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Abstract. Deep learning based pipelines for semantic segmentation
often ignore structural information available on annotated images used
for training. We propose a novel post-processing module enforcing struc-
tural knowledge about the objects of interest to improve segmentation
results provided by deep learning. This module corresponds to a “many-
to-one-or-none” inexact graph matching approach, and is formulated as
a quadratic assignment problem. Using two standard measures for eval-
uation, we show experimentally that our pipeline for segmentation of
3D MRI data of the brain outperforms the baseline CNN (U-Net) used
alone. In addition, our approach is shown to be resilient to small training
datasets that often limit the performance of deep learning.

Keywords: Graph matching · Deep learning · Image segmentation ·
Volume segmentation · Quadratic assignment problem

1 Introduction

Deep learning approaches are now widely used in computer vision [11], and
in particular for semantic image segmentation [10]. Through a set of convolu-
tion layers, semantic segmentation with Convolutional Neural Networks (CNNs)
is intrinsically based on information embedded at low-level, i.e. at pixel and
its neighborhood levels. CNNs do not explicitly model the structural informa-
tion available at a higher semantic level, for instance the relationships between
annotated regions that are present in the training dataset. High-level structural
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information may include spatial relationships between different regions (e.g. dis-
tances, relative directional position) [2] or relationships between their properties
(e.g. relative brightness, difference of colorimetry) [8,9].

This type of high-level structural information is very promising [2,6,8,9,19]
and it has found applications in medical image understanding [4,7,18] but also
in document analysis (e.g. [5,12] for handwriting recognition) or in scene under-
standing (e.g. [13] for robotic). In some domains, the relations between objects
have to be identified to recognize the image content [12] but in other domains
these relations help the recognition of a global scene as a complementary knowl-
edge [5,8,9,13]. Our work falls in this second category. This high-level informa-
tion is commonly represented using graphs, where vertices correspond to regions,
and edges carry the structural information. The semantic segmentation problem
turns then into a region or node labeling problem, often formulated as a graph
matching problem [8,9,16]. In this paper, we propose a new approach involving
a graph-matching-based semantic segmentation applied to the probability map
produced by CNNs for semantic segmentation, in order to take into account
explicitly this high-level structural information observed in the training dataset
but intrinsically ignored by convolutional layers. Our proposal aims at improving
the semantic segmentation of images, in particular when the size of the training
dataset is low. As such, our work also addresses, to some extent, one key limita-
tion of deep learning: the requirement of a large and representative dataset for
training purposes, this being often addressed by generating more training data
(data augmentation) [21] or by considering a transfer learning technique [23]. By
focusing on the high level global structure of a scene, our approach is expected
to be less sensitive to the lack of diversity and representativity of the training
dataset.

This paper extends [3] by combining the high level structural information
observed in the training dataset with the output of the semantic segmentation
produced by a deep neural network. It uses a graph matching approach formu-
lated as a quadratic assignment problem (QAP) [17,24,25]. We deploy two types
of relationships for capturing structural information and our approach is shown
experimentally to perform well for segmenting 3D volumetric data (cf. Fig. 1)1.

2 Proposed Method

Structural information, such as spatial relationships, is encoded in a graph model
Gm that captures the observed relationships between regions in an annotated
training dataset. Vertices and edges correspond respectively to regions of the
annotated dataset and spatial relationships between them. A hypothesis graph
Gr is similarly created from the semantic segmentation map of a query image
using the same label taxonomy as the training set. Graph matching (GM) of Gr

onto Gm allows matching the vertices (and thus the underlying regions of the
query image) with those of the model. Correspondences between Gr and Gm

1 The open-source code and data are to be shared with the community https://github.
com/Jeremy-Chopin/APACoSI/.

https://github.com/Jeremy-Chopin/APACoSI/
https://github.com/Jeremy-Chopin/APACoSI/
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Fig. 1. Example of semantic segmentation of a brain (slices and 3D view) performed
by the expert (reference segmentation - top), by the CNN (middle) and by our method
(bottom). 100% of the training dataset is considered. Surrounded boxes and red arrows
indicate segmentation errors that are corrected by our method. (Color figure online)

computed with GM provide a relabelling of some of the regions (vertices) in Gr

hence providing a enhanced semantic segmentation map of the query image with
additional high-level structural information.

Semantic Segmentation. A query image or volume is segmented providing a
tensor S ∈ R

P×N with P the dimensions of the query (P = I × J pixels for 2D
images, or P = I × J × K voxels in 3D volumes) and N is the total number of
classes considered for segmentation. At each pixel or voxel location p, the value
S(p, n) ∈ [0, 1] is the probability of belonging to class n with the constraints:

(∀n ∈ {1, . . . , N}, 0 ≤ S(p, n) ≤ 1) ∧
(

N∑
n=1

S(p, n) = 1

)

The segmentation map L∗ selects the label n of the class with the highest prob-
ability. Note that in practice semantic segmentation of a query image can be
performed using deep neural networks such as, for instance, U-Net [21] or seg-
Net [1].

2.1 Graph Definitions

From the segmentation map L∗, a set R of all resulting connected components
is defined. Additionally, to constrain graph matching (described in Sect. 2.2), we
define a set R∗ = {R∗

1, . . . , R
∗
N}, where, for each class n ∈ {1, · · · , N}, R∗

n is a
set of regions corresponding to the connected components belonging to class n.
From the set R, the graph Gr = (Vr, Er, A,D) is defined, where Vr is the set of
vertices, Er the set of edges, A a vertex attribute assignment function and D
an edge attribute assignment function. Each vertex v ∈ Vr is associated with a
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region Rv ∈ R with an attribute provided by the function A which is the average
membership probability vector over the set of pixels p ∈ Rv, therefore computed
on the initial tensor S:

∀v ∈ Vr,∀n ∈ {1, . . . , N}, A(v)[n] =
1

|Rv|
∑
p∈Rv

S(p, n) (1)

We consider a complete graph where each edge e = (i, j) ∈ Er has an attribute
defined by the function D, associated with a relation between the regions Ri and
Rj . Two functions D have been tested in our experiments. They are capturing
the relative directional position or the trade-off between the minimal and max-
imal distances found between two regions. The choice of the function D is an
hyperparameter in our method that can be tuned to improve performance for
the considered application (cf. Sect. 2.3).

The model graph Gm = (Vm, Em, A,D) is composed of N vertices (one ver-
tex per class) and is constructed from the annotated images of the training set.
The attribute of a vertex is a vector of dimension N with only one non-zero com-
ponent (with value equal to 1), associated with the index of the corresponding
class. The edges are obtained by calculating the average spatial relationships (in
the training set) between the regions (according to the relation D considered).

2.2 Graph Matching

We propose to identify the regions by associating each of the vertices of Gr to
a vertex of the model graph Gm. The most likely situation encountered is when
more regions are found in the image associated with Gr than in the model (i.e.
|Vr| ≥ |Vm|). To solve this, we propose here to extend the many-to-one inexact
graph matching strategy [3,16] to a many-to-one-or-none matching. The “none”
term allows some vertices in Gr to be matched with none of the vertices of the
model graph Gm, which corresponds to removing the underlying image region
(e.g. merged with the background). Graph matching is here formulated as a
quadratic assignment problem (QAP) [25]. The matrix X ∈ {0, 1}|Vr|×|Vm| is
defined such that Xij = 1 means that vertex i ∈ Vr is matched with vertex
j ∈ Vm. The objective is to estimate the best matching X∗ as follows:

X∗ = arg min
X

{
vec(X)TK vec(X)

}
(2)

where vec(X) is the column vector representation of X and T denotes the trans-
position operator. This optimal matching is associated with the optimal match-
ing cost C∗ = vec(X∗)TK vec(X∗).

The matrix K embeds the dissimilarity measures between the two graphs Gr

and Gm, at vertices (diagonal elements) and edges (non-diagonal elements):

K = α Kv + (1 − α)
Ke(D)

max Ke(D)
(3)

where Kv embeds dissimilarities between vertices (e.g. L2 Euclidean distance
between class membership probability vectors) - more details for computing K
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can be found in [25]. The matrix Ke(D) is related to dissimilarities between
edges, and depends on the considered relation D. Ke terms are related to dis-
tances between regions (normalized in the final K matrix). The α parameter
(α ∈ [0, 1]) allows weighting the relative contribution of vertex and edge dissim-
ilarities: Kv terms range between 0 and 1, and Ke is also normalized in Eq. 3.
Due to the combinatorial nature of this optimization problem [25] (i.e. set of
possible X candidates in Eq. 2), we propose a two-steps procedure:

1. Search for an initial one-to-one matching.
2. Refinement by matching remaining vertices, finally leading to a many-to-one-

or-none matching.

Initial Matching: One-to-One. One searches for the optimal solution to Eq. 2
by imposing the following three constraints on X, thus reducing the search space
for eligible candidates:

1.
∑|Vm|

j=1 Xij ≤ 1: some vertices i of Gr may not be matched.

2.
∑|Vr|

i=1 Xij = 1: each vertex j of Gm must be matched with only one vertex of
Gr.

3. Xij = 1 ⇒ Ri ∈ R∗
j : vertex i ∈ Vr can be matched with vertex j ∈ Vm if the

associated Ri region was initially considered by the neural network to most
likely belong to class j (i.e. Ri ∈ R∗

j ).

The first two constraints ensure to search for a one-to-one matching thanks to the
third constraint, one reduces the search space by relying on the neural network:
one assumes that it has correctly, at least to some extent, identified the target
regions, even if artifacts may still have been produced as well (to be managed
by refining the matching). This step allows us to retrieve the general structure
of the regions (thus verifying the prior structure modeled by Gm) with a cost
CI = vec(XI)TK vec(XI) related to the optimal initial matching XI (I stands
for “initial”).

Refinement: Many-to-One-or-None. Unmatched nodes are integrated into
the optimal matching XI or removed (i.e. assigned to a “background” or “none”
node) through a refinement step leading to X∗ considered in Eq. 2. This many-
to-one-or-none matching is performed through an iterative procedure over the
set of unlabeled nodes U = {k ∈ Vr | ∑|Vm|

j=1 XI
kj = 0}. For each node k ∈ U , one

searches for the best assignment, among all possible ones, related to the set of
already labeled nodes L = {k ∈ Vr | ∑|Vm|

j=1 XI
kj = 1}. Mathematically, the best

label candidate for a given node k ∈ U is:

l∗k = arg min
l∈L

{vec(XI)tKk→l vec(XI)} (4)

where Kk→l corresponds to the matrix K after having merged both underlying
regions (i.e. Rl = Rl∪Rk) and updated relations (leading to the graph G

′
r, where
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both k and l vertices are merged). The cost related to the merging of k to l∗k is
Ck→l∗k . Figure 2 illustrates this iterative procedure.

GmGr
k k

k

k

k
G'r

Gr G'r

Gr G'r

Gr Gr

Fig. 2. Refinement: finding the best matching for a given unlabeled node k ∈ U (white
node). Only three possible matchings are reported for clarity (dashed surrounded

nodes). The one in the middle is finally kept (smallest deformation of G
′
r with respect

to the model Gm).

The best candidate is retained if the related cost is smaller than a chosen
threshold T , otherwise the related node k is discarded (i.e. k → ∅, ∅ correspond-
ing to the “none” vertex, meaning that the underlying image region is merged
with the background). The optimal matching is updated according to the con-
dition: {

X∗
kl = 1, if Ck→l∗k < T

X∗
kl = 0, otherwise

This enables to manage the removal of regions to be considered as artifacts and
this was not managed in our earlier work [3].

Algorithm 1 provides an implementation of the proposed refinement. For
each unlabeled vertex k ∈ U , the optimal cost is initially set to infinity (Line 2).
Then, for each candidate l ∈ L, one creates an image region (temporary variable
R′

l) corresponding to the union of both unlabeled and merging candidate regions
(Line 4). We update the dissimilarity matrix (leading to the temporary variable
Kk→l - Line 5), and then compute the cost of this union (Line 6). If this union
decreases the matching cost, the merging candidate is considered as the best one
(Lines 8 and 9). After having evaluated the cost of the matching with the best
candidate l ∈ L, we finally accept the resulting best matching, if the value of the
associated cost is lower than the predefined threshold T (Lines 12 to 16). If the
cost is higher, the vertex k ∈ U is discarded (and the image region is removed).
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Algorithm 1. Refinement algorithm
Require: U,L, T,XI

1: for k ∈ U do
2: C∗

k→l ← ∞
3: for l ∈ L do
4: R′

l ← Rl ∪ Rk

5: Kk→l ← Update-K(R′
l)

6: Ck→l ← vec(XI)t Kk→l vec(X
I)

7: if Ck→l < C∗
k→l then

8: l∗k ← l
9: C∗

k→l∗
k

← Ck→l

10: end if
11: end for
12: if Ck→l∗

k
< T then

13: k → l∗k {k is assigned}
14: Rl∗

k
← Rl∗

k
∪ Rk

15: else
16: k → ∅ {k is discarded}
17: end if
18: end for

2.3 Modelling Spatial Relationships

Two types of spatial relationships are considered (cf. Fig. 3), each being asso-
ciated to a specific dissimilarity function D (used to compute the term Ke(D)
in Eq. 3). The first spatial relationship involves two distances (leading to two
components on an edge attribute), corresponding to the minimal and maximum
distances between two regions Ri and Rj (cf. Fig. 3-left):

d
(i,j)
min = min

p∈Ri,q∈Rj

(|p − q|) (5)

d(i,j)max = max
p∈Ri,q∈Rj

(|p − q|) (6)

Based on these relationships, the considered dissimilarity function is defined as:

D1
(k,l)
(i,j) =

λ

Cs

(
|d(i,j)min − d

(k,l)
min |

)
+

(1 − λ)
Cs

(|d(i,j)max − d(k,l)max |) (7)

where λ is a parameter balancing the influence of the dissimilarities on both
distances. Cs corresponds to the largest distance observed in an image, ensuring
that values range within [0, 1].

The second spatial relationship is the relative directional position of the cen-
troids of two regions, as in [20]. For two regions Ri and Rj , the relative position
is defined by the vector �vij = Rj − Ri (edge attribute), where R denotes the
coordinates of the center of mass of region R. Based on this relationship, the
considered dissimilarity function is:
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k

l
d
min
kl

d
maxkl

Gm

i

j
d
min

d
maxij

ij

Gr Gr

i

j

Vij

Gm

k

l

VklVkl
V ij
θ

A B

Fig. 3. Spatial relationships considered in experiments. A: Relationship based on dis-
tances (corresponding to the D1 dissimilarity function). B: Relationship based on rel-
ative directional positions (corresponding to the D2 dissimilarity function).

D2
(k,l)
(i,j) = λ

| cos θ − 1|
2

+ (1 − λ)
|| �vij | − | �vkl||

Cs
(8)

where θ is the angle between them �vij and �vkl vectors, computed using a scalar
product (Eq. 9):

cos(θ) =
�vij . �vkl

| �vij |.| �vkl| (9)

As for the first spatial relationship, the Cs term is the maximum distance value
observed in an image, ensuring that values range within [0, 1]. The term λ ∈ [0, 1]
is a parameter balancing the influence of the difference in terms of distance and
orientation.

Concerning the complexity, the computation time is mainly affected by the
refinement step involving many relabelling (cf. Fig. 2). In Algorithm 1, the com-
plexity of this second step of the matching linearly depends on the cardinalities
of both U and L entities as well as on the complexity of the cost computation
(i.e. union of regions, Update-K(R′

l) and vec(X)TKvec(X) reported in lines 4–6
of Algorithm 1).

3 Application to Segmentation of 3D MRI

IBSR Dataset: The IBSR2 public dataset provides 18 3D MRI of the brain,
together with the manual segmentation of 32 regions. In our experiments, simi-
larly to the work by Kushibar et al. [14], only 14 classes (i.e. 14 regions) of the
annotated dataset are considered: thalamus (left and right), caudate (left and
right), putamen (left and right), pallidum (left and right), hippocampus (left
and right), amygdala (left and right) and accumbens (left and right).

CNN Backbone: 3D U-Net neural network is used for creating three instances
of a trained CNN for segmentation using training sets of different sizes:

• 100% (10/18): 10 images are used for training (training set) out of the 18
available, an additional 4 are used validation (validation set) and the last 4
are used for testing (test set).

2 The IBSR annotated public dataset can be downloaded at the following address:
https://www.nitrc.org/projects/ibsr.

https://www.nitrc.org/projects/ibsr
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• 75% (8/18): In this case, out of the 10 images available in the original training
set, only 8 are used. Results reported correspond to an average over several
CNNs trained with randomly selecting 8 images amongst the 10 in the training
set. Validation and test sets remain the same.

• 50% (5/18): out of the 10 images available in the original training set, only 5
are used. Results reported correspond to an average over several CNNs trained
with randomly selecting 5 images amongst the 10 in the original training set.
Validation and test sets remain the same.

50 epochs are used for training the network and an early stopping politic is
applied to prevent over-fitting. The training process was terminated if there was
no improvement on the loss (using cross entropy loss function) for 8 consecu-
tive epochs. We used a 3D patch-based approach [15] since classes are highly
unbalanced (i.e. small size of target regions with respect to other brain tis-
sues and background). Patches are volumes of size 483 voxels, that have been
extracted around the centroid of each label (random selection) using the Torchio
library [22]. 150 patches are selected for each MRI volume, with a frequency that
is proportional to the inverse prior probability of the corresponding class.

Measures for Assessment: The Hausdorff distance (HD) is widely used in
this application domain [14] (HD = 0 corresponding to a perfect segmentation).
The pixel-wise Dice index (DSC) is also reported and it is ranging within [0, 1]
where 1 corresponds to a perfect segmentation. The hyperparameters are chosen
empirically without optimisation: α = 0.5 and λ = 0.5.

Quantitative Results: Table 1 compares performances for both spatial rela-
tionships D1 and D2. Our pipeline improves the results of the CNN used alone
either in terms of Dice index (best DSC with D2) or in terms of Hausdorff dis-
tance (best HD with D1). Structural information modelled with either D1 or D2

in our pipeline allows us to improve segmentation results.

Table 1. Comparing dissimilarity functions D1 and D2 for modelling spatial relation-
ships. The evaluation measures are the pixel-wise Dice index (DSC) and the Hausdorff
distance (HD).

Method CNN Ours (D1) Ours (D2)

Tr.dataset (%) DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓
100% 0.66 55.21 0.67 7.52 0.7 24.45

75% 0.6 63.2 0.63 9.58 0.66 24.51

50% 0.59 57.83 0.64 9.38 0.65 24.4

Table 2 details the results for each class using D2 that significantly improves
the Dice index while also significantly reducing the Hausdorff distance. For
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DSC, the improvement fluctuates between 4% (Tr. dataset 100%) and 6% (Tr.
dataset 50%). The improvement is significant for large regions (e.g. “Tha.L” and
“Put.L”). In terms of Hausdorff distance, the improvement is significant (58%
on average) for most considered classes and size of the training dataset used.

Table 2. Comparison of segmentations provided by the CNN and by our proposal, for
the second spatial relationships (D2 dissimilarity function), considering the Dice index
related to pixelwise precision and Hausdorff distance compared to the manual seg-
mentation. Results are provided as average and for each class: Tha.L(left thalamus),
Tha.R(right thalamus), Cau.L(left caudate), Cau.R(right caudate), Put.L(left puta-
men), Put.R(right putamen), Pal.L(left pallidum), Pal.R(right pallidum), Hip.L(left
hippocampus), Hip.R(right hippocamus), Amy.L(left amygdala), Amy.R(right amyg-
dala), Acc.L(left accumbens), Acc.R(right accumbens). Results are also provided for
different sizes of the training/validation sets.

class CNN Ours CNN Ours CNN Ours CNN Ours CNN Ours CNN Ours
Tha.L 0.82 0.85 69.64 23.97 0.7 0.84 68.3 27.87 0.75 0.83 66.33 28.05
Tha.R 0.79 0.83 66.86 22.65 0.73 0.81 68.83 23.98 0.76 0.79 58.52 28.17
Cau.L 0.63 0.66 75.86 23.65 0.66 0.66 68.43 22.41 0.64 0.62 73.16 26.81
Cau.R 0.52 0.56 68.88 27.2 0.52 0.54 72.14 23.69 0.5 0.48 68.04 24.02
Put.L 0.75 0.86 58.91 22.31 0.62 0.82 71.04 27.08 0.61 0.82 69.42 21.85
Put.R 0.75 0.78 67.7 22.37 0.63 0.73 75.8 18.09 0.65 0.74 71.41 21.39
Pal.L 0.71 0.8 48.68 19.9 0.64 0.79 61.79 25.11 0.57 0.78 57.93 27.44
Pal.R 0.64 0.62 47.43 31.1 0.56 0.52 60.15 22.52 0.5 0.48 62.95 25.3
Hip.L 0.59 0.69 69.51 27.28 0.58 0.67 73.75 29.25 0.52 0.65 69.95 28.19
Hip.R 0.65 0.72 67.61 29.69 0.6 0.7 72.19 30.17 0.46 0.66 73.06 26.73
Amy.L 0.71 0.73 53.99 25.46 0.66 0.69 67.99 27.7 0.69 0.7 61.57 27.01
Amy.R 0.6 0.56 21.35 15.65 0.61 0.61 65.69 22.47 0.61 0.59 51.06 22.83
Acc.L 0.58 0.58 33.45 23.42 0.38 0.37 28.35 21.61 0.51 0.51 17.62 18.22
Acc.R 0.56 0.55 23.14 27.66 0.52 0.52 30.38 21.25 0.49 0.48 8.63 15.53
Mean 0.66 0.7 55.21 24.45 0.6 0.66 63.2 24.51 0.59 0.65 57.83 24.4

DSC HD
 (highest best) (lowest best)

50% (5/18)
DSC HD

 (highest best) (lowest best)

75% (8/18)

 (highest best) (lowest best)
DSC HD

100% (10/18)

Qualitative Results: Figure 1 provides an example of a 3D image processed
by the CNN only and by our pipeline. The CNN (Fig. 1-CNN Output) provides
a visually acceptable semantic segmentation: at the exception of many surround-
ing artefacts (particularly visible on 3D views), most target structures are glob-
ally recovered. Despite these surrounding artefacts, segmentation errors occur in
parts of the target structures that need to be relabelled (see 2D slices, bounding
boxes and arrows in 3D views). Our pipeline succeeds in correcting most seg-
mentation errors: many parts of the structures of interest are correctly relabeled
and most surrounding artefacts are removed. Note that artefacts removal cor-
responds to the matching with the class “none” in our “many-to-one-or-none”
graph matching strategy, and it is managed using the threshold T (cf. Algorithm
1) that needs to be correctly tuned as it affects computation of HD.
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4 Conclusion

We have proposed a post-processing technique for improving segmentation
results using a graph matching procedure encoding structural relationships
between regions. This correction of deep learning segmentation with the exploita-
tion of structural patterns is performed thanks to inexact graph matching for-
mulated as a two-steps Quadratic Assignment Problem (QAP). We validated
our approach with experiments on 3D volumetric data, and we have shown sig-
nificant improvements can be observed. When training the neural network on a
limited dataset, our approach provides a very clear advantage by outperforming
the baseline. Future work will investigate how to reduce the high computational
time resulting from the complexity of operations (segmentation, graph matching
and refinement) of our approach that may hinder real time applications.
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