
Concurrencies in Reversible Concurrent
Calculi

Clément Aubert(B)

School of Computer and Cyber Sciences, Augusta University, Augusta, USA
caubert@augusta.edu

https://spots.augusta.edu/caubert/

Abstract. The algebraic specification and representation of networks of
agents have been greatly impacted by the study of reversible phenomena:
reversible declensions of the calculus of communicating systems (CCSK
and RCCS) offer new semantic models, finer congruence relations, orig-
inal properties, and revisits existing theories and results in a finer light.
But much remains to be done: concurrency, a central notion in establish-
ing causal consistency–a crucial property for reversible systems–, was
never given a syntactical definition in CCSK. We remedy this gap by
leveraging a definition of concurrency developed for forward-only cal-
culi using proved transition systems, and prove that CCSK still enjoys
causal consistency for this elegant and syntactical notion of reversible
concurrency. We also compare it to a definition of concurrency inspired
by reversible π-calculus, discuss its relation with structural congruence,
and prove that it can be adapted to any CCS-inspired reversible sys-
tem and is equivalent—or refines—existing definitions of concurrency
for those systems.

Keywords: Formal semantics · Process algebras · Concurrency

1 Introduction: Reversibility, Concurrency–Interplays

Concurrency Theory is being reshaped by reversibility: fine distinctions
between causality and causation [37] contradicted Milner’s expansion laws [30,
Example 4.11], and the study of causal models for reversible computation
led to novel correction criteria for causal semantics—both reversible and irre-
versible [17]. “Traditional” equivalence relations have been captured syntacti-
cally [6], while original observational equivalences were developed [30]: reversibil-
ity triggered a global reconsideration of established theories and tools, with the
clear intent of providing actionable methods for reversible systems [26], novel
axiomatic foundations [31] and original non-interleaving models [4,17,24].

Two Formalisms extend the Calculus of Communicating Systems
(CCS) [34]—the godfather of π-calculus [38], among others—with reversible fea-
tures. Reversible CCS (RCCS) [18] and CCS with keys (CCSK) [37] are simi-
larly the source of most [1,17,32,33]—if not all—of later formalism developed to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. A. Mezzina and K. Podlaski (Eds.): RC 2022, LNCS 13354, pp. 146–163, 2022.
https://doi.org/10.1007/978-3-031-09005-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09005-9_10&domain=pdf
https://orcid.org/0000-0001-6346-3043
https://doi.org/10.1007/978-3-031-09005-9_10

Concurrencies in Reversible Concurrent Calculi 147

enhance reversible systems with some respect (rollback operator, name-passing
abilities, probabilistic features, . . .). Even if those two systems share a lot of
similarities [28], they diverge in some respects that are not fully understood—
typically, it seems that different notions of “contexts with history” led to estab-
lish the existence of congruences for CCSK [30, Proposition 4.9] or the impos-
sibility thereof for RCCS [8, Theorem 2]. However, they also share some short-
comings, and we offer to tackle one of them for CCSK, by providing a syntacti-
cal definition of concurrency, easy to manipulate, that satisfies the usual sanity
checks.

Reversible Concurrency is of course a central notion in the study of
RCCS and CCSK, as it enables the definition of causal consistency—a principle
that, intuitively, states that backward reductions can undo an action only if its
consequences have already been undone—and to obtain models where concur-
rency and causation are decorrelated [37]. As such, it has been studied from mul-
tiple angles, but, in our opinion, never in a fully satisfactory manner. In CCSK,
sideways and reverse diamonds properties were proven using conditions on keys
and “joinable” transitions [37, Propositions 5.10 and 5.19], but to our knowledge
no “definitive” definition of concurrency was proposed. Ad-hoc definitions rely-
ing on memory inclusion [25, Definition 3.1.1] or disjointness [18, Definition 7]
for RCCS, and semantical notions for both RCCS [4–6] and CCSK [24,36,40]
have been proposed, but, to our knowledge, none of those have ever been 1.
compared to each other, 2. compared to pre-existing forward-only definitions of
concurrency.

Our Contribution introduces the first syntactical definition of concurrency
for CCSK (Sect. 3.1), by extending the “universal” concurrency developed for
forward-only CCS [19], that leveraged proved transition systems [22]. We make
crucial use of the loop lemma (Lemma 5) to define concurrency between coini-
tial traces in terms of concurrency between composable traces—a mechanism
that considerably reduces the definition and proof burdens: typically, the square
property is derived from the sideways and reverse diamonds. We furthermore
establish the correctness of this definition by proving the expected reversible
properties—causal consistency (Sect. 3.3), among others—and by discussing how
our definition relates to definitions of concurrency in similar systems—obtained
by porting our technique to RCCS [18,25] and its “identified” declensions [8], or
by restricting a notion of concurrency for π-calculus—and to structural congru-
ence (Sect. 4). With respect to this last point, we prove that our technique gives
a notion of concurrency that either match or subsumes existing definitions, that
sometimes lack a notion of concurrency for transitions of opposite directions.

Additional details are contained in our preliminary technical report [3], i.e.
all proofs [3, Sect. B], and the technical justification of the claims made in Sect. 4
about the “universality” of our approach [3, Sect. C].

148 C. Aubert

2 Finite and Reversible Process Calculi

2.1 Finite, Forward-Only CCS

Finite Core CCS. We briefly recall the (forward-only) “finite fragment” of the
core of CCS (simply called CCS) following a standard presentation [14].

Definition 1 ((Co-)names and labels). Let N = {a, b, c, . . . } be a set of
names and N = {a, b, c, . . . } its set of co-names. The set of labels L is N ∪
N ∪ {τ}, and we use α, β (resp. λ) to range over L (resp. L\{τ}). A bijection
· : N → N, whose inverse is also written ·, gives the complement of a name.

Definition 2 (Operators). We let P,Q range over CCS processes, defined as
usual, using restriction (P\α), sum (P + Q), prefix (α.P) and parallel composi-
tion (P | Q). The inactive process 0 is omitted when preceded by a prefix, and the
binding power of the operators [34, p. 68], from highest to lowest, is \α, α., | and
+, so that e.g. α.P + Q\α | P + a is to be read as (α.P) + (((Q\α) | P) + (a.0)).
In a process P | Q (resp. P + Q), we call P and Q threads (resp. branches).

The labeled transition system for CCS, denoted −−→α , is reminded in Fig. 1.

Fig. 1. Rules of the labeled transition system (LTS) for CCS

2.2 CCSK: A “Keyed” Reversible Concurrent Calculus

CCSK captures uncontrolled reversibility using two symmetric LTS—one for
forward computation, one for backward computation—that manipulates keys
marking executed prefixes, to guarantee that reverting synchronizations cannot
be done without both parties agreeing. We use the syntax of the latest paper
on the topic [30], that slightly differs [30, Remark 4.2] with the classical defi-
nition [37]. However, those changes have no impact since we refrain from using
CCSK’s newly introduced structural congruence, but discuss it in Sect. 4.

Concurrencies in Reversible Concurrent Calculi 149

Definition 3 (Keys, prefixes and CCSK processes). Let K = {m,n, . . . }
be a set of keys, we let k range over them. Prefixes are of the form α[k]—we call
them keyed labels—or α. CCSK processes are CCS processes where the prefix
can also be of the form α[k], we let X, Y range over them.

The forward LTS for CCSK, that we denote −−−→α[k]
, is given in Fig. 2—with

key and std defined below. The reverse LTS ���→α[k]
is the exact symmetric of

−−−→α[k]
[30, Figure 2] (it can also be read from Fig. 3), and we write X −−−→→α[k]

Y

if X ���→α[k]
Y or X −−−→α[k]

Y . For all three types of arrows, we sometimes omit
the label and keys when they are not relevant, and mark with ∗ their transitive
closures. As usual, we restrict ourselves to reachable processes, defined below.

Definition 4 (Standard and reachable processes). The set of keys occuring
in X is written key(X), and X is standard—std(X)—iff key(X) = ∅. If there
exists a process OX s.t. std(OX) and OX −−→→∗ X, then X is reachable.

The reader eager to see this system in action can fast-forward to Example 1,
but should be aware that this example uses proved labels, introduced next.

Fig. 2. Rules of the forward labeled transition system (LTS) for CCSK

150 C. Aubert

3 A New Causal Semantics for CCSK

The only causal semantics for CCS with replication we are aware of [19]1

remained unnoticed, despite some interesting qualities: 1. it enables the defini-
tion of causality for replication while agreeing with pre-existing causal semantics
of CCS and CCS with recursion [19, Theorem 1] 2. it leverages the technique of
proved transition systems that encodes information about the derivation in the
labels [22], 3. it was instrumental in one of the first results connecting implicit
computational complexity and distributed processes [23], 4. last but not least,
as we will see below, it allows to define an elegant notion of causality for CCSK
with “built-in” reversibility, as the exact same definition will be used for for-
ward and backward transitions, without making explicit mentions of the keys
or directions. We believe our choice is additionally compact, elegant and suited
for reversible computation: defining concurrency on composable transitions first
allows not to consider keys in our definition, as the LTS guarantees that the same
key will not be re-used. Then, the loop lemma allows to “reverse” transitions
so that concurrency on coinitial transitions can be defined from concurrency on
composable transitions. This allows to carry little information in the labels—the
direction is not needed—and to have a definition insensitive to keys and identi-
fiers for the very modest cost of prefixing labels with some annotation tracking
the thread(s) or branch(es) performing the transition.

3.1 Proved Labeled Transition System for CCSK

We adapt the proved transition system [15,19,20] to CCSK: this technique
enriches the transitions label with prefixes that describe parts of their deriva-
tion, to keep track of their dependencies or lack thereof. We adapt an earlier
formalism [21]—including information about sums [19, footnote 2]—but extend
the concurrency relation to internal (i.e. τ -) transitions, omitted from recent
work [19, Definition 3] but present in older articles [15, Definition 2.3].

Definition 5 (Enhanced keyed labels). Let υ, υL and υR range over strings
in {|L, |R,+L,+R}∗, enhanced keyed labels are defined as

θ := υα[k] ‖ υ〈|L υLα[k], |R υRα[k]〉

We write E the set of enhanced keyed labels, and define 	 : E → L and 𝓀 : E → K:

	(υα[k]) = α 	(υ〈|L υLα[k], |R υRα[k]〉) = τ

𝓀(υα[k]) = k 𝓀(υ〈|L υLα[k], |R υRα[k]〉) = k

We present in Fig. 3 the rules for the proved forward and backward LTS for
CCSK. The rules |R, |•R, +R and +•

R are omitted but can easily be inferred. This
LTS has its derivation in bijection with CCSK’s original LTS:
1 We preferred to refer to this work over older presentations [12,13] to be better

equipped to later on accommodate replication for reversible calculi [2].

Concurrencies in Reversible Concurrent Calculi 151

Lemma 1 (Adequacy of the proved labeled transition system). The
transition X −−−−→→α[m]

X ′ can be derived using Fig. 2 iff X −−→→θ X ′ with 𝓀(θ) = m
and 	(θ) = α can be derived using Fig. 3.

Definition 6 (Dependency relation). The dependency relation on enhanced
keyed labels is induced by the axioms of Fig. 4, for d ∈ {L,R}.

Fig. 3. Rules of the proved LTS for CCSK

A dependency θ0 � θ1 means “whenever there is a trace in which θ0 occurs
before θ1, then the two associated transitions are causally related”. The fol-
lowing definitions will enable more formal examples, but we can stress that
1. the “action” rule enforces that executing or reversing a prefix at top level,
e.g.α.X −−−→α[k]

α[k].X or α[k].X ���→α[k]
α.X, makes the prefix (α[k]) a dependency

of all further transitions; 2. as the forward and backward versions of the same
rule share the same enhanced keyed labels, a trace where a transition and its

152 C. Aubert

Fig. 4. Dependency Relation on Enhanced Keyed Labels

reverse both occur will have the first occurring be a dependency of the second,
as � is reflexive; 3. no additional relation (such as a conflict or causality rela-
tion) is needed to define concurrency; 4. this dependency relation matches the
forward-only definition for action and parallel composition, but not for sum:
while the original system [19, Definition 2] requires only +dθ � θ′ if θ � θ′, this
definition would not capture faithfully the dependencies in our system where the
sum operator is preserved after a reduction.

Definition 7 (Transitions and traces). In a transition t : X −−→→θ X ′, X is
the source, and X ′ is the target of t. Two transitions are coinitial (resp. cofinal)
if they have the same source (resp. target). Transitions t1 and t2 are composable,
t1; t2, if the target of t1 is the source of t2. The reverse of t : X ′ ��→θ X is
t• : X −−→θ X ′, and similarly if t is forward, letting (t•)• = t2.

A sequence of pairwise composable transitions t1; · · · ; tn is called a trace,
denoted T , and ε is the empty trace.

Definition 8 (Causality relation). Let T be a trace X1 −−→→θ1 · · · −−−→→θn Xn and
i, j ∈ {1, · · · , n} with i < j, θi causes θj in T (θi �T θj) iff θi � θj.

Definition 9 ((Composable) Concurrency). Let T be a trace X1 −−→→θ1

· · · −−−→→θn Xn and i, j ∈ {1, · · · , n}, θi is concurrent with θj (θi �T θj, or simply
θi � θj) iff neither θi �T θj nor θj �T θi.

Coinitial concurrency (Definition 11) will later on be defined using compos-
able concurrency and the loop lemma (Lemma 5).

Example 1. Consider the following trace, dependencies, and concurrent transi-
tions, where the subscripts to � and � have been omitted:

2 The existence and uniqueness of the reverse transition is immediate in CCSK. This
property, known as the loop lemma (Lemma 5) is sometimes harder to obtain.

Concurrencies in Reversible Concurrent Calculi 153

(a.b) | (b + c)

−−−−−−→|La[m]
a[m].b | b + c

−−−−−→|Lb[n]
a[m].b[n] | b + c

−−−−−−−−→|R+Rc[n′]
a[m].b[n] | b + c[n′]

�����→|Lb[n]
a[m].b | b + c[n′]

��������→|R+Rc[n′]
a[m].b | b + c

−−−−−−−−−−−−−−→〈|Lb[n],|R+Lb[n]〉
a[m].b[n] | b[n] + c

And we have, e.g.

|L a[m]� |L b[n] as a[m] � b[n]

|L b[n]� |L b[n] as b[n] � b[n]

and also

|L a[m] � 〈|L b[n], |R +Rb[n]〉
|R +Rc[n′] � 〈|L b[n], |R +Lb[n]〉
but

|L b[n] �|R +Rc[n′]
since labels prefixed by |L and |R are never
causes of each others.

To prove the results in the next section, we need an intuitive and straight-
forward lemma (Lemma 2) that decomposes a concurrent trace involving two
threads into one trace involving one thread while maintaining concurrency, i.e.
proving that a trace e.g. of the form T : X | Y −−−→→|Lθ

X ′ | Y −−−→→|Lθ′
X ′′ | Y

with |L θ �T |L θ′ can be decomposed into a trace T ′ : X −−→→θ X ′ −−→→θ′
X ′′ with

θ �T ′ θ′. A similar lemma is also needed to decompose sums (Lemma 3), and
their proofs proceed by simple case analysis and offer no resistance.

Lemma 2 (Decomposing concurrent parallel transitions). Let i ∈ {1, 2}
and θi ∈ {|L θ′

i, |R θ′′
i , 〈|L θ′

i, |R θ′′
i 〉}, define πL(XL | XR) = XL, πL(|L θ) = θ,

πL(〈|L θL, |R θR〉) = θL, πL(|R θ) = undefined, and define similarly πR.
Whenever T : XL | XR −−→→θ1 YL | YR −−→→θ2 ZL | ZR with θ1 �T θ2, then for

d ∈ {L,R}, if πd(θ1) and πd(θ2) are both defined, then, πd(θ1) �πd(T) πd(θ2)

with πd(T) : πd(XL | XR) −−−−−→→πd(θ1)
πd(YL | YR) −−−−−→→πd(θ2)

πd(ZL | ZR).

Proof. The trace πd(T) exists by virtue of the rule |d, syn. or their reverses.
What remains to prove is that πd(θ1) �πd(T) πd(θ2) holds.

The proof is by case on θ1 and θ2, but always follows the same pattern. As
we know that both πd(θ1) and πd(θ2) need to be defined, there are 7 cases:

θ1 |L θ′
1 |L θ′

1 |R θ′
1 |R θ′

1 〈|L θ′
1, |R θ′′

1 〉 〈|L θ′
1, |R θ′′

1 〉 〈|L θ′
1, |R θ′′

1 〉
θ2 |L θ′

2 〈|L θ′
2, |R θ′′

2 〉 |R θ′
2 〈|L θ′

2, |R θ′′
2 〉 |L θ′

2 |R θ′
2 〈|L θ′

2, |R θ′′
2 〉

By symmetry, we can bring this number down to three:

(case letter) a) b) c)
θ1 |L θ′

1 〈|L θ′
1, |R θ′′

1 〉 〈|L θ′
1, |R θ′′

1 〉}
θ2 |L θ′

2 |L θ′
2 〈|L θ′

2, |R θ′′
2 〉}

In each case, assume πL(θ1) = θ′
1 �πL(T) θ′

2 = πL(θ2) does not hold. Then it
must be the case that either θ′

1 �πL(T) θ′
2 or θ′

2 �πL(T) θ′
1, and since both can be

treated the same way thanks to symmetry, we only need to detail the following
three cases:

154 C. Aubert

a) If θ′
1 �πL(T) θ′

2, then θ′
1 � θ′

2, and it is immediate that θ1 =|L θ′
1�T |L θ′

2 = θ2,
contradicting θ1 �T θ2.

b) If θ′
1 �πL(T) θ

′
2, then θ′

1 �θ′
2, |L θ′

1� |L θ′
2 and 〈|L θ′

1, |R θ′′
1 〉� |L θ′

2, from which
we can deduce θ1 �T θ2, contradicting θ1 �T θ2.

c) If θ′
1 �πL(T) θ′

2, then θ′
1 � θ′

2, |L θ′
1� |L θ′

2 and 〈|L θ′
1, |R θ′′

1 〉 � 〈|L θ′
2, |R θ′

2〉,
from which we can deduce θ1 �T θ2, contradicting θ1 �T θ2.

Hence, in all cases, assuming that πd(θ1) �πd(T) πd(θ2) does not hold leads to
a contradiction. 	

Lemma 3 (Decomposing concurrent sum transitions). Let i ∈ {1, 2}
and θi ∈ {+Lθ′

i,+Rθ′′
i }, define ρL(XL + XR) = XL, ρL(+Lθ) = θ, ρL(+Rθ) =

undefined, and define similarly ρR.
Whenever T : XL + XR −−→→θ1 YL + YR −−→→θ2 ZL + ZR with θ1 �T θ2, then for

d ∈ {L,R}, if ρd(θ1) and ρd(θ2) are both defined, then, ρd(θ1) �πd(T) ρd(θ2)

with ρd(T) : ρd(XL + XR) −−−−→→ρ(θ1)
ρd(YL + YR) −−−→→(θ2)

ρd(ZL + ZR).

Proof. The trace ρd(T) exists by virtue of the rule +d or its reverse. What
remains to prove is that ρd(θ1) �ρd(T) ρd(θ2) holds.

The proof is by case on θ1 and θ2, but always follows the same pattern. As
we know that both ρd(θ1) and ρd(θ2) need to be defined, there are 2 cases:

θ1 +Lθ′
1 +Rθ′

1

θ2 +Lθ′
2 +Rθ′

2

In each case, assume ρL(θ1) = θ′
1 �ρL(T) θ′

2 = ρL(θ2) does not hold, then it
is immediate to note that θ1 �T θ2 cannot hold either, a contradiction. 	

3.2 Diamonds and Squares: Concurrency in Action

Square properties and concurrency diamonds express that concurrent transitions
are actually independent, in the sense that they can be swapped if they are
composable, or “later on” agree if they are co-initial. That our definition of
concurrency enables those, and to allows inter-prove them, is a good indication
that it is resilient and convenient.

Theorem 1 (Sideways diamond). For all X −−→θ1 X1 −−→θ2 Y with θ1 � θ2,
there exists X2 s.t. X −−→θ2 X2 −−→θ1 Y .

The proof, sketched, requires a particular care when X is not standard.
Using pre. is transparent from the perspective of enhanced keyed labels, as no
“memory” of its usage is stored in the label of the transition. This is essen-
tially because—exactly like for act.—all the dependency information is already
present in the term or its enhanced keyed label. To make this more formal, we
introduce a function that “removes” a keyed label, and prove that it does not
affect derivability.

Concurrencies in Reversible Concurrent Calculi 155

Definition 10. Given α and k, we define rmα[k] by rmα[k](0) = 0 and

rmα[k](β.X) = β.X rmα[k](X | Y) = rmα[k](X) | rmα[k](Y)
rmα[k](X\a) = (rmα[k]X)\a rmα[k](X + Y) = rmα[k](X) + rmα[k](Y)

rmα[k](β[m].X) =

{
X if α = β and k = m

β[m].rmα[k](X) otherwise

We let rmλ
k = rmλ[k] ◦ rmλ[k] if λ ∈ L\{τ}, rmτ

k = rmτ [k] otherwise.

The function rmα[k] simply looks for an occurrence of α[k] and removes it:
as there is at most one, there is no need for a recursive call when it is found.
This function preserves derivability of transitions that do not involve the key
removed:

Lemma 4. For all X, α and k, X −−→→θ Y with 𝓀(θ) �= k iff rmα
k (X) −−→→θ rmα

k (Y).

Proof. Assume α[k] or α[k] (if α �= τ) occur in X (otherwise the result is
straightforward), as 𝓀(θ) �= k, the same holds for Y . As keys occur at most
twice, attached to complementary names, in reachable processes [30, Lemma
3.4], k /∈ key(rmα

k (X)) ∪ key(rmα
k (Y)). Then the proof follows by induction

on the length of the derivation for X −−→→θ Y : as neither pre. nor pre.• change
the enhanced keyed label, we can simply “take out” the occurrences of those
rules when they concern α[k] or α[k] and still obtain a valid derivation, with
the same enhanced keyed label, hence yielding rmα

k (X) −−→→θ rmα
k (Y). For the

converse direction, pre. or pre.• can be reintroduced to the derivation tree and
in the appropriate location, as k is fresh in rmα

k (X) and rmα
k (Y). 	

Proof (of Theorem 1 (sketch)). The proof proceeds by induction on the length of
the deduction for the derivation for X −−→θ1 X1 , using Lemmas 2 and 3 to enable
the induction hypothesis if θ1 is not a prefix. The only delicate case is if the
last rule is pre.: in this case, there exists α, k, X ′ and X ′

1 s.t. X = α[k].X ′ −−→θ1

α[k].X ′
1 = X1 and 𝓀(θ1) �= k. As α[k].X ′

1 −−→θ2 Y , 𝓀(θ2) �= k [30, Lemma 3.4],
and since θ1 � θ2, we apply Lemma 4 twice to obtain the trace T :

rmα
k (α[k].X ′) = X ′ −−→θ1 rmα

k (α[k].X ′
1) = X ′

1 −−→θ2 rmα
k (Y)

with θ1 �T θ2, and we can use the induction hypothesis to obtain X2 s.t.
X ′ −−→θ2 X2 −−→θ1 rmα

k (Y). Since 𝓀(θ2) �= k, we can append pre. to the derivation
of X ′ −−→θ2 X2 to obtain α[k].X ′ = X −−→θ2 α[k].X2. Using Lemma 4 one last time,
we obtain that rmα

k (α[k].X2) = X2 −−→θ1 rmα
k (Y) implies α[k].X2 −−→θ1 Y , which

concludes this case. 	

Example 2. Re-using Example 1, since |L b[n] �|R +Rc[n′] in

a[m].b | b + c −−−−→|Lb[n]
a[m].b[n] | b + c −−−−−−−→|R+Rc[n′]

a[m].b[n] | b + c[n′],

156 C. Aubert

Theorem 1 allows to re-arrange this trace as

a[m].b | b + c −−−−−−−→|R+Rc[n′]
a[m].b | b + c[n′] −−−−→|Lb[n]

a[m].b[n] | b + c[n′].

Theorem 2 (Reverse diamonds).

1. For all X −−→θ1 X1 ��→θ2 Y with θ1 � θ2, there exists X2 s.t. X ��→θ2 X2 −−→θ1 Y .
2. For all X ��→θ1 X1 −−→θ2 Y with θ1 � θ2, there exists X2 s.t. X −−→θ2 X2 ��→θ1 Y .

It should be noted that in the particular case of t; t• : X −−→θ1 X1 ��→θ1 X, or
t•; t, θ1 � θ1 by reflexivity of � and hence the reverse diamonds cannot apply.
The name “reverse diamond” was sometimes used for different properties [37,
Proposition 5.10], [36, Definition 2.3] that, in the presence of the loop lemma
(Lemma 5), are equivalent to ours, once the condition on keys is replaced by
our condition on concurrency. It is, however, to our knowledge the first time this
property, stated in this particular way, is isolated and studied on its own.

Proof (Sketch). We can re-use the proof of Theorem 1 almost as it is, since
Lemmas 4, 2 and 3 hold for both directions.

For 1., the only case that diverges is if the deduction for X −−→θ1 X1 have for
last rule pre. In this case, α[k].X ′ −−→θ1 α[k].X ′

1 ��→θ2 Y , but we cannot deduce that
𝓀(θ2) �= k immediately. However, if 𝓀(θ2) = k, then we would have α[k].X ′

1 ���→α[k]

α.Y ′ = Y , but this application of act.• is not valid, as std(X ′
1) does not hold,

since X ′
1 was obtained from X ′ after it made a forward transition. Hence, we

obtain that key(θ2) �= k and we can carry out the rest of the proof as before.
For 2., the main difference lies in leveraging the dependency of sum prefixes

between e.g. +Rθ1 and +Lθ2 in X + OY ����→+Rθ1 OX + OY −−−−→+Lθ2 OX + Y . 	

Example 3. Re-using Example 1, since |R +Rc[n′] �|L b[n] in

a[m].b[n] | b + c −−−−−−−→|R+Rc[n′]
a[m].b[n] | b + c[n′] ����→|Lb[n]

a[m].b | b + c[n′],

Theorem 2 allows to re-arrange this trace as

a[m].b[n] | b + c ����→|Lb[n]
a[m].b | b + c −−−−−−−→|R+Rc[n′]

a[m].b | b + c[n′].

Concurrency on coinitial traces is defined using concurrency on composable
traces and the loop lemma, immediate in CCSK.

Lemma 5 (Loop lemma [37, Prop. 5.1]). For all t : X −−→θ X ′, there exists
a unique t• : X ′ ��→θ X, and conversely. We let (t•)• = t.

Definition 11 (Coinitial concurrency). Let t1 : X −−→→θ1 Y1 and t2 : X −−→→θ2 Y2

be two coinitial transitions, θ1 is concurrent with θ2 (θ1 � θ2) iff θ1 � θ2 in the
trace t•1; t2 : Y1 −−→→θ1 X −−→→θ2 Y2.

Concurrencies in Reversible Concurrent Calculi 157

To our knowledge, this is the first time co-initial concurrency is defined from
composable concurrency: while the axiomatic approach discussed coinitial con-
currency [31, Section 5], it primarily studied independence relations that could
be defined in any way, and did not connect these two notions of concurrency.

Theorem 3 (Square property). For all t1 : X −−→→θ1 X1 and t2 : X −−→→θ2 X2

with θ1 � θ2, there exist t′1 : X1 −−→→θ2 Y and t′2 : X2 −−→→θ1 Y .

Proof (sketch). By Definition 11 we have that θ1 � θ2 in t•1; t2 : X1 −−→→θ1 X −−→→θ2

X2. Hence, depending on the direction of the arrows, and possibly using the loop
lemma to convert two backward transitions into two forward ones, we obtain by
Theorems 1 or 2 t′′1 ; t′′2 : X1 −−→→θ2 Y −−→→θ1 X2, and we let t′1 = t′′1 and t′2 = t′′•2:

X

X1

θ1

X2

θ2

Definition 11
========⇒ X

X1

θ1

X2

θ2

Diamonds
======⇒ Y

X1

θ2

X2

θ1

Loop
===⇒

X

X1

θ1

X2

θ2

Y

θ2 θ1

��

Example 4. Following Example 1, we can get e.g. from a[m].b[n] | b+c −−−−−−−→|R+Lb[n′]

a[m].b[n] | b[n′] + c and a[m].b[n] | b + c ����→|Lb[n]
a[m].b | b + c the transitions

converging to a[m].b | b[n′] + c.

3.3 Causal Consistency

Formally, causal consistency (Theorem 4) states that any two coinitial and cofinal
traces are causally equivalent:

Definition 12 (Causally equivalent). Two traces T1, T2 are causally equiv-
alent, if they are in the least equivalence relation closed by composition satisfying
t; t• ∼ ε and t1; t′2 ∼ t2; t′1 for any t1; t′2 : X −−→→θ1 −−→→θ2 Y , t2; t′1 : X −−→→θ2 −−→→θ1 Y .

Theorem 4. All coinitial and cofinal traces are causally equivalent.

The “axiomatic approach” to reversible computation [31] allows to obtain
causal consistency from other properties that are generally easier to prove.

Lemma 6 (Backward transitions are concurrent). Any two different
coinitial backward transitions t1 : X ��→θ1 X1 and t2 : X ��→θ2 X2 are concur-
rent.

Proof (Sketch). The proof is by induction on the size of θ1 and leverages that
𝓀(θ1) �= 𝓀(θ2) for both transitions to be different. 	

Lemma 7 (Well-foundedness). For all X there exists n ∈ N, X0, · · · ,Xn

s.t. X ��→ Xn ��→ · · · ��→ X1 ��→ X0, with std(X0).

158 C. Aubert

This lemma forbids infinite reverse computation, and is obvious in CCSK as
any backward transition strictly decreases the number of occurrences of keys.

Proof (of Theorem 4). We can re-use the results of the axiomatic approach [31]
since our forward LTS is the symmetric of our backward LTS, and as our con-
currency relation (that the authors call the independence relation, following
a common usage [39, Definition 3.7]) is indeed an irreflexive symmetric rela-
tion: symmetry is immediate by definition, irreflexivity follows from the fact
that � is reflexive. Then, by Theorem 3 and Lemma 6, the parabolic lemma
holds [31, Proposition 3.4], and since the parabolic lemma and well-foundedness
hold (Lemma 7), causal consistency holds as well [31, Proposition 3.5]. 	

We use here the axiomatic approach [31] in a very narrow sense, to obtain
only causal consistency—which was our main goal—, but we could have used
those lemmas to obtain many other desirable properties for this system “for free”.
An interesting problem, as suggested by a reviewer, would also be to establish
whenever our system enjoys Coinitial Propagation of Independence [31, Defini-
tion 4.2], which in turns would allow it to fulfil Independence of Diamonds [31,
Definition 4.6].

Example 5. Re-using the full trace presented in Example 1, we can re-organize
the transitions using the diamonds so that every undone transition is undone
immediately, and we obtain up to causal equivalence the trace

a.b | b + c −−−−−→|La[m]
a[m].b | b + c −−−−−−−−−−−→〈|Lb[n],|R+Lb[n]〉

a[m].b[n] | b[n] + c

4 Structural Congruence, Universality and Other Criteria

Causality for a semantics of concurrent computation should satisfy a variety of
criteria, the squares and diamonds being the starting point, and causal consis-
tency being arguably the most important. This section aims at briefly presenting
additional criteria and at defending the “universality” of our approach. Since this
last point requires to introduce two other reversible systems and four other def-
initions of concurrency, the technical content is only in our research report [3,
Sect. C], but we would like to stress that the results stated below are fairly rou-
tine to prove—introducing all the material to enable the comparisons is the only
lengthy part.

Concurrency-Preserving Structural Congruences. “Denotationality” [17, Sect-
ion 6] is a criteria stating that structural congruence should be preserved by the
causal semantics. Unfortunately, our system only vacuously meets this criteria—
since it does not possess a structural congruence. The “usual” structural congru-
ence is missing from all the proved transition systems [15,20,22,23], or missing
the associativity and commutativity of the parallel composition [21, p. 242]. While
adding such a congruence would benefits the expressiveness, making it interact

Concurrencies in Reversible Concurrent Calculi 159

nicelywith the derived proof system and the reversible features [30, Section 4], [7] is
a challenge we prefer to postpone.

Comparing with Concurrency Inspired by Reversible π-Calculus. It is possible
to restrict the definition of concurrency for a reversible π-calculus extending
CCSK [32], back to a sum-free version of CCSK. The structural causality [32,
Definition 22]—for transitions of the same direction—and conflict relation [32,
Definition 25]—for transitions of opposite directions—can then both be proven
to match our dependency relation in a rather straightforward way, hence proving
the adequacy of notions. However, this inherited concurrency relation cannot be
straightforwardly extended to the sum operator, and requires two relations to be
defined: for those reasons, we argue that our solution is more convenient to use.
It should also be noted that this concurrency does not meet the denotationality
criteria either, when the congruence includes renaming of bound keys [30].

A similar work could have been done by restricting concurrency for e.g.
reversible higher-order π-calculus [29, Definition 9], reversible π-calculus [16,
Definition 4.1] or croll-π [27, Definition 1], but we reserve it for future work,
and would prefer to extend our definition to a reversible π-calculus rather than
proceeding the other way around.

Comparing with RCCS-Inspired Systems. In RCCS, the definition of concur-
rency fluctuated between a condition on memory inclusion for composable tran-
sitions [25, Definition 3.1.1] and a condition on disjointness of memories on
coinitial transitions [18, Definition 7], both requiring the entire memory of the
thread to label the transitions, and neither been defined on transitions of oppo-
site directions. It is possible to adapt our proved system to RCCS, and to prove
that the resulting concurrency relation is equivalent to those two definitions,
when restricted to transitions of equal direction. A similar adaptation is possi-
ble for reversible and identified CCS [8], that came with yet another definition
of concurrency leveraging its built-in mechanism to generate identifiers.

Optimality, Parabolic Lemma, and RPI. The optimality criteria is the adequacy
of the concurrency definitions for the LTS and for the reduction semantics [16,
Theorem 5.6]. While this criteria requires a reduction semantics and a notion of
reduction context to be formally proven, we believe it is easy to convince oneself
that the gist of this property—the fact that non-τ -transitions are concurrent
iff there exists a “closing” context in which the resulting τ -transitions are still
concurrent—holds in our system: as concurrency on τ -transitions is defined in
terms of concurrency of its elements (e.g., 〈θ1R, θ1L〉 � 〈θ2R, θ2L〉 iff θ1d � θ2d for at
least one d ∈ {L,R}), this criteria is obtained “for free”.

Properties such as the parabolic lemma [18, Lemma 10]—“any trace is equiv-
alent to a backward trace followed by a forward trace”—or “RPI” [31, Defi-
nition 3.3]—“reversing preserves independence”, i.e. t � t′ iff t• � t′–follow
immediately, by our definition of concurrencies for this latter. We furthermore
believe that “baking in” the RPI principle in definitions of reversible concurren-
cies should become the norm, as it facilitates proofs and forces to have t1 � t2
iff t•1 � t•2, which seems a very sound principle.

160 C. Aubert

5 Conclusion and Perspectives

We believe our proposal to be not only elegant, but also extremely resilient and
easy to work with. It should be stressed that it does not require to observe the
directions, but also ignore keys or identifiers, that should in our opinion only
be technical annotations disallowing processes that have been synchronized to
backtrack independently. We had previously defended that identifier should be
considered only up to isomorphisms [6, p. 13], or explicitly generated by a built-
in mechanism [8, p. 152], and re-inforce this point of view here. From there,
much can be done. A first interesting line of work would be to compare our
syntactical definition with the semantical definition of concurrency in models
of RCCS [4–6] and CCSK [24,36,40]. Of course, as we already mentioned,
extending this definition to reversible π-calculi, taking inspiration from e.g. the
latest development in forward-only π [23], would allow to re-inforce the interest
and solidity of this technique.

Another interesting track would be to consider infinite extensions of CCSK,
since infinite behaviors in the presence of reversibility is not well-understood nor
studied: an attempt to extend algebras of communicating processes [11], includ-
ing recursion, seems to have been unsuccessful [41]. A possible approach would
be to define recursion and iteration in CCSK, to extend our definition of concur-
rency to those infinite behaviors, and to attempt to reconstruct the separation
results from the forward-only paradigm [35]. Whether finer, “reversible”, equiv-
alences can preserve this distinction despite the greater flexibility provided by
backward transitions is an open problem. Another interesting point is the study
of infinite behaviors that duplicate past events, including their keys or memories:
whether this formalism could preserve causal consistency, or what benefits there
would be in tinkering this property, is also an open question.

Last but not least, these last investigations would require to define and under-
stand relevant properties, or metrics, for reversible systems. In the forward-only
world, termination or convergence were used to compare infinite behaviors [35],
and additional criteria were introduced to study causal semantics [17]. Those
properties may or may not be suited for reversible systems, but it is difficult to
decide as they sometimes even lack a definition. This could help in solving the
more general question of deciding what it is that we want to observe and assess
when evaluating reversible, concurrent systems [9,10].

Acknowledgments. I would like to thank Doriana Medić for suggesting that I adapt
the definition of concurrency for a reversible π-calculus extending CCSK [32] and
compare it to the concurrency developed in this paper, as done in [3, Sect. C]. I am
also extremely thankful to the reviewers for their careful reading of this technical paper,
and for their enlightening suggestions.

Concurrencies in Reversible Concurrent Calculi 161

References

1. Arpit, Kumar, D.: Calculus of concurrent probabilistic reversible processes. In:
ICCCT-2017: Proceedings of the 7th International Conference on Computer and
Communication Technology, pp. 34–40. ICCCT-2017. ACM, New York (2017).
https://doi.org/10.1145/3154979.3155004

2. Aubert, C.: Causal consistent replication in reversible concurrent calculi, October
2021. https://hal.archives-ouvertes.fr/hal-03384482. Under revision

3. Aubert, C.: Concurrencies in reversible concurrent calculi. Technical report, March
2022. https://hal.archives-ouvertes.fr/hal-03605003

4. Aubert, C., Cristescu, I.: Reversible barbed congruence on configuration structures.
In: Knight, S., Lluch Lafuente, A., Lanese, I., Vieira, H.T. (eds.) ICE 2015. EPTCS,
vol. 189, pp. 68–95 (2015). https://doi.org/10.4204/EPTCS.189.7

5. Aubert, C., Cristescu, I.: Contextual equivalences in configuration structures and
reversibility. J. Log. Algebr. Methods Program. 86(1), 77–106 (2017). https://doi.
org/10.1016/j.jlamp.2016.08.004

6. Aubert, C., Cristescu, I.: How reversibility can solve traditional questions: the
example of hereditary history-preserving bisimulation. In: Konnov, I., Kovács,
L. (eds.) 31st International Conference on Concurrency Theory, CONCUR 2020,
1–4 September 2020, Vienna, Austria. LIPIcs, vol. 2017, pp. 13:1–13:24. Schloss
Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.13

7. Aubert, C., Cristescu, I.: Structural equivalences for reversible calculi of communi-
cating systems (oral communication). Research report, Augusta University (2020).
https://hal.archives-ouvertes.fr/hal-02571597. Communication at ICE 2020

8. Aubert, C., Medić, D.: Explicit identifiers and contexts in reversible concurrent
calculus. In: Yamashita, S., Yokoyama, T. (eds.) RC 2021. LNCS, vol. 12805, pp.
144–162. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79837-6 9

9. Aubert, C., Varacca, D.: Processes, systems & tests: defining contextual equiva-
lences. In: Lange, J., Mavridou, A., Safina, L., Scalas, A. (eds.) Proceedings 14th
Interaction and Concurrency Experience, Online, 18th June 2021. EPTCS, vol. 347,
pp. 1–21. Open Publishing Association (2021). https://doi.org/10.4204/EPTCS.
347.1

10. Aubert, C., Varacca, D.: Processes against tests: Defining contextual equivalences.
Invited submission to the Journal of Logical and Algebraic Methods in Program-
ming (2022). https://hal.archives-ouvertes.fr/hal-03535565

11. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335(2–3),
131–146 (2005). https://doi.org/10.1016/j.tcs.2004.07.036

12. Boudol, G., Castellani, I.: A non-interleaving semantics for CCS based on proved
transitions. Fund. Inform. 11, 433–452 (1988)

13. Boudol, G., Castellani, I.: Three equivalent semantics for CCS. In: Guessarian, I.
(ed.) LITP 1990. LNCS, vol. 469, pp. 96–141. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-53479-2 5

14. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, repli-
cation and iteration in process calculi. MSCS 19(6), 1191–1222 (2009). https://
doi.org/10.1017/S096012950999017X

https://doi.org/10.1145/3154979.3155004
https://hal.archives-ouvertes.fr/hal-03384482
https://hal.archives-ouvertes.fr/hal-03605003
https://doi.org/10.4204/EPTCS.189.7
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://hal.archives-ouvertes.fr/hal-02571597
http://www.discotec.org/2020/ice.html
https://doi.org/10.1007/978-3-030-79837-6_9
https://doi.org/10.4204/EPTCS.347.1
https://doi.org/10.4204/EPTCS.347.1
https://hal.archives-ouvertes.fr/hal-03535565
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1007/3-540-53479-2_5
https://doi.org/10.1007/3-540-53479-2_5
https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1017/S096012950999017X

162 C. Aubert

15. Carabetta, G., Degano, P., Gadducci, F.: CCS semantics via proved transi-
tion systems and rewriting logic. In: Kirchner, C., Kirchner, H. (eds.) 1998
International Workshop on Rewriting Logic and its Applications, WRLA 1998,
Abbaye des Prémontrés at Pont-à-Mousson, France, September 1998. Elec-
tron. Notes Theor. Comput. Sci. 15, 369–387 (1998). https://doi.org/10.1016/
S1571-0661(05)80023-4. https://www.sciencedirect.com/journal/electronic-notes-
in-theoretical-computer-science/vol/15/suppl/C

16. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: LICS, pp. 388–397. IEEE Computer Society (2013). https://doi.
org/10.1109/LICS.2013.45

17. Cristescu, I.D., Krivine, J., Varacca, D.: Rigid families for CCS and the π-calculus.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
223–240. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 14

18. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

19. Degano, P., Gadducci, F., Priami, C.: Causality and replication in concurrent pro-
cesses. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 307–318.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39866-0 30

20. Degano, P., Priami, C.: Proved trees. In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 629–640. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55719-9 110

21. Degano, P., Priami, C.: Non-interleaving semantics for mobile processes.
Theor. Comput. Sci. 216(1–2), 237–270 (1999). https://doi.org/10.1016/S0304-
3975(99)80003-6

22. Degano, P., Priami, C.: Enhanced operational semantics. ACM Comput. Surv.
33(2), 135–176 (2001). https://doi.org/10.1145/384192.384194

23. Demangeon, R., Yoshida, N.: Causal computational complexity of distributed pro-
cesses. In: Dawar, A., Grädel, E. (eds.) LICS, pp. 344–353. ACM (2018). https://
doi.org/10.1145/3209108.3209122

24. Graversen, E., Phillips, I.C.C., Yoshida, N.: Event structure semantics of (con-
trolled) reversible CCS. J. Log. Algebr. Methods Program. 121, 100686 (2021).
https://doi.org/10.1016/j.jlamp.2021.100686

25. Krivine, J.: Algèbres de Processus Réversible - Programmation Concurrente
Déclarative. Ph.D. thesis, Université Paris 6 & INRIA Rocquencourt (2006).
https://tel.archives-ouvertes.fr/tel-00519528

26. Lanese, I.: From reversible semantics to reversible debugging. In: Kari, J., Ulid-
owski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 34–46. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7 2

27. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6 21

28. Lanese, I., Medić, D., Mezzina, C.A.: Static versus dynamic reversibility in CCS.
Acta Inform. (2019). https://doi.org/10.1007/s00236-019-00346-6

29. Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order π-calculus.
Theor. Comput. Sci. 625, 25–84 (2016). https://doi.org/10.1016/j.tcs.2016.02.019

30. Lanese, I., Phillips, I.: Forward-reverse observational equivalences in CCSK. In:
Yamashita, S., Yokoyama, T. (eds.) RC 2021. LNCS, vol. 12805, pp. 126–143.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79837-6 8

https://doi.org/10.1016/S1571-0661(05)80023-4
https://doi.org/10.1016/S1571-0661(05)80023-4
https://www.sciencedirect.com/journal/electronic-notes-in- theoretical-computer-science/vol/15/suppl/C
https://www.sciencedirect.com/journal/electronic-notes-in- theoretical-computer-science/vol/15/suppl/C
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-319-25150-9_14
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-540-39866-0_30
https://doi.org/10.1007/3-540-55719-9_110
https://doi.org/10.1007/3-540-55719-9_110
https://doi.org/10.1016/S0304-3975(99)80003-6
https://doi.org/10.1016/S0304-3975(99)80003-6
https://doi.org/10.1145/384192.384194
https://doi.org/10.1145/3209108.3209122
https://doi.org/10.1145/3209108.3209122
https://doi.org/10.1016/j.jlamp.2021.100686
https://tel.archives-ouvertes.fr/tel-00519528
https://doi.org/10.1007/978-3-319-99498-7_2
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1007/978-3-030-79837-6_8

Concurrencies in Reversible Concurrent Calculi 163

31. Lanese, I., Phillips, I., Ulidowski, I.: An axiomatic approach to reversible compu-
tation. In: FoSSaCS 2020. LNCS, vol. 12077, pp. 442–461. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45231-5 23

32. Medić, D., Mezzina, C.A., Phillips, I., Yoshida, N.: A parametric framework for
reversible π-calculi. Inf. Comput. 275, 104644 (2020). https://doi.org/10.1016/j.
ic.2020.104644

33. Mezzina, C.A., Koutavas, V.: A safety and liveness theory for total reversibility.
In: Mallet, F., Zhang, M., Madelaine, E. (eds.) 11th International Symposium
on Theoretical Aspects of Software Engineering, TASE 2017, Sophia Antipolis,
France, 13–15 September, pp. 1–8. IEEE (2017). https://doi.org/10.1109/TASE.
2017.8285635. https://ieeexplore.ieee.org/xpl/conhome/8277122/proceeding

34. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

35. Palamidessi, C., Valencia, F.D.: Recursion vs replication in process calculi: expres-
siveness. Bull. EATCS 87, 105–125 (2005). http://eatcs.org/images/bulletin/
beatcs87.pdf

36. Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. Electron. Notes
Theor. Comput. Sci. 192(1), 93–108 (2007). https://doi.org/10.1016/j.entcs.2007.
08.018

37. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Pro-
gram. 73(1–2), 70–96 (2007). https://doi.org/10.1016/j.jlap.2006.11.002

38. Sangiorgi, D., Walker, D.: The Pi-calculus. CUP (2001)
39. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: towards a classi-

fication. Theor. Comput. Sci. 170(1–2), 297–348 (1996). https://doi.org/10.1016/
S0304-3975(96)80710-9

40. Ulidowski, I., Phillips, I., Yuen, S.: Concurrency and reversibility. In: Yamashita,
S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 1–14. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08494-7 1

41. Wang, Y.: RETRACTED ARTICLE: an algebra of reversible computation.
SpringerPlus 5(1), 1–35 (2016). https://doi.org/10.1186/s40064-016-3229-7

https://doi.org/10.1007/978-3-030-45231-5_23
https://doi.org/10.1016/j.ic.2020.104644
https://doi.org/10.1016/j.ic.2020.104644
https://doi.org/10.1109/TASE.2017.8285635
https://doi.org/10.1109/TASE.2017.8285635
https://ieeexplore.ieee.org/xpl/conhome/8277122/proceeding
https://doi.org/10.1007/3-540-10235-3
http://eatcs.org/images/bulletin/beatcs87.pdf
http://eatcs.org/images/bulletin/beatcs87.pdf
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1016/j.jlap.2006.11.002
https://doi.org/10.1016/S0304-3975(96)80710-9
https://doi.org/10.1016/S0304-3975(96)80710-9
https://doi.org/10.1007/978-3-319-08494-7_1
https://doi.org/10.1186/s40064-016-3229-7

	Concurrencies in Reversible Concurrent Calculi
	1 Introduction: Reversibility, Concurrency–Interplays
	2 Finite and Reversible Process Calculi
	2.1 Finite, Forward-Only CCS
	2.2 CCSK: A ``Keyed'' Reversible Concurrent Calculus

	3 A New Causal Semantics for CCSK
	3.1 Proved Labeled Transition System for CCSK
	3.2 Diamonds and Squares: Concurrency in Action
	3.3 Causal Consistency

	4 Structural Congruence, Universality and Other Criteria
	5 Conclusion and Perspectives
	References

