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Abstract. The paper addresses the fundamental task of semantic
image analysis by exploiting structural information (spatial relationships
between image regions). We propose to combine a deep neural network
(CNN) with graph matching where graphs encode efficiently structural
information related to regions segmented by the CNN. Our novel app-
roach solves the quadratic assignment problem (QAP) sequentially for
matching graphs. The optimal sequence for graph matching is conve-
niently defined using reinforcement-learning (RL) based on the region
membership probabilities produced by the CNN and their structural rela-
tionships. Our RL based strategy for solving QAP sequentially allows us
to significantly reduce the combinatorial complexity for graph matching.
Preliminary experiments are performed on both a synthetic dataset and
a public dataset dedicated to the semantic segmentation of face images.
Results show that the proposed RL-based ordering significantly outper-
forms random ordering, and that our strategy is about 386 times faster
than a global QAP-based approach, while preserving similar segmenta-
tion accuracy.

Keywords: Semantic image analysis · Structural information · Graph
matching · Quadratic assignment problem · Reinforcement learning

1 Introduction

Semantic segmentation is a fundamental but challenging task in computer vision,
often managed using deep neural networks such as U-Net [9]. Structural infor-
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mation [2,5] such as spatial relationships is not explicitly used in such networks,
although some recent works aim at exploiting it, e.g. CRF-based approaches [7]
and CNN based semantic segmentation followed by inexact graph matching [3].

In this paper, we focus likewise on graph-based approaches exploiting relation-
ships observed at high semantic level in annotated training images or provided
by qualitative descriptions of the scene content [5]. In this context, graph ver-
tices and edges encode regions and spatial relationships produced by a segmen-
tation network and observed in annotated training images, leading to an inexact
graph matching problem, expressed classically as a quadratic assignment problem
(QAP) [16]. Note that some recent approaches solve graph matching with machine
learning (e.g. graph neural networks [1]). Although promising for many application
domains [17], large and representative training datasets of annotated graphs are
required. Another difficulty is the definition of the appropriate architecture, and
the management of both vertex and edge information, while edge features (related
to relationships between regions) are often ignored [17].

One of the main drawbacks of QAP-based graph matching lies in its highly
combinatorial nature [16]. In this context, our proposal is to solve it in a sequen-
tial manner, where vertices are progressively matched in order to reduce the
complexity. This means that the semantic image analysis is done progressively:
first identified regions are used to discover next ones [4,6] (this is closed to the
notion of seeded graph matching [8]). The difficulty is to learn the optimal seg-
mentation/graph matching order, to ensure that all regions are finally recovered.
In this paper, we propose to solve this problem by reinforcement learning [12,14].
Note that, to our knowledge, such an approach has never been considered for
graph-based semantic image segmentation, although it has been recently stud-
ied for graph matching (but in a different context [8]). Recent related works in
computer vision focus on other tasks such as, for instance, object detection [10],
object tracking [15], landmark detection [11] or control of regions of interest in
video analysis [11].

This work is an extension of a recently proposed approach involving QAP-
based graph matching that ignores this sequential alternative and therefore suf-
fers from a high complexity [3]. The originality and contribution of this paper rely
on challenging image understanding tasks by combining, on top of deep-learning-
based segmentation, high-level structural information, inexact graph matching
and a reinforcement-learning-based sequential strategy. Section 2 describes the
proposed method while Sect. 3 presents experiments and results demonstrating
the performance of our approach. We finally conclude in Sect. 4.

2 Reinforcement Learning for Sequential Graph
Matching

Figure 1 provides an overview of the approach. A Convolutional Neural Network
(CNN) is trained for image semantic segmentation using an annotated dataset
(Fig. 1-Training). To correct segmentation errors (Fig. 1-Inference), we propose
to use spatial relationships observed between identified regions of the annotated
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Fig. 1. Overview of the proposed approach. Training: Annotated data are used to
train a CNN and learn the model graph. Segmentations over the training data are used
with the graph model to learn the Q-function. Inference: Segmentation produced by
the CNN is used to create image graph. A sequential one-to-one matching is done with
a sequential refinement to improve the semantic segmentation.

training dataset, leading to an inexact-graph-matching procedure, between Gm

(built from the training dataset) and Gr (built from the CNN output). When
analysing an unknown image (Fig. 1-right), a hypothesis graph Gr is built from
the initial CNN segmentation result. To identify regions, Gr is matched with Gm,
which is an inexact graph matching problem, as there are more regions in Gr than
in Gm due to artifacts. We propose to do this sequentially in two steps. First,
an initial “one-to-one” matching is performed to recover one region candidate
(vertex of Gr) per class (one vertex of Gm). This is done sequentially according
to the ordering learned by reinforcement (based on a Q-Function resulting from
a preliminary training - Fig. 1-Training). The second step (refinement) focuses
on matching remaining artifacts, this being also done sequentially in any order.
We hereafter detail each of these steps.

2.1 Neural Network and Graphs

When analysing an image, the neural network provides a tensor S ∈ R
P×N with

P the dimensions of the query image (e.g. P = I × J pixels for 2D images)
and N is the total number of classes considered for segmentation. At each pixel
location p, the value S(p, n) ∈ [0, 1] is the probability of belonging to class n. The
segmentation map L∗ selects the label n of the class with the highest probability:

∀p ∈ {1, . . . , P}, L∗(p) = arg max
n∈{1,...,N}

S(p, n). (1)

From L∗, we define a set R of all resulting connected components, and finally the
graph Gr = (Vr, Er, A,D), where Vr is the set of vertices, Er the set of edges, A a
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vertex attribute assignment function, and D an edge attribute assignment func-
tion. Each vertex v ∈ Vr is associated with a region Rv ∈ R, with an attribute
provided by the function A which is the average membership probability vector
over the set of pixels p ∈ Rv, therefore computed on the initial tensor S:

∀v ∈ Vr,∀n ∈ {1, . . . , N}, A(v)[n] =
1

|Rv|
∑

p∈Rv

S(p, n). (2)

We consider a complete graph where each edge e = (i, j) ∈ Er has an attribute
defined by the function D (hyperparameter in our method, detailed in experi-
ments), associated with a relation between the regions Ri and Rj .

The model graph Gm = (Vm, Em, A,D) is built from the training set and
is composed of N vertices (one vertex per class). The attribute of a vertex is a
vector of dimension N with only one non-zero component (with value equal to 1),
associated with the index of the corresponding class. The edges are obtained by
calculating the average relationships (in the training set) between the regions
(according to the relation D considered).

2.2 Sequential One-to-one Matching by Reinforcement Learning

The proposed sequential one-to-one matching between Gr = (Vr, Er, A,D) and
Gm = (Vm, Em, A,D) is formulated as a QAP to be solved sequentially by Q-
learning, for finally finding the best assignment X∗:

X∗ = arg min
X

{
vec(X)TK vec(X)

}
, (3)

where X ∈ {0, 1}|Vr|×|Vm|, Xij means that the vertex i ∈ Vr is matched to the
vertex j ∈ Vm, vec(X) is the column vector representation of X, and T denotes
the transposition operation. The matrix K is defined by:

K = α Kv + (1 − α) Ke, (4)

and embeds the dissimilarities between the two graphs: Kv embeds the dissimi-
larities between Vr and Vm (diagonal elements) and Ke embeds the dissimilarities
between Er and Em (non-diagonal elements). The parameter α ∈ [0, 1] allows
weighting the relative contributions of vertex and edge dissimilarities.

For a sequential graph matching, one learns, by reinforcement, from inter-
actions between the agent and the environment [12]. From a given state st (set
of already matched nodes, at step t of the sequential matching procedure), the
agent (the algorithm) selects and triggers an action (i.e. trying to match a new
vertex of |Vr| with a new one of |Vm|, or a new subset of vertices). The environ-
ment (encompassing image, semantic segmentation, graphs and graph matching
computations) performs this action, and gives back to the agent the resulting
new state st+1 (matching result) together with a reward.

In this work, the considered reinforcement learning (RL) method is based on
Q-learning using a Q-function defined by a Q-Table, that appeared appropriate
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for preliminary experiments. As underlined in [12], it is widely accepted that such
a value-based RL algorithm is appropriate for a discrete RL scenario, which is
the case of our graph matching problem (discrete decision making problem).

The design of the agent for our graph matching problem is detailed hereafter
in terms of state, action and reward.

State. As in [8], the state st ∈ S (at the step t of the episode or match-
ing procedure) is the subset Vr,t ⊆ Vr of vertices matched with a subset
Vm,t ⊆ Vm, where |Vr,t| = |Vm,t|, and S represents all possible partial match-
ings. The related bijective assignment matrix is Xt ∈ {0, 1}|Vr,t|×|Vm,t|, so that
∀p ∈ Vm,t, (

∑|Vm,t|
i=1 Xpi = 1) ∧ (

∑|Vm,t|
i=1 Xip = 1). The matching procedure

(episode) goes from t = 0 (Vr,0 = Vm,0 = ∅) to t = ∞ (|Vr,∞| = |Vm| and
Vm,∞ = Vm). We observed experimentally that only a limited number of steps
is needed.

Action. The action at ∈ At, achieved by the agent at step t, consists in selecting
a set of vertices of Vm not in Vm,t (i.e. Vm \ Vm,t) and finding the corresponding
ones in Vr \ Vr,t. At is the set of possible sets of vertices, and depends on t (i.e.
already matched vertices at step t are ignored). In our case, at t = 0, sets of
size larger than one element are considered, while, for t > 0, single nodes are
investigated. The motivation is to begin by finding a small subgraph matching
(seeded graph matching [8]) and then to consider only single nodes to ensure
a low complexity. At each step, a QAP optimization is achieved to find the
new matching(s), according to Eq. 3, where the assignment matrix is initialized
according to Xt.

Reward. When learning, the agent receives a reward r, based on the quality of the
resulting matching. Compared to [8], the reward is not based on the cost related
to Eq. 3 but on the quality of the resulting semantic segmentation, similarly to
[11], involving a similarity measurement between the recovered region(s) and the
expected one(s). The motivation is to favor the matching with the most similar
regions, as several regions (over-segmentation) of the image being analyzed can
be associated (and therefore matched) with the same region of the reference
segmentation. The reward, depending on both the state st and the selected
action at, is the one considered in [11]:

r(at, st) =

{
DC + 1 if DC > 0.1,

−1 otherwise
(5)

where DC is the Dice index between the region(s) associated with the newly
matched vertex (or vertices) and the expected one(s).

Sequential Matching. After the learning procedure leading to the Q function,
the matching ordering (i.e. optimal action at to be selected at step t) is defined,
at each step t ∈ [0,∞], by:

at = arg max
a∈At

(Q(st, a)). (6)
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where Q (Q : S × A → 	) is the learned Q-Table [12], representing the maxi-
mum expected future rewards for actions at each state (At ⊆ A in Eq. 6). Q is
learned [12] over several episodes achieved on the training dataset, using previ-
ously defined notions of state, action and reward. Applying this policy leads to
the one-to-one matching XI .

Complexity. The complexity is directly related to the number of evaluated
assignments according to Eq. 3, depending on the number of vertices involved
and the related set of possible matchings (i.e. set of X ∈ {0, 1}|Vr|×|Vm|). Without
considering the proposed sequential approach, the number of evaluations NEQAP

equals the following number of |Vm|-permutations of |Vr| (without repetitions),
or arrangements (i.e. vertex sets from Vr, of size |Vm|, to be matched with the
Vm vertices):

NEQAP = P
|Vr|
|Vm| =

|Vr|!
(|Vr| − |Vm|)! (7)

With the sequential approach, the number of evaluations NEQAP-RL is:

NEQAP-RL = P
|Vr|
|S| +

|Vm|−|S|∑

i=0

|Vr| − |S| − i (8)

where S ⊆ Vm is the set of vertices involved in the first step of graph matching
procedure. Each following step involves only one vertex (right term of Eq. 8).
Because |S| ≤ |Vm|, the number of evaluations can be significantly reduced by
minimizing |S| (i.e. |S| � |Vm|).

2.3 Sequential Refinement: Many-to-one-or-none Matching

The unmatched remaining nodes are then matched sequentially but in a random
manner. For each node k ∈ Vr \ Vr,∞, one searches for the best assignment
(element of Vm), minimizing the matching cost according to Eq. 3. In terms of
complexity, this only involves the evaluation of |Vm| assignment matrices per
remaining k ∈ Vr \ Vr,∞: NERefinement = |Vr \ Vr,∞| × |Vm| (to be added to the
complexity related to Eq. 7 or 8).

3 Experiments

3.1 Datasets

The datasets considered for our experiments are a synthetic dataset and the
FASSEG-Instances1 public dataset that has been created for these experiments
(based on the FASSEG).

1 https://github.com/Jeremy-Chopin/FASSEG-instances.

https://github.com/Jeremy-Chopin/FASSEG-instances
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Fig. 2. Synthetic dataset. From reference images, altered ones are randomly created
by first applying a random shift on region positions and by then integrating artifacts.

Synthetic dataset. Ten types of synthetic images are used (two are reported in
Fig. 2). For each one, a reference image, composed of 6 regions/classes, is consid-
ered (from which Gm is built) together with 100 altered versions (from which 100
Gr are built). Altered images are generated from reference ones, by modifying
region location (random shift around the initial position) and by incorporating
randomly placed artifacts (one artifact per class). Note that the random shift for
some regions is larger than for others, in order to simulate relationships varia-
tions that can differ between any two regions in realistic images. The considered
relationships (D assignment function) are the distances between region barycen-
ters: ∀(i, j) ∈ V 2

. , D((i, j)) = ‖R̄j−R̄i‖, where R̄i is the barycenter of the region
associated with vertex i. The dissimilarity between two edges ((i, j) ∈ Em and
(k, l) ∈ Er) is computed as the difference between D((i, j)) and D((k, l)) (used
to compute K in Eq. 3): D1

(k,l)
(i,j) = D((k,l))−D((i,j))

Cs
, where Cs is the length of the

diagonal of the image, so as to keep the value in the interval [0, 1]. To mimic the
CNN output, each region is associated with an attributed vector representing a
membership probability vector (A assignment function). For altered images, a
probability is set randomly in [0.7, 0.9] and assigned to the reference region/class,
while the remaining quantity is randomly divided among the other classes.

FASSEG-Instances. This public dataset is based on the public FASSEG2 dataset
containing 60 human face images with the associated expert segmentation of face
regions (eyes, nose, mouth...). We applied some modifications to the original
FASSEG dataset in order to subdivide original labels (e.g. right-eye and left-eye
instead of only eyes, i.e. two distinct instances of eyes), leading to 9 classes. Note
that, although FASSEG includes faces in multiple poses, one considers frontal
ones only because the considered graph matching technique may not be robust to
face pose changes [3], except if spatial relations are defined in an intrinsic frame
and not absolutely, this aspect being out of the scope of our study focusing

2 FASSEG: https://github.com/massimomauro/FASSEG-repository.

https://github.com/massimomauro/FASSEG-repository
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on QAP optimization. For the sake of simplicity, the term FASSEG is used in
the rest of the paper. The considered relationships are based on both minimum
and maximum distances between regions, leading to the following assignment
function D((i, j)) = [d(i,j)min , d

(i,j)
max ], where:

d
(i,j)
min = min

p∈Ri,q∈Rj

(|p − q|) and d(i,j)max = max
p∈Ri,q∈Rj

(|p − q|) (9)

The resulting dissimilarity between two edges (i, j) ∈ Em and (k, l) ∈ Er is:

D2
(k,l)
(i,j) =

λ

Cs

(
|d(i,j)min − d

(k,l)
min |

)
+

(1 − λ)
Cs

(|d(i,j)max − d(k,l)max |) (10)

where λ ∈ [0, 1] is a parameter (set to 0.5 is our experiments) to balance the
influence of the distances, and Cs the maximum diagonal length of the image.

3.2 Evaluation Protocol

On the synthetic dataset, for each reference image, the Q function is learned using
60 images, with 50 episodes per image, therefore leading to 3000 episodes. The
remaining 40 images are used for testing purposes. Results are averaged over
the 10 reference images. On this dataset, we considered two sub-experiments:
one with attributes on edges only (Synthetic 1, with α = 0 in Eq. 4 to favor
structural information only) and one on both vertices and edges (Synthetic 2,
with α = 0.5 in Eq. 4). On the FASSEG dataset, 20 images are used for training
both the U-Net [9] (used for the initial segmentation) and the Q function (with
50 episodes per image, i.e. 1000 episodes for this dataset). In both cases, a seed
of 3 vertices is considered for the first step of the sequential graph matching (the
seed composition being learned by reinforcement), while the next steps involve
only single vertices.

Our sequential RL-based approach is compared to a random ordering (aver-
aged over 100 random orderings for each of the synthetic test images and for
FASSEG test ones). When possible, our approach is compared to the standard
QAP. Due to the huge number of permutations, QAP may not be applied in some
cases, in particular on FASSEG. We therefore consider a constrained QAP [3],
by reducing the number of investigated assignment matrices (in Eq. 3): for a
given vertex (region) i ∈ Gm, the considered candidates in Gr are not all pos-
sible vertices (regions) but only those with the highest membership probability,
according to the U-Net, of being associated with class/vertex i.

Evaluation measures include the number of permutations (i.e. number of
assignment matrices), and, when possible, the runtime (Intel i7-8850H CPU).
One also measures, when possible, the segmentation accuracy (Dice index).

3.3 Results

Table 1 reports results on the segmentation accuracy for both synthetic and
FASSEG datasets. The reinforcement learning significantly outperforms random
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Table 1. Segmentation results (Dice index) obtained by the sequential approach (RL-
based ordering and random ordering), the QAP, and the constrained QAP. FASSEG-R
corresponds to segmentation results after the refinement step, while FASSEG concerns
only the one-to-one matching. Some results are not available (too high a computation
time).

Method Synthetic 1 Synthetic 2 FASSEG FASSEG-R

Reinforcement 0.6 ± 0.38 0.96 ± 0.08 0.82 ± 0.13 0.82 ± 0.13

Random ordering 0.21 ± 0.25 0.92 ± 0.14 0.71 ± 0.12 0.78 ± 0.1

QAP 0.72 ± 0.31 0.98 ± 0.05 NA NA

Constrained QAP 0.99 ± 0.03 0.83 ± 0.06 0.84 ± 0.04

ordering, demonstrating the relevance of the proposed sequential approach. Com-
pared to a global QAP-based matching, our approach is significantly less efficient
on Synthetic 1, while only slightly less efficient on Synthetic 2. This illustrates
that, even with an optimized ordering, considering few nodes (only 3 at the
beginning compared to the global QAP that directly searches for the 6 ones) is
not sufficient when only the relationships are considered (i.e. Synthetic 1 ignores
vertex attributes), because one fails identifying the relevant matching among the
large set of possible sub-graph matchings.

Fig. 3. Learned optimized ordering on FASSEG: starting with the nose, mouth and
hair (initial seeded graph matching), before continuing with one eye, the skin, the
second eye and finally eyebrows.

On FASSEG, the efficiency of our proposal is highly similar to the one of the
constrained QAP (and significantly higher than the random ordering), although
more classes (9) are involved, illustrating the relevance of our proposal. Figure 3
illustrates the learned optimized ordering on FASSEG, while Fig. 4 reports some
examples of results on different faces (both our approach and constrained QAP
fail for the second face), where s∞ = s6 and Vr,∞ = Vr,6. These examples
qualitatively illustrate, in particular, the relevance of our approach compared to
a random ordering.
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Fig. 4. Examples of segmentations obtained on FASSEG, using our approach (sequen-
tial matching before and after the refinement), the constrained QAP (before and
after refinement) and random ordering (without considering the refinement). One also
reports expert segmentation and CNN output (red boxes surround some initially mis-
classified regions).

Table 2 provides the required number of evaluated assignment matrices (com-
puted according to Eqs. 7 and 8, respectively for QAP and reinforcement, and
measured for the constrained QAP), as well as measured computation times
(except for QAP on FASSEG because it is too time consuming). The QAP
involves significantly much more evaluations than our proposal (values are aver-
aged over test images on FASSEG): the sequential approach depicts a signifi-
cantly smaller complexity than QAP.

Table 2. Number of evaluated assignment matrices and measured runtime (in seconds
in brackets).

Method Synthetic 1 Synthetic 2 FASSEG

Reinforcement 1344 (0.035s) 3570 (0.25s)

QAP 665280 (13.5s) 8.89 109 (NA)

Constrained QAP 665280 (13.5s) 64 (0.001s) 81 (0.57s)

This is confirmed by measured computation times: on the synthetic dataset,
our proposal (0.035 s) is about 386 times faster that QAP (13.5 s). In our exper-
iments, the constrained QAP is used to provide segmentations on FASSEG (too
much time consuming for the QAP), by considering a global matching, to be
compared with our sequential one. The counterpart is that we assume that the
final identity/label of a region (final matching) initially corresponds to a label
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associated with the highest membership probability (CNN output), which may
be the case in practice (e.g. when the CNN hesitates between two labels). More-
over, such a constrained QAP does not apply if vertex attributes do not embed
membership probabilities (e.g. non CNN-based over-segmentation, such as for
Synthetic 1 where the number of evaluated assignment is the same for both QAP
and constrained QAP). In such a restrictive and less generic context, we mea-
sured that the number of permutations ranges from 1 (case of perfect CNN-based
segmentation) to 1600 (many region candidates per class), with a mean value of
81 (see Table 2). Note that the measured computation time is, in average, equal
to 0.57 s (mainly due to the application of the constraint, i.e. finding the list of
region candidates) compared to 0.25 s with our sequential approach, although
more assignment matrices are evaluated (3570).

4 Conclusion

We propose a reinforcement-learning-based framework for the sequential seman-
tic analysis of image content by exploiting structural information formulated as a
QAP-based inexact graph matching problem. Preliminary experiments on both
a synthetic dataset and the FASSEG dataset are promising as they show that
our approach dramatically reduces the complexity of this QAP-based inexact
graph matching problem, while preserving the efficiency of the analysis.

Future works and additional studies will first evaluate our method on other
applications with larger datasets. An important point to be studied, and ignored
in this preliminary evaluation, is the influence of the size of the initial seed in
the sequential approach based on reinforcement learning, as well as the ability to
automatically learn its optimal size. Another aspect to be studied is the extension
of this framework so that the ordering can be dynamically adapted, involving, for
instance, the ability to integrate revocable actions [8]. Using a Dueling Deep Q-
Networks approach [13] would allow adapting the strategy to the current image.
Finally, the final refinement step, possibly involving outliers/artifacts, is man-
aged by considering a random ordering. It would be interesting to investigate
whether it could benefit from an optimized ordering, again based on reinforce-
ment learning.
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