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Abstract. Radial distortion correction for a single image is often over-
looked in computer vision. It is possible to rectify images accurately when
the camera and lens are known or physically available to take additional
images with a calibration pattern. However, sometimes it is impossible
to identify the camera or lens of an image, e.g., crowd-sourced datasets.
Nonetheless, it is still important to correct that image for radial distor-
tion in these cases. Especially in the last few years, solving the radial
distortion correction problem from a single image with a deep neural
network approach increased in popularity. This paper shows that these
approaches tend to overfit completely on the synthetic data generation
process used to train such networks. Additionally, we investigate which
parts of this process are responsible for overfitting. We apply an explain-
ability tool to analyze the trained models’ behavior. Furthermore, we
introduce a new dataset based on the popular ImageNet dataset as a
new benchmark for comparison. Lastly, we propose an efficient solution
to the overfitting problem by feeding edge images to the neural networks
instead of the images. Source code, data, and models are publicly avail-
able at https://github.com/cvjena/deeprect.
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1 Introduction

The effects of lens distortion are often overlooked when knowledge about the
geometry of 3D scenes or the pinhole camera model is integrated into deep
learning-based approaches [10,20,31,35]. Nevertheless, their effects are still visi-
ble on images taken with modern cameras, including mobile devices. In particu-
lar, wide-angle lenses, which are widely used due to their large field of view, suffer
from geometric distortions. Additional difficulties arise when images are taken
under uncontrolled conditions, e.g., crowd-sourcing or web-crawling scenarios. In
these cases, conventional automatic algorithms for correcting radial distortions
cannot be applied, and one would have to try correcting the image manually.
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However, state of the art for radial distortion correction from a single image
has improved dramatically recently with the ever-increasing success of machine
learning and deep learning-based approaches [13,14,18,22,30,33]. While these
methods achieve remarkable performance on benchmark datasets, they fail to
estimate the radial distortion for real-world data correctly.

We show that the generalization to real-world data can be improved when
edge detections of the images are fed to the network instead of the distorted
images themselves. This way, information that is unnecessary for the radial
distortion correction is removed, reducing the complexity of the search space
and removing unintentional artifacts. Moreover, we demonstrate the influence
of high-resolution images and that a combination of edge detections and high-
resolution images improves the generalization even further. For that, we investi-
gate the behavior of three previously published methods on a new high-resolution
dataset, which is a subset of the ImageNet dataset [23]. Beyond that, we analyze
the behavior of a classification-based approach with an explainability tool. This
way, we can study which input areas the models focus on for their prediction.

2 Related Work

Many approaches exist for radial distortion correction with the help of a cali-
bration pattern, video sequences, or when the camera is known and physically
available. However, in many cases, none of these pieces of information are avail-
able. Hence, we focus on correcting radial distortion using a single image and
describe more recent approaches that apply deep neural networks to solve this
task.

Previous works on radial distortion correction from a single image focus
almost exclusively on barrel distortion and omit pincushion or mustache distor-
tion, which requires the estimation of at least two distortion coefficients. Rong
et al. [22] cast radial distortion correction as a classification problem where each
class corresponds to a radial distortion coefficient. This significantly limits the
distortions they can estimate. Lutz et al. [18] proposed a data-driven approach
in which a network is trained on a large set of synthetically distorted images. As
common in regression tasks, they minimize the mean squared error between pre-
diction and ground truth distortion coefficients. Shi et al. [24] extend a ResNet-18
model [12] by adding a weight layer with so-called inverted foveal models after
the final convolutional layer to emphasize the importance of pixels closer to the
border of the images. In addition to the distortion coefficients, Li et al. [13] esti-
mate the displacement field between distorted and corrected images and use it
to generate the corrected image.

An approach to estimate more than a single distortion parameter is presented
by López-Antequera et al. [16], which simultaneously predicts tilt, roll, focal
length, and radial distortion. They recover estimations for two radial distortion
parameters from a large dataset with the help of Structure from Motion [27]
reconstruction. They show that the parameters of the cameras used to acquire
the dataset lie close to a one-dimensional manifold. While some cameras have
this property, many do not, severely limiting the method’s applicability.
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Instead of predicting the radial distortion coefficients, Liao et al. [14] use
generative adversarial networks (GANs) [11] to generate the undistorted image
directly. The reconstructed images lack texture details, are partially distorted or
differently illuminated, among other problems.

Other works focus on correcting fisheye images. Xue et al. [29] exploit that
distorted lines generated by the fisheye projection should be straight after cor-
rection, or similarly that straight lines in 3D space should also be straight in the
image plane [28]. However, both approaches require line segment annotations
that are not easily acquirable, significantly limiting the available training data.

Finally, the current state of the art for correcting barrel distortion with a sin-
gle image is achieved by Zhao et al. [33] integrating additional knowledge about
the radial distortion model. They use a CNN to estimate the radial distortion
coefficient and the inverse of the division model to calculate a sampling grid to
rectify the distorted image by bilinear sampling. As a standard radial distortion
model, we describe the division model in Sect. 3.1.

3 Data Generation

Ground truth data for radial distortion correction is difficult to obtain. Hence,
previous work used synthetically distorted images for training. Following, we
describe the division modell [9], which is often used to obtain distorted images.
Afterward, we describe what datasets are used for that purpose and why they
are unsuitable for radial distortion correction. Instead, we propose to use a sub-
set of the ImageNet dataset that only contains high-resolution images. Lastly,
we describe the proposed preprocessing strategy applied after the synthetic dis-
tortion of the input images.

3.1 Lens Distortion Models

A common way to model radial distortion is the division model

ru =
rd

1 + k1(rd)2 + k2(rd)4 + ...
(1)

w.r.t the radius rd =
√

(x̄d)2 + (ȳd)2, proposed by [9], where x̄d = xd−x0, ȳd =
yd−y0, and the coordinates of the distorted point (xd, yd). The distortion center
is (x0, y0). In practice, the model is parameterized with up to three parameters
k1, k2, k3. It is also common that models for specific cameras only have one
parameter. Barrel distortion occurs when all coefficients k1, k2, ... are negative
and a pincushion distortion if all are positive. Mustache distortion can occur
when the signs of the coefficients differ. It generally requires fewer coefficients to
approximate large distortion compared to the radial model [4]. We assume that
the center of distortion is the center of the image, and refer the interested reader
to [26] for a more detailed comparison of various camera distortion models. A
backward image warping is performed, which requires calculating the undistorted
radius given the distorted radius when we distort an image.
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(a) Original Image (b) Distorted Image (c) Distorted Edges

Fig. 1. Example of the different types of input that are fed to the model. We compare
the performance of models trained with images, and edge detection.

3.2 Preprocessing Strategy

We consider two input types to the neural network, as depicted in Fig. 1. As a
baseline, we use natural images as is done in all previous deep neural network
approaches for radial distortion correction. We show that models trained on
synthetically distorted natural images overfit the data generation process and do
not generalize to real-world data. Instead, we perform edge detection as the last
preprocessing step with the Canny edge detector [6]. Previous non-parametric
approaches [1,5,7,8,25,32] demonstrate that edge detection is well suited as a
preprocessing step to estimate radial distortion. They provide enough context
in the image to correctly estimate the coefficients while simultaneously reducing
the amount of data. In the case of edge detections, the resulting inputs only have
one channel. We adjust the first layer of the network accordingly.

3.3 Synthetically Distorted Datasets

In the literature [13,14,18,22,33], the model in Eq. (1) is often used to generate
distorted images where the rectified images are assumed to be given as ground
truth.

Previous work uses already available datasets to collect sufficient training
data and synthetically distorts them. To that end, Rong et al. [22] obtain a sub-
set of the ImageNet dataset [23] with images that have a large amount of long
straight lines relative to the image size. However, many images of the resulting
dataset, counting roughly 68, 000, have undesirable properties, like tiny images
or images not taken with a camera like,e.g., screenshots. Additionally, all images
of this dataset are resized to a resolution of 256×256 before conducting the syn-
thetic radial distortion. In comparison, Li et al. [13] use the Places365-Standard
dataset [34]. They use images with a resolution of 512 × 512 as the original
non-distorted images to generate a dataset of distorted images at a resolution of
256 × 256. Similarly, Lutz et al. [18] use the MS COCO dataset [15] but resize
all images to 1024 on their longer side before distortion.
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In contrast, we focus on high-resolution images. Like Rong et al. [22], we con-
struct an ImageNet subset containing 126, 623 the original 14.2 million images.
However, we choose all images with a minimum width and height of at least
1200 pixels independent of straight lines. This results in a more diverse dataset
with a vastly larger average resolution of 2011 × 1733 than other datasets like
MS COCO with 577× 484 or Places365-Standard with 677× 551. We can lever-
age the high resolution to generate more realistically looking distortions because
the resulting images appear significantly less blurry. We split the dataset into
106, 582 training, 5, 000 validation, and 10, 000 test samples.

To reduce the possibilities for the network to exploit the data generation
process, we propose increasing the resolution at which the images are distorted
and applying an edge detection preprocessing step. This way, we can decrease
the possibility for artifacts that are not visible by a human observer but force
the network to overfit the synthetic data generation process instead of the actual
radial distortion. We leverage the high-resolution images available in the Ima-
geNet dataset to distort the images. This makes it possible to distort the images
at a resolution of 1024 × 1024 compared to 512 × 512 or 256 × 256 as is done
in other work, which results in sharper, less blurry distorted images that more
closely resemble the original undistorted image.

Besides evaluating the trained models qualitatively on real-world images, we
also evaluate them quantitatively on a subset of a differently distorted dataset.
For that, we use the dataset published by Bogdan et al. [3], who automatically
generate distorted images based on panorama images and the unified spheri-
cal model [2]. Compared to Brown’s and division models used in other work,
the unified spherical model can describe a wider variety of cameras, including
perspective, wide-angle, fisheye, and catadioptric cameras. Hence, we need to
determine the subset of distorted images that the division model can correct.
We first compute the corrected image for each sample in the dataset with the
unified spherical model. Afterward, we sample coefficients for the division model
between 0.0 and −0.2 to find the visually most similar-looking correction. We
choose the subset of all images for which the peak signal-to-noise ratio (PSNR)
between the two corrections is larger than 30, i.e., they are visually indistin-
guishable. Figure 2 shows the distribution of the model coefficients and PSNR
of the resulting test dataset.

4 Experiments

4.1 Implementation Details

For the model, we follow previous works and choose a ResNet-18 [12] for all
experiments. The models are initialized with ImageNet [23] weights. To avoid
the unnecessary introduction of distortion, we resize all images while maintain-
ing the aspect ratio. Then, the images are randomly cropped for training and
center cropped for testing. We apply random horizontal and vertical flipping.
Afterward, we randomly distort the images with the division model and distor-
tion coefficients uniformly drawn between 0.0 and −0.2. We train each model
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Fig. 2. PSNR and division model coefficient distributions for the subset of samples
that are distorted by the unified spherical mode and can be corrected with the division
model.

for 30 epochs and divide the learning rate by a factor of ten after 20 epochs. We
used the AdamW optimizer [17] with β1 = 0.9 and β2 = 0.999. The experiments
are implemented with PyTorch [19].

Following previous works in this area [29,30,33], we adapt the PSNR and
the structural similarity index measure (SSIM) as evaluation metrics. A larger
value corresponds to better correction quality. Additionally, we report the mean
absolute error (MAE) between estimated and ground-truth coefficients.

4.2 Radial Distortion Estimation

We analyze different input types and their impact on the model’s performance.
We compare the models quantitatively on synthetically distorted validation data
and qualitative on real-world images. The real-world samples are not synthet-
ically distorted. Hence, they can give insight into whether the models learned
to correct general radial distortion or overfitted to our data generation process.
The quantitative results are shown in Fig. 3a. The results indicate that natural
images without any further preprocessing outperform our preprocessing strat-
egy on a synthetically distorted test dataset. However, the qualitative results
on real-world images in Fig. 5 demonstrate that the models trained on natural
images do not generalize to natural distortions. While models trained on edge
images correctly predict a larger distortions coefficient when a severe distortion
is visible in the image and do not overcorrect images with only a small visible
distortion. This suggests that models trained on edge images can differentiate
between severe and slight distortions.
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(a) ImageNet Pretrained Models (b) Random Initialization Input

Fig. 3. Comparison between models trained on images and edge detections as inputs.
It shows that natural images without any further preprocessing outperform the edges
on a synthetically distorted test dataset. Moreover, the results are almost identical
between pretrained and randomly initialized weights.

Besides the qualitative evaluation of the images shown in Fig. 5, we quanti-
tatively test the trained models on a subset of the dataset proposed by Bogdan
et al. [3] that are distorted with the unified spherical model and can be corrected
with the division. Because the coefficients are not uniformly distributed, we put
them evenly sized bins of 100 based on the ground truth distortion coefficient
and report the MAE for each group separately, as depicted in Fig. 4. The models
trained on natural images cannot detect any distortion at all. Hence, they con-
sistently predict a coefficient close to 0.0 resulting in an MAE almost identical
to the ground truth distortion coefficient. On the other hand, models trained on
edge detections have a significantly lower MAE.

4.3 Influence of Pre-trained Weights

All trained networks in Sect. 4.2 all use pre-trained weights wherever possible.
The weights are obtained by solving a classification task on the original ImageNet
dataset. To train the neural networks to estimate the radial distortion coeffi-
cients, we use a subset of the ImageNet dataset containing only high-resolution
images. Hence, it is reasonable to assume that the weights are a significant cause
of the observed overfitting phenomenon.
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Fig. 4. MAE grouped by ground truth coefficients. While the MAE increases for both
types of models with increasing distortion coefficients, models trained on edge detec-
tions are clearly more accurate.

One possible explanation for the improved generalization when we train a
network with edge images is the random initialization of weights for the first
convolutional layer. Instead, the layer is trained from scratch because no weights
are readily available for single-channel inputs with the same model architecture.

We confirm that the behavior is independent of the initialized weights by
repeating the same experiment outlined above with randomly initialized weights.
The results in Fig. 3b support that choosing weights pre-trained for the classifi-
cation task on ImageNet is not the cause of the significant overfitting that can be
observed for the radial distortion correction task, as can be seen in the negligible
difference between Figs. 3a and 3b.

4.4 Explainability of the Results

To better understand the behavior of our models, we apply local interpretable
model-agnostic explanations (LIME) [21] to highlight areas of images that the
models primarily use for their prediction. While applying this method to regres-
sion models is possible, the resulting explanations are not interpretable enough
to be helpful, as stated by the authors. Hence, we apply LIME only to models
trained with the method proposed by Rong et al. [22] because they are the only
ones who cast radial distortion correction as a classification problem in a deep
learning scenario. For radial distortion correction, areas with long lines are of
particular interest. The results shown in Fig. 6 indicate that models trained on
natural images specifically focus on homogenous areas without lines. In contrast,
models that leverage edge detections prioritize areas with long edges.
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Distorted Image Lutz et al. [18] Rong et al. [22] Zhao et al. [33]

Fig. 5. Qualitative results on various real-world examples. The top right of each image
shows the correction with models trained on edge detections with the edges overlayed
for visualization purposes. The bottom left models trained on natural images. From
left to right, it shows the distorted real-world images and the models trained with the
following methods: Lutz et al. [18], Rong et al. [22], and Zhao et al. [33]
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Fig. 6. LIME explanations for models trained with the method proposed by Rong et al.
The top row shows explanations for a model trained on natural images and the bottom
row for a model trained on edge detection. The edges depicted in the bottom row
indicate the input of models trained on edge detections. The model trained on natural
image focuses on homogenous areas of the image which do not contain information
about the radial distortion. On the other hand, the model trained on edge detection
focuses on long, distinct lines.

5 Conclusion

This work investigated the effect of edge detection as additional preprocessing on
the generalizability of deep neural networks for radial distortion correction. We
analyzed the performance and behavior of three different methods that leverage
deep learning for radial distortion correction. We investigated the overfitting for
neural networks when trained with synthetically distorted images. To that end,
we explored the influence of pre-trained weights and the resolution at which the
images are synthetically distorted. In addition, we proposed a new dataset of
high-resolution images based on the popular ImageNet dataset.

Moreover, we applied LIME to explain the results of the classification-based
approach, which showed that models trained on natural images focus on homoge-
nous regions of the image, which should not be relevant for the task of radial
distortion correction. We showed qualitatively on real-world examples and quan-
titatively on differently distorted images that edge detection as an additional
preprocessing step is an effective measure to improve the generalization of these
methods.
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