigators have explored the use 
of both machine learning and encoded expert knowledge as a means to support the 
management and navigation of information that is pertinent to specific decision- 
making processes [47, 48]. Along similar lines, Adler-Milstein and colleagues have 
developed an analogy between clinical diagnosis and navigation (“wayfinding”), 
and argue that AIM methods should learn from physician information-seeking 
behavior to aggregate information in support of cognitive tasks and provide cues 
along the path to a diagnostic conclusion [49]. These proposals suggest fruitful and 
largely unexplored areas of application of AIM methods to support clinical care by 
synthesizing information to support decisions. Systems of this sort would supple-
ment existing decisions and workflows, rather than attempting to redefine them by 
offering automated recommendations.

 Workflow, and the Workforce

Designing technology to fit the current workflow requires a thorough understand-
ing of the practice environment. Li and his colleagues propose a “delivery science” 
of AIM to ensure (a) that the development of algorithmic approaches is rooted in 
stakeholder-identified priority problems, and (b) that these stakeholders and their 
existing workflows inform the design, rollout and evaluation of the resulting inter-
ventions [50]. Such stakeholder engagement is also integral to the design and 
evaluation framework offered in Chap. 17. It follows that those wishing to imple-
ment successful AIM solutions at the point of care may be best positioned to do so 
from within the institution in which these solutions will be deployed. To this end, 
Cosgriff et al. argue the need for dedicated departments of clinical AI, to drive the 
development and implementation of AI models with demonstrated healthcare ben-
efits, and to train future leaders in the field [51]. New  York’s Icahn School of 
Medicine at Mount Sinai has already taken this initiative, with their establishment 
of a Department of Artificial Intelligence and Human Health.3 Of course, many 
such AIM solutions for pressing clinical problems have emerged over the years 
from departments of biomedical informatics. These departments, particularly 
when supporting healthcare operations, already fulfill some of the proposed func-
tions of a medical AI department, including the development of models that apply 
to patient care using real-time data, and the facilitation of interoperability of 
institutional data. However, Cosgriff et al. argue for a scaling up of such efforts in 
order to expedite the development and deployment of predictive models that sup-
port clinical care, with problem formulation, model development, local optimiza-
tion, workflow integration and continuous evaluation as core departmental 
functions.

3 https://icahn.mssm.edu/about/departments/ai-human-health. (accessed August 17, 2022).
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Intertwined with the need for principled integration of AI models into care is the 
need to educate practitioners with the broad knowledge base required to do this 
effectively. In addition to specialists in AIM who will require advanced and focused 
graduate-level training, there are already avenues through which practicing physi-
cians can advance their knowledge in the field. As Langlotz (a radiologist and AIM 
researcher) puts it, “AI won’t replace radiologists, but radiologists who use AI will 
replace radiologists who don’t” [52]. The same could be said of other subdisci-
plines. Avenues available to medical practitioners interested in learning more about 
AIM include clinical informatics fellowship programs,4 the clinical informatics sub-
specialty board certification [53], the American Board of Artificial Intelligence in 
Medicine (ABAIM)‘s certification program,5 and a range of educational activities 
supported by the AIMed organization.6 All these efforts were created for those with 
clinical training who wish to expand their knowledge of AIM and related informat-
ics topics. Thus, we envision a narrowing of the knowledge gap between specialists 
in AIM and specialists in medicine, establishing the common core of shared under-
standing required to support effective teamwork [14].

 Evaluation

Another recurring theme involves the evaluation of AIM systems. Assertions of 
superhuman AIM performance and the predictions of physician displacement that 
accompany them7 have predictably attracted a degree of backlash [54], with a recent 
review of 81 such “AI vs. clinicians” evaluations in medical imaging drawing atten-
tion to the sparse representation of randomized clinical trials among them [55]. This 
reflects a cultural difference in the estimation of the utility of different forms of 
evidence. As is discussed in Chap. 17, while assessment of the accuracy of perfor-
mance of a predictive model using a reference set is clearly important, it is just one 
component of a series of evaluations required to assess system usability,  performance 
in practice, healthcare benefits, and return on investment. Without this more exten-
sive view of evaluation, AIM systems will not meet the standards of scrutiny applied 
to other medical interventions and are likely to be greeted with skepticism by clini-
cians accustomed to basing their practice on evidence from meta-reviews of clinical 

4 https://amia.org/careers-certifications/informatics-academic-programs. (accessed August 17, 2022).
5 https://abaim.org/certification. (accessed August 17, 2022).
6 Available from: https://ai-med.io/. (accessed August 17, 2022).
7 This was perhaps most controversially claimed by neural network pioneer Geoffrey Hinton, who 
compared radiologists to a cartoon character (Wile E. Coyote) ‘treading air’ after stepping off a 
cliff before the inevitable drop. It was recounted in an interview with Siddhartha Mukherjee for an 
article for the New  Yorker (https://www.newyorker.com/magazine/2017/04/03/ai-versus-md). 
(accessed August 17, 2022). Hinton subsequently reframed the likely impact on radiologists as 
shifting their work from purely perceptual to more cognitively demanding tasks.
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trials. Furthermore—and as noted by the FDA8—evaluation should not terminate at 
the point of deployment. Continued assessment of real-world performance of AIM 
models is required to understand how well they perform locally, as well as with 
particular subpopulations to offset the potential for AIM to exacerbate healthcare 
disparities by performing better in some populations than others [56]. Also, knowl-
edge and conventions evolve over time, requiring ongoing assessment and updating 
of AIM functionality. We view addressing these gaps in typical approaches to evalu-
ation of AIM systems as crucial to realizing their potential to improve healthcare 
effectiveness and quality and, accordingly, to being accepted.

 Concluding Remarks

This concluding chapter has highlighted themes that are of particular importance for 
the further development of the field. It is undoubtedly an exciting time to be work-
ing in the area of AIM, and our book is intended to provide readers not only with a 
sense of well-justified enthusiasm for the proximal future of the field, but also with 
a grounding in the as-yet-unresolved issues that may threaten the realization of 
AIM’s potential to improve health care and biomedical research. Over a decade ago, 
a panel of AIM experts discussed the opportunities that AI in medicine had afforded 
and outlined challenges for the future [57]. Now we have new and different oppor-
tunities for AIM, bringing with them unique challenges that we need to address. The 
concluding sentence to Alan Turing’s seminal paper, Computing Machinery and 
Intelligence, reads: “We can only see a short distance ahead, but we can see plenty 
there that needs to be done.” [58] Accordingly, this volume has sought to provide 
readers with a suitable vantage point from which to consider how best to engage 
with ongoing efforts to advance these remarkable technologies and, in turn, their 
potential to improve health care and biomedicine.

Questions for Discussion

• How might one investigate the role of explainability in human/AI teams operat-
ing in clinical environments? Is it possible to provide cognitively satisfying 
explanations of conclusions that are drawn using machine learning methods?

• Which emerging application areas for AIM have the greatest near-term potential 
to improve the quality and safety of health care?

• What are some currently available resources for computable knowledge, and 
how might the knowledge they contain inform the development of deep learn-
ing models?

8 https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-
machine-learning-software-medical-device. (accessed August 17, 2022).
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• Given what you have learned about AI systems in health care, what do you see as 
some of the biggest challenges in real-world applications and in education for 
the future?

Further Reading

Bansal G, Wu T, Zhou J, Fok R, Nushi B, Kamar E, Ribeiro MT, Weld D. Does the 
whole exceed its parts? The effect of AI explanations on complementary team per-
formance. In: Proceedings of the 2021 CHI Conference on Human Factors in 
Computing Systems 2021 May 6. pp. 1–16.

• This is a thought-provoking paper that describes an empirical investigation into 
the effects of explanations in human/AI team performance. It doesn’t concern 
medical AI applications, but raises a number of important issues that are rele-
vant to AIM applications, and provides a template for their empirical 
investigation.

Cosgriff CV, Stone DJ, Weissman G, Pirracchio R, Celi LA. The clinical artificial 
intelligence department: a prerequisite for success. BMJ Health Care Inform. 
2020;27(1).

• This paper presents an argument for dedicated medical AI departments that are 
tightly integrated with institutional infrastructure to support the integration and 
evaluation of AIM models for deployment, as well as to serve as entities that lead 
AIM research.

Li RC, Asch SM, Shah NH. Developing a delivery science for artificial intelligence 
in healthcare. NPJ Digital Med. 2020;3(1):1–3.

• This paper outlines a multidisciplinary process for integration of AIM applica-
tions into clinical care. It includes consideration of stakeholder perspectives, 
local information infrastructure and engagement of institutional leadership.
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Terms and Definitions

10× genomics (10×) 10× genomics is a popular technique to perform single-cell 
RNA sequencing. The technique is named after 10× Genomics Inc, the company 
who developed and owned the technique intellectual property (Chap. 14).

Abductive reasoning A cyclical process of generating possible explanations or a 
set of hypotheses that are able to account for the available data and then each of 
these hypotheses is evaluated on the basis of its potential consequences. In this 
regard, abductive reasoning is a data-driven process that relies heavily on the 
domain expertise of the person (Chaps. 3 and 5).

Accessibility The characteristic of data that allows research teams to pool data and 
conduct analyses so that they can have greater confidence in the results (e.g., 
greater statistical power because the size of the dataset is larger) (Chap. 3).

Acoustic coupler An interface device for coupling electrical signals by acoustical 
means—usually into and out of a telephone. Such devices were frequently used 
to connect computer terminals with computers at a distance, often through termi-
nal interface processors (TIPs) (Chap. 2).

Activation function In a neural network, an activation function (such as the sig-
moid function) determines the output of a node, given the weighted sum of inputs 
to the node (Chaps. 1, 6 and 12).

Active learning A human-in-the-loop form of machine learning (ML) where the 
ML model is re-trained after batches of human annotation and then used to select 
the next set of data for the human to annotate, often drastically reducing the 
amount of human annotation needed (Chap. 7).

ACT-R A cognitive architecture offering a theory for simulating and understand-
ing human cognition. Researchers working on ACT-R strive to understand how 
people organize knowledge and produce intelligent behavior (Chap. 16).

Adaptive artificial intelligence-based clinical decision support An artificial 
intelligence-based clinical decision support system in which the knowledge base 
or model is dynamic and is updated with new data and new methods for learning 
from data (Chap. 10).
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Adjacency matrix A square matrix that describes a graph’s connectivity where 
each element (i, j) in the matrix is a 1 if an edge exists between node i and node 
j and 0 otherwise (Chap. 4).

Advanced Research Projects Agency (ARPA) U.S.  Department of Defense 
Advanced Research Projects Agency (also known as DARPA) (Chap. 2).

Affordances Attributes of objects that enable individuals to know how to use them 
(e.g., a door handle affords turning or pushing downward to open a door). Well- 
designed technologies (Chap. 16).

AI winter A period of reduced funding and interest in artificial intelligence 
research (Chap. 2).

AI-CDS See artificial intelligence-based clinical decision support (Chap. 10).
AI-CDS system See: artificial intelligence-based clinical decision support system 

(Chap. 10).
AlexNet The name of a convolutional neural network (CNN) architecture, designed 

by Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton. 
AlexNet competed in the ImageNet Large Scale Visual Recognition Challenge, 
achieving a top-5 error of 15.3%, more than 10.8 percentage points lower than 
that of the runner up (Chap. 12).

Algorithmovigilance A term (coined by Peter Embi) to describe systems or pro-
cesses for scrutinizing AI algorithms. It is analogous to post-market “pharmaco-
vigilance,” the philosophy and practice of monitoring pharmaceutical products 
to identify adverse events or other harms after they are approved and in use 
(Chap. 18).

Annotation The process of labeling or classifying an image using text, annotation 
tools, or both, to describe its type, subject matter, and other attributes (Chap. 12).

Anonymization The process by which data is irreversibly altered in such a way 
that a data subject can no longer be identified directly or indirectly, either by the 
data controller alone or in collaboration with any other party (Chaps. 2 and 3).

Anti-factor Xa (anti-Xa) A laboratory test of blood that measures the inhibition of 
factor Xa activity, is part of the clotting process (Chap. 15).

Anytime algorithm A class of algorithms that continuously searches for a better 
and better answer to a problem (so that you can query the algorithm for the best 
solution at “anytime”) rather than the typical algorithm that produces a final 
answer (Chap. 19).

Applied ethics  The practical application of critical thinking about values to 
address and resolve real-world moral issues (Chap. 18).

Apprenticeship learning In this type of learning, a human expert defines a goal by 
demonstrating how to attain this goal so that the artificial intelligence system can 
mimic this behavior of reaching this goal (Chap. 19).

Approximation error In machine learning, this is an error caused by limits on the 
amount of data available for training. For example, few examples of a category 
of interest may be available, making it difficult for the model to make accurate 
predictions for it (Chap. 6).
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ARPA See Advanced Research Projects Agency
ARPAnet A large wide-area network (also known as the ARPA Network) created 

in the 1960s by the U.S. Department of Defense Advanced Research Projects 
Agency (DARPA) for the free exchange of information among universities and 
research organizations; the precursor to today’s Internet (Chap. 2).

Artificial intelligence (AI) The field of study concerned with endowing computers 
with the ability to produce behavior and outcomes that are considered to require 
intelligence when produced by humans (Chaps. 3 and 10).

Artificial intelligence of things (AIoT) Two complementary technologies of arti-
ficial intelligence and internet of things (IoT) to enable rapid decisions with ana-
lytics from massive volumes of data derived from IoT- (Chap. 19).

Artificial intelligence-based clinical decision support (AI-CDS) A computer- 
based system that uses artificial intelligence to render clinical decision support 
(Chap. 10).

Artificial neural network A computer program that performs classification by 
taking as input a set of findings that describe a given situation, propagating cal-
culated weights through a network of several layers of interconnected nodes, 
and generating as output a set of numbers, where each output corresponds to the 
likelihood of a particular classification that could explain the findings (Chaps. 1, 
2, 11, and 15).

ASCVD Atherosclerotic cardiovascular disease, defined as acute coronary syn-
drome, history of myocardial infarction, stable or unstable angina, coronary or 
other arterial revascularization, stroke, transient ischemic attack, or peripheral 
arterial disease presumed to be of atherosclerotic origin (Chap. 8).

Attention A mechanism used in neural networks to focus on (“attend to”) specific 
aspects of a complex input (Chap. 4).

Audit data logs A detailed record of every action or activity taken related to data 
or reports. While paper audit trails were originally kept manually, now digital 
records can be tracked automatically via audit trail if you have the right software 
platform capable of data auditing (Chap. 17).

Augmented intelligence A design pattern for a human-centered partnership model 
of people and AI working together to enhance cognitive performance, including 
learning, decision making, and new experiences (Chap. 5).

Augmented reality An interactive experience of a real-world environment where 
the objects that reside in the real world are enhanced by computer-generated 
 perceptual information, which may include visual, auditory, haptic, somatosen-
sory and olfactory modalities (Chap. 16).

Autoencoder A type of artificial neural network that has an hourglass-shaped 
architecture. The input and output layers have the same number of nodes as the 
number of dimensions in the data. One layer has the smallest number of nodes, 
which is called the ‘encode’ layer. The size of the middle layer decreases from 
the input to the encode layer and increases from the encode layer to the output 
layer. The data in the output layer, which is a type of synthetic data, is very simi-
lar to the data in the input layer. This means that another classification model 
could not accurately differentiate the data between the input and the output layer. 
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If so, the encode layer represents the original data so well that it can create a very 
similar synthetic dataset (Chaps. 4 and 14).

Automated ML (AutoML) Automating the modeling process that facilitates pro-
cesses such as data preprocessing, features engineering, model selection, and 
meta-learning for hyperparameters optimization (Chap. 19).

AutoTutor An intelligent tutoring system that simulates the discourse patterns 
of human tutors, based on analysis of human-to-human tutoring sessions, and 
theoretically-grounded tutoring strategies based on cognitive learning principles 
(Chap. 16).

Backward chaining The computational process of seeking to determine the truth 
of a goal statement by tracing out potential paths of inference using logical rules 
that can assert that statement as fact (Chaps. 3 and 4).

Backward reasoning The process of reasoning in the opposite fashion to forward 
reasoning, where the purpose is to determine the initial facts and information 
with the help of the given conclusions. It is often referred to as bottom-up rea-
soning (Chap. 5).

Basis function expansion A technique through which a feature vector for machine 
learning is expanded into a longer vector containing individual component com-
binations, using mathematical transformations (Chap. 6).

Bayes’ Theorem An algebraic expression often used in clinical diagnosis for cal-
culating posttest probability of a condition (a disease, for example) if the pretest 
probability (prevalence) of the condition, as well as the sensitivity and specificity 
of the test, are known (also called Bayes’ rule). Bayes’ theorem also has broad 
applicability in other areas of biomedical informatics where probabilistic infer-
ence is pertinent, including the interpretation of data in bioinformatics (Chap. 4).

Bayesian belief network A probabilistic model based on known or computed con-
ditional independence of variables, based on Bayes’ theorem (Chap. 15).

Bayesian probability theory An approach to probabilistic reasoning that applies 
an algebraic expression, often used in clinical diagnosis, for calculating post-
test probability of a condition (a disease, for example) if the pretest probability 
(prevalence) of the condition, as well as the sensitivity and specificity of the test, 
are known (also called Bayes’ theorem or Bayes’ rule) (Chap. 2).

Bidirectional Encoder Representations from Transformers (BERT) A meth-
odology that applies the bidirectional training of a transformer, which is an 
 attention model, to language modeling with a deeper sense of language context 
and fluidity (Chap. 19).

Big data A field that treats ways to analyze, systematically extract information 
from, or otherwise deal with data sets that are too large or complex to be dealt 
with by traditional data-processing application software (Chaps. 10 and 12).

Binary classification A special case of classification involving only two classes 
(Chap. 6).

Binding affinity Binding affinity measures the strength of interaction between a 
protein and another protein or chemical (Chap. 14).
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Bioethics A branch of applied ethics addressing healthcare and its professions, as 
well as issues arising in human and animal research, clinical care, and public 
health (Chap. 18).

Bioinformatics A subfield of biomedical informatics that involves the study of 
how information is represented and transmitted in biological systems, starting at 
the molecular level (Chap. 2).

Biomedical informatics The interdisciplinary field that studies and pursues the 
effective uses of biomedical data, information, and knowledge for scientific 
inquiry, problem solving, and decision making, driven by efforts to improve 
human health (Chap. 2).

Black box A computer or computer system in which the processes that generate 
output are opaque or inscrutable (Chap. 18).

Bootstrapping A resampling method that mimics the sampling process by using 
random sampling with replacement. Bootstrapping estimates the properties of 
an estimator (such as its variance) by measuring those properties when sam-
pling from an approximating distribution. Given a dataset with N samples, boot-
strapping repeatedly creates datasets of size N (known as bootstrap samples) 
by resampling with replacement N instances of the original dataset. Each boot-
strap sample can include repeated instances of the original dataset. The bootstrap 
sample is used to train the desired model. The samples that are not selected for 
the bootstrap sample are used as a test set. The described procedure is repeated 
B times, and the final performance of the model is computed as an average over 
the B samples (Chap. 11).

Canonical correlation analysis A way of inferring information from cross- 
covariance matrices. If we have two vectors X and Y of random variables, 
which do not need to have the same dimension, and there exist correlations 
among the variables (for example, in brain cancer, the patients’ survival 
time and the patients’ time for a recurrent tumor to occur), then canonical-
correlation analysis will find linear transformation of X (denote: Xt) and Y 
(denote: Yt) such that Xt and Yt have maximum correlation with each other 
(Chap. 14).

Capsular network A relatively new deep learning concept promulgated by Geoff 
Hinton that is based on human brain modules called “capsules” that are good 
for routing visual images to the appropriate capsule for improved hierarchical 
relationships (Chap. 19).

Carotid arterial intimal-medial thickness (CIMT) A widely used and validated 
imaging technique whereby the thickness of the inner two layers of the carotid 
artery—the intima and media—are measured, typically by ultrasound or MRI, to 
detect subclinical vascular disease (Chap. 12).

Causal reasoning The process of identifying causality. i.e., the relationship 
between a cause and its effect (Chaps. 2 and 3).

Certainty factor An early method of assigning likelihoods to facts and conclu-
sions of rules, and then subsequently accumulating evidence, introduced in the 
MYCIN system and subsequently adopted in many other systems, including neu-
ral networks (Chap. 4).
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Chaos theory The study of nonlinear dynamics in mathematics in which seem-
ingly random events are predictable from simple deterministic equations in com-
plex systems, such as weather, migratory patterns of birds, and pandemics (see 
also Butterfly Effect) (Chap. 19).

Chatbot A computer system that supports a synchronous mode of text-based com-
munication (Chaps. 2 and 9).

Chemical structure The three-dimensional arrangement of atoms in a chemical 
(Chap. 14).

Chromatin immunoprecipitation (ChIP) Chromatin immunoprecipitation is a 
technique to investigate the interaction between proteins and DNA in the cell. It 
aims to determine whether specific proteins are associated with specific genomic 
regions, such as transcription factors on promoters or other DNA binding sites 
(Chap. 14).

Chunking A process by which individual pieces of information are grouped 
together in a meaningful whole, to improve short-term retention of the material, 
thus bypassing the limited capacity of working memory and allowing the work-
ing memory to be more efficient (Chap. 5).

Citizen data scientist A person who works in fields other than those supporting 
data science (e.g., statistics and analytics) yet creates models using artificial 
intelligence. The benefit of a citizen data scientist is in adding to the workforce 
performing analysis, as well as applying knowledge from the other fields to the 
analysis process (Chap. 15).

Classification As an example: does this patient belong in (i.e., is classifiable into) 
the group of patients with Type 2 diabetes? (Chaps. 3 and 6).

Clinical decision support Any process that provides healthcare workers and 
patients with situation-specific knowledge that can inform their decisions regard-
ing health and health care (Chap. 10).

Clinical decision support system (CDSS) A computer-based system that assists 
physicians in making decisions about patient care (Chap. 10).

Clinomic The study of clinotype. It is also used as an adjective to refer to clinotype 
(Chap. 14).

Clinotype Refers to the measures and characteristics of the living subject, which 
are useful for medical research and interventions (Chap. 14).

Cloud computing An approach to computing that uses computing resources, such 
as processors, data, or files, that are located in a remote location (“in the cloud”) 
(Chap. 2).

Cognitive architecture Sometimes used to describe the third and upcoming wave 
of AI (the first being programming and the second being current deep learning) 
with attention to more inter-object relationships such as attention and memory 
as well as reasoning and other capabilities that are akin to how humans think 
(Chap. 19).

Cognitive informatics The interdisciplinary domain, comprising the cognitive and 
information sciences, that focuses on human information processing, mecha-
nisms and processes within the context of computing and computer applications 
(Chaps. 5 and 8).
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Cognitive load theory Cognitive load refers to the used amount of working mem-
ory resources. The fundamental tenet of cognitive load theory is that the quality 
of instructional design will be higher if greater consideration is given to the role 
and limitations of working memory (Chap. 16).

Cognitive task analysis The analysis of both the information-processing demands 
of a task and the kinds of domain-specific knowledge required performing it, 
used to study human performance (Chap. 5).

Competency-based education An approach that allows trainees to distinguish 
between the skills and knowledge that they already have and those for which they 
need more education and training. This is contrasted to time-based educational 
methods (Chap. 16).

Complexity Used to describe a situation that cannot easily be deconstructed mean-
ingfully into separate component parts as each part is interdependent with the 
other parts (therefore “holistic” with dynamic relationships) and the process 
is therefore nonlinear and the outcome is highly unpredictable or stochastic 
(Chap. 19).

Comprehension An understanding and interpretation of what is read, heard, and 
seen (Chap. 5).

Computable representation A method for storing knowledge in a computer so 
that it can be manipulated computationally, e.g., to draw inferences (Chap. 16).

Computational linguistics The subfield of linguistics focused on the modeling 
of language using computational methods, often used as a synonymous term of 
NLP (Chap. 7).

Computational methods In evaluation work, use of computational tools for cap-
turing and analyzing qualitative data in attempts to find solutions for real-life 
problems (Chap. 17).

Computerized provider order-entry (CPOE) The process of providers (e.g., 
physicians) entering and sending treatment instructions—including medication, 
laboratory, and radiology orders—via a computer application rather than paper, 
fax, or telephone (Chap. 17).

Concatenation-based integration A method that involves combining data sets 
from different data types at the raw or processed data level before modelling and 
analysis (Chap. 3).

Concept normalization (CN) NLP task involving the mapping of a concept in text 
to a standardized form in a lexicon, terminology, or ontology (a concept-level 
equivalent of word sense disambiguation) (Chap. 7).

Concept recognition NLP task involving the identification of phrases in text that 
describe an abstract concept from a particular semantic category (e.g., name of a 
disease or anatomical region) (Chap. 7).

Conditional independence Formally, two manifestations of a disease, A and B, 
are conditionally independent when P(A,B|D)=P(A|D)P(B|D), i.e., when their 
joint probability is simply the product of their individual probabilities given dis-
ease D (Chap. 4).

Connectionism A movement in cognitive science that works to explain intellectual 
abilities using artificial neural networks (Chap. 2).
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Consilience A unified theory of knowledge espoused by biologist Edward 
O.  Wilson that involves many disciplines from biology to physics as well as 
social sciences and the humanities to create a domain where sciences and the 
arts meet (Chap. 19).

Context mechanism MYCIN’s mechanism to allow rules to mention various enti-
ties such as cultures and organisms without needing to relate them explicitly 
(Chap. 4).

Continual learning A concept to learn a model for a large number of tasks sequen-
tially without forgetting knowledge obtained from the preceding tasks, where the 
data in the old tasks are not available anymore during the training of new ones 
(Chap. 12).

Control value theory The theory implies that trainees and instructors’ achieve-
ment emotions can be influenced by changing subjective control and values relat-
ing to achievement activities and their outcomes (Chap. 16).

Conversational agent An intelligent agent that converses with humans via a dialog 
system interface (Chap. 9).

Conversational assistant A conversational agent that uses speech input and output 
to perform a wide range of tasks, as exemplified by the now ubiquitous Siri, 
Amazon Alexa, and Google Home products (Chap. 9).

Convex function A real-valued function in which the y value for points on the line 
segment between two x values always falls beneath the y values of the function 
at these points. The quadratic y=x2 is a classic example of a convex function 
(Chap. 6).

Convex hull The convex hull of a set of datapoints is the smallest polygon that both 
encloses all of them, and does not bend inward upon itself (Chap. 6).

Convolution A mathematical function derived from two given functions by inte-
gration to derive a third function, or an integral that blends one function with 
another function (or simply as an integral of the convolution) (Chap. 19).

Convolution (in image analysis) A linear operation of a filter or kernel to local 
neighborhoods of points in an input. Since a feature may occur anywhere in the 
image, the filter weights are shared across all the image positions. Thus, image 
features can be extracted with fewer parameters, increasing model efficiency 
(Chap. 12).

Convolutional neural network (CNN) A form of deep neural network used in 
image processing, which learns translation invariant features across an image. 
It does so by applying the same set of parameters (called a filter) in different 
 positions within an image, providing the capability to recognize informative 
features irrespective of their location. The filters slide along input features to 
summarize sections of the image. They are typically used in multiple layers to 
abstract features of the entire image (Chaps. 4 and 6).

Copy-number variation (CNV) A phenomenon in which sections of the genome 
are repeated and the number of repeats in the genome varies among individuals 
(Chap. 14).
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Co-reference resolution NLP task involving the identification of co-referring tex-
tual elements—each element often being referred to a “mention” in a “chain” 
of elements—such that all mentions refer to the same real-world object, such as 
identifying which named entity a pronoun refers to (Chap. 7).

Cross sectional imaging A discipline of radiology that encompasses the use of a 
number of advanced imaging techniques (typically CT, MRI, and ultrasound, 
and occasionally some nuclear medicine techniques) that view the body in cross- 
section (i.e., as axial) slices (Chap. 12).

Cross-modal application An application that involves information obtained from 
more than one modality (e.g. image and text data or EHR and genomic data) 
(Chap. 4).

Cybernetics The science of communications and automatic control systems in 
both machines and living things (Chap. 2).

DARPA See Advanced Research Projects Agency (D refers to Defense)
Data augmentation The process of augmenting the training dataset with transfor-

mations of the input data with the goal of inducing the model to be invariant to 
the transformation (Chap. 4).

Data ethics A branch of applied ethics that examines issues associated with data 
collection, storage, and sharing; privacy and confidentiality; appropriate use; etc. 
(Chap. 18).

Data manifold The different kinds of information attached to data in addition 
to what is generally termed “metadata”: where, when, and how the data was 
sourced, how was it structured, and how credible is it. (Chap. 18).

Data programming The programmatic creation of training datasets via noisy 
labelling functions (Chap. 4).

Data-derived artificial intelligence-based clinical decision support An artificial 
intelligence-based clinical decision support system in which a key component is 
a model that is typically derived from data (Chap. 10).

Decision tree A diagrammatic representation of the outcomes associated with 
chance events and voluntary actions. Also a supervised learning method that pre-
dicts the value of a target variable by learning simple decision rules inferred from 
the data features (Chaps. 4 and 11).

Decision tree classifier A flowchart-like structure in which each internal node rep-
resents a “test” on an attribute (e.g. whether the value of that attribute is below a 
certain threshold), each branch represents the outcome of the test, and each leaf 
node represents a class label. The tree is built in an iterative way, by selecting at 
each step the best feature to split the data. Having found the best split, data are 
partitioned into the two resulting regions, and the splitting process is repeated 
on each of the two regions. Then, this process is repeated on all the resulting 
regions. For classification trees, splitting is determined on the basis of the “impu-
rity” of the considered node, which can be quantified using different criteria, 
such as misclassification error, Information Gain, Gain Ratio, and Gini Index. 
The paths from root to leaf represent classification rules. Similarly, in regression 
trees, given the continuous nature of the outcome, “impurity” is computed as the 
Sum of Squared Errors at the node (Chap. 11).
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Deductive reasoning An hypothesis-based logical reasoning process that deduces 
conclusions from test results. It moves from the general rule to the specific appli-
cation (Chap. 5).

Deep feedforward neural networks Neural networks with an input layer, multiple 
hidden layers and an output layer that are fully connected to one another, in the 
sense that every node in one layer connects to every node in the subsequent layer 
(Chap. 6).

Deep learning A class of machine learning algorithms that uses multiple layers in 
an artificial neural network to extract higher-level features progressively from 
raw input. Deep learning can be used both for classification and regression, using 
architectures that include convolutional and recurrent neural networks as well as 
deep reinforcement learning. In image interpretation, the approach progressively 
learns a composition of features to reflect a hierarchy of structures in the data. An 
end-to-end approach, it learns simple features (such as signal intensity, edges, 
and textures) as components of more complex features such as shapes, lesions, 
or organs, thereby leveraging the compositional nature of images (Chaps. 1, 2, 
10, 11, 12, 18, and 19).

Deep reinforcement learning A combination of traditional reinforcement learning 
and an artificial neural network to enable software agents to maximize the reward 
from various states and actions in the environment. The AlphaGo model from 
DeepMind is an example of this AI tool (Chap. 19).

De-identification The process by which data are altered to reduce the likelihood 
that a data subject’s identity can be revealed (Chap. 3).

Department of Defense (DOD) In the USA, the largest government agency. It 
provides military forces and capabilities needed to deter war and ensure the 
nation’s security, including by supporting research.  The DOD has been a major 
source of support for the development of AI methods and applications through 
its Advanced Research Projects Agency (Chap. 2).

Dependency parsing A syntactic NLP task involving the identification of syntactic 
structures as represented by word-word relations (instead of embedded phrases 
as in treebank) (Chap. 7).

Dialog A conversational exchange between two or more entities (Chap. 9).
Dialog system A computational artifact designed to engage humans in dialog 

(Chap. 9).
Digital taxonomy A structure guiding how to organize and classify digital content. 

For example, Bloom’s Digital Taxonomy helps one to navigate through the myr-
iad digital tools and to make choices based on the kinds of learning experiences 
in which students should be engaged (Chap. 16).

Digital transformation An approach that draws upon user-centered design to re- 
imagine how essential functions can be improved by exploiting AI methods and 
other digital technologies (Chap. 13).

Digital twin The virtual model of a physical system for learning from real world 
processes and experiences to achieve a closed-loop of the virtual and real world 
physical systems in order to improve efficiency and to increase innovation 
(Chap. 19).
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Discourse segments The components of a discourse, comprising one or more 
utterances (Chap. 9).

Discriminative model in machine learning, a model that learns the conditional dis-
tribution of the labels given observed features. That is, it assigns the probability 
of a label based on the observed features of a data point, without considering how 
these features are distributed in other examples (Chap. 6).

Distributed cognition A process in which cognitive resources are shared socially 
to extend individual cognitive resources or to accomplish something that an indi-
vidual agent could not achieve alone. It emphasizes the ways that cognition is 
off-loaded into the environment through social and technological means. It is a 
framework for studying cognition rather than a type of cognition (Chap. 5).

Division of Research Resources (DRR) Prior to 1990, DRR was a Division at the 
National Institutes of Health (NIH) that funded shared research facilities, among 
other activities. In 1990 it merged with the Division of Research Services to 
form that National Center for Research Resources (NCRR). It was abolished in 
2011 when NIH was reorganized to create a new National Center for Advancing 
Translational Sciences (NCATS) (Chap. 2).

Domain model A domain model is a conceptual model of a domain that incorpo-
rates both behavior and data. It may partially represent the entire domain. It may 
also contain a formal, computable representation of the knowledge, skills and 
strategies (Chap. 16).

Doublet In single-cell RNA sequencing, a ‘drop’, which is identified by a barcode, 
or a datapoint, is expected to contain the genome from only one cell. A doublet 
occurs when a drop contains the genome of more than one cell (Chap. 14).

Dynamic Bayesian network A probabilistic causal network that relates variables 
to each other over adjacent time steps. At any point in time T, the value of a vari-
able can be calculated from the internal regressors and the immediate prior value 
at T-1 (Chap. 11).

Dynamic differential equations A class of algorithms that represent a continuous 
process by one or more differential equations. There must be at least one equa-
tion that has a derivative with respect to time (Chap. 14).

Dynamic imaging An amalgam of digital imaging, image editing, and workflow 
automation. It is used to automate the creation of images by zooming, panning, 
colorizing, and performing other image processing and color management oper-
ations on a copy of a digital master. In radiology, dynamic imaging refers to 
sequential imaging of a volume of tissue over time, which often implies scanning 
the same area during the passage of intravenous contrast over time (Chap. 12).

ECG (electrocardiogram) A standardized tracing of the heart’s electrical activ-
ity—voltage/time as recorded from multiple electrodes (Chap. 8).

Electronic health record (EHR) A repository of electronically maintained infor-
mation about an individual’s lifetime health status and health care, stored so that 
it can serve the multiple legitimate users of the record. Also sometimes termed 
electronic medical record (EMR) and, historically, computer-based patient 
record (CPR) (Chaps. 1, 7, and 10).
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Embedding A low-dimensional representation of a word, object, or concept that 
encodes certain topological, algebraic, or other properties (Chap. 4).

Embodied conversational agent An agent that includes the ability to use human- 
like conversational nonverbal behavior in a dialog, such as a hand gesture and 
facial display (Chap. 9).

Emergent properties Properties a collection of systems or members have which 
individuals within those systems or members lack (Chap. 8).

Entropy A measure of the uncertainty represented by a probability distribution. A 
distribution in which one possibility is certain and others have been ruled out has 
zero entropy, and one in which all possibilities are equally likely has maximal 
entropy (Chap. 4).

Epistemology The investigation of what distinguishes justified belief or knowl-
edge from opinion (Chap. 3).

Equity Allocation of resources and opportunities in a manner that achieves an 
equal outcome (Chap. 13).

Error boundary In work on human/AI teams, used to describe human team mem-
bers’ knowledge of the limits of AI performance, manifesting as their ability to 
identify examples in which the model is likely to be wrong (Chap. 20).

Ethnographical Relating to ethnography, which is a qualitative research approach 
used to study people and cultures. It can provide an in-depth understanding of the 
socio-technological realities surrounding everyday software development prac-
tice (Chap. 17).

Expectation-maximization (EM) In statistics and machine learning, a class of 
algorithms to infer the data distribution and to train the machine learning model. 
The algorithm is initiated by a set of default distributions (or models) param-
eters and the default likelihood assignment of datapoints to each distribution 
(or model). Then, the expectation step (E step) recomputes the distributions (or 
models) parameters such that they are the best fit according to the datapoints 
likelihood assignment. After the E step, the maximization step (M step) recom-
putes the datapoints’ likelihood assignment according to the new distributions 
(or models) parameters. These two steps are repeatedly executed, one after the 
other, until all distributions (or models) and datapoints’ likelihood assignment do 
not significantly change (Chap. 14).

Expert system Software that uses AI methods to combine data and expert knowl-
edge to offer advice or make decisions in an area of human activity (Chaps. 
1 and 2).

Explainability The ability to provide a reasonably complete explanation of an AI 
system’s output (e.g., a diagnosis or prediction) based on an understanding of its 
decision process (Chaps. 8 and 18).

Explanation A summary of the basis for a statement that is purported to be true. 
In decision support, the line of reasoning, pertinent data, and accepted factual 
knowledge that together justify an interpretation or recommendation (Chap. 3).

Extended reality (XR) The immersive technologies of virtual reality (simulated 
digital environment with full immersion), augmented reality (virtual objects and/
or information are overlaid on real world objects and places), and mixed (or 
hybrid) reality (real-world and digital objects co-exist) (Chap. 19).
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External representation A representation of information on a physical medium 
(Chap. 5).

Fairness Related to “justice,” the concept that goods/benefits and burdens/harms 
are or should be equitably shared by individuals and groups (Chap. 18).

FDA See Food and Drug Administration.
Feature engineering A process of using domain knowledge to extract features 

from raw data that can better represent the underlying problem to the predictive 
models, resulting in improved model accuracy on unseen data (Chap. 12).

Federated learning A decentralized form of machine learning in which the model 
is centralized while the data are not, thereby assuring that the privacy and secu-
rity concerns of the data are no longer an issue since the data are kept and secured 
locally (Chaps. 7 and 19).

Federated query model A way to send a query statement to an external database 
and get the result back as a temporary table (Chap. 3).

Few shot learning An innovative machine learning method that can make pre-
dictions based on a small number of labeled samples for training so that the 
machines can learn rare cases. Variations of few shot learning include one-shot 
and zero-shot learning (Chap. 19).

Findability The ease with which information contained in a location or set of loca-
tions can be found, both from outside those sites (using search engines and the 
like) and by users already on the site (Chap. 3).

Focus group A form of group interview that capitalizes on communication among 
research participants in order to generate data and insights. The idea behind 
the focus group method is that group processes can help people to explore and 
clarify their views in ways that would be less easily accessible in a one-on-one 
interview (Chap. 17).

Food and Drug Administration (FDA) A US federal agency tasked with monitor-
ing various foods, biopharmaceuticals, medical devices, cosmetics and veteri-
nary products (Chap. 8).

Forward chaining The computational process of inferring new facts from what 
is previously known, using inference rules that state an implication from known 
facts to new facts (Chap. 4).

Forward reasoning The process of reasoning with initial data towards the 
goal, which is usually uncertain.  It is often referred to as top down reasoning 
(Chap. 5).

Fourier transform A mathematical transform that decomposes functions depend-
ing on space or time into functions depending on spatial or temporal frequency, 
such as the expression of a musical chord in terms of the volumes and frequen-
cies of its constituent notes (Chap. 12).

Frame An abstract representation of a concept or entity that consists of a set of 
attributes, called slots, each of which can have one or more values to represent 
knowledge about the entity or concept (Chap. 4).

Fuzzy logic A logic in which a proposition is not necessarily true or false but can 
be (believed to be) true to some degree. Its semantics differs from probabilistic 
methods because fuzzy values are subjective and independence is typically not 
assumed (Chap. 4).
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Gabor filter A linear filter used for image texture analysis, which essentially means 
that it analyzes whether there is any specific image frequency content in specific 
directions in a localized region around the point or region of analysis (Chap. 12).

Gaussian discriminant analysis A supervised machine learning algorithm that 
attempts to fit a Gaussian distribution to each data category (Chap. 6).

GDPR (general data protection regulation) A European Union (EU) law 
designed to set guidelines for information privacy, applicable to EU member 
countries and the European Economic Area (Chap. 8).

Generative adversarial network (GAN) A class of machine learning frameworks 
designed by Ian Goodfellow and colleagues. It involves having two neural net-
works (called the generator and the discriminator) compete with one another 
in a game (in the form of a zero-sum game, where one agent’s gain is the other 
agent’s loss) in order recursively to create and improve new content (Chaps. 12 
and 19).

Generative model In machine learning, a model that learns the joint distribution 
over observed features and labels for the training set. That is, it considers the 
observed features for a particular data point in relation to their underlying distri-
bution across the entire training set (Chap. 6).

Generative pre-trained transformer (GPT-3) An unsupervised learner and 
language prediction model created by OpenAI with 175 billion parameters. It 
deploys deep learning to perform natural language processing tasks (Chap. 19).

Genome All genetic information of an organism (Chap. 14).
Genomics A branch of molecular biology concerned with the structure, function, 

evolution, and mapping of an organism’s genetic material (Chap. 2).
Governance The processes to ensure the appropriate use of resources (e.g., infor-

mation technology) in order to ensure standards are met, values adhered to, and 
accountability ensured. Governance might or might not entail regulation by gov-
ernments (Chaps. 15 and 18).

Gradient boosting A supervised method for classification and regression built 
from an ensemble of weak classifiers (typically, decision trees), which are com-
bined into a single strong learner in an iterative fashion (Chap. 11).

Gradient boosted decision tree A gradient boosting algorithm which produces 
a sequential ensemble (or committee) of decision trees. Each tree is associated 
with a voting weight, and the final decision of the ensemble is a weighted major-
ity vote of its members. Each decision tree in the sequence is optimized to cor-
rect errors made by the previously added members of the ensemble (Chap. 6).

Gradient descent A widely-used optimization algorithm that makes multiple small 
corrections to model parameters in accordance with their influence on the error 
of a model, bringing it closer to an optimization objective (Chap. 6).

Graph database A (NoSQL) type of database that uses graph structures for seman-
tic queries with nodes and edges to represent and store data. The nodes are the 
entities in the graph and the relationships provide connections between two node 
entities (Chap. 19).
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Graph neural networks A class of neural network models that learn representa-
tions of graph structure and work on optimizing transformation on all the attri-
butes of the graph including nodes and edges. These networks accept a graph as 
input and transform these embeddings while maintaining the input graph con-
nectivity (Chaps. 4 and 19).

Graphical processing unit (GPU) A specialized electronic circuit designed to 
manipulate and alter digital memory rapidly to accelerate the creation of images 
for internal storage and delivery on a display device (Chap. 2).

Gray box Machine learning model with some hand-crafted features or, generally, 
some (but incomplete) knowledge of system processes (Chap. 18).

Gray-level co-occurrence matrices (GLCM) A matrix that is defined over an 
image to be the distribution of co-occurring pixel values (grayscale values, or 
colors) at a given offset. It is used as an approach to texture analysis with various 
applications, especially in medical image analysis (Chap. 12).

HbA1c Hemoglobin A1c, a measure of average blood sugar over the past 3 months 
(Chap. 3).

Health Evaluation and Logical Processing [HELP] One of the first electronic 
health record systems, developed at LDS Hospital in Salt Lake City, Utah. 
Still in use today, it was innovative for its introduction of automated alerts 
(Chap. 10).

Health Insurance Portability and Accountability Act (HIPAA) A privacy rule 
established by the US Congress in 1996, that established national standards to 
protect individuals’ medical records and other personal health information. It 
applies to health plans, health care clearinghouses, and those health care provid-
ers that conduct certain health care transactions electronically (Chaps. 2 and 7).

Heuristic A strategy derived from previous experiences with a similar problem, 
often described as a “rule of thumb”. In computer science, a technique for solv-
ing a problem more quickly when classic methods are too slow or cumbersome 
(Chap. 2).

Heuristic classification Any technique or approach to classification problem solv-
ing that employs a practical method that is not guaranteed to be optimal, perfect, 
or rational, but is nevertheless sufficient for reaching an immediate, short-term 
goal or approximation (Chap. 5).

Hidden Markov Model (HMM) A statistical Markov model in which the sys-
tem being modeled is assumed to be a Markov process with unobservable 
(“hidden”) states X. An HMM assumes that there is another process Y whose 
behavior “depends” on X. By observing Y, the goal of an HMM is to learn about 
X (Chap. 11).

Hierarchical clustering Hierarchical clustering is a method of cluster analysis 
which seeks to build a hierarchy of clusters. For example, a dataset could be first 
clustered into two clusters, C1 and C2. Then, we can further cluster the data into 
C11, C12, C13, C21, and C22. Here, C11, C12, and C13 are children clusters 
from C1; meanwhile, C21 and C22 are children clusters from C2 (Chap. 14).

HIPAA See Health Insurance Portability and Accountability Act.
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HITECH Health Information Technology for Economics and Clinical Health Act, 
enacted as part of the American Recovery and Reinvestment Act of 2009. It was 
designed to promote the adoption and meaningful use of health information tech-
nology, with an emphasis on electronic health records (Chap. 2).

Hold-out A validation strategy for machine learning models that consists of ran-
domly splitting a dataset into training and test set. Usually, 2/3 of the data are 
used for training and 1/3 for test, but other proportions can be used depending 
on the size of the available dataset. The model is then trained on the training set 
and its performance is measured on the test set. The procedure can be repeated 
several times (repeated hold-out) (Chap. 11).

Human computer interaction (HCI) A multidisciplinary field of study focusing 
on the design of computer technology and, in particular, the interaction between 
human beings (the users) and computers (Chaps. 10 and 17).

Human factors engineering (HFE) The field dealing with the integration of 
human factors requirements into design. The objective is to provide systems that 
reduce the potential for human error, increase system availability, lower lifecycle 
costs, improve safety, and enhance overall system performance (Chap. 17).

Human-in-the loop The idea or requirement that human experts should (be avail-
able to) review and/or assess system performance and output. Human beings 
may be involved in a live and virtuous cycle where they train, tune, and test a 
particular algorithm (Chaps. 12 and 18).

Hyperparameters In machine learning and AI, a hyperparameter is a parameter 
whose value must be preset before executing the algorithm to train the learn-
ing model. In statistics, a hyperparameter is a parameter of a prior distribution 
(Chaps. 6 and 14).

Hyperplane A subspace with dimensionality one less than the space that encloses 
it. For example, in a three-dimensional space, a hyperplane would be a two- 
dimensional plane (Chap. 6).

Hypothesis-driven reasoning In medical reasoning, a pattern of reasoning in 
which information is reviewed in an attempt to reconcile it with a pre-existing 
hypothesis that may be generated under uncertainty without being fully grounded 
in observed signs or symptoms (Chap. 5).

Hypothetico-deductive approach In medical reasoning, a method of inquiry that 
proceeds by formulating a hypothesis (such as a diagnostic explanation for a 
patient’s symptoms) in a form that can be falsifiable (e.g., through a test outcome 
that runs contrary to predictions expected if the hypothesis were true).  Results 
that are consistent with the hypothesis can corroborate the theory. Thus repeated 
questions or tests can guide the reasoner to accept the hypothesis or to pursue 
competing explanations for the results (Chaps. 2 and 5).

ICell8 A well-known technique to perform single-cell RNA sequencing. The tech-
nique was developed and owned by Takara Bio Inc (https://www.takarabio.com/
products/automation- systems/icell8- system- and- software) (Chap. 14).

ImageNet A large visual database designed for use in visual object recognition 
software research. More than 14 million images have been hand-annotated by 
the project to indicate what objects are pictured, and in at least one million of the 

Terms and Definitions

https://www.takarabio.com/products/automation-systems/icell8-system-and-software
https://www.takarabio.com/products/automation-systems/icell8-system-and-software


569

images, bounding boxes are also provided. ImageNet contains more than 20,000 
categories with a typical category, such as “balloon” or “strawberry,” consisting 
of several hundred images (Chap. 12).

IMDRF (International Medical Device Regulators Forum) A group of world-
wide regulators tasked with reconciling regulatory requirements for medical 
devices (Chap. 8).

Implementation science The scientific study of methods to promote the system-
atic uptake of research findings and other evidence-based practices into routine 
practice, and, hence, to improve the quality and effectiveness of health services 
(Chap. 17).

Inductive bias Any design decision that provides a basis for choosing one general-
ization over another (Chap. 4).

Inductive reasoning A method for drawing conclusions by making inferences 
from the specific to the general (in contrast with deductive reasoning) (Chaps. 
3 and 5).

Inference A conclusion reached on the basis of evidence and reasoning (Chap. 3).
Influence diagram A graphical representation that combines chance, choice, and 

outcome nodes in a probabilistic framework (Chap. 4).
Infobutton A context-specific link from healthcare application to some informa-

tion resource that anticipates users’ needs and provides targeted information 
(Chap. 10).

Information extraction (IE) An application of NLP focusing on the extraction of 
specific structured information from free text (Chap. 7).

Information retrieval (IR) An application of NLP focusing on the identification 
of information (usually in the form of a natural language document) relevant to a 
particular query (e.g., set keywords or a natural language question), generally in 
the context of a significant amount of potential information (the “corpus”). The 
preeminent IR use case is a search engine such as Google or PubMed (Chap. 7).

Information theory The scientific study of the quantification, storage, and com-
munication of digital information (Chap. 2).

Institutional Review Board (IRB) A committee within a university or other 
organization receiving federal funds to conduct research that reviews research 
 proposals involving human subjects. The IRB reviews the proposals before a 
project is submitted to a funding agency to determine if the research project fol-
lows the ethical principles and federal regulations for the protection of human 
subjects. The committee has the authority to approve, disapprove or require mod-
ifications of these projects or proposals (Chap. 17).

Intelligence-based medicine Another term for artificial intelligence in medicine, it 
tends to be used to focus on clinical medicine practiced using data with machine 
learning, and especially deep learning, for improving diagnosis and therapy rather 
than solely relying on the conventional evidence-based medicine (Chap. 19).

Intelligent agent An autonomous, goal-directed computational artifact (Chap. 9).
Intelligent reality The integration of machine learning algorithms with smart 

interactive devices (including sensors and wearable devices) and immersive 
technologies to enable the user to have real-time decision support (Chap. 19).
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Intelligent tutor A computational system that incrementally presents content rel-
evant to a learning goal using different teaching strategies for different types of 
content and student ability. It also intervenes when the student requests help or 
makes serious mistakes.

Interface model A combination of a system’s multimedia presentation and a user’s 
input interface. In the case of teaching and learning content, systems, such mod-
els may range from simple screen display and mouse input to virtual reality 
(VR), haptics, and affect detection.

Internal representation A representation of information in the human mind 
(Chap. 5).

Internet of everything (IoE) The intelligent connection (embedded AI) of people, 
process, data, and things to make networked connections from the internet of 
things (IoT) to render the devices more relevant and valuable (Chap. 19).

INTERNIST-1 An early computer-based diagnostic program trained on clinical 
pathological conference cases, able to diagnose cases with multiple disorders 
(Chaps. 2 and 4).

Interoperability The ability of computer systems or software to exchange and 
make use of information (Chap. 3 and 13).

Interpretability A measure of how intuitive an AI system’s outcomes are to its 
users. One can think of it as simplifying explainability to the point that those 
with non-technical expertise can follow, or infer, the “why” of an AI system’s 
output (Chap. 18).

Intravenous unfractionated heparin (IV-UFH) A medication administered 
through a vein that affects blot clot formation (Chap. 15).

Intron Any nucleotide sequence within a gene (also called an intragenic region) 
that is removed by RNA splicing. An intron does not encode to the final mature 
RNA; therefore, an intron does not encode protein (Chap. 14).

Iterative design An approach that designers, developers, educators, and others use 
to continually improve a design or product. People create a prototype and test it, 
then tweak and test the revised prototype, and repeat this cycle until they reach a 
solution that appears to be optimal (Chap. 17).

KDD See knowledge discovery in databases.
Kernel methods Methods through which data points are represented in terms of 

their similarity to other data points in a set (Chap. 6).
Kernel regression/kernelized logistic regression The application of a linear or 

logistic regression model to features that have been transformed using kernel 
methods (Chap. 6).

k-fold cross validation A strategy for machine learning models. To perform cross- 
validation, the dataset is randomly split into k subsets (folds). Iteratively, the 
model is built on k-1 folds and performance are tested on the remaining fold. 
The procedure is repeated k times and the average performance is computed. The 
average error on the k test folds approximates the true error on independent data 
of the model that is built on all the k folds (Chap. 11).

Terms and Definitions



571

k-nearest neighbor algorithm A machine learning algorithm that assigns labels to 
unseen examples by generalizing from the labels of the most similar examples in 
a training set (Chap. 6).

Klein’s data-frame theory A theory on how people start with an initial idea that 
informs what kinds of data they seek through an iterative process to modify their 
initial ‘frame’ (Chap. 8).

Knowledge base A collection of stored facts, heuristics, and models that can be 
used for problem solving (Chaps. 4 and 10).

Knowledge discovery in databases (KDD) The process of finding knowledge in 
data, emphasizing the application of particular data mining methods from the 
general field of machine learning (Chap. 2).

Knowledge distillation The process of transferring knowledge from a larger model 
to a smaller model (Chap. 4).

Knowledge engineering The term for all the technical, scientific, and social 
aspects involved in building, maintaining, and using knowledge-based systems 
(Chap. 2).

Knowledge graph Also known as a semantic network, represents a network of 
real-world entities—i.e. objects, events, situations, or concepts—and illustrates 
the relationship between them. This information is usually stored in a graph data-
base and visualized as a graph structure, prompting the term knowledge “graph” 
(Chaps. 3 and 19).

Knowledge representation The field of AI that is dedicated to representing infor-
mation about the world in a form that a computer system can use to solve com-
plex tasks such as diagnosing a medical condition or having a dialog in natural 
language (Chap. 3).

Knowledge-based artificial intelligence-based clinical decision support An arti-
ficial intelligence-based clinical decision support system in which a key compo-
nent is a knowledge base that is typically manually constructed (Chap. 10).

Knowledge-based system A program that symbolically encodes, in a knowledge 
base, facts, heuristics, and models derived from experts in a field and uses that 
knowledge to provide problem analysis or advice that the expert might have pro-
vided if asked the same question (Chap. 4).

Laplace smoothing A regularization process performed on probability estimates 
in which counts start at one (or some other small constant), so that no conditional 
probability is ever estimated at zero (Chap. 6).

Lasso regression A form of regularized linear regression that tends to drive the 
coefficients of redundant features toward zero (Chap. 6).

Latent semantic analysis A mathematical method for computer modeling and 
simulation of the meaning of words and passages by analysis of representative 
corpora of natural text. It closely approximates many aspects of human language, 
learning and understanding (Chap. 16).

Learner model A model that represents the learner’s current state in the domain 
space, and is updated in real-time as the learner progresses through the learning 
exercises. It is a structured representation of a learner’s knowledge, misconcep-
tions, and difficulties (Chap. 16).
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Left-ventricular assist device (LVAD) A battery-operated mechanical pump that 
is surgically implanted to help the heart’s left ventricle pump blood to the rest of 
the body (Chap. 15).

LISP A family of programming languages, originally specified in 1958 (and thus 
second only to Fortran among old computer languages still in use), that uses 
a distinctive, fully parenthesized prefix notation. The name LISP derives from 
“LISt Processor”, reflecting LISP’s use of linked lists as a major data structure.  
It has been used extensively in the AI community (Chap. 2).

Literature-based discovery (LBD) An application of NLP focusing on hypothesis 
generation by discovering links between previously un-connected biomedical 
concepts, the canonical example being Swanson’s discovery of the link between 
Raynaud’s disease and fish oil via intermediate terms (Chap. 7).

Local area networking (LAN) A computer network that comprises a collection of 
devices connected together in one physical location, such as a building, office, 
or home (Chap. 2).

Local data store Keeping information on a disk, tape drive, or similar technology 
that is directly attached to the computer or device (as opposed to being elsewhere 
on a network or in the cloud) (Chap. 3).

Logic Programming A programming paradigm, also called rule-based program-
ming, which is largely based on formal logic. Any program written in a logic 
programming language is a set of sentences in logical form: IF (AND, OR), 
THEN (Chap. 14).

Logistic regression A supervised machine learning algorithm that transforms the 
output of a linear regression model into a value between 0 and 1 that can be 
interpreted as a class probability (Chap. 6).

Loss function A function that measures how far a machine learning model is from 
achieving a desired optimization objective. Typically, the loss function estimates 
how far a prediction is from the true label of a data point, or a set of data points 
(Chap. 6).

Machine intelligence An early synonym for artificial intelligence, favored espe-
cially in the United Kingdom (Chap. 2).

Machine learning (ML) A branch of AI and computer science that focuses on the 
use of data and algorithms to imitate the way the human beings learn, gradually 
improving its accuracy at classification or prediction (Chaps. 2, 3, 6, and 10).

Machine translation NLP task involving the automatic translation from one natu-
ral language to another (e.g., from French to English) (Chap. 7).

Markov model A mathematical model of a set of strings in which the probability 
of a given symbol occurring depends on the identity of the immediately preced-
ing symbol or the two immediately preceding symbols. Processes modeled in 
this way are often called Markov processes (Chap. 11).

Mass spectroscopy An analytical technique that is used to measure the mass-to- 
charge ratio of ions. The results are typically presented as a mass spectrum, a 
plot of intensity as a function of the mass-to-charge ratio. The technique is used 
in a variety of fields and may be applied to pure samples of complex mixtures 
(Chap. 2).
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Matrix factorization An approach for generating embeddings by decompos-
ing a matrix into the product of two lower dimensionality rectangular matrices 
(Chap. 4).

MEDLINE Online implementation of MEDLARS, accessible by public via the 
Internet. The currently dominant version of MEDLINE is known as PubMed.

MEDLARS (Medical Literature Analysis and Retrieval System) The National 
Library of Medicine’s electronic catalog of the biomedical literature, which 
includes information abstracted from journal articles, including author names, 
article title, journal source, publication date, abstract, and medical subject head-
ings (Chap. 7).

Mental representations Also known as cognitive representations, the mental 
imagery of things that are not currently seen or sensed by the sense organs. It is a 
hypothetical internal cognitive symbol that represents external reality (Chap. 5).

Metaverse A persistent and immersive simulated world in which users can interact 
with a computer-generated environment and with other users (Chap. 16).

Microarray See gene expression microarray.
MINIMAR standards A set of standards put forth to ensure that the interpretabil-

ity of a model is helpful for end users, in an attempt to mitigate inherent biases 
(Chap. 8).

miRNA Abbreviation for microRNA, refers to a small single-stranded non-coding 
RNA molecule (containing about 22 nucleotides) found in plants, animals and 
some viruses, that functions in RNA silencing and post-transcriptional regulation 
of gene expression (Chap. 14).

Model-based integration A process for performing analysis on each data type 
independently, followed by integration of the resultant models to generate 
knowledge about the trait of interest (Chap. 3).

Modeling The act or realization of making a model (Chap. 3).
Modus ponens The logic rule that allows deriving the conclusion of an implication 

when seeing its premises (Chap. 4).
Modus tollens The logic rule that allows deriving the negation of the premise of an 

implication if its conclusion is known to be false (Chap. 4).
Monte Carlo simulations Computational algorithms that rely on repeated random 

sampling to obtain numerical results. Monte Carlo simulation uses randomness 
to solve problems that might be deterministic in principle. Monte Carlo methods 
are mainly used for optimization, numerical integration and to generate draws 
from a probability distribution (Chap. 11).

Multimodal artificial intelligence An AI paradigm in which a myriad of data 
types (such as EHR data, image data, and wearable device data) are gathered and 
analyzed via algorithms for higher performance in predictions (Chap. 19).

MYCIN An early expert system that used rules to encode knowledge of infec-
tious disease diagnosis and therapy selection. The program served as a consultant 
to offer advice to clinicians caring for patients with serious bacterial or fungal 
infections (Chaps. 2–4).
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Naive Bayes model/classifier A machine learning classifier using Bayes Theorem 
in a way that assumes conditional independence of variables that may in fact be 
linked statistically (Chaps. 4 and 15).

Naive Bayes A method that uses Bayes Theorem while making the simplifying 
assumption that variables are conditionally independent of one another. Also 
used in supervised machine learning making the same independence assumption 
regarding features in the input vector, given the class (Chap. 6).

Named entity recognition (NER) NLP task involving the identification of phrases 
in text that describe a specific object from a particular semantic category (e.g., 
name of a specific person or location) (Chap. 7).

National Institutes of Health (NIH) The national medical research agency for the 
USA, located in Bethesda, MD, supporting scientific studies that seek to turn 
discovery into improved health (Chap. 2).

Natural history The typical progression of a disease process in an individual over 
time, in the absence of treatment (Chap. 3).

Natural language generation (NLG) The subfield of NLP that deals with generat-
ing coherent language as an output by translating a semantic representation (e.g., 
a data structure) into natural language text (Chaps. 7 and 9).

Natural language processing (NLP) The branch of computer science—and more 
specifically, the branch of artificial intelligence or AI—concerned with giving 
computers the ability to understand text and spoken words in much the same way 
human beings can (Chap. 1).

Natural language understanding (NLU) The subfield of NLP that deals with 
understanding the meaning of language as it is input to a system (Chaps. 7 and 9).

Nearest neighbor search A form of proximity search to find a number of data 
points in a given set that are closest to a new point of interest (Chap. 12).

Nested k-fold cross validation Strategy for hyperparameter selection and model 
evaluation, in which two loops of cross validation are performed. The outer loop 
is used to select the best performing model and it consists of a k-fold cross vali-
dation procedure. However, for each iteration of the outer loop, an inner loop of 
cross validation is performed by randomly splitting the training folds into L folds 
and by performing an L-fold cross validation. The inner loop is usually exploited 
to evaluate different combinations of hyperparameters (Chaps. 6 and 11).

Neural architecture search (NAS) A technique for automating the design of arti-
ficial neural networks (Chap. 12).

NLP See natural language processing.
Noisy-or assumption In Bayes networks, where a node may have multiple parents, 

a simplifying assumption that the presence of each parent contributes indepen-
dently to the likelihood of the node (Chap. 4).

Non-coding RNA (ncRNA) An RNA molecule that is not translated into a protein 
(Chap. 14).

Non-negative matrix factorization A group of algorithms in multivariate analysis 
and linear algebra where a matrix V is factorized into two (and more) matrices W 
and H (V >> W × H), with the property that all three matrices have no negative 
elements (Chap. 14).
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Non-parametric model In machine learning, a model making minimal assump-
tions about the structure of the underlying data, rather than defining a function 
a priori (such as a linear function). A classic example is the k-nearest neighbor 
algorithm, where new data are compared to examples in the training set directly 
at the point of prediction (Chap. 6).

Norman’s Theory of Action A seven stage model of human action designed to 
explain the thought process of a person performing a task, as put forward by 
Norman (Chap. 8).

Observational Medical Outcomes Partnership (OMOP) A large collaborative 
consortium formed to facilitate and inform studies using large, often multi- 
institutional, observational health care data sets. OMOP efforts continue under 
the auspices of the Observational Health Data Sciences and Informatics (OHDSI) 
consortium (Chap. 6).

One single centralized datastore A database that is located, stored, and main-
tained in a single location (Chap. 3).

One-shot learning Instead of hundreds or thousands of annotated data elements, 
one-shot learning acquires information about object categories from one, or only 
a few, training examples (Chap. 12).

Ontology A description (like a formal specification of a program) of the concepts 
and relationships that can exist for an agent or a community of agents. In bio-
medicine, such ontologies typically specify the meanings and hierarchical rela-
tionships among terms and concepts in a domain. Note that philosophers use 
“ontology” as the study of what exists, which is a broader concept than what 
computer science has adopted (Chaps. 2–4).

Open domain question answering A natural language processing task in which 
a model is asked to produce an answer to a question without being provided the 
document containing the answer (Chap. 4).

Optical character recognition (OCR) A computer vision/NLP task of converting 
an image containing text to its string representation (e.g., generating a Word file 
from a photograph of a text document) (Chap. 7).

Optimization problem Involves finding the values of a parameter for a given func-
tion (called the optimization objective) at which the function achieves a maxi-
mum or a minimum value (Chap. 6).

Overfitting In machine learning, occurs when a model conforms too closely to its 
training data, reducing its ability to generalize to unseen examples (Chap. 6).

Packet switching A method for transmitting a data stream across digital networks 
by breaking it down into small segments or packets for more efficient transfer. 
Adjacent packets may be sent over different routes to assure efficiency and then 
reassembled when they reach their destination (Chap. 2).

Parametric model In machine learning, a model with a fixed number of param-
eters that are updated during training to improve the accuracy of model predic-
tions. The choice of model (e.g. linear vs. non-linear) is based on assumptions 
about the structure of the function to be learned (Chap. 6).

Parenchyma In reference to normal lung, parenchyma denotes a gas-exchang-
ing part of the lung, consisting of the alveoli and their capillaries. Some 
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definitions may also include the connective tissue framework supporting gas 
exchanging tissue. The term may also be applied to other organs beside the 
lung (Chap. 12).

Partial thromboplastin time (PTT) A laboratory test of blood that measures the 
time it takes for a blood clot to form. Common therapeutic range is 60–100 s for 
clotting (Chap. 15).

Part-of-speech The syntactic (or grammatical) category of a word (e.g., noun, 
verb, adjective), often one of the first tasks performed in a pipeline of NLP mod-
els (Chap. 7).

Pathophysiological explanations Those that draw on knowledge of disease pro-
cesses and their impact on human physiology (Chap. 5).

Patient-derived xenograft (PDX) Patient derived xenografts are models of cancer 
where the tissue or cells from a patient’s tumor are implanted into an immunode-
ficient or humanized mouse (Chap. 14).

Pedagogical Model Represents what effective teachers do to engage students at 
each step of a teaching and learning session. It includes changes in teaching 
strategy if the student makes errors or is unable to progress adequately.

Personalized machine learning A machine learning approach where the model 
is tailored to the characteristics of the current person and is optimized to per-
form especially well for that person. See also population machine learning 
(Chap. 10).

Polygenic risk scoring A polygenic score (PGS), also called a polygenic risk 
score (PRS), genetic risk score, or genome-wide score, is a number that summa-
rizes the estimated effect of many genetic variants on an individual’s phenotype 
(Chap. 14).

Pooled cohort equations Clinical decision support tool requiring multiple inputs 
including age, gender, race, patient history elements, certain lab and vital sign 
values designed to estimate 10 year absolute rate of ASCVD events (Chap. 8).

Pooling An operation that groups feature map activations into a lower resolution 
feature map to enlarge the receptive field of deep neural networks and to reduce 
the model’s sensitivity to small shifts of the objects (Chap. 12).

Population health monitoring An approach that systematically collects data on 
health status, usually to inform longer-term planning and evaluation of programs 
(Chap. 13).

Population machine learning A machine learning approach where the model is 
optimized to perform well on the average of all future individuals. See also per-
sonalized machine learning (Chap. 10).

Prediction A statement about what will happen or might happen in the future 
(Chap. 3).

Predictive learning The ability of a machine to model the environment, to predict 
the possible futures, and to understand how the world works by observing it and 
acting in it—in short, a predictive model of the world (Chap. 19).

Premature closure A type of cognitive error in the reasoning process in which a 
physician prematurely stops considering other alternative diagnostic possibilities 
once an initial tentative diagnosis is made (Chap. 3).
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Present Illness Program (PIP) An early computer-based diagnostic program that 
incorporated insights from the study of human clinical reasoning (Chap. 4).

Principal component analysis (PCA) A technique for reducing the dimensional-
ity of large datasets by transforming a large set of variables into a smaller one 
while still containing most of the information in the larger set (Chap. 12).

Principle of rationality A principle typically adopted in economics that decision 
makers choose actions that maximize their expected utility (Chap. 4).

Privacy A concept that applies to people, rather than documents, in which there is 
a presumed right to protect that individual from unauthorized divulging of per-
sonal data of any kind (Chap. 3).

Professional ethics Standards or rules for correct behavior by members of a (gen-
erally) learned profession, and often tied to a professional association or society 
through codes, oaths, guidelines, etc. (Chap. 18).

Propositions An expression, generally in language or other symbolic form, that 
can be believed, doubted, or denied or is either true or false (Chap. 5).

Protein physical structure (protein structure) The three-dimensional arrange-
ment of atoms and amino-acids in a protein (Chap. 14).

Protocol analysis Method in which transcripts of think-aloud sessions, which 
generate think-aloud protocols are analyzed to investigate the cognitive pro-
cesses underlying performance of the task. Also called verbal protocol analysis 
(Chap. 5).

Provenance The place where something originally came from or began, or a record 
tracing the history of certain elements or items that helps to confirm their authen-
ticity and validity (Chap. 3).

Pseudogenes Nonfunctional segments of DNA that resemble functional genes. 
They cannot encode functional protein (Chap. 14).

Public health informatics A sub-discipline of biomedical informatics, this is the 
systematic application of information and computer science and technology to 
public health practice, research, and learning (Chap. 13).

Public health surveillance The systematic, ongoing collection and analysis of 
data to detect and guide actions to control hazards such as infectious disease 
outbreaks. It includes indicator-based surveillance (IBS) and event-based sur-
veillance (EBS) (Chap. 13).

Public health The science and the art of preventing disease, prolonging life, and 
promoting health through organized community efforts (Chap. 13).

Quantum computing Use of quantum mechanics to calculate outputs by harness-
ing the power of atoms and molecules to perform memory and processing tasks 
with qubits (basic unit of information in quantum computing that can hold a 
superposition of possible states) (Chap. 19).

Question answering (QA) An application of NLP focusing on automatically pro-
viding the user with an answer to a natural language question, with answers typi-
cally coming from either a large corpus (possibly also involving an information 
retrieval step) or a large ontology/database (requiring the question be converted 
to a structured query via an NLP task known as semantic parsing) (Chap. 7).
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Radial basis function (RBF) A function widely-used in kernel methods to mea-
sure the similarity between data points (Chap. 6).

Radio frequency identification (RFID) A technology that uses radio waves pas-
sively to identify a tagged object. An RFID tag stores information that can be 
read wirelessly by an RFID reader (Chap. 17).

Radiology report A document that describes radiologist’s highest level of synthe-
sis and insight into a patient’s condition. It is the most important product that 
radiologists generate to help direct patient care (Chap. 12).

Radiomics features A method that extracts a large number of features from radio-
graphic images. These features have the potential to uncover disease characteris-
tics that fail to be appreciated by the naked eye (Chap. 12).

Random forest An ensemble of decision trees. Bagging is applied to train each tree 
learner, by randomly selecting with replacement a subset of the training set, and 
by training a single tree on this selected subset. The final prediction for a clas-
sification problem is the class predicted by the majority of trees. For a regression 
problem the final prediction is the average prediction (Chap. 11).

Random walk A process consisting of a sequence of steps taken in a randomized 
fashion (Chap. 4).

Rasmussen’s decision ladder A tool put forth by Rasmussen that aids in visual-
izing the multiple steps required for decision making, often involving multiple 
chains and pathways (Chap. 8).

Recurrent neural network An ANN architecture often used to summarize sequen-
tial data such as time series or natural language text (Chap. 4).

Reference frame Grids of a number of dimensions that keep the brain organized in 
terms of knowledge in the context of a learning model (Chap. 19).

Reflective thinking Thinking that encompasses a set of abilities that people use to 
examine their own thoughts processes and those of others analytically, thereby 
allowing themselves to question and challenge their own thoughts and those of 
others (Chap. 16).

Regularization In machine learning, imposing a penalty to prevent a model from 
fitting too tightly to its training data (see overfitting), in order to improve its abil-
ity to generalize to unseen examples (Chap. 6).

Reinforcement learning A method of determining the optimal policy for what 
actions to take under different circumstances, learnable from past experience 
(Chap. 4).

Relation extraction (RE) NLP task involving the recognition of a semantic rela-
tionship between two or more phrases in text (e.g., in a part-whole relation, one 
phrase is identified as the part while the other phrase is the whole) (Chap. 7).

Repeated hold-out Validation strategy for machine learning techniques that con-
sists of repeating hold-out validation N times. Therefore, the prediction error will 
be estimated as the average error on the N test sets (Chap. 11).

Representation learning The process of learning an informative representation of 
data to make it easier to extract useful information for a downstream task, often 
applied to machine learning models (Chaps. 1 and 4).

Retrospective think-aloud A think-aloud session about an event after the event 
has occurred to discuss and reflect what happened during the event (Chap. 5).
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Reusability In computer science and software engineering, the use of existing 
assets in some form within the software product development process (Chap. 3).

RFID See radio frequency identification (Chap. 17).
Ridge regression A form of regularized linear regression that uses the L2 norm of 

the parameter vector as a penalty term, to constrain the growth of coefficients for 
each feature (Chap. 6).

RNA sequencing (RNA-seq) See next generation sequencing methods.
Robotic process automation (RPA) A portfolio of software tools that builds and 

manages software robots that will mimic and automate what humans do with 
digital systems so that workflows can be streamlined as part of a digital transfor-
mation (Chap. 19).

Rule-based system A system that applied human-made rules to store, sort, and 
manipulate knowledge. A classic example is a domain-specific expert system 
such as MYCIN that uses rules to simulate expert decision making (Chap. 3).

SaMD (software as a medical device) Software intended to be used for one or 
more medical purposes that performs these purposes without being implemented 
as part of a hardware medical device” (Chap. 8).

Scale-invariant feature transform (SIFT) A feature detection algorithm in com-
puter vision to detect and describe local features in images (Chap. 12).

Schema In a database-management system, a machine-readable definition of the 
contents and organization of a database (Chap. 5).

Security The process of protecting information from destruction, unauthorized 
access, or misuse, including both physical and computer-based mechanisms 
(Chap. 3).

Cover and differentiate A set of candidate explanations for the events or states 
that need to be explained (or covered), combined with differentiating among the 
candidates to pick those that best explain the specified events or states (Chap. 5).

SEIPS model A model of work system and patient safety that provides a frame-
work for understanding the structures, processes, and outcomes in health care 
and their interrelationships (Chap. 8).

Self supervised learning A method of machine learning that can be regarded as an 
intermediate form of supervised and unsupervised learning. It is a type of auton-
omous learning that does not necessarily require annotated data. The approach 
predicts an unobserved part of the input from observed parts of the input and has 
had a profound impact on natural language processing and computer vision by 
obviating the need for data labeling (Chaps. 12 and 19).

Semantic interoperability The ability of computer systems to exchange data with 
unambiguous, shared meaning. It is a requirement to enable machine computable 
logic, inferencing, knowledge discovery, and data federation among information 
systems (Chap. 3).

Semantic network A graph structure in which, typically, nodes correspond to con-
cepts and links to relationships between concepts (Chap. 4).

Semi-supervised learning A machine learning algorithm that is a hybrid of super-
vised and unsupervised learning that utilizes a small amount of labeled data and 
then a relatively large amount of unlabeled data so that the latter can become 
labeled (Chaps. 10 and 19).
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Shapley additive explanations (SHAP) A method to explain the influence of fea-
tures on individual predictions made by machine learning models, based on ideas 
from game theory (Chap. 20).

Situated learning A theory that defines learning that takes place in the same con-
text in which it is applied. For example, the workplace is considered as a commu-
nity of practice, where workers acquire and assimilate norms, behavior, values, 
relationships, and beliefs of that community (Chap. 16).

Situational awareness theory The perception of elements of the environment 
within a volume of time and space, including the comprehension of their mean-
ing and the projection of their status in the near future (Chap. 8).

Situational model A mental representation built to capture the underlying situa-
tion described in the text. It integrates textual information with relevant aspects 
of the comprehender’s knowledge (Chap. 5).

Social determinants of health (SDH or SDOH) The non-medical factors that 
influence health outcomes (Chap. 13).

Sociotechnical systems Work systems that involve a complex set of interactions 
among humans, technologies, and the work environment (Chap. 8).

Speech synthesis See text-to-speech.
Static artificial intelligence-based clinical decision support An artificial 

intelligence- based clinical decision support system in which the knowledge base 
or model is static and does not evolve over time (Chap. 10).

Stemming The process of removing inflectional forms of a word to its base (stem) 
form (Chap. 7).

Structural error In machine learning, error caused by limits on the classes of 
model available to conform to a training set. For example, a linear model lacks 
the expressiveness to model a non-linear function accurately (Chap. 6).

Supervised machine learning An ML approach in which an algorithm uses a set 
of inputs and corresponding outputs to try to learn a model that will enable the 
prediction of an output when faced with a previously unseen input (Chaps. 1, 3, 
6, and 10).

Support vector machines A supervised machine learning approach that maps 
data points into a geometric space while attempting to maximize the distance 
between the data points from each class that are most similar to those from 
another class. These marginal data points are then used as a basis for classifica-
tion (Chap. 6).

Swarm intelligence An artificial intelligence strategy designed to solve complex 
problems with the internet of things that is inspired by decentralized systems 
with no centralized leader but with individuals that interact with one another 
locally (such as flocks of birds or schools of fish) (Chap. 19).

Symbolic representations The process of mentally representing objects and expe-
riences through the use of symbols (including linguistic symbols) (Chap. 5).

Syntactic interoperability The ability of two systems to communicate with one 
another. See also semantic interoperability (Chap. 3).
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System 1/System 2 These terms distinguish between rapid, intuitive thought pro-
cesses (system 1—e.g. making a spot diagnosis from a radiological image) and a 
more deliberate, laborious analytical process (System 2—e.g. deriving the chain 
of physiological causal relationships that led to the lesion observed) (Chap. 20).

t-distributed stochastic neighbor embedding (tSNE, or t-SNE) A statistical 
method for visualizing high-dimensional data by giving each data element a 
location in a two or three-dimensional map (Chap. 14).

Team science A collaborative effort to address a scientific challenge that leverages 
the strengths and expertise of professionals, typically trained in different fields 
(Chap. 17).

Test set In machine learning, this refers to data that were not used during model 
development or training, but are held out from these processes in order to evalu-
ate the model’s ability to generalize to unseen examples (Chap. 6).

Text-based model A mental representation that contains textual information built 
in the process of text comprehension (Chap. 5).

Text classification (TC) Application of NLP focusing on classifying whether a 
specific span of text (e.g., document or sentence) contains information relevant 
to the target need (Chap. 7).

Text comprehension Process of developing a mental representation of text during 
reading; the ability to process text, understand its meaning, and to integrate with 
what the reader already knows (Chap. 5).

Text mining The subfield of data mining that is concerned with textual data, often 
used as a synonymous term for NLP (Chap. 7).

Text summarization NLP task involving automatically generating short, coherent 
summaries of one (or many) long text documents (Chap. 7).

Text-to-speech (TTS) The conversion of utterance text into an acoustic signal that 
people would recognize as human speech (Chap. 9).

Think aloud A method used to gather data in usability testing for product design 
and development, in psychology, and in a range of social sciences (e.g., reading, 
writing, translation research, decision making, and process tracing). Research 
protocols involve participants thinking aloud as they are performing a set of 
specified tasks. Participants are asked to say whatever comes into their mind as 
they complete the task, which is usually recorded and transcribed for analysis 
(Chaps. 1, 5, and 17).

Time-series machine learning methods An AI approach that involves developing 
models from data to describe a sequence of observations occurring at regular 
time intervals (Chap. 15).

Tiny AI The new technology of specialized AI chips that has more computational 
power in smaller physical spaces combined with new algorithms that miniaturize 
existing deep learning models without loss of capability so that AI can become 
distributed and localized (Chap. 19).

Topological data analysis (TDA) An approach to the analysis of datasets using 
techniques from topology. TDA provides a general framework to analyze high- 
dimensional, incomplete, and noisy data and provides dimensionality reduction 
and robustness to noise (Chap. 11).
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Training set In supervised machine learning, the data represented as features, with 
labels for each data point. This set is used to train the model to make predictions 
(Chap. 6).

Transcript count The total number of RNA transcripts for a given gene, either 
inside a cell or inside a tissue, after performing next generation sequencing 
(NGS) (Chap. 14).

Transcriptome The set of all RNA transcripts, including coding and non-coding, 
in an individual or a population of cells (Chap. 14).

Transcriptomics The study of RNA transcript (Chap. 14).
Transfer learning Machine learning approach that focuses on storing knowledge 

gained from solving one problem (a pre-trained model) and then applying this 
knowledge to solve another problem so that relatively few data are needed to 
train neural networks (Chaps. 1, 7, and 19).

Transformation-based integration A method that involves performing mapping 
or data transformation of the underlying data sets before analysis. The modelling 
approach is applied at the level of transformed matrices (Chap. 3).

Transformer A deep learning architecture popularized with NLP models that is 
capable of maintaining an attention mechanism while processing sequences in 
parallel so that sequences do not have to be processed sequentially (as in recur-
rent neural networks) (Chap. 19).

Translational invariance In image processing, a model with translational invari-
ance responds in the same way to an informative feature (such as a lung abscess) 
irrespective of where it occurs in an image (Chap. 6).

Transparency The value or virtue that openness is superior or preferable to secrecy 
or opacity. A transparent device, program, or system is one whose structure and 
workings are available for or accessible to review or scrutiny (Chap. 18).

Treebank parsing A syntactic NLP task involving the identification of the tree- 
based grammatical structure of a sentence, such as noun phrases, verb phrases, 
preposition phrases, and the phrases that may be recursively embedded within 
these (Chap. 7).

Underfitted model In machine learning, a model that fits poorly to its training 
data, often on account of strong assumptions (e.g. linear relationships). This will 
result in poor performance on both training and test sets (Chap. 6).

Unified medical language system (UMLS) A terminology system, developed 
under the direction of the National Library of Medicine, to produce a common 
structure that ties together the various diverse vocabularies that have been cre-
ated for biomedical domains (Chaps. 4 and 7).

Uniform manifold approximation and projection (UMAP) A nonlinear dimen-
sionality reduction technique. After performing UMAP, the low-dimensional 
datapoint Euclidean distance reflects the high-dimensional datapoint similarity 
(Chap. 14).

Unsupervised machine learning A machine learning approach that learns patterns 
from the data without labeled training sets (Chaps. 3, 6, and 10).
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Usability A quality attribute that assesses how easy user interfaces are to use. The 
word also refers to methods for improving ease-of-use during the design process 
(Chaps. 1 and 17).

Usability testing Evaluating a product or service by testing it with representative 
users. Typically participants will try to complete tasks while observers watch, 
listen and take notes. The goal is to identify any usability problems, to collect 
qualitative and quantitative data, and to determine the participant’s satisfaction 
with the product (Chap. 17).

Utterance An isolated message from one entity within a dialog (Chap. 9).
Validation set In machine learning, a held-out subset of the training data that is 

often used to identify optimal hyperparameters, such as the number of neighbors 
to consider in a k-nearest neighbor algorithm, or the regularization parameter in 
a regression model (Chap. 6).

Vanishing gradient problem In deep neural networks, this problem arises because 
of chains of multiplication of fractional numbers during backpropagation, result-
ing in a cumulative gradient that is too small to permit further learning (Chap. 6).

Virtual reality A collection of interface methods that simulate reality more closely 
than does the standard display monitor, generally with a response to user maneu-
vers that heighten the sense of being connected to the simulation (Chap. 16).

Volumetric stack A series of individual two-dimensional images from a cross sec-
tional imaging study, “stacked” together to form a volume, typically oriented 
in a cephalo-caudad (“head-to-toe”) orientation, and displayed sequentially to 
provide a three-dimensional depiction of anatomy (Chap. 12).

Western blotting (Western blot) Western blotting is a technique in molecular biol-
ogy and immunogenetics to detect specific proteins in a tissue sample (Chap. 14).

White box A transparent system, e.g., one based on a fully curated decision tree, 
useful for testing or validation (Chap. 18).

Word error rate (WER) An evaluation metric for speech recognition systems 
(Chap. 9).

Word sense disambiguation (WSD) NLP task involving the identification of a 
specific meaning of a word based on its context, particularly for polysemous 
words with multiple potential meanings (Chap. 7).
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A
Abductive reasoning, 55, 119, 551
Academic settings, 486
Acoustic coupler, 551
Activation function, 5, 363, 551
Active learning, 362, 551
Acute myeloid leukemia (AML), 334
Adaptive artificial intelligence-based  

clinical decision support, 552
Adaptive Boosting (AdaBoost), 351
Adaptive character of thought-rational 

(ACT-R), 452, 552
Adjacency matrix, 98, 552
Advanced Research Projects Agency  

(ARPA), 25, 39, 552
Affordability, 361
Affordances, 453, 552
AI-augmented diagnostic  

equipment, 466–467
AI winter, 38–41, 552
AIM development community, 493
AIM evaluation, 483
AIM systems, 483, 499

evaluations, 497
recommendation, 498

AlexNet, 44, 363, 552
Algorithmic design, 514
Algorithmovigilance, 515, 552
AlphaFold, 418
Alzheimer’s dementia recognition  

through spontaneous  
speech (ADReSS), 538

Anatomical therapeutic chemical  
(ATC), 337

Annotated catalogs, 394
Annotation, 359, 552
Anonymization, 552
Anti-factor Xa (anti-Xa), 436, 552

measures, 439
value frequency, 439

Anytime algorithm, 552
Applied ethics, 506, 552
Apprenticeship learning, 530, 552
Approximation error, 155, 553
Arden syntax, 492
Area under the precision recall curve 

(AUPRC), 144
Area under the receiver operating 

characteristic curve 
(AUROC), 144–146

ARPAnet, 25, 28, 553
Artificial general intelligence (AGI), 531
Artificial intelligence in medicine (AIM), 

519, 553
cognitive informatics

human and machine intelligence, 13, 14
human-computer interaction, 13
usability, 14, 15

definition, 9–11
design and iteration, 484–486
diagnostic features, 11
evaluation plan, 481, 483, 544
and healthcare professions, 520
history

ARPAnet, 25, 26
Bayesian probability theory, 28
CASNET, 31, 32
chatbot technology, 26
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Artificial intelligence in medicine (AIM) (cont.)
cognitive science, 36, 37
Dendral Project at Stanford 

University, 26–28
development, 24, 25
DOD, 25
early years, 22, 23
INTERNIST-1/QMR, 29–31
last 20 years, 43–46
MYCIN, 33–35
overview, 22
reflecting on the 1970s, 37, 38
spring and summer, 38–41
stored-program, 23
Tumult of the 80s and 90s, 41–44

human-human dyad, 533
humanity, and society, 519
human-machine dyad, 534
knowledge-based systems, 4, 5
machine learning and medical practice, 8, 9
machine-machine dyad, 533
in medicine and healthcare

convolutional neural networks 
(CNN), 527

in medicine stakeholders, 531
neural networks and deep learning, 5–7
role of evaluation, 480, 481
rule-based models, 11
system evaluation, 12
workflow and workforce, 543

Artificial intelligence-based clinical decision 
support (AI-CDS), 553

Artificial intelligence in medicine Europe 
(AIME), 41

Artificial intelligence of things (AIoT), 
528, 553

Artificial neural network (ANN), 5, 324, 351, 
397, 432, 513, 553

Association mining algorithms, 409
Audit data logs, 488, 553
Augmented intelligence, 124, 553
Augmented reality, 461, 553
Autoencoder, 419
Autoencoder methods, 98
Automated computer diagnosis, 350, 353
Automated machine learning (autoML), 

532, 554
Automatic MCQ generation, 459
AutoTutor Lite, 457, 458, 554

B
Backward chaining, 79, 554
Backward reasoning, 554

Backward/hypothesis-driven reasoning, 117, 118
Balanced class distributions, 320
Basis function expansion, 554
Batch effect correction, 403
Bayes’ theorem, 554
Bayesian belief network, 432, 554
Bayesian networks, 87–91, 405
Bayesian probability theory, 28, 554
Benchmark on image registration methods 

with landmark validations 
(BIRL), 354

BERT-based models, 102
Bias, 516
Bidirectional encoder representations from 

transformers (BERT), 527, 554
Big data, 343, 554
Binary classification, 555
Binding affinity, 394, 555
BioASQ workshop, 101
BiobankCloud, 402
Bioethics, 555
BioGRID, 410
Bioinformatics, 44, 555
Biomarkers, 412
Biomeasures, 394
Biomedical AI, 510
Biomedical informatics, 33, 374, 555
BioSTORM, 378
Black box medicine, 465, 508, 555
Bloom’s digital taxonomy, 454
Bloom’s revised taxonomy, 451, 454
Bloom’s taxonomy, 451, 454
Boolean function, 186
Bootstrap approaches, 329
Bootstrapping, 555

C
CAD systems, 350
Cancer imaging archive, 360
Canonical correlation analysis, 403, 555
Capsular network, 555
Carotid arterial intimal-medial thickness 

(CIMT), 349, 555
Causal associational network 

(CASNET), 31, 32
Causal reasoning, 31, 555
CellMarker database, 415
Certainty factor, 80, 556
Chaos theory, 556
Chatbot technology, 26, 556
ChEMBL database, 419
Chemical structure, 419, 556
CheXpert, 102
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Chromatin immunoprecipitation (ChIP), 
411, 556

Chunking, 556
Citizen data scientist, 556
Classification algorithms, 60
Clerical documentation, 542
Clinical approach, 440
Clinical cognition

cognitive science
development, 111
vs. medical cognition, 111, 112
medical AI vs. medical cognition, 

111, 112
medical reasoning (see Medical 

reasoning)
reasoning and evolution, 115, 116
symbolic representations, 112, 113
text understanding, 113–115

distributed cognition, 121, 122
human component

augmented intelligence, 124
clinical comprehension, 124–126
cognitive task analysis, 126, 127
mental models, 127

knowledge organization, expert perception 
and memory, 120, 121

machine learning and human cognition, 
123, 124

motivating argument, 109–111
Clinical competence, 451
Clinical competency committees, 464
Clinical decision-making process, 440
Clinical decision support system  

(CDSS), 497, 515, 556
Clinical decision-support tools, 490
Clinical outcomes

artificial intelligence
data matrix, 313

classification problem, 311
classification system, 320
common mistake in  

experimental validation  
design, 330

COVID-19, 335, 338
dataset notation for prediction, 311
deep learning, 319
experimental design for learning, 329
external validation, 330
Markov models, 326, 328
missing values

data matrix, 314
dimensionality reduction, 316, 317
feature transformation, 316, 318
MAR, 315

MCAR, 314
MNAR, 315
multiple imputation, 315
Rubin’s rule, 315
t-SNE, 318

myelodysplastic syndromes, 334
ordinal regression algorithms, 311
performance stability, model drifts, 

diagnostics, and model 
revision, 331

regression analysis, 311, 321
survival analysis, 312, 322, 323, 325
timelines, 325, 326
trajectory modelling, 327
type 2 diabetes, 332

Clinomic data, 394, 556
Clinotype, 394, 556
Clinotype-to-clinotype (C2C) association, 

395, 398
Clinotype-to-phenotype association, 396
Cloud computing, 556
CloudBurst, 402
Clustering algorithms, 60, 404
Cognitive architecture, 530, 556
Cognitive artifacts, 121, 122
Cognitive evaluation methods, 488

human computer interaction (HCI), 487
usability, 487

Cognitive flexibility theory (CFT), 452
Cognitive informatics (CI), 110, 540, 557

definition, 13
human and machine intelligence, 13, 14
usability, 14, 15

Cognitive load theory (CLT), 452, 557
Cognitive science, 36, 37
Cognitive task analysis, 126, 127, 557
Commercial AIM products, 484
Commercial software products, 484
Competency-based education, 557
Competency-based medical education 

(CBME), 464
Complexity, 557
Comprehension, 557
Computable phenotype, 335
Computable representation, 455, 557
Computational linguistics, 557
Computational methods, 487, 557
Computed tomography  

(CT), 344, 346–349, 356,  
357, 359, 361, 366

Computed tomography pulmonary 
angiography (CTPA), 355

Computer-aided diagnosis (CAD), 343, 351, 
354, 365
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Computerized provider order-entry (CPOE) 
system, 488, 557

Computing machinery and intelligence, 23
Concatenation-based integration, 61, 557
Concept normalization (CN), 557
Concept recognition, 557
Conditional independence, 87, 557
Connectionism, 558
Consensus clustering, 406
Consilience, 558
Construction-integration model, 115
Construction-integration theory, 115
Context mechanism, 80, 558
Continual learning, 362, 558
Control value theory, 461, 558
Conventional radiography, 344, 346, 347
Conversational agent, 558
Conversational assistant, 558
Convex function, 149, 161, 558
Convex hull, 558
Convolution, 363, 558
Convolutional neural network (CNN), 95, 

196–200, 319, 558
Copy-number variation (CNV), 394, 559
Co-reference resolution, 559
Coronavirus disease (COVID-19), 335, 338
Corporate Governance, 442
Cost-effectiveness analyses, 498
Covariates, 321
Cover and differentiate, 577
COVID-19 pandemic, 53, 515
Cox’s regression model, 323
Cross sectional imaging, 345, 347, 348, 559
Cross-modal applications, 99, 100, 559
Cybernetics, 23, 559

D
DARPA Digital Tutor, 457
Data

augmentation, 96, 559
collection approaches, 489–490
ethics, 507, 559
federation models, 62, 63
Governance, 442, 444
integration, 61, 62
manifold, 513, 559
matrix, 402, 403
ownership, 410
pipelines, 444
privacy, 58
programming, 96, 559
scaling and normalization, 403
sets, 513

sharing, 67
warehouse, 63

Data and computation
abductive reasoning, 55
best explanation, 55
Big Data, 55
biomedicine, 53–55
COVID-19, 53
definition, 51
distributed/networked computing

converse approach, 62
data federation models, 62, 63
data requester, 62
EHR data, 62
interoperability, 63, 64

EBM, 52, 53
epistemology, 52
ground truth, 65, 66
HbA1c, 52
inductive reasoning, 55, 56
knowledge representation, 59, 60
machine learning, 58, 60, 61
motivation, 56–58
multimodal, multi-scale models, 61, 62
open data, 66, 67
privacy, 64, 65
public good, 67, 68
thinking, 58

Data use agreements (DUA), 65
Data-derived artificial intelligence-based 

clinical decision support, 559
Data-driven modeling, 136
Datapoints, 392
Decision analysis, 89–91
Decision making, 351
Decision support

direct consultation with clinical user, 493
medical device data- 

interpretation, 490–492
Decision tree, 89, 324, 404, 559
Decision tree classifier, 559
Decoder, 363
Deductive reasoning, 119, 560
Deep feedforward neural networks, 560
Deep learning (DL), 123, 124, 343, 352, 359, 

363, 527, 560
methods, 540
models, 5–7, 319
techniques, 60

Deep neural networks, 185, 324
Deep reinforcement learning, 528, 560
DeepTFactor, 411
Defense Advanced Research Projects Agency 

(DARPA), 5
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De-identification/anonymization, 65, 560
Deliberative reasoning, 453
DENDRAL experiments, 27
Dendritic algorithm, 27
Density-based clustering, 415
Department of Defense (DOD), 25, 560
Dependency parsing, 560
Dependent/response variable, 322
DeSeq2, 403
Design and iteration

formal focus groups, 485
informal usability testing, 486
team science, 485

Diabetic ketoacidosis (DKA), 137
Diagnostic reasoning, 539
Dialog system, 560
Digital health data sources, 136
Digital imaging and communications in 

medicine (DICOM), 349
Digital object identifiers (DOIs), 66
Digital taxonomy, 451, 454, 560
Digital transformation, 376, 382, 384, 560
Digital twins, 530, 561
Dimensionality reduction, 316
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