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Abstract. Convolutional Neural Networks, and many other machine
learning algorithms, use Graphical Processing Units (GPUs) instead of
Central Processing Units (CPUs) to improve the training time of very
largemodeling computations. This work evaluates the impact of themodel
structure andGPU on nondeterminism and identifies its exact causes. The
ability to replicate results is quintessential to research, thus nondetermin-
ism must be either removed or significantly reduced. Simple methods are
provided so that researchers can: (1) measure the impact of nondetermin-
ism, (2) achieve determinable results by eliminating randomness embed-
ded in the model structure and performing computations on a CPU, or (3)
reduce the amount of variation between model performances while train-
ing on a GPU.
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1 Introduction

Recent advancements in computer vision using Convolutional Neural Networks
(CNNs) have emphasized their ability to classify images and detect objects within
images [16]. However, these tasks require significant computational resources and
time to complete [25]. Fortunately, Graphics Processing Units (GPUs) are more
capable of handling these advanced computations than Central Processing Units
(CPUs) [9,27]. For example, models trained in this work require 20–30 min to com-
plete on a GPU but take 10–14 h on a CPU. GPUs were originally configured to
work with graphics. However, as researchers showed more interest in using GPUs
for computations associated with machine learning, NVIDIA (the most commonly
used GPU manufacturer for machine learning [20]) created the CUDA Library [12],
thus enabling the use of GPUs for diverse machine learning tasks. Unfortunately,
NVIDIA’s GPU and CUDA library introduce nondeterminism reflected in two or
more identically trained models sometimes producing different results. This GPU-
related nondeterminism is distinct from the nondeterminism due to randomness
embedded in the model structure by features such as Stochastic Data Augmen-
tation and Stochastic Weight Initialization. The existence and impact of nonde-
terminism related to both the randomness embedded in the model structure and
the GPU have gained increasing attention [20], and deserve continuous assessment
and research to reduce it.
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1.1 Motivation

This work is inspired and motivated by previous research [22] using a Mask R-
CNN [28] to analyze metallic powder particles and detect deformations on the
surface. Since these deformations known as satellites, impact the usability of
metallic powders, accurate detection is very important. In the previous work,
using a Mask R-CNN led to accurate detection, even on a diverse dataset com-
posed of multiple powder types taken at varying magnification settings. How-
ever, upon deep analysis of results looking for determinism, it was discovered
that, in some cases, two or more identically trained models could produce sig-
nificantly different results. Figure 1, depicting two identically trained models,
labeled Model A and B, highlights these differing results due to nondetermin-
ism. These models were specifically selected to illustrate potential variation in
outputs. In Fig. 1, the outlined green section highlights a small satellite detected
in Fig. 1a more than tripling in size and losing its discernible shape in Fig. 1b.
Similarly, in the section outlined red, two particles correctly identified to have
no satellites in Fig. 1a are misidentified as satellites in Fig. 1b. Inspired by the
nondeterminism causing these variations, this manuscript aims to quantify its
impact and provide viable options to reduce or remove it to ensure replicability
of experimental results.

1.2 Terminology

To avoid confusion due to various existing definitions, for the purpose of this
work, determinism and nondeterminism are defined as follows: (1) An algorithm
is said to be “determinable” if its current state uniquely determines its next
state. Simply put, an algorithm at any state should produce exactly one output.
(2) An algorithm is said to be “nondeterminable” if, at a given state, multiple
potential outputs are possible given the same input [14]. In the context of this
paper, if all models trained within a given environment are identical, that training
environment is determinable.

1.3 Contributions

The ability to replicate results is quintessential to research [10]. Thus, being able
to eliminate, or at least reduce nondeterminism in a Mask R-CNN is imperative.
The contributions of this work are multi-fold:

1. Identifying and evaluating the causes and extent of nondeterminism in Mask
R-CNN models with embedded randomness trained on an NVIDIA GPU.

2. Evaluating the extent of nondeterminism in Mask R-CNN models with no
embedded randomness trained on an NVIDIA GPU.

3. Offering a simple method, requiring only eight additional lines of code, to
achieve pure deterministic results through a combination of using a CPU and
specific training configurations.
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(a) Satellite Predictions from Model A (b) Satellite Predictions from Model B

Fig. 1. Example of variation of performance in identically trained Mask R-CNN models
as a result of nondeterminism (Color figure online)

2 Nondeterminism Introduced in Training

To measure nondeterminism in model training caused by GPUs, all other sources
of nondeterminism must first be eliminated. Through rigorous examination of
literature, documentation, and user manuals of the varying tools and packages
[12,21,28], the following have been identified as potential sources of nondeter-
minism embedded in the model: Random Number Generators (used by Python
Random Library, PyTorch, NumPy, and Detectron2), Detectron2 Augmentation
Settings, and the PyTorch implementation of CUDA Algorithms. Figure 2 illus-
trates the general sources of nondeterminism that may be present in a Mask
R-CNN, as well as the components of each source. The following subsections
give some background information on each of these sources.

2.1 Random Number Generators

The training of a CNN employs randomness for large-scale computations to
reduce training time and prevent bottlenecks [5,29]. Each instance of embed-
ded randomness is enabled by a Pseudo-Random Number Generator (PRNG)
that generates sequences of numbers designed to mimic randomness. Mersenne
Twister (MT) [19] is one of the most frequently used PRNG algorithms by tools
such as the Python Random Library [26]. MT simulates randomness by using
the system time to select the starting index or seed in the sequence of numbers
when a PRNG is created [26]. Without a set seed, each PRNGs starts at a unique
index, leading to different outputs and introducing nondeterminism in training.

2.2 Model Structure

This model structure is configured by Detectron2 [28], which uses a fairly com-
mon training technique called Stochastic Data Augmentation to randomly mirror
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Fig. 2. General sources of nondeterminism that may be found in Mask R-CNNs (*not
present in this work, but may be present in other implementations)

images prior to training [23]. The stochastic process of selection increases the
nondeterminism in training. Augmentation is the only source of nondeterminism
caused by the model structure here. However, this may not always be the case.

2.3 CUDA Algorithms and PyTorch

The PyTorch implementation of the CUDA Library [21], by default, contains
two settings that increase nondeterminism in training. First, CUDA uses Bench-
mark Testing to select optimal algorithms for the given environment. However,
as indicated in the documentation [21], this testing is “susceptible to noise and
has the potential to select different algorithms, even on the same hardware.” Sec-
ond, by default, the library chooses nondeterminable algorithms for computing
convolutions instead of their determinable counterparts. These nondeterminable
algorithms are selected because they simplify computations by estimating ran-
domly selected values instead of computing exact values for each layer [6]. Both
configurations increase the nondeterminism present in model training.

3 Nondeterminism Introduced by Hardware

3.1 Floating-Point Operations

Many computer systems use floating-point numbers for arithmetic operations;
however, these operations have a finite precision that cannot be maintained with
exceptionally large or small numbers. In this work, values were stored using
the IEEE 754 Single Precision standard [18]. Unfortunately, due to the finite
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precision of floating-point numbers, some calculations are approximated, caus-
ing a rounding error and rendering the associative property not applicable in
floating-point operations [15]. Equations 1 and 2 provide an example in which
the non-associativity of floating-points impacts the final result. In the interme-
diate sum in Equation 1, the 1 is rounded off when summed with 10100, causing
it to be lost in approximation. When computing the difference after rounding,
10100–10100 returns 0. By contrast, if 10100–10100 is performed first, the result
of computations will be 0 at the intermediate step, and when summed with 1,
will return the correct value of 1. In summary, due to the non-associativity of
floating-points, the order in which operations are executed impacts the outputs.
This becomes increasingly relevant when parallel computing is implemented, as
further elaborated in Sects. 3.2 and 3.3.

(1 + 10100) − 10100 = 0 (1) 1 + (10100 − 10100) = 1 (2)

3.2 Atomic Operations

Shared memory is commonly implemented in parallel computing [3]. However,
when multiple operations access the same location in memory at similar times,
depending on when read and write methods are called, data can be “lost” due
to overlapping operations [11]. Atomic Operations resolve this by performing a
read and write call as an atomic action and preventing other operations from
accessing or editing that location in memory until completed. Atomic opera-
tions are designed to ensure memory consistency but are unconcerned with the
completion order consistency [11]. Effects of this are noted in the CUDA Library
[12], stating “the following routines do not guarantee reproducibility across runs,
even on the same architecture, because they use atomic operations” in reference
to a list of algorithms used in convolutions.

3.3 Parallel Structure

With the introduction of the CUDA library, taking advantage of the benefits of
parallel computing with GPUs became easier [8] and more frequently used [13].
Despite these benefits, there are inherent drawbacks to most multi-core or multi-
threaded approaches. In parallel computing, large computations are broken into
smaller ones and delegated to parallel cores/threads. Each sub-task has a variable
completion time, which is amplified by the use of atomic operations. When con-
sidering the variable completion time of various tasks and the non-associativity
of floating-point operations, it is not surprising that GPUs introduce nondeter-
minism. Figure 3 illustrates how a slight variation in the completion order of
sub-tasks can lead to nondeterminable results due to floating-point operations.
Figures 3a and 3b depict the process sum() adding sub-functions (labeled F1 to
F5) together, in which each sub-function is dispatched to its own core/thread
to be individually computed. The output (labeled O1 to O5) is collected in
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order of completion and summed. However, since completion order is not guar-
anteed, these outputs can be collected in different orders, resulting in differing
output despite having identical inputs and hardware because of floating points
non-associativity. [15].

Fig. 3. Tracing the impact of variable completion times in parallel structures using
floating-point operations

4 Experimental Setup

This work used the Detectron2 implementation of the Mask R-CNN with
PyTorch (v1.8.1) [21] and CUDA (v10.2) [12]. Initial weights were pulled from
the Detectron2 Model Zoo Library to remove any variation in weight initializa-
tion. The dataset used here is the same dataset used in [22], consisting of images
of metallic powder particles collected from a Scanning Electron Microscope. It
contains 1,384 satellite annotations across six powders and five magnifications
and was separated using an 80:20 ratio between training and validation datasets.

4.1 System Architecture

To get a benchmark for variation in performance caused by embedded random-
ness in the model structure and the GPU, 120 models were trained using an
NVIDIA V100 GPU. Of these models, 60 were left non-configured and 60 were
configured, as shown in the source code [2], such that all embedded randomness
within the model structure was disabled. This ensured that any nondeterminism
present after configuring models was induced solely by the GPU. This experi-
ment was then replicated using CPUs. However, due to the high time difference
in training between GPUs and CPUs, a 5-Fold Cross Validation [4] was used
instead of training 60 models. For example, based on results from the ten models
trained on the CPU, training 120 models on a CPU would have taken between 50
and 70 days of computational time, instead of 48 h on a GPU. The 5-Fold Cross
Validation was used only to evaluate if results were determinable over multiple
iterations; due to the small number of data points it was not used to evaluate
the extent of nondeterminism.
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4.2 Measuring Performance

Identical to previous work [22], performance was measured by computing pre-
cision and recall, as defined in Equations 3 and 4. For every image in the vali-
dation set, each pixel was classified as True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN) depending on its true value and
the predicted output. Once these scores were computed for each image, they
were averaged across all images in the validation set to get a final score for that
model to be compared. Nondeterminism was evaluated by analyzing the average,
standard deviation, and spread of each performance metric collected by models
trained with identical configuration settings. If the training configurations and
hardware are determinable, precision and recall will be identical for all models
trained.

Precision =
TP

TP + FP
(3) Recall =

TP

TP + FN
(4)

4.3 Model Training Process

Previous work [22] discovered that in most cases, training beyond 10,000 itera-
tions had little impact on performance. As a result, in an effort to prevent under-
fitting or overfitting, all models were trained to 10,000 iterations. Additionally,
to prevent introducing any bias, hyperparameters were left at their default val-
ues. All calculations were completed in batch jobs dispatched to private nodes
on Bridges2 [7], a High-Performance Computer (HPC) operated by Pittsburgh
Supercomputing Center and funded by the National Science Foundation. Each
node contained two NVIDIA Tesla V100 GPUs and two Intel Xeon Platinum
8168 CPUs.

4.4 Configuring Settings

To compare models with embedded randomness enabled and respectively dis-
abled, specific configurations had to be set. Table 1, depicting configuration set-
tings, shows the value of each configuration for models with and without embed-
ded randomness. Configuring an RNG’s seed only changes the starting index and
has no further impact on the randomness [19]. As a result, so long as the seed
remains constant, its specific value is arbitrary. Evidence for this is found in the
Detectron2 Source Code stating the seed needs to be “any positive integer” and
in the NVIDIA Determinism Repo stating “123, or whatever you choose” [1,28].
In light of this, all seeds were arbitrarily set to “42.” After reviewing the CUDA
Toolkit Documentation [12], the PyTorch Documentation [21], the Detectron2
Source Code [28], and NVIDIA Determinism Repository [1], the only possibility
for achieving reproducible results that was not implemented was the PyTorch
DataLoader. This was not configured because Detectron2 implements its own
custom DataLoader class and the PyTorch version was not used.
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Table 1. Configuration values for non-configured and fully configured models

Configuration name Non-configured value Fully configured value

Data augmentation Horizontal None

Benchmark testing True False

Determinable algorithms False True

RNG seeds NA 42

5 Experimental Results

5.1 Data Collected from Models Trained on GPU

After training 120 models on a GPU (60 non-configured and 60 fully configured),
regardless of configuration settings, there was clear evidence of nondeterminism.
Table 2 shows all performance metrics gathered from models trained on a GPU
for comparison, but attention will be drawn specifically to the standard deviation
of precision and recall values (bolded and marked * and ** respectively). As can
be seen in Table 2, configuring the embedded randomness in the model decreased
the standard deviation of precision values by 1% (marked *) and recall by 0.1%
(marked **). Despite the 1% reduction in variation of precision, only 25% of
the nondeterminism is eliminated, leaving a remaining 3.1% standard deviation
caused by the GPU. Figure 4 shows the distributions of precision values for
non-configured and fully configured models. As can be seen, the distribution
of Fig. 4a, corresponding to non-configured models, has a larger spread of data
points than in Fig. 4b, corresponding to fully configured models.

Table 2. Performance metrics for non-configured and fully configured models

Model performance metrics on GPU Non-configured Fully configured

Average precision (%) 72.908% 70.750%

Precision std deviation (%) 4.151%* 3.135%*

Precision range (min:max) 63.5% : 82.7% 64.4% : 78.1%

Average recall (%) 61.581% 60.914%

Recall std deviation (%) 2.733%** 2.603%**

Recall range (min:max) 54.4% : 67.6% 55.8% : 66.5%

Average training time (min) 19.497 28.757

Training time std deviation (min) 0.359 0.304

Training time range (min:max) 19.0 : 21.32 28.25 : 29.5
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5.2 Data Collected from Models Trained on CPU

Since only five models were trained on a CPU instead of 60 due to the expected
very large training time as previously discussed, the presence or absence of non-
determinism can be observed but not quantified. Models trained on a CPU
with all embedded randomness disabled produced perfectly determinable results.
These results were identical up to the 16th decimal place (only measured to 16
decimal places) with a precision score and recall of approximately 76.2% and
56.2%, respectively. Among these models, there was a minimum training time of
606.15 min, a maximum of 842.05 min, and an average of 712.93 min. The variety
in training times had no impact on the accuracy of the model. In contrast to
every trained model with no embedded randomness on the CPU having identi-
cal precision and recall score, when embedded randomness was enabled, there
wasn’t a single duplicated value. As shown in Table 3 depicting a comparison
of precision and recall scores of non-configured models trained on a CPU, each
model produced quite different results, showing that nondeterminism is present.
As a result of nondeterminism being present in CPU trainings when embedded
randomness is enabled, nondetemrinism can, in part, be attributed to embedded
randomness in the model.

Fig. 4. Comparative results of the distribution of precision values collected from non-
configured models (a) and fully configured models (b) trained on a GPU

Table 3. Performance metrics for non-configured models trained on CPUs

Training num Precision (%) Recall (%) Time (min)

Model 1 0.7992862217337212 0.6222949769133339 646.07

Model 2 0.7321758705343052 0.6506021842415332 720.83

Model 3 0.7019480667622756 0.6118534248851561 606.23

Model 4 0.7585633387152428 0.6253458176827655 612.05

Model 5 0.7534353070389288 0.6330197085802262 616.65

Average 0.7490817609568948 0.628623222460603 640.37

Std deviation 0.0320522567741504 0.012918343823211 42.51
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6 Discussion of Results

6.1 Impact of Embedded Randomness on Model Precision

As previously shown, randomness is deliberately embedded in machine learn-
ing models to improve their generalizability and robustness [17]. By eliminating
the embedded randomness within the model, there is an associated reduction in
the ability of the model to generalize for samples of data with more variation
than those within the training set. In context, by decreasing the randomness
embedded in the model structure during training, the model’s ability to handle
formations of satellites not included in the training set may decrease. This could
explain why the average precision and recall values were lower in the fully con-
figured model, and why there was a reduced number of models with precision
scores above 75% out of the set of fully configured models (4 models) compared
to the non-configured models (17 models). In summary, by disabling embedded
randomness, the model may be less capable of handling new data, and as a result,
it may be less generalizable.

6.2 Increase in Training Time After Configuring Randomness

Even though the reduction in performance variation was about 25% after dis-
abling the randomness embedded in the model structure, the training time
increased by nearly 50%. Non-Configured models took on average 19.5 min to
train on a GPU, which rose to 28.8 min after configuring the embedded random-
ness. This increase was theorized to be the result of forcing CUDA algorithms
to be determinable instead of their nondeterminable counterparts. To test this,
40 models were trained with all embedded randomness disabled except Deter-
minable Algorithms. With these parameters, the models had nearly identical
precision and recall scores to a fully configured model with an average score
of 71.966% and 60.207% respectively, and standard deviations of 3.455% and
2.354%. However, the average training time decreased to 19.1 min with a stan-
dard deviation of 0.130 min, much closer to that of the non-configured models.
As a result, since forcing determinable algorithms has a minimal impact on the
variation but increases the training time by approximately 50%, it is suggested
to allow nondeterminable algorithms when response time is a priority.

6.3 Impact of Seed Sensitivity

By disabling embedded randomness within the model structure, there was little
adverse impact on performance. Between non-configured models and fully con-
figured models on the GPU, precision and recall were reduced on average by
2% and 0.6%, respectively. Since each seed outputs different values than another
seed and slightly impact performance, the model is seed-sensitive [24]. In this
case, the seed was arbitrarily set to “42.” However, other seed values may pro-
duce different results. Thus, if hyperparameter tuning is being performed with a
configured seed, users may consider testing multiple seed values to identify which
works best for the given dataset and parameters.
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6.4 Conclusion

The methods and procedures highlighted in this manuscript aim to inform the
selection process of parameters and hardware for training a Mask R-CNN model
with respect to nondeterminism and training time. In cases where determinable
results are of a priority, model training can be performed on a CPU with the
embedded randomness in the model structure configured. This will guarantee
fully determinable results and only requires an additional eight lines of code.
These configurations can be found in the training files for the repository asso-
ciated with this manuscript [2]. Unfortunately, by running computations on a
CPU instead of a GPU, the training time increases from 20–30 min to 10–14 h.
As a result, a CPU should only be used in cases where computational resources
are not a concern and replicability is more important than speed and efficiency. If
determinable results are not the first priority, in most cases performing training
on a GPU is a better choice. However, in addition to the reductions in training
time accomplished by using a GPU (at least 20 times faster), the nondetermin-
ism present during model training will increase. Here, the standard deviation of
this variation in non-configured models was approximately 4.2% and 2.7% for
precision and recall respectively. Using the methods established above, this vari-
ation can be reduced to approximately 3.1% and 2.6% for precision and recall
while still performing computations on a GPU. Each scenario will have differ-
ent priorities, but this work can be used as a guide for configuring a training
environment with respect to nondeterminism and training time.
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