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Preface

This volume contains the papers presented at the 14th Conference on Reversible
Computation (RC2022), held during July 5–6, 2022, and hosted byUniversity ofUrbino,
in Italy. For the past two years, the RC conference has been held online, due to the
COVID-19 pandemic situation. This year, we attempted to get back to normality by
holding the event in person in Urbino.

TheRC conference brings together researchers from computer science,mathematics,
engineering, and physics to discuss new developments and directions for future research
in the emerging area of Reversible Computation. This includes, for example, reversible
formal models, reversible programming languages, reversible circuits, and quantum
computing.

This year, the conference received 20 submissions, and we would like to thank
everyone who submitted. Each submission was reviewed by at least three reviewers, who
provided detailed evaluations as well as constructive comments and recommendations.
After careful reviewing and extensive discussions, theProgramCommittee (PC) accepted
11 full papers and five short papers for presentation at the conference. We would like to
thank the PC members and all the additional reviewers for their truly professional work
and strong commitment to the success of RC 2022. We are also grateful to the authors
for taking into account the comments and suggestions provided by the referees during
the preparation of the final versions of their papers.

Reversibility is catering to a lot of interest from industry. To mark this aspect, the
conference program included two invited talks from industry. Robert O’Callahan dis-
cussed “Reverse Execution In The rr Debugger” and Vincent van Wingerden gave a talk
on “An introduction to Azure Quantum and the Microsoft QDK”.

Finally, we want to thank the University of Urbino for supporting the conference and
the Department of Pure and Applied Sciences (DiSPeA) for providing the facilities and
various other support for the success of the conference. Also, we would like to thank
Rodolfo Rossini and his company Vaire for having partially supported RC 2022.

May 2022 Claudio Antares Mezzina
Krzysztof Podlaski
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Steering Committee

Rolf Drechsler University of Bremen, Germany
Robert Glück University of Copenhagen, Denmark
Ivan Lanese Inria and University of Bologna, Italy
Irek Ulidowski University of Leicester, UK
Robert Wille Technical University of Munich, Germany, and

SCCH GmbH, Austria

Program Committee

Clément Aubert Augusta University, USA
Kamila Barylska Nicolaus Copernicus University, Poland
Robert Glück University of Copenhagen, Denmark
Ivan Lanese Inria and University of Bologna, Italy
Hernan Melgratti ICC, Universidad de Buenos Aires and

CONICET, Argentina
Keisuke Nakano Tohoku University, Japan
Alexandru Paler Aalto University, Finland
Iain Phillips Imperial College London, UK
G. Michele Pinna University of Cagliari, Italy
Neil Julien Ross Dalhousie University, Canada
Bruno Schmitt EPFL, Switzerland
Harun Siljak Trinity College Dublin, Ireland
Yasuhiro Takahashi NTT Communication Science Laboratories, Japan
Irek Ulidowski University of Leicester, UK
Benoît Valiron LMF, CentraleSupelec, Université Paris-Saclay,

France
Robert Wille Technical University of Munich, Germany, and

SCCH GmbH, Austria
Shigeru Yamashita Ritsumeikan University, Japan
Shoji Yuen Nagoya University, Japan



viii Organization

Additional Reviewers

Vikraman Choudhury
Giovanni Fabbretti
Anna Gogolinska
James Hoey
Lukasz Mikulski



Contents

Reversible and Quantum Circuits

Reversible Computation in Integrated Photonics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Alexis De Vos

Optimization of Quantum Boolean Circuits by Relative-Phase Toffoli Gates . . . 20
Shohei Kuroda and Shigeru Yamashita

Constructing All Qutrit Controlled Clifford+T gates in Clifford+T . . . . . . . . . . . . 28
Lia Yeh and John van de Wetering

Fast Control for Reversible Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Torben Ægidius Mogensen

Designing a Reversible Stack Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Niklas Deworetzki and Uwe Meyer

Applications of Quantum Computing

Directed Graph Encoding in Quantum Computing Supporting
Edge-Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D. Della Giustina, C. Piazza, B. Riccardi, and R. Romanello

Reordering Decision Diagrams for Quantum Computing Is Harder Than
You Might Think . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Stefan Hillmich, Lukas Burgholzer, Florian Stögmüller, and Robert Wille

Foundations and Applications

Certifying Algorithms and Relevant Properties of Reversible Primitive
Permutations with Lean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Giacomo Maletto and Luca Roversi

Algeo: An Algebraic Approach to Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Fritz Henglein, Robin Kaarsgaard, and Mikkel Kragh Mathiesen

Concurrencies in Reversible Concurrent Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Clément Aubert



x Contents

The ℵ-Calculus: A Declarative Model of Reversible Programming . . . . . . . . . . . . 164
Hannah Earley

Formal Translation from Reversing Petri Nets to Coloured Petri Nets . . . . . . . . . 172
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Reversible and Quantum Circuits



Reversible Computation in Integrated
Photonics

Alexis De Vos(B)

Vakgroep Elektronika, Universiteit Gent, Ghent, Belgium

alexis.devos@ugent.be

Abstract. Sold-state microphotonics allows to build circuits which
transform w light beams in a unitary way. Such a circuit transforms
a w-dimensional complex vector by means of a unitary w × w matrix.
For the synthesis of the optical circuit, we can learn a lot from properties
of quantum circuits, subject to adaptation of the interpretation of the
matrix decompositions.

Keywords: reversible computation · integrated optics · photonics ·
phase shift · beam splitter · unitary matrix · ZXZ decomposition ·
block-ZXZ decomposition

1 Introduction

Linear transformations between optical modes have become a powerful tool in
both optical and microwave photonics. Linear optical networks are integrated in
silicon and indium phosphide technologies [1,2] as well as in lithium niobate [3].
In these optical systems light is manipulated in a unitary way: the transformation
between input and output vectors is described by means of a unitary matrix [4].
The size of this matrix is w × w, where w is the width of the circuit, i.e. the
number of input channels as well as the number of output channels.

Linear optical quantum computation can make use of linear optics as a
medium for quantum computation [5]. Such linear transformation, however,
is less powerful than the full quantum-mechanical transformation, which is
described by a 2w ×2w unitary matrix [6]. The w×w transform therefore cannot
manipulate quantum entanglement. It passively manipulates w light modes in a
lossless way. Nevertheless several applications in computation and communica-
tion have been developed [7].

Unitary optical computing is distinct not only from quantum computing, but
also from classical boolean reversible computing, described by 2w × 2w permu-
tation matrices [8], as it basicly performs an analog computation.

2 Building Blocks

We will consider two different libraries of building blocks:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. A. Mezzina and K. Podlaski (Eds.): RC 2022, LNCS 13354, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-09005-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09005-9_1&domain=pdf
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4 A. De Vos

– the basic library and
– the enlarged library.

In the smaller library, we have just two building blocks:

– the phase shift, acting on a single light beam, having one real parameter θ,
and realizing the 1 × 1 unitary matrix

P = ( x ) ,

where x is a complex number on the unit circle of the complex plane: x = eiθ

– the beam splitter, acting on two light beams, having no parameter1, and
realizing the 2 × 2 unitary matrix [11–13]

Q =
1√
2

(
1 i
i 1

)
. (1)

The circuit symbols for these two blocks are:

P = x and Q =
Q

,

respectively.
The larger library contains, besides the blocks P and Q, one more (parame-

terless) building block:

– the cross-over, swapping two light beams, having no parameter, and realizing
the 2 × 2 permutation matrix

S =
(

1
1

)
. (2)

This additional block is not necessary, as it can be synthesized by means of the
P and Q blocks2:

S =
(−i

−i

)
Q2 . (3)

The symbol and the decomposition for the swap block are:

S = =
Q Q

−i

−i .

1 Unfortunately, there seems to be no consensus in the literature about the definition
of ‘beam splitter’, some authors [9,10] giving this name to a one-parameter or even
two-or-three-parameter building block, consisting of a beam splitter (as defined in
the present paper) plus one or two, or three phase shifters.

2 In some technologies direct fabrication of an S may be cheaper than fabrication of
two Qs and two P s, such that this decomposition is not desirable.
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3 Properties

Theorem 1 Any 2-beam unitary circuit can be synthesized by applying four or
less shift gates and two or less beam splitters.

Proof is based on the representation of an arbitrary U(2) matrix, as written with
the help of four real parameters (θ, ϕ, ψ, and χ):

U =
(

cos(ϕ) ei(θ+ψ) sin(ϕ) ei(θ+χ)

− sin(ϕ) ei(θ−χ) cos(ϕ) ei(θ−ψ)

)

and its ZXZ decomposition [14]:

U =
(

α 0
0 β

)
1
2

(
1 + γ 1 − γ
1 − γ 1 + γ

)(
1 0
0 δ

)

or

U =
(

α
β

)
H

(
1

γ

)
H

(
1

δ

)
,

where

α = ei(θ+ϕ+ψ)

β = i ei(θ+ϕ−χ)

γ = e−2iϕ

δ = −i ei(−ψ+χ) (4)

and H denotes the Hadamard matrix, a.k.a. the discrete Fourier matrix F2:

H = F2 =
1√
2

(
1 1
1 −1

)
. (5)

With the identity

H =
(

1
−i

)
Q

(
1

−i

)

or

H
=

Q
−i −i ,

this leads to

U =
(

α
−iβ

)
Q

(
1

−γ

)
Q

(
1

−iδ

)
,

i.e.

U
=

Q Q
α

−iδ −γ −iβ ,

q.e.d.
The above decomposition (3) of the matrix S constitutes an example.



6 A. De Vos

Theorem 2 Any unitary circuit can be synthesized by applying exclusively shift
gates and beam splitters.

Proof is based on the ZXZ decomposition of an arbitrary n×n unitary matrix U
[14–16]:

U = Z1XZ2 ,

where both Z1 and Z2 are n × n diagonal unitary matrices and X is an n × n
unitary matrix with all line sums equal to 1.

On the one hand, both matrices Z1 and Z2 can be synthesized by means of n
phase shifters. On the other hand, the matrix X can be decomposed as follows:

X = Fn

(
1

V

)
F−1

n ,

where Fn is the n × n discrete Fourier matrix and V is an appropriate (n − 1) ×
(n− 1) unitary matrix. In Appendix 1, we demonstrate that, for n ≥ 3, both Fn

and F−1
n can be decomposed into four (n−1)× (n−1) unitary matrices. Hence,

the matrix X can be decomposed into nine (n−1)×(n−1) unitary matrices. By
recursion on n, we thus can synthesize matrix U with exclusively U(1) and U(2)
blocks. As a U(1) block is a phase shift and a U(2) block can, after Theorem 1,
be built with phase shifts and beam splitters, the theorem is proved3.

Theorem 3 Any circuit built by combining exclusively shift gates is the synthe-
sis of a member of a U(1)w subgroup of the unitary group U(w).

This property follows from the fact that the cascade of two shift gates is equiv-
alent to a single phase shift.

Theorem 4 Any circuit, with width w greater than 2, built by combining exclu-
sively beam splitters is the synthesis of a member of a countably infinite subgroup
of U(w).

Proof is in Appendix 2. In contrast, beam-splitter circuits of width w equal to 2,
can only synthesize eight different U(2) matrices, as the matrix group generated
by the matrix Q has order eight4.

4 Synthesis in Case w = 2u

Synthesis methods for unitary linear transformations with arbitrary width w
have been presented in the literature [9,17]. In the present paper, we focus on

3 As the proof is constructive, it can be used as a synthesis algorithm. However, the
resulting circuit is very costly with respect to gate count. More efficient synthesis
methods may be developed.

4 The group is cyclic and consists of the eight matrices Q0 = J , Q1 = Q, Q2 = iS,
Q3 = −Q−1, Q4 = −J , Q5 = −Q, Q6 = −iS, and Q7 = Q−1, where J denotes the

2 × 2 unit matrix
(

1
1

)
.
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the particular case where w is a power of 2. If the width w happens to be a
power of 2, say w = 2u, then we can apply the block-ZXZ decomposition of the
U(w) matrix [14,18,19]:

U = Z1XZ2 .

Here, both Z1 and Z2 are w × w block-diagonal unitary matrices:

Z1 =
(

A
B

)
and Z2 =

(
I

D

)
,

where A, B, and D are appropriate (w/2)× (w/2) unitary matrices and I is the
(w/2) × (w/2) unit matrix. The matrix X is a w × w unitary matrix with all
four block sums equal to I. The matrix X can be decomposed as follows:

X = Gw

(
I

C

)
G−1

w ,

where Gw = G−1
w is the Kronecker product of F2 = H and I:

Gw = H ⊗ I =
1√
2

(
I I
I −I

)

and C is an appropriate (w/2) × (w/2) unitary matrix. The four (w/2) × (w/2)
unitary matrices A, B, C, and D are to be computed according to the algorithm
of Appendix 3.

For the transformation matrix Gw, we have

G2 = H ,

G4 =
1√
2

⎛
⎜⎜⎝

1 1
1 1

1 −1
1 −1

⎞
⎟⎟⎠ =

⎛
⎝1

S
1

⎞
⎠

(
H

H

) ⎛
⎝1

S
1

⎞
⎠ ,

and

G8 =

⎛
⎜⎝

1
1

1
S

1
1

1

⎞
⎟⎠

⎛
⎝

1
1

S
S

1
1

⎞
⎠

⎛
⎜⎝

1
1

1
S

1
1

1

⎞
⎟⎠

(
G4

G4

)
⎛
⎜⎝

1
1

1
S

1
1

1

⎞
⎟⎠

⎛
⎝

1
1

S
S

1
1

⎞
⎠

⎛
⎜⎝

1
1

1
S

1
1

1

⎞
⎟⎠

or

G4

H
=

H
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and

G8

G4

=

G4

.

For arbitrary u, we have

Gw = H ⊗ I = Rw (I ⊗ H) R−1
w , (6)

where the two rearrangements Rw of the w light beams, in fact, convert the easy-
to-implement Kronecker product I⊗H into the desired Kronecker product H⊗I.
This constitutes an example of the fact that the Kronecker products M1 ⊗ M2

and M2 ⊗ M1 of two arbitrary square matrices M1 and M2 are permutation
equivalent. Decomposition (6) is realized by recursively applying

Gw = Kw

(
Gw−1

Gw−1

)
K−1

w ,

where Kw = K−1
w consists of (w/4)2 = 22u−4 swaps, e.g.

K8

=
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and

K16
=

.

The transformation Gw needs as many as 1
4 w(w − 2) beam swaps, besides

w/2 Hadamards. As, after

U =
(

A
B

)
Gw

(
I

C

)
Gw

(
I

D

)
,

an arbitrary U(w) circuit consits of two Gw circuits and four U(w/2) circuits, we
conclude that an arbitrary U(w) circuit needs at most 1

2 w(w − 2) beam swaps,
w Hadamards and four U(w/2) circuits. Hence, in total an arbitrary U(w) needs
at most

– w(wu − 2w + 2)/2 beam swaps,
– w(w − 1) Hadamards, and
– w2 phase shifts,

where u is log2(w). This means we need at most

– w(wu − 2w + 2)/2 beam swaps,
– w(w − 1) beam splitters, and
– w(3w − 2) phase shifts

or

– w(wu − w + 1) beam splitters and
– w2(u + 1) phase shifts.

Among the w2(u + 1) phase shifts, as many as w2u implement the 1 × 1 matrix
(−i), thus having parameter θ equal to 3π/2, the remaining w2 shifts having an
angle parameter to be computed according to Appendix 3.
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5 Comparison with Quantum Computation

In quantum computing, we have, as inputs, not w light-beam modes, but w quan-
tum bits, a.k.a. qubits. Like in linear optics, in quantum computations, the trans-
formation from inputs to outputs is represented by a unitary matrix, however not
of size w×w but of size 2w ×2w. Thus: whereas integrated optics is described by
the Lie group U(w), quantum circuits are described by the Lie group U(2w). This
distinction leads to some surprising differences. E.g., in both computation sys-
tems, the Hadamard matrix (5) plays a prominent role. However, in the present
paper, it is a two-wire circuit, whereas in quantum computation it is a one-wire
circuit. Both systems have a swap gate. However, here, it is represented by the
2×2 permutation matrix (2), whereas in quantum computation it is represented
by the 4 × 4 permutation matrix

⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠ .

A huge difference between quantum unitary circuits, compared to linear uni-
tary circuits, is the existence of controlled subcircuits. Let us e.g. consider the
2n × 2n matrix M :

M =
(

I
V

)
,

where I is the (2n/2)×(2n/2) unit matrix and V is some (2n/2)×(2n/2) unitary
matrix. In quantum computing, this matrix represents an n-qubit circuit, where
the uppermost qubit controls the transformation of the n − 1 remaining qubits.
In classical computing, this matrix represents a 2n-lightbeam circuit, where the
(2n/2) upper beams are unaffected and the (2n/2) lower beams are transformed
according to matrix V , whatever the values of the upper beams.

In spite of the above difference, in both cases we can apply the block-ZXZ
decomposition of Sect. 4. E.g. an 8×8 unitary matrix U represents, in the frame-
work of quantum computing, a 3-qubit circuit. Its block-ZXZ decomposition
leads to four controlled 2-qubit circuits:

U

• H • H •
=

D C B A
.

In the framework of classical optics, however, the very same matrix represents
an 8-beam circuit and the very same decomposition leads to four uncontrolled
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4-beam circuits:

U G8 G8

A

=

D C B

.

6 A Finite Library

We note that the above synthesis methods, in fact, make use of an infinite
library of building blocks, as the block P constitutes a non-countable infinitum
of blocks, the angle parameter θ being allowed to vary smoothly from 0 to 2π.
It is interesting to investigate what happens if we restrict the angle θ to a single
value. We choose here the value π/4 and thus x = ω, where ω denotes the eighth
root of unity, i.e. eiπ/4 = 1+i√

2
. The matrix group generated by matrix P then

has order eight5.
We have the following property:

Theorem 5 Any circuit, with width w greater than 1, built by combining exclu-
sively beam splitters and (ω) phase shifters, is the synthesis of a member of a
countably infinite subgroup of U(w).

Proof is in Appendix 4. Coversely, we have

Theorem 6 For w > 1, any U(w) matrix, with all w2 entries of the form
(aω3 +bω2 +cω+d)/2f with a, b, c, d, and f an integer, can be synthesized with
exclusively beam splitters and (ω) phase shifters.

The theorem immediately follows from Lemma 6 of Gilles and Selinger [20].
Advanced synthesis is provided by Niemann et al. [21]. We stress that the so-
called one-level and two-level matrices in the Gilles–Selinger decomposition, in
the context of linear photonics, do not lead to multiply-controlled gates, as they
do in the context of quantum computing. We illustrate this fact by the following

5 The group is cyclic and consists of eight phase shift matrices: (ω0) = (1), (ω1) = (ω),
(ω2) = (i), (ω3) = (iω), (ω4) = (−1), (ω5) = (−ω), (ω6) = (−i), and (ω7) = (−iω).
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simple 8 × 8 example: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

Ω Ω
1

ω
1

Ω −Ω
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ω is a short-hand notation for (−ω3 + ω)/2 = 1/
√

2. Its decomposition
into three two-level matrices is⎛

⎜⎜⎝
1

1
1

1
0 1

1
1

1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
1

1
1

1
1

1 0
0 ω

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
1

Ω Ω
1

1
1

Ω −Ω
1

⎞
⎟⎟⎠ .

In quantum computation, this leads to a 3-qubit circuit with three doubly-
controlled not gates (a.k.a. Toffoli gates), a doubly-controlled T gate, and a
doubly-controlled Hadamard gate:

U

H • • • •
= • •

T • • .

In contrast, in linear optics, the same decomposition leads to an 8-beam circuit
with a Hadamard gate, a phase shift, and three swap gates6, all uncontrolled:

U
=

H

ω .

As an example of transformation which can be implemented by the finite
library, we mention the 4 × 4 discrete Fourier transform

6 In most practical technologies, the swaps between non-adjacent wires have to be
decomposed into a sequence of swaps between neighbouring wires.
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F4 =
1
2

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ ,

a transformation exploited in many applications [22]. By applying Sect. 4 and
hence five times Appendix 3, we indeed obtain the following synthesis:

G4 G4

H H

ω0

ω1 ω3 ω1

H H

ω6

H H

ω5

H H

ω7

ω7 ω4 ω7 ω5 ω2 ω0 ω5 ω1 ω0 ,

where all w2 = 16 phase gates have an angle parameter θ equal to a multiple of
π/4.

7 Conclusion

Integrated optics allows to implement reversible transformations represented by
unitary matrices. We have investigated the synthesis of such passive linear pho-
tonic circuits, by means of three different libraries of building blocks:

– the beam splitter Q and a continuum of phase shifters P ,
– the beam splitter Q, a continuum of phase shifters P , and the beam swap-

per S,
– the beam splitter Q and the single phase shifter P = (ω).

We have revealed some similarities to as well as differences with quantum com-
putation.

Acknowledgement. The author thanks Stijn De Baerdemacker (University of New
Brunswick) and Otto Muskens (University of Southampton) for valuable discussions.

Appendix 1

We postulate the following decomposition of the n × n discrete Fourier matrix
(with n ≥ 3):

Fn =
(

1
Fn−1

)
G

(
1

F−1
n−1

)
,

as well as its inverse:

F−1
n =

(
1

Fn−1

)
G−1

(
1

F−1
n−1

)
.
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Straightforward computation of
(

1
F−1

n−1

)
Fn

(
1

Fn−1

)
yields

G =

⎛
⎝ c s

s −c
L

⎞
⎠ ,

where c = 1/
√

n = cos(Φ) and s =
√

n − 1/
√

n = sin(Φ), with Φ =
Atan(

√
n − 1 ), and L is an (n − 2) × (n − 2) unitary matrix. Hence, both Fn

and F−1
n can be synthesized by means of two (n − 1) × (n − 1) Fourier matrices,

one 2 × 2 rotation matrix, and one (n − 2) × (n − 2) matrix. This means that
both n × n matrices Fn and F−1

n can be synthesized by means of four unitary
(n − 1) × (n − 1) matrices.

Appendix 2

Assume an n × n matrix M with n distinct eigenvalues zk. Then, according to
the Cayley–Hamilton theorem, we have

M j =
n−1∑
k=0

ckzj
k ,

where the n coefficients ck are appropriate n × n matrices, to be determined by
the n initial conditions

n−1∑
k=0

zj
kck = M j ,

where j obeys 0 ≤ j ≤ n − 1. Hence, with the help of the finite
sequence {M0,M1, ...,Mn−1}, we can compute any member M j of the infi-
nite sequence {Mn,Mn+1, ...}, without having to compute any matrix from
{Mn,Mn+1, ...,M j−1}.

We consider the following circuit of width w = 3:

Q

Q
,

consisting of merely two beam splitters. It is represented by the 3 × 3 unitary
matrix

M =
(

1
Q

) (
Q

1

)
=

1
2

⎛
⎝

√
2 i

√
2 0

i 1 i
√

2
−1 i

√
2

⎞
⎠ .

Its eigenvalue equation is

(z − 1) [ 2z2 − (2
√

2 − 1)z + 2 ] = 0 .



Reversible Computation in Integrated Photonics 15

Hence, its three eigenvalues are

z0 = 1

z1 =
1
4

(
2
√

2 − 1 + i

√
7 + 4

√
2

)

z2 =
1
4

(
2
√

2 − 1 − i

√
7 + 4

√
2

)

or z0 = 1, z1 = eiθ, and z2 = e−iθ with θ = arccos((2
√

2 − 1)/4).
With the help of the matrices M0, M1, and M2, we are able to compute the

matrices c0, c1, and c2 and thus obtain the arbitrary power of M :

M j = zj
0 c0 + zj

1 c1 + zj
2 c2 .

Suffice it here to note that the matrices c1 and c2 are distinct from the zero
matrix.

According to Jahnel [23], the only angles which are a rational multiple of π
(between 0 and π/2) with cosine equal to a quadratic irrational are π/6, π/5, π/4,
and 2π/5 (which have cosines equal to

√
3/2,

√
5/4+1/4,

√
2/2, and

√
5/4−1/4,

respectively). Hence, the angle θ with cos(θ) =
√

2/2 − 1/4 is not a rational
portion of 2π. Thus, as a function of k, neither zk

1 c1 nor zk
2 c2 is periodic. We

conclude that the infinite sequence {M0,M1, ...} is not periodic and that M thus
generates an infinitum of different matrices. Because the matrices generated by
M (and M−1) form a cyclic subgroup of the group generated by beam splitters,
we finally conclude that the order of the latter group is infinity.

Each matrix generated by the two generators
(

1
Q

)
and

(
Q

1

)
has all of its

nine entries of the form (a + b
√

2 + ci + di
√

2)/(
√

2)f with a, b, c, d, and f an
integer. Therefore the number of possible entries is countable. We conclude that
the infinite order of the group is countable.

Appendix 3

Let n be an arbitrary even number. We consider the given n×n unitary matrix U
as composed of four (n/2) × (n/2) blocks:

U =
(

U11 U12

U21 U22

)
,

where U11, U12, U21, and U22 are (n/2) × (n/2) matrices, usually not unitary.
We perform two polar decompositions:

U21 = P21V21

U22 = P22V22 ,

where P21 and P22 are positive semidefinite matrices and V21 and V22 are unitary
matrices. With V21 and V22, we compute the unitary matrix D:

D = i V †
21V22 .
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With D, we compute the two unitary matrices A and B:

A = U11 + U12D
†

B = U21 + U22D
† .

With A and B, we compute the unitary matrix C:

C = A†U11 − B†U21 .

One easily checks that, for n = 2, the above expressions for D, A, B, and C
become the values (4) of δ, α, β, and γ.

Appendix 4

We consider the 2 × 2 matrix M representing the following circuit with four
beam splitters Q and four phase shifters P = (ω):

ω
Q

ω
Q

ω
Q

ω
Q

.

We have

M =
[

Q

(
ω

1

) ]4

.

We rewrite the matrix Q of (1) as follows:

Q =
1
2

(−ω3 + ω ω3 + ω
ω3 + ω −ω3 + ω

)
.

Straightforward computation then yields

M =
1
4

(−3ω3 − ω2 − ω − 1 −ω3 + ω2 − ω + 1
ω3 − ω2 + ω + 1 −ω3 − ω2 − 3ω + 1

)
.

Applying the short-hand notation abcd for aω3 + bω2 + cω + d, its residue mod-
ulo 2 is

M =
1
4

(
1111 1111
1111 1111

)

and its residue modulo 4 is

M =
1
4

(
1333 3131
1311 3311

)
.

We now note the following identity for two matrices modulo 2:

1
2a

(
1111 1111
1111 1111

)
1
2b

(
1111 1111
1111 1111

)
=

1
2a+b

(
0000 0000
0000 0000

)
,
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such that this matrix product is reducible. Next, we note the following identity
for two matrices modulo 4:

1
2a

(
1333 3131
1311 3311

)
1
2b

(
1333 3131
1311 3311

)
=

1
2a+b

(
2222 2222
2222 2222

)
,

such that the matrix product is not reducible a second time. Together, the two
observations lead to the conclusion that, after simplifying fractions, the product
is of modulo-2 type

1
2a+b−1

(
1111 1111
1111 1111

)
.

We apply this result to the case a = j and b = 2 and conclude that the matrix
M j (i.e. the product of M j−1 and M) is of modulo-2 type

1
2j+1

(
1111 1111
1111 1111

)
.

Indeed, we have

M =
1
4

(−3ω3 − ω2 − ω − 1 −ω3 + ω2 − ω + 1
ω3 − ω2 + ω + 1 −ω3 − ω2 − 3ω + 1

)

M2 =
1
8

(
5ω3 − 3ω2 − 3ω − 1 −3ω3 − ω2 − ω − 3
−ω3 − ω2 − 3ω + 3 3ω3 + 3ω2 − 5ω − 1

)

M3 =
1
16

(−ω3 + 13ω2 − 3ω − 3 5ω3 + 3ω2 − 3ω − 5
3ω3 − 3ω2 − 5ω − 5 −3ω3 + 13ω2 − ω + 3

)

M4 =
1
32

(
3ω3 − 5ω2 + 19ω + 1 −5ω3 + 17ω2 + 17ω − 5

17ω3 + 17ω2 − 5ω + 5 −19ω3 + 5ω2 − 3ω + 1

)

M5 =
1
64

(−15ω3 + 19ω2 − 21ω + 27 −21ω3 − 27ω2 + 27ω + 21
−27ω3 + 27ω2 + 21ω + 21 −21ω3 + 19ω2 − 15ω − 27

)

etc.

Moreover, we see that M5 is of the same modulo-4 type as M . We conclude that
the irreducible denominator of M j continues to increase like 2j+1, without limit.
Hence, within the infinite sequence {M,M2,M3, ...}, all denominators and thus
all matrices are different.

Thus this sequence constitutes an infinite set within the matrix group gener-
ated by

(
ω

1

)
and Q. We thus are allowed to say that the group has infinite order.

Because all four entries of each matrix have the form (aω3 + bω2 + cω + d)/2f

with a, b, c, d, and f an integer, we additionally conclude that the infinite order
of the group is countable.
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Optimization of Quantum Boolean
Circuits by Relative-Phase Toffoli Gates
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Abstract. To realize quantum Boolean circuits, Toffoli gates are often
used as logic primitives. Then Toffoli gates are decomposed to phys-
ically realizable gates, i.e., CNOT, H and T gates when we consider
fault-tolerant implementation. The realization cost of a T gate is huge
compared to the other gates, and thus we often consider the number of
T gates. We need seven T gates to decompose a Toffoli gate. However, if
we allow to add some relative phases to some output quantum states, we
can implement a Toffoli gate by only four T gates. Such an approximate
Toffoli gate is called a relative-phase Toffoli gate (RTOF). This paper
proposes an optimization method of quantum circuit by using RTOFs.
When we optimize a circuit by replacing a Toffoli gate with a RTOF,
some relative phase errors are added. Our method tries to correct such
relative phases by using S gates.

Keywords: Relative Phase Toffoli Gate · T Gate · Optimization

1 Introduction

To perform a quantum algorithm to solve a logical problem, we usually need to
design a so-called quantum Boolean circuit to calculate some Boolean functions
related to the target problem [2]. To realize such quantum Boolean circuits, a
Toffoli gate is often used as a logic primitive. After designing a circuit by Toffoli
gates, we decompose each Toffoli gate into physically realizable gates. When we
consider fault-tolerant quantum computation, we consider T, H and CNOT gates
as physically realizable gates, among which the cost of a T gate is considered
to be very expensive. Thus, we often focus on the number of T gates which is
called T-count.

A variant of Toffoli gate called a Relative-Phase Toffoli gate (RTOF, here-
after) [1] has been proposed recently. The T-count of an RTOF is only 4 whereas
T-count of a Toffoli gate is 7. An RTOF can calculate the same logic function
as a Toffoli gate, but the phases of some quantum basis states become differ-
ent after performing an RTOF; we say that an RTOF adds relative phase errors.
Because of the relative phase errors, we cannot simply replace a Toffoli gate with
an RTOF in general, but RTOFs can be utilized when we decompose a general-
ized Toffoli gate because the relative phase errors can be canceled between two

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. A. Mezzina and K. Podlaski (Eds.): RC 2022, LNCS 13354, pp. 20–27, 2022.
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RTOFs in the decomposition. Therefore, we can replace Toffoli gates which do
not change the state of the function of the circuit with RTOFs without adding
relative phase errors.

Fig. 1. Functional representations for the output of a Toffoli gate.

This paper seeks the way to replace Toffoli gates which change the state of
the function of the circuit with RTOFs. More concretely, we propose a method
to erase relative phase errors due to RTOFs. Then, by using our method, we may
be able to decrease T-count of a circuit consisting of Toffoli gates as follows: first
we replace each Toffoli gate with an RTOF gate, and then we erase the relative
phase errors added by RTOFs by using our method. In the following, we present
our idea how to erase relative phase errors efficiently; our method does not use
T gates, but uses S gates whose implementation cost is much less than T gates.

2 Preliminary

2.1 Quantum Boolean Circuits

In this paper, we consider quantum Boolean circuits consisting of Toffoli gates,
T gates, S gates and relative-phase Toffoli gates (RTOFs) [1]. Then, as we will
explain later, it is enough to consider the functionality of such quantum circuits
by using classical Boolean function with phase information independently.

First let us explain our notations how to represent functions in quantum
Boolean circuits. We denote the primary inputs of a circuit by x1, x2, · · · , xn

when we have n primary inputs. Each qubit state in a circuit consisting Toffoli
and RTOF gates can be represented by a Boolean function with respect to
x1, x2, · · · , xn.

For example, Fig. 1 shows a circuit consisting of a Toffoli gate. The primary
inputs are x1, x2 and x3, and the functions to represent the qubit states after
the gate are f1 = x1, f2 = x2, f3 = (x1 · x2) ⊕ x3 as shown in Fig. 1.

A quantum Boolean circuit calculates a Boolean function on a target qubit,
and usually the other qubits should be restored to the input states if the circuit
is used in a quantum algorithm. We can do so very easily by just attaching the
reversed circuit of G without the gates which change the state of the target qubit
on which G calculates the function. In addition, we do not have to consider the
phase information of the gates of G because the relative phase errors are canceled
between G and reversed circuit of G.
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2.2 T Gates and S Gates

After designing a quantum Boolean circuits consisting of Toffoli gates, we need
to decompose each Toffoli gate into physically realizable primitive gates. For
fault-tolerant quantum computation, such primitive gates are often considered
to be CNOT, T and H gates. A T gate is a quantum-specific gate which acts on
one qubit, and it adds +π

4 phase to the quantum state if the qubit is in |1〉. A
T† gate adds −π

4 phase.
In this paper, we also use S and S† gates which add +π

2 and −π
2 phases,

respectively similar to T gates. In other words, an S gate corresponds to two T
gates. However, note that the realization cost of an S gate is much smaller than
a T gate. Thus, in this paper, we utilize S or S† gates when we need to add +π

2
and −π

2 phases.

Fig. 2. A Toffoli gate by primitive
gates.

Fig. 3. An RTOF gate by primitive
gates.

Table 1. Added phases by an RTOF.

input Fπ/2 Fπ F3π/2

000 0 0 0
001 0 0 0
010 0 0 0
011 0 0 0
100 0 0 0
101 0 1 0
110 1 0 0
111 0 0 1

Table 2. An example of phase functions.

input Fπ/2 Fπ F3π/2

000 0 0 0
001 0 0 0
010 0 0 0
011 0 0 0
100 0 0 0
101 0 1 0
110 1 0 0
111 0 0 1

2.3 Relative-Phase Toffoli Gates (RTOFs)

An RTOF (Relative-Phase Toffoli) gate [1] has two control bits and one target
bit. It inverts the state of the target bit (i.e., |1〉 to |0〉 and |0〉 to |1〉) when the
states of the both control bits are |11〉. A Toffoli gate consists of 7 T gates as
shown in Fig. 2 whereas an RTOF consists of 4 T gates as shown in Fig. 3.
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As Fig. 3, an RTOF has three inputs; the input quantum basis states are |000〉
to |111〉. Similar to Toffoli gates, an RTOF swaps |110〉 and |111〉. In addition to
this logic operation, an RTOF adds some phases to some quantum states unlike
Toffoli gates. The added phase are as shown in Table 1. For example, when the
input state is |110〉, a phase +π/2 is added.

3 Optimization By Using RTOFs

To explain our method, first we need to introduce some terminologies to analyze
the added phases by T (T†) and S (S†) gates in the following.

3.1 Phase Functions

Definition 1. For an n-input quantum circuit consisting of RTOF and Toffoli
gates, an added phase function is defined as a mapping from one specific
pattern of n inputs, X, to the added phase to the input state corresponding to
X by the circuit. In the following, we use the following notation P (X) to denote
an added phase function: P (X) = θ (0 ≤ θ < 2π).

For example, we can consider that Table 1 shows the truth table for the added
phase function of the circuit as shown in Fig. 3.

We also need the following definition to explain our method.

Definition 2. For an added phase function P (X) of a quantum circuit, we
define a phase function which is the following Boolean function with respect
to the input variables X of the circuit:

Fθ(X) = 1 if (P (X) = θ), 0 otherwise.

For example, for the added phase function as shown in Table 1, three phase
functions, Fπ

2
, Fπ, F 3π

2
can be shown in Table. 2. Note that a phase 2π is equiv-

alent to a phase 0. Thus a phase −π
2 is equivalent to a phase 3π

2 .
We also use the following notation.

Definition 3. ON(F ) is defined as the number of input patterns such that F
becomes 1.

3.2 Erasing Relative Phases

Now we are ready to explain our method to optimize a quantum Boolean circuit
consisting of Toffoli gates. First we replace each Toffoli gate with an RTOF. Then
T-count becomes 4/7 times because T-count of a Toffoli gate is 7 and T-count of
an RTOF is 4. However, the circuit should have undesired added relative phases
by RTOFs.

Thus our main problem considered in this paper is to erase such relative
phases efficiently. For the problem, our first observation is as follows. An RTOF
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adds only relative phases of π
2 , π or 3π

2 . These phases corresponds to 2, 4, 6
times of applications of T gates. Because T 2 = S, we can cancel the above
relative phases by S and S† gates. Therefore our idea is to use S and S† gates,
and do not use T or T† gates whose implementation cost would be much higher
than those of S and S† gates for the future fault-tolerant realization.

The outline of our method is as follows: we apply an S† gate to all the input
states, X, such that P (X) = π

2 . Then we can make ON(Fπ
2
) to be 0. Our

basic strategy to do so is to put the following sub-circuit at the beginning. The
added circuit works as follows: (1) it first calculates P (X) at one qubit, then
(2) it applies S† gate on the qubit, and (3) it calculates P (X) again to reverse
all the operations to calculate P (X). For the states, X, such that P (X) = π or
P (X) = 3π

2 , we can modify the relative phases in similar ways where the number
of S or S† gates may be different. For example, we need to apply S† twice to
erase phase π.

As explained, our basic strategy is to make sub-circuits to calculate functions
which are used to erase the relative phases. If useful functions to erase relative
phases already exist, we can utilize them instead of making new sub-circuits.
Thus, we try to find a useful function f such that the ON-set of f is included
in the ON-set of Fθ for some θ; we apply S or S† gates appropriate times on
a qubit where f is calculated in order to erase the relative phase of θ. By this
operation, we can decrease ON(Fθ) with only adding S or S† gates. So we try
to find such useful functions and apply S or S† gates as much as possible before
we make the above-mentioned additional sub-circuits. The above procedure can
be summarized in Algorithm 1.

Algorithm 1. Erasing Relative Phases.
Input: A quantum Boolean circuit consisting of RTOFs.
Output: A modified quantum Boolean circuit without relative phase errors.

Calculate each function after each gate, and the final relative phases for all the
quantum states for the given circuit.
while a useful function f exists to decrease ON(Fθ) for each θ such that ON(Fθ) �= 0
do

Apply S or S† gates appropriate times on a qubit where f is calculated.
end while
for θ = π

2
, π, 3π

2
do

if ON(Fθ) �= 0 then
Add a sub-circuit to calculate a Boolean function Fθ(X) at the beginning.
Apply S or S† gates appropriate times on a qubit where Fθ(X) is calculated.
Add a sub-circuit to calculate a Boolean function Fθ(X) again after the above

S or S† gates.
end if

end for

Let us show an example how our method can erase the relative phases. Sup-
pose we are given a circuit consisting of Toffoli gates as shown in Fig. 4, and we
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Fig. 4. Input: a circuit consisting of Toffoli gates.

Fig. 5. Output: a circuit after erasing the relative phase errors.

want to optimize the circuit. The circuit has three inputs, and one ancilla qubit
where we calculate a function. The function realized after each gate can be repre-
sented in Table 3. Because we have three variables, the truth table for each func-
tion has eight 0/1 entries, which can be represented by an 8-bit 0/1 string. Thus,
in the table, each function is represented by an 8-bit 0/1 string. For example,
the second row of column “g1” (00111100) corresponds to x1 ⊕x2. The left-most
bit of the bit string corresponds to the input pattern: (x1, x2, x3) = (0, 0, 0), and
the right-most bit corresponds to the input pattern: (x1, x2, x3) = (1, 1, 1).

First we replace all the Toffoli gates in the circuit with RTOFs. Then T-
count becomes 4/7 times, but some undesired relative phases are added. Note
that when we design a quantum Boolean circuit we need to restore the input
states (i.e., |x1〉 to |x3〉 in the above example). To do so, we have pairs of identical
Toffoli gates whose target bits are on the first three bits in this example. When we
replace such a pair of two identical Toffoli gates with two RTOFs, we can cancel
the added phases; we make the phases by the two RTOFs opposite. Therefore,
we only consider the added phases by RTOFs whose target bits are the forth bit
where we calculate the target function f in the following.

In Table 3, we show the added phase by each gate whose target bits are the
forth bit in “Added Phase.” “Total Phase” in a column “gi” is the sum of “Added
Phase” up to gi. For example, “Total Phase” of the column “g6” (0000π

2 00
π
2 )

means the total added phases by g4 and g6. The added phase function of the
circuit can be represented by P1 = 03π

2
3π
2 0 3π

2 0π 3π
2 . This representation is similar

to the above representation for logic functions. For example, the second 3π
2 means

that the circuit adds phase 3π
2 to state |001〉.
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Table 3. The Function and Phase information after each gate in Fig. 4.

input g1 g2 g3 g4 g5 g6

x1 00001111 00001111 00001111 00001111 00001111 00010111 00010111
x2 00110011 00111100 00111100 00111010 00111010 00111010 00111010
x3 01010101 01010101 01011001 01011001 01011001 01011001 01011001
|0〉 00000000 00000000 00000000 00000000 00011000 00011000 00001001
Added Phase 000π

2
π
2
000 000 3π

2
000π

2

Total Phase 000π
2

π
2
000 0000π

2
00π

2

input g7 g8 g9 g10 g11 g12 g13

x1 00010111 00010111 01110100 01110100 01110100 01110100 01110100
x2 00111010 00111010 00111010 01011010 01011010 01011010 01011010
x3 01011001 01100011 01100011 01100011 01100011 01100011 01100011
|0〉 00011011 00011011 00011011 00011011 01011001 00111001 01101001
Added Phase 000π

2
00π

2
2π
2

0 3π
2
0ππ0π

2
0 0 3π

2
π
2
π0000 0π

2
π 3π

2
0000

Total Phase 000π
2

π
2
0π

2
3π
2

0 3π
2
0 3π

2
3π
2
0π 3π

2
0π π

2
π
2

3π
2
0π 3π

2
0 3π

2
3π
2
0 3π

2
0π 3π

2

Then, we will erase the added relative phases by Algorithm 1. In the algo-
rithm, we first try to find an existing function by which we can make ON(Fπ) = 0
or ON(F 3π

2
) = 0. The function on the forth bit after g13 is such a function. Thus,

we put an S gate on the forth bit after g13 by which the added phase function
of the circuit is changed to P2 = 000000π0; ON(Fπ) becomes 1.

There is no more function to erase more phases from P2, thus we go to the
next step; we make a function f = 00000010 (which is x1 ·x2 ·x3) at the beginning
of the circuit, and then we put two S gates after that in order to cancel the phase
π. The transformed circuit is as shown in Fig. 5.

In this example, we can reduce T-count by 3 × 6 = 18 when we replace the
Toffoli gates whose target bits are on the forth bit (where we calculate the target
function f) with RTOFs at first. Then we need to add four RTOFs gates to erase
the relative phase errors; T-count is increased by 4× 4 = 16. Therefore, in total,
our method can decrease T-count by 2.

Note that in the above example we do not use Toffoli gates, but we use
RTOFs to make an additional function. The reason is as follows. We can always
pair two identical RTOFs in the added circuit in our algorithm. For example, in
the left-hand sub-circuit before the dotted line in Fig. 5, we have two pairs of
identical RTOFs. If there are two identical RTOFs, we can cancel the relative
phases by swapping T and T† in one RTOF so that the relative phases added
by one RTOF becomes totally opposite to those by the other RTOF.

4 Conclusion

This paper proposed an optimization of quantum circuits consisting of Toffoli
gates by utilizing RTOFs. Our key idea is to use S/S† gates to erase undesired
relative phases. Obviously our work is not completed; we need to apply our
optimization methods to benchmark circuits to analyze how our method can
optimize circuits.



Optimization of Quantum Boolean Circuits by Relative-Phase Toffoli Gates 27

References

1. Maslov, D.: Advantages of using relative-phase toffoli gates with an application to
multiple control toffoli optimization. Phys. Rev. A 93(2), 022311 (2016)

2. Yamashita, S., Minato, S.I., Miller, D.M.: Ddmf: an efficient decision diagram struc-
ture for design verification of quantum circuits under a practical restriction. IEICE
Tran. Fund. Electroni. Commun. Comput. Sci. E91-A(12), 3793–3802 (2008).
https://doi.org/10.1093/ietfec/e91-a.12.3793, http://hdl.handle.net/2115/47392

https://doi.org/10.1093/ietfec/e91-a.12.3793
http://hdl.handle.net/2115/47392


Constructing All Qutrit Controlled
Clifford+T gates in Clifford+T

Lia Yeh1(B) and John van de Wetering1,2

1 University of Oxford, Oxford, UK
lia.yeh@cs.ox.ac.uk

2 Radboud University Nijmegen, Nijmegen, Netherlands

Abstract. For a number of useful quantum circuits, qudit constructions
have been found which reduce resource requirements compared to the
best known or best possible qubit construction. However, many of the
necessary qutrit gates in these constructions have never been explicitly
and efficiently constructed in a fault-tolerant manner. We show how to
exactly and unitarily construct any qutrit multiple-controlled Clifford+T
unitary using just Clifford+T gates and without using ancillae. The T -
count to do so is polynomial in the number of controls k, scaling as
O(k3.585). With our results we can construct ancilla-free Clifford+T
implementations of multiple-controlled T gates as well as all versions
of the qutrit multiple-controlled Toffoli, while the analogous results for
qubits are impossible. As an application of our results, we provide a pro-
cedure to implement any ternary classical reversible function on n trits
as an ancilla-free qutrit unitary using O(3nn3.585) T gates.

Keywords: Qutrits · Gate Synthesis · Clifford+T

1 Introduction

Classical computing technology works with bits, where the state of the funda-
mental information unit can be in one of two states. It is then not surprising
that quantum computing researchers have mostly studied qubits, where the fun-
damental unit of information can be in a superposition of two states. However,
there are several benefits we can get by working instead with qudits, where we
work with higher-dimensional systems. One such benefit is that many proposed
physical types of qubits are actually restricted subspaces of higher-dimensional
systems, where the natural dimension can be much higher. By working with
qudits we can exploit the additional degrees of freedom present in the sys-
tem. Qudit quantum processors based on ion traps [49] and superconducting
devices [4,55,56] have already been demonstrated. By using the otherwise wasted
dimensions accessible in a qudit we increases the device’s information density,
which leads to advantages in for instance runtime efficiency, resource require-
ments, magic state distillation noise thresholds, and noise resilience in commu-
nication [10,12,44,53].
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For qudits to make a good foundation for a quantum computer, we need
techniques to do fault-tolerant computation with them. A well-studied approach
for fault-tolerant computation with qubits is based on the observation that many
quantum error correcting codes can natively implement Clifford gates, so that we
only need to realise a fault-tolerant implementation of some non-Clifford gate.
A popular choice for this gate is the T gate, a single-qubit gate that can be
implemented by injecting its magic state into a circuit. As these magic states
can be distilled to a desired level of fidelity, we can then implement approxi-
mately universal quantum computation fault-tolerantly [9]. Qudit analogues of
this Clifford+T gate set have been developed, so that this approach of magic
state distillation and injection can be used to do fault-tolerant computation for
qudits of any dimension [11].

In this paper we will work with qutrits, three-dimensional systems. These
are the most well-studied higher-dimensional qudit. Qutrits have been used to
reduce the circuit complexity of implementing multi-controlled qubit gates [20,
27,31,36,46]. By replacing some or all of the information carriers to be qutrits
instead of qubits, the |2〉 energy level of the qutrit can be utilised to reduce
resource requirements in terms of number of ancillae, entanglement complexity,
gate depth and gate count, and non-Clifford gate count. For instance, in Ref. [20]
they showed how to implement an n-controlled (qubit) Toffoli gate in O(log n)
depth, using just O(n) two-qutrit gates and no ancillae. More generally, we say a
qutrit circuit emulates a qubit gate when the action on the {|0〉 , |1〉} subspace is
equal to the qubit gate. Emulating a qubit logic gate with a qutrit unitary can be
more efficient than only using qubits. This is because we can utilise the additional
|2〉 state as an intermediate storage to decrease the cost of implementation. The
gates used in these constructions involve what we will call |2〉-controlled gates—
controlled unitaries that only fire when the control qutrit is in the |2〉 state, so
that this gate acts as the identity on the target if the control is in the |0〉 or |1〉
state. In fact, many qutrit-native algorithms use |2 · · · 2〉-controlled logic gates,
including various ternary adders and incrementers [20,24,30].

Because of the ubiquity of qutrit-controlled gates, it is crucial to under-
stand how we can implement these fault-tolerantly if we wish to use them for
practical purposes. Unfortunately, while there is a ‘naive’ decomposition into
qutrit Clifford+T gates of for instance the |2 · · · 2〉-controlled X gate which
uses O(n) clean ancilla for n ternary controls [30], ancilla-free implementa-
tions require either uniformly controlled Givens rotations [28] or qutrit-controlled
qubit gates [15], both of which are not fault-tolerant (at least as stated). The
construction of Ref. [42] is conceivably fault-tolerant, but it utilises an exponen-
tial number of gates. This raises the question of how we can implement these
|2 · · · 2〉-controlled gates efficiently using more primitive and fault-tolerant gates.

In this paper we show that when we have any qutrit Clifford+T unitary
U , we can construct an ancilla-free exact Clifford+T implementation of the
|2 · · · 2〉-controlled U unitary which uses a number of gates polynomial in the
number of controls. Specifically, for k controls we require O(k3.585) gates (this
number comes from log2 6 ≈ 3.585). Our work means in particular that we have
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fault-tolerant and ancilla-free implementations of all the constructions mentioned
above. Note that our result, constructing controlled Clifford+T unitaries for any
Clifford+T unitary, is not possible with qubits when we don’t allow ancillae.
For instance, it is not possible to construct a qubit controlled-T gate [33] or
a three-controlled Toffoli [17] using just Clifford+T gates and no ancillae. The
constructions in this paper build on our work in a previous paper where we
showed how to construct the qutrit single-controlled Hadamard and S gates,
which we used to exactly synthesise the qutrit metaplectic gate [18]. A software
implementation of some of our constructions can be found on Github1.

As an application of our construction we give an algorithm for implementing
any reversible classical trit function f : {0, 1, 2}n → {0, 1, 2}n as a unitary n-
qutrit Clifford+T circuit using at most O(3nn3.585) Clifford+T gates. We find a
lower bound for this problem of O(3n · n/ log n) so that our result here is within
a polynomial factor of optimal.

The paper is structured as follows. In Sect. 2, we recall the basics of the
qutrit Clifford+T gate set and the different types of control wires for qutrit
unitaries, and we recall several known results for controlled qutrit unitaries.
Then in Sect. 3, we present exact ancilla-free Clifford+T constructions of any
|2〉⊗n-controlled Clifford+T unitary. In Sect. 4 we show how we can use our
results to implement any ternary classical reversible function as a Clifford+T
ancilla-free unitary. Finally, we end with some concluding remarks in Sect. 5.

2 Preliminaries

A qubit is a two-dimensional Hilbert space. Similarly, a qutrit is a three-
dimensional Hilbert space. We will write |0〉, |1〉, and |2〉 for the standard compu-
tational basis states of a qutrit. Any normalised qutrit state can then be written
as |ψ〉 = α |0〉 + β |1〉 + γ |2〉 where α, β, γ ∈ C and |α|2 + |β|2 + |γ|2 = 1.

Several concepts for qubits extend to qutrits, or more generally to qudits,
which are d-dimensional quantum systems. In particular, the concept of Pauli’s
and Cliffords.

Definition 1. For a d-dimensional qudit, the Pauli X and Z gates are defined
as

X |k〉 = |k + 1〉 Z |k〉 = ωk |k〉 (1)

where ω := e2πi/d is such that ωd = 1, and the addition |k + 1〉 is taken modulo
d [23,26]. We define the Pauli group as the set of unitaries generated by tensor
products of the X and Z gate. We write Pd

n for the Paulis acting on n qudits.

For qubits this X gate is just the NOT gate, while Z = diag(1,−1). For the
duration of this paper we will work solely with qutrits, so we take ω to always
be equal to e2πi/3.

1 https://github.com/lia-approves/qudit-circuits/tree/main/
qutrit control Clifford T.

https://github.com/lia-approves/qudit-circuits/tree/main/qutrit_control_Clifford_T
https://github.com/lia-approves/qudit-circuits/tree/main/qutrit_control_Clifford_T
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For a qubit there is only one non-trivial permutation of the standard basis
states, which is implemented by the X gate. For qutrits there are five non-trivial
permutations of the basis states. By analogy we will all call these ternary X
gates. These gates are X+1, X−1, X01, X12, and X02. The gate X±1 sends |t〉
to |(t ± 1) mod 3〉 for t ∈ {0, 1, 2}; X01 is just the qubit X gate which is the
identity when the input is |2〉; X12 sends |1〉 to |2〉 and |2〉 to |1〉, and likewise for
X02. Note that the qutrit Pauli X gate is the X+1 gate, while X† = X2 = X−1.

2.1 The Clifford+T gate set

Another concept that translates to qutrits (or more general qudits) is that of
Clifford unitaries.

Definition 2. Let U be a qudit unitary acting on n qudits. We say it is Clifford
when every Pauli is mapped to another Pauli under conjugation by U . I.e. if for
any P ∈ Pd

n we have UPU† ∈ Pd
n.

Note that the set of n-qudit Cliffords forms a group under composition. For
qubits, this group is generated by the S, Hadamard and CX gates. The same is
true for qutrits, for the right generalisation of these gates.

Throughout the paper we will write ζ for the ninth root of unity ζ = e2πi/9.
Note that ζ3 = ω and ζ9 = 1.

Definition 3. The qutrit S gate is S := ζ8diag(1, 1, ω). I.e. it multiplies the |2〉
state by the phase ω (up to a global phase).

We adopt the convention of this global phase of ζ8 from Ref. [19], as it will make
some of our results more elegant to state (without it we would often have to say
‘up to global phase’).

For qubits, the Hadamard gate interchanges the Pauli Z eigenbasis {|0〉 , |1〉}
and the X eigenbasis, consisting of the states |±〉 := 1√

2
(|0〉 ± |1〉). The same

holds for the qutrit Hadamard. In this case the X basis consists of the following
states:

|+〉 :=
−i√

3
(|0〉 + |1〉 + |2〉) (2)

|ω〉 :=
−i√

3
(|0〉 + ω |1〉 + ω2 |2〉) (3)

|ω2〉 :=
−i√

3
(|0〉 + ω2 |1〉 + ω |2〉) (4)

Definition 4. The qutrit Hadamard gate H is the gate that maps |0〉 �→ |+〉,
|1〉 �→ |ω〉 and |2〉 �→ |ω2〉. As a matrix:

H :=
−i√

3

⎛
⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠ (5)
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We choose the global phase of the H gate to be −i to be in line with Refs. [18,19].
Note that, unlike the qubit Hadamard, the qutrit Hadamard is not self-

inverse. Instead we have H2 = −X12 so that H4 = I. This means that H† = H3.
We have Z = H†X+1H, and hence we can call Z = Z+1 by analogy. We

can then also define the ‘Z permutation gates’ by analogy. For instance, Z01 :=
HX01H

†. It will in fact be helpful to define a larger class of Z phase gates.

Definition 5. We write Z(a, b) for the phase gate that acts as Z(a, b) |0〉 = |0〉,
Z(a, b) |1〉 = ωa |1〉 and Z(a, b) |2〉 = ωb |2〉 where we take a, b ∈ R.

We define Z(a, b) in this way, taking a and b to correspond to phases that are
multiples of ω, because Z(a, b) will turn out to be Clifford iff a and b are integers,
so that we can easily see from the parameters whether the gate is Clifford or
not. Note that the collection of all Z(a, b) operators constitutes the group of
diagonal single-qutrit unitaries modded out by a global phase. Composition of
these operations is given by Z(a, b) · Z(c, d) = Z(a + c, b + d). Note that up to a
global phase we have S = Z(0, 1).

In Definition 5 we defined the Z phase gate. Similarly, we can define the X
phase gates, that give a phase to the X basis gates.

Definition 6. We define the X phase gates to be X(a, b) := HZ(a, b)H† where
a, b ∈ R.

We have in fact already seen examples of such X phase gates: X+1 = X(2, 1)
and X−1 = X(1, 2).

Note that any single-qutrit Clifford can be represented (up to global phase)
as a composition of Clifford Z and X phase gates. In particular, we can represent
the qutrit Hadamard in the following ways [21]:

H = Z(2, 2)X(2, 2)Z(2, 2) = X(2, 2)Z(2, 2)X(2, 2) (6)

H† = Z(1, 1)X(1, 1)Z(1, 1) = X(1, 1)Z(1, 1)X(1, 1) (7)

In analogy to its qubit counterpart, we will call these Euler decompositions of
the Hadamard.

The final Clifford gate we need is the qutrit CX gate.

Definition 7. The qutrit CX gate is the unitary that acts as CX |i, j〉 =
|i, i + j〉 where the addition is taken modulo 3.

Proposition 1. Let U be a qutrit Clifford unitary. Then up to a global phase U
can be written as a composition of the S, H and CX gates.

Clifford gates are efficiently classically simulable, so we need to add another
gate to get a universal gate set for quantum computing [23]. This brings us to
the definition of the qutrit T gate.

Definition 8. The qutrit T gate is the Z phase gate defined as T :=
diag(1, ζ, ζ8) [11,26,45].
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Note that we could have written T = Z(1/3,−1/3) as well.
Like the qubit T gate, the qutrit T gate belongs to the third level of the

Clifford hierarchy, can be injected into a circuit using magic states, and its
magic states can be distilled by magic state distillation. This means that we can
fault-tolerantly implement this qutrit T gate on many types of quantum error
correcting codes. Also as for qubits, the qutrit Clifford+T gate set is approx-
imately universal, meaning that we can approximate any qutrit unitary using
just Clifford gates and the T gate [13, Theorem 1].

2.2 Controlled Unitaries

When we have an n-qubit unitary U , we can speak of the controlled gate that
implements U . This is the (n + 1)-qubit gate that acts as the identity when the
first qubit is in the |0〉 state, and implements U on the last n qubits if the first
qubit is in the |1〉 state.

For qutrits there are multiple notions of control.

Definition 9. Let U be a qutrit unitary. Then the |2〉-controlled U is the unitary
that acts as

|0〉 ⊗ |ψ〉 �→ |0〉 ⊗ |ψ〉 |1〉 ⊗ |ψ〉 �→ |1〉 ⊗ |ψ〉 |2〉 ⊗ |ψ〉 �→ |2〉 ⊗ U |ψ〉
I.e. it implements U on the last qutrits if and only if the first qutrit is in the |2〉
state.

Note that by conjugating the first qutrit with X+1 or X−1 gates we can make
the gate also be controlled on the |1〉 or |0〉 state.

A different notion of qutrit control was introduced in Ref. [8]:

Definition 10. Given a qutrit unitary U we define

Λ(U) |c〉 |t〉 = |c〉 ⊗ (U c |t〉). (8)

I.e. we apply the unitary U a number of times equal to to the value of the control
qutrit, so that if the control qutrit is |2〉 we apply U2 to the target qutrits.

The Clifford CX gate defined earlier is in this notation equal to Λ(X+1).
Note that we can get this latter notion of control from the former one: just
apply a |1〉-controlled U , followed by a |2〉-controlled U2. Adding controls to a
Clifford gate generally makes it non-Clifford. In the case of the CX gate, which
is Λ(X+1), it is still Clifford, while the |2〉-controlled X+1 gate is not Clifford.

A number of Clifford+T constructions for controlled qutrit unitaries are
already known. For instance, all the |2〉-controlled permutation X gates can
be built from the constructions given in Ref. [6], which we present, suitably
modified to be consistent with our notation. The |0〉-controlled Z gate can be
constructed by the following 3 T gate circuit [8, Figure 6]:

0

Z

=
T X T X T X

ΛΛ Λ

(9)
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Here the circles with a 0 or Λ inside denote controls of the types defined above.
By conjugating the control qutrit by either X† before and X after, or X before
and X† after, the |1〉- and |2〉-controlled versions of Z are respectively obtained.
Taking the adjoint of Eq. (9) has the effect of changing the target operation from
Z to Z†. Finally, the target can be changed to X or to X†, by conjugating by
a H and H† pair. Using these gates we can build the |2〉-controlled X01 gate,
which is a variation of Ref. [6, Figure 17]:

(10)
Conjugating by the appropriate single-qutrit Clifford gates, these two circuits (9)
and (10) suffice to construct any singly-controlled permutation X or Z gate.
Note that the blue and red colors of the controls here are just to more clearly
show which type of control the gate has and that the colors have no further
significance.

The work done in Ref. [6] also describes an approach which could be applied
to constructing the |2〉⊗k-controlled Z+1 gate for any k, and hence also the
|2〉⊗k-controlled Z−1, X+1 and X−1 gates for any k, by solving a system of
linear equations modulo 3 where the number of equations is exponential in k.
They present the explicit circuit for this for k = 1, but not for any k > 1. Their
method does not suffice to construct the k-controlled X01 gate due to the X01

gate not being diagonal when conjugated by Hadamards.
A complication when trying to construct controlled unitaries, is that usually

irrelevant global phases becomes ‘local’ and hence must be dealt with accord-
ingly [1, Lemma 5.2].

Definition 11. A controlled global phase gate is a controlled unitary where the
unitary is eiφ

I, for an identity matrix I and some phase φ.

The number of qutrits the identity matrix acts on in this definition is irrelevant as
the phase factor can be “factored out” from the tensor product of the controlled
and target qutrits:

2

...

2

ei 2
3 πγ

I
mm

n

2

2

...

2

m

n

Z(0, γ)

=

2

...
2

m

n Z(0, γ)
=

2

2...

(11)

Here we wrote the global phase φ as φ = γ · 2π/3 so that we can represent the
phase gate as a multiple of ω.
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We will see that it can be easier or more cost effective to construct a controlled
unitary ‘up to a controlled global phase’, and that to implement the unitary
exactly, additional work must be done. A generalisation of this idea was used to
find more efficient decompositions for qubit controlled gates in Ref. [38].

In previous work [18] we also found a construction of the |2〉-controlled S
gate and the |2〉-controlled Hadamard gate:

2

S
=

X01

2

X+1T † X01 X01

2

X−1T X01

(12)

(13)
Note that while in Ref. [18] these constructions were only correct up to a

controlled global phase, in this paper we defined S and H to include these global
phases, so they don’t appear here. While these are thus exact constructions for
adding one |2〉-control to the S and H gates, if we wish to use the gates in these
circuits as a base for adding more controls, we will need to also add controls to
the Z(0, 1) gate in Eq. 13.

3 Adding Controls to Clifford+T Gates

In this section we will implement each the |2〉⊗k-controlled versions of every
qutrit Clifford+T unitary. As Clifford+T unitaries are built out of Hadamard,
CX, S and T gates, it suffices to show how we can construct k-controlled versions
of each of these gates.

We will do this in stages, first showing how to construct the X permutation
gates with two controls, and then any number of controls, before moving on to
the other Clifford+T gates.

3.1 Permutation Gates with Two Controls

Before we can make the step to having an arbitrary number of controls, we first
need to construct the permutation gates with two controls and specifically the
|22〉-controlled X01 gate. To do this we use the following lemma that allows us
to add more controls to a unitary, once we know how to construct it with just
one control.

Lemma 1. For any qutrit unitary V with a construction for |2〉-controlled V
and |2〉-controlled V †, we can build the circuit consisting of the |22〉-controlled
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V multiplied by the |21〉-controlled V 2 unitary:

V 2

22

V

2 1 =

V

2 2

V †

1X+1

2

X−1

V

1 (14)

Lemma 1 is easily shown to be correct by doing case distinctions on the control
wires. While we believe this construction to be new, it is based on the qubit
Sleator-Weinfurter decomposition [1, Lemma 6.1]:

V 2

=

V V †

+ +

V

(15)

We note that Corollary 1 contradicts the statement of Ref. [41] that “a 5-gates
Barenco et al. type of realization of a ternary (generalised) Toffoli gate without
adding an ancillary line is simply not possible”; their analysis of ternary gener-
alizations of the Sleator-Weinfurter decomposition did not account for decom-
positions of the form of Eq. (14).

If we pick V = X01 in Lemma 1, then we have V 2 = I, so that this construc-
tion gives us a way to construct the |22〉-controlled X01 using just |2〉-controlled
X01, X+1 and X−1 gates, which we already know how to construct in Clifford+T .

Lemma 2. We can construct the |22〉-controlled X01 gate in Clifford+T without
using any ancilla.

Note that by conjugating by the appropriate single-qutrit Cliffords on the bottom
qutrit, we can also construct the |22〉-controlled X12 and X02 gates.

Remark 1. The |22〉-controlled X01 gate was first decomposed by Di and Wei [15]
in terms of qubit Clifford+T operations, where the CX gate could be performed
pairwise on any two of the three qutrit Z-basis states; as far as we are aware, there
does not exist an error correction protocol that can, without code switching,
correct qubit Clifford operations on all three pairs of Z-basis states. Moraga [42]
found an alternative decomposition of the |22〉-controlled X01 gate, in terms
of |2〉-controlled qutrit X gates—which around the same time was shown by
Bocharov et.al. to be constructable in qutrit Clifford+T [6]. Hence, it was in
principle already known how to construct the qutrit |22〉-controlled X01 gate
in Clifford+T , but this was never pointed out explicitly. Note furthermore that
our construction has the benefit of arising in a systematic way from a general
qutrit Sleator-Weinfurter construction, which enables us to add controls to a
wide variety of unitaries.
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We can use the |22〉-controlled X01 gate to build the |22〉-controlled X+1 gate.
To do this we will adapt a well-known construction for qubit controlled phases.
Recall that if we can implement k-controlled Toffoli gates and the square root of
a phase gate, that we can then also implement the k-controlled phase gate [1]:

Z(α)

... ∼=

Z(α/2) +

...

Z(−α/2) +

... (16)

This works because when the Toffoli ‘fires’ the X gate is applied, and we have
XRZ(α)X ∝ Z(−α).

Lemma 3. We can construct the |22〉-controlled X+1 gate in Clifford+T without
using any ancillae.

Proof. Consider the following circuit:

2

X+1

2

=

X−1

2

X12

2

X+1

2

X12

2

(17)

This works because X12X+1X12 = X−1 and X2
−1 = X+1.

By conjugating by appropriate Clifford gates we then see we have the follow-
ing corollary.

Corollary 1. We can construct with ancillae in Clifford+T any |xy〉-controlled
X permutation gate where x, y ∈ {0, 1, 2}.

3.2 Permutation Gates with Any Number of Controls

Now let’s see how we can generalise these constructions to have any number of
controls. Here instead of building the controlled X+1 gate out of the controlled
X01, we will go in the opposite direction. In order to efficiently build the |2〉⊗k-
controlled X+1 gate, we will adapt a construction for multiple-controlled Toffolis
for qubits that requires one borrowed ancilla.

Definition 12. A borrowed ancilla is an ancilla that can be in any state, and
that is returned to the same state after the operation is finished.

Having a borrowed ancilla just means that in the circuit we are considering there
is at least one other qutrit that is not directly involved with our construction.
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We base our construction on the following qubit identity for Toffolis [1,
Lemma 7.3]:

=

+
+

+
+

+

...
...

...

...
...

... (18)

Using this construction, a k-controlled Toffoli where k = 2m can be decomposed
into 4 Toffolis with k/2 = 2m−1 controls. Iterating this procedure then requires
O(k2) ‘standard’ Toffolis with 2 controls each.

Lemma 4. We can construct the |2〉⊗k-controlled X+1 gate using O(k2.585)
Clifford+T gates and using one borrowed ancilla.

Proof. Consider the following identity:

2

X+1

2

=

2

2

...

...

X+1

2

2

X+1

2

2

...

...
2

X+1

2

2

X+1

2

2

...

...
2

X+1

2

2

X+1

2

2

...

...
2

(19)

To see this is correct first note that it is the identity when any of the top control
wires is not in the |2〉 state (as doing X+1 three times is just the identity). As
such, let us assume they are all in the |2〉 state so that we can ignore these control
wires. We are cycling the value of the ancilla three times, which means that the
controlled X+1 gate on the target qutrit fires exactly once, namely when the
ancilla is put into the |2〉 state. As we cycle the value of the ancilla three times,
it is put back into the state that it started in.

We can use Eq. (19) to reduce the implementation of a |2〉⊗k-controlled X+1

gate where k = 2m to a sequence of 6 |2〉⊗k/2-controlled X+1 gates. Letting
C(m) denote the number of |22〉-controlled X+1 gates needed to write the 2m-
controlled X+1 gate, we then get the relation C(m) = 6C(m − 1). As C(1) = 1
we calculate C(m) = 6m−1 = 1

62m log2 6. Substituting k = 2m we then see we
require O(klog2 6) of the base gate, which we can round up to O(k2.585).

Lemma 5. We can construct the |2〉⊗k-controlled X01 gate using O(k3.585)
Clifford+T gates without using any ancillae.
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Proof. Consider the following generalised version of Eq. (14), for which the qubit
analogue is [1, Lemma 7.5]:

V 2

22

V

2 1 =

V V †

1X+1 X−1

V

1

22
...

...
2

2
...

2

2
...

2

2
...

(20)

Again taking V = X01, we see that we can reduce the construction of the |2〉⊗k-
controlled X01 gate to the construction of the |2〉⊗k−1-controlled X01 gate at the
cost of introducing two |2〉⊗k−1-controlled X+1 gates and two |2〉-controlled X01

gates. Iterating the procedure we see then that the full construction requires 2k
|2〉-controlled X01 gates and 2k |2〉⊗m-controlled X+1 gates where m ≤ k − 1.
The cost of this is dominated by the controlled X+1 gates, which cost O(k2.585)
gates each. As we have O(k) of these, we require O(k3.585) Clifford+T gates
to build the |2〉⊗k-controlled X01 gate. Note that as the controlled X+1 gates
are not controlled on all the wires that we have access to at least one borrowed
ancilla, so that we can in fact use the construction of Lemma 4.

This construction doesn’t require any borrowed ancillae. We can now use
a generalised version of Eq. (17) to complete the circle and construct a many-
controlled version of the X+1 gate that does not require any borrowed ancillae
(at the cost of worse polynomial scaling).

Lemma 6. We can construct the |2〉⊗k-controlled X+1 gate using O(k3.585)
Clifford+T gates without using any ancillae.

Proof. Follows from the following circuit that generalises Eq. (17):

2

X+1

...

2

=

X−1

2

X12

...

2

X+1

2

X12

...

2

(21)

As this requires two copies of |2〉⊗k-controlled X01, the cost is asymptotically
the same as in Lemma 5.

Note that we can change what the unitary is controlled on by conju-
gating any number of control qutrits by the appropriate qutrit X gate in
{X+1,X−1,X01,X02,X12}. Successive application of tritstring-controlled X
gates leads to selective control on all possible combinations of tritstrings. We
hence have the following.

Corollary 2. We can construct any qutrit generalisation of a multiple-
controlled Toffoli in Clifford+T unitarily without ancillae.
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3.3 Building Multiple-Controlled Clifford+T gates

Now we have all the tools to build the remaining controlled Clifford+T gates:
CX, Hadamard, S and T .

Lemma 7. The |2〉⊗k-controlled CX gate can be constructed unitarily without
ancillae using a polynomial number of Clifford+T gates in k.

Proof. Just consider the following construction, which can be obtained from
applying Lemma 1 with V = X−1:

2

2

...

2

X−1

2

1

...

2

X+1

2

...

2

=

Λ

X+1

(22)

For the many-controlled T gate we use the ‘square-root trick’ of Eq. (16).
Here to find the square root we can use the fact (T 5)2 = T as T 9 = I, and hence
T 5 acts like a

√
T gate. Similarly, T 4 is like

√
T

†
. It is then easily verified that

we have the following construction for the controlled T gate.

Lemma 8. We can build the |2〉⊗k-controlled T gate unitarily without ancillae
using a polynomial number of Clifford+T gates in k.

Proof. Consider the following circuit identity:

2

T

...

2

T 5

2

X12

...

2

T 4

2

X12

...

2

= (23)

Its correctness follows because X12T
4X12 = T 5.

That we can implement the |2〉-controlled T in Clifford+T without ancillae is
interesting as this is not possible in the qubit setting. With qubits, to construct
the controlled T gate we have to either employ the

√
T gate, or a clean ancilla [32,

33,50].
To add controls to the S gate, we extend our construction from Ref. [18]:

Lemma 9. The |2〉⊗k-controlled S gate can be constructed unitarily without
ancillae using a polynomial number of Clifford+T gates in k.
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Proof. We straightforwardly generalise Eq. (12):

2

S

...

2

=

X01

2

X+1

...

2

T † X01 X01

2

X−1

...

2

T X01

(24)

We will shortly show how to control the H gate. To do this we will need to
handle some controlled global phase for which we need the following results.

Lemma 10. The |2〉⊗k-controlled Z(2, 2) = diag(1, ω2, ω2) gate can be con-
structed up to a controlled global phase of ζ2. This Clifford+T construction is
unitary and ancilla-free, with T -count polynomial in k.

Proof. Use the following circuit:

2

ζ2Z(2, 2)

=

X02

2

SX02

...

2

...

2

(25)

Its correctness can be verified by direct computation, or by commuting S and
X02.

With one borrowed ancilla, we can construct the |2〉⊗k-controlled ζS =
Z(0, 1) gate:

Lemma 11. The |2〉⊗k-controlled Z(0, 1) gate can be constructed unitarily with
one borrowed ancilla using only Clifford+T gates, with T -count polynomial in k.

Proof. Use the following circuit:

2

Z(0, 1)

...

2

=

X02

2

Z−1

...

2

X02

2

Z−1

...

2

2 2

(26)

The correctness follows from the fact that Z−1X02Z−1X02 = ωI, and from
Eq. (11).
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While not really necessarily for the remainder of the paper, let us note that
we can compose the construction of this |2〉⊗k-controlled ζS with the adjoint of
the construction of Lemma 9 (which gives the |2〉⊗k-controlled S† gate) to give
a resulting controlled global phase of ζ. Hence:

Corollary 3. We can construct the |2〉⊗k-controlled ζI gate unitarily without
ancillae in Clifford+T .

Note that by Eq. (11) this controlled global phase is equal to the |2〉⊗(k−1)-
controlled Z(0, 1/3) gate.

Lemma 12. The |2〉⊗k-controlled Hadamard gate can be implemented unitarily
without ancillae using a polynomial number of Clifford+T gates in k.

Proof. Consider the following circuit:

2

H

=

2

ζ2Z(2, 2)

2

ζ2X(2, 2)

2

ζ2Z(2, 2)

Z(0, 1)

...

2

...

2

...

2

...

2

...

2

2 2 222

=

2

ζ2Z(2, 2)

2

ζ2X(2, 2)

2

ζ2Z(2, 2)

2

...

2

...

2

...

2

...

2

2 2 22

ζ3
I

(27)
Each of these gates can be constructed unitarily in Clifford+T without ancillae
and with a polynomial number of gates using Lemmas 10 and 11. To see why it
is correct, note that when the gates fire it implements a ζ9Z(2, 2)X(2, 2)Z(2, 2)
gate, and as ζ9 = 1 and Z(2, 2)X(2, 2)Z(2, 2) = H by Eq. (6) the construction
is indeed correct.

3.4 The Main Theorem

We have now seen how to exactly and unitarily construct without ancillae the
|2〉⊗k-controlled CX, S, H, T and permutation gates. Each of our constructions
used at most O(k3.585) Clifford+T gates.

We hence have the following theorem.
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Theorem 1. Let U be any n-qutrit Clifford+T unitary consisting of N CX, S,
H and T gates. Then there is an n + k-qutrit Clifford+T circuit implementing
the |2〉⊗k-controlled U unitary using O(Nk3.585) gates.

As noted in Corollaries 1 and 2, by conjugating the control qutrits by cer-
tain Clifford operations, we can make the unitary controlled on every possible
tritstring in the Z- or X-basis. Furthermore, by repeated application of the
decomposition on different control values, more specific definitions of ternary
control, including that of Definition 10 may be realised.

4 Building Trit Permutation Gates in Clifford+T

A ternary classical reversible function is a bijective map f : {0, 1, 2}n →
{0, 1, 2}n. Ternary classical reversible circuits have been well-studied with a vari-
ety of applications. In contrast with irreversible logic, which necessarily dissipates
energy in order to perform computation, reversible logic is of interest for energy
efficient and sustainable computing. Ternary classical reversible functions are of
importance to quantum algorithms involving oracles, which are implementations
of classical functions as quantum gates. One reason to expect comparative advan-
tage of qutrits over qubits for this application is that it is impossible to build
ancilla-free qubit Clifford+T Toffolis with 3 or more controls [17]. Therefore,
ancilla-free implementations of classical reversible functions as qubit Clifford+T
unitaries are limited to bitstrings of length n ≤ 3.

However, the decomposition of ternary classical reversible circuits into a fault-
tolerant quantum gate set such as Clifford+T has not been explicitly presented
before. Given a ternary classical reversible function f on n trits, our goal will
be to find an n-qutrit Clifford+T unitary U that implements that function on
its Z basis states: U |x1, . . . , xn〉 = |f(x1, . . . , xn)〉. Additionally, we want this
construction to require the fewest number of T gates.

Let’s first note that if we put some previously appeared papers together,
that there is in fact a procedure to build arbitrary ternary reversible functions
as ancilla-free Clifford+T circuits, although to our knowledge, this has never
been pointed out explicitly before. Namely, Fan et al. [16] proved that a gate set
consisting of only the single-qutrit gates X01, X02, and X12 and the two-qutrit
|1〉-controlled X+1 gate can implement without ancillae all the ternary classical
reversible circuits. They do this by proving that the |2〉⊗(n−1)-controlled X gates
needed to build reversible functions can be broken down in terms of single-qutrit
X gates and the |1〉-controlled X+1 gate (although this is not done in an explicit
manner, and actually extracting the concrete circuits to do so is cumbersome).

Separately, Bocharov, Roetteler, and Svore [8, Figure 6] constructed the
|1〉-controlled X+1 gate as a two-qutrit Clifford+T unitary. Combining these
results then yields ancilla-free Clifford+T implementations of any ternary clas-
sical reversible function.

Various past works have compared optimisation procedures for specific
benchmark ternary classical reversible circuits [2,29,34,37,47,48]. Rather than
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focus on optimising individual circuits, we will instead focus on providing an
asymptotic upper bound of the Clifford+T gate count needed to construct an
arbitrary ternary classical reversible circuit. This same upper bound then also
caps the asymptotic T -count of these previous decompositions. We hope that
our algorithm can then serve as a baseline for circuit complexity of ternary
classical reversible circuit synthesis, to which empirical gate counts for specific
constructions can be compared.

As was observed in Ref. [54], we can view a reversible classical function on
n trits as just a permutation of the set {0, 1, 2}n. The following classic result
shows that any permutation is generated by just the 2-cycles.

Definition 13. Let Sk be a symmetric group of symbols {d1, d2, ..., dk}, then
(di1 , di2 , ..., dij ) is called a j-cycle, where j ≤ k, 1 ≤ i1, i2, ..., ij ≤ k.

Lemma 13. The 2-cycles generate all permutations.

Proof. Any permutation can be written as product of some disjoint cycles. So we
only need to show that every cycle (d1, d2, ..., dk) can be expressed as a product
of some 2-cycles. When we have a k-cycle we can reduce it to a (k − 1)-cycle:

(d1, d2, ..., dk) = (d1, d2)(d1, d3, ..., dk) (28)

By repeating this equation, each cycle can then be reduced to a 2 cycle.

It hence suffices to show how to implement an arbitrary 2-cycle on the set
{0, 1, 2}n. Such a 2-cycle is called a two-level axial reflection in Ref. [8, Def. 1].
That is, a two-level axial reflection is a qutrit operation which permutes two
tritstrings, and acts as the identity on all other tritstrings.

Definition 14. A two-level axial reflection is a gate

τ|j〉,|k〉 = I
⊗n − |j〉 〈j| − |k〉 〈k| + |j〉 〈k| + |k〉 〈j| (29)

where |j〉 , |k〉 are two different standard n-qudit basis vectors.

In Ref. [7, Section 4], later improved by a constant factor in Ref. [5], they
presented a method for approximate synthesis of any n-qutrit two-level axial
reflection in the Clifford+R gate set, where R = diag(1, 1,−1) is the non-
Clifford gate for attaining universality, with asymptotic R-count 5log3(1/3ε) +
O(log(log(1/ε))), such that c |0〉⊗n approximates |u〉 to precision ε/(2

√
(2)).

We show that the same operation, an n-qutrit two-level axial reflection, can
be exactly synthesised as an ancilla-free Clifford+T unitary with a T -count that
scales asymptotically as O(n3.585). This is because we show we can construct it
using a single instance of a qutrit Toffoli controlled on n−1 wires which requires
O(n3.585) gates.

Proposition 2. Let a = (a1, ..., an) and b = (b1, ..., bn) be any two tritstrings
of length n. Then we can exactly implement the two-level axial reflection on a
and b as an ancilla-free n-qutrit Clifford+T unitary with T -count O(n3.585).
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Proof. We assume a = b, or the 2-cycle would just be the identity operation on
all inputs. As a and b differ, they must differ by at least one character. Without
loss of generality suppose that an = bn. Consider the following circuit:

an−1

Xan,bn

...

a1

Xan−1,bn−1

bn

...

Xa1,b1

=(a, b)
...

...

Xan−1,bn−1

bn

...

Xa1,b1

1 2 3

(30)

Here the circles denote controls on the value of an aj or bj , which control whether
a Xaj ,bj operation is applied (which we take to be the identity if aj = bj). Hence,
the gate in Step 2 is a many-controlled Xan,bn gate, which we know how to build
by Lemma 5 using O(n3.585) gates. We conjugate this gate, in Steps 1 and 3,
by n − 1 gates that are each Clifford equivalent to the |2〉-controlled X12 gate.
Hence these steps require O(n) gates to implement.

This circuit indeed implements the (a, b) 2-cycle, which we can see by enu-
merating the possible input cases.

– When the input is a: Only steps 2 and 3 fire (as bn = an), outputting b.
– When the input is b: Steps 1 and 2 fire, outputting a.

Observe that when Step 2 does not fire, Steps 1 and 3 always combine to the
identity gate. Therefore, we only need to consider the remaining cases where
Step 2 does fire.

– When both Steps 1 and 2 fired: The input had to have been b.
– When Step 2 fired, but Step 1 didn’t fire: Either the input was a, or the last

input character was neither an nor bn in which case the overall operation is
the identity.

Therefore, the circuit in Eq. (30) maps a to b, b to a, and is identity on all other
tritstrings. Lastly, the T -count is asymptotically that of the gate in Step 2, which
is O(n3.585).

Theorem 2. For any ternary classical reversible function f : {0, 1, 2}n →
{0, 1, 2}n on n trits, we can construct an n-qutrit ancilla-free Clifford+T cir-
cuit which exactly implements it, with T -count O(3nn3.585).

Proof. We view f as a permutation of size 3n. This permutation consists of
cycles, each of which can be decomposed into 2-cycles using Lemma 13. This
full decomposition requires at most 3n − 1 2-cycles. Implementing each of these
2-cycles requires O(n3.585) T gates. Therefore, the asymptotic T -count of the
overall construction is O(3nn3.585).
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At first glance the number of gates needed here may seem excessive, but as noted
in Ref. [54], the asymptotic scaling we find is still “exponentially lower than the
complexity of a breadth-first-search synthesis algorithm”. Additionally, with a
simple counting argument we can show our result is within a polynomial factor
of the optimal number.

Proposition 3. There exist ternary classical reversible functions f :
{0, 1, 2}n → {0, 1, 2}n that require at least O(n3n/ log n) Clifford+T gates to
construct.

Proof. We consider a gate set of CX, S, T , and H gates. Taking into account
qutrit positioning there are then n(n − 1) + 3n different gates, so that using
N of these gates, we can construct at most (n(n − 1) + 3n)N ≤ (2n2)N =
2Nn2N different circuits. There are exactly (3n)! different classical reversible trit
functions on n trits (where k! denotes the factorial of k). In order to write down
every such permutation we must hence have a number of gates N such that at
least 2Nn2N ≥ (3n)!. Taking the logarithm on both sides and using log(k!) ≥
1
2k log k we can rewrite this inequality to N log 2 + 2N log n ≥ 1

23n · n log 3.
Factoring out N gives N ≥ log 3

2
n3n

log 2+2 log n ≥ log 3
6

n3n

log n showing that we must
have N = O(n3n/ log n).

We believe it might be possible to improve the implementation of the X01 gate
with n controls to require just O(n) gates, in which case the construction of
Theorem 2 would require O(n3n) gates, making it optimal to within a logarithmic
factor.

Although our construction resembles that for qubits in Ref. [54], their con-
struction uses O(n2n) multiple-controlled X gates (each with n− 1 controls). In
contrast, our construction requires O(3n) of this gate’s qutrit equivalent. This
factor of n improvement in asymptotic circuit complexity can be applied to the
qubit setting of Ref. [54] as well, resulting in a more efficient construction. Addi-
tionally, our observation that only a single ternary (n − 1)-controlled Toffoli is
needed to implement the two-level axial reflection can be used to improve the
algorithm of Fan et al. [16] as well. Finally, let us note that our decomposition
can be readily generalised to any qudit dimension provided we can construct
single-qudit X permutation gates controlled on an arbitrary dit string.

5 Conclusion

We have shown how to construct any many-controlled qutrit Clifford+T unitary,
using just Clifford+T gates and without using ancillae. Our construction uses
O(k3.585) gates in the number of controls k. Using our results we have shown how
any classical permutation on n trits can be realised as an n-qutrit ancilla-free
Clifford+T unitary circuit with O(3nn3.585) gates.

We suspect that the O(k3.585) scaling is not optimal. In future work we would
like to find better ways to decompose the many controlled X+1 gate into fewer-
controlled gates, using the fact that after the first iteration of the decomposition
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we have many borrowed ancillae available, which would possibly be used to lead
to better asymptotic scaling. In particular, we would like to see whether the linear
T -count construction of the qubit n-controlled Toffoli construction where n − 2
borrowed ancilla are available from Ref. [1, Lemma 7.2] can be adapted to qutrits.
Improvements in this scaling will directly lead to improvements in the Clifford+T
synthesis of reversible trit functions of Theorem 2 and will bring it closer to the
theoretical lower bound. It would also directly improve the decompositions using
the techniques of for instance Refs. [14,35,47,54]. It would also be interesting to
find lower bounds on the T -count of our constructions using techniques extended
from the qubit setting [3,22,25,39,40,43,51,52].

Our results pave the way to a full characterisation of the unitaries that can
be constructed over the qutrit Clifford+T gate set. We conjecture that, as in the
qubit case [17], any qutrit unitary with entries in the number ring generated by
the Clifford+T gate set can be exactly synthesised over Clifford+T .

Finally, we aim to use our results to emulate qubit logic circuits on qutrits.
Work in this area has already shown to lead to several benefits [20], so it will
be interesting to to identify where more asymptotic improvements for qubit
computation in the fault-tolerant regime can be made.
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Abstract. Reversible processors implemented using reversible gates has
a potential for extreme low power dissipation. Very few designs for
reversible processors have been made – we are aware only of the Pen-
dulum and Bob processors. The Pendulum processor has a reversible
instruction set (PISA), and has been implemented using classical, irre-
versible logic gates in CMOS. Bob has a gate-level design using reversible
gates, but has not been realised in physical hardware.

In this paper, we will focus on the control part of reversible processors,
assuming very little about the available data-processing instructions and
their implementation.

The reversible instruction sets PISA and BobISA (the ISA for
Bob) use identical control-flow mechanisms that ensure instruction-level
reversibility without imposing restrictions on instruction sequences. We
review this mechanism and find it relatively costly. So we propose two
modifications to the mechanism that allow faster implementation in
reversible hardware and which do not significantly complicate code gen-
eration. We show a reversible circuit diagram for the complete control
step for 16-bit instruction addresses.

1 Introduction

Reversible programming languages (such as Janus [3,8] or Hermes [4,9]) use high-
level syntactic restrictions to ensure reversibility of control structures, but that
is not possible in low-level reversible machine language: Here, every instruction
must in isolation be reversible.

Reversible microprocessor designs have used different methods to ensure
reversible control flow. Early versions of the PISA instruction set for the Pen-
dulum architecture architecture [6] use a branch stack: Whenever a branch is
made, a “return” address is pushed onto a stack. A comefrom instruction pops
an address from this stack and jumps there. By having a comefrom instruction
immediately before every branch target, control flow can be reversible. This app-
roach suffers from a lack of local reversibility: Programs need special instructions
at branch targets to be reversible – otherwise running a program backwards will
not undo the effect of running it in the forwards direction. Later versions of the
PISA instruction set [1,7] remedies this by making branch instructions locally
reversible without restrictions on branch targets (although programs are rarely
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meaningful unless branch targets are also branch instructions). A later archi-
tecture, Bob, and its instruction set BobISA [5], use the same mechanism for
control.

Instruction sequences in both PISA and BobISA can be executed both for-
wards and backwards, controlled by a direction bit. When running backwards,
data-processing instructions are inverted. For example, an instruction that does
addition when running forwards does subtraction when running backwards, and
vice-versa.

That is the easy part, the difficult part is how to handle jumps in a reversible
manner. A traditional jump, where control is passed to a specified address is not
reversible unless the instruction(s) at the target address has sufficient informa-
tion to know from where the jump came, and will inevitably jump back to this
place if the direction of execution is reversed: It is not enough that the target
of the jump can jump back when the direction of execution is reversed, it must
do so. Furthermore, if control passes to a potential jump target not through a
jump, but by falling through from the previous instruction, reverse execution
must also fall through instead of jumping. So, the following information must be
available:

– Was a jump performed to get to the current address?
– If so, where did the jump originate?

and, no matter which instruction occupies the current address, reversing the
direction of execution will cause control to flow back to the instruction that was
executed immediately prior to the instruction at the current address, regard-
less of whether this was a jump or a data-processing instruction at the address
immediately preceding the current address.

We will start by reviewing the control mechanism used in the PISA and
BobISA instruction sets. We then propose modifications to the control mech-
anism that allow simpler and faster implementation at gate level and show a
complete gate-level design for the proposed control mechanism.

2 The Control Mechanism in PISA and BobISA

PISA and BobISA use the same model of control. Execution of code is an inter-
leaving of data steps and control steps:

· · ·
control step
data step
control step
data step
control step
· · ·

The data steps can not directly change control, but can set up the control steps
for doing so. When executing in reverse, the sequence is inverted (but is still
an interleaving of data and control steps), and each step is locally inverted. For
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example, an add instruction is inverted to a sub instruction. We will not go into
details about the data instructions except where a data instruction affects the
following control step. There are three control registers:

PC is the program counter, which points to the current instruction.
BR is the branch register, which in most cases is 0, but will contain non-zero

values before and after jumps.
DR is the direction register, a single bit that indicates the direction of execution.

Conceptually, it holds the value +1 when executing forwards and -1 when
executing backwards.

The data step can not modify PC, but it can modify BR and DR. There is no
instruction for the control step – it is implicit in the instruction stream and
always the same. The control step operates entirely on the control registers,
which it can read and modify. The data registers are not touched. The control
step uses the following rules:

– If BR = 0, PC := PC + DR
– If BR �= 0, PC := PC + DR·BR

Note that if BR �= 0 before the control step, BR �= 0 afterwards (and vice versa).
As DR is negated when running backwards, the control step is its own inverse.

PISA and BobISA have data-processing instructions that can modify BR
and DR. For generating code for control structures, we will use the following
instructions:

Instruction Action

add r , k r := r + k
sub r , k r := r − k
negate r r := −r
br offset BR := BR + DR·offset
brz r , offset if (r = 0) BR := BR + DR·offset
brnz r , offset if (r �= 0) BR := BR + DR·offset
swapbr r (BR, r) := (r , BR)
rswapbr r (BR, r , DR) := (r , BR, -DR)

where r is a register and k is a constant. A processor will have additional data-
processing instructions, but we will not use them here. When running in reverse,
instructions are inverted as follows:

Instruction Inverse

add r , k sub r , k
sub r , k add r , k
negate r negate r
br offset br (−offset)
brz r , offset brz r , (−offset)
brnz r , offset brnz r , (−offset)
swapbr r swapbr r
rswapbr r rswapbr r
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Using these, an unconditional jump can be made as
l0 : br offset to l1

...
l1 : br offset to l0

Note that the offsets are relative to the instructions in which they occur, so
(offset to l1 ) + (offset to l0 ) = 0.

When running forwards (DR = +1) starting at PC = l0 with BR = 0, the
instruction at l0 adds offset to l1 to BR, so BR becomes offset to l1. Since BR
is now non-zero, PC is set to PC + DR·offset to l1 = l1. The instruction at l1
adds offset to l0 to BR, which becomes (offset to l1 ) + (offset to l) = 0. Since
BR is now 0, execution continues after l1.

When running backwards (DR = -1) starting at PC = l1 with BR = 0,
the instruction at l1 subtracts offset to l0 from BR (because the instruction
is inverted), so BR becomes -(offset to l0 ). Since BR is now non-zero, PC is
set to PC + DR·(-(offset to l0 )) = PC + ·offset to l0 = l0. The instruction at
l0 subtracts offset to l1 from BR, which (because offset to l1 ) + (offset to l0
= 0) becomes 0. Since BR is now 0, execution continues backwards from the
instruction preceding l0.

Conditional branches use conditional branch instructions, but are otherwise
done the same way. Given a conditional statement

if (x==0) s1 else s2
where the statements s1 else s2 do not modify x, we can generate the following
code

l0 : brnz Rx, offset to l2

code for s1
l1 : br offset to l3

l2 : br offset to l0

code for s2
l3 : brz Rx, offset to l1

where Rx contains the value of x. The codes for s1 and s2 do not modify Rx.
Again, we assume BR = 0 when entering the code.

If Rx is zero, the conditional branch instruction at l0 does nothing, so the
code for s1 is executed and a branch from l1 to l3 is done. Since Rx is zero, this
adds to BR the offset to l1, making BR zero, so execution continues with the
instructions after l3.

If, conversely, Rx is nonzero, the conditional branch instruction at l0 adds
to BR the offset to l2, so a jump is made from l0 to l2. The branch instruction
at l2 resets BR to 0, so the code for s2 is executed, followed by the conditional
branch at l3. Since Rx is nonzero, this does nothing, so execution continues with
the instructions after l3.

In the examples above, branch targets are branch instructions that reset BR
to 0. While this makes sense from a code generation perspective, it is not required
for reversibility. If BR is not reset, the control step after the instruction at the
branch target will just jump again. For example, the instruction br 2 will cause
every other instruction to be executed until BR is modified again.
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2.1 Procedure Calls

Instructions swapbr and rswapbr are used for procedure calls. A call (without
parameters) to a procedure P is done with the following sequence:

l0 : add R1, offset to P from l1

l1 : swapbr R1
l2 : add R1, offset to P from l1

It is assumed that BR and R1 both contain 0 at the start of the sequence. The
first instruction makes R1 equal to the offset to P from the swapbr instruction.
The swapbr instruction sets BR to this offset (while clearing R1), so the control
step will jump to P.

As an invariant, the procedure will return to the calling swapbr instruction
with R1 equal to 0 and BR equal to −(offset to P from l1 ). The swapbr instruc-
tion sets BR to 0 and R1 to the negative offset. The final instruction thus clears
R1.

When running in reverse, the add instructions are inverted to sub instruc-
tions, so after executing l2, R1 holds the negative offset to P. The swapbr instruc-
tion at l1 swaps this with BR, and since the direction register is multiplied to
the offset in the control step, this jumps to P. Cleanup is done with the add
instruction at l0 (which is a sub instruction when executing backwards).

A reverse call (uncall) to P uses an rswapbr instruction, which reverses the
direction of execution both when transferring control to P and when returning
therefrom. Handling both execution directions requires procedure P to use the
following structure:

l3 : br offset to l4

P : swapbr R1
...
negate R1

l4 : br offset to l3

such that when P is entered with backwards execution direction, a jump is made
to the end of the procedure body, which is then executed backwards. Note that
R1 is negated so the return branch will use the negated offset.

3 Making the Control Step More Efficient

The control mechanism used in PISA and BobISA works well and it is fairly easy
to generate code for this (assuming the source language is reversible). But it is
relatively costly, in particular the second case (BR �= 0) where an offset is either
added to or subtracted from PC depending on the value of the direction bit
requires a full addition. The first case (BR = 0) requires increment or decrement
of PC, so it is a bit faster than the second case, but even an increment takes at
least log(wordsize) time in the worst case.

Speculatively doing the common case (fall through) in parallel with the data
step can alleviate the cost, but that will require stalling and uncomputation if
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BR is made non-zero in the data step, effectively making branches even more
costly. We will, instead, try to reduce the cost of both the common case (fall
through) and the less common case (jumps). We start with jumps, as these are
both more costly and easier to optimise.

3.1 Optimising Jumps

In reversible logic, a conditional swap of two values is faster (and simpler) than
a conditional addition or subtraction of an offset. A conditional swap can be
done using Fredkin gates, and for swapping n-bit values, the n Fredkin gates
can be executed in parallel, making the logic depth equal to 1. See Sect. 4 for
a concrete implementation. In contrast, addition (conditional or not) requires
carry propagation. An n-bit ripple-carry adder has O(n) logic depth, and an
n-bit carry-lookahead adder has O(log(n)) logic depth. So we will replace the
addition used for branching by a swap.

We use the same control registers (PC, BR, and DR) as PISA and BobISA,
but the second case of control step (when BR �= 0) is altered:

– If BR = 0, PC := PC + DR
– If BR �= 0, (PC, BR) := (BR, PC)

Note that we need PC�=0 for this to be reversible, as the second case would not
preserve BR �=0 if PC=0, making the choice for inverse execution ambiguous. If
we can know that there are no jumps out of address 0, the ambiguity is resolved,
so hard-wiring the instruction at address 0 to a non-branching instruction solves
the issue.

The control instructions are modified to fit the new model:
Instruction Action

br target BR := BR XOR target
brz r , target if (r = 0) BR := BR XOR target
brnz r , target if (r �= 0) BR := BR XOR target
swapbr r (BR, r) := (r , BR)
rswapbr r (BR, r , DR) := (r , BR, -DR)

Note that branch instructions now use absolute target addresses instead of rela-
tive offsets, so branch instructions are now their own inverses. All other instruc-
tions, including swapbr and rswapbr are unchanged.

An unconditional jump can now be implemented as:
l0 : br l1

...
l1 : br l0

If BR = 0 at the start of this sequence, the instruction at l0 sets BR = l1, which
is non-zero, so in the control step BR and PC are swapped, making PC = l1
and BR = l0. At l1, BR is set to 0 by XORing with l0, so execution continues
after l1. The backwards execution is equivalent.
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For the conditional statement
if (x==0) s1 else s2

where the statements s1 else s2 do not modify x, we can generate the following
code

l0 : brnz Rx, l2

code for s1
l1 : br l3

l2 : br l0

code for s2
l3 : brz Rx, l1

Again, apart from using absolute addresses instead of offsets, the code is the
same as before.

Procedure calls are similarly changed to use absolute addresses:
l0 : add R1, P

l1 : swapbr R1
l2 : sub R1, P

We, as before, assume that R1 contains 0 when entering this sequence. Note that
the call should now (by a new invariant) preserve R1 (instead of negating it), so
we need to subtract P after the call. The procedure structure is now

l0 : br l1

P : swapbr R1
...

l1 : br l0

Note that we no longer negate R1 in the procedure body, so we save an instruc-
tion. Apart from using absolute branch addresses instead of offsets, the code
generation is very similar to the scheme using the control structure of the PISA
and BobISA instruction sets.

For code generation, the main difference is whether absolute addresses or
offsets are used. Neither of these are significantly more difficult than the other.

The cost of branching is now so low that fall through dominates the cost of
the control step, as this still needs a binary increment or decrement.

3.2 Making Fall Through More Efficient

The time used in the control step is, as mentioned, now dominated by the incre-
ment or decrement of PC when BR = 0. An increment is marginally simpler
and faster than a full addition, but it is far from constant time. With a simple
ripple-carry mechanism increment requires O(n) logic depth for an n-bit PC,
and with a carry-lookahead mechanism it requires O(log(n)) logic depth. We
would, ideally, want to reduce the logic depth the control step to constant time.
The idea for getting close to this is to change the control step rules to

– If BR = 0 and DR = +1, PC := f(PC)
– If BR = 0 and DR = -1, PC := f−1(PC)
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– If BR �= 0, (PC, BR) := (BR, PC)

where f is a bijective function that has the following properties:

1. The sequence x1 = f(1), x2 = f(x1), x3 = f(x2), . . . , x1 = f(xj) should have
a cycle j that is one less than the size of the program memory, and xi �= 0
for all i.

2. f(PC) is faster to compute (has lower logic depth) than incrementing the PC.

The requirement that xi �= 0 ensures that PC = 0 can neither happen by jumps
(as BR = 0 implies no jump) nor by falling through from a preceding or following
instruction (in either direction of computation) – we know that this can never
happen if the processor initialises PC to 1 (or some other nonzero value). The
requirement that the cycle should be one less than the size of program memory
is to ensure that a program can use all the program memory (except address 0).

We have found the following family of functions (Galois linear-feedback shift
registers [2]) to work:

f(x) = 2x when x < 2n−1

f(x) = (2x − 2n + 1) XOR k when x ≥ 2n−1

where n is the word size and 0 < k < 2n−1 is an even integer constant. Any
such k makes the function bijective in the interval [0, 2n − 1], mapping 0 to 0
and non-zero values to non-zero values, but the cycle starting at 1 is not always
maximal.

f(x) can be implemented by a left rotate followed by an XOR with k if
the least significant bit is 1. This can be implemented in constant time using
reversible logic. The inverse is an XOR with k when the least significant bit is 1
followed by a right rotate.

Most values of k give much shorter periods than 2n−1 when starting with
x = 1. In addition to giving the maximal period, we also want k to have the fewest
number of 1-bits (called “taps” in the theory of linear-feedback registers [2]), as
we need a gate for each such bit to do the XOR with k. We have found that for
no number of address bits between 8 and 34 are one or two taps sufficient for
achieving the maximal cycle, but for all of these we have found many values of
k with three 1-bits.

Theory [2] tells that it is always possible to find k that gives the maximal
period, but the author does not know of any general results about the minimal
number of taps for Galois LFSRs1. We conjecture that three taps are sufficient
for all word sizes. Table 1 shows for word sizes between 8 and 34 bits the five
smallest values of k (in hexadecimal) with three taps that achieve the maximal
cycle (so f(x) will cycle through all values from 1 to 2n−1).

It can seem weird that instructions that are executed sequentially are not
adjacent in memory, but a compiler can easily lay out code using this addressing
scheme. It does, however, mean that the full address space for code must be

1 This may easily be due to the author’s insufficient search skills.
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Table 1. Maximal-cycle values of k with three taps for different address sizes

Address bits Five smallest Maximal-cycle values of k with three taps

8 0x1c 0x2a 0x2c 0x4c 0x64

9 0x1a 0x2c 0x32 0x58 0x68

10 0x1a 0x26 0x2c 0x64 0x8a

11 0x16 0x2a 0x2c 0x46 0x62

12 0x52 0x68 0x98 0xd0 0x106

13 0x1a 0x26 0x34 0x52 0x64

14 0x2a 0x38 0x52 0xa8 0x10c

15 0x16 0x2c 0x34 0x86 0x92

16 0x2c 0x38 0x52 0x1a0 0x214

17 0xe 0x2c 0x32 0x54 0x68

18 0x26 0x4c 0x106 0x190 0x20a

19 0x26 0x46 0x52 0x58 0x62

20 0x52 0x64 0x68 0x222 0x228

21 0x26 0x64 0x92 0x106 0x148

22 0x38 0xc2 0x128 0x160 0x222

23 0x2a 0x2c 0x32 0x4c 0x64

24 0x1a 0x86 0xb0 0x124 0x224

25 0xe 0x2c 0x92 0xc4 0x10c

26 0x46 0x4c 0xb0 0xe0 0x118

27 0x26 0xd0 0x128 0x130 0x182

28 0x52 0xe0 0x222 0x320 0x40a

29 0x16 0x1c 0x8c 0xc2 0x118

30 0x52 0x112 0x148 0x290 0x2c0

31 0xe 0x2c 0x34 0x46 0x54

32 0xc4 0x124 0x20c 0x228 0x824

33 0x52 0x68 0x86 0x98 0xa2

34 0x118 0x222 0x250 0x428 0x460
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physically present. For 16-bit addresses, this is not an issue, as 64K instruction
words is a rather small code area. For 32-bit addresses, it is large but not unreal-
istic, as 232 instructions of 32 bits each is 16 GB. But a full 64-bit address space
is out of the question.

So we suggest that instruction addresses need not use a number of bits that
is a power of 2, even if data words do. For example, a processor can use 32 bits
for data words and data addresses and 24 bits for instruction addresses, or 64
bits for data words and data addresses and 32 bits for instruction addresses.
The low addresses (except 0) can then be used for code, while the main part of
memory is used for data. It is convenient to allow code to read and write code
memory (as that can allow, for example, loading new programs). To ease this,
instructions that implement f and f−1 can be supported.

For branch instructions, it is simple to limit the number of bits for the target
address (and omit 0), but swapbr instructions can, for example, swap a 32-bit
data register with a 24-bit BR. A solution could be to swap only as many bits
from the data register as the size of BR and leave the rest if the bits in the data
register unchanged.

4 Gate-Level Realisation

In Fig. 1, we show a gate-level realisation of control for a processor with 16-
bit instruction addresses. Inputs are the PC (p0 . . . p15), BR (b0 . . . b15), and 16
ancillae that are initially 0 and will be returned to 0 at the end. The circuit is for
forwards execution (DR = +1). For backwards execution (DR = –1), the circuit
can be run right to left. We will later present a circuit that takes DR as input
runs left-to-right regardless of its value.

Between the first two vertical grey lines (marked A), the circuit computes
a Boolean that is 1 if BR=0 and 0 otherwise. The next section (marked B)
uncomputes the intermediate values of this comparison while copying the result
to all 16 ancillae. Gates that horizontally are drawn very close can be done in
parallel. Section C swaps BR and PC when the ancillae are 0 (meaning BR�=0).
Section D rotates PC one bit left (up) if BR=0. This is done by first conditionally
swapping even and odd bits, which places the even bits in their (now odd) correct
positions. Then, half of the ancillae are conditionally (using the other half of the
ancillae) swapped with the incorrectly placed bits, which are then conditionally
swapped into their right positions. We can do this because all ancillae have the
same value. Again, horizontally close gates can be done in parallel, so the logic
depth of this section is only 3. Section E XORs PC with 0x2c = 1011002 (for
k = 0x2c = 44) when BR=0 and p0=1. Lastly, we do B−1 and A−1 to clear the
ancillae.

The total logic depth is 4+4+1+3+3+4+4 = 23. Note that sections A, B and
their inverses only involve BR, so they can be done in parallel with calculations
that do not involve BR. Since the first thing that happens after the control
step is that the instruction at PC is fetched, this can naturally start right after
section E and in parallel with sections B−1 and A−1. Dually, an “unfetch” step
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that happens before the control step can be done in parallel with sections A and
B. If so, the actual cost of the control step is only 7 gate delays.

The logic depth of sections C and D is independent of the number of bits
in PC and BR. Section E uses a number of sequential Toffoli gates equal to the
number of bits in k, which can be 3 for all address spaces between 8 and 34 bits
(and conjectured to be 3 also for larger address spaces). So we conjecture that
the logic depth of sections C, D and E is a total of 7 gates regardless of the word
size. The logic depth of sections A, B, B−1, and A−1 are each equal to the (base
2) logarithm of the size of instruction addresses (rounded up), so the total logic
depth for n-bit addresses is 4 ∗ �log2(n)� + 7.

The gate count for section A (and A−1) is 2n−1 Toffoli gates. Section B
and B−1 each use 2n−1 Toffoli gates and n−1 controlled NOT gates. Section
C uses n Fredkin (controlled swap) gates, section D uses 3n

2 Fredkin gates, and
section E uses 3 Toffoli gates. So the total gate count is 8n−1 Toffoli gates, 2n−2
controlled NOT gates, and 5n

2 Fredkin gates.

4.1 Making DR Explicit

It may not always be practical to change the direction in which (sub)circuits are
executed, so we present an alternative that takes the direction bit as input and
always runs left-to-right.

We note that most of the circuit in Fig. 1 is self-inverse. In fact, to get the
effect of reverse-direction control, we just need to remove/inactivate section D
and add/activate a D−1 section after section E. So we can add an input repre-
senting DR and let this control which of the two sections are executed. A block
diagram of this is shown in Fig. 2. The d input represents DR by d = 1 when
DR = 1 and d = 0 when DR = −1. We can control the choice between activating
section D or section D−1 by adding an extra control on all the gates in these
sections, turning singly-controlled swap (Fredkin) gates into doubly-controlled
gates. Since there are eight gates in parallel in these sections, we want eight
copies of the d bit as input.

The logic depth of this circuit is 3 higher than that of the circuit in Fig. 1.

5 Summary and Discussion

We have reviewed the control mechanism used in the two reversible instruction
sets BobISA and PISA.

We have made two suggestions for changing the control step with the aim of
making it implementable using fewer reversible gates and with lower logic depth.
We have shown a diagram for a circuit for the control step for 16-bit instruction
addresses to support this claim.

The changes do not make code generation significantly different, and the
instruction count is basically the same (and one instruction shorter for proce-
dures). The main change is that absolute addresses rather than relative offsets
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Fig. 1. Circuit for the proposed control mechanism (16 bits)
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d
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Fig. 2. Adding direction as input

are used for jumps and that instruction adjacency does not follow address adja-
cency. Code generation can be made in two steps: First, a symbolic assembly
language using labels as branch targets (as in the examples shown in this paper)
is used as target language, and then an assembler lays this out in memory while
translating labels to absolute addresses. That instruction addresses are non-
sequential does not complicate this. The main issue is that relocating code is
more complicated.

Using linear-feedback shift-register for calculating the address of the next
instruction implies that instructions in a sequence are spread out in memory, so
spatial locality is reduced. This means that an instruction cache (if any such is
used) should not use cache lines longer than one instruction word, as adjacent
words in memory are unlikely to contain instructions that will be used in near
future. Temporal locality is, however, unaffected: An instruction that has been
recently fetched is likely to be fetched again in the near future.

5.1 Future Work

In this paper, we have looked only at the control step of executing a reversible
instruction sequence, but it wold be interesting to look at optimising the data
processing step as well.

There is also potential for further optimisation of the control step. A signif-
icant part of the circuit shown in Fig. 1 is taken by testing if BR = 0 (sections
A and B and their inverses). If we align all instructions to even addresses, we
could use BR = 1 for indicating fall through and set BR to an even address for
indicating a jump. This way, we need only test one bit of BR, so we can eliminate
section A and its inverse from the circuit. But we still need to propagate this bit
to all the ancillae (half of section B and its inverse), so we still have O(log(n))
gate delay, albeit with a smaller constant factor. If sections A and B and their
inverses can be done in parallel with fetching and unfetching instructions, this
change is probably not worth it.

There is also potential for investigating alternative reversible functions for
stepping through the instruction address space. While the chosen family of func-
tions has constant logic depth (six gate delays), it is possible that functions with
even smaller logic depth can be found.
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Abstract. Reversible computing is a continuously advancing area of
active research and an increasing number of available reversible pro-
gramming languages, compilers, and interpreters are primarily based on
register-based execution environments, such as PISA. In this paper, we
report on our progress in developing a novel reversible stack machine,
which combines the inherent reversibility of stacks with a clean instruc-
tion set to create a highly performant reversible machine. The instruction
set, as well as strategies for implementing reversible arithmetic and con-
trol flow, will be explained.

Keywords: reversible computation · reversible algorithms · stack
machines · computer architecture

1 Introduction

Reversible computing as an area of active research seemingly provides a contin-
uous stream of insights into information theory, programming languages, algo-
rithms, and even advanced computational concepts. Yet, there is still a consid-
erable gap when comparing the diversity of software, programming languages,
and abstract machines in classical and reversible computing. Current reversible
machines can be roughly divided into two categories: Abstract machines used
as an execution environment for existing programming languages, such as a
machine for the Oz language by Lienhardt, Lanese, Mezzina, and Stefani [7],
and instruction set architectures, which primarily explore RISC-like register
machines. Examples of the latter include designs by Vieri [10], Frank [3], Hall [4],
or the recent work by Axelsen, Glück, and Yokoyama [1]. This paper tries to
contribute to this category of machines by exploring the design of a reversible
stack-based machine and its instruction set architecture.

The proposed machine uses an argument stack to perform computations.
Instructions manipulate values on the stack, eliminating the need for general-
purpose registers. After presenting an overview of the machine design (Sect. 2),
we will look at how arithmetic (Sect. 3) and control flow (Sect. 4) might be
implemented reversibly, followed by a short discussion on the representation and
execution of instructions (Sect. 5). The current state of development and other
features of the machine are outlined in the final chapter (Sect. 6).
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2 Stack-based Architecture Design

During our recent work on translation and optimization of reversible intermedi-
ate languages [2,6], we had two insights that largely influenced the design of this
machine model: The extended version of Janus proposed by Yokoyama, Axelsen
and Glück [11] introduces stacks as a native data structure to the language.
Stacks seem to work very well in a reversible setting as their two basic operations
push and pop are the exact inverse of each other. Additionally, we discovered
that it is challenging to translate Reversible Static-Single Assignment (RSSA) as
proposed by Mogensen [9] into efficient and compact program code for register
machines. The reason for this lies in the complexity of individual RSSA instruc-
tions: Instructions used for control flow potentially accept an infinite number of
operands passed from and to labels in the intermediate code. This makes RSSA
a fantastic tool for program analysis and optimizations, as it is explicit about the
flow of information and data within a program. However, encoding and especially
decoding complex instructions carries additional runtime costs. Our basic idea
is to combine those concepts, defining the design goals for our abstract machine:
Provide a simple instruction set, allowing a high execution rate for instructions,
and use a stack to manage operands. By reducing the work required to decode
complex instructions or manage operands with a limited number of registers, it
seems possible to provide a fast execution environment for reversible programs.

The machine is modeled after the Harvard architecture [5, Chapter L.2],
having distinct memory areas for instructions, data, and the argument stack.
This allows for a simple execution cycle. Special precautions must be taken
when instructions and data do not reside in distinct memory regions, as this
would allow self-modifying code which could interfere with reversibility [10]. In
addition to these memory regions, we use three registers to implement control
flow operations as suggested by Axelsen, Glück, and Yokoyama [1]: A program
counter (pc) refers to the currently executed instruction in memory. A direction
register (dir) encodes the current execution direction, holding the value 1 during
forward execution and -1 during backward execution. The additional branching
register (br) is used to perform jumps, as its value determines the change of pc
during each execution cycle (see Fig. 1).

br = 0

(pc, br, dir) → (pc+ dir, br, dir)

br �= 0

(pc, br, dir) → (pc+ br · dir, br, dir)

Fig. 1. Control logic of the reversible execution cycle as defined in [1].

Extending this model, our machine requires a stack pointer (sp) as an addi-
tional register. It points to the next free memory cell on top of the stack and is
modified when pushing or popping operands on the stack. A frame pointer (fp)
is also included as a second additional register to aid the creation of stack frames
and to support local variables. Including these registers, our machine uses a total
of only five registers, as shown in Fig. 2.
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global data memory

control flow  
registers

pcbrdir

stack 
registers

fpsp

instruction
memory

...

argument stack

active  
stack frame

Fig. 2. Overview of the machine model.

3 Reversible Arithmetic

In our machine, instructions come in pairs, where each instruction is the inverse
of the other. Consider an instruction pushc (push constant) that uses the
exclusive-or operation to write a value to the cleared stack cell pointed to by
sp and increments this register by one. The inverse instruction popc decrements
the sp register and then uses the exclusive-or operation to clear the value of the
stack cell. If both instructions are executed with the same operands, their effects
cancel each other out, and the original machine state is thus restored.

During reverse execution, those pairs swap their meaning: A pushc instruc-
tion executed in reverse pops a value from the stack, while a reverse popc instruc-
tion now pushes a value onto the stack. This way, it is possible to invert programs
and use their inverse semantics during regular execution. Similar to the concepts
presented in Janus [8], reversibility is not seen as a restriction but provided as a
tool for the programmer.

However, this concept of reversible instruction pairs comes with restrictions
for each individual instruction. In order for a reverse instruction to exist, every
instruction needs to be reversible in the first place. Simple operations such as
placing values onto the stack, removing them, or shuffling stack items’ positions,
are trivially reversible. But, especially with arithmetic operations, it becomes
quite challenging to ensure reversibility. For a few selected operations, it is pos-
sible to update the top element on the stack with the lower elements unchanged
as parameters for this update. These operations are the same that Janus and
RSSA allow as part of their assignments. Namely, they are addition, subtraction,
and the exclusive-or, where addition and subtraction are mutually inverse and
the exclusive-or is self-inverse. Figure 3 shows how the stack is modified under
this scheme, using addition and subtraction as example operations.

This scheme cannot be used to implement all arithmetic operations; only
those that are injective on the updated parameter. Other operations, such as
multiplication or division, cannot be implemented this way, as they do not guar-
antee the reversibility of the performed update. As an example, consider the
multiplication with 0, which would irreversibly update the top stack element to
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Fig. 3. Arithmetic performed on the stack using a reversible update operation.

0. Instead, we extend the notion of a reversible update as presented in [1]. As
a result, we allow an arbitrary deterministic operation �n that accepts n ∈ N0

parameters to be computed in conjunction with push and pop operations. The
stack is hereby referred to as a function S : Z32 → Z32, mapping 32-bit addresses
to 32-bit words on the stack, with sp pointing to the next free element of the
stack. We use the notation S [a �→ v] to indicate that the stack at address a
should be updated to hold value v.

Pushing Values. To push the result of a complex operation, we first have to
compute it. Since arguments are placed on the stack, we can use them directly
by referencing S[sp− 1], S[sp− 2] and so on. Just focussing on the stack pointer
and the stack, we can write the push operation as:

(sp, S) →push�n
(sp + 1, S [sp �→ �n(S(sp − 1), S(sp − 2), . . . , S(sp − n))])

Popping Values. In order to reversibly remove a value obtained by performing
a complex operation from the stack, we compute it again. Since the operands
from pushing the value are unchanged on the stack, we can compute the same
result of the operation. If the value stored on top of the stack equals this value, it
is possible to zero clear the stack cell and decrement the stack pointer afterward.

S(sp − 1) = �n(S(sp − 2), S(sp − 3), . . . , S(sp − (n + 1)))
(sp, S) →pop�n

(sp − 1, S [sp − 1 �→ 0])

Using this technique, we can define instruction pairs for arbitrary complex
operations. In a fully reversible implementation, it is possible to let �n generate
garbage that is immediately uncomputed within a single execution step. Figure 4
shows how such a reversible push operation may be implemented. The different
components of the stack on the left-hand side represent the operands used by
�n. The result of this operation is copied into the empty stack cell on top of
the stack using an exclusive-or operation (written ⊕). The result and produced
garbage are then immediately consumed by running �n in reverse. Meanwhile,
the stack pointer is incremented.
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Fig. 4. Schematic illustration of a reversible push operation, showing how stack cells
are used and generation of garbage can be avoided.

4 Reversible Control Flow

One of the most challenging aspects of a reversible execution environment is
the implementation of reversible control flow. As we adapted the control flow
design from [1], we can use a branch instruction similar to the BRA instruction
in PISA for our needs. This instruction adds the offset to a label onto the br
register, which sets the pc to the given label for the next instruction cycle. A
paired branch instruction at the target label, adding the inverse offset to the
register, resets the value of br to 0 and therefore continues normal execution.
Similar instructions brt and brf (branch on true, branch on false) modify the br
register in the same way if a corresponding truth value lies on top of the stack.

The standard pattern used for procedure calls in PISA is not applicable to
our stack machine without adaption. It uses a SWAPBR instruction that swaps
the contents of the br register and a general-purpose register. As we do not have
general-purpose registers, we have to use other means to provide an offset for a
call. Naturally, we use the stack for this task.

The process of calling a procedure can be implemented as follows:

1. The caller pushes an offset to a target onto the stack.
2. A call instruction is executed, swapping the contents of the br register and

the top stack element.
3. The callee accepts the call with another call instruction, which again swaps

the contents of the br register and the top stack element, effectively restoring
the value of br and placing the originating offset on the stack.

4. After the execution of the procedure finishes, the offset on the stack is negated
using a negate instruction, yielding the offset required to return to the caller.

5. The call instruction is executed again, loading the return offset into the br
register.

6. The caller accepts the return and can pop the offset from the stack.
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Fig. 5. Proposed calling convention for procedures.

Figure 5 shows the proposed strategy for procedure calls with arrows depict-
ing the control flow. Beginning with the caller on the left-hand side, the control
changes to the callee on the right-hand side and returns to the caller. We allow
simple expressions between [ ] bracket characters to perform static address and
offset calculations.

5 Encoding and Executing Instructions

Instructions, like all other values, are represented as 32-bit words. For the pur-
pose of this machine, 32-bit words representing instructions consist of two com-
ponents: A 16-bit opcode and a 16-bit immediate value, the latter being used to
parameterize instructions like pushc or branch. One bit of the opcode is reserved
as the direction bit. Inverse instructions have an identical representation, differ-
ing only in the direction bit, as Fig. 6 shows.

Fig. 6. Encoding of instructions as 32-bit word, showing the purpose of each bit.

This allows fast inversion of instructions. As seen in Fig. 7, only the direction
bit has to be inverted when the machine is running in reverse (the dir register
holds a value of −1). The execution mechanism shown fetches the executed
instruction, extracts the opcode from it and then selects a corresponding action
based on the opcode.
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int32_t instruction = program[pc];
int32_t opcode = EXTRACT_OPCODE(instruction );

if (dir == -1) opcode = opcode ^ DIRECTION_BIT;

switch (opcode) {

case OPCODE_PUSHC:

. . .
case OPCODE_POPC:

. . .

Fig. 7. Execution mechanism of the stack machine implemented in C++.

6 Current Progress and Future Work

Currently, we identified an instruction set consisting of 36 reversible instruction
pairs. These instructions support basic stack operations, stack shuffling, arith-
metic, control flow, procedure calls, stack frames, and memory manipulation. All
operations defined in RSSA can be expressed as a combination of these instruc-
tions. A virtual machine implementation written in C++ that parses assembler
code-like source files and executes them is publicly available.1 A formal descrip-
tion of all supported machine operations and an translation scheme from RSSA
is under development.

Experiments with the virtual machine show that an efficient implementation
of machine instructions and the execution mechanism is possible. On modern
consumer hardware, the machine executes more than 100 million virtual instruc-
tions per second. Comparisons with existing backends of the RC3 compiler [6]
show that this machine is a viable alternative for the execution of reversible
programs. In the current state, stack machines represent a promising and low-
level runtime environment for reversible programs with a potential for efficient
execution and good performance.
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Abstract. Graphs are one of the most common data structures in clas-
sical computer science and graph theory has been widely used in com-
plexity and computability. Recently, the use of graphs in application
domains such as routing, network analysis and resource allocation has
become crucial. In these areas, graphs are often evolving in time: for
example, connection links may fail due to temporary technical issues,
meaning that edges of the graph cannot be traversed for some time inter-
val and alternative paths have to be followed. In classical computation,
where graphs are represented as adjacency matrices or lists, these prob-
lems are well studied and ad-hoc visit procedures have been developed.
For specific problems quantum computation, through superpositions and
entanglement has provided faster algorithms than their classical counter-
part. However, in this model, only reversible operations are allowed and
this poses the quest of augmenting a graph in order to be able to reverse
edge traversals. In this paper we present a novel graph representation in
quantum computation supporting dynamic connectivity typical of real-
world network applications. Our proposal has the advantage of being
closer than others in literature to the adjacency matrix of the graph.
This makes easy dynamic edge-failure modeling. We introduce optimal
algorithms for computing our graph encoding and we show the effective-
ness of our proposal with some examples.

Keywords: Quantum walks · Graphs · Edge-failure

1 Introduction

Graphs are ubiquitous in computer science and mathematics. They are formal
and flexible frameworks used to model a wide class of problems from different
fields, ranging from Complexity Theory [25], Flow Theory [2] and Software Veri-
fication [20], to more application-oriented domains such as Routing [29], Machine
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Learning [16] and Social Networks [11]. Randomization plays a central role in
collecting informations from ever growing and dynamically evolving networks,
and with the advent of quantum computing as a more and more useful tool, it
is mandatory to define efficient encodings for graphs in quantum circuits.

Quantum computation is constitutionally reversible being based upon uni-
tary transformations that are always reversible. Only measurements/observables
collapse quantum states into classical ones with a loss of information that is not
reversible. As a matter of fact, classical circuit (i.e., classical boolean functions)
can be simulated by quantum ones, but it is necessary to pay the encoding in
terms of space dimension. In the case of boolean functions the standard tech-
nique for doing this consists in representing a function f : {0, 1}n → {0, 1}m as
the reversible function f ′ : {0, 1}n+m → {0, 1}n+m with f ′(x, y) = (x, y ⊕ f(x)).

So, on the one hand, quantum computation allows to exactly solve in poly-
nomial time problems that are in the time complexity class EXP for classical
computation, thus proving that QP �= P (see, e.g., [10,27]). Moreover, it allows
to solve with bounded probability of error in polynomial time the factorization
problem for which at present there are no classical polynomial algorithms with
bounded probability of error. The impact of superposition and entanglement in
such speed-up has been evaluated in the literature from different perspectives
(e.g., [5,6,17]).

On the other hand, the possibility of using only reversible operators causes an
increase of space requirements as shown in the simple case of boolean functions
and imposes to redefine each step of classical algorithms in terms of linear unitary
(reversible) transformations.

The theory of quantum walks, the quantum counterpart of random walks, has
been first introduced in [1]. As for the classical case [8,23], there is a distinction
between continuous and discrete time models [30]. The former is introduced in
[13] and further investigated in [7,21]: in this case, the main tool is the exponen-
tiation of a suitable hermitian matrix derived from the adjacency matrix of the
graph. The latter is described in [1] as a coined walk, where a suitable matrix
– the coin – is introduced to implement the random choice while maintaining
unitarity of the encoding matrix. Algorithmic applications of the discrete time
model have been presented in [4,19], while in [14] it has been shown that quan-
tum random walks can obtain better hitting and mixing time with respect to
their classical counterpart. For further details and applications description we
refer the reader to [18,26,31].

The aim of our work is to encode graphs in the quantum formalism, so that
algorithms, such as random walks, can be efficiently developed also in dynamic
settings where edges/nodes can be temporary unavailable. We extend the work
done in [28] by providing a procedure to optimally compute a unitary matrix
from the line of an eulerian graph. In this way, the obtained graph representa-
tion has its focus on the edges rather than on the nodes, as it was in [1,21].
In the general case of non-eulerian graphs, we describe an embedding which
can be implemented in the quantum framework through projectors. The pro-
jectors allow us to hide the edges added from the embedding. Moreover, they
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can be fruitfully exploited for managing edge failures, without recomputing the
encoding matrices. As stated in [18], problems related to vertex reachability
“have been efficiently solved using a quantum walk, but studying the impact of
. . . and dynamically changing graph topology . . . can be seen as a critical area for
research”. Our work goes into such direction.

The paper is structured as follows. In Sect. 2 we briefly recall some basic
definitions from Quantum Computation, Graph Theory and Quantum Random
Walks. An optimal procedure to obtain a unitary matrix from any eulerian multi-
graph is presented in Sect. 3. The following section has the goal to show how to
embed any multigraph into an eulerian one. In Sect. 5 we describe the quantum
circuit obtained using the results from the previous sections. The efficient man-
agement of edge failures in explained in Sect. 6. Finally, Sect. 7 illustrates some
comparisons with related literature with examples.

2 Preliminaries

2.1 Quantum Computing

The most used model of Quantum Computation relies on the formalism of state
vectors, unitary operators and projectors. At high level we can say that state vec-
tors evolve during the computation through unitary operators, then projectors
are used to remove part of the uncertainty on the internal state of the system.

The state of the system is represented by a unitary vector over Cn with
n = 2m for some m ∈ N. The concept of a bit of classical computation is replaced
by that of a qubit. While a bit can have value 0 or 1 a qubit is a unitary vector of
C2. When the two components of the qubit are the complex numbers α = x+ iy
and β = z + iw, the squared norms |α|2 = x2 + y2 and |β|2 = z2 + w2 represent
the probability of measuring the qubit thus reading 0 and 1, respectively. In the
more general case of m qubits the unitary vectors range in Cn with n = 2m.
Adopting the standard Dirac notation we denote a column vector v ∈ Cn by |v〉,
and its conjugate transpose v† by 〈v|. A quantum state is a unitary vector

|ψ〉 =
∑

h

ch |vh〉

for some basis {|vh〉}. When not specified, we refer to the canonical basis. Further
details can be found in [24].

Unitary operators and projectors are linear operators, so before introducing
their definitions, we fix the notation on matrices. We rely on the same notation
also for graphs represented through adiacency matrices in classical computation.

Let M be a matrix, Mi,j is the element in the i-th row and j-th column of M .
Moreover, we denote by Mi the entire i-th row. Whenever we refer to the product
of two rows of a matrix, we refer to the dot product (scalar product) between the
former and the conjugate transpose of the latter, i.e., MiMj =

∑
k Mi,kM

∗
j,k,

where M∗
j,k is the complex conjugate of Mj,k.
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Unitary operators are a particular class of reversible linear operators. They
preserve both the angles between vectors and their lengths. In other terms,
unitary operators are transformation from one orthonormal basis to another.
Hence, they are represented by unitary matrices. Let U be a square matrix over
C. U is said to be unitary iff UU† = U†U = I. We describe the application of a
unitary matrix U to a state |ψ〉 by writing

|ψ′〉 = U |ψ〉
meaning that the state |ψ〉 becomes |ψ′〉 after applying the operator U .

In order to extract informations from a quantum state |φ〉 a measurement
must be performed. The most common measurements are projectors. Let |u〉 be
a quantum state. The projector operator Pu along the direction of |u〉 is the
linear operator defined as:

Pu =
|u〉〈u|
〈u〉

where |u〉〈u|, being the product between a column vector and a row one both of
size n, returns a matrix of size n × n. Since throughout the paper we only use
unitary vectors, the term 〈u〉 is always 1 and can be ignored.

2.2 Graph Theory

Graphs are a standard data structure in computer science for the representation
of binary relations. They are used in Computability Theory for representing the
flow of computations [25], in Network Theory to describe the network topology
[2], in Routing [29], etc. We report below some standard definitions on graphs,
while we refer the reader to [15] for further details. A directed graph G is a pair
(V,E) where V is a non empty set of nodes and E ⊆ V ×V is a set of edges. We
say that an edge (u, v) is directed from u to v and that u is adjacent to v. We
also say that u is the source and v is the target of (u, v). Two edges of the form
(u, v) and (v, w) are said to be consecutive. We say that a graph is undirected
iff E is symmetric. The underlying undirected graph of G is a new graph whose
edge set is the symmetric closure of E.

In classical computation, graphs are usually stored as either adjacency matri-
ces or adjacency lists. In this paper we mainly refer to the adjacency matrix rep-
resentation. Given a set of nodes V , we assume a fixed order over the elements
of V , i.e., each node of V can be identified as an integer between 1 and |V |. For
a graph G = (V,E) with |V | = n, the adjacency matrix of G is a (0–1)-matrix
M of size n × n such that Mu,v = 1 iff (u, v) ∈ E.

A multigraph G = (V,E) is a graph in which many edges can connect the
same pair of nodes. So, if there are two edges from u to v these are two distinct
primitive objects. In other terms, E is a set (of edges) and two functions s, t :
E → V assign to each edge both a source node and a target one. For the sake
of readability, we will use the notation (u, v) also on multigraphs to refer to a
generic edge having source u and target v. The aim of this paper is providing a
quantum representation for graphs. However, it is useful to refer to multigraphs
which allow us to overcome some technical issues.
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Definition 1 (Incoming and Outgoing edges). Let G = (V,E) be a multi-
graph, v ∈ V . We define the set of its incoming edges as:

δ−(v) = {i : i ∈ E and i has target v}

and the set of its outgoing edges as:

δ+(v) = {k : k ∈ E and k has source v}

Moreover, the indegree of v is defined as d−(v) = |δ−(v)| and analogously its
outdegree is defined as d+(v) = |δ+(v)|.

The balance of a node v is b(v) = d+(v)− d−(v). A multigraph G = (V,E) is
balanced iff for each node v ∈ V , b(v) = 0. This property is crucial for directly
encoding multigraphs in terms of Quantum Computation since it ensures the
possibility of reversing walks over the graph [1]. The following is a well known
result from Graph Theory which basically states that the global balance of a
multigraph is always null.

Theorem 1. Let G = (V,E) be a multigraph. Let B+ = {v ∈ V : b(v) > 0}
and B− = {v ∈ V : b(v) < 0}. Then,

∑

v∈B+

b(v) +
∑

v∈B−
b(v) = 0

As for graphs, also on multigraphs a path is a sequence of distinct adjacent
nodes. A cycle is a path where the last node coincides with the first one. A
multigraph that does not contain cycles is said to be acyclic. While in the case
of graphs, paths can be equivalently defined as sequences of consecutive edges,
in the case of multigraphs the definition based on consecutive edges is more
informative. In order to avoid confusion, we refer to such definition using the
term tour. Eulerian tours traverse each edge of the multigraph exactly once. A
multigraph is eulerian iff it admits an eulerian tour which is also a cycle.

The notions of balanced multigraphs and eulerian multigraphs coincide when
we consider only connected graphs. We introduce here some more notions about
connectivity that will be useful in our technique for encoding multigraphs in
quantum data structures. Two nodes of a graph are mutually reachable iff there
exists a path from the first to the second and viceversa.

A multigraph G is said to be strongly connected if each pair of nodes u, v ∈ V
are mutually reachable. It is said to be weakly connected, or just connected,
if its underlying undirected graph is strongly connected. The following result
formalizes the equivalence between balanced and eulerian multigraphs [9].

Theorem 2. A connected multigraph G is balanced iff it is eulerian.

In [28] it has been proved that there exists a relationship between eulerian
graphs and unitary matrices. Such relationship involves the notion of line graph.
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Definition 2 (Line Graph). Let G = (V,E) be a multigraph. The line graph
of G is the graph

−→
G = (

−→
V ,

−→
E ), where:

−→
V = E

−→
E =

{(
i, k

)
: i, k ∈ E and i and k are consecutive

}

The elements of a unitary matrix are not necessarily 0 and 1. To associate a
graph to a matrix, we first introduce the notion of support of a matrix. Given a
matrix M its support is the (0–1)-matrix MS where MS

i,j = 1 iff Mi,j �= 0.

Definition 3 (Graph of a Matrix). The graph of a matrix M is the graph
whose adjacency matrix is MS.

In [28] it has been proved that the line graph of an eulerian multigraph has
an adjacency matrix that is the support of a unitary one.

Theorem 3. Let G be a multigraph and
−→
G be its line graph. Then

−→
G is the

graph of a unitary matrix iff G is eulerian or the disjoint union of eulerian
components.

Since the aim of this paper is to implement quantum random walks on graphs,
it is useless to consider disconnected multigraphs. Therefore, in what follows we
will consider only connected multigraphs.

2.3 Quantum Random Walks

In classical computation, when we visit a graph choosing randomly the next edge
to cross, we say that we are making a random walk on the graph. In quantum
computing, the counterpart of this concept is the quantum random walk (QRW).
Since the only way to change a quantum state is through unitary matrices, the
most reasonable way to implement a QRW is based on the ability of encoding
the adjacency properties of any graph inside a unitary matrix.

The visit, in both classical and quantum computation, can be made at either
continuous or discrete time. In the case of continuous time QRWs, the Hamil-
tonian of the system is provided and using matrix exponentiation the system
evolves through time [21]. On the other hand, in discrete time QRWs, the most
common method is through coined walks [1]. Such method is based on a pair of
Hilbert spaces: the first one is for the graph nodes, while the second one is for
the coin. Encoding the graph with this technique generates an unitary matrix
which makes the computation reversible.

3 Unitary Matrix of an Eulerian Multigraph

In this section we introduce a procedure which allows us to transform any eule-
rian multigraph G into a unitary matrix, encoding the adjacency properties of
G. The procedure passes through the construction of the line graph of G, then
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Theorem 3 from [28] lies at the heart of the transformation. However, the focus
in [28] is on the proof of the result, more than on the algorithmic construction of
a unitary matrix. Instead, in this section we are going to actually build a unitary
matrix starting from a line graph adjacency matrix. Such unitary matrix is not
unique and our construction is parametric with respect to a family of unitary
matrices which are required as input. As for the computational complexity of
the technique, we anticipate that it is linear in the size of the resulting matrix.
Notice that it is common usage to build unitary matrices by columns. In our
approach, since we edit the adjacency matrix, the resulting unitary will be by
rows. In this way we keep a closer relationship to the initial graph. Therefore,
the reader should be aware that in the circuit and in the examples we will use
the conjugate transpose of the matrix.

3.1 From a Graph to Its Line

Let G = (V,E) be an eulerian multigraph. The function Linearize in Algorithm
1 returns the adiacency matrix M̃ of the line graph

−→
G . It can be easily checked

that its time complexity is Θ(|E|2).

Algorithm 1. Construct the line graph of a given multigraph.
1: function Linearize(V, E)

2: ˜M← SquareMatrix(|E|) � Creating an all zero square matrix
3: for all i ∈ E do
4: v ← Target(i) � i is of the form (u, v)
5: for all k ∈ δ+(v) do � k is of the form (v, w)

6: ˜Mi,k ← 1

7: return ˜M
8: end function

We now point out some structural properties of M̃ that follow from the fact
that G is eulerian.

Lemma 1. Let i = (u, v) and j = (u′, v′) be two edges. It holds that:

M̃i = M̃j iff v = v′

Proof. Let i, j be two edges of G. Consider some edge k ∈ E. By definition of−→
G , M̃i,k = 1 iff i and k are consecutive edges. The same is true for j. So, if
v = v′ it is immediate to conclude that M̃i = M̃j . Otherwise, if M̃i = M̃j , then
since G is eulerian it cannot be the case that M̃i and M̃j have only 0 elements.
This means that ∃k such that M̃i,k �= 0. Hence, by hypothesis also M̃j,k �= 0.
Let k = (v′′, w), since M̃i,k �= 0 it has to be v = v′′. Moreover, from M̃j,k �= 0
we get v′ = v′′. So, v = v′. 
�
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As a consequence of the above lemma we immediately get that each node v
induces as many equal rows in M̃ as its indegree.

Lemma 2. For every edge i = (u, v), there are exactly d+(v) edges j such that
M̃i,j �= 0. Moreover, there are exactly d−(v) rows equal to M̃i.

In Lemmata 1 and 2 we introduce a relationship between rows describing
edges that have a common target. We can generalize the result formalizing it in
the case of any pair of rows.

Lemma 3. Let i, j ∈ E. Let A = {k : M̃i,k �= 0} and B = {l : M̃j,l �= 0}. Then,
either A = B or A ∩ B = ∅.

Proof. If A = B there is nothing to prove. Suppose A �= B and assume, for the
sake of contradiction, that k = (v, w) ∈ A ∩ B. By definition of A and B, it has
to be M̃i,k = 1 = M̃j,k. Hence i and j share v as common target. By Lemma 1,
M̃i = M̃j and A = B. This is a contradiction. 
�
In what follows we say that two rows are disjoint if A ∩ B = ∅, where A,B are
defined as in the above lemma. In other terms, two rows are disjoint if and only
if they correspond to edges having different targets.

3.2 Construction of the Unitary Matrix

We now describe the procedure Unitarize which transforms M̃ into a unitary
matrix M̂ whose support is M̃ . The input of the function are the adjacency
matrix M̃ and a family of unitary matrices U. The family has to satisfy:

∀v ∈ V ∃U ∈ U of size d−(v) × d−(v)

The goal of Unitarize in Algorithm 2 is to edit M̃ in order to obtain a
unitary matrix which encodes the adjacency properties of G. At each iteration
of the while loop, a node v is extracted from Q and, for each edge i directed
to v, row M̃i is edited through the procedure SparseSub exploiting a unitary
matrix of suitable dimension. In particular, SparseSub(r, r′) replaces the h-th
non-zero element of r by r′

h.
Let r be a vector and A be a set of indexes of r, we use the notation r(A) to

denote the subvector of r obtained by considering only the indexes in A.

Lemma 4. After applying SparseSub at line 9, the subvector M̂ i(δ+(v)) is
equal to Uc.
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Algorithm 2. Compute a unitary matrix from the line graph.

1: function Unitarize(˜M, U)

2: ̂M ← ˜M
3: Q ← V
4: while Q �= ∅ do
5: v ← Pop(Q)
6: U ← U(d−(v)) � Choose some d−(v) × d−(v) matrix from U
7: c ← 1
8: for all i ∈ δ−(v) do

9: SparseSub(̂M i, Uc)
10: c ← c + 1

11: return ̂M
12: end function
13:
14: procedure SparseSub(r, r′)
15: h ← 1
16: for all k ∈ E do
17: if rk �= 0 then
18: rk ← r′

h

19: h ← h + 1

20: end procedure

Proof. By definition of M̃ , rk �= 0 holds iff k ∈ δ+(v). By construction, Uc has
size n = d−(v) = d+(v) = |δ+(v)|. The result follows immediately. 
�

Theorem 4. M̂ is a unitary matrix.

Proof. It is sufficient to show that the rows of M̂ form an orthonormal basis.
By Lemma 4, each row of M̂ is a row of some unitary matrix interleaved by
zeros. Hence, the product of each row with itself is 1. Let i, j ∈ E be distinct
edges. If M̃ i and M̃ j are disjoint, also M̂ i and M̂ j are. Therefore M̂ iM̂ j = 0.
Otherwise, by construction of Unitarize, M̂ i and M̂ j refer to the same unitary
matrix. Since their product depends only on their non-zero elements, and since
they correspond to unitary rows, M̂ iM̂ j = 0. 
�

Since each line of M̂ is edited once and U can be stored efficiently, we get that
Unitarize has time complexity Θ(|E|2).
Example 1. We now provide an example to clarify the structure of M̂ after the
procedure Unitarize. For sake of readability, we omitted the scalar multipliers
from the matrices in U inside M̂ .
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4 Embedding Multigraphs into Eulerian Ones

In the previous section we showed how to produce a unitary matrix from
an eulerian multigraph. The aim of this section is to introduce a procedure
called Eulerify, based on Theorem 2, that takes as input the nodes set V
of a connected multigraph G = (V,E) and the array b of the balances of the
nodes. It gives as output a set of additional edges E⊥ such that the multigraph
G′ = (V,E ∪ E⊥) is eulerian. We recall that, since we are interested in quantum
random walks, we are interested only in connected graphs.

Algorithm 3. Edit the graph to make every node balanced.
1: function Eulerify(V, b)
2: E⊥ ← ∅

3: B+ ← {v ∈ V : bv > 0}
4: B− ← {v ∈ V : bv < 0}
5: while B− �= ∅ do
6: u ← Pop(B−)
7: while bu < 0 do
8: v ← Choose(B+) � Choose without extracting
9: E⊥ ← E⊥ ∪ {(u, v)}

10: (bu, bv) ← (bu + 1, bv − 1)
11: if bv = 0 then
12: B+ ← B+ \ {v}
13: return E⊥
14: end function

The procedure takes as input the set of nodes V together with the vector b
of size |V | initialized with the balance of the nodes, i.e., the v-th element of b is
bv = b(v). The idea is to iteratively fix each node in deficiency of balance adding
edges to nodes in surplus of balance. The choice of the deficient node u is done
at line 6. The loop at lines 7–12 is responsible for adding edges from u to surplus
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nodes v until u is balanced. Theorem 1 both ensures that for each u there are
always surplus nodes to choose at line 8 and that when we exit the loop 5–12
the sets B+ and B− are empty.

It is clear that the time computational complexity of Eulerify is propor-
tional to Θ(|V | + |E⊥|) ⊆ O(|V | + |E|), since we never add more edges than the
existing ones. This is the technical point were the use of multigraphs helps us.
We can both add new edges and new copies of existing ones.

The adjacency properties of G could be different from those of G′. In partic-
ular, such differences are witnessed by the set E⊥. Our aim is to visit the graph
G through a quantum random walk. However, since G′ is eulerian, the walk will
be performed exploiting the unitary matrix constructed on the line graph of G′.
So, we must ensure that such walk only uses edges of E. Therefore, all the edges
inside E⊥ are used in the Unitarize procedure, but will be forbidden during
the walk. In order to do this we will use a projector defined as follows:

PG = I −
∑

e∈E⊥

|e〉 〈e|

Notice that even if in E⊥ we add an edge between two adjacent nodes of G, the
projector removes the new edge, while it does not affect the one existing in G.

Example 2. The following toy example show the construction of PG.

E = {00, 01, 10, 11}
E⊥ = {01, 11} PG =

⎛

⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞

⎟⎟⎠

5 The Quantum Circuit: With and Without Projections

In the previous sections we introduced two procedures, namely Unitarize and
Eulerify. While the first is in charge of constructing a unitary matrix from
an eulerian multigraph, the second one embeds a connected multigraph into an
eulerian one. In this section we put the two procedures together and describe
the resulting quantum circuit running the quantum walk. Finally, we propose a
way to reduce the size of such circuit avoiding the use of projectors in the case
of strongly connected graphs.

Given any connected multigraph G = (V,E), we first check whether it is
balanced. If not, we apply the procedure Eulerify obtaining some G′ – which
is now eulerian. We also compute a projector PG which “eliminates” the effect
of the edges of E⊥ along the walk. After that, we use the procedure Unitarize

on G′ to obtain a unitary matrix M̂ that would allow us to make one discrete
step in the visit of G′. So, a walk on G can be implemented by using each time
PG after M̂ as shown in Fig. 1.

In particular, in the circuit in Fig. 1 a number of qubits proportional to the
logarithm of the edges of G′ have to be initialized to |0〉. Then, an equiprobable
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|0〉 H

M̂
† PG

...
...

...
...

|0〉 H

repeat h times

Fig. 1. Quantum circuit for the walk.

superposition of edges is generated using Hadamard operator H. At this point,
by applying M̂ and PG to the state for h times, h steps of the walk on G are
performed. Finally, the measurement returns one edge of G whose target node
can be interpreted as the last node of the quantum walk.

In terms of circuit complexity, the repeated application of PG is time consum-
ing. For this reason, we briefly introduce an alternative solution to the problem
of embedding a multigraph into an eulerian one. Such alternative solution avoids
the use of projections. The idea is that of balancing the multigraph by adding
copies of edges that are already present. In this way, the adjacencies of G will
not be altered and the projector PG will not be needed anymore.

First, please notice that if G is not strongly connected, there is no way to
embed it into a eulerian multigraph without adding authentic new edges. So, let
us assume that G is strongly connected. We are interested in introducing the
minimum number of copies of edges to make the graph eulerian: this is in fact an
instance of the Directed Chinese Postman Problem. There is extensive literature
on the problem, see e.g. [12], but for our purpose it is sufficient to know that for
strongly connected graphs it always admits a solution computable in polynomial
time. In terms of physical circuit implementation, if we adopt such solution the
matrix PG would disappear from the circuit in Fig. 1.

6 Edges/Nodes Failures

The overall procedure described in the previous sections has a time computa-
tional complexity proportional to Θ(|E|2) and generates matrices of such size.
As we will see in Sect. 7 other methods in literature have the advantage of relying
on matrices of size Θ(|V |2) (e.g., [21]). However, as a trade off, we show how in
our method editing in the original graph G in terms of deletion of either edges
or nodes does not result in the matrix M̂ to be recomputed. The only involved
cost comes from the update of the projector PG introduced in Sect. 4. Editing
PG for a single edge requires time Θ(1), while it requires time Θ(d+(v)+ d−(v))
for removing a node. In fact, the application of PG after every step of the walk
(see Fig. 1) has the effect of hiding some edges.
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We know that each step of the visit is a composition of the unitary matrix
M̂ followed by an application of the projector PG. If we suppose that an edge
i is temporarily removed from the graph, e.g., a failure in the network occurs,
we do not need to edit the matrix M̂ . We just need to update a single element
of PG. In terms of matrix operations, we know that i is an element of the basis
of the edges. Therefore, we just need to edit PG setting the i-th element of its
diagonal to 0. Notice that PG only has 1s on some elements of the diagonal and
0 elsewhere. In terms of computational complexity, this operation takes time
Θ(1). At later stages, if the same edge is re-added, e.g., the failure is fixed, it
takes again time Θ(1) to undo the previous edit on PG. Therefore, our encoding
efficiently supports both deleting edges and re-adding them.

In case of edge addition, the matrix M̂ should be entirely recomputed. How-
ever, the proposed method can be adapted to be efficient also in the case of edge
additions at the cost of a more space-consuming matrix M̂ . In particular, con-
sider the case in which we have a set N of edges that could potentially be added
to G. This could be the case for a network infrastructure that we know will be
strengthened in a near future adding connections that have already been recog-
nized as strategic. At present the graph representing the network is G = (V,E),
but in a near future it will become GN = (V,E ∪ N). In this case we construct
the matrix M̂ for GN and we project away the edges of N . As soon as the new
edges are available, we re-introduce them by modifying the projector.

At a high cost in term of space, one could decide to work by assuming that
each edge could be added. This is equivalent to consider N as V ×V . The reader
should be aware that in the worst case the size of GN could be quadratic with
respect to the size of G. This occurs when G is sparse.

Finally, if we consider a node failure as a failure of all its incoming and
outgoing edges, then also node failure can be easily handled. In fact, if node v
fails, the cost of removing all of its edges is exactly Θ(d+(v) + d−(v)).

7 Comparisons and Examples

In this section we compare the proposed method with two alternatives from lit-
erature. Both techniques tackle the problem of QRWs and therefore they need a
way to encode a graph by means of a unitary matrix. The first one [21] regards
continuous time QRWs. Therefore, the authors use matrix exponentiation to
obtain a unitary matrix, typical of continuous time quantum processes. Mean-
while, the second technique [1] deals with discrete time QRWs. It labels the
edges of the graph in such a way that each node has exactly one incoming and
one outgoing edge per label. It then equips each node of degree d with a d × d
unitary matrix – the coin – which encodes the possible choices of the next edge
to cross.

Besides these encodings, other approaches can be found in literature. For
example, in [22], the concept of reversible graph was introduced and used to
restrict the class of directed graph over which a discrete quantum random walk
is modeled. A complete and recent review of the existing proposals can be found
in [18].
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00 01

1011

Fig. 2. Four nodes cyclic graph.

7.1 Continuous Time Walk from [21]

Let G be the cyclic graph depicted in Fig. 2 and M be its adjacency matrix. Let
π =

(
1 1 1 1

)
be the unique non-negative eigenvector of M , Π = diag(π) and

L = Π − 1
2 (Π M + M† Π)

L =
1
2

⎛

⎜⎜⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞

⎟⎟⎠

The unitary matrix used for the walk at time t ∈ R is U t = e−itL.
The matrix is not directly related to the graph topology. Moreover, if an edge-

failure occurs, the matrix M changes, and both Π and L need to be recomputed.
However, in [21] the focus was not on developing visit algorithms but on defining
a measure of similarity between graphs.

7.2 Discrete Time Walk from [1]

We consider again the graph of Fig. 2. In the case of this example the coin matrix
C and the shift matrix S are as follows

C =
1√
2

(
1 1
1 −1

)
S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The self loops were labelled – colored – with the same color.
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The resulting unitary matrix is

U = S · (C ⊗ I) =
1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this case the matrix seems to be more descriptive in terms of the initial
graph topology. However, in the case of an edge-failure, the procedure must start
by recomputing again the edge labelling.

7.3 Our Method

We now want to obtain a unitary matrix for G in Fig. 2 with our new method.
Since G is eulerian, the set E⊥ is empty. The adjacency matrix of

−→
G is

M̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now apply Unitarize(M̃,U) to obtain M̂

U =
{

1√
2

(
1 1
1 −1

)}
M̂ =

1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1
1 −1 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above matrix was computed fixing the following encoding of the edges of G

|000〉 = (00, 00) |001〉 = (00, 01) |010〉 = (01, 01) |011〉 = (01, 10)
|100〉 = (10, 10) |101〉 = (10, 11) |110〉 = (11, 11) |111〉 = (11, 00)

Suppose we start in state |ψ0〉 = |000〉. After one step, we are in state

|ψ1〉 = M̂† |000〉 =
1√
2

( |000〉 + |001〉 )
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and after another step we reach

|ψ2〉 =
1
2
( |000〉 + |001〉 + |010〉 + |011〉 )

Notice that since E⊥ = ∅, the associated projector PG is the identity matrix.
Suppose that after the second step the edge |001〉 fails. Using our method

we can react to this event by adding the edge (00, 01) to E⊥. The matrix PG is
updated as introduced in the previous section, and it becomes I − |001〉 〈001|.

Hence, by applying PG to |ψ2〉 we would delete |001〉 from the state.

7.4 Random Thoughts on Random Walks

Last but not least, for those who are familiar with Markov Chains, we add a
brief note about QRWs distributions. In particular, we give an intuitive argument
about the non-existence of a stationary distribution as for the classical case. Let
U ∈ Cn×n be a unitary matrix. The graph of the states of U is GU = (VU , EU ):

VU =
{ |ψ〉 : 〈ψ〉 = 1, |ψ〉 ∈ Cn

}
EU =

{
(|ψ〉 , U |ψ〉) : |ψ〉 ∈ VU

}

It is straightforward to see that, since U is unitary – hence invertible – each
|ψ〉 ∈ VU has exactly one incoming and one outgoing edge. Therefore, GU is
disjoint union of cycles and infinite lines. In particular, if there exists a t ∈ N+

such that U t |ψ〉 = |ψ〉, then U i |ψ〉 , i ∈ Z forms a cycle. If such t does not
exists, then |ψ〉 will be a part of an infinite line of states.

(a) A cyclic state evolution. (b) An infinite line state evolution.

8 Conclusions

Quantum computing is becoming more and more important in computer science.
The laws of Quantum Mechanics, that rule quantum algorithms, require every
operation to belong to a restricted class of linear operators. Therefore, also com-
mon data structures like graphs must be encoded in such class of matrices in
order to be visited using quantum algorithms. In our proposal we introduced a
method to encode any graph into a unitary matrix using the notion of eulerian
graph, and eventually a projector. This new technique produces a matrix that
has a closer relationship to the initial graph topology than other methods in
literature (i.e., [1,21]). Moreover, the presence of a projector is useful to support
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edge-failures. We showed that by just changing one single element in the pro-
jector we can react to the failure of an edge. We also described how to use our
technique in order to obtain edge addition.

As future work we are interested in investigating the limiting distributions
of our QRWs. For a restricted class of graphs we are already able to obtain the
same results of [1]. However, simulations suggest that the class can be extended.

Moreover, as briefly said in Sect. 5, the Direct Chinese Postman Problem
(DCPP) can be exploited in order to avoid projectors at each step. We intend
to further study in this direction with particular reference to the problem of
keeping the probabilities unchanged after the application of DCPP.

Finally, we are interested in developing graph reduction techniques, such as
lumpabilities [3], in order to reduce the quantum circuits size.
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Abstract. Decision diagrams have proven to be a useful data struc-
ture in both, conventional and quantum computing, to compactly rep-
resent exponentially large data in many cases. Several approaches exist
to further reduce the size of decision diagrams, i.e., their number of
nodes. Reordering is one such approach to shrink decision diagrams by
changing the order of variables in the representation. In the conventional
world, this approach is established and its availability taken for granted.
For quantum computing however, first approaches exist, but could not
fully exploit a similar potential yet. In this paper, we investigate the dif-
ferences between reordering decision diagrams in the conventional and
the quantum world and, afterwards, unveil challenges that explain why
reordering is much harder in the latter. A case study shows that, also
for quantum computing, reordering may lead to improvements of several
orders of magnitude in the size of the decision diagrams, but also requires
substantially more runtime.

1 Introduction

Quantum computers are promising to solve important problems significantly
faster than conventional computers ever could. Shor’s algorithm [1] and Grover’s
search [2] are two famous examples, albeit especially Shor’s algorithm cannot be
handled in a scalable fashion by current quantum computers. Still, there are
areas where current quantum hardware can provide an advantage today, such as
machine learning [3] and chemistry [4]. This computational power mainly stems
from the exploitation of superposition, i.e., that quantum states can assume a
state in which all basis states are represented at the same time, and entanglement,
which allows operation on one qubit to also influence other qubits as well. The
potential of quantum computers is witnessed by the vast efforts undertaken by
companies such as IBM, Google, and Rigetti to build the physical hardware and
to develop corresponding design automation tools.
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C. A. Mezzina and K. Podlaski (Eds.): RC 2022, LNCS 13354, pp. 93–107, 2022.
https://doi.org/10.1007/978-3-031-09005-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09005-9_7&domain=pdf
https://orcid.org/0000-0003-1089-3263
https://orcid.org/0000-0003-4699-1316
https://orcid.org/0000-0002-4993-7860
https://doi.org/10.1007/978-3-031-09005-9_7


94 S. Hillmich et al.

These methods and tools for design automation need to work on conven-
tional hardware but, at the same time, have to deal with the complexity of the
quantum world. To this end, representing a quantum state requires an exponen-
tial amount of memory with respect to the number of qubits, often represented
as a 2n-dimensional vector. Rooted in the underlying mathematical principles,
the worst-case complexity will always be of this exponential kind [5]. However,
utilizing more sophisticated and adaptive data structures such as decision dia-
grams (DDs) [6–14] can lead to much more compact representations in many
cases.

In the design automation for conventional circuits and systems, decision dia-
grams have been established since the 90’s (see, e.g., [15,16]). There, it has been
shown that the size of decision diagrams significantly depends on the order in
which the variables (in case of decision diagrams for quantum computing, the
qubits) are encoded. Even though determining an optimal variable order is a
coNP-hard problem [17], the potential reductions in size motivated a plethora
of reordering schemes aimed at determining suitable or even the best possible
variable orders for a given decision diagram [17–23].

The success of reordering in the conventional design automation raises the
question, whether similar approaches are suitable for the quantum world as
well. A few attempts of employing reordering schemes for decision diagrams
for quantum computing have been made [11,24–26]. However, those attempts
have remained rather rare and considered only a prototypical level with small
examples yet. Moreover, implementations of decision diagrams such as provided
in [11] frequently abort when reordering is applied to larger examples due to
inaccuracies in the floating-point numbers storing the edge weights. This neces-
sitates an investigation on the challenges that have prevented a fully-fledged
application of reordering in decision diagrams for quantum computing thus far.

In this work, we investigate the challenges of reordering which emerge dur-
ing the implementation of this feature for decision diagrams with complex edge
weights. As the challenges arise due to inaccuracies in the floating-point represen-
tation of real numbers, all types with complex edge weights, such as QMDDs [7]
and LIMDDs [13], are susceptible. To this end, it becomes apparent that imple-
menting reordering decision diagrams for quantum computing is much harder
than originally thought considering the simplicity of the concept itself. Using
this knowledge, we present a solution that handles those challenges and evaluate
how this eventually affects the performance of reordering. Our case study shows
that reordering may allow for substantial improvements (in some cases yield-
ing decision diagrams which are several orders of magnitudes smaller in their
size), but also will require substantially more runtime—showing that designers
should decide whether reordering pays off in their use case. For the first time,
this explains the reluctance of using reordering in decision diagrams for quan-
tum computing, but also shows the potential still available in this optimization
scheme.

The remainder of this paper is organized as follows: Sect. 2 briefly reviews
the basics of quantum computing and decision diagrams. Section 3 explains the
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concepts of reordering in decision diagrams, whereas Sect. 4 discusses challenges
that arise when implementing reordering in decision diagrams for quantum com-
puting together with a corresponding solution. In Sect. 5, we present the results
of our case study. Finally, we conclude the paper in Sect. 6.

2 Background

In order to keep the work self-contained, we briefly review the basics on quantum
computing and decision diagrams in this section.

2.1 Quantum Computing

In quantum computing, the basic unit of information is the quantum bit or
qubit [5,27]. As a conventional bit, it can assume the corresponding computa-
tional basis states |0〉 and |1〉 (in Dirac notation). However, qubits can addition-
ally assume linear combinations of the basis states. They are, justifiably, in both
states at the same time. A more precise notion is |ψ〉 = α0 · |0〉 + α1 · |1〉 where
α0, α1 ∈ C are referred to as amplitudes. If both α0 and α1 are non-zero, the
quantum state is said to be in superposition. Additionally, in systems with more
than one qubit, the quantum state can be entangled, meaning that an operation
on one qubit may affect other qubits as well.

The amplitudes are fundamentally opaque in a physical quantum computer.
The only way to retrieve information on a quantum state is measurement. Mea-
surement is probabilistic and results in a single basis state while, at the same
time, superposition and entanglement are destroyed. The probability to measure
any basis state is determined by its amplitude: Given αi, the squared magnitude
|αi|2 is the probability to measure the basis state |i〉. Therefore, the amplitudes of
the quantum state are constrained such that the sum of the squared magnitudes
must equal one—referred to as normalization constraint. For a one-qubit system
|α0|2 + |α1|2 = 1 must hold. Quantum states with n qubits have 2n basis states,
each with a corresponding amplitude. Multi-qubit states are also subject to the
normalization constraint

∑
i∈{0,1}n |αi|2 = 1. Commonly, quantum states are

represented as 2n-dimensional vectors containing the amplitudes, implemented
as arrays of floating-point numbers.

Example 1. Consider the pure two-qubit quantum state |ψ〉, which is set to

|ψ〉 = 1/
√
2 · |00〉 + 0 · |01〉 + 0 · |10〉 + 1/

√
2 · |11〉 .

This state is valid, since |1/√
2|2 + |0|2 + |0|2 + |1/√

2|2 = 1 satisfies the normal-
ization constraint. As a vector, the state is written as |ψ〉 = [ 1/

√
2 0 0 1/

√
2 ]T. Due

to the superposition, measuring this state yields either of the two basis states
|00〉 or |11〉 with a probability of |1/√

2|2 = 1/2 each. After the measurement, the
superposition is destroyed and the quantum state is fixed to the measured state,
i.e., subsequent measurements yield the same result.
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2.2 Decision Diagrams

Quantum states require 2n-dimensional vectors to represent n qubits if this
straightforward representation is chosen. In many cases decision diagrams (DDs)
can drastically reduce this exponential complexity by exploiting redundan-
cies [6,8–12], although the worst-case complexity remains exponential.

Fig. 1. Two quantum states with vector and DD representation, respectively

The structural redundancies in vectors can be exploited by shared structures
in decision diagrams. More precisely, the vector is split into equally sized upper
and lower sub-vectors. There are n levels of splitting for an n-qubit state until the
individual elements are reached. If identical sub-vectors occur in this procedure,
they are detected and represented by shared nodes. The consistent application
of a normalization scheme guarantees a canonical representation of quantum
states and thus maximally compact decision diagrams (given a fixed variable
ordering). In the resulting decision diagram, the amplitudes are encoded in the
edge weights. To get the amplitude of a basis state the edge weights along the
corresponding path have to be multiplied.

Example 2. Consider the state vector in Fig. 1a. The annotations on the right
denote the basis state each amplitude corresponds to. In Fig. 1b, a decision dia-
gram representing the same state is depicted with the normalization introduced
in [28]. To access the amplitude of basis state |001〉, the bolded path in the deci-
sion diagram has to be traversed and the edge weights along this path have to be
multiplied, e.g., (q2 = 0, q1 = 0, q0 = 1) yielding 1·√6/

√
10·√2/

√
6·−1/

√
2 = −1/

√
10.

3 Reordering Decision Diagrams

This section reviews the effect of the variable order in decision diagrams and
the conceptual approach to reordering. To this end, we take the findings from
reordering decision diagrams in the conventional world (e.g., from [17,19–23])
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and adapt them to the corresponding representation of quantum states. After-
wards, we use this as basis to show that certain corner cases frequently occur
in reordering of decision diagrams for quantum computing—providing an expla-
nation why reordering has been investigated only in a theoretic or prototypical
fashion in the quantum world (e.g., in [10,11,24–26]).

The compaction decision diagrams can achieve significantly depends on the
order in which the variables (or qubits) are represented. In fact, the variable order
has a great influence on the size of the decision diagram [17] and, in particular
cases, can be the difference between a compact and an exponential representation
with respect to the number of variables/qubits. The variable order is denoted
as qi0 < qi1 < . . . < qin−1 for a system with n variables/qubits and orders the
variables/qubits in the decision diagram from the root node at the top to the
qubit that appears in the last level before the terminal node.

Fig. 2. Variable swap between q2 and q1 decreases the number of nodes

Example 3. Consider the decision diagrams in Fig. 2, both of which represent the
same quantum state. In (a), the application of variable order q2 < q1 < q0 yields a
decision diagram with five non-terminal nodes whereas, in (b), the variable order
q1 < q2 < q0 yields a decision diagram with only four non-terminal nodes—a
20% reduction of non-terminal nodes.

Changing the variable order is termed reordering [19–23]. The simplest
change in the variable order is exchanging variables/qubits that are adjacent
in the current variable order. For two adjacent variables/qubits qi+1 < qi,
this requires swapping the “inner edges” representing |qi+1qi〉 = |01〉 and
|qi+1qi〉 = |10〉. Keeping in mind that the decision diagrams for quantum states
represent vectors, this swap corresponds to the following transformation:

⎡

⎢
⎢
⎣

A
B
C
D

⎤

⎥
⎥
⎦

|qi+1qi〉
|00〉
|01〉
|10〉
|11〉

swap−−−−−−−→
qi+1 and qi

⎡

⎢
⎢
⎣

A
B
C
D

⎤

⎥
⎥
⎦

|qiqi+1〉
|00〉
|10〉
|01〉
|11〉

sort−−−−→
indices

⎡

⎢
⎢
⎣

A
C
B
D

⎤

⎥
⎥
⎦

|qiqi+1〉
|00〉
|01〉
|10〉
|11〉

.



98 S. Hillmich et al.

In this description, A, B, C, and D can be complex numbers (if qi+1 and qi are
the only qubits) or sub-vectors themselves (if the system has more qubits). Of
course, there may be multiple nodes labeled qi. In this case, these the variable
swapping has to be applied to each such node.

Example 4. The general simplicity of swapping two adjacent variables/qubits in
a decision diagram is illustrated in Fig. 3. Only the inner outgoing edges on the
lower level need to be swapped and the node labels have to be exchanged.

Changing the variable order from one to another is realized by iteratively
exchanging adjacent variables/qubits in the current variable order until the
desired variable order is attained. Doing so is also commonly required by heuris-
tics trying to a find good variable order. Finding the minimal solution is an
coNP-hard problem [17] and often done via exhaustive search.

Fig. 3. Conceptually swapping two variables/qubits

In the conventional world, reordering is a standard approach to reduce
the size of decision diagrams such as BDDs [17,19]. A well-known reordering
heuristic is sifting, which has a quadratic complexity in the number of vari-
ables/qubits [23]. This approach repeatedly selects a qubit and moves it up and
down in the decision diagram to find the minimal position for said variable/qubit.
Hence, for a decision diagram with n variables/qubits, there are n − 1 positions
to consider for each variables/qubit—yielding an efficient heuristic which often
yields good enough results. Besides that, a plethora of further works exist which
aim to determine good orders or even try to obtain the best possible order as
efficiently as possible (see, e.g., [18,20–23]).

4 Challenges in Reordering Decision Diagrams
for Quantum Computing

In the quantum world, decision diagrams recently were established as a data
structure to efficiently handle quantum states and quantum function descrip-
tions for simulation, synthesis, and verification. However, while reordering is a
tried and tested procedure for conventional decision diagrams, it has been rarely



Reordering Decision Diagrams for Quantum Computing 99

used in decision diagrams for quantum computing yet. In fact, reordering for
the quantum world has been considered only on a rather conceptual level with
small examples [11,25,26]. In this section, we discuss why this might be the case
and particularly show the challenges of reordering which emerge in quantum
computing when more complex decision diagrams are considered.

Conceptually, reordering decision diagrams of quantum states is conducted
similarly to reordering in conventional decision diagrams and consists of one or
more variable swaps as illustrated in Fig. 3: Each variable swap involves two adja-
cent levels swapping their inner out-going edges on the lower level and accord-
ingly relabeling the nodes. However, while this is a conceptually simple procedure
and easy to realize for conventional decision diagrams, a corresponding realiza-
tion for the quantum world has to consider the increased complexity. Indeed,
decision diagrams for quantum computing additionally need to represent com-
plex numbers, which are commonly encoded in the edge weights (see Sect. 2.2).
This may lead to severe challenges that have not been considered thus far and
are investigated in the following.

Fig. 4. Step-by-step variable swap for a single node q1
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4.1 Floating-Point Accuracy

Quantum computing uses complex numbers to describe states and functions, so
decision diagrams for quantum have to incorporate complex numbers as well
(1/√

2 is an example of a common irrational factor in quantum computing occur-
ring in the real or imaginary parts of a complex number). For design automation
tasks on conventional computers, we are left with two choices: Do calculations
symbolically to retain absolute accuracy or use some form of approximation,
such as floating-point numbers. Exact representations, such as the algebraic rep-
resentation proposed in [29], are too computationally expensive for all but small
benchmarks. In the case of [29], which uses tuples of integers for representation,
the integers quickly become larger than natively representable with 64 bits and
the implementation therefore introduces an overhead by using arbitrary large
integers. Hence, most implementations use floating-point numbers. However, the
edge weights encoding the amplitudes of the quantum state are affected by most
operations, such as multiplying edge weights of decision diagrams in simulation
and reordering. Thus, due to the limited accuracy of floating-point numbers, each
modification of the edge weights carries the risk of losing tiny bits of information.

Example 5. Figure 4 illustrates the required computations on the edge weights,
when swapping two adjacent qubits in a decision diagram. As illustrated in
Fig. 4a (showing the original order) and in Fig. 4e (showing the resulting order),
the procedure follows the original idea from the conventional world (see Fig. 3)
and just adjusts the inner outgoing edges and the node labels. In addition to
that, however, the edge weights also need to be adjusted when decision dia-
grams for quantum computing are considered. This is particularity shown in
Fig. 4b and Fig. 4d—and provides a challenge to be addressed. In fact, multi-
plying numbers that are not exactly representable with floating-point numbers,
such as 1/

√
2 or 1/3, will result in a product that might be slightly off its real value.

This difference in actual number and exact number interferes with the detection
of identical sub-structures and, hence, leads to larger decision diagrams.

Most state-of-the-art implementations tackle the challenge of lost sharing
due to floating-point inaccuracies by employing some form of tolerance when
comparing floating-point numbers Commonly, two complex numbers a and b
are regarded as equal if |Re(a) − Re(b)| < T and | Im(a) − Im(b)| < T for
some tolerance T . However, using such a tolerance to mitigate floating-point
inaccuracies causes another challenge when trying to do reordering.

4.2 Node Collisions

The inaccuracy of floating-point numbers and the common usage of tolerances
for comparisons eventually creates a more severe problem for reordering nodes.
In theory, doing a variable swap between qi+1 and qi does not change the number
of nodes on the level of qi+1. However, in practice, a loss of precision may cause
two hitherto different nodes to become identical.
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Example 6. Consider the decision diagram shown in Fig. 5 and assume that a
tolerance of T = 0.01 is applied. Now, the qubits q1 and q0 should be swapped.
Note that both nodes labeled q1 are very similar before the variable swap, but
the edge weights differ by at least the tolerance. During the swapping procedure,
weights of outgoing edges from the left-hand side of q1’s successors are multiplied
as shown in Fig. 4b. Because the two q1-nodes were similar to begin with, the
products from the left-hand side q1-node will be similar to the products from the
right-hand side q1-node as well. During the next steps (see Fig. 4c this may lead to
a situation where, due to the applied tolerance, nodes will be considered identical
during lookup of existing nodes to exploit redundancies—a collision occurs. More
precisely, consider the left successors in the decision diagram shown in Fig. 5 as
an example (bolded in the figure). Here, we get the products 0.45 · 0.5 = 0.225
and 0.46 · 0.49 = 0.2254. Due to the tolerance, both weights will be treated
as identical since |0.225 − 0.2254| < 0.01—the same holds for the remaining
products. As a result, the resulting nodes will be considered equal during lookup
of existing nodes.

Fig. 5. Decision diagram where exchanging q1 and q0 leads to a collision

At a first glance, collisions (a term borrowed from unwanted collisions in
hash tables) may seem desirable since the number of nodes is reduced. In fact,
the number of nodes in a fully populated reduced decision diagram is invariant
to the variable ordering (assuming sufficient accuracy in represented numbers),
whereas collisions possibly reduce the number of nodes. However, since the nodes
on the upper level of the variable swap are re-used to avoid reconstructing the
whole decision diagram, this invalidates all edges pointing to the colliding node.
Worse yet, keeping nodes regardless of a collision creates a conflict with the com-
monly used unique table. The unique table holds pointers to all inserted nodes
and is essential to efficiently identifying identical sub-structures for sharing. As
the name suggests, it is supposed to hold unique entries—forcibly inserting dupli-
cates creates unreachable nodes.

Example 6 (Continued). Consider again Fig. 5. Edges pointing to the left-
hand side q1-node in the original decision diagram would work as expected in
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the reordered version. However, edges pointing to the right-hand side q1-node in
the original decision diagram are invalid in the reordered version. The resulting
decision diagram would not correctly represent the state anymore if the collision
were ignored.

Previous works (such as [11,24–26]) did not consider collisions and, hence,
failed when node collisions occurred. This may be due to collisions only occur-
ring with increasingly complex decision diagrams and previous works considered
rather small examples in their evaluations. In cases where an implementation is
available (e.g., [11]), the execution is aborted with an error message if a node
collision happens. However, our case study in Sect. 5 confirms that collisions are
a common problem in more complex quantum states and, hence, need to be
considered.

We propose to mitigate the problem of colliding nodes by readjusting edges
pointing to the collided node. To this end, the corresponding parts of the unique
table are scanned to find the address of the collided node and substitute the
address of the original node. Further, the decision diagram may contain nodes
that are yet to be inserted into the unique table and, thus, the current decision
diagram is scanned as well. Note that neither scan approach is sufficient: Multiple
decision diagrams can exist in the same unique table to increase the sharing
potential, so nodes outside the current decision diagram may be affected.

Depending on the structure above the collision, it may be necessary to per-
form cascading substitutions up to one level below the root node. Handling
node collisions, especially when they cascade, drastically increase the overhead
of reordering since parts of the decision diagram have to be reconstructed. In
addition, the merging of nodes to handle collisions is an irreversible operation.
The evaluations in the next section show how this eventually makes the entire
reordering process harder with respect to runtime. Before, however, another
challenge is considered.

4.3 Normalization

Finally, the canonicity of decision diagrams with the same variable order should
be preserved. While canonicity might not be a must-have requirement for an effi-
cient data structure (e.g., in tasks such as simulation or synthesis), it is essential
in design tasks such as equivalence checking. However, even if it is not required in
tasks such as simulation, canonicity increases the likelihood of detecting identical
sub-structures—resulting in a more compact decision diagram.

In conventional BDDs, canonicity is achieved by fixing the variable order and
ensuring there are no two different nodes representing the same sub-structure—
the decision diagrams have to be ordered and reduced [17]. For decision diagrams
in the quantum world, edge weights have to be considered additionally. Here,
edge weights are normalized to guarantee canonicity. Unfortunately, normaliza-
tion schemes may cascade upwards through the decision diagram and thus limit
efficiency of this desirable, if not required, operation during reordering. The intro-
duction of normalization factors in the nodes as explained in [11] mitigates the
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premature normalization through the whole decision diagram during the reorder-
ing procedure. Nonetheless, after the reordering is performed, the normalization
factors have to be applied to the out-going edges with subsequent normalization
through the whole decision diagram. This may significantly increase the runtime
required to conduct reordering.

5 Case Study

The investigations from above showed that, although core principles can be re-
used from the conventional world, reordering of decision diagrams is significantly
harder in the quantum world. This raises the question of whether this optimiza-
tion technique, which is well known and established for conventional decision
diagrams, is still applicable on a larger scale for decision diagrams for quantum
computing as well. To evaluate the applicability, we conducted a case study
in which we considered quantum benchmarks such as the Quantum Fourier
Transform [30], Grover’s search [2], and Google’s quantum-supremacy bench-
marks [31] (using conditional phase-gates) and studied the effect of reordering
corresponding decision diagrams representing the resulting quantum states from
them with a tolerance T = 10−13. Additionally, the reordering was only con-
ducted on decision diagrams with at least 1000 nodes and less than 90% of a
complete decision diagram (i.e., 0.9 · 2n−1 nodes with n denoting the number
of qubits). The evaluations were performed on a server running GNU/Linux
using an AMD Ryzen 9 3950X and 128 GiB main memory with GNU paral-
lel [32] to orchestrate the execution. The implementation is based on [11,12,33]
and extended by the schemes proposed in Sect. 4 to address the investigated
challenges and available at https://github.com/cda-tum/ddsim/tree/reordering
under the MIT license.

The results are listed in Table 1 and discussed in the following. The table’s
first columns list the benchmarks as well as the number of qubits using the
following notation:

– “qft A” denotes the Quantum Fourier Transform with A qubits,
– “grover A” denotes Grover’s algorithm with A being the size of the oracle,

and
– “inst AxB C D” denotes a quantum-supremacy circuit on an A×B grid with

C cycles and D being a running number from https://github.com/sboixo/
GRCS/ to unambiguously identify individual benchmarks.

The following column lists the runtime needed to simulate the corresponding
benchmark and, by this, obtain the desired state as a decision diagram. After-
wards, we applied a reordering scheme (namely sifting as reviewed in the end
of Sect. 3) to optimize the resulting decision diagrams. The respectively needed
runtime for that as well as the minimal number and maximal number of obtained
nodes are listed in Columns 4–6 of Table 1. The remaining columns provide the
corresponding absolute and relative difference in the number of nodes as well as
the number of collisions that occurred during this process (see Sect. 4.2).

https://github.com/cda-tum/ddsim/tree/reordering
https://github.com/sboixo/GRCS/
https://github.com/sboixo/GRCS/
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Table 1. Effect of Reordering for Quantum States

Firstly, the results clearly show that the effect of reordering really depends
on the considered benchmark. For example, the number of nodes needed to rep-
resent the QFT-state is always linear with respect to the number of qubits for
all considered orders (including the minimal and maximal cases). This is in-line
with observations from the conventional world (where, e.g., functions like AND,
OR, etc. are also oblivious to the variable order). On the other hand, there
are benchmarks where the applied order is essential for a compact representa-
tion; most notably shown by the benchmark “grover 20” which, according to the
applied order, either may require close to 160 000 nodes (maximal case) or can
be represented by just 41 nodes (minimal case)—a difference of several orders of
magnitude. Also for the quantum-supremacy benchmarks substantial optimiza-
tions can be achieved in some cases, despite the fact that these benchmarks are
designed to contain little to no redundancy and, therefore, are considered worst-
case scenarios for decision diagrams. These benchmarks also showcase a conse-
quence of collisions: A fully populated decision diagram in theory will remain
fully populated regardless of the reordering. In practice however, given the lim-
ited accuracy of floating point numbers, collisions may decrease the number of
nodes as can be seen for the benchmark “inst 4x4 16 1”.

Secondly, the results confirm that reordering of decision diagrams is very
much a time-consuming task in the quantum world. Just applying the heuris-
tic sifting scheme on the considered state representations already required sub-
stantial computation times (see Column 4 in Table 1) which frequently exceed
the runtime needed to generate the state by simulation in the first place (see
Column 3 in Table 1). That is, in contrast to conventional decision diagrams,
designers really should consider the trade-off between the runtime of reordering
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and the size of the decision diagram. In most cases of quantum circuit simula-
tion based on decision diagrams fixing the variable order in the beginning is the
preferable approach. A rough guideline favors positioning the control qubits on
a lower index compared to the position of the target qubits and minimizing the
distance between control index and target index.

Finally, the results provide evidence that, indeed, reordering in decision dia-
grams for quantum computing is harder than originally thought: Challenges such
as the node collisions discussed in Sect. 4.2 (whose handling causes a significant
portion of the increased computation time) are not rare corner cases, but fre-
quently occur (see Column 9 in Table 1). While previous work such as [11,24–26]
did not consider collisions (leading to decision diagrams where reordering only
works for small examples and/or whose execution is aborted with an error mes-
sage), the solution presented and evaluated in this work shed light on this.

6 Conclusions

The size of decision diagrams significantly depends on the order in which the
corresponding variables/qubits are encoded. Changing the variable order, i.e.,
reordering, is a tried and tested technique to compact decision diagrams in the
conventional world. In the quantum world, however, a similar potential has not
been exploited yet. In this paper, we investigated why this might be the case and
unveiled the challenges that arise in reordering for quantum decision diagrams.
Our findings show that reordering in the quantum world indeed is harder com-
pared to conventional decision diagrams—explaining why previous implemen-
tations could not handle reordering of larger decision diagrams. A case study
eventually confirms that reordering may lead to improvements of several orders
of magnitude although it requires substantially more runtime.
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Abstract. Reversible Primitive Permutations (RPP) are recursively
defined functions designed to model Reversible Computation. We illus-
trate a proof, fully developed with the proof-assistant Lean, certifying
that: “RPP can encode every Primitive Recursive Function”. Our rework-
ing of the original proof of that statement is conceptually simpler, fixes
some bugs, suggests a new more primitive reversible iteration scheme
for RPP, and, in order to keep formalization and semi-automatic proofs
simple, led us to identify a single pattern that can generate some use-
ful reversible algorithms in RPP: Cantor Pairing, Quotient/Reminder of
integer division, truncated Square Root. Our Lean source code is avail-
able for experiments on Reversible Computation whose properties can
be certified.

1 Introduction

Studies focused on questions posed by Maxwell, regarding the solidity of the
principles which Thermodynamics is based on, recognized the fundamental role
that Reversible Computation can play to that purpose.

Once identified, it has been apparent that Reversible Computation consti-
tutes the context in which to frame relevant aspects in areas of Computer Sci-
ence; they can span from reversible hardware design which can offer a greener
foot-print, as compared to classical hardware, to unconventional computational
models—we think of quantum or bio-inspired ones, for example —, passing
through parallel computation and the synchronization issues that it rises, or
debuggers that help tracing back to the origin of a bug, or the consistent trans-
actions roll-back in data-base management systems, just to name some. The
book [18] is a comprehensive introduction to the subject; the book [6], focused
on the low-level aspects of Reversible Computation, concerning the realization
of reversible hardware, and [13], focused on how models of Reversible Computa-
tion like Reversible Turing Machines (RTM), and Reversible Cellular Automata
(RCA) can be considered universal and how to prove that they enjoy such a
property, are complementary to, and integrate [18].
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This work focuses on the functional model RPP [17] of Reversible Compu-
tation. RPP stands for (the class of) Reversible Primitive Permutations, which
can be seen as a possible reversible counterpart of PRF, the class of Primitive
Recursive functions [19]. We recall that RPP, in analogy with PRF, is defined
as the smallest class built on some given basic reversible function, closed under
suitable composition schemes. The very functional nature of the elements in RPP
is at the base of reasonably accessible proofs of the following properties:

– RPP is PRF-complete [17]: for every function F ∈ PRF with arity n ∈ N,
both m ∈ N and f in RPP exist such that f encodes F , i.e. f(z, x, y) = (z +
F (x), x, y), for every x ∈ N

n, whenever all the m variables in y are set to
the value 0. Both z and the tuple y are ancille. They can be thought of as
temporary storage for intermediate computations of the encoding.

– RPP can be extended to become Turing-complete [16] by means of a minimiza-
tion scheme analogous to the one that extends PRF to the Turing-complete
class of Partial Recursive Functions.

– According to [12], RPP and the reversible programming language SRL [11]
are equivalent, so the fix-point problem is undecidable for RPP as well [10].

This work is further evidence that expressing Reversible Computation by
means of recursively defined computational models like RPP, naturally offers
the possibility to certify with reasonable effort the correctness, or other inter-
esting properties, of algorithms in RPP, by means of some proof-assistant, also
discovering new algorithms. We recall that a proof-assistant is an integrated envi-
ronment to formalize data-types, to implement algorithms on them, to formalize
specifications and prove that they hold, increasing algorithms dependability.

Contributions. We show how to express RPP and its evaluation mechanism inside
the proof-assistant Lean [5]. We can certify the correctness of every reversible
function of RPP with respect to a given specification which also means certifying
that RPP is PRF-complete, the main result in [17]. In more detail:

– we give a strong guarantee that RPP is PRF-complete in three macro steps.
We exploit that in Lean mathlib library, PRF is proved equivalent to a class of
recursive unary functions called primrec. We define a data-type rpp in Lean
to represent RPP. Then, we certify that, for any function f:primrec, i.e. any
unary f with type primrec in Lean, a function exists with type rpp that
encodes f:primrec. Apart from fixing some bugs, our proof is fully detailed
as compared to [17]. Moreover it’s conceptually and technically simpler;

– concerning simplification, it follows from how the elements in primrec work,
and, additionally, it is characterized by the following aspects:

• we define a new finite reversible iteration scheme subsuming the reversible
iteration schemes in RPP, and SRL, but which is more primitive;

• we identify an algorithmic pattern which uniquely associates elements of
N

2, and N by counting steps in specific paths. The pattern becomes a
reversible element in rpp once fixed the parameter it depends on. Slightly
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different parameter instances generate reversible algorithms whose behav-
ior we can certify in Lean. They are truncated Square Root, Quotient/Re-
minder of integer division, and Cantor Pairing [2,20]. The original proof
in [17] that RPP is PRF-complete relies on Cantor Pairing, used as a stack
to keep the representation of a PRF function as element of RPP reversible.
Our proof in Lean replaces Cantor Pairing with a reversible representa-
tion of functions mkpair/unpair that mathlib supplies as isomorphism
N × N � N. The truncated Square Root is the basic ingredient to obtain
reversible mkpair/unpair.

Related Work. Concerning the formalization in a proof-assistant of the seman-
tics, and its properties, of a formalism for Reversible Computation, we are aware
of [15]. By means of the proof-assistant Matita [1], it certifies that a denota-
tional semantics for the imperative reversible programming language Janus [18,
Section 8.3.3] is fully abstract with respect to the operational semantics.

Concerning functional models of Reversible Computation, we are aware of
[7] which introduces the class of reversible functions RI, which is as expressive
as the Partial Recursive Functions. So, RI is stronger than RPP, however we see
RI as less abstract than RPP for two reasons: (i) the primitive functions of RI
depend on a given specific binary representation of natural numbers; (ii) unlike
RPP, which we can see as PRF in a reversible setting, it is not evident to us that
RI can be considered the natural extension of a total class analogous to RPP.

Contents. This work illustrates the relevant parts of the BSc Thesis [8] which
comes with [9], a Lean project that certifies properties, and algorithms of RPP.
Section 2 recalls the class RPP by commenting on the main design aspects that
characterize its definition inside Lean. Section 3 defines and proves correct new
reversible algorithms central to the proof. Section 4 recalls the main aspects of
primrec, and illustrates the key steps to port the original PRF-completeness
proof of RPP to Lean. Section 5 is about possible developments.

2 Reversible Primitive Permutations (RPP)

We use the data-type rpp in Fig. 1, as defined in Lean, to recall from [17] that
the class RPP is the smallest class of functions that contains five base functions,
named as in the definition, and all the functions that we can generate by the
composition schemes whose name is next to the corresponding clause in Fig. 1.
For ease of use and readability the last two lines in Fig. 1 introduce infix notations
for series and parallel compositions.

Example 1 (A term of type rpp). In rpp we can write (Id 1‖Sw);;(It Su)‖
(Id 1);;(Id 1‖If Su (Id 1) Pr) which we also represent as a diagram. Its
inputs are the names to the left of the blocks. The outputs are to their right:
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Fig. 1. The class RPP as a data-type rpp in Lean.

We have just built a series composition of three parallel compositions.
The first one composes a unary identity Id 1, which leaves its unique input
untouched, and Sw, which swaps its two arguments. Then, the x-times iteration
of the successor Su, i.e. It Su, is in parallel with Id 1: that is why, one of the
outputs of It Su is z + x. Finally, If Su (Id 1) Pr selects which among Su,
Id 1, and Pr to apply to the argument y, depending on the value of z + x; in
particular, Pr is the function that computes the predecessor of the argument.
Figure 5 will give the operational semantics which defines rpp formally as a class
of functions on Z, not on N. �

Remark 1 (“Weak weakening” of algorithms in rpp). We typically drop Id m if
it is the last function of a parallel composition. For example, term and diagram
in Example 1 become (Id 1‖Sw);;(It Su);;(Id 1‖If Su (Id 1) Pr) and:

Remark 2 explains why. �

The function in Fig. 2 computes the arity of any f:rpp from the structure of f,
once fixed the arities of the base functions; f.arity is Lean dialect for the more
typical notation “arity(f)”.
Figure 3 remarks that rpp considers n-ary identities Id n as primitive; in RPP
the function Id n is obtained by parallel composition of n unary identities.

For any given f:rpp, the function inv in Fig. 4 builds an element with type
rpp. The definition of inv lets the successor Su be inverse of the predecessor
Pr and lets every other base function be self-dual. Moreover, the function inv
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Fig. 2. Arity of every f: rpp.

Fig. 3. n-ary identities are base functions of rpp.

Fig. 4. Inverse inv f of every f:rpp.

distributes over finite iteration It, selection If, and parallel composition ‖, while
it requires to exchange the order of the arguments before distributing over the
series composition ;;. The last line with notation suggests that f−1 is the
inverse of f; we shall prove this fact once given the operational semantics of rpp.
Operational Semantics of rpp. The function ev in Fig. 5 interprets an element
of rpp as a function from a list of integers to a list of integers. Originally, in [17],
RPP is a class of functions with type Zn → Z

n. We use list Z in place of tuples
of Z to exploit Lean library mathlib and save a large amount of formalization.
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Fig. 5. Operational semantics of elements in rpp.

Let us give a look at the clauses in Fig. 5. Id n leaves the input list X
untouched. Ne “negates”, i.e. takes the opposite sign of, the head of the list,
Su increments, and Pr decrements it. Sw is the transposition, or swap, that
exchanges the first two elements of its argument. The series composition f;;g
first applies f and then g. The parallel composition f‖g splits X into two parts.
The “topmost” one (take f.arity X) has as many elements as the arity of f;
the “lowermost” one (drop f.arity X) contains the part of X that can supply
the arguments to g. Finally, it concatenates the two resulting lists by the append
++. Our new finite iteration It f iterates f as many times as the value of the
head x of the argument, if x contains a non negative value; otherwise it is the
identity on the whole x::X. This behavior is the meaning of (ev f)ˆ[↓x]. The
selection If f g h chooses one among f, g, and h, depending on the argument
head x: it is g with x = 0, it is f with x > 0, and h with x < 0. The last line of
Fig. 5 sets a handy notation for ev.

Remark 2 (We keep the definition of ev simple). Based on our definition, we
can apply any f:rpp to any X:list Z. This is based on two observations: first,
in Lean it holds:

theorem ev_split (f: rpp) (X: list Z):
<f> X = (<f> (take f.arity X)) ++ drop f.arity X

so that if X.length >= f.arity, i.e. X supplies enough arguments, then f oper-
ates on the first elements of X according to its arity. This justifies Remark 1.
Second, if instead X.length < f.arity holds, i.e. X has not enough elements,
f X has an unspecified behavior; this might sound odd, but it simplifies the
certified proofs of must-have properties of rpp. �
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2.1 The Functions inv f and f are each other inverse

Once defined inv in Fig. 4 and ev in Fig. 5 we can prove:

theorem inv_co_l (f : rpp) (X : list Z) : <f ;; f−1> X = X
theorem inv_co_r (f : rpp) (X : list Z) : <f−1 ;; f> X = X

certifying that f and f−1 are each other inverse. We start by focusing on the main
details to prove theorem inv_co_l in Lean. The proof proceeds by (structural)
induction on f, which generates 9 cases, one for each clause that defines rpp.
One can go through the majority of them smoothly. Some comments about two
of the more challenging cases follow.

Parallel Composition. Let f be some parallel composition, whose main construc-
tor is Pa. The step-wise proof of inv_co_l is:

<f‖g;;(f‖g)−1> X
= <f‖g;;f−1‖g−1> X -- by definition

(!) = <(f;;f−1)‖(g;;g−1>) X -- lemma pa_co_pa, arity_inv below
= <f;;f−1>(take f.arity X) ++ <g;;g−1>(drop f.arity X)

-- by definition
= take f.arity X ++ drop f.arity X -- by ind. hyp.
= X -- property of ++ (append),

where the equivalence (!) holds because we can prove both:

lemma pa_co_pa (f f’ g g’ : rpp) (X : list N) :
f.arity = f’.arity → <f‖g ;; f’‖g’> X = <(f;;f’) ‖ (g;;g’)> X ,

lemma arity_inv (f : rpp) : f−1.arity = f.arity .

Proving lemma arity_inv, i.e. that the arity of a function does not change if we
invert it, assures that we can prove lemma pa_co_pa, i.e. that series and parallel
compositions smoothly distribute reciprocally. �

Iteration. Let f be a finite iterator whose main constructor is It. In this case,
the most complex goal to prove is <It f;;It f−1> x::X = x::X which reduces
to <f−1>ˆ[↓x] (<f>ˆ[↓x] X’) = X’, where, we recall, the notation <f>ˆ[↓x]
means “<f> applied x times, if x is positive”. Luckily this last statement is both
formalized as function.left_inverse (g^[n]) (f^[n]), and proven in the
library mathlib of Lean, where function.left_inverse is the proposition ∀ (g
: β → α) (f: α → β) (x: α), g(f x) = x : Prop, with α, and β generic
types. �

To conclude, let us see how the proof of inv_co_r works. It does not copy-cat
the one of inv_co_l. It relies on proving:

lemma inv_involute (f : rpp) : (f−1)−1 = f ,

which says that applying inv twice is the identity, and on using inv_co_l:

<f−1 ;; f> X = X -- which, by inv_involute, is equivalent to
<f−1 ;; (f−1)−1> X = X -- which holds because it is an
instance of (inv_co_l f−1) .
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Remark 3 (On our simplifying choices on ev). A less general, but semantically
more appropriate version of inv_co_l and inv_co_r could be:

theorem inv_co_l (f : rpp) (X : list Z) :
f.arity ≤ X.length → <f ;; f−1> X = X

theorem inv_co_r (f : rpp) (X : list Z) :
f.arity ≤ X.length → <f−1> ;; f> X = X

because, recalling Remark 2, f X makes sense when f.arity ≤ X.length. For-
tunately, the way we defined rpp allows us to state inv_co_l or inv_co_r in
full generality with no reference to f.arity ≤ X.length. �

2.2 How rpp differs from original RPP

The definition of rpp in Lean is really very close to the original RPP, but not
identical. The goal is to simplify the overall task of formalization and certifica-
tion. The brief list of changes follows.

– As already outlined, It and If use the head of the input list to iterate or
choose: taking the head of a list with pattern matching is obvious. In [17],
the last element in the input tuple drives iteration and selection of RPP.

– Id n, for any n:N, is primitive in rpp and derived in RPP.
– Using list Z → list Z as the domain of the function that interprets any

given element f:rpp avoids to let the type of f:rpp depend on the arity of f.
To know the arity of f it is enough to invoke arity f. Finally, we observe that
getting rid of a dependent type like, say, rpp n, allows us to escape situations
in which we would need to compare equal but not definitionally equal types
like rpp (n+1) and rpp (1+n).

– The new finite iterator It f (x::t): list Z subsumes the finite iterators
ItR in RPP, and for in SRL, i.e. It is more primitive, equally expressive and
simpler for Lean to prove that its definition is terminating.
We recall that ItR f (x0,x1,...,xn−2,x) evaluates to f(f(...f(x0,x1
,...,xn−2)...)) with |x | occurrences of f. Instead, for(f) x evaluates
to f(f(...f(x0,x1Ć...,xn−2)...)) , with x occurrences of f, if x > 0; it
evaluates to f−1(f−1(...f−1(x0,x1,...,xn−2)...)), with -x occurrences
of f−1, if x < 0; it behaves like the identity if x = 0.
We can define both ItR and for in terms of It:

ItR f = (It f);;Ne;;(It f);;Ne (1)
for(f) = (It f);;Ne;;(It f−1);;Ne . (2)

Example 2 (How does (1) work?). Whenever x > 0, the leftmost It f in (1)
iterates f, while the rightmost one does nothing because Ne in the middle negates
x. On the contrary, if x < 0, the leftmost It f does nothing and the iteration
is performed by the rightmost iteration, because Ne in the middle negates x. In
both cases, the last Ne restores x to its initial sign. But this is the behavior of
ItR, as we wanted. �
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3 RPP Algorithms Central to Our Proofs

Figure 6 recalls definition, and behavior of some rpp functions in [17]. It is worth
commenting on how rewiring 	i0 . . . in
 works. Let {i0, . . . , in} ⊆ {0, . . . , m}. Let
{j1, . . . , jm−n} be the set of remaining indices {0, . . . , m} \ {i0, . . . , in} ordered
such that jk < jk+1. By definition, 	i0, . . . , in
(x0, . . . , xm) = (xi0 , . . . , xin ,
xj1 , . . . , xjm−n

), i.e. rewiring brings every input with index in {i0, . . . , in} before
all the remaining inputs, preserving the order.

Fig. 6. Some useful functions of rpp (Note that using our definition, the variable n
must be non-negative in order to have the shown behavior, otherwise the function acts
as the identity. This is why it’s called increment and not addition.)

Figure 7 identifies the new algorithm scheme step[_]. Depending on how we
fill the hole [_], we get step functions that, once iterated, draw paths in N

2.
On top of the functions in Figs. 6, and 7 we build Cantor Pairing/Un-pairing,

Quotient/Reminder of integer division, and truncated Square Root. It is enough
to make the correct instance of step[_] in order to visit N

2 as in Figs. 8a,
8b, and 8c, respectively. The alternative pairing mkpair has a more complex
definition, and is a necessary ingredient for the main proof.

Fig. 7. Algorithm scheme step[_]. The algorithm we can obtain from it depends on
how we fill the hole [_].



120 G. Maletto and L. Roversi

Fig. 8. Paths in N
2 that generate algorithms in rpp.

Cantor (Un-)Pairing . The standard definition of Cantor Pairing cp : N2 → N

and Un-pairing cu : N → N
2, two bijections one inverse of the other, is:

cp(x, y) =
x+y∑

i=1

i + x =
(x + y)(x + y + 1)

2
+ x (3)

cu(n) =
(

n − i(1 + i)
2

,
i(3 + i)

2
− n

)
, (4)

where i =
⌊√

8n+1−1
2

⌋
.

Fig. 9. Cantor Pairing and Un-pairing.
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Figure 9 has all we need to define Cantor Pairing cp:rpp, and Un-pairing
cu:rpp. In Fig. 9a, cp_in is the natural algorithm in rpp to implement (3). As
expected, the input pair (x, y) is part of cp_in output. The suffix “in” in the
name “recalls” exactly this aspect. In order to drop (x, y) from the output of
cp_in, and obtain cp as in Fig. 9e, applying Bennet’s trick, we need cu_in−1 ,
i.e. the inverse of cu_in which is new, as compared to [17]. The intuition behind
cu_in is as follows. Let us fix any point (x, y) ∈ N

2. We can realize that, starting
from the origin, if we follow as many steps as the value cp(x, y) in Fig. 8a, we
stop exactly at (x, y). The function, expressed in standard functional notation,
that, given the current point (x, y), identifies the next one to move to in the
path of Fig. 8a is:

step(x, y) =

{
(x + 1, y − 1) y > 0
(0, x + 1) y = 0

.

We implement step(x, y) in rpp as step[Su;;Sw]. Figures 9b, and 9c represent
two runs of step[Su;;Sw] to give visual evidence that step[Su;;Sw] imple-
ments step(x, y). Colored occurrences of y show the relevant part of the compu-
tational flow. Note that we cannot implement step(x, y) by using the conditional
It directly on y, because in the computation we also want to modify the value
of y. Finally, as soon as we get cu_in by iterating step[Su;;Sw] as in Fig. 9d,
we can define cp (Fig. 9e), and cu (Fig. 9f). �

Fig. 10. Quotient/Reminder and Square root.

Quotient and Reminder. Let us focus on the path in Fig. 8b. It starts at (0, n)
(with n = 4), and, at every step, the next point is in direction (+1,−1). When
it reaches (n, 0) (with n = 4), instead of jumping to (0, n + 1), as in Fig. 8a, it
lands again on (0, n). The idea is to keep looping on the same diagonal. This
behavior can be achieved by iterating step[Sw‖Su]. Figure 10a shows that we
are doing modular arithmetic. Globally, it takes n + 1 steps from (0, n) to itself
by means of step[Sw‖Su]. Specifically, if we assume we have performed m steps
along the diagonal, and we are at point (x, y), we have that x ≡ m (mod n+1)
and 0 ≤ x ≤ n. So, if we increase a counter by one each time we get back to
(0, n) we can calculate quotient and reminder. �
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Truncated Square Root. Let us focus on the path in Fig. 8c. It starts at (0, 0).
Whenever it reaches (x, 0) it jumps to (0, x + 2). The behavior can be achieved
by iterating step[Su;;Su;;Sw‖Su] as in Fig. 10b. In order to compute 	√n�,
besides implementing the above path, the function step[Su;;Su;;Sw‖Su]
counts in k the number of jumps occurred so far along the path. In particular,
starting from (0, 0), the first jump occurs after 1 step; the next one after 3 steps,
then after 5 steps, after 7 etc. Since we know that 1+3+ · · ·+(2k −1) = k2, for
any k, if n = k2, the iteration will stop exactly after k jumps. I.e. k =

√
k2 =

√
n.

Otherwise, if (k − 1)2 ≤ n < k2, the iteration will stop after a count of k − 1
jumps, which approximates

√
n from below; i.e. k − 1 = 	√n�. �

Remark 4. The value 2 	√n�−r can be canceled out by adding r, and subtracting
	√n� twice. What we cannot eliminate is the “remainder” r = n−	√n�2 because
the function Square root cannot be inverted in Z, and the algorithm cannot forget
it. �

The mkpair function. Figure 8d shows the behavior of the function mkpair. It is
very similar to the one of cp, but it uses an alternative algorithm described in
[4]. Here we do not describe it in detail because it’s just a composition of sums,
products and square roots, which have already been discussed.

A Note on the Mechanization of Proofs We recall once more that everything
defined here above has been proved correct in Lean. For example, in [9], one can
define as we did the rpp term sqrt and prove its behavior:

lemma sqrt_def (n : N) (X : list Z) :
<sqrt>(n::0::0::0::0::X) =

n::(n-
√
n*

√
n)::(

√
n+

√
n-(n-

√
*
√
n))::0::

√
n::X

In order to prove these theorems we make use of a tactic (which is a command
used to build proofs) known as simp, which is able to automatically simplify
expressions until one gets a trivial identity. What is meant by simplify, is that
theorems which state an equality like LHS = RHS (e.g. sqrt_def) can be
marked with the attribute @[simp], which means that everytime the simp tactic
is invoked in another proof, if the equality to be proved has the expression LHS
then it will be substituted with RHS, often making it simpler.

This technique is really powerful, because it makes it possible to essentially
automate many proofs of theorems which in turn can be marked with @[simp]
and be used to prove yet more theorems.

4 Proving in Lean that RPP is PRF-complete

We formally show in Lean that the class of functions we can express as (algo-
rithms) in rpp contains at least PRF; so, we say “rpp is PRF-complete”. The
definition of PRF that we take as reference is one of the two available in mathlib
library of Lean. Once recalled and commented it briefly, we shall proceed with
the main aspects of the PRF-completeness of rpp.
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Fig. 11. primrec defines PRF in mathlib of Lean.

4.1 Primitive Recursive Functions primrec of mathlib

Figure 11 recalls the definition of PRF from [3] available in mathlib that we take
as reference. It is an inductively defined Proposition primrec that requires a
unary function with type N → N as argument. Specifically, primrec is the least
collection of functions N → N with a given set of base elements, closed under
some composition schemes.

Base Functions. The constant function zero yields 0 on every of its inputs.
The successor gives the natural number next to the one taken as input. The
two projections left, and right take an argument n, and extract a left, or a
right, component from it as n was the result of pairing two values x,y:N. The
functions that primrec relies on to encode/decode pairs on natural numbers
as a single natural one are mkpair:N → N → N, and unpair:N → N × N. The
first one builds the value mkpair x y, i.e. the number of steps from the origin
to reach the point with coordinates (x,y) in the path of Fig. 8d. The function
unpair:N → N × N takes the number of steps to perform on the same path.
Once it stops, the coordinates of that point are the two natural numbers we are
looking for. So, mkpair/unpair are an alternative to Cantor Pairing/Un-pairing.

Composition Schemes. Three schemes exist in primrec, each depending on
parameters f,g:primrec. The scheme pair builds the function that, taken a
value n:N, gives the unique value in N that encodes the pair of values F n, and
G n; everything we might pack up by means of pair, we can unpack with left,
and right.

The scheme comp composes F,G:primrec.
The primitive recursion scheme prec can be “unfolded” to understand how

it works; this reading will ease the description of how to encode it in rpp. Let F,
G be two elements of primrec. We see prec as encoding the function:

H[F, G](x) = R[G]
(
F
(
(x)1

)
, (x)2

)
(5)
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where: (i) (x)1 denotes (unpair x).fst, (ii) (x)2 denotes (unpair x).snd, and
(iii) R[G] behaves as follows:

R[G](z, 0) = z

R[G](z, n + 1) = G
(
«z,«n,R[G](z, n)»»

)
,

(6)

defined using the built-in recursive scheme nat.rec on N, and «a, b» denotes
(mkpair a b).

4.2 The Main Point of the Proof

In order to formally state what we mean for rpp to be PRF-complete, in Lean we
need to say when, given F:N → N, we can encode it by means of some f:rpp:

def encode (F:Z → Z) (f:rpp) :=
∀ (z:Z) (n:N), <f> (z::n::repeat 0 (f.arity-2))

= (z+(F n))::n::repeat 0 (f.arity-2)

says that, fixed F:N → N, and f, the statement (encode F f) holds if the eval-
uation of <f> , applied to any argument (z::n::0::...::0), with as many
occurrences of trailing 0s as f.arity-2, gives a list with form ((z+(F n))::n
::0::...::0) such that: (i) the first element is the original value z increased
with the result (F n) of the function we want to encode; (ii) the second element
is the initial n; (iii) the trailing 0s are again as many as f.arity-2. In Lean we
can prove:

theorem completeness (F:N → N): primrec F → ∃ f:rpp, encode F f

which says that we know how to build f:rpp which encodes F, for every well
formed F:N → N, i.e. such that primrec F holds.

The proof proceeds by induction on the proposition primrec, which generates
7 sub-goals. We illustrate the main arguments to conclude the most interesting
case which requires to encode the composition scheme prec.

Remark 5. Many aspects we here detail out were simply missing in the original
PRF-completeness proof for RPP in [17]. �

The inductive hypothesis to show that we can encode prec is that, for any
given F,G:N → N such that (primrec F):Prop, and (primrec G):Prop, both
f,g:rpp exist such that (encode F f), and (encode G g) hold. This means
that f (z::n::0) = (z + F n)::n::0, and g z::n::0 = (z + G n)::n::0, where
0 stands for a sufficiently long list of 0s.

Figure 12a, where we assume z = 0, defines prec[f,g]:rpp such that (
encode (prec F G) prec[f,g]):Prop holds, and H[f,g] encodes H[F, G] as
in (5). The term It R[g] in H[f,g] encodes (6) by iterating R[g] from the
initial value given by f.

Figure 13 splits the definition of R[g] into three logical parts. Figure 13a
packs everything up by means of mkpair to build the argument R[G](z, n) of g; by
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Fig. 12. Encoding prec of Fig. 11 in rpp.

induction we get R[G](z, n+1). In Fig. 13b, unpair unpacks «z,«n,R[G](z, n)»»
to expose its component to the last part. Figure 13c both increments n, and
packs R[G](z, n) into s, by means of mkpair, because R[G](z, n) has become
useless once obtained R[G](z, n + 1) from it. Packing R[G](z, n) into s, so that
we can eventually recover it, is mandatory. We cannot “replace” R[G](z, n) with
0 because that would not be a reversible action.

Remark 6. The function cp in Fig. 9e can replace mkpair in Fig. 13c as a bijective
map N

2 into N. Indeed, the original PRF-completeness of RPP relies on cp. We
favor mkpair to take the most out of mathlib. �

5 Conclusion and Developments

We give a concrete example of reversible programming in a proof-assistant. We
think it is a valuable operation because programming reversible algorithms is not
as much wide-spread as classical iterative/recursive programming, in particular
by means of a tool that allows us to certify the result. Other proof assistants have
been considered, and in fact the same theorems have also been proved in Coq, but
we found that the use of the mathlib library together with the simp tactic made
our experience with Lean much smoother. Furthermore, our work can migrate
to Lean 4 whose stable release is announced in the near future. Lean 4 exports
its source code as efficient C code [14]; our and other reversible algorithms can
become efficient extensions of Lean 4, or standalone, and C applications.

The most application-oriented obvious goal to mention is to keep develop-
ing a Reversible Computation-centered certified software stack, spanning from
a programming formalism more friendly than rpp, down to a certified emulator
of Pendulum ISA, passing through compilator, and optimizer whose properties
we can certify. For example, we can also think of endowing Pendulum ISA emu-
lators with energy-consumption models linked to the entropy that characterize
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Fig. 13. Encoding R[G] in (6) as R[g]:rpp.

the reversible algorithms we program, or the Pendulum ISA object code we can
generate from them.

A more speculative direction, is to keep exploring the existence of program-
ming schemes in rpp able to generate functions, other than Cantor Pairing,
etc., which we can see as discrete space-filling functions, whose behavior we can
describe as steps, which we count, along a path in some space.
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Abstract. We present Algeo, a functional logic programming language
based on the theory of infinite dimensional modules. Algeo is reversible
in the sense that every function has a generalised inverse, an adjoint,
which can be thought of as an inverse execution of the forward function.
In particular, when the given function is invertible, the adjoint is guar-
anteed to coincide with the inverse.

Algeo generalises “ordinary” forward-backward deterministic
reversible programming by permitting relational and probabilistic fea-
tures. This allows functions to be defined in a multitude of ways, which
we summarise by the motto that “all definitions are extensional charac-
terisations; all extensional characterisations are definitions.”

We describe the syntax, type system, and the axiomatic semantics of
Algeo, and showcase novel features of the language through examples.

1 Introduction

Reversible programming languages have seen a great deal of research in recent
years thanks to their applications in surprisingly diverse areas such as debug-
ging [11,16], robotics [20], discrete event simulation [19] and quantum com-
puting [9,10,18]. For this reason, many different styles of reversible program-
ming have been explored, notably imperative [24], object-oriented [7], func-
tional [13,17,23], and parallel [11,17].

In this paper, we study reversibility in the context of functional logic pro-
gramming (see, e.g., [1]). As the name suggests, functional logic programming
incorporates aspects associated with both functional programming (e.g., pattern
matching, strong typing discipline) and logic programming (e.g., nondetermin-
ism, search), making it capable for tasks such as satisfiability modulo theories,
querying, and more. The combination of (very liberal) pattern matching with
search means that functions can be defined in an indirect way, which makes
certain functions expressible in particularly pleasant and succinct ways.
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Fig. 1. Graph search in Algeo. A graph can be represented by a bag of vertices, v :
〈Atom〉, and a bag of edges, e : 〈Atom⊗Atom〉, and given a start vertex p : 〈Atom〉
and end vertex q : 〈Atom〉, path v e p q nondeterministically returns a vertex in a
path from p to q, further weighted by its number of occurences along any path from
p to q.

We present Algeo, a programming language based on the linear algebraic
theory of modules. Algeo extends the functional logic paradigm with a notion of
reversibility in the form of (Hermitian) adjoints, a kind of generalised inverse.
These adjoints exist not only for programs which are forward and backward
deterministic, but also for arbitary linear maps, which may exhibit nondetermin-
istic behaviours (e.g., relational, probabilistic). Crucially, however, when applied
to programs which are forward and backward deterministic, the adjoint is guar-
anteed to coincide with the inverse program.

A unique feature of Algeo is that a value comes equipped with a multiplicity.
This multiplicity can be taken from any ring, which in turn determines the
meaning of this multiplicity. For example, real multiplicities, when restricted
to those in the closed unit interval [0, 1], can represent probabilistic or fuzzy
membership. Integral multiplicities, when restricted to nonnegative numbers, can
represent multiset membership; negative multiplicities provide additive inverse
operations, e.g. deleting a row in a database table such that adding it again yields
the original table whether or not the row was present to start with. Multiplicities
can further be used to give a smooth account of negation in logic programming.
To properly account for these multiplicities, all functions in Algeo are linear
by definition in that they preserve multiplicities. However, since not all useful
functions are linear, a form of explicit nonlinearity is also supported, requiring
the explicit use of bags via bagging 〈−〉 and extraction !(−) operations. An
example of an Algeo program for searching for paths between given vertices in
a graph is shown in Fig. 1.

Paper Outline. Section 2 contains a brief tutorial of the language. We present
the syntax and type system of Algeo in Sect. 3, give it an axiomatic semantics
in the form of a system of equations, and illustrate its use through examples.
In Sect. 4, we detail some applications in the use of fixed points, and give an
encoding of polysets (i.e., sets with integral and possibly negative multiplicities)
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in Algeo. We describe related work in Sect. 5, and end with some concluding
remarks and directions for future research in Sect. 6.

2 Algeo by Example

We now give an intuition for Algeo by writing some simple programs. In Algeo
Scalar and ⊕ play the role of unit type and sum type respectively. Take Bool
to be an alias for Scalar ⊕ Scalar, and define:

true : Bool false : Bool

true ...= inl(∗) false ...= inr(∗)

Negation of booleans can be written using two clauses.

not : Bool → Bool

not true ...= false

not false ...= true

The adjoint of not is then given by:

not† : Bool → Bool

[x : Bool]not† (not x) ...= x

This definition quantifies over x : Bool. Such a quantification represents a non-
deterministic choice of a base value. In Bool the base values are true and false
so the definition is equal to

not† (not true) ...= true ‖ not† (not false) ...= false

where ‖ represents binary nondeterministic choice. By the definition of not this
reduces to

not† false ...= true ‖ not† true ...= false

which is equivalent to having two clauses:

not† false ...= true not† true ...= false

We can thus establish that not† = not, as expected. Note the difference between
= and ...= . The former is a relation between expressions and the latter behaves
as an operator with type τ → τ → Scalar. A definition of a name x is given by
an expression of type Scalar which may refer to x. There is no requirement to
use ...=. In fact not could equivalently have been defined as:

istrue, isfalse : Bool → Scalar not : Bool → Bool

istrue true isfalse (not true)
isfalse false istrue (not false)
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Next, we define conjunction and disjunction:

and,or : Bool → Bool → Bool

[x : Bool]and true x ...= x

and false ∗ ...= false

[x : Bool][y : Bool]not (or x y) ...= and (not x) (not y)

Let us take the adjoint of and with respect to the first argument:

and†
1 : Bool → Bool

[x : Bool]and†
1(and x ∗) ...= x

Applying this function we get and†
1 true = true and and†

1 false = true ‖
false‖ false. When the first argument of and and its result are both false there
are two different possibilities for the value of the second argument, so false is
listed twice.

A nondeterministic choice between copies of the same value like false ‖ false
can also be written 2; false. We say that the multiplicity of false in this result
is 2. In general, multiplicities can also be negative so, e.g., −1; false represents
−1 occurences of false. This can be used to cancel out positive multiplicities.
For instance, we have false ‖ (−1; false) = ∅ (an empty result). Thus, negative
multiplicities allow another kind of reversal via cancellation. To see this in action,
consider the following alternative definition of conjunction:

and ∗ ∗ ...
= false Conjunction ‘usually’ returns false

and true true
...
= (−1; false) Not when both arguments are true, though

and true true
...
= true In that case the result should be in fact be true

Generally, functions defined in Algeo are linear in the sense that they respect
nondeterminism and multiplicities, corresponding to addition and scalar mul-
tiplication, respectively. Even before we know the definition of some function
f we can say that f (true ‖ false) = f true ‖ f false. Now suppose that the
definition is

f x ...= and x (not x).

It is clear that f true = f false = false and therefore f (true‖ false) = 2; false.
Even though f uses its argument twice and the argument is a nondeterministic
choice between true and false the two uses of x are ‘entangled’ and have to
make the same nondeterministic choices.

For cases where this behaviour is undesirable Algeo supports bag types, writ-
ten 〈τ〉 and pronounced ‘bag of τ ’. Bags are formed by writing an expression in
angle brackets, e.g., 〈true ‖ false〉. The bag constructor is explicitly not linear,
so 〈true‖ false〉 	= 〈true〉 ‖ 〈false〉. The contents of a bag can be extracted with
the !(−) operator.
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Fig. 2. Syntax of types and terms.

Consider a version of f using bags:

g : 〈Bool〉 → Bool

g x ...= and !x (not !x)

We have g 〈true〉 = f true and similarly for false. However:

g 〈true ‖ false〉
= and (true ‖ false) (not (true ‖ false))

= and true (not true) ‖ and true (not false) ‖ and false (not true) ‖ and false (not false)

= false ‖ true ‖ false ‖ false = true ‖ 3; false

Essentially, the nondeterminism is postponed until !(−) is applied. For g this
means that the two uses of !x are not entangled and the result now has the
possibility of being true. Adjoints also exist when bags are involved, but can be
slightly more complicated. For instance, applying the adjoint of g to true we
get

[a : 〈Scalar〉][b : 〈Scalar〉]!a; !b; 〈!a; true ‖ !b; false〉
which is the totality of all bags containing a copies of true and b copies of false
scaled by the product of their multiplicities.

3 Syntax and Semantics

The syntax of types and terms are given in Fig. 2. Alternatives (‖) have the lowest
precedence. Aggregrations ([x : τ ] . . .) extend all the way to right. We employ the
following conventions: τ is a type, e is an expression, d is a duplicable expression
(see below for further details), b is a base value, a is an atom, n is a number and
x, y and z are variables. Any b is also a d, and any d is also an e.

Intuitively base values represent deterministic computations that yield a
value exactly once. Duplicable expressions are deterministic computations that
either produce a base value or fail. Expressions in general represent nondeter-
ministic computations that might produce any number of results. Variables are
thought of as ranging over base values, although we will sometimes carefully
substitute nonbase values.

We now describe the constructs of the language. An axiomatic semantics
is given in Sect. 3.2. Most operations, exceptions being 
 and 〈·〉, are linear in
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the sense that they respect failure (∅), alternatives (‖) and conjunction (;). For
instance, �� is linear in each component so in particular ∅ �� e = ∅, (e1 ‖ e2) ��

e3 = (e1 �� e3)‖(e2 �� e3) and (e1; e2) �� e3 = e1; (e2 �� e3). Hence, understanding
these operators reduces to understanding their actions on base values.

– ∅ is failure. It aborts the computation.
– e1; e2 is biased conjunction. The first component is evaluated to a base value,

which is discarded. The result of the biased conjunction is then the second
component.

– e1 �� e2 is join. It computes the intersection of the two arguments. In partic-
ular, the intersection of two base values is their unique value when equal and
failure otherwise.

– e1 ⊗ e2 is a pair.
– e1 �→ e2 is a mapping. It is a function that maps every base value in e1 to

every base value in e2.
– inl(e) and inr(e) are left and right injections for the ⊕ type.
– 〈τ〉 is the type of bags of τ .
– 〈e〉 is a bag. It collects all the results from e into a single bag. The bag itself

is considered a base value.
– 
e is an indicator. It yields 0 if e = ∅, otherwise 1. Thus, 
 is explicitly

nonlinear.
– e1‖e2 is alternative. It represents a nondeterministic choice between e1 and e2.
– [x : τ ]e is aggregation. It represents a nondeterministic choice of a base value

b : τ which is substituted for x in e.
– !e is extraction. It extracts the contents of a bag.
– n is a number. It represents a computation that succeeds n times. Note that

negative values of n are possible. In general, depending on the choice of ring,
n can also be rational or even complex.

We will also need the following syntactic sugar:

e1
...
= e2 = e1 �� e2; 1 Pointwise unification of e1 and e2

e1 \\ e2 = e1 ‖ −1; e2 Collect the results of e1 but subtract the results from e2

∗τ = [x : τ ]x Wildcard, acts as the unit for ��

e⊥ = ∗ \\ e Everything except e

e1 ⊕ e2 = inl(e1) ‖ inr(e2) A sum of lefts and rights

Beware: some constructs, e.g. ...=, use unfamiliar notation. This is done delib-
erately to show that these constructs represent new and unfamiliar concepts. A
good rule of thumb is that the familiar-looking syntax like inl(e) means roughly
what one would expect, whereas the unfamiliar syntax like ...= has no simple
well-known analogue.

In most languages the notion of function embodies both the introduction
of variables and the mapping of those variables to some result. In Algeo, by
contrast, these are separate concerns. Variable introduction is handled by [x : τ ]
whereas mappings are constructed by expressions of the form e1 �→ e2. This
separation of concerns is the vital ingredient that makes Algeo so powerful.
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Fig. 3. Some basic functions in Algeo: identity, composition, adjoints, and (left and
right) inverses. Note the use of bags 〈−〉 to contain nonlinearity.

Finally, we need to explain how (possibly recursive) top-level definitions are
encoded as expressions. Suppose we define x : τ by the clauses e1, . . . , en, each
of them typeable as x : τ, x̂ : 〈τ〉  ei : Scalar. Intuitively, x refers to (a
single component of) the object we are defining and x̂ refers to the completed
definition. The completed definition is used for recursive invocations. Note that
x̂ is just a name with no a priori relation to x.

Given such a top-level definition and a program e that can refer to x the
desugared version is:

[x̂ : 〈τ〉]x̂ ...= 〈[x : τ ](e1 ‖ · · · ‖ en);x〉; ex:=!x̂

The notation ex:=!x̂ means e with !x̂ substituted for x. This construction works
by summing over all basis elements of τ subject to the conditions imposed by
e1 ‖ · · · ‖ en. The sum is collected into the bag x̂, which represents the totality
of the object we are defining. Each use of x in the program is replaced with !x̂
so each copy is independent. This scheme generalises to mutual recursion. Note
that ...= is not mentioned and has no special status in this regard; it is merely
an operator which happens to be useful for imposing suitable constraints when
giving definitions.

Figure 3 shows some basic and fundamental functions. While identity and
composition are similar to their definition in any functional language, the def-
inition of adjoint (−†) seems very strange from a functional perspective and
further seems to imply that all functions are injective—which isn’t so! The trick
to understanding this definition is that f quantifies over base values of the form
b1 �→ b2 (and not entire functions), while id masquerades over the sum of all
base values of the form b �→ b. In this way, we could just as well define (·†) as
(x �→ y)† ◦ (x �→ y) ...= (x �→ x) or even the more familiar (x �→ y)† ...= (y �→ x).

The use of search and indirect definition is perhaps more powerfully illus-
trated by linv (and, symmetrically, rinv) which says that a left inverse to a
function f is anything that behaves like it; in other words, any function that,
after composition with !f (needed here since f is used more than once), yields
the identity (and symmetrically for rinv). Even further, inv states that a full
inverse to f is anything that behaves both as a left inverse and as a right inverse,
using the join operator to intersect the left inverses with the right inverses.

A function f is unitary if the adjoint is also a two-sided inverse module
bagging, i.e. if 〈f†〉 = inv 〈f〉. The unitaries include include many interesting
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Fig. 4. The type system of Algeo.

examples, including all classically reversible functions as well as all quantum
circuits. In these cases we prefer the adjoint, since it does not require the use of
bags and is generally easier to work with.

3.1 Type System

The type system is seen in Fig. 4 and consists of a single judgement Γ  e : τ stat-
ing that in type environment Γ the expression e has type τ . These rules should
not be surprising, at least for a classical programming language. However, Algeo
functions represent linear maps, so why does the type system not track variable
use? The reason is that duplication and deletion are relatively harmless opera-
tions. Duplicating a value by using a variable multiple times creates ‘entangled’
copies. They still refer to the same bound variables so any nondeterministic
choice is made globally for all copies. Unused variables will still be bound in an
aggregration and ultimately the multiplicity of the result will be scaled by the
dimension of the type. Thus, such variables are not simply forgotten.

3.2 Axiomatic Semantics

We now present the semantics of Algeo as a set of equations between expressions,
see Fig. 5. Equations hold only when well-typed and well-scoped. For instance,
∅ = 0 implicitly assumes that the ∅ in question is typed as Scalar. The semantics
is parametric over the choice of numbers, provided that the numbers form a ring
of characteristic 0 (i.e. are the integers or an extension of them) and that for
any type τ there is a number dim(τ) such that:

dim(τ1 ⊕ τ2) = dim(τ1) + dim(τ2) dim(Empty) = 0
dim(τ1 ⊗ τ2) = dim(τ1) · dim(τ2) dim(Scalar) = 1
dim(τ1 → τ2) = dim(τ1) · dim(τ2)
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Fig. 5. Axiomatic semantics of Algeo.

As the ‘standard model’ we propose Z[ω], i.e. polynomials over the integers in one
variable ω. We define dim(Atom) = dim(〈τ〉) = ω together with the equations
above.

Most operations are defined to be either linear or bilinear (with the notable
exceptions of 
 and 〈−〉). For an operation o this entails:

o(∅) = ∅ o([x : τ ]e) = [x : τ ]o(e)
o(e1; e2) = e1; o(e2) o(e1 ‖ e2) = o(e1) ‖ o(e2)

A binary operator (− � −) is bilinear if both (e1 � −) and (− � e2) are linear.



Algeo: An Algebraic Approach to Reversibility 137

3.3 Justification of the Semantics

All axioms are based on intuition from finite-dimensional types, i.e. types whose
set of base values is finite. The idea is to extend this to infinite-dimensional
types, but with a flavour of ‘compactness’ keeping the properties of finite-
dimensionality. While it is possible to aggregate over infinite types, any given
expression will only mention a finite number of distinct base values. We avoid
contradiction arising from this approach by not insisting that every aggregation
be reducible. For example, [x : 〈Scalar〉]!x has type Scalar but cannot be shown
to be equal to any expression of the form n; indeed, we cannot even establish
whether it is zero or nonzero. This reveals a possible connection between Algeo
and nonstandard analysis.

Most axioms should be uncontroversial, but some deserve elaboration. Per-
haps the most unusual one is [x : τ ]e = ex:=d \\ ex:=∅ ‖ [y : τ ]ex:=y\\y��d.
Usually we will exploit the equality y \\ y �� d = y �� d⊥ to get the rule
[x : τ ]e = ex:=d \\ ex:=∅ ‖ [y : τ ]ex:=y��d⊥

. Firstly, note that d is only used in
the substitutions, so some amount of prescience is required to choose a suitable
d. The intuition is that we are splitting into cases depending on whether x is
equal to d or not. To see how this works in the finite-dimensional case suppose
τ = Scalar ⊕ · · · ⊕ Scalar (n copies). Then τ has n distinct base values which
we shall refer to as b1, . . . , bn. The following reasoning shows how the statement
can be shown directly from the other axioms in the finite case. A d of type τ
will either be some bi or ∅. Without loss of generality let d = b1 (if d = ∅ the
statement is trivial). We then have:

[x : τ ]e = ex:=b1 ‖ ex:=b2 ‖ . . . ‖ ex:=bn

= ex:=b1 \\ ex:=∅ ‖ ex:=∅ ‖ ex:=b2 ‖ . . . ‖ ex:=bn

= ex:=b1 \\ ex:=∅ ‖ ex:=b1��b1
⊥ ‖ ex:=b2��b1

⊥ ‖ . . . ‖ ex:=bn��b1
⊥

= ex:=b1 \\ ex:=∅ ‖ [y : τ ]ex:=y��b1
⊥

The possibility operator 
e also deserves elaboration. The intuitive descrip-
tion (evaluate e and return 1 if it is not ∅) sounds similar to negation by failure
(evaluate e and return 1 if it is ∅). However, 
e is not defined operationally. It
has rules for each data constructor as well as ∅, ‖ and (; ), but it does not by
itself make progress on e. For example, a subexpression like 
(x ...= y) does not
simply succeed with a ‘unification’ of x and y. Rather, the case-split rule (dis-
cussed above) should be applied where either x or y is bound, making a global
nondeterministic choice on whether x and y are equal.

The combination (
e)⊥ expresses the Algeo version of negation by failure.
Compared to the usual notion in logic programming it is pure and not dependent
on the evaluation strategy.

Finally, we mention 〈e1〉 �� 〈e2〉 = (
(e1 \\ e2))
⊥; 〈e1〉 which describes how

to resolve joins of bags. When comparing bags 〈e1〉 and 〈e2〉 we have to decide
whether e1 and e2 are equal as Algeo expressions. That is the case precisely
when e1 \\ e2 = ∅. If e1 = e2 then (
(e1 \\ e2))

⊥ = 1 and the whole right-hand
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side reduces to 〈e1〉 as expected. If e1 	= e2 then the condition fails and the
right-hand side reduces to ∅, again as expected.

This rule is the sole reason why 
 has to be in the language. The possibility
operator could otherwise simply be defined as 
e = (〈e〉 ...= 〈∅〉)⊥, but then the
rule for bag joins would not actually make any progress.

3.4 Derived Equations and Evaluation

The semantic equations in Fig. 5 are not reduction rules, although most of them
embody some kind of reduction when read from left to right. They can be used
for evaluation as well as deriving new equations.

As an example of a derived equation consider [x : τ ]x �� b; e = ex:=b. This
property states that if a variable is unconditionally subject to a join constraint
with a base value, we may dispense with the variable and simply substitute that
value. The main idea is to case-split on whether or not x equals b. The last line
exploits that all base values are left identities for (; ).

[x : τ ]x �� b; e = (x �� b; e)x:=b \\ (x �� b; e)x:=∅ ‖ [y : τ ](x �� b; e)x:=y��b⊥

= b �� b; ex:=b \\ ∅ �� b; ex:=b ‖ [y : τ ]y �� b⊥
�� b; ex:=b

= b; ex:=b \\ ∅ ‖ [y : τ ]∅ = b; ex:=b = ex:=b

A generalisation of this lemma suggests that, in the absence of bags, we can emu-
late the usual operational interpretation of logic programming where variables
are instantiated based on unification constraints.

As an example of evaluation consider the problem of calculating how many
pairs of atoms are equal and how many are unequal. Equality of x of y can be
reified by putting it in a bag, i.e. 〈x ...= y〉. The question can then be answered
as follows, assuming the standard model where dim(Atom) = ω.

[x : Atom][y : Atom]〈x ...= y〉
= [x : Atom]〈x ...= y〉y:=x \\ 〈x ...= y〉y:=∅ ‖ ([z : Atom]〈x ...= y〉y:=z��x⊥

)
= [x : Atom]〈x ...= x〉 \\ 〈x ...= ∅〉 ‖ ([z : Atom]〈x ...= z �� x⊥〉)
= [x : Atom]〈1〉 \\ 〈0〉 ‖ ([z : Atom]〈0〉)
= [x : Atom]〈1〉 \\ 〈0〉 ‖ dim(Atom); 〈0〉
= ([x : Atom]〈1〉) \\ ([x : Atom]〈0〉) ‖ ([x : Atom]dim(Atom); 〈0〉)
= dim(Atom); 〈1〉 \\ dim(Atom); 〈0〉 ‖ dim(Atom) · dim(Atom); 〈0〉
= ω; 〈1〉 ‖ ω2 − ω; 〈0〉

Thus, we see that there are ω pairs of equal atoms and ω2 − ω unequal pairs.
This corresponds well with the size of the diagonal and off-diagonal respectively
of a hypothetical ω × ω matrix.
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3.5 Relation to Linear Algebra

Fig. 6. Linear alge-
bra versus Algeo

Many operations in Algeo are closely related to linear alge-
bra, in particular K-algebras where K is the ring of ele-
ments of type Scalar. The correspondence can be seen in
Fig. 6. Recall the common definition of the adjoint of f as
the unique function f† satisfying 〈f(x) | y〉 = 〈x | f†(y)〉
for all x and y. Translating this to Algeo we might write
it as [x][y](f x ...= y) ...= (x ...= f† y), which turns out
to be a perfectly good definition that is equivalent to our
previous one. This gives a new perspective on what the
inner product means in linear algebra.

4 Applications

Pattern Matching. The flexibility of Algeo definitions allows us to define func-
tions in many ways. This clearly includes definition by cases using ordinary pat-
tern matching, but further exploration reveals that many extensions of pattern
matching can be encoded as well. Note that in Algeo a ‘pattern’ is nothing more
than an expression written on the left-hand side of ...=. Simple examples include
∗ functioning as a wildcard, and definitions in general functioning as pattern
synonyms. We list a number of common pattern matching features below along
with their representation in Algeo.

– Functional patterns. These are written just like in Curry. For example, sup-
pose f is defined by f (g x) ...= e. When f is applied to some e′, effectively g
will be run in reverse on e′ and x bound to each result.

– View patterns. There is a Haskell extension providing patterns of the form
(f ⇒ p), which matches a value v if p matches f v. This syntax is definable
as a function in Algeo:

(⇒) : (τ → τ ′) → τ ′ → τ

f ⇒ p ...= (f v ...= p;v)

This is effectively a functional pattern where the function is run in reverse.
– Guard patterns. Some functional languages allow pattern guards like f p | c

where the interpretation is that p is matched and then the boolean condition
c is checked. Algeo, like any other logic language, can of course include con-
ditions (i.e. expressions of type Scalar) in the body of a function. However,
the flexibility of definitions means that we can write f (c; p) to signify that
we consider the condition c to be part of the pattern.

– Alias patterns. Many functional languages support patterns like x as p where
x is bound to the value matched by the entire pattern p. In Algeo the ��

operator furnishes a much more general version of this. A pattern like e1 �� e2
matches e1 and e2 simultaneously. When e1 is a variable this encodes an alias
pattern.
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– Alternative patterns. Some languages allow patterns like (p1 | p2) where p1
and p2 are nullary constructors. This is interpreted as equivalent to writing
two clauses, one with p1 and one with p2. In Algeo any two patterns can be
combined using ‖. By linearity f (e1 ‖ e2)

...= e means exactly the same as
f e1

...= e ‖ f e2
...= e.

– Negative patterns. Generally pattern matching is positive in the sense that
patterns describe the shape of the data that we want to match. Matching
everything except for some given pattern is typically done with a final default
case; this works in functional languages where patterns are ordered and pat-
tern matching works by finding the first match only. Algeo can describe neg-
ative patterns directly. Recall that e⊥ = ∗ \\ e for any expression e. As a
pattern this can be interpreted as ‘everything except e’. For example, decid-
ing equality between two values can be defined as follows:

eq? : τ → τ → Scalar ⊕ Scalar

eq? x x ...= inl(1)

eq? x x⊥ ...= inr(1)

Linear Algebra. Given that Algeo is built on linear algebra, it will likely come as
no surprise that expressing problems from linear algebra is often straightforward.
An example of this is matrix multiplication. Given an m×n matrix A with entries
aij , and a n×p matrix B with entries bij , the entries in the n×p matrix C = AB
are given by cij =

∑n
k=1 aikbkj , i.e., summing over all possible ways of going first

via A and then via B. In Algeo, a matrix from τ1 to τ2 is a value of type τ1 ⊗ τ2
(i.e., a weighted sum of pairs of base values of τ1 and τ2), and their multiplication
is expressed as

(·) : τ1 ⊗ τ2 → τ2 ⊗ τ3 → τ1 ⊗ τ3

(x ⊗ y) · (y ⊗ z) ...= x ⊗ z

where the implicit aggregation over y corresponds to the summation over k in the
definition of cij from before. Another example is the trace (or sum of diagonal
elements) of a square n × n matrix, tr(A) =

∑

n=1 ann, which can be slightly
cryptically defined without a right hand side:

tr : (τ ⊗ τ) → Scalar

tr (x ⊗ x)

Again, note how the implicit aggregation over x corresponds to summation in
the definition from linear algebra.

A much more involved example is (unnormalised) operator diagonalisation,
i.e., the representation of an operator F as a composition F = U−1 ◦ D ◦ U ,
where U is an isomorphism, and D is diagonal. We specify this by describing
the constraints: U must be an isomorphism, so U−1 ◦ U = id and U ◦ U−1 = id;
D must be diagonal, meaning that joining it with the identity should have no
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effect; and the composition of U−1 ◦ D ◦ U should be F . In Algeo, this becomes

diagonalise : 〈τ → τ〉 → 〈τ → τ〉 ⊗ 〈τ → τ〉 ⊗ 〈τ → τ〉
diagonalise f ...= u ⊗ d ⊗ v;

〈!u ◦ !v〉 ...= 〈id〉;
〈!v ◦ !u〉 ...= 〈id〉;
〈!d �� id〉 ...= d;
〈!u ◦ !d ◦ !v〉 ...= f

Notice that this is only slightly different than usual diagonalisation, in that
this will find diagonalisations for eigenvectors scaled arbitrarily, rather than (as
usual) only of length 1.

Polysets and Polylogic. Polysets [8] are a generalisation of multisets which also
permit elements to occur a negative number of times. This is useful for represent-
ing, e.g., (possibly unsynchronised) database states, with elements with positive
multiplicity representing (pending) data insertions, and elements with negative
multiplicity representing (pending) data deletions.

Polysets can be represented in Algeo via polylogic, an account of proposi-
tional logic relying on multiplicities of evidence and counterexamples (similar to
decisions as in [15]). Concretely, a truth value in polylogic consists of an amount
of evidence (injected to the left) and an amount of counterexamples (injected
to the right). For example, ⊥ has no evidence and a single counterexample, and
dually for �, as in

⊥,� : Scalar ⊕ Scalar

⊥ = ∅ ⊕ ∗
� = ∗ ⊕ ∅

As in [15], negation swaps evidence for counterexamples and vice versa, while
the evidence of a conjunction is the join of the evidence of its conjuncts, with
everything else counterexamples (disjunction dually):

¬(e ⊕ e′) = e′ ⊕ e

(e1 ⊕ e′
1) ∧ (e2 ⊕ e′

2) = (e1 �� e2) ⊕ (e1 �� e′
2 ‖ e′

1 �� e2 ‖ e′
1 �� e′

2)
(e1 ⊕ e′

1) ∨ (e2 ⊕ e′
2) = (e1 �� e2 ‖ e1 �� e′

2 ‖ e′
1 �� e2) ⊕ (e′

1 �� e′
2)

A polyset over τ is represented by the type τ ⊕ τ , with all the above definitions
generalising directly. That is, a value of this type is an aggregation of evidence
(with multiplicity) either for or against each base value of τ . In this way, we can
interpret a finite set {d1, . . . , dk} by the expression (d1 ⊕d1

⊥)∨ · · · ∨ (dk ⊕dk
⊥).

Note that in this calculus ∨ and ∧ form a lattice-esque structure as opposed to
‖ and ��, which form a ring structure.
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5 Related Work

Algebraic λ-calculi. A related approach to computing with linear algebra is the
idea of extending the λ-calculus with linear combinations of terms [2,22], though
such approaches do not provide generalised reversibility in the form of adjoints.
Extending the λ-calculus in this way is a delicate ordeal that easily leads to
collapse (e.g. 0 = 1) from interactions between sums and fixpoints. Algeo evades
these problems by taking a different view of functions, namely that base elements
of type τ1 → τ2 are b1 �→ b2 where b1 and b2 are base elements, and function
application is linear in both arguments (this approach was briefly considered in
[2] and discarded due to wanting a strict extension of untyped λ-calculus).

It is possible in Algeo to define an abstraction λx.e as syntactic sugar for
[x̂ : 〈τ1〉]x̂ �→ ex:=!x̂ of type 〈τ1〉 → τ2. The input must be a bag type to model the
nonlinearity of function application in algebraic λ-calculi. However, the fixpoint-
esque operators definable in Algeo have different semantics than in standard
λ-calculus and do not allow the kind of infinite unfolding that so easily leads
to paradoxes. The simplest such operator is fix : (τ → τ) → τ defined by
fix (x �→ x) ...= x, which is just a repackaged version of ��. To get something
approaching the usual concept of fixpoint we again need bags:

fix : 〈τ → τ〉 → τ fix f ...= !f (!̂fix f)

Even ignoring the bag operations fix is not a fixpoint combinator in the λ-
calculus sense since fix e = !e (!̂fix e) does not hold in general when e is a not
a base value. We can try to create a paradox by considering e.g. e = fix 〈[x :
τ ]x �→ −1;x〉. It is indeed the case that e = (−1; e) and therefore that e = 0, but
this only emphasises what we already know: that Algeo is powerful enough to
express arbitrary constraints and that recognising 0 is uncomputable in general.

Reversible and Functional Logic Programming. The functional logic paradigm of
programming was pioneered by languages such as Curry [1,6] and Mercury [21].
Along with reversible functional programming languages such as Rfun [23], Core-
Fun [12], and Theseus [14], they have served as inspiration for the design of
Algeo. Unlike Algeo, neither of the conventional functional logic programming
languages come with an explicit notion of multiplicity and the added benefits
in expressing data of a probabilistic, fractional, or an “inverse” nature, nor do
they have adjoints. On the other hand, while the reversible functional languages
all have a notion of inversion, their execution models and notions of reversibility
differ significantly from those found in Algeo.

Modules, Databases, and Query Languages. Free modules can be seen as a form
of generalised multisets. When permitting negative multiplicities, this allows the
representation of database table schemas as (certain) free modules, tables as vec-
tors of these free module, and linear maps as operations (e.g., insertion, deletion,
search, aggregation, joins, and much more) acting on these tables. The struc-
tural theory of modules that led to the development of Algeo, and its relation
to database representation and querying, is described in [8].
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Abstract Stone Duality. Abstract Stone duality (see, e.g., [3]) is a synthetic
approach to topology and analysis inspired by Stone’s famous duality theorem
between categories of certain topological spaces and certain order structures. An
interesting feature of abstract Stone duality is that it permits the indirect defini-
tion of numbers from a description (i.e., a predicate) via a method known simply
as definition by description, provided that it can be shown that a description is
true for exactly one number. This is not unlike the indirect description of terms
in Algeo, though instead of requiring descriptions to be unique, the result of an
indirect description in Algeo is instead the aggregation over all terms satisfying
this description.

6 Conclusion and Future Work

We have presented the reversible functional logic programming language Algeo,
described its syntax and type system, and given it semantics in the form of a
system of equations. We have illustrated the use of Algeo through applications
and examples, and described applications in areas such as database querying
and logic programming with an improved notion of negation.

As regards avenues for future research, we consider developing an implemen-
tation based on this work to be a logical next step. However, this is not as trivial
as it may appear at first glance, as it requires the development of strategies for
performing nontrivial rewriting using the equational theory. In particular, we
don’t believe that there is an obvious optimal evaluation strategy for Algeo, as
it would have to optimally solve all expressible problems (e.g., matrix diagonal-
isation, three-way joins).

An extension to Algeo not considered here is that of dual types, reflecting
the notion of dual modules and vector spaces in linear algebra. To include these
would permit Algeo to use multiplicities in the complex numbers, in turn paving
the way for using Algeo to express quantum algorithms.

We would also find it interesting to use Algeo to study polylogic (as described
in Sect. 4), in particular its use as a reasonable semantics for negation not involv-
ing the impure and unsatisfying negation-as-failure known from Prolog. Finally,
since Algeo permits aggregating over infinite collections of values, it seems that
there is at least some connection to nonstandard analysis and linear algebra (see
also [5]) which could be interesting to elaborate. In fact, permitting the use of
nonstandard real (or complex) numbers as multiplicities would allow automatic
differentiation (see [4] for a recent, combinatory approach to automatic differ-
entiation on Hilbert spaces) to be specified in an exceedingly compact manner,
which could lead to further applications in machine learning and optimization.
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Abstract. The algebraic specification and representation of networks of
agents have been greatly impacted by the study of reversible phenomena:
reversible declensions of the calculus of communicating systems (CCSK
and RCCS) offer new semantic models, finer congruence relations, orig-
inal properties, and revisits existing theories and results in a finer light.
But much remains to be done: concurrency, a central notion in establish-
ing causal consistency–a crucial property for reversible systems–, was
never given a syntactical definition in CCSK. We remedy this gap by
leveraging a definition of concurrency developed for forward-only cal-
culi using proved transition systems, and prove that CCSK still enjoys
causal consistency for this elegant and syntactical notion of reversible
concurrency. We also compare it to a definition of concurrency inspired
by reversible π-calculus, discuss its relation with structural congruence,
and prove that it can be adapted to any CCS-inspired reversible sys-
tem and is equivalent—or refines—existing definitions of concurrency
for those systems.

Keywords: Formal semantics · Process algebras · Concurrency

1 Introduction: Reversibility, Concurrency–Interplays

Concurrency Theory is being reshaped by reversibility: fine distinctions
between causality and causation [37] contradicted Milner’s expansion laws [30,
Example 4.11], and the study of causal models for reversible computation
led to novel correction criteria for causal semantics—both reversible and irre-
versible [17]. “Traditional” equivalence relations have been captured syntacti-
cally [6], while original observational equivalences were developed [30]: reversibil-
ity triggered a global reconsideration of established theories and tools, with the
clear intent of providing actionable methods for reversible systems [26], novel
axiomatic foundations [31] and original non-interleaving models [4,17,24].

Two Formalisms extend the Calculus of Communicating Systems
(CCS) [34]—the godfather of π-calculus [38], among others—with reversible fea-
tures. Reversible CCS (RCCS) [18] and CCS with keys (CCSK) [37] are simi-
larly the source of most [1,17,32,33]—if not all—of later formalism developed to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. A. Mezzina and K. Podlaski (Eds.): RC 2022, LNCS 13354, pp. 146–163, 2022.
https://doi.org/10.1007/978-3-031-09005-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09005-9_10&domain=pdf
https://orcid.org/0000-0001-6346-3043
https://doi.org/10.1007/978-3-031-09005-9_10


Concurrencies in Reversible Concurrent Calculi 147

enhance reversible systems with some respect (rollback operator, name-passing
abilities, probabilistic features, . . . ). Even if those two systems share a lot of
similarities [28], they diverge in some respects that are not fully understood—
typically, it seems that different notions of “contexts with history” led to estab-
lish the existence of congruences for CCSK [30, Proposition 4.9] or the impos-
sibility thereof for RCCS [8, Theorem 2]. However, they also share some short-
comings, and we offer to tackle one of them for CCSK, by providing a syntacti-
cal definition of concurrency, easy to manipulate, that satisfies the usual sanity
checks.

Reversible Concurrency is of course a central notion in the study of
RCCS and CCSK, as it enables the definition of causal consistency—a principle
that, intuitively, states that backward reductions can undo an action only if its
consequences have already been undone—and to obtain models where concur-
rency and causation are decorrelated [37]. As such, it has been studied from mul-
tiple angles, but, in our opinion, never in a fully satisfactory manner. In CCSK,
sideways and reverse diamonds properties were proven using conditions on keys
and “joinable” transitions [37, Propositions 5.10 and 5.19], but to our knowledge
no “definitive” definition of concurrency was proposed. Ad-hoc definitions rely-
ing on memory inclusion [25, Definition 3.1.1] or disjointness [18, Definition 7]
for RCCS, and semantical notions for both RCCS [4–6] and CCSK [24,36,40]
have been proposed, but, to our knowledge, none of those have ever been 1.
compared to each other, 2. compared to pre-existing forward-only definitions of
concurrency.

Our Contribution introduces the first syntactical definition of concurrency
for CCSK (Sect. 3.1), by extending the “universal” concurrency developed for
forward-only CCS [19], that leveraged proved transition systems [22]. We make
crucial use of the loop lemma (Lemma 5) to define concurrency between coini-
tial traces in terms of concurrency between composable traces—a mechanism
that considerably reduces the definition and proof burdens: typically, the square
property is derived from the sideways and reverse diamonds. We furthermore
establish the correctness of this definition by proving the expected reversible
properties—causal consistency (Sect. 3.3), among others—and by discussing how
our definition relates to definitions of concurrency in similar systems—obtained
by porting our technique to RCCS [18,25] and its “identified” declensions [8], or
by restricting a notion of concurrency for π-calculus—and to structural congru-
ence (Sect. 4). With respect to this last point, we prove that our technique gives
a notion of concurrency that either match or subsumes existing definitions, that
sometimes lack a notion of concurrency for transitions of opposite directions.

Additional details are contained in our preliminary technical report [3], i.e.
all proofs [3, Sect. B], and the technical justification of the claims made in Sect. 4
about the “universality” of our approach [3, Sect. C].
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2 Finite and Reversible Process Calculi

2.1 Finite, Forward-Only CCS

Finite Core CCS. We briefly recall the (forward-only) “finite fragment” of the
core of CCS (simply called CCS) following a standard presentation [14].

Definition 1 ((Co-)names and labels). Let N = {a, b, c, . . . } be a set of
names and N = {a, b, c, . . . } its set of co-names. The set of labels L is N ∪
N ∪ {τ}, and we use α, β (resp. λ) to range over L (resp. L\{τ}). A bijection
· : N → N, whose inverse is also written ·, gives the complement of a name.

Definition 2 (Operators). We let P,Q range over CCS processes, defined as
usual, using restriction (P\α), sum (P + Q), prefix (α.P ) and parallel composi-
tion (P | Q). The inactive process 0 is omitted when preceded by a prefix, and the
binding power of the operators [34, p. 68], from highest to lowest, is \α, α., | and
+, so that e.g. α.P + Q\α | P + a is to be read as (α.P ) + (((Q\α) | P ) + (a.0)).
In a process P | Q (resp. P + Q), we call P and Q threads (resp. branches).

The labeled transition system for CCS, denoted −−→α , is reminded in Fig. 1.

Fig. 1. Rules of the labeled transition system (LTS) for CCS

2.2 CCSK: A “Keyed” Reversible Concurrent Calculus

CCSK captures uncontrolled reversibility using two symmetric LTS—one for
forward computation, one for backward computation—that manipulates keys
marking executed prefixes, to guarantee that reverting synchronizations cannot
be done without both parties agreeing. We use the syntax of the latest paper
on the topic [30], that slightly differs [30, Remark 4.2] with the classical defi-
nition [37]. However, those changes have no impact since we refrain from using
CCSK’s newly introduced structural congruence, but discuss it in Sect. 4.
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Definition 3 (Keys, prefixes and CCSK processes). Let K = {m,n, . . . }
be a set of keys, we let k range over them. Prefixes are of the form α[k]—we call
them keyed labels—or α. CCSK processes are CCS processes where the prefix
can also be of the form α[k], we let X, Y range over them.

The forward LTS for CCSK, that we denote −−−→α[k]
, is given in Fig. 2—with

key and std defined below. The reverse LTS ���→α[k]
is the exact symmetric of

−−−→α[k]
[30, Figure 2] (it can also be read from Fig. 3), and we write X −−−→→α[k]

Y

if X ���→α[k]
Y or X −−−→α[k]

Y . For all three types of arrows, we sometimes omit
the label and keys when they are not relevant, and mark with ∗ their transitive
closures. As usual, we restrict ourselves to reachable processes, defined below.

Definition 4 (Standard and reachable processes). The set of keys occuring
in X is written key(X), and X is standard—std(X)—iff key(X) = ∅. If there
exists a process OX s.t. std(OX) and OX −−→→∗ X, then X is reachable.

The reader eager to see this system in action can fast-forward to Example 1,
but should be aware that this example uses proved labels, introduced next.

Fig. 2. Rules of the forward labeled transition system (LTS) for CCSK



150 C. Aubert

3 A New Causal Semantics for CCSK

The only causal semantics for CCS with replication we are aware of [19]1

remained unnoticed, despite some interesting qualities: 1. it enables the defini-
tion of causality for replication while agreeing with pre-existing causal semantics
of CCS and CCS with recursion [19, Theorem 1] 2. it leverages the technique of
proved transition systems that encodes information about the derivation in the
labels [22], 3. it was instrumental in one of the first results connecting implicit
computational complexity and distributed processes [23], 4. last but not least,
as we will see below, it allows to define an elegant notion of causality for CCSK
with “built-in” reversibility, as the exact same definition will be used for for-
ward and backward transitions, without making explicit mentions of the keys
or directions. We believe our choice is additionally compact, elegant and suited
for reversible computation: defining concurrency on composable transitions first
allows not to consider keys in our definition, as the LTS guarantees that the same
key will not be re-used. Then, the loop lemma allows to “reverse” transitions
so that concurrency on coinitial transitions can be defined from concurrency on
composable transitions. This allows to carry little information in the labels—the
direction is not needed—and to have a definition insensitive to keys and identi-
fiers for the very modest cost of prefixing labels with some annotation tracking
the thread(s) or branch(es) performing the transition.

3.1 Proved Labeled Transition System for CCSK

We adapt the proved transition system [15,19,20] to CCSK: this technique
enriches the transitions label with prefixes that describe parts of their deriva-
tion, to keep track of their dependencies or lack thereof. We adapt an earlier
formalism [21]—including information about sums [19, footnote 2]—but extend
the concurrency relation to internal (i.e. τ -) transitions, omitted from recent
work [19, Definition 3] but present in older articles [15, Definition 2.3].

Definition 5 (Enhanced keyed labels). Let υ, υL and υR range over strings
in {|L, |R,+L,+R}∗, enhanced keyed labels are defined as

θ := υα[k] ‖ υ〈|L υLα[k], |R υRα[k]〉

We write E the set of enhanced keyed labels, and define 	 : E → L and 𝓀 : E → K:

	(υα[k]) = α 	(υ〈|L υLα[k], |R υRα[k]〉) = τ

𝓀(υα[k]) = k 𝓀(υ〈|L υLα[k], |R υRα[k]〉) = k

We present in Fig. 3 the rules for the proved forward and backward LTS for
CCSK. The rules |R, |•R, +R and +•

R are omitted but can easily be inferred. This
LTS has its derivation in bijection with CCSK’s original LTS:
1 We preferred to refer to this work over older presentations [12,13] to be better

equipped to later on accommodate replication for reversible calculi [2].
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Lemma 1 (Adequacy of the proved labeled transition system). The
transition X −−−−→→α[m]

X ′ can be derived using Fig. 2 iff X −−→→θ X ′ with 𝓀(θ) = m
and 	(θ) = α can be derived using Fig. 3.

Definition 6 (Dependency relation). The dependency relation on enhanced
keyed labels is induced by the axioms of Fig. 4, for d ∈ {L,R}.

Fig. 3. Rules of the proved LTS for CCSK

A dependency θ0 � θ1 means “whenever there is a trace in which θ0 occurs
before θ1, then the two associated transitions are causally related”. The fol-
lowing definitions will enable more formal examples, but we can stress that
1. the “action” rule enforces that executing or reversing a prefix at top level,
e.g.α.X −−−→α[k]

α[k].X or α[k].X ���→α[k]
α.X, makes the prefix (α[k]) a dependency

of all further transitions; 2. as the forward and backward versions of the same
rule share the same enhanced keyed labels, a trace where a transition and its
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Fig. 4. Dependency Relation on Enhanced Keyed Labels

reverse both occur will have the first occurring be a dependency of the second,
as � is reflexive; 3. no additional relation (such as a conflict or causality rela-
tion) is needed to define concurrency; 4. this dependency relation matches the
forward-only definition for action and parallel composition, but not for sum:
while the original system [19, Definition 2] requires only +dθ � θ′ if θ � θ′, this
definition would not capture faithfully the dependencies in our system where the
sum operator is preserved after a reduction.

Definition 7 (Transitions and traces). In a transition t : X −−→→θ X ′, X is
the source, and X ′ is the target of t. Two transitions are coinitial (resp. cofinal)
if they have the same source (resp. target). Transitions t1 and t2 are composable,
t1; t2, if the target of t1 is the source of t2. The reverse of t : X ′ ��→θ X is
t• : X −−→θ X ′, and similarly if t is forward, letting (t•)• = t2.

A sequence of pairwise composable transitions t1; · · · ; tn is called a trace,
denoted T , and ε is the empty trace.

Definition 8 (Causality relation). Let T be a trace X1 −−→→θ1 · · · −−−→→θn Xn and
i, j ∈ {1, · · · , n} with i < j, θi causes θj in T (θi �T θj) iff θi � θj.

Definition 9 ((Composable) Concurrency). Let T be a trace X1 −−→→θ1

· · · −−−→→θn Xn and i, j ∈ {1, · · · , n}, θi is concurrent with θj (θi �T θj, or simply
θi � θj) iff neither θi �T θj nor θj �T θi.

Coinitial concurrency (Definition 11) will later on be defined using compos-
able concurrency and the loop lemma (Lemma 5).

Example 1. Consider the following trace, dependencies, and concurrent transi-
tions, where the subscripts to � and � have been omitted:

2 The existence and uniqueness of the reverse transition is immediate in CCSK. This
property, known as the loop lemma (Lemma 5) is sometimes harder to obtain.
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(a.b) | (b + c)

−−−−−−→|La[m]
a[m].b | b + c

−−−−−→|Lb[n]
a[m].b[n] | b + c

−−−−−−−−→|R+Rc[n′]
a[m].b[n] | b + c[n′]

�����→|Lb[n]
a[m].b | b + c[n′]

��������→|R+Rc[n′]
a[m].b | b + c

−−−−−−−−−−−−−−→〈|Lb[n],|R+Lb[n]〉
a[m].b[n] | b[n] + c

And we have, e.g.

|L a[m]� |L b[n] as a[m] � b[n]

|L b[n]� |L b[n] as b[n] � b[n]

and also

|L a[m] � 〈|L b[n], |R +Rb[n]〉
|R +Rc[n′] � 〈|L b[n], |R +Lb[n]〉
but

|L b[n] �|R +Rc[n′]
since labels prefixed by |L and |R are never
causes of each others.

To prove the results in the next section, we need an intuitive and straight-
forward lemma (Lemma 2) that decomposes a concurrent trace involving two
threads into one trace involving one thread while maintaining concurrency, i.e.
proving that a trace e.g. of the form T : X | Y −−−→→|Lθ

X ′ | Y −−−→→|Lθ′
X ′′ | Y

with |L θ �T |L θ′ can be decomposed into a trace T ′ : X −−→→θ X ′ −−→→θ′
X ′′ with

θ �T ′ θ′. A similar lemma is also needed to decompose sums (Lemma 3), and
their proofs proceed by simple case analysis and offer no resistance.

Lemma 2 (Decomposing concurrent parallel transitions). Let i ∈ {1, 2}
and θi ∈ {|L θ′

i, |R θ′′
i , 〈|L θ′

i, |R θ′′
i 〉}, define πL(XL | XR) = XL, πL(|L θ) = θ,

πL(〈|L θL, |R θR〉) = θL, πL(|R θ) = undefined, and define similarly πR.
Whenever T : XL | XR −−→→θ1 YL | YR −−→→θ2 ZL | ZR with θ1 �T θ2, then for

d ∈ {L,R}, if πd(θ1) and πd(θ2) are both defined, then, πd(θ1) �πd(T ) πd(θ2)

with πd(T ) : πd(XL | XR) −−−−−→→πd(θ1)
πd(YL | YR) −−−−−→→πd(θ2)

πd(ZL | ZR).

Proof. The trace πd(T ) exists by virtue of the rule |d, syn. or their reverses.
What remains to prove is that πd(θ1) �πd(T ) πd(θ2) holds.

The proof is by case on θ1 and θ2, but always follows the same pattern. As
we know that both πd(θ1) and πd(θ2) need to be defined, there are 7 cases:

θ1 |L θ′
1 |L θ′

1 |R θ′
1 |R θ′

1 〈|L θ′
1, |R θ′′

1 〉 〈|L θ′
1, |R θ′′

1 〉 〈|L θ′
1, |R θ′′

1 〉
θ2 |L θ′

2 〈|L θ′
2, |R θ′′

2 〉 |R θ′
2 〈|L θ′

2, |R θ′′
2 〉 |L θ′

2 |R θ′
2 〈|L θ′

2, |R θ′′
2 〉

By symmetry, we can bring this number down to three:

(case letter) a) b) c)
θ1 |L θ′

1 〈|L θ′
1, |R θ′′

1 〉 〈|L θ′
1, |R θ′′

1 〉}
θ2 |L θ′

2 |L θ′
2 〈|L θ′

2, |R θ′′
2 〉}

In each case, assume πL(θ1) = θ′
1 �πL(T ) θ′

2 = πL(θ2) does not hold. Then it
must be the case that either θ′

1 �πL(T ) θ′
2 or θ′

2 �πL(T ) θ′
1, and since both can be

treated the same way thanks to symmetry, we only need to detail the following
three cases:
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a) If θ′
1 �πL(T ) θ′

2, then θ′
1 � θ′

2, and it is immediate that θ1 =|L θ′
1�T |L θ′

2 = θ2,
contradicting θ1 �T θ2.

b) If θ′
1 �πL(T ) θ

′
2, then θ′

1 �θ′
2, |L θ′

1� |L θ′
2 and 〈|L θ′

1, |R θ′′
1 〉� |L θ′

2, from which
we can deduce θ1 �T θ2, contradicting θ1 �T θ2.

c) If θ′
1 �πL(T ) θ′

2, then θ′
1 � θ′

2, |L θ′
1� |L θ′

2 and 〈|L θ′
1, |R θ′′

1 〉 � 〈|L θ′
2, |R θ′

2〉,
from which we can deduce θ1 �T θ2, contradicting θ1 �T θ2.

Hence, in all cases, assuming that πd(θ1) �πd(T ) πd(θ2) does not hold leads to
a contradiction. 	

Lemma 3 (Decomposing concurrent sum transitions). Let i ∈ {1, 2}
and θi ∈ {+Lθ′

i,+Rθ′′
i }, define ρL(XL + XR) = XL, ρL(+Lθ) = θ, ρL(+Rθ) =

undefined, and define similarly ρR.
Whenever T : XL + XR −−→→θ1 YL + YR −−→→θ2 ZL + ZR with θ1 �T θ2, then for

d ∈ {L,R}, if ρd(θ1) and ρd(θ2) are both defined, then, ρd(θ1) �πd(T ) ρd(θ2)

with ρd(T ) : ρd(XL + XR) −−−−→→ρ(θ1)
ρd(YL + YR) −−−→→(θ2)

ρd(ZL + ZR).

Proof. The trace ρd(T ) exists by virtue of the rule +d or its reverse. What
remains to prove is that ρd(θ1) �ρd(T ) ρd(θ2) holds.

The proof is by case on θ1 and θ2, but always follows the same pattern. As
we know that both ρd(θ1) and ρd(θ2) need to be defined, there are 2 cases:

θ1 +Lθ′
1 +Rθ′

1

θ2 +Lθ′
2 +Rθ′

2

In each case, assume ρL(θ1) = θ′
1 �ρL(T ) θ′

2 = ρL(θ2) does not hold, then it
is immediate to note that θ1 �T θ2 cannot hold either, a contradiction. 	


3.2 Diamonds and Squares: Concurrency in Action

Square properties and concurrency diamonds express that concurrent transitions
are actually independent, in the sense that they can be swapped if they are
composable, or “later on” agree if they are co-initial. That our definition of
concurrency enables those, and to allows inter-prove them, is a good indication
that it is resilient and convenient.

Theorem 1 (Sideways diamond). For all X −−→θ1 X1 −−→θ2 Y with θ1 � θ2,
there exists X2 s.t. X −−→θ2 X2 −−→θ1 Y .

The proof, sketched, requires a particular care when X is not standard.
Using pre. is transparent from the perspective of enhanced keyed labels, as no
“memory” of its usage is stored in the label of the transition. This is essen-
tially because—exactly like for act.—all the dependency information is already
present in the term or its enhanced keyed label. To make this more formal, we
introduce a function that “removes” a keyed label, and prove that it does not
affect derivability.
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Definition 10. Given α and k, we define rmα[k] by rmα[k](0) = 0 and

rmα[k](β.X) = β.X rmα[k](X | Y ) = rmα[k](X) | rmα[k](Y )
rmα[k](X\a) = (rmα[k]X)\a rmα[k](X + Y ) = rmα[k](X) + rmα[k](Y )

rmα[k](β[m].X) =

{
X if α = β and k = m

β[m].rmα[k](X) otherwise

We let rmλ
k = rmλ[k] ◦ rmλ[k] if λ ∈ L\{τ}, rmτ

k = rmτ [k] otherwise.

The function rmα[k] simply looks for an occurrence of α[k] and removes it:
as there is at most one, there is no need for a recursive call when it is found.
This function preserves derivability of transitions that do not involve the key
removed:

Lemma 4. For all X, α and k, X −−→→θ Y with 𝓀(θ) �= k iff rmα
k (X) −−→→θ rmα

k (Y ).

Proof. Assume α[k] or α[k] (if α �= τ) occur in X (otherwise the result is
straightforward), as 𝓀(θ) �= k, the same holds for Y . As keys occur at most
twice, attached to complementary names, in reachable processes [30, Lemma
3.4], k /∈ key(rmα

k (X)) ∪ key(rmα
k (Y )). Then the proof follows by induction

on the length of the derivation for X −−→→θ Y : as neither pre. nor pre.• change
the enhanced keyed label, we can simply “take out” the occurrences of those
rules when they concern α[k] or α[k] and still obtain a valid derivation, with
the same enhanced keyed label, hence yielding rmα

k (X) −−→→θ rmα
k (Y ). For the

converse direction, pre. or pre.• can be reintroduced to the derivation tree and
in the appropriate location, as k is fresh in rmα

k (X) and rmα
k (Y ). 	


Proof (of Theorem 1 (sketch)). The proof proceeds by induction on the length of
the deduction for the derivation for X −−→θ1 X1 , using Lemmas 2 and 3 to enable
the induction hypothesis if θ1 is not a prefix. The only delicate case is if the
last rule is pre.: in this case, there exists α, k, X ′ and X ′

1 s.t. X = α[k].X ′ −−→θ1

α[k].X ′
1 = X1 and 𝓀(θ1) �= k. As α[k].X ′

1 −−→θ2 Y , 𝓀(θ2) �= k [30, Lemma 3.4],
and since θ1 � θ2, we apply Lemma 4 twice to obtain the trace T :

rmα
k (α[k].X ′) = X ′ −−→θ1 rmα

k (α[k].X ′
1) = X ′

1 −−→θ2 rmα
k (Y )

with θ1 �T θ2, and we can use the induction hypothesis to obtain X2 s.t.
X ′ −−→θ2 X2 −−→θ1 rmα

k (Y ). Since 𝓀(θ2) �= k, we can append pre. to the derivation
of X ′ −−→θ2 X2 to obtain α[k].X ′ = X −−→θ2 α[k].X2. Using Lemma 4 one last time,
we obtain that rmα

k (α[k].X2) = X2 −−→θ1 rmα
k (Y ) implies α[k].X2 −−→θ1 Y , which

concludes this case. 	

Example 2. Re-using Example 1, since |L b[n] �|R +Rc[n′] in

a[m].b | b + c −−−−→|Lb[n]
a[m].b[n] | b + c −−−−−−−→|R+Rc[n′]

a[m].b[n] | b + c[n′],
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Theorem 1 allows to re-arrange this trace as

a[m].b | b + c −−−−−−−→|R+Rc[n′]
a[m].b | b + c[n′] −−−−→|Lb[n]

a[m].b[n] | b + c[n′].

Theorem 2 (Reverse diamonds).

1. For all X −−→θ1 X1 ��→θ2 Y with θ1 � θ2, there exists X2 s.t. X ��→θ2 X2 −−→θ1 Y .
2. For all X ��→θ1 X1 −−→θ2 Y with θ1 � θ2, there exists X2 s.t. X −−→θ2 X2 ��→θ1 Y .

It should be noted that in the particular case of t; t• : X −−→θ1 X1 ��→θ1 X, or
t•; t, θ1 � θ1 by reflexivity of � and hence the reverse diamonds cannot apply.
The name “reverse diamond” was sometimes used for different properties [37,
Proposition 5.10], [36, Definition 2.3] that, in the presence of the loop lemma
(Lemma 5), are equivalent to ours, once the condition on keys is replaced by
our condition on concurrency. It is, however, to our knowledge the first time this
property, stated in this particular way, is isolated and studied on its own.

Proof (Sketch). We can re-use the proof of Theorem 1 almost as it is, since
Lemmas 4, 2 and 3 hold for both directions.

For 1., the only case that diverges is if the deduction for X −−→θ1 X1 have for
last rule pre. In this case, α[k].X ′ −−→θ1 α[k].X ′

1 ��→θ2 Y , but we cannot deduce that
𝓀(θ2) �= k immediately. However, if 𝓀(θ2) = k, then we would have α[k].X ′

1 ���→α[k]

α.Y ′ = Y , but this application of act.• is not valid, as std(X ′
1) does not hold,

since X ′
1 was obtained from X ′ after it made a forward transition. Hence, we

obtain that key(θ2) �= k and we can carry out the rest of the proof as before.
For 2., the main difference lies in leveraging the dependency of sum prefixes

between e.g. +Rθ1 and +Lθ2 in X + OY ����→+Rθ1 OX + OY −−−−→+Lθ2 OX + Y . 	

Example 3. Re-using Example 1, since |R +Rc[n′] �|L b[n] in

a[m].b[n] | b + c −−−−−−−→|R+Rc[n′]
a[m].b[n] | b + c[n′] ����→|Lb[n]

a[m].b | b + c[n′],

Theorem 2 allows to re-arrange this trace as

a[m].b[n] | b + c ����→|Lb[n]
a[m].b | b + c −−−−−−−→|R+Rc[n′]

a[m].b | b + c[n′].

Concurrency on coinitial traces is defined using concurrency on composable
traces and the loop lemma, immediate in CCSK.

Lemma 5 (Loop lemma [37, Prop. 5.1]). For all t : X −−→θ X ′, there exists
a unique t• : X ′ ��→θ X, and conversely. We let (t•)• = t.

Definition 11 (Coinitial concurrency). Let t1 : X −−→→θ1 Y1 and t2 : X −−→→θ2 Y2

be two coinitial transitions, θ1 is concurrent with θ2 (θ1 � θ2) iff θ1 � θ2 in the
trace t•1; t2 : Y1 −−→→θ1 X −−→→θ2 Y2.
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To our knowledge, this is the first time co-initial concurrency is defined from
composable concurrency: while the axiomatic approach discussed coinitial con-
currency [31, Section 5], it primarily studied independence relations that could
be defined in any way, and did not connect these two notions of concurrency.

Theorem 3 (Square property). For all t1 : X −−→→θ1 X1 and t2 : X −−→→θ2 X2

with θ1 � θ2, there exist t′1 : X1 −−→→θ2 Y and t′2 : X2 −−→→θ1 Y .

Proof (sketch). By Definition 11 we have that θ1 � θ2 in t•1; t2 : X1 −−→→θ1 X −−→→θ2

X2. Hence, depending on the direction of the arrows, and possibly using the loop
lemma to convert two backward transitions into two forward ones, we obtain by
Theorems 1 or 2 t′′1 ; t′′2 : X1 −−→→θ2 Y −−→→θ1 X2, and we let t′1 = t′′1 and t′2 = t′′•2:

X

X1

θ1

X2

θ2

Definition 11
========⇒ X

X1

θ1

X2

θ2

Diamonds
======⇒ Y

X1

θ2

X2

θ1

Loop
===⇒

X

X1

θ1

X2

θ2

Y

θ2 θ1

��

Example 4. Following Example 1, we can get e.g. from a[m].b[n] | b+c −−−−−−−→|R+Lb[n′]

a[m].b[n] | b[n′] + c and a[m].b[n] | b + c ����→|Lb[n]
a[m].b | b + c the transitions

converging to a[m].b | b[n′] + c.

3.3 Causal Consistency

Formally, causal consistency (Theorem 4) states that any two coinitial and cofinal
traces are causally equivalent:

Definition 12 (Causally equivalent). Two traces T1, T2 are causally equiv-
alent, if they are in the least equivalence relation closed by composition satisfying
t; t• ∼ ε and t1; t′2 ∼ t2; t′1 for any t1; t′2 : X −−→→θ1 −−→→θ2 Y , t2; t′1 : X −−→→θ2 −−→→θ1 Y .

Theorem 4. All coinitial and cofinal traces are causally equivalent.

The “axiomatic approach” to reversible computation [31] allows to obtain
causal consistency from other properties that are generally easier to prove.

Lemma 6 (Backward transitions are concurrent). Any two different
coinitial backward transitions t1 : X ��→θ1 X1 and t2 : X ��→θ2 X2 are concur-
rent.

Proof (Sketch). The proof is by induction on the size of θ1 and leverages that
𝓀(θ1) �= 𝓀(θ2) for both transitions to be different. 	

Lemma 7 (Well-foundedness). For all X there exists n ∈ N, X0, · · · ,Xn

s.t. X ��→ Xn ��→ · · · ��→ X1 ��→ X0, with std(X0).
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This lemma forbids infinite reverse computation, and is obvious in CCSK as
any backward transition strictly decreases the number of occurrences of keys.

Proof (of Theorem 4). We can re-use the results of the axiomatic approach [31]
since our forward LTS is the symmetric of our backward LTS, and as our con-
currency relation (that the authors call the independence relation, following
a common usage [39, Definition 3.7]) is indeed an irreflexive symmetric rela-
tion: symmetry is immediate by definition, irreflexivity follows from the fact
that � is reflexive. Then, by Theorem 3 and Lemma 6, the parabolic lemma
holds [31, Proposition 3.4], and since the parabolic lemma and well-foundedness
hold (Lemma 7), causal consistency holds as well [31, Proposition 3.5]. 	


We use here the axiomatic approach [31] in a very narrow sense, to obtain
only causal consistency—which was our main goal—, but we could have used
those lemmas to obtain many other desirable properties for this system “for free”.
An interesting problem, as suggested by a reviewer, would also be to establish
whenever our system enjoys Coinitial Propagation of Independence [31, Defini-
tion 4.2], which in turns would allow it to fulfil Independence of Diamonds [31,
Definition 4.6].

Example 5. Re-using the full trace presented in Example 1, we can re-organize
the transitions using the diamonds so that every undone transition is undone
immediately, and we obtain up to causal equivalence the trace

a.b | b + c −−−−−→|La[m]
a[m].b | b + c −−−−−−−−−−−→〈|Lb[n],|R+Lb[n]〉

a[m].b[n] | b[n] + c

4 Structural Congruence, Universality and Other Criteria

Causality for a semantics of concurrent computation should satisfy a variety of
criteria, the squares and diamonds being the starting point, and causal consis-
tency being arguably the most important. This section aims at briefly presenting
additional criteria and at defending the “universality” of our approach. Since this
last point requires to introduce two other reversible systems and four other def-
initions of concurrency, the technical content is only in our research report [3,
Sect. C], but we would like to stress that the results stated below are fairly rou-
tine to prove—introducing all the material to enable the comparisons is the only
lengthy part.

Concurrency-Preserving Structural Congruences. “Denotationality” [17, Sect-
ion 6] is a criteria stating that structural congruence should be preserved by the
causal semantics. Unfortunately, our system only vacuously meets this criteria—
since it does not possess a structural congruence. The “usual” structural congru-
ence is missing from all the proved transition systems [15,20,22,23], or missing
the associativity and commutativity of the parallel composition [21, p. 242]. While
adding such a congruence would benefits the expressiveness, making it interact
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nicelywith the derived proof system and the reversible features [30, Section 4], [7] is
a challenge we prefer to postpone.

Comparing with Concurrency Inspired by Reversible π-Calculus. It is possible
to restrict the definition of concurrency for a reversible π-calculus extending
CCSK [32], back to a sum-free version of CCSK. The structural causality [32,
Definition 22]—for transitions of the same direction—and conflict relation [32,
Definition 25]—for transitions of opposite directions—can then both be proven
to match our dependency relation in a rather straightforward way, hence proving
the adequacy of notions. However, this inherited concurrency relation cannot be
straightforwardly extended to the sum operator, and requires two relations to be
defined: for those reasons, we argue that our solution is more convenient to use.
It should also be noted that this concurrency does not meet the denotationality
criteria either, when the congruence includes renaming of bound keys [30].

A similar work could have been done by restricting concurrency for e.g.
reversible higher-order π-calculus [29, Definition 9], reversible π-calculus [16,
Definition 4.1] or croll-π [27, Definition 1], but we reserve it for future work,
and would prefer to extend our definition to a reversible π-calculus rather than
proceeding the other way around.

Comparing with RCCS-Inspired Systems. In RCCS, the definition of concur-
rency fluctuated between a condition on memory inclusion for composable tran-
sitions [25, Definition 3.1.1] and a condition on disjointness of memories on
coinitial transitions [18, Definition 7], both requiring the entire memory of the
thread to label the transitions, and neither been defined on transitions of oppo-
site directions. It is possible to adapt our proved system to RCCS, and to prove
that the resulting concurrency relation is equivalent to those two definitions,
when restricted to transitions of equal direction. A similar adaptation is possi-
ble for reversible and identified CCS [8], that came with yet another definition
of concurrency leveraging its built-in mechanism to generate identifiers.

Optimality, Parabolic Lemma, and RPI. The optimality criteria is the adequacy
of the concurrency definitions for the LTS and for the reduction semantics [16,
Theorem 5.6]. While this criteria requires a reduction semantics and a notion of
reduction context to be formally proven, we believe it is easy to convince oneself
that the gist of this property—the fact that non-τ -transitions are concurrent
iff there exists a “closing” context in which the resulting τ -transitions are still
concurrent—holds in our system: as concurrency on τ -transitions is defined in
terms of concurrency of its elements (e.g., 〈θ1R, θ1L〉 � 〈θ2R, θ2L〉 iff θ1d � θ2d for at
least one d ∈ {L,R}), this criteria is obtained “for free”.

Properties such as the parabolic lemma [18, Lemma 10]—“any trace is equiv-
alent to a backward trace followed by a forward trace”—or “RPI” [31, Defi-
nition 3.3]—“reversing preserves independence”, i.e. t � t′ iff t• � t′–follow
immediately, by our definition of concurrencies for this latter. We furthermore
believe that “baking in” the RPI principle in definitions of reversible concurren-
cies should become the norm, as it facilitates proofs and forces to have t1 � t2
iff t•1 � t•2, which seems a very sound principle.
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5 Conclusion and Perspectives

We believe our proposal to be not only elegant, but also extremely resilient and
easy to work with. It should be stressed that it does not require to observe the
directions, but also ignore keys or identifiers, that should in our opinion only
be technical annotations disallowing processes that have been synchronized to
backtrack independently. We had previously defended that identifier should be
considered only up to isomorphisms [6, p. 13], or explicitly generated by a built-
in mechanism [8, p. 152], and re-inforce this point of view here. From there,
much can be done. A first interesting line of work would be to compare our
syntactical definition with the semantical definition of concurrency in models
of RCCS [4–6] and CCSK [24,36,40]. Of course, as we already mentioned,
extending this definition to reversible π-calculi, taking inspiration from e.g. the
latest development in forward-only π [23], would allow to re-inforce the interest
and solidity of this technique.

Another interesting track would be to consider infinite extensions of CCSK,
since infinite behaviors in the presence of reversibility is not well-understood nor
studied: an attempt to extend algebras of communicating processes [11], includ-
ing recursion, seems to have been unsuccessful [41]. A possible approach would
be to define recursion and iteration in CCSK, to extend our definition of concur-
rency to those infinite behaviors, and to attempt to reconstruct the separation
results from the forward-only paradigm [35]. Whether finer, “reversible”, equiv-
alences can preserve this distinction despite the greater flexibility provided by
backward transitions is an open problem. Another interesting point is the study
of infinite behaviors that duplicate past events, including their keys or memories:
whether this formalism could preserve causal consistency, or what benefits there
would be in tinkering this property, is also an open question.

Last but not least, these last investigations would require to define and under-
stand relevant properties, or metrics, for reversible systems. In the forward-only
world, termination or convergence were used to compare infinite behaviors [35],
and additional criteria were introduced to study causal semantics [17]. Those
properties may or may not be suited for reversible systems, but it is difficult to
decide as they sometimes even lack a definition. This could help in solving the
more general question of deciding what it is that we want to observe and assess
when evaluating reversible, concurrent systems [9,10].
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Déclarative. Ph.D. thesis, Université Paris 6 & INRIA Rocquencourt (2006).
https://tel.archives-ouvertes.fr/tel-00519528

26. Lanese, I.: From reversible semantics to reversible debugging. In: Kari, J., Ulid-
owski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 34–46. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7 2

27. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6 21
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Abstract. A novel model of reversible computing, the ℵ-calculus, is
introduced. It is declarative, reversible-Turing complete, and has a local
term-rewriting semantics. Unlike previously demonstrated reversible
term-rewriting systems, it does not require the accumulation of history
data. Terms in the ℵ-calculus, in combination with the program defini-
tions, encapsulate all program state. An interpreter was also written.
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1 Introduction

Reversible computing is a response to Szilard’s and Landauer’s observations
[5,7] that the ‘erasure’ of information, as is common in conventional computing,
leads to a fundamental thermodynamic cost in the form of an entropy increase.
To avoid this, one should ensure that the computational state transitions are
injective, i.e. every valid1 computational state has at most one valid predecessor.
This logical reversibility thus circumvents the Landauer-Szilard limit by avoiding
the need to erase information via logical reversibility of its operation.

We introduce a novel model of reversible computing, the ℵ-calculus2. It is
declarative, in that programs describe the logic of the computation whilst the
control flow is left implicit. Irreversible declarative languages include Prolog, but
we believe the ℵ-calculus is the first declarative model of reversible computing.
Its semantics are that of a Term-Rewriting System (TRS): A given computation
is represented by a term, and this is reversibly transformed by a transition rule
to complete the computation. Reversible TRSs have been studied before. For
example, Abramsky [1] introduces a general approach to modeling reversible
TRSs, although he then applies it to reversibly simulating the irreversible λ-
calculus. To reversibly simulate an irreversible system, some computational his-
tory must be recorded. This is implicit in Abramsky’s treatment, but explicit in
the approaches of Di Pierro et al. [3] and Nishida et al. [6]. We believe ours is
the first reversible-Turing complete TRS that doesn’t require such recording.
1 No such constraint need be applied to invalid computational states [4].
2 The name of the calculus is inspired by the Greek meaning ‘not forgotten’,
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In Sect. 2 we introduce the ℵ-calculus by example. In Sects. 3 and 4 we for-
malize the model’s definition and its semantics. We conclude with Sect. 5 and
briefly discuss some language extensions. In the interest of space, proofs of theo-
rems such as non-ambiguity and reversible-Turing completeness are deferred to
an accompanying longer report.

2 Examples

Recursion: Addition and Subtraction. The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend: a+Z =
(a,Z) and a + b = (c, b) =⇒ a + Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;
+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing the
+ symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () � {a �→ 3, b �→ 1} {c �→ 4, b �→ 1} � () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () � {a �→ 3, b �→ 0} {c �→ 3, b �→ 0} � () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () � {a �→ 3} � () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.
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Iteration: Squaring and Square-Rooting. A more involved example is given
by reversible squaring and square-rooting. Reversible squaring may be imple-
mented using addition as a sub-routine via the fact m2 =

∑m−1
k=0 (k + k + 1).

By doing the sum in reverse (i.e. starting with k = m − 1 and decrementing it
towards 0), m is consumed whilst n = m2 is generated. This also shows how iter-
ation/looping can be implemented in the ℵ-calculus. The definition of squaring
(Sq) is given below:

! Sq m (); ! () n Sq;
Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s′ ← s + k

+ s′ k () = () s′′ k +. -- s′′ ← s′ + k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for enter-
ing/continuing the loop and a forward conditional branch for continuing/exiting
the loop. These are implemented by rules (sq–begin,–end). Meanwhile rule (sq–

step) performs the actual additions of the sum. The reader may notice that Sq

appears twice in (sq–step); this is merely for symmetric aesthetics, and to dis-
tinguish it from halting terms which are typically marked with (). An example
evaluation trace of 32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥
the computation stalls with {s′′ �→ 0, k �→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equiva-
lently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a mul-
titerm matching the right-pattern, or vice-versa. Computational definitions may
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have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗
(rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

Determinism Constraints. Like other models of reversible computation, such
as Bennett’s reversible Turing Machine [2], constraints must be placed on which
programs are accepted to ensure unambiguously deterministic reversibility. That
is, whilst all the computational definitions are locally reversible—in the sense
that their specific action can be uniquely reversed up to sub-rule determinism—
there may be a choice of computational rules. Whilst the semantics (Sect. 4)
preclude ambiguity, it is useful to reject ambiguous programs before execution.
Ensuring determinism is essentially the same as Bennett’s approach: the domains
and codomains of transitions must be unambiguous. This is slightly complicated
in the ℵ-calculus because computational definitions are bidirectional: each defi-
nition specifies two rules, one corresponding to the ‘forward’ direction of the rule
and one to its inverse. This means that domains and codomains of definitions are
conflated and a multiterm may generally match up to two rules: the ‘intended’
rule, and the inverse of the rule which produced it. This would lead to ambiguity,
except that the ℵ-calculus has a notion of computational inertia (Definition 2).
The consequence of computational inertia is that, although a multiterm may
match up to two rules, there is always a unique choice of which rule to apply
at each step for a given direction of computation. A necessary and sufficient
condition for avoiding ambiguity is given by Theorem 3, and an accompanying
algorithm for static analysis of ℵ programs that verifies this condition is provided
in the forthcoming extended version of this paper.

Definition 1 (Term Reduction). In the ℵ -calculus, an input halting multi-
term t0 is ‘reduced’ to an output halting multiterm tn, where n ∈ N ∪ {∞}, by
a series of n rules ri→i+1. Each rule r has a unique inverse r−1, which gives a
trivial inverse reduction from t′0 = tn to t′n = t0 with r′

i→i+1 = r−1
n−i−1→n−i.

Definition 2 (Computational Inertia). Computational Inertia in the ℵ -
calculus is the property that if, in a given reduction (Definition 1), ri→i+1 = r,
then ri+1→i+2 cannot be r−1. This would allow for a ‘futile cycle’ in which no
computational progress is made.

Theorem 3 (Non-Ambiguity). A program is unambiguously/determini-
stically reversible if each variable appears exactly twice3 in a computational
3 In the examples in Sect. 2 the reader may notice this is violated. This is for program-

mer convenience, and must be resolved manually or by the compiler.
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definition, and if and only if there exists no multiterm matching either (1) three-
or-more computational rule patterns, or (2) two-or-more computational rule pat-
terns and one-or-more halting patterns.

4 Semantics

As stated earlier, a computation consists of a multiterm t that evolves reversibly
in the context of a program environment, P. P is a set containing all the defini-
tions making up the program, computational and halting. The ℵ-calculus can be
formulated without computational inertia (Definition 2), but in the interest of
brevity we give the inertial semantics here. In the inertial semantics, each com-
putational definition is assigned a pair of unique identifiers: r, corresponding
to the left-to-right rule, and r−1, corresponding to the right-to-left rule. Each
halting definition is assigned the identifier !, where for convenience !−1 ≡ !. P
is then a set of elements r : δ where δ is a definition and r is the corresponding
left-to-right rule identifier; for simplicity, P is extended with r−1 : δ−1 for each
computational definition δ where δ−1 swaps the left and right sides of the head-
rule. Each multiterm t = t1 · · · tn is then tagged as either halting, [t1 · · · tn|�] for
initial multiterms and [t1 · · · tn|⊥] for final multiterms, or ‘active’, (t1 · · · tn|r)
where r is the previously applied rule. As well as tagging active multiterms with
the previous rule application, it is important we identify halting tags because
sub-multiterms must only be produced/consumed in a halting state or else non-
determinism arises4.

At each computational step, we pick a non-final halting multiterm t (either
the ‘root’ multiterm or a nested multiterm, (sub–eval)) and match it against all
the rules in P. The set M(t) is said set of matching rules, and is generated by
rules (unit, match). The rules for ‘matching’ relate to ‘unification’ and will be
described later. If the multiterm is initial-halting, and we find a match of the form
! : δ ∈ P then we can map [t|�] → (t|!); if there aren’t any halting definitions,
then the computation enters an invalid state. If the multiterm is active, then
there are four valid cases: (1) The tagged multiterm is (t|!) and t matches only
one-or-more halting definitions ! : δ; we map (t|!) → [t|⊥]. (2) The tagged
multiterm is (t|!) and t matches one-or-more halting definitions and precisely
one computational definition r : δ; if r maps t

r→ t′, then we map (t|!) → (t′|r).
(3) The tagged multiterm is (t|r) and t matches two computational definitions,
r−1 : δ and s : ε, where s may be r but not r−1; then, if s maps t

s→ t′, we map
(t|r) → (t′|s). (4) The tagged multiterm is (t|r) and t matches precisely one
computational definition, r−1 : δ, and one-or-more halting definitions; we map
(t|r) → [t|⊥]. These five cases above are given by rules (step–halt, step–comp).
Any other cases cause computation to enter an invalid state, either because there
is no rule specified to continue the multiterm’s evolution, or because there is an
ambiguity in P. Note that each of the above tagged maps are reversible because

4 The requirement of halting, combined with computational inertia, ensures each sub-
multiterm takes on a unique state at production and before consumption.
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∧
i si → ti

s1 · · · sn → t1 · · · tn
(sub–eval)

σ ∈ sym

σ
σ∼ ∅

v ∈ var

t
v∼ {v �→ t}

∧
i ti

τi∼ Ti

⋂
i Ti = ∅

[t1 · · · tn|⊥]
τ1···τn∼ ⊎

i Ti

(unif)

! : !; ∈ P (unit)

! : !π; ∈ P t
π∼ V

! ∈ M(t)

r : (λ=ρ:Σ) ∈ P t
λ∼ V

r ∈ M(t)
(match)

! ∈ M(t)

[t|	] → (t|!)
M(t) = {!}
(t|!) → [t|⊥]

M(t) = {r−1, !}
(t|r) → [t|⊥]

(step–halt)

M(t) = {!, r} t
r→ t′

(t|!) → (t′|r)
M(t) = {r−1, s} t

s→ t′

(t|r) → (t′|s) (step–comp)

r : (λ=ρ:Σ) ∈ P ∧
i ti

λi∼ Ti

⋂
i Ti = ∅

t1 · · · tn
r→init 〈r, Σ, ∅, �iTi〉

(comp–init)

r : (λ=ρ:Σ) ∈ P ∧
i ti

ρi∼ Ti

⋂
i Ti = ∅

〈r, ∅, Σ, �iTi〉 r→fin t1 · · · tn

(comp–fin)

[s|	] → [t|⊥] [s]
σ∼ S [t]

τ∼ T

〈r, {σ=τ.} ∪ Σ, Σ′, R � S〉 r→sub 〈r, Σ, {σ=τ.} ∪ Σ′, R � T 〉
(comp–sub�)

[s|	] → [t|⊥] [s]
σ∼ S [t]

τ∼ T

〈r, {τ=σ.} ∪ Σ, Σ′, R � S〉 r→sub 〈r, Σ, {τ=σ.} ∪ Σ′, R � T 〉
(comp–subr)

s1 · · · sm
r→init

r→∗
sub

r→fin t1 · · · tn

s1 · · · sm
r→ t1 · · · tn

(comp)

s ∈ term
∗

s → s

s → t t → u

s → u
(closure)

Listing 1. The semantics of the (inertial) ℵ-calculus. Note that 〈r, Σ Σ′, S〉 represents
an intermediate computational state, where r is the rule identifier, Σ is a set sub-rules
yet to be applied, Σ′ is a set of sub-rules that have been applied, and S is a set of
variable bindings.

whenever we consume r it is by identifying exactly two possible rule identifiers,
{r−1, s}, and using this information to consume the old tag r and replace it with
s.

In the above, we relied on the notion of a rule r : (λ = ρ:Σ) inducing the
mapping t

r→ t′. The semantics, given by rules (comp,–init,–sub�,–subr,–fin),
are as follows: The pattern λ is unified against t: here, unification means that t is
reversibly consumed by comparison with the pattern λ, in the process producing
a variable mapping. Then we pick (without replacement) a sub-rule from Σ
where one side consists only of variables in our current mapping. We apply this
sub-rule: the variables are substituted into the pattern, the resulting multiterm
t is instantiated as [s|�] and evolved to [s′|⊥], and s′ is then matched against
and consumed by the other pattern of the sub-rule. This can fail, leading to
an invalid state, if the new multiterm doesn’t evolve to [s′|⊥] or if s′ doesn’t
unify with the final pattern. This process is repeated until our current variable
mapping can be substituted into ρ to yield t′, completing the mapping of t → t′.
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Unification, rules (unif), is simply recursive pattern-matching. If a term t
unifies against a pattern π with variable bindings V , we write t

π∼ V . The
pattern σ ∈ sym only unifies with the term σ. The pattern v ∈ var unifies
with any term t with bindings {v �→ t}. The pattern (π1π2 · · · πn) unifies with
a multiterm [t1t2 · · · tn|⊥] if and only if each πi unifies with ti with bindings Vi,
and the Vi are disjoint (i.e. the πi don’t share any variables); notice that it only
unifies with a final-halting state.

These semantics are summarized in Listing 1. Complete computa-
tion is achieved via the rules (closure). An immediate concern is that
the application of sub-rules and the evolution of sub-multiterms is non-
deterministic/asynchronous. In fact this is a feature, and allows for automatic
parallelisation of independent subcomputations in the ℵ-calculus. A necessary
condition is confluence, which is satisfied by the ℵ-calculus (Theorem 4). Finally
it is important for the usefulness of the ℵ-calculus that it is reversible-Turing
complete (Theorem 5).

Theorem 4. The semantics of the ℵ -calculus are confluent, in the sense that
the final result is independent of evaluation order (and possible parallel evalua-
tion).

Theorem 5. The ℵ -calculus is reversible-Turing complete, in the sense that
it can reversibly simulate (without additional garbage) the reversible Turing
Machine defined by Bennett [2] and vice-versa.

5 Discussion and Future Work

We have introduced a novel model of reversible computing, the ℵ-calculus, that
is declarative and has a TRS semantics. We proved (see extended paper) that
the calculus is non-ambiguous, reversible-Turing complete, and that its seman-
tics are confluent. An interpreter has also been written and is available online5.
It may also be extended to support concurrency, with interesting consequences
for determinism and causal-consistency. The concurrent and non-inertial variant
of the calculus, introduced in the extended paper, gives an alternate positioning
of the model in the context of molecular programming: another form of uncon-
ventional computing, in which the interactions of specially prepared molecules
simulate computation (see Zhang and Seelig [8] for a review of one such app-
roach).
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Abstract. Reversing Petri nets (RPNs) have recently proposed as a
Petri-net inspired formalism that supports the modelling of causal and
out-of-causal order reversibility. In previous works we proposed a struc-
tural way of translating a specific subclass of RPNs into bounded
coloured Petri nets (CPNs). In this paper we extend these results by
removing the restriction of token uniqueness. The proposed transforma-
tion from RPNs to CPNs has been implemented in a tool, which allows
building an RPN and converting it to an equivalent CPN.

1 Introduction

Reversible computation is an unconventional form of computing, which allows
operations to reverse at any point during computation. It has been attracting
increasing attention in many applications, e.g. low-power computing, quantum
computation, robotics, and distributed systems. Exploring reversibility through
formal models formulates the theoretical foundations of what reversibility is and
what purpose it serves. As such, reversibility has been an active topic of research
in theoretical models of computation including Petri nets (PNs) [5,6,8–11,13,14].

In this paper, we focus on reversing Petri nets (RPNs) [13] - a Petri net type
that allows transitions to be carried out in both the forward and the reverse
directions in or out of causal order. A challenge that arises is to explore the
relationship between RPNs and classical PNs where no global control is allowed
during transition execution. In our previous work [3] we addressed this challenge
by proposing a translation from a subclass of RPNs into coloured Petri nets
(CPNs) [7]. In comparison to [3], our main contributions of this paper are: (1)
lifting the restriction of token uniqueness by allowing multiple instances of the
same type/base, (2) a refined approach for transforming RPNs to CPNs that
treats all three semantics of backtracking, causal-order, and out-of-causal-order
reversibility, in unified way, and (3) the implementation of the transformation
in a tool.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. A. Mezzina and K. Podlaski (Eds.): RC 2022, LNCS 13354, pp. 172–186, 2022.
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2 Definition of Reversing Petri Nets

In this section we very briefly introduce Reversing Petri nets (RPNs) and we
refer the reader to [8,15] for more information. RPNs support three revers-
ing semantics: backtracking, whereby only the last executed transition can be
reversed, causal reversing, allowing a transition to rollback if all its effects, if
any, have been already undone, and out-of-causal-order reversing, where any
executed action can be reversed. Undoing a transition during the execution of
an RPN requires close monitoring of token manipulation. To enable this, in
RPNs tokens are associated with names. In addition, during a transition firing,
tokens may become bonded with each other. In this paper we allow occurrences
of many tokens of the same type. To distinguish between them we use token
instances.

Definition 1. A reversing Petri net (RPN) is a tuple (P, T, F,A,B):

1. P is a finite set of places, 2. T is a finite set of transitions,
3. F : (P × T ∪ T × P ) → IN

A∪B∪A∪B is a set of directed arcs,
4. A is a finite set of base or token types ranged over by a, b,. . . Instances of tokens

of type a are denoted by ai where i is unique and the set of all instances of
token types in A is denoted by A. Furthermore, we write A = {a | a ∈ A} for
the set containing a “negative” form for each token type1,

5. B ⊆ A × A is a set of undirected bond types. We assume that the relation
B is symmetric. The two elements (a, b), (b, a) ∈ B are represented by 〈a, b〉
also denoted as a−b. Similarly, instances of bonds are elements of A × A and
denoted by 〈ai, bj〉 or ai−bj for ai, bj ∈ A. The set of all instances of bond
types in B is denoted by B. B = {β | β ∈ B} contains the “negative” form
for each bond type.

As in standard Petri nets the association of tokens to places is called a mark-
ing M : P → 2A∪B. In addition, we employ the notion of a history, which assigns
a memory to each transition H : T → 2IN×2P×A

to allow recording of transitions
executions. A pair of a marking and a history, 〈M,H〉, describes a state of an
RPN with the initial state 〈M0,H0〉, where H0(t) = ∅ for all t ∈ T .

We restrict our attention to acyclic RPNs with transitions of one of three
types: (a) transitions TTRN that receive a token instance from their unique
input place and transfer it to their unique output place, (b) transitions TBC1

that receive two token instances from their unique input place and create a bond
between them which is placed to their unique output place, and (c) transitions
TBC2 which receive two token instances – one from each of their two input places
and create a bond between them, which is placed in their unique output place.
We refer to a subclass of RPNs that satisfy the above restrictions as low-level
RPNs.

To better understand the concept of RPNs consider the example presented
in Fig. 1. This RPN has five places, three transitions, token types {a, b, c}, and

1 Elements of A denote the presence of a base, whereas elements of A their absence.
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Fig. 1. Exemplary reversing Petri net.

token instances a1, a2 of type a, instances b1, b2 of type b, and c1, c2 of type
c. The labels on the arcs between places and transitions specify the tokens or
bonds required for the transition to fire (for incoming arcs), and the tokens or
bonds produced as the effect of a transition (for outgoing arcs). Here, transition
t1 transfers a token of type a, t2 requires tokens of types b and c and creates
a bond between them, and t3 takes tokens of types a, b and bonds them. Note
that if a token instance is connected to further instances then, if it is employed
to fire a transition, the whole connected component has to be used. In Fig. 1(a)
an initial marking is presented. Figure 1(b) depicts the marking obtained after
execution of transitions t1 and t2, which is the same regardless of the order in
which the transitions are executed. Let us discuss what happened. Transition t1
needed a token of type a and there were two possible instances a1, a2, of which
a1 was chosen. Similarly, t2 used b1 and c2 and created the bond 〈b1, c2〉. Note,
that any of the combinations 〈b1, c1〉, 〈b2, c1〉, 〈b2, c2〉 would have been possible.
The history function is presented above the transitions (for sequence t1t2) or
below the transitions (for sequence t2t1). In both cases the first component of
the history values is a number denoting the order in which the transition was
executed. The second component contains the names of the transferred token
instances and the places from which they were taken.

Assuming the execution sequence t1t2, if one decides to reverse a transition in
the state presented in Fig. 1(b) using the backtracking semantics, only transition
t2 can be rolled back. It would result in breaking the bond 〈b1, c2〉 and b1 would
go back to p2, while c2 to p3. Information about the reversed execution would be
removed from the history of t2, hence its history would become empty. However,
if the causal semantics were chosen both t1 and t2 could be reversed because
they are causally independent. Reversing t2 would proceed the same as in the
backtracking case. If t1 is reversed instead, token a1 would be transferred back to
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p1 and the history of t1 would become empty. To keep history values consistent,
histories of other transitions with higher number in the sequence of executions
have to be decreased by one. This would result in changing the history value of
t2 to {(1, {(p2, b1), (p3, c2)})}.

After execution of t1t2t3 – Fig. 1(c) – for backtracking and causal reversing,
t3 is the only transition that can be reversed, because it is the last executed
transition (backtracking) and it used effects of both the t1 and t2 firings (causal
reversing). Undoing t3 would lead to the state in Fig. 1(b). However, in the
out-of-causal-order semantics all three transitions can be reversed. For example,
reversing t2 would result in breaking the bond 〈b1, c2〉. Instance b1 would stay in
p5 due to its bond to a1. In contrast, c2 has not been used by any non-reversed
transition and it would not be connected to any other instance, hence it would
return to its initial place p3. The history of t2 would be empty, and the value of
the history function of t3 would be updated similarly to the causal example.

3 Transformation and Software

Let us recall that for a given low-level RPN NR = (PR, TR, AR, BR, FR), we
have the following decomposition: TR = TBC1

R ∪ TBC2
R ∪ TTRN

R . To describe the
transformation from RPNs to CPNs (see [7] for definition) first we have to define
relations and sets, which are used in the transformation.

For an RPN we define relation → on PR ∪ TR as follows: x → y if F (x, y) is
not empty and we call it a direct order. Relation ≺ on PR ∪ TR is the transitive
(but irreflexive) closure of →. We assume that the enumeration of transitions is
consistent with ≺ (i.e. if ti ≺ tj then i < j).

For any element x ∈ PR ∪ TR or transition t ∈ TR, we consider the following
five sets: (1) the neighborhood set of x, denoted as nei(x); (2) the set of depen-
dency counters of t, denoted as dpc(t); (3) the set of dependency histories of t
denoted as dph(t); (4) the set of reversing input places of t denoted as rin(t); (5)
the set of reversing output places of t denoted as rout(t). The introduced sets
differ depending on the assumed operational semantics of reversing. Apart from
these sets, the transformation is identical for all three semantics. In Table 1 we
present how these sets are defined depending on the relative semantics.

During the transformation from RPNs to CPNs the state of an RPN 〈M,H〉
has to be morphed into a marking of a CPN. The main structure of the CPN
is the same as the RPN – a CPN contains the same places and transitions (and
some additional elements described below). Transferring the marking M is quite
straightforward: Token types and token instances are represented by equivalent
colours in the CPN. The colour assigned to places in the CPN corresponding to
places from the RPN is called a molecule and it consists of a pair of two sets:
token instances and instances of bonds. The selection of instances required by
transitions to be executed is made by transitions guards. Expressions of incom-
ing and outgoing transitions arcs describe transferring of tokens instances and
(eventual) creating of bonds. To allow reversing, for every transition t ∈ TR a
new reversing transition tr is added. Execution of this transition is equivalent
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Table 1. Sets nei, dpc, dph, rin and rout for three operational semantics of reversing.

backtracking

neiBT (x) = {y ∈ PR ∪ TR | (x → y ∨ y → x) ∨ (∃z∈PR∪TR
x → z → y ∨ y → z → x)}

dpcBT (t) = TR \ {t} dphBT (t) = neiBT (t) ∩ TR

rinBT (t) = neiBT (t) ∩ PR routBT (t) = neiBT (t) ∩ PR

causal-order reversing

neiC(x) = {y ∈ PR ∪ TR | (x → y ∨ y → x) ∨ (∃z∈PR∪TR
x → z → y ∨ y → z → x)}

dpcC(t) = neiC(t) ∩ TR dphC(t) = neiC(t) ∩ TR

rinC(t) = neiC(t) ∩ PR routC(t) = neiC(t) ∩ PR

out-of-causal-order reversing

neiOOC(x) = {y ∈ PR ∪ TR | x ≺ y ∨ y ≺ x}
dpcOOC(t) = neiOOC(t) ∩ TR dphOOC(t) = neiOOC(t) ∩ TR

rinOOC(t) = neiOOC(t) ∩ PR routOOC(t) = neiOOC(t) ∩ PR

to the reversing of a selected execution of transition t. More precisely, if t is a
transferring transition, tr transfers back the used token instance; if t creates a
bond, tr breaks the bond. Transition tr is connected (in both directions) with
places from: (1) rin(t) to be able to collect the molecule that is affected by the
execution to be reversed and (2) rout(t) to be able to transfer back the molecule
or molecules (possible in case of breaking a bond) obtained after reversing the
effect of t. Selection of the correct molecule affected by reversed execution is
made by the guard of reversing transition tr. Transferring of the molecule and
undoing the effect of the execution of t is achieved by arcs expressions between
tr and places from the sets rin(t) and rout(t).

The history function H, which introduces a global control to RPNs, is dis-
tributed in CPNs into two types of new places: transition history places and
connection history places. A transition history place (thp) is created for every
transition and it contains information about the history of executions of that
transition. The content of transition history places is important during revers-
ing and to reverse a transition t sometimes it is necessary to check and modify
the content of transition history places of other transitions – the set of these
transitions is denoted by dph(t). A connection history place is created for a pair
of transitions and it contains a number (counter), which describes how many
times transitions from the pair were executed. Such places are not created for
every pair of transitions, but for a given transition t they are added only for
transition t and transitions from dpc(t). Transitions t and tr are connected by
arcs in both directions with their own history place, history places of transitions
from dph(t), and connection history places created for t and transitions from
dpc(t). Expressions of these arcs allow to update the histories.

The CPN obtained for the RPN in Fig. 1(c) is shown in Fig. 2 for out-of-
causal-order semantics. In the figure instances are pairs of a token type and the
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instance index, for example (a, 1) represents a1 (similarly for bonds). The mark-
ing of place p5 is equivalent to the one presented in Fig. 1(c), p5 contains seven
idle tokens (added for technical reasons) and a molecule consisting of instances:
a1, b1, c2 and bonds 〈a1, b1〉, 〈b1, c1〉 represented as both pairs. Let us consider
the marking of place h3. It contains a set (implemented as a list) of 4-tuples.
One 4-tuple is added to the place for each execution of t3 and each transition
from dpc(t3), i.e. t1, t2 and t0 (which is added to the net for technical reasons).
The first component of a 4-tuple is a number of the considered execution of t3
in the sequence of executions of t3 and other transition from dpc(t3), the second
component is an index of transition from dpc(t3), the third is an index of t3,
the fourth is a list of instances indicating the considered execution. For example
(2, 1, 3, [(a, 1), (b, 1)]) captures that t3 was executed in the sequence of executions
of transitions of t1 and t3 as the second one and it used instances a1, b1. For out-
of-causal-order semantics all transitions from Fig. 2 can be reversed, hence tr1,
tr2 and tr3 are enabled.

Fig. 2. CPN generated for RPN presented in Fig. 1.

The transformation of RPNs to CPNs described in this paper has been imple-
mented in a java application RPNEditor, which may be downloaded at the
webpage [2]. The application provides a graphical user interface for displaying
and edition of low-level RPNs. A net prepared in the application (alternatively
loaded from an XML file) may be transformed into a CPN and stored in the
format required by CPN-Tools software [1]. Moreover, at [2] a few examples, as
a proof of concept, and the formal description of the presented RPN to CPN
transformation are available.
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4 Conclusions

In this paper we present work in progress towards examining the relationship
between RPNs and bounded CPNs. The boundedness assures that the state
space is finite and all inhibitors can be dropped by a standard complementary
net construction [4,12].

A structural transformation from RPNs to CPNs is provided by encoding the
structure of the net along with the execution. In this paper we extend the RPN
framework from [3] by lifting the restriction on tokens singularity. To handle
token multiplicity in RPNs, and corresponding to them CPNs, semantics of the
models have been changed.

Additionally, an algorithmic translation has been implemented in an auto-
mated manner using the transformation discussed in this paper. A software
solution based on CPN-Tools [7] was employed to illustrate that the translations
conform to the semantics of reversible computation.

A Explanations of Individual Elements of a Coloured
Perti Net Based on Low-Level Reversing Petri Net

PC = PR ∪ {hi | ti ∈ TR} ∪ {hij | ti, tj ∈ TR; i < j; tj ∈ dpc(ti)}
Set of places contains places from the original RPN net, transition history
places for each transition and connection history places for pairs of tran-
sitions (set dpc determines for which transitions connection history place
is added). Notice, that indexes of transition history and connection history
places are very important. For transitions ti and tj transition history places
are denoted as hi and hj (respectively), connection history place is denoted
as tij (for i < j) or tji (for i > j).

TC = TR ∪ {tri | ti ∈ TR} ∪ {t0}
Set of transitions contains transitions from the original RPN and reversing
transitions - one for each original transition. A reversing transition for ti is
denoted as tri. Transition t0 is added for technical reasons - more about this
transition can be found in Software section.

DC = Domain(FR) ∪ (Domain(FR))−1∪
{(ti, hi), (hi, ti), (tri, hi), (hi, tri) | ti ∈ TR}∪
{(tri, hj), (hj , tri) | ti ∈ TR; tj ∈ dph(ti)}∪
{(ti, hjk), (hjk, ti), (tri, hjk), (hjk, tri) | ti ∈ TR; {i, l} = {j, k};

tl ∈ dpc(ti)}
This set contains arcs: arcs from RPN NR, arcs opposite to those from NR,
arcs between every transition ti and its history places (in both directions),
arcs between every reversing transition tri and the history place of ti (in both
directions), arcs between every reversing transition tri and history places of
transitions from dph(ti) (in both directions), arcs between every transition
ti and all its connection history places (in both directions), arcs between
every reversing transition tri and all connection history places of ti (in both
directions).
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ΣC = INb ∪ AR ∪ BR ∪ AR ∪ BR ∪ A ∪ B ∪ (2A × 2B) ∪ 2(INb×TR×TR×2A)

We define the following colours: a bounded set of natural numbers, base
types, bond types, negative base types, negative bond types, instances of
bases, instances of bonds, Cartesian product of subsets of token instances
and subsets of bond instances – molecules, subsets of 4-tuples (one 4-tuple
contains the following information: the second transition in the tuple, in the
context of the first one in the tuple, was n-th in the sequence of executions
and has used the given base instances).

VC = {(Xi,Yi) ∈ (2A × 2B) | i ∈ INb} ∪ (X ,Y) ∈ (2A × 2B) ∪
{(αi ∈ A | i ∈ INb} ∪ {cnti ∈ INb | i ∈ {1, ..., |TR|}} ∪
{Hi ∈ 2(INb×TR×TR×2A) | i ∈ {1, ..., |TR|}}

CC = {p 
→ (2A × 2B) | p ∈ PR} ∪
{hi 
→ 2(INb×TR×TR×2A) | ti ∈ TR} ∪
{hij 
→ INb | ti, tj ∈ TR; i < j; tj ∈ dpc(ti)}
This set describes which colours are assigned to which places (respectively):
colour molecule to places from RPN, set of 4-tuples to history places, and
set of bounded natural numbers to connection history places.

GC = GTRN
C ∪ GBC1

C ∪ GBC2
C ∪ Gt0

C ∪ Gt0
C ∪ GTRN

C ∪ GBC1∪BC2
C

where
GBC1

C = {ti 
→ (α1 ∈ X1 ∧ α2 ∈ X2) ∨ (α1, α2 ∈ X1 ∧ 〈α1, α2〉 ∈ Y1

∧ (X2,Y2) = (∅, ∅) |
ti ∈ TBC1

R ; {�(α1), �(α2)} ⊂ FR(•ti, ti);
α1 = α2; {(X1,Y1), (X2,Y2)} ⊆ V ar[EC(•ti, ti)];
FR(•ti, ti) ∩ (A ∪ B) ∩ �(X1 ∪ X2 ∪ Y1 ∪ Y2) = ∅}
– Guard of BC1 transition evaluates whether a set of base instances X1 of
a molecule (X1,Y1) contains an instance α1 and a set of instances X2 of a
molecule (X2,Y2) contains an instance α2, both sets are obtained for the
only input place. The types of those instances form a label of an arc between
the input place and the transition in the original RPN, α1 and α2 differs,
and the molecules do not contain negative base nor bond types. It might
also happen that a new bond is created within the already existing molecule
- in that case both instances α1, α2 are unbonded and contained in molecule
(X1,Y1), and the second molecule (X2,Y2) is empty (an idle token).
GBC2

C = {ti 
→ (α1 ∈ X1 ∧ α2 ∈ X2) |
ti ∈ TBC2

R ; {�(α1), �(α2)} ⊂ ⋃
X∈FR(•ti,ti)

X;
α1 = α2; p1 = p2 ∈ •ti;
(X1,Y1) ∈ V ar[EC(p1, ti)]; (X2,Y2) ∈ V ar[EC(p2, ti)];⋃

X∈FR(•ti,ti)
X ∩ (A ∪ B) ∩ �(X1 ∪ X2 ∪ Y1 ∪ Y2) = ∅}

– Guard of BC2 transition evaluates whether a set of base instances X1 of
a molecule (X1,Y1) obtained from the first input place contains an instance
α1, set of base instances X2 of a molecule (X2,Y2) obtained from the second
input place contains an instance α2, types of those instances form labels of
arcs between the input places and the transition in the original RPN, α1 and
α2 differs, there are two different input places, and the molecules obtained
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from input places do not contain negative base nor bond types.
GT RN

C = {ti 
→ (α ∈ X ) |
ti ∈ TTRN

R ; �(α) ∈ FR(•ti, ti); EC(•ti, ti) = {(X ,Y)};
FR(•ti, ti) ∩ (A ∪ B) ∩ �(X ∪ Y) = ∅}
– Guard of TRN transition evaluates whenever a set of base instances X of a
molecule (X ,Y) obtained from the input place contains an instance α, type
of α form a label of an arc between the input place and the transition, and
the molecule does not contain negative base nor bond types.
Gt0

C = {t0 
→ false}
– Guard of the initial transition t0 - always returns false, hence the transition
cannot be executed.
Gt0

C = {tr0 
→ false}
– Guard of reversing transition for the initial transition t0 - always returns
false, hence the transition cannot be executed.
The last two guards are a little bit more complex, that is why we
include functions in their descriptions. Those functions are: isElement and
numOfnonEmpty2. The function isElement returns true if its first argument
is an element of the set given as the second argument. In the opposite case
the function returns false. The function numOfnonEmpty counts how many
of its arguments are equal to (∅, ∅) and returns that number.
Both following guards have the same construction. The first element of a
guard is a logical conjunction of #dpc(ti) conditions, each of them ensures
that the token describing the history of ti and obtained from the place hi

(which is represented as EC(hi, tri) in the guards) contains 4-tuple related
to the execution which is reversed. In the forward execution of the transition
(to be reversed) the base α was transported (for transporting transition) or
a bond between instances α1 and α2 was created (for BC1 or BC2 transi-
tion), which from now on is denoted as 〈α1, α2〉. This part of the guards
is very important because exactly here the choice: which execution would
be reversed? (which is equivalent to the choice: execution related to which
instances would be reversed? ) is made. In CPN examples, prepared using
CPN-Tools, this choice can be made by the user or randomly. The next part
of the guards checks whether the set consisting of instances of bases (for
TRN transition) or bonds (for BC1 and BC2 transition) obtained from all
input places of the transition (to be reversed), contains instances related to
its forward execution. The last part of the guards assures that from all tokens
obtained from input places only one describes a molecule, the remaining ones
should be idle tokens.
GT RN

C = {tri 
→ (
∧

tj∈dpc(ti)
isElement((kj , tj , ti, {α}), EC(hi, tri));

isElement(α,
⋃

pg∈rin(ti)
Xg);

numOfnonEmpty({(Xg,Yg) | pg ∈ rin(ti)}))= 1
where

2 Exemplary implementations of those functions are included in coloured Petri nets
generated by our application. Their formal definitions are included in descriptions
of guards.
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ti ∈ TTRN
R ; �(α) ∈ FR(ti, ti•); ∀pg∈rin(ti)(Xg,Yg) = b(EC(pg, tri))

isElement(q,Q)= true if and only if q ∈ Q;
numOfnonEmpty(Q)= #{(q1, q2) ∈ Q | (q1, q2) = (∅, ∅)} }
GBC1∪BC2

C =
{tri 
→ (

∧
tj∈dpc(ti)

isElement((kj , tj , ti, {〈α1, α2〉}), EC(hi, tri));
isElement(〈α1, α2〉,

⋃
pg∈rin(ti)

Yg);
numOfnonEmpty({(Xg,Yg) | pg ∈ rin(ti)}))= 1
where
ti ∈ (TBC1

R ∪ TBC2
R ); {�(α1), �(α2)} ∈ FR(ti, ti•) ;

∀pg∈rin(ti)(Xg,Yg) = b(EC(pg, tri));
isElement(q,Q)= true if and only if q ∈ Q;
numOfnonEmpty(Q)= #{(q1, q2) ∈ Q | (q1, q2) = (∅, ∅)} }

EC = {(p, t) 
→ (X ,Y) | (p, t) ∈ Domain(FR); t ∈ TTRN
R ∪ TBC2

R }
Description of input arcs from the original RPN for TRN and BC2 transi-
tions - the transfer of one molecule (X ,Y) obtained from the place p.
∪
{(p, t) 
→ (1‘(X1,Y1) + +1‘(X2,Y2)) | (p, t) ∈ Domain(FR); t ∈ TBC1

R }
Description of input arcs from the original RPN for BC1 transition - the
transfer of two molecules from place p (in the guard it is assumed that one
of those molecules may be empty).
∪
{(t, p) 
→ (∅, ∅) | (p, t) ∈ Domain(FR)}
Description of arcs opposite to input arcs from the original RPN. An idle
token is transferred.
∪
{(t, p) 
→ (X ,Y) |

EC(•t, t) = {(X ,Y)}; t ∈ TTRN
R ; (t, p) ∈ Domain(FR)}

Description of output arcs for TRN transitions, similar to the ones from
RPN. They contain transfer of the molecule obtained from the input place.
∪
{(t, p) 
→ (X1 ∪ X2,Y1 ∪ Y2 ∪ {〈α1, α2〉}) | EC(•t) = {(X1,Y1), (X2,Y2)};
{�(α1), �(α2)} ∈ FR(t, p); t ∈ TBC1

R ∪ TBC2
R ; (t, p) ∈ Domain(FR)}

Description of output arcs for BC1 and BC2 transitions. They describe
the transfer of the molecules containing the instances of bases and bonds,
obtained from the input places (BC2) or place (BC1) and the new bond.
Types of the instances in the new bond should be consistent with the label
of the arc in RPN.
∪
{(p, t) 
→ (∅, ∅) | (t, p) ∈ Domain(FR); t ∈ TR}
Description of arcs opposite to input arcs from the original RPN. An idle
token is transferred.
∪
{(hjk, ti) 
→ cntl | ti ∈ TR; {i, l} = {j, k}; tl ∈ dpc(ti)}
Description of arc from connection history place to a transition. The value
obtained from that place is represented by variable cntl.



182 K. Barylska et al.

∪
{(ti, hjk) 
→ EC(hjk, ti) + 1 | ti ∈ TR; {i, l} = {j, k}; tl ∈ dpc(ti)}
Description of the arc from a transition to its connection history place. It
describes the transfer of the value obtained from that place (by the opposite
arc) increased by 1.
∪
{(hi, ti) 
→ Hl | Hl ∈ 2(INb×TR×TR×2A)}
Description of the arc from transition history place to the transition. The
value obtained from that place is represented by variable Hl and it contains
the whole history of transition ti (a set of 4-tuples).
∪
{(ti, hi) 
→ EC(hi, ti) ∪ ⋃

tl∈dpc(ti)
{(EC(hjk, ti) + 1, tl, ti, {〈α1, α2〉)}}

where
ti /∈ TTRN

R ; {i, l} = {j, k}; 〈�(α1), �(α2)〉 ∈ FR(ti, ti•)}
Description of the arc from BC1 or BC2 transition to its transition history
place. The value obtained from the transition history place is transferred
back (its described by EC(hi, ti)) and a new 4-tuple is added for every tran-
sition from dpc(ti). Each tuple consists of 4 components: the first is a number
of current execution of ti in the sequence of executions of ti and tl - this value
is obtained from hil or hli, the next two components are identifiers of tran-
sitions and the last one is the description of the bond created during the
considered execution.
∪
{(ti, hi) 
→ EC(hi, ti) ∪ ⋃

tl∈dpc(ti)
{EC(hjk, ti) + 1, tl, ti, {α})}

where
ti ∈ TTRN

R ; {i, l} = {j, k}; �(α) ∈ FR(ti, ti•)}
Description of the arc from TRN transition to its transition history place.
It is very similar to the previous one, except for the last component of the
4-tuples - in this case it is the description of the base instances which were
transferred during the considered execution.
∪
{(hjk, tri) 
→ cntl | ti ∈ TR; {i, l} = {j, k}; tl ∈ dpc(ti)}
Description of the arc from transition history counter place of ti to its revers-
ing transition tri. The value obtained from the place is represented by cntl
and it is a number of executions of transitions ti and tl.
∪
{(tri, hjk) 
→ EC(hjk, tri) − 1 | ti ∈ TR; {i, l} = {j, k}; tl ∈ dpc(ti)}
Description of the arc from reversing transition tri to connection history
place of ti. It describes the transfer of the value obtained from the connec-
tion history place by the transition tri decreased by one.
∪
{(hj , tri) 
→ Hj | (Hj ∈ 2(INb×TR×TR×2A); (tj ∈ dph(ti) ∨ j = i))}
Description of the arc from transition history place of ti to its reversing tran-
sition. The value obtained from that place is represented by variable Hj and
it contains the whole history of transition ti (a set of 4-tuples).
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∪
{(p, tri) 
→ 2‘(∅, ∅) | (p ∈ rin(ti);∀tj∈TR

p /∈ tj•)}
Description of the arc between a place to a reversing transition. The place
has to be in a set rin(ti) and it cannot be an input place to any transition.
Then two idle tokens are transferred from the place.
∪
{(p, tri) 
→ (1‘(X ,Y) + +1‘(∅, ∅)) | (p ∈ rin(ti);∃tj∈TR

p ∈ tj•)}
Description of the arc between a place to a reversing transition. The place
has to be in a set rin(ti) and it has to be an input place to some transition
from the net. Then a molecule and an idle token are transferred from the
place (during execution the molecule also can be an idle token).
∪
{(tri, hj) 
→ updateExtHist(kj ∈ V ar[GC(tri)], EC(hj , tri))
where
ti ∈ TR; tj ∈ dph(ti); (b(kj), tj , ti, Y ) ∈ b(EC(hi, tri));
updateExtHist(kj , EC(hj , tri)) =⋃

(k,tg �=i,tj ,X)∈b(EC(hj ,tri))
(k, tg, tj ,X)∪

⋃
(k<kj ,ti,tj ,X)∈b(EC(hj ,tri))

(k, ti, tj ,X)∪
⋃

(k>kj ,ti,tj ,X)∈b(EC(hj ,tri))
(k − 1, ti, tj ,X)}

Description of the arc between the reversing transition of ti and history
places of other transitions. It contains calling of updateExtHist() function.
The first argument of the function is number kj which is the first component
of 4-tuple from history of transition tj which have been binded during eval-
uation of the tri guard. The second argument of updateExtHist() consists of
elements of tj ’s history and the function modifies them: elements not related
to the pair ti and tj are not changed, elements related to ti and tj with the
first component k smaller than kj also are not changed, elements related to ti
and tj with the firs component k greater than kj are adjusted by decreasing
k by 1.
∪
{(tri, hi) 
→
updateIntHist(K = {kj ∈ V ar[GC(tri)] | tj ∈ dpc(ti)}, EC(hi, tri))
where
ti ∈ TR;∀kj∈K(b(kj), tj , ti, Y ) ∈ b(EC(hi, tri));
updateIntHist(K,EC(hi, tri)) =⋃

(k<kj ,tj ,ti,X)∈b(EC(hi,tri))
(k, tj , ti,X)∪

⋃
(k>kj ,tj ,ti,X)∈b(EC(hi,tri))

(k − 1, tj , ti,X)}
∪
Description of the arc between the reversing transition of ti and history
places of transition ti. It contains calling of updateIntHist() function. The
first argument of the function is the set of numbers kj which are the first
components of 4-tuple from ti’s history related to each pair ti, tj , such that
tj ∈ dpc(ti) which have been binded during evaluation of the tri guard. The
second argument of updateIntHist() consist of elements of ti history and the
function modifies them: elements related to ti and tj with the first compo-



184 K. Barylska et al.

nent k smaller than kj are not changed, elements related to ti and tj with k
greater than kj are adjusted by decreasing k by 1.
{(tri, p) 
→ (1‘(X1,Y1) + +1‘(∅, ∅))
where
ti ∈ TTRN

R ; p ∈ rout(ti); {p} = t•;
having (Xg,Yg) = EC(pg, tri) and α ∈ V ar[GC(tri)]:
(X1,Y1) = (∅, ∅) if

t = max((
⋃

tj∈(dph(ti)∪ti)
b(EC(hj , tri))|con(α,

⋃
pg∈rin(ti)

(Xg∪Yg)));
X1 ∪ Y1 = con(α,

⋃
pg∈rin(ti)

(Xg ∪ Yg)) if
t = max((

⋃
tj∈(dph(ti)∪ti)

b(EC(hj , tri))|con(α,
⋃

pg∈rin(ti)
(Xg∪Yg)))}

Description of the arc between reversing transition of transporting transition
ti and its output place p. Transition ti has transported base instance α in
the execution which is reversed in the current execution of tri - the value of
α is evaluated by the tri guard. Place p is an output place of some transition
t. Molecules obtained by tri from its input place pg are denoted by (Xg,Yg).
Transition tri transports an idle token and (X1,Y1) token which can be
either an idle token or a molecule. It is an idle token if t is not the maximal
transition of transitions from dph(ti) indicated by histories obtained from
places hj among those transitions which used the molecule containing α.
The (X1,Y1) token is equal to the molecule containing α if t is the maximal
one.
∪
{(tri, p) 
→ (1‘(X1,Y1) + +1‘(X2,Y2))
where
ti ∈ (TBC1

R ∪ TBC2
R ); p ∈ rout(ti); {p} = t•;

having (Xg,Yg) = EC(pg, tri) and 〈α1, α2〉 ∈ V ar[GC(tri)]:
(X1,Y1) = (∅, ∅) if

t = max((
⋃

tj∈(dph(ti)∪ti)

b(EC(hj , tri))|con(α1,
⋃

pg∈rin(ti)
(Xg∪Yg)\{〈α1,α2〉}));

X1 ∪ Y1 = con(α1,
⋃

pg∈rin(ti)
(Xg ∪ Yg) \ {〈α1, α2〉}) if

t = max((
⋃

tj∈(dph(ti)∪ti)

b(EC(hj , tri))|con(α1,
⋃

pg∈rin(ti)
(Xg∪Yg)\{〈α1,α2〉}));

X2 ∪ Y2 = (∅, ∅) if
(t = max((

⋃
tj∈(dph(ti)∪ti)

b(EC(hj , tri))|con(α2,
⋃

pg∈rin(ti)
(Xg∪Yg)\{〈α1,α2〉}))

∨(X1,Y1) = (X2,Y2));
X2 ∪ Y2 = con(α2,

⋃
pg∈rin(ti)

(Xg ∪ Yg) \ {〈α1, α2〉}) if
(t = max((

⋃
tj∈(dph(ti)∪ti)

b(EC(hj , tri))|con(α2,
⋃

pg∈rin(ti)
(Xg∪Yg)\{〈α1,α2〉}))

∧(X1,Y1) = (X2,Y2)) }
Description of the arc between reversing transition of BC1 or BC2 transition
ti and its output place p. Transition ti has created a bond 〈α1, α2〉 in the exe-
cution which is reversed in the current execution of tri - the value of 〈α1, α2〉
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is evaluated by the tri guard. Molecules obtained by tri from its input place
pg are denoted by (Xg,Yg). Place p is an output place of some transition
t. Transition tri transports two tokens: (X1,Y1) and (X2,Y2) - both can be
an idle ones. The (X1,Y1) token is an idle token if t is not the maximal
transition of transitions from dph(ti) indicated by histories obtained from
places hj among those transitions which used the molecule containing α1

after breaking bond 〈α1, α2〉. The (X1,Y1) token is equal to the molecule
containing α1 after breaking 〈α1, α2〉 if t is the maximal one. The same for
(X2,Y2) but then we consider molecule containing α2. (X1,Y1) cannot be
equal to (X2,Y2).

IC = {p 
→ ConCom(M0(p)) + +(K − #ConCom(M0(p)))‘(∅, ∅) | p ∈ PR} ∪
{hi 
→ ∅ | ti ∈ TR} ∪
{hij 
→ 0 | ti, tj ∈ TR; ti ≺ tj ; tj ∈ dpc(ti)}
Initial expressions of places. All places from PR contain molecules from the
initial marking of NR and idle tokens (to fulfill K strong safeness), places
hi contain empty sets and places hij contain 0. For technical reasons those
initial values in places are set by initialization transition t0. That transition
is a part of dph(t) set for every t ∈ TR, is executed at the initial marking
and cannot be reversed. It is added to the net so that the max always exists.
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Abstract. A relevant application of reversibility is causal-consistent
reversible debugging, which allows one to explore concurrent computa-
tions backward and forward to find a bug. This approach has been put
into practice in CauDEr, a causal-consistent reversible debugger for the
Erlang programming language. CauDEr supports the functional, concur-
rent and distributed fragment of Erlang. However, Erlang also includes
imperative features to manage a map (shared among all the processes of
a same node) associating process identifiers to names. Here we extend
CauDEr and the related theory to support such imperative features.
From a theoretical point of view, the added primitives create different
causal structures than those derived from the concurrent Erlang frag-
ment previously handled in CauDEr, yet we show that the main results
proved for CauDEr are still valid.

Keywords: Debugging · Erlang · Reversible computing · Causality

1 Introduction

Reversible computing is a programming paradigm in which programs run both
forwards (the standard computation) and backwards. Any forward computation
in a reversible language can be undone with a finite number of backward steps.
Reversible computing has applications in many areas, such as low-power com-
puting [13], simulation [1], robotics [19], biological modeling [20] and others. We
are particularly interested in applying reversible computing to debugging [2].

In a sequential system, undoing forward actions in reverse order of completion
starting from the last one produces a backward computation. Undoing a forward
action can be seen as a backward action. In a concurrent environment, one cannot
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easily decide which is the last action since many actions can be executed at the
same time, and a total order of actions may not be available. Even if a total
order exists, undoing actions in reverse order may be too restrictive since the
order of execution of concurrent actions may depend on the relative speed of the
processors executing them and has no impact on the final state. For instance,
when looking for a bug causing a visible misbehavior in a concurrent system,
independent actions may be disregarded since they cannot contain the bug.

The first definition of reversibility in a concurrent setting has been proposed
by Danos and Krivine [4]: causal-consistent reversibility. In short, it states that
any action can be undone provided that all its effects (if any) have been undone.

The idea of a causal-consistent reversible debugger was introduced in [7]. The
main concept of [7] is to use causal-consistent reversibility to explore backward
a concurrent execution starting from a visible misbehavior looking for the bug
causing it. The CauDEr debugger [2], described in [6,16,22], applies these ideas
to provide a reversible debugger for the functional, concurrent and distributed
fragment of the Erlang programming language [5].

Here, we extend CauDEr and its underlying theory by adding the support
for some primitives that are not considered in the previous versions. These
primitives, namely register, unregister, whereis and registered, provide impera-
tive behaviors inside the Erlang language whose core is functional. More pre-
cisely, they define a map linking process identifiers (pids) to names. They make
it possible to add, delete and read elements from the map. From the techni-
cal point of view, supporting these primitives is not trivial since they introduce
causal dependencies that are different from those originating from the functional
and concurrent fragment of Erlang considered in [16,17,22]. In particular, read
actions commute, but do not commute with add and delete actions. Such causal
dependencies cannot be reliably represented in the general approach to derive
reversible semantics for a given language presented in [14], because the approach
in [14] considers a causal relation based on resources consumed and produced
only, and does not support read operations. Similar dependencies are considered
in [6], to model the set of nodes in an Erlang network, but this model does not
include a delete operation, while we consider one. Similar dependencies are also
used in [8] to study operations on shared tuple spaces in the framework of the
coordination language Klaim, however they only access single tuples, while we
also access multiple tuples or check for the absence of a given tuple. Also, their
work is in the context of an abstract calculus and has never been implemented.

The paper is structured as follows. Section 2 briefly recalls the reversible
semantics on which CauDEr is based [22]. Then, in Sect. 3, we extend the
reversible semantics of Erlang to support imperative features. In Sect. 4 we
describe our extension to CauDEr. Finally, in Sect. 5 we discuss related work
and conclude the paper with hints for future work. Due to space constraints we
omit some technicalities, for proofs and further details we refer the interested
reader to the companion technical report [12].
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2 Background

We build our technical development on the reversible semantics for Erlang in [22].
We give below a quick overview of it, while referring to [22] for further details.

program ::= mod1 . . .modn
mod ::= fun def1 . . . fun defn

fun def ::= fun rule{′;′ fun rule}′.′

fun rule ::= Atom fun
fun ::= ([exprs]) [when expr ] → exprs

exprs ::= expr {′,′ expr}
expr ::= atomic | Var | ′{′[exprs]′}′ | ′[′[exprs|exprs]′]′ | if if clauses end

| case expr of cr clauses end | receive cr clauses end | expr ! expr
| pattern = expr | [Mod :]expr([exprs]) | fun expr | Opexprs

atomic ::= Atom | Char | Float | Integer | String
if clauses ::= expr → exprs {′;′ expr → exprs}
cr clause ::= pattern [when expr ] → exprs {′;′ pattern [when expr ] → exprs}
fun expr ::= fun fun {′;′ fun} end
patterns ::= pattern {′,′ pattern}
pattern ::= atomic | Var | ′{′[patterns]′}′ | ′[′[patterns|pattern]′]′

Fig. 1. Language syntax

The Language Syntax. Erlang is a functional, concurrent and distributed
programming language based on the actor paradigm [10] (concurrency based on
asynchronous message-passing).

The syntax of the language is shown in Fig. 1. A program is a collection of
module definitions, a module is a collection of function definitions, a function is a
mapping between the function name and the function expression. An expression
can be a variable, an atom, a list, a tuple, a call to a function, a case expression,
an if expression, or a pattern matching equation. We distinguish expressions and
patterns. Here, patterns are built from atomic values, variables, tuples and lists.
When we have a case expr of cr clauses end expression we first evaluate expr to
a value, say v, then we search for a clause that matches v and such that the guard
when expr is satisfied. If one is found then the case construct evaluates to the
clause expression. The if expression is very similar to the evaluation of the case
expression just described. Pattern matching is written as pattern = expr. Then,
expr1 ! expr2 allows a process to send a message to another one. Expression expr1
must evaluate either to a pid or to an atom (identifying the receiver process) and
expr2 evaluates to the message payload, indicated with v. The whole function
evaluates to v and, as a side-effect, the message will be sent to the target process.
The complementary operation of message sending is receive cr clauses end. This
construct takes a message targeting the process that matches one of the clauses.
If no message is found then the process suspends.
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(Op)
eval(op, v1, . . . , vn) = v

θ, C[op (v1, . . . , vn)], S
τ−→ θ, C[v], S

Fig. 2. A sample rule belonging to the expression level.

Erlang includes a number of built-in functions (BIFs). In [22], they only
consider self, which returns the process identifier of the current process, and
spawn, that creates a new process. BIFs supporting distribution are considered
in [6]. For a deeper discussion we refer to [6,22].

The Language Semantics. Here we describe the semantics of the language.
We begin by providing the definitions of process and system.

Definition 1 (Process). A process is a tuple 〈p, θ, e, S〉, where p is the process
pid, θ is the process environment, e is the expression under evaluation and S is
a stack of process environments.

Stack S is used to store away the process state to start a sub-computation of the
expression under evaluation and then to restore it, once the sub-computation
ends. We refer to [22] for a discussion on why it is needed.

Definition 2 (System). A system is a tuple Γ ;Π. Γ is the global mailbox,
that is a set of messages of the form (sender pid, receiver pid, payload). Π is
the pool of running processes, denoted by an expression of the form

〈p1, θ1, e1, S1〉 | . . . | 〈pn, θn, en, Sn〉

where “|” is an associative and commutative parallel operator.

The semantics in [22] is defined in a modular way, similarly to the one pre-
sented in [6,16]: there is a semantics for the expression level and one for the sys-
tem level. This approach simplifies the design of the reversible semantics since
only the system one needs to be updated. The expression semantics is defined as
a labeled transition relation, where the label describes side-effects (e.g., creation
of a message) or requests of information to the system level. The semantics is
a classical call-by-value semantics for a higher-order language. Figure 2 shows a
sample rule of the expression level: the Op rule, used to evaluate arithmetic and
relational operators. This rule uses the auxiliary function eval to evaluate the
expression and an evaluation context C to find the redex in a larger term.

The system semantics uses the label from the expression level to execute the
associated side-effect or to provide the necessary information. Below we list the
labels used in the expression semantics:

– τ , denoting the evaluation of a (sequential) expression without side-effects;
– send(v1, v2), where v1 and v2 represent, respectively, the pid of the sender and

the value of the message;
– rec(κ, cln), where cln denotes the n clauses of a receive expression;
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(Send)
θ, e, S

send(p′,v)−−−−−−→ θ′, e′, S′ λ is a fresh identifier

Γ ; 〈p, h, θ, e, S〉 | Π ⇀ Γ ∪ {(p, p′, {v, λ})}; 〈p, send(θ, e, S, {v, λ}):h, θ′, e′, S′〉 | Π

(Send) Γ ∪ {(p, p′, {v, λ})}; 〈p, send(θ, e, S, {v, λ}):h, θ′, e′, S′〉 | Π ↽ Γ ; 〈p, h, θ, e, S〉 | Π

Fig. 3. A sample rule belonging to the forward semantics and its counterpart.

– spawn(κ, a/n, [vn]), where a/n represents the name and arity of the function
executed by the spawned process, while [vn] is the list of its parameters.

Symbol κ is a placeholder for the result of the evaluation, not known at the
expression level, that the system rules will replace with the correct value.

For space reasons, we do not show here the system rules, which are avail-
able in [22]. We show instead below how sample rules are extended to support
reversibility.

A Reversible Semantics. Two relations describe the reversible semantics: one
forward (⇀) and one backward (↽). The former extends the system semantics
using a Landauer embedding [13]. The latter proceeds in the opposite direction
and allows us to undo an action by ensuring causal consistency, thus before
undoing an action we ensure that all its consequences have been undone.

Syntactically, every process is extended with a history, denoted with h, which
stores the information needed in the backward semantics to undo an action. In
the semantic rules we highlight the history in red. The history is composed of
history items, to distinguish the last rule executed by a process and track the
related information. The history items introduced in [22] are:

{τ(θ, e, S), send(θ, e, S, {v, λ}), rec(θ, e, S, p, {v, λ}), spawn(θ, e, S, p), self(θ, e, S)}
Figure 3 shows a sample rule from the forward semantics and its counterpart

from the backward semantics. W.r.t. the standard semantics, here messages also
carry a unique identifier λ, without which messages with the same value could
not be distinguished. This choice is discussed in [16].

In the premises of rule Send, we can see the expression-level semantics
in action, transitioning from configuration (θ, e, S) to (θ′, e′, S′). The forward
semantics uses the corresponding label to determine the associated side-effect:
the message (p, p′, {v, λ}) is added to the set of messages Γ . Also, the history of
process p is enriched with the corresponding history item.

The reverse rule, Send, can be applied only when all the consequences of the
Send, in particular the reception of the sent message, have been undone. Such
constraint is enforced by requiring the message to be in Γ . Then we can remove
the message (p, p′, {v, λ}) from Γ and restore p to the previous state.

3 Reversible Erlang with Imperative Primitives

Syntax of Imperative Primitives. In our extension, atoms and pids are cen-
tral. An atom is a literal constant. Pid is an abbreviation for process identifier:
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each process is identified by a pid. In Erlang, a pid can be associated to an atom.
Thus, one can refer the process, e.g., when specifying the target of a message,
using the associated atom instead of the pid. On the one hand, an atom is more
meaningful than a pid for a human. On the other hand, this allows one to decide
which process plays a given role. E.g., if a process crashes another one can be
registered under the same atom so that the replacement is transparent to other
processes (provided that they use the atom to interact). All pairs 〈atom, pid〉
form a map, shared among the processes of the same node (we consider here a
single node, we discuss in Sect. 4 how to deal with multiple nodes).

Our extension is based on the syntax in Fig. 1, but we add the following
built-in functions (BIFs):

– register/2 (where /2 denotes the arity): given an atom a and a pid p, it inserts
the pair 〈a, p〉 in the map and returns the atom true. If either the atom a or
the pid p is already registered, an exception is raised;

– unregister/1: given an atom a, it removes the (unique) pair 〈a, p〉 from the
map and returns true if the atom a is found, raises an exception otherwise;

– whereis/1: given an atom, it returns the associated pid if it exists, the atom
undefined otherwise;

– registered/0: returns a list (possibly empty) of all the atoms in the map.

3.1 Semantics of Imperative Features

Standard Semantics of Imperative Features. According to the official doc-
umentation [5], the BIFs above are implemented in Erlang using request and
reply signals between the process and the manager of the map. To simplify the
modelization, we opted to implement these BIFs as synchronous actions. This
choice does not alter the possible behaviors since the behavior visible to Erlang
users is determined by the order in which the request messages are processed
at the manager. We begin by providing the updated definition of system (the
definition of process is unchanged).

Definition 3 (System). A system is a tuple Γ ;Π;M. Γ and Π are as
in Definition 2. M is a set of registered pairs atom-pid of the form
{〈a1, p1〉; . . . ; 〈an, pn〉}, where ai are atoms and pi pids. Given an atom a, Ma is
the set {〈a, p〉|〈a, p〉 ∈ M}; given a pid p, Mp is the set {〈a, p〉|〈a, p〉 ∈ M}.
Sets Ma and Mp contain at most one element.

As in the previous section, we have a double-layered semantics: one level for
expressions (→) and one for systems (↪→).

To simplify the presentation w.r.t. [22], we extend rule Op (Fig. 4) to deal
also with built-in functions. To this end, we extend the operator eval to produce
also the label for functions with side-effects. We define eval on them as:

– eval(self) = (κ, self(κ));
– eval(spawn, fun() −→ exprs end) = (κ, spawn(κ, exprs));
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(Op)
eval(op, v1, . . . , vn) = (v, label)

θ, C[op (v1, . . . , vn)], S
label−−−→ θ, C[v], S

Fig. 4. Standard semantics: evaluation of function applications, revised.

– eval(register, atom, pid) = (κ, register(κ, atom, pid));
– eval(unregister, atom) = (κ, unregister(κ, atom));
– eval(whereis, atom) = (κ,whereis(κ, atom));
– eval(registered) = (κ, registered(κ)).

On sequential expressions eval returns (v, τ), with v the result of the evaluation.
Thanks to our extension, rule Op in Fig. 4 covers all function invocations,

including BIFs with side effects, while in [16,22] each such BIF requires a dedi-
cated rule. Furthermore, new BIFs with side effects can be added without chang-
ing the expression level (function eval needs to be updated though).

For space reasons, the other rules for evaluating expressions are collected in
the companion technical report [12].

The semantics of the system level can be found in [22], the only difference is
that the system now includes the shared map M. Equivalently, the rules describ-
ing the imperative primitives can be obtained from the ones in Fig. 5, which
describes the forward semantics, by dropping the red part. Rules are divided
into write rules (above the line), which modify the map, and read rules (below
the line), that only read it. This has an impact on their concurrent behavior, as
described later on. We highlight in blue the parts related to the map.

In all the rules, the tuple representing the system includes the map M, where
we store all the registered pairs atom-pid.

Rule RegisterS defines the success case of the register BIF, which adds the
tuple 〈a, p′〉 to the map. The register fails either when the atom a or the pid p′

are already used, or when the pid p′ refers to a dead process (this is checked by
predicate isAlive), as described by rule RegisterF . Similarly, for the unregister,
the success case corresponds to rule UnregisterS, which removes from the map
the (unique) pair atom-pid for a given atom a. The failure case, when there is no
pid registered under atom a, corresponds to rule UnregisterF . Both failure cases
replace the current expression with ε and the current stack with [ ]. This denotes
an uncaught exception (in this paper we do not consider exception handling).
The predicate isAlive takes a pid p and the pool of running processes and controls
that the process with pid p is alive (〈p, θ, e, S〉 with e �= ⊥).

Rules SendS and SendF define the behavior of send actions when the receiver
is identified with an atom. The former is fired when the receiver is registered in
the map, resulting in the addition of the message to Γ , the latter when it is not,
resulting in an uncaught exception.

Rules Whereis1 , Whereis2 and Registered define the behavior of the respec-
tive primitives; these rules read M without modifying it. Rule Registered uses the
auxiliary function registered. We define it as: registered(M) = [a1, . . . , an] where
M = {〈a1, p1〉, . . . , 〈an, pn〉}.
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(RegisterS)
θ, e, S

register(κ,a,p′)−−−−−−−−−→ θ′, e′, S′ t fresh Ma = ∅ Mp′ = ∅ isAlive(p′, Π)

Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ; 〈p, regS(θ, e, S, {〈a, p′, t, �〉}):h, θ′, e′{κ → true}, S′〉 | Π;M ∪ {〈a, p′, t, �〉}

(UnregisterS)
θ, e, S

unregister(κ,a)−−−−−−−−→ θ′, e′, S′ Ma = {〈a, p′, t, �〉}
Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ; 〈p, del(θ, e, S,Ma,Ma ∪ Mp′):h, θ′, e′{κ → true}, S′〉 | Π;M \ Ma∪ kill(Ma)

(EndUn)
e is a value ∨ e = ε Mp = {〈a, p, t, �〉}

Γ ; 〈p, h, θ, e, [ ]〉 | Π;M ⇀ Γ ; 〈p, del(θ, e, [ ],Mp,Ma ∪ Mp):h, θ, ⊥, [ ]〉 | Π;M \ Mp∪ kill(Mp)

(RegisterF )
θ, e, S

register(κ,a,p′)−−−−−−−−−→ θ′, e′, S′ Ma 
= ∅ ∨ Mp′ 
= ∅ ∨ ¬ isAlive(p′, Π)

Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ; 〈p, readS(θ, e, S,Ma ∪ Mp′):h, θ, ε, [ ]〉 | Π;M

(UnregisterF )
θ, e, S

unregister(κ,a)−−−−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ; 〈p, readF(θ, e, S, a,Ma):h, θ, ε, [ ]〉 | Π;M

(SendS)
θ, e, S

send(a,v)−−−−−→ θ′, e′, S′ λ fresh Ma = {〈a, p′, t, �〉}
Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ∪ {(p, p′, {v, λ})}; 〈p, sendS(θ, e, S, {v, λ},Ma):h, θ′, e′, S′〉 | Π;M

(SendF )
θ, e, S

send(a,v)−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ; 〈p, readF(θ, e, S, a,Ma):h, θ, ε, [ ]〉 | Π;M

(Whereis1 )
θ, e, S

whereis(κ,a)−−−−−−−→ θ′, e′, S′ Ma = {〈a, p′, t, �〉}
Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ; 〈p, readS(θ, e, S,Ma):h, θ′, e′{κ → p′}, S′〉 | Π;M

(Whereis2 )
θ, e, S

whereis(κ,a)−−−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ; 〈p, readF(θ, e, S, a,Ma):h, θ′, e′{κ → undefined}, S′〉 | Π;M

(Registered)
θ, e, S

registered(κ)−−−−−−−→ θ′, e′, S′ registered(M) = atoms

Γ ; 〈p, h, θ, e, S〉 | Π;M ⇀ Γ ; 〈p, readM(θ, e, S,M):h, θ′, e′{κ → atoms}, S′〉 | Π;M

(End)
e is a value ∨ e = ε Mp = ∅

Γ ; 〈p, h, θ, e, [ ]〉 | Π;M ⇀ Γ ; 〈p, readF(θ, e, [ ], p,Mp):h, θ, ⊥, [ ]〉 | Π;M

Fig. 5. Forward reversible semantics (standard semantics by dropping the red part).
(Color figure online)

Finally, we have two rules dealing with process termination. If the pid of the
process is not registered on the map, rule End simply changes the expression to
⊥, denoting a terminated process. Otherwise, rule EndUn applies, additionally
removing the pid from the map.

Reversible Semantics. The definition of the forward semantics poses a number
of challenges, due to the need of balancing two conflicting requirements when
defining the history information to be stored. On the one hand, we need to keep
enough information to be able to define a corresponding backward semantics.
This requires to understand when all the consequences of an action have been
undone, and to restore the state prior to its execution. On the other hand,
we need to avoid storing information allowing one to distinguish computations
obtained by only swapping independent actions (this would invalidate Lemma 2,
as discussed in Example 3).

We first extend the definition of system.
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Definition 4 (System). A system is a tuple Γ ;Π;M. Γ and Π are as in Def-
inition 3. Now each element of M is a quadruple 〈a, p, t, s〉 where a and p are as
in Definition 3, t is a unique identifier for the tuple and s can be either � or ⊥.

Unique identifiers t are used to distinguish identical tuples existing at different
times. For example, if we have two successful pairs of register and unregister oper-
ations of the same tuple, without a unique identifier we would not know which
unregister operation is connected to which register. This information is relevant
since the tuple generates a causal link between a register and the correspond-
ing unregister. This justification is similar to the one for unique identifiers λ for
messages, discussed in [17].

Tuples whose last field is � match the ones in the standard semantics, we
call them alive tuples. Those with ⊥ are ghost tuples, namely alive tuples that
have been removed from the map in a past forward action. We will discuss their
need in Example 2.

Given an atom a, Ma is the set {〈a, p, t,⊥〉|〈a, p, t,⊥〉 ∈ M}; similarly, given
a pid p, Mp = {〈a, p, t,⊥〉|〈a, p, t,⊥〉 ∈ M}. Dually, from now on, sets Ma and
Mp include only alive tuples. We define function kill, which takes a map and sets
to ⊥ the last field of all its tuples.

We describe below the forward and backward semantics of the imperative
primitives. The semantics of other constructs is as in the original work [22], but
for the introduction of the global map M.

The forward semantics is defined in Fig. 5. The following history items have
been added to describe the imperative features: regS, readS, readF, sendS, readM,
and del. Notably, readS is created by both rules RegisterF and Whereis1 (which
both read some alive tuples), readF is created by rules UnregisterF , SendF ,
Whereis2 and End (which all require the absence of some alive tuple), del is
created by both rules UnregisterS and EndUn (which both turn an alive a
tuple 〈 , , ,�〉 into a ghost 〈 , , ,⊥〉).

All the new history items, like the old ones, carry the old state θ, e, S, thus
allowing the backward computation to restore it. Furthermore, they carry some
additional information to enable us to understand their causal dependencies:

– regS carries the tuple inserted in the map;
– readS carries the read tuple(s);
– sendS carries the read tuple as well, but also the sent message;
– readF carries the atom or the pid which the rule tried to read and the ghost

tuples for such atom or pid, if any;
– readM carries the whole map read by the rule;
– del carries the removed tuple and the ghost tuples on the same atom or pid.

Figure 6 presents the backward semantics. In previous works [6,17,22] there
is one backward rule for each forward rule. Here, we were able to define one
backward rule for each kind of history item, thus some backward rule covers
more than one forward rule. This is possible because the history item contains
enough information to correctly reverse forward rules with similar effects. E.g.,
both rules RegisterF and Whereis1 read information from the map, and the
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(RegisterS)
Γ ; 〈p, regS(θ, e, S, {〈a, p′, t, �〉}):h, θ′, e′, S′〉 | Π;M ∪ {〈a, p′, t, �〉} ↽ Γ ; 〈p, h, θ, e, S〉 | Π;M

if readop(t, Π) = ∅

(Del)

Γ ; 〈p, del(θ, e, S, {〈a, p′, t, �〉},M1):h, θ′, e′, S′〉 | Π;M ∪ {〈a, p′, t, ⊥〉}
↽ Γ ; 〈p, h, θ, e, S〉 | Π;M ∪ {〈a, p′, t, �〉}

if Ma = ∅ ∧ Mp′ = ∅ ∧ readmap(M ∪ {〈a, p′, t, ⊥〉}, Π) = ∅ ∧ readfail(t, Π) = ∅ ∧ M1 = Ma ∪ Mp′

(ReadS) Γ ; 〈p, readS(θ, e, S,M1):h, θ′, e′, S′〉 | Π;M ↽ Γ ; 〈p, h, θ, e, S〉 | Π;M if M1 ⊆ M

(SendS)
Γ ∪ {(p, p′, {v, λ})}; 〈p, sendS(θ, e, S, {v, λ},M1):h, θ′, e′, S′〉 | Π;M ↽ Γ ; 〈p, h, θ, e, S〉 | Π;M

if M1 ⊆ M

(ReadF ) Γ ; 〈p, readF(θ, e, S, ι,M1):h, θ′, e′, S′〉 | Π;M ↽ Γ ; 〈p, h, θ, e, S〉 | Π;M if Mι = ∅ ∧ M1 = Mι

(ReadM ) Γ ; 〈p, readM(θ, e, S,M1):h, θ′, e′, S′〉 | Π;M ↽ Γ ; 〈p, h, θ, e, S〉 | Π;M if M1 = M

Fig. 6. Backward reversible semantics.

history item tracks the read information. Hence, a single rule can exploit this
information to check that the same read information is still available in the map.

Rule RegisterS undoes the corresponding forward action, removing the ele-
ment that was added by it. To this end, rule RegisterS requires that the element
added from the corresponding forward rule is still in the map (ensuring that pos-
sible deletions of the same tuple have been undone) and, as a side condition, that
no process performed a read operation on a tuple with unique identifier t. This
last condition is checked by the predicate readop(t,Π), which scans the histories
of processes in Π looking for such reads.

Rule Del undoes either rule UnregisterS or rule EndUn, turning a ghost
tuple back into an alive one. Let us discuss its side conditions. The first two
conditions require that in M there is no alive tuple on the same atom a or
process p′. The third one ensures that no process performed a registered getting
M, while the fourth that no process read a ghost tuple with identifier t. Finally, we
require ghost tuples on both a and p′ to be the same as when the corresponding
forward action has been performed. The last condition ensures that rule Del will
not commute with pairs of operations that add and then delete tuples on the
same atom or pid, e.g., a pair register-unregister. This is needed to satisfy the
properties described in Sect. 3.2, such as causal consistency.

Rule ReadS reverses rules Whereis1 and RegisterF . The only side condi-
tions requires that the element(s) read by the forward rule must be alive. Rule
SendS is analogous, but it also requires that the sent message is in Γ .

Rule ReadF undoes actions from rules UnregisterF , SendF , Whereis2, and
End. As a side condition, we require that no alive tuple matching ι - which is
either a pid or an atom - exists and that the ghost tuples related to ι are the
same as when the corresponding forward action triggered.

Rule ReadM is used to undo rule Registered. It requires that the map M1

stored in the history is exactly the current map M.
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3.2 Properties

Here we discuss some properties of the reversible semantics introduced in the
previous section. Since most of the properties are related to causality, we need
to study the concurrency model of the imperative primitives. Notably, this is
not specific to reversibility and the same notion can be useful in other contexts,
e.g., to find races [9].

To study concurrency for the imperative primitives we define for each history
item k the set of resources (atoms and pids) read or written by the corresponding
transition. The idea is that two transitions (including at least a forward one) are
in conflict on the map if they both access the same resource and at least one
of the accesses is a write (RegisterS, UnregisterS, EndUn). To obtain k, we
indicate with t = (s �p,r,k s′) a (forward or backward) transition from system
s to system s′, where p is the pid of the process performing the action, r is
the applied rule and k the item added or removed to/from the history. We call
computation a sequence of consecutive transitions, and denote with ε the empty
computation. Two transitions are co-initial if they start from the same state,
co-final if they end in the same state.

Definition 5 (Resources read or written). We define functions read(k) and
write(k) as follows:

k read(k) write(k)
regS(θ, e,S, {〈a, p, t,�〉}) ∅ {a, p}
del(θ, e,S, {〈a, p, t,�〉},M) ∅ {a, p}
readS(θ, e,S,M) {a|Ma �= ∅} ∪ {p|Mp �= ∅} ∅
sendS(θ, e,S, {v, λ}, {〈a, p, t,�〉}) {a, p} ∅
readF(θ, e,S, ι,M) {ι} ∅
readM(θ, e,S,M) {a|a is an atom} ∅

Intuitively, items regS and del write on the resources a and p of the tuple
added or removed. Item readS reads one or two tuples, and accesses in read
modality all the involved pids and atoms. Item sendS just reads the atom and
pid of the accessed tuple. Item readF accesses in read modality either an atom
or a pid, as tracked in the history item. Finally, item readM exactly stores the
current map, and needs to be in conflict with any transition writing on the map,
even if it writes a tuple with atom and pid not previously used. Hence, we have
chosen as read resources the set of all possible atoms, independently on whether
they are currently used or not. We could also store all possible pids, but this will
not impact the semantics, since each write access touches on an atom.

Definition 6 (Concurrent transitions). Two co-initial transitions, t1 =
(s �p1,r1,k1 s1) and t2 = (s �p2,r2,k2 s2), are in conflict if one of these condi-
tions hold:

– if no transition is on the map, we refer to [17, Definition 12];
– if exactly one transition is on the map, they are in conflict if they are taken by

the same process, namely p1 = p2, and a SendS is in conflict with a receive
of the same message;
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– if both transitions are on the map, and at least one is forward, then they are
in conflict iff read(k1)∩write(k2) �= ∅, read(k2)∩write(k1) �= ∅ or write(k1)∩
write(k2) �= ∅;

Two co-initial transitions are concurrent if they are not in conflict.

Intuitively, concurrent transitions can be executed in any order (we will formalize
this in Lemma 2). Notably, co-initial backward transitions are never in conflict.
Example 1 (Conflicting register). Consider a system S where two processes, say
p1 and p2, try to register two different pids under the same atom a, and a is not
already present in M (recall that an atom can be associated to one pid only). In
this scenario the order in which the two actions are performed matters, because
the first process to perform the action succeeds, while the second is doomed
to fail. The two possibilities lead us to two states of the system, one where p1
has succeeded and p2 failed, say S′, and the other where p2 succeeded and p1
failed, say S′′. Clearly S′ �= S′′, hence the two operations are in conflict. Indeed,
write(k1) ∩ write(k2) = {a} �= ∅. ♦
Example 2 (Register followed by delete). Consider a system S where a process,
say p1, can do a registered operation. Another process, say p2, performs a (suc-
cessful) register followed by a delete operation (e.g., unregister) of a same tuple.
In the standard semantics, executing first p1 and then p2 or vice versa would
lead to the same state. If we were not using ghost tuples, the histories of p1 and
p2 would be the same as well. However, we want to distinguish these two com-
putations, since undoing the unregister would change the result of the registered,
hence they cannot commute (cfr. Lemma 2). Ghost tuples are our solution to this
problem. We get a similar behavior also if we consider, instead of the registered
operation, any other read operation involving the added tuple. ♦

We can now discuss some relevant properties of the reversible semantics. As
standard (see, e.g., [17] and the notion of consistency in [15]) we restrict to
reachable systems, namely systems obtained from a single process with empty
history (and empty Γ and M) via some computation. First, each transition can
be undone.
Lemma 1 (Loop Lemma). For every pair of reachable systems, s1 and s2, we
have s1 ⇀ s2 iff s2 ↽ s1.

Let us denote with t the transitions undoing t, which exists thanks to the
Loop Lemma. Next lemma shows that concurrent transitions can be executed in
any order. It can be seen as a safety check on the notion of concurrency.
Lemma 2 (Square lemma). Given two co-initial concurrent transitions
t1 = (s �p1,r1,k1 s1) and t2 = (s �p2,r2,k2 s2), there exist two transitions
t2/t1 = (s1 �p2,r2,k2 s3), t1/t2 = (s2 �p1,r1,k1 s3). Graphically:
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Next example shows that in order to ensure that the Square Lemma holds the
semantics needs to be carefully crafted, in particular one should avoid to store
information allowing to distinguish the order of execution of concurrent transi-
tions.

Example 3 (Information carried by the register history item). If the history item
of the register would contain the whole map, it would be impossible to swap the
register action with an unregister action even if on a tuple with different pid and
atom, because of the Square Lemma (Lemma 2). Indeed, the Square Lemma
requires to reach the same state after two concurrent transitions are executed,
regardless of their order. If we save the whole map in the history item of the
register, we would reach two different states:

– if we execute the register operation first, the saved map would include the
tuple that the unregister operation will delete;

– if we execute the unregister operation first, the map saved by the register will
not contain the deleted tuple. ♦

We now want to prove causal-consistency [4,18], which essentially states that
we store the correct amount of causal and history information.

Definition 7 (Causal Equivalence). Let  be the smallest equivalence on
computations closed under composition and satisfying:

1. if t1 = (s �p1,r1,k1 s1) and t2 = (s �p2,r2,k2 s2) are concurrent and t3 =
(s1 �p2,r2,k2 s3), t4 = (s2 �p1,r1,k1 s3) then t1t3  t2t4;

2. tt  ε and tt  ε

Intuitively, computations are causal equivalent if they differ only for swapping
concurrent transitions and for adding do-undo or undo-redo pairs of transitions.

Definition 8 (Causal Consistency). Two co-initial computations are co-final
iff they are causal equivalent.

Intuitively, if co-initial computations are co-final then they have the same causal
information and can reverse in the same ways: we want computations to reverse
in the same ways iff they are causal equivalent.

In order to prove causal consistency, we rely on the theory developed in [18].
It considers a transition system with forward and backward transitions which
satisfies the Loop Lemma and has a notion of independence. The latter is con-
currency in our case. The theory allows one to reduce the proof of causal con-
sistency and of other relevant properties to the validity of five axioms: Square
Property (SP), Backward Transitions are Independent (BTI), Well-Foundedness
(WF), Co-initial Propagation of Independence (CPI) and Co-initial Indepen-
dence Respects Event (CIRE). SP is proved in Lemma 2, BTI corresponds to
the observation that two backward transitions are always concurrent (see Defi-
nition 6), and WF requires backward computations to be finite. WF holds since
each backward transition consumes an history item, which are in a finite number.
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Fig. 7. A screenshot of CauDEr.

CPI and CIRE hold thanks to [18, Prop. 5.4] because the notion of concurrency
is defined in terms of transition labels only. Hence, causal consistency follows
from [18, Prop. 3.6]. We obtain as well a number of other properties (a list can
be found in [18, Table 1]), including various forms of causal safety and causal
liveness, that intuitively say that a transition can be undone iff its consequences
have been undone. We refer to [18] for precise definitions and further discussion.

4 CauDEr with Imperative Primitives

We exploited the theory presented above to extend CauDEr [2,6,16,22], a
Causal-consistent reversible Debugger for Erlang. CauDEr is written in Erlang
and provides a graphical interface for user interaction. Previously CauDEr sup-
ported only the sequential, concurrent and distributed fragment of Erlang, and
we added support for the imperative primitives. The updated code can be found
at [3].

While the theory discussed so far does not consider distribution, we extended
the version of CauDEr supporting distribution [6], where systems can be com-
posed of multiple nodes. As far as the imperative primitives are concerned, the
only difference is that each node has its own map, shared only among its pro-
cesses.

Figure 7 shows a snapshot of the new version of CauDEr. The interface is
organized as follows. On the left, from top to bottom, we can see (i) the program
under debugging, (ii) the state, history and log (log is not discussed in this paper)
of the selected process, (iii) the map of the node of the current process (the main
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novelty in the interface due to our extension, highlighted with a red square). On
the top-right we can find execution controls (they are divided in multiple tabs,
here we see the tab about rollback, described below), and on the bottom-right
information on the system structure and on the execution.

CauDEr works as follows: the user selects the Erlang source file, then CauDEr
loads the program and shows the source code to the user. Then, the user can
choose the function that will act as an entry point, specify its arguments, and
select the identifier of the node where the first process should run. The user can
perform single steps on some process (both forward and backward), n steps in
the chosen direction in automatic (a scheduler decides which process will execute
each step), or use the rollback operator.

The rollback operator allows one to undo a selected action (e.g., the send
of a given message) far in the past, including all and only its consequences.
This is convenient to look for a bug causing a visible misbehavior, as described
below. The semantics of the rollback operator roughly explores the graph of
consequences of the target action, and undoes them in a causal-consistent order
using the backward semantics. A formalization of the rollback operator can be
found in the companion technical report [12].

Case Study. We consider as a case study a simple server dispatching requests
to various mathematical services, and logging the results of the evaluation on
a logger. Services can be stateful, and are spawned only when there is a first
request for them. Our example includes two stateless services, computing the
square and the logarithm, respectively, and a stateful service adding all the
numbers it receives. The logger keeps track of the values it receives, and answers
each request with the sequential number of the element in the log. For space
reasons we omit the full code of our case study, which anyway can be found
either in the companion technical report [12] or in the repository [3].

In our sample scenario, we invoke the program with the list of requests
[{square, 10}, {adder, 20}, {log, 100}, {adder, 30}, {adder, 100}].

The two first requests are successfully answered, while the request to compute
the logarithm of 100 is not. By checking the history of the server (this is exactly
the one shown in Fig. 7, relevant items are grayed, most recent items are on top)
we notice that the request has been sent by the server as message 11. By using
CauDEr rollback facilities to undo the send of message 11 (including all and only
its consequences), one notice that the send has been performed at line 24 (also
visible in the screenshot, upon rollback the line becomes highlighted), which is
used for already spawned services. This is wrong since this is the first request for
a logarithm. One can now require to rollback the register of atom log (used as
target of the send). We can now see that the system logger has been registered
under this atom in the main function:
register (log ,spawn(?MODULE, logger,[0,[]])),

This is wrong. The bug is that the same atom has been used both for the system
logger and for logarithm service.

Finding such a bug without the support of reversibility, and rollback in par-
ticular, would not be easy. Also, rollback allows us to go directly to points of
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interest (e.g., where atom log has been registered), even if we do not know
which process performed the action. Hence, debugging via rollback scales bet-
ter than standard techniques to larger programs, where finding the bug without
reversibility would be even more difficult.

5 Conclusion, Related and Future Work

We have extended CauDEr and the underlying reversible semantics of Erlang
to support imperative primitives used to associate names to pids. This required
to distinguish write accesses from read accesses to the map, since the latter
commute while the former do not. Also, the interplay between delete and read
operations required us to keep track of removed tuples. Notably, a similar app-
roach needs to be used to define the reversible semantics of imperative languages,
such as C or Java.

While we discussed most related work, in particular work on reversibility in
Erlang, in the Introduction, we mention here some related approaches. Indeed,
reversibility of imperative languages with concurrency has been considered, e.g.,
in [11]. There however actions are undone (mostly) in reverse order of completion,
hence their approach does not fit causal-consistent reversibility. Generation of
reversible code is also studied in the area of parallel simulation, see, e.g., [21],
but there reversed code is sequential, and concurrency is added on top of it by
the simulation algorithm. Also, this thread of research lacks theoretical results.

The current approach, as well as the theory in [18] on which we rely to prove
properties, defines independence as a binary relation on transitions. We plan to
extend this approach in future work by defining independence as a binary relation
on sequences of transitions, since we found cases where single transitions do not
commute, while sequences can.

For instance, a registered() does not commute with either register(a, ) or
unregister(a), but it can commute with their composition since the set of reg-
istered tuples is the same before and after. Notably, covering this case would
require to extend the theory in [18] as well.
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Abstract. We present a reversible debugger for imperative parallel pro-
grams with block structures. A program runs in the runtime of abstract
machines executed concurrently, where each abstract machine has the
instruction set both for forward executions and backward executions.
In order to efficiently localize a defect, we annotate a program by con-
tracts with expects and ensures as C++ contracts. When a condition
at ensures is violated, there exists some defect. Then, the reversible
runtime traces back to the last ensure annotation and check the config-
uration to find out the source of the problem. By repeating this process,
it is possible to localize the defect efficiently, preserving the environ-
ment of that particular execution. For controlling executions of parallel
blocks, annotations are with the condition expressions of blocks running
in parallel and those for variables. We illustrate the debugging process
by presenting a prototype implementation by Python.

Keywords: Concurrency · Reversible debugging · Contract
annotations

1 Introduction

Reversing concurrent programs is a novel way to analyze the behaviour. We
focus on debugging imperative parallel programs with the nested block structure.
Debugging concurrent programs is not straightforward since blocks executed in
parallel vary for every execution. Uncertain synchronization mismatches between
concurrent processes may cause an unexpected action. The problem may not
always appear as in sequential programs. Making a runtime reversible [4–6] eases
debugging concurrent programs [3] in that the runtime suspends the program
at a breakpoint and traces backwards until the cause of the fault is found. For
this purpose, debugging requires a backward breakpoint. For specifying these
dual breakpoints, we incorporate contract annotations for reversible debugging,
intending contract annotations identify the fragment to be executed forwards and
backwards for debugging. We extend contract annotations to assert conditions
for the running status of parallel blocks in the environment1.
1 An implementation of the reversible debugger in this paper is at: https://github.

com/syuen1/RevDebugger/.
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2 Reversible Runtime for Parallel Programs

Following [4], we define the programming language as below2.
The reversible runtime proposed by the authors [5,6] executes a program by

the abstract machines with byte-code instructions for forward and backward. In
the forward execution of a program, the history of variable updates and branch-
ing flows are kept in two system stacks, called V-stack and L-stack, respectively.
The runtime forks abstract machines for a par block, and the forked abstract
machines execute its sub-blocks concurrently. The sub-blocks are merged at the
end of the parallel block. The blocks are forked at the merge point and merged at
the fork point at the backward execution. Variable updates and branching flows
are extracted by popping up from the V-stack and the L-stack, respectively,
enabling to trace back the forward execution.

a store x

Block path π

x = m

x = m

(m, p, π)

V-stack

pus
h

a restore x

Block path π

x = m

x = m

(m, p, π)

V-stack

pop

invertFoward update Backward update

Fig. 1. Reversible update

Figure 1 shows the basic mechanism to reverse the variable value update. All
variables are treated as global variables with block path. The block path is the
sequence of block labels an, bn, cn, pn and fn specifying the context of the
block which the variable belong to. When the abstract machine process labelled
by p executes store for x, the previous value of x with the process id p and
the context path π is stored in the global stack called ‘V-stack’, and then x is

2 Here we use the extended BNF where A∗ and A+ is the repetition of A more than
0-times and once respectively, and A? is either A or ε.
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updated. At the backward execution, store is converted as restore. restore
pops up the value to x with the block path π from the V-stack matching the
process id p. The L-stack is used in reversing the joining control flows in an
abstract machine.

begin b1

par a1

par a2

par a3

begin b2 · · · end
begin b3 · · · end

rap

begin b4 · · · end
rap

begin b5 · · · end
rap

end

(a) Program structure

Pr 0

Pr 0.1

Pr 0.2

Pr 0.1.1
Pr 0.1.2

Pr 0.1.1.1 Pr 0.1.1.2

Pr 0.1.1

Pr 0.1

Pr 0

fork

fork

fork

merge

merge

merge

(b) Forward abstract machine invocation

(Pr 0)−1

(Pr 0.1)−1

(Pr 0.2)−1

(Pr 0.1.1)−1

(Pr 0.1.2)−1

(Pr 0.1.1.1)−1 (Pr 0.1.1.2)−1

(Pr 0.1.1(−1)

(Pr 0.1)−1

(Pr 0)−1

r fork

r fork

r fork

merge

merge

merge

(c) Backward abstract machine invocation

Fig. 2. Parallel blocks and abstract machine invocation

A par block is translated as shown in Fig. 3. fork n invokes new n abstract
machines, M1, . . . ,Mn, are invoked. Each abstract machine executes a block in
the par block. The par block terminates when all of its sub-blocks terminates.
merge terminates the abstract machines invoked by the corresponding fork. A
block invoked by fork is identified by the sequence of numbers. The initial block
has id 0. The i-th block in par invoked by the block of π is π.i. A par block
may have a nested structure. For example, the block invoked by the i-th block
in the j-th block is identified by 0.j.i. Figure 2(b) shows forks and merges in the
execution of the program shown in Fig. 2 (a).

par an
begin

Block1

end
...

...
begin

Blockn

end
rap an

fork n

par 0
Block1 Byte codes
par 1

par 0
Blockn Byte codes
par 1
merge n

M1

Mn

merge n

par 1
(Block1)
par 0

par 1
(Blockn)
par 0
r fork n

M1

Mn

Forward parallel execution Backward parallel execution

Fig. 3. Reversible parallel blocks

To execute a par block backwards, merge is replaced by r fork and fork is
replaced by merge. r fork differs from fork in that r fork pops local variable
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values from V-stack. The abstract machines are invoked in the way of replaced
by r fork and reverse the arrows as show in Fig. 2 (c) where (Pr π)−1 is the
reverse of Pr π. Each par block is reversed, and new abstract machines are
invoked to execute the sub-blocks concurrently. Since each entry of the V-stack
stores the process id, restore is executed to roll back the forward execution.
Details of instructions and the runtime are presented in [5,6].

3 Reversible Debugging with Contract Annotations

We incorporate contract annotations in the reversible debugging. Contract anno-
tations assert preconditions and postconditions of methods and functions.

1 begin b1
2 var seats; var agent1; var agent2;
3 proc p1 airline () is
4 par a1
5 begin b2
6 while (agent1 ==1) do
7 if (seats > 0) then
8 seats = seats - 1
9 else

10 agent1 = 0
11 fi
12 od
13 end
14 || begin b3
15 while (agent2 ==1) do
16 if (seats > 0) then
17 seats = seats - 1
18 else
19 agent2 = 0
20 fi
21 od
22 end
23 rap
24 end
25 seats = 3; agent1 = 1; agent2 = 1;
26 call c1 airline ();
27 remove agent2; remove agent1; remove seats;
28 end

Fig. 4. Airline example [3]

An ensures anno-
tation checks a prop-
erty as a forward
breakpoint and sus-
pends the execution
when the property
is violated. The cor-
responding expects
annotation checks the
condition to reach the
ensures annotation
as a backward break-
point. Checking the
property of expects
at the forward execu-
tion is useful to filter
the execution to iden-
tify the problem.

Contract annota-
tions are commonly
used in object-
oriented programming
languages such as Java

and C++ to specify the properties the methods should satisfy. In concurrent
object-oriented programming language SCOOP [10], expects annotations are
extended for synchronizing methods by waiting until the property holds. We
adopt this mechanism in reversible debugging. ensures works as a forward
breakpoint, and expects notation works as a backward breakpoint filtering the
forward execution that reaches the corresponding ensures.

A pair of contract annotations is inserted before and after blocks or state-
ments in the form following [11]:

[[expects dn LP C PR]] [[ensures dn LP C PR]]

where dn is a label paring corresponding expects and ensures, LP is a location
path referring to a parallel block specified relatively by the path. A condition of
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variables C and a built-in predicate PR are checked in the environment of the
specified parallel block. The built-in predicates TERMINATED hold if the parallel
block reaches the merging point. LIVING is holds otherwise. * holds always.

The location path specifies a parallel block by the relative position. When a
par block is executed, the runtime forks abstract machines (AMs) as shown in
Fig. 2. A contract annotation in a block of an abstract machine with id π can
refer to other blocks by tracing the invocation path.

SELF : a block in own AM PARENT : a block in the parent AM
CHILD : a block in the first child AM FOLLOW : a block in the next sibling AM
PRECEND : a block in the previous sibling AM

For example, the block in AM with id of 0.1.1.1 refers to the block in the
block of 0.1.2 by PARENT.FOLLOW. The annotation checks if the AM is terminated
or not with the state of variables.

Reversible Debugging Steps: The reversible debugging proceeds as follows:

Step 1. The initial pair of contracts are placed.
Step 2. When the ensures condition is violated, roll back to the corresponding

expects annotation.
Step 3. Update the contract annotations to narrow down the fragment.
Step 4. Run forward to trace the previous execution.
Step 5. Go back to step 2 until identifying the problem.

We apply our debugging to the airline example [3] shown in Fig. 4, assuming
seats ended with -1. Contract annotations are added as follows. Figure 5 shows
where the contracts are attached as break points in the execution flow of the
example, where an initial call starts with the call of procedure of airline and
two parallel blocks are invoked. In a backward execution, the flow goes backward
by inverting arrows in the flow along with the V-stack and L-stack to preserve
the order of the forward exection.

1© [[expects d1 SELF true *]] and [[ensures d1 SELF seats > -1 *]]
before and after line 26: call c1 airline();.

2© Stop when seats is -1 where seats>-1 is violated. roll back to before line 26
with seats=3, agent1=agent2=1.

3© Update annotations: [[expects d2 SELF true *]] before line 6 and
[[ensure d2 seats > -1]] after line 13, and [[expects d3 SELF true
*]] before line 15 and [[ensures d3 SELF seats>-1 *]] after line 24.
These contracts gnerate break points as shown 3© in Fig. 5.

4© Trace forward the previous execution and stop at one of ensures.
5© Let ensures d2 violated the condition with seats=-1. And roll back until

expects d2 for the first time. At this point, agent1=0 and seats=-1. Go
backward again.

6© Stopping at expects d2, agent1=1 and seats=1 since agent2 is rolled
back. (Otherwise, the problem does not happen.)
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7© Update annotations: [[expects d4 SELF true *]] before line 7 and
[[ensures d4 SELF seats>-1 *]] after 8.

8© Trace forward the previous execution and the program stop at ensures
labelled by either d4 or stop at ensure d3.

9© In the former case, roll back till expects d4 or expects d3. Then, it is found
that both blocks are trying to check seats > 0 simultaneously. Inserting
another pair of contract for b3 as d5 will find the similar problem.

By the debugging scenario above, checking seats>0 is not done properly by
the blocks in par a1. One way to correct the program is to incorporate a mutual
exclusion, such as Dekker’s algorithm.

Fig. 5. Contract annotations as breakpoints for debugging

Another way for correction is to run forward by changing the built-in pred-
icate condition. In the above debugging scenario, at 7©, [[expects d4 FOLLOW
true TERMINATED]] before line 7. Then, ensures is never violated. In this case,
if the process waits for the other agent to terminate when seats = 1, seats
does not become negative. This correction suggests introducing a priority at the
last ticket so that one agent waits for the other agent to complete selling it.
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Fig. 6. Reversible debugger

4 Reversible Debugger with Contracts

Figure 6 shows the overall figure of an experimental implementation of the
contract-based reversible debugger. The debugger controls the execution of the
reversible runtime by Monitor. Monitor controls the runtime by looking up at the
contract table generated by the compiler along with the reversible code. Monitor
controls the abstract machines according to the contract table.

The contract table is updated when the contract annotations are updated. At
updating the contract annotations, the compiler produces the updated contract
table keeping the global configuration unchanged. We implemented the debugger
with Python multiprocess module. Our implementation is portable in that, we
have no control of concurrent executions of parallel blocks since the debugger has
no information about scheduling processes. Monitor accumulates the history of
the backward execution so that the next forward execution can follow the faulty
trace. This feature enables the debugger executes the faulty execution back and
forth changing the contracts to narrow down the problem.

5 Concluding Remarks

We presented the reversible debugging for imperative parallel programming with
contracts. Contract annotations define the pairs of breakpoints in forward and
backward executions. ensures annotations assert the conditions for forward
breakpoints, and expects annotations work as the backward breakpoints. A
backward breakpoint checks the condition at the backward execution and at the
forward execution to suspend the execution to filter the execution. Our reversible
debugging eases locating the cause of the problem concerning synchronization
between parallel blocks. We presented a prototype of the reversible debugger
using contract annotations as breakpoint specifications.

From the viewpoint of debugging, our method needs to be strengthened for
practical use. In particular, a location path in a contract specifies a single parallel
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block. This works for a simple case but is insufficient since it is uncertain where
the problem exists. A location path is better to specify the set of parallel blocks
running. However, this mechanism requires more formal investigation for runtime
as shown in [9] for debugging.

The reversible debugging methods for concurrent programs have been pro-
posed [7,8], where the annotations of execution history dynamically added to the
programs are used for debugging. [2] proposes the reversible debugging of com-
municating programming language μOz. [12] tracks message passings in reverse
graphically. Contracts in concurrent programs may be seen as monitoring com-
munication patters specified by sessions [1]. Our debugging framework much
simpler than sessions and our contracts focus on particular pairs with causal-
ity. Incorporating more sophisticated specifications such as sessions is future
work. Since our reversible runtime uses the history information accumulated on
the execution stacks, our debugger checks the property by contract annotations
from the program. Updating contract annotations to locate the problem is not
straightforward, but we believe it improves the efficiency of finding the problem
in reversing executions.
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Abstract. We describe an ongoing work of defining and implementing a
form of reversibility of concurrent programs where causally independent
steps can be undone out of backtracking order. We introduce a notion
of causal independence between steps of reverse execution and adjust
the previously developed method for backtracking reversibility to move
towards obtaining causal-consistent reversibility.

Keywords: Reversible computation · Causal-consistent reversibility ·
Backtracking reversibility

1 Introduction

Reversible execution of concurrent imperative programs is important for many
applications, including debugging [5,9,10] and Parallel Discrete Event Simula-
tion [15,16]. Faithfully reversing to all intermediate states can help locate a soft-
ware defect, and undo invalid optimistic simulation. Work including RCC [13]
and reversible flowcharts [17] describe reversal of sequential programs. These
“backtrack” by undoing execution steps in exactly the inverted forward order.

Research into reversibility of message-passing systems introduced causal-
consistent reversibility [4,14], where steps of an execution can be reversed out
of backtracking order. Any step (or action) can be undone provided all of its
consequences have previously been reversed. This relaxation offers several bene-
fits. One application-specific benefit, namely causal-consistent reversible debug-
ging [6,8], is described by Lanese et al. through Cauder, a causal-consistent
reversible debugger for Erlang [10,11]. Other approaches of reverse debugging
are summarised by Engblom [5]. The cause of a concurrent program bug may
be in a less dominant thread. Backtracking requires reversal of all steps, includ-
ing this more dominant, but irrelevant, thread. Provided causality is maintained
across threads, time and resources could be saved by reversing only the thread
of interest (including those necessary from other threads). Lanese, Phillips and
Ulidowski [12] describe further properties for reversing that preserves causes,
namely Causal Safety and Causal Liveness.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. A. Mezzina and K. Podlaski (Eds.): RC 2022, LNCS 13354, pp. 213–223, 2022.
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P ::= ε | S | P; P | {P} par {P}
S ::= skip | X = E | if B then P else Q end | while B do P end | begin BB end

BB ::= DV; P; RV DV ::= ε | var X = E; DV RV ::= ε | remove X = E; RV

E ::= X | n | (E) | E Op E B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

Fig. 1. Syntax of a concurrent programming language.

2 Backtracking Reversibility

The concurrent imperative programming language we use to discuss causal-
consistent reversibility is shown in Fig. 1. Supported constructs are assignments
(both destructive (such as X=3) and constructive (such as X=X+1)), conditionals,
while loops, blocks, local variables and a parallel composition operator. Opera-
tional semantics defining forward (and reverse) execution are given in [7]. This
approach has been proved to be correct [7] and applied to debugging [9].

The reversal of a program execution by reversing statements in exactly the
inverted forward order is named backtracking [1]. Our previous work [7,9] has
proposed backtracking reversibility of executions of programs written in the syn-
tax from Fig. 11. We do this by recording (otherwise unrecoverable) information
lost during forward execution, and introducing identifiers to capture the concur-
rent interleaving order (determined by the parallel composition operator par).
Information lost during forward execution is saved to an auxiliary store δ, and
includes values overwritten during an assignment and control flow information
(result of condition evaluation for branching and looping). As each statement
executes, the next available identifier (the next natural number in ascending
order) is assigned to it. In the following examples, identifiers assigned to state-
ments are displayed within the program syntax.

When reversing an execution, identifiers are used in descending order to
determine the correct reverse interleaving order (backtracking). Information
saved onto δ is then used to undo the effects of each statement. All use of δ and
identifiers is defined in the operational semantics as in [7]. Transitions that use
an identifier, namely assignments, opening (evaluating) a conditional statement
or a condition of a while loop, closing of conditionals and loops, local variable
declarations and removals, are called identifier transitions. All other transitions
(those have no affect on the program state), such as removing a sequentially
composed skip statement or opening or closing a completed block statement, are
called skip transitions. Such skip transitions (or steps) can therefore already be
reversed out of backtracking order.

1 Additionally, previous work included the reversal of potentially recursive procedures.
We omit procedures here and defer reversing them to future work.
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2.1 Proposed Relaxations of Backtracking

In preparation for the following relaxation of backtracking reversibility, we first
describe a number of changes required to our current approach. The auxiliary
store δ previously contained a minimal amount of stacks to store control flow
information (such as the result of evaluating a conditional statement). A single
stack was used to store information for all conditional statements. This works
for backtracking reversibility, as the final conditional statement will be reversed
first. This is no longer sufficient for reversing out of backtracking order, as a stack
element below the head may need to be accessed first. We therefore introduce
separate arrays for each conditional statement here for the first time. In a similar
manner, we also introduce separate arrays for each while loop and each (global
or local) version of a variable.

In our previous work without causal-consistent reversibility, identifiers were
used in descending order (implemented as a counter) to enforce backtracking
reversibility. This is no longer sufficient for causal-consistent reversal, where
identifiers could be used in any order. Hence, we move away from implementing
this as a counter, and instead maintain an array of used identifiers. Elements
can then be removed (when used during a step of the reverse execution) in any
order. Identifiers are no longer required to be used in descending order.

3 Towards Causal-Consistent Reversibility

Having set out the necessary background, we now define and illustrate how to
reverse concurrent programs in a causally-consistent manner. Before we continue,
we note that the syntax shown in Fig. 1 defines traditional and irreversible pro-
grams (and is a subset of languages used in our previous work). For ease of
reading, we omit parts of the syntax that are not critical for this work. This
includes the unique names given to constructs (such as Wn for while loops) and
statement paths Pa (used for evaluation). In the following examples, we intro-
duce a notation for displaying statement identifiers within the syntax. Further
details of this notation can be found in [7].

To consider causality we introduce a new notion of execution sequences. An
execution sequence consists of identifier or skip transitions between programs.
Each program is named Pi, where i is the highest identifier used so far. This
identifier appears in program code as a element of an array, for example [i] or
[i,j]. A transition from Pi that results from executing a non-skip statement
produces the program Pi+1. A skip transition from Pi produces the program Pai ,
where a is a fresh number that uniquely identifies the execution of this skip.
An identifier transition is labelled with the statement (including its identifier)
that caused it, and a skip transition is labelled with the word “skip” and an
appropriate a in round brackets.

Example 1. Consider an execution of the following program containing a parallel
statement followed by a destructive assignment. Let X, Y and Z initially equal
0, where the conditional branch executes first (since the par operator allows



216 J. Hoey and I. Ulidowski

execution interleaving). Though multiple execution orders exist, the precise order
of statement execution used here is indicated by the identifiers.

{while (X < 2) do {if (Y < 1) then

X = X + 1 [4,7]; Y = Y + 2 [2]

Y = Y + X [5,9] par else Z = 3 []

end [3,6,10]} end [1,8]}; X = 4 [11]

Complete execution of this program produces the following execution sequence:

P0
if..[1]→ P1

Y=Y+2[2]→ P2
while..[3]→ P3

X=X+1[4]→ P4
skip(14)→ P144

Y=Y+X[5]→ P5
skip(15)→ P155

while..[6]→ P6
X=X+1[7]→ P7

skip(16)→ P167
ifend[8]→ P8

Y=Y+X[9]→ P9
skip(17)→ P179

whilend[10]→ P10
skip(18)→ P1810

skip(19)→ P1910
X=4[11]→ P11 (= skip)

The skip transition skip(14) (among others) labels a transition that removes a
sequentially composed skip statement, while skip(18) labels a skip transition
closing parallel composition. The program state at P5 is that X=1, Y=3, Z=0. The
final program state is such that X=4, Y=5 and Z=0. ��

To reverse the execution of the above program, we first generate the inverted
program. Reverse execution of the inverted program produces a corresponding
execution sequence. The transitions are between inverted programs named IPi,
where i is the highest previously used identifier at that point (due next for
reversal via backtracking). Inverted programs use the same syntax as forward
programs, with expressions and conditions still presented. Such expressions and
conditions are included to help with our application to debugging, in which seeing
such constructs is crucial. However, they are not re-evaluated during reversal,
with old values and evaluation results retrieved from the auxiliary store δ.

Example 2. Consider the inverted version of the program (augmented with
arrays of identifiers representing a specific forward execution order) from Exam-
ple 1. Note that the constructive assignments that were increments are inverted
as decrements, hence, unlike destructive assignments, do not rely on saved val-
ues. The expressions X < 2 and Y < 1, and the statements X = 4 and Z = 3, are
each not re-evaluated during reverse execution.

X = 4 [11]; {while (X < 2) do {if (Y < 1) then

Y = Y - X [5,9]; Y = Y - 2 [2]

X = X - 1 [4,7] par else Z = 3 []

end [3,6,10]} end [1,8]}
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If the order of executing statements is from the highest identifier to the lowest,
then we obtain the following backtracing reversal execution sequence:

IP11
X=4[11]� IP10

skip(19)� IP1910
while..[10]� IP9

Y=Y-X[9]� IP8
skip(18)� IP188

if..[8]� IP7
X=X-1[7]� IP6

skip(17)� IP176
while..[6]� IP5

Y=Y-X[5]� IP4
skip(16)� IP164

X=X-1[4]� IP3
skip(15)� IP153

whilend[3]� IP2
Y=Y-2[2]� IP1

ifend[1]� IP0
skip(14)� IP140

The transition X=4[11]� reverses an assignment to X by retrieving the previous value
(2) from δ. The transitions while..[10]� and if..[8]� open a while loop and a con-
ditional statement respectively (retrieving appropriate boolean values from δ),
while whilend[3]� and ifend[1]� replace the completed constructs with skip. This exe-
cution begins in the state X=4, Y=5 and Z=0 (the final state of forward execution),
and produces a final state of X=0, Y=0 and Z=0 (as required). As in Example 1,
the program state at IP5 is the same as in P5, namely X=1, Y=3, Z=0.

An example of a reversal of a different forward execution of the program from
Example 1 is shown in Appendix A. ��

A backtracking execution sequence corresponds tightly to the matching for-
ward execution sequence. Identifier transitions each have an inverse equivalent.
The majority of skip transitions also have such a match, though this is not as
tight. Since skip steps do not change the program state, this causes no issues.

Following the backtracking execution sequence will correctly restore the pro-
gram state to as it was prior to the forward execution, as proved to be correct
in [7]. We note here that we propose changes to δ in this work not present in [7],
however these changes are only to the structure of the auxiliary store and there-
fore are still consistent with our original proof. Causal-consistent reversibility
allows us to reverse via a different execution sequence while maintaining cor-
rectness. As stated in [4,12], two execution traces are causally-equivalent if the
only difference between them is the order of independent steps. This requires
the notion of independence between statements.

3.1 Data Race and Causal Independence

Independence of statements has been widely studied in the context of parallelisa-
tion of sequential programs, instruction scheduling in compilers and in Data Flow
Machines [2,3]. In its simplest form, it means that the effect of X=X+1;Y=2 on
the program state is the same as that of Y=2;X=X+1 or X=X+1 par Y=2 because
X=X+1 and Y=3 update memory independently, so the order in which they are exe-
cuted or reversed is irrelevant. In this work-in-progress paper, we are interested
in independence of statements when executing individual versions of inverted
programs (as in Example 2). When reversing in our setting, since no evalua-
tion of conditions of loops or conditionals takes place (control flow information
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is instead read from δ [7]), and since statements that produce skip transitions
do not update memory, there will only be causal independence between some
assignment statements.

In general, two assignments are dependent if there is a data race between
them, where the order of execution directly impacts the final program state.
Appendix B contains a detailed discussion of the independence of assignments
to local and global variables. We denote statements by S1 and S2, though also
use S(n) and S(m) to represent the statement that uses the given identifier n
respectively m.

Definition 1. There is a data race between S1 and S2 (S1 and S2 race) if

– S1 and S2 are destructive assignments to the same (version of a) variable.
– S1 is a constructive assignment to a variable used within the expression of the

assignment S2, or S2 is a constructive assignment to a variable used within
the expression of the assignment S1.

Example 3. Consider execution of an inverted program below, where initially X
= 3 and Y = 15. The forward execution began with X = Y = 0. The assignments
to Y race according to Definition 1.

{X = 3 [3]; Y = Y + 8 [2]} par {Y = 7 [1]}

With the sequential ordering of statements on each side of the parallel main-
tained, the first reversal step must be the statement with identifier 3 or 1. It
is not possible for any other statement to execute at this point. Each of the
possible first steps can be retrieved simply by analysing the program syntax.
These assignments do not race as they are to different variables, so we might
be tempted to reverse first Y=7[1]. After this, we have that X = 3 and Y = 0
because initially going forwards Y=7 overwrote the value 0. Backtracking order
is followed for the remaining assignments (with identifiers 3 and 2), producing
the final state with X = 0 (as required) and Y = −8 (incorrectly). This error
is a result of allowing racing statements with identifiers 2 and 1 to be reversed
out of order. Hence, when deciding if to reverse Y=7[1] before X=3[3], we also
need consider if reversing Y=7[1] before Y=Y+8[2] is safe. This motivates causal
independence. ��
Before we define causal independence, we introduce a helpful notation. When
reversing an arbitrary program IP8, the next statement to undo under backtrack-
ing has the identifier 8. To undo an independent statement with the identifier
say 4, we need a notation for the resulting program. We introduce IP

{a,b}
i , where

i is as before, a identifies a skip step, and b is now a fresh number indicating
a program produced by causal-consistent reversibility. We use ∗ to represent an
arbitrary value. Our resulting program would now be uniquely labelled IP

{∗,4}
8 .

For a statement S(m) to be reversed before S(n) (due next in backtracking
order), with n > m, we must determine whether S(m) races with S(n) and with
any intermediate statements S(i).
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Definition 2. (Causal Independence) Assume S(n) and S(m) are non skip
statements with identifiers n and m respectively such that n > m. Assume

IPn
S(n)� IPn−1 . . .

S(i)� . . . IPm
S(m)� IPm−1 and IPn

S(m)� IP{∗,m}
n

and let S(i) be either a statement with identifier i such that n ≥ i > m, or
S(i) labels a skip transition for some appropriate i such that n > i > m. We
say that S(n) and S(m) transitions from IPn are causally independent if S(m)
is not in a data race with any S(i).

Example 4. Recall the program and its backtracking execution in Example 2.
Let the backtracking reversal execute as previously described up until the use of
the identifier 5 via the statement Y=Y-X [5]:

IP11
X=4[11]� IP10

skip(19)� IP1910
while..[10]� IP9

Y=Y-X[9]� IP8
skip(18)� IP188

if..[8]� IP7
X=X-1[7]� IP6

skip(17)� IP176
while..[6]� IP5

At this point, the next available step of reversal is either the assignment within
the loop body (Y=Y-X [5]) or the assignment within the conditional (Y=Y-2
[2]). By Definition 2, these two statements race as both are assignments to
the same variable. So, backtracking order must be followed reversing them.
After reversing Y=Y-X [5], the choice is now between the skip(16) followed
by X=X-1[4] transitions and the assignment within the conditional (Y=Y-2[2]).
By Definition 2, we can see that Y=Y-2 [2] does not race with skip(16) nor on
X=X-1[4]. This means we can reverse it out of backtracking order and therefore
produce an alternative execution sequence:

IP5
Y=Y-X[5]� IP4

skip(16)� IP164
Y=Y-2[2]� IP∗,2

4
X=X-1[4]� IP3

skip(15)� IP153
whilend[3]� IP1

ifend[1]� IP0
skip(14)� IP140

We note that the skip transition
skip(15)� would be performed before the

assignment reversed early under uniform execution. This alternative execution
sequence begins in the state X=1, Y=3 and Z=0 (as required), and produces a final
state of X=0, Y=0 and Z=0 (meaning the reversal is indeed correct). ��

4 Conclusion and Future Work

We have presented our initial work aimed at causal-consistent reversibility of
imperative concurrent programs. We have described key notions with examples,
including causal independence between transitions. Future work will extend our
approach with recursive procedure calls, provide a proof of correctness.

Though not presented here, our simulator, Ripple [7], is currently being
extended with causal-consistent reversibility. Future development will complete
this implementation and explore the link to debugging.
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A Causally Independent Interleavings

The backtracking reversal execution sequence from Example 2 is shown in Fig. 2
as the path from IP11 via IP188 and IP7, then all the way down to IP2 before fin-
ishing at IP140 . The alternative reversal shown in Example 4 is the path described
above but with the detour from IP164 to IP1. As seen from the rest of the diagram,
any full path is a valid execution that can be gotten from the main execution by
changing order of causally independent transitions.

There are many possible executions of the forward program from Example 1.
For each such execution, there is a particular inverted program which will have a
backtracking execution sequence. Moreover, there will be potentially many other
execution sequences originating from that backtracking sequence that preserve
causal independence. This is illustrated in the next example.

Example 5. Consider a different execution of the program from Example 1,
where one full iteration of the while loop is executed first. Then we perform
the entire conditional statement (executing the false branch), and follow it by
doing the second loop iteration, producing the following execution sequence.

P0
while..[1]→ P1

X=X+1[2]→ P2
skip(14)→ P142

Y=Y+X[3]→ P3
skip(15)→ P153

while..[4]→ P4
if..[5]→ P5

Z=3[6]→ P6
ifend[7]→ P7

X=X+1[8]→ P8
skip(16)→ P168

Y=Y+X[9]→ P9
skip(17)→ P179

whilend[10]→ P10
skip(18)→ P1810

skip(19)→ P1910
X=4[11]→ P11 (= skip)

Under backtracking reversal, the second while loop iteration must be reversed
first. This would produce the following execution sequence.

IP11
X=4[11]� IP10

skip(19)� IP1910
while..[10]� IP9

Y=Y-X[9]� IP8
skip(18)� IP188

X=X-1[8]� IP7
skip(17)� IP177

if..[7]� IP6
Z=3[6]� IP5

ifend[5]� IP4
while..[4]� IP3

Y=Y-X[3]� IP2
skip(16)� IP162

X=X-1[2]� IP1
skip(15)� IP151

whilend[1]� IP0
skip(14)� IP140

By Definition 2, we have that the opening/closing of a conditional statement
is independent of any statements of the loop (no re-evaluation of the expression).
The false branch statement Z=3 is independent of any statements of the loop. The
entire conditional statement can be reversed prior to any reversal of the loop.
This causally consistent reversal produces the following execution sequence.

IP11
X=4[11]� IP10

skip(19)� IP1910
if..[7]� IP∗,7

10
Z=3[6]� IP∗,6

10
ifend[5]� IP∗,5

10

while..[10]� IP9
Y=Y-X[9]� IP8

skip(18)� IP188
X=X-1[8]� IP7

skip(17)� IP177
while..[4]� IP3

Y=Y-X[3]� IP2
skip(16)� IP162

X=X-1[2]� IP1
skip(15)� IP151

whilend[1]� IP0
skip(14)� IP140
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Fig. 2. All possible executions of the inverted program from Example 2 preserving
causal independence. To improve presentation of transition labels we have only retained
bracketed identifiers or skip numbers omitting the names of statements. For example
instead of X=4[11] we write [11] as the label of the first transition, and we write (19)

instead of skip(19) in the second transition.



222 J. Hoey and I. Ulidowski

B Local Variables

The programming language used throughout this work supports global and local
variables. A global variable is uniquely named and assumed to exist prior to the
execution. At an implementation level, each global variable is associated with a
unique memory location. Global variables are accessible from any point within
the program, with each use referring to the same memory location.

The syntax shown in Fig. 1 introduces block statements of the form DV; P;
RV, where DV is a sequence of local variable declaration statements, P is a pro-
gram and RV is a sequence of local variable removal statements. A local variable
declaration statement (only possible at the beginning of a block) creates a new
variable local to the block statement. A unique memory location is associated
with this local variable, keeping the value it holds separate to that of the global
version. This local variable is only accessible from within the same block state-
ment. If a local variable is named uniquely (including to global variables), then
this is treated exactly the same as a global variable. Should a local variable share
its name with a global variable, the global variable is no longer accessible within
this block statement. Any use of this name within the block statement will refer
to the local version (and not the memory location associated with the global
version). At the end of a block, each local variable must then be removed via a
local variable removal statement. This deletes the final value this variable held
and releases the memory location.

Let us first consider whether local variable declaration statements can race.
Within a single block, our syntax does not support parallel statements within
DV. Therefore two declaration statements within the same block cannot race.
Two blocks can be in parallel, meaning declaration statements from different
blocks can be executed in parallel. Since each will use a fresh memory location
and therefore refer to a different variable (or version if the same name is used),
these also cannot race. Similar reasoning can be given for removal statements
but is omitted here.

We now consider races between uses of local variables. A parallel statement
within a block may contain uses of the same local variable in parallel. Such
statements will race according to Definition 1. Two block statements can be in
parallel, each of which may declare a local variable with the same name. Any
two statements such that each is from a different side of this parallel statement
cannot race as this name will refer to a different version of this variable (a
different memory location). Two uses of the same variable name on a single side
of the parallel will race as explained above.

We conclude that local variable declaration and removal statements cannot
race, and are therefore not included in our definition of a data race (Definition 1).
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Abstract. Reversible programming languages have been a focus of
research for more than the last decade mostly due to the work of Glück,
Yokoyama, Mogensen, and many others. In this paper we report about
our recent activities to optimize reversible code with respect to execu-
tion time. Based on our rc3 -compiler which compiles Janus to reversible
static-single-assignment form RSSA, we had explored and implemented
optimization algorithms for local common-subexpression elimination,
constant propagation, and folding and have presented those at SOAP
2021. This paper focuses on new achievements for procedure inlining as
well as elimination of dead code. Our compiler is—to our knowledge—
the first optimizing compiler for reversible languages. Whereas these
optimizations are well established for “traditional” languages, programs
that can be executed forwards and backwards require different and novel
approaches.

Keywords: Reverse computing · Reversible programming languages ·
Janus · Reversible static-single-assignment · Optimization

1 Introduction

Reverse computing, although the initial ideas can be traced back to the
1960s [11], has been a major research area over the last decade. With the growing
importance of sustainability and reduced energy consumption, reverse comput-
ing promises contributions by avoiding the waste of energy through deletion of
information [6].

More than twenty years after the first creation of a reversible language called
Janus [12], the papers of the Copenhagen group [18] brought new life into the
area of reversible languages by formally defining and extending Janus. Interpre-
tation and partial evaluation [13] as well as self-interpretation [20] were stud-
ied and in [3], Axelsen published his results on compilation of Janus. In [19] a
reversible flowchart language is described as a foundation for imperative lan-
guages and their r-Turing-completeness is proved, i.e. its ability to compute
exactly all injective computable functions.
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Whilst it was now possible to execute programs forwards and backwards,
there seem to be no previous results about optimization of reversible programs.
Optimization in this regard refers to improving the execution time of programs or
their memory consumption [15]. In this paper, we will mainly focus on execution
time.

It is well known from the discipline of compiler construction that optimiza-
tion can most effectively be performed on some intermediate representation of
the source rather than the source code itself or its abstract syntax tree. Such
intermediate representations include three-address-code [1] and static-single-
assignment [16].

In 2015, Mogensen published his work on RSSA, which is a special form of
static-single-assignment that can be executed forwards and backwards [14]. Our
rc3 -compiler (reversible computing compiler collection) [17] is able to compile
Janus to RSSA (and three-address-code) [10].

In [4] we have reported on our first successes in implementing local common-
subexpression elimination as well as constant propagation and folding. In this
paper we are going to describe two further optimization techniques, namely
procedure inlining and dead-code elimination, and will present the results of the
application of these optimizations on some typical Janus programs that have
been compiled to RSSA.

2 The Compiler rc3

This section briefly explains the structure and implementation of our compiler’s
front-end and back-ends (see Fig. 1). Our approach to implement the compiler in
Java largely resembles the approach for a classical multi-pass compiler [2]. The
back-ends are pluggable, such that adding new back-ends is easy.

The front-end consists of a dedicated scanner and a parser, which are gen-
erated using the scanner generator JFlex [9] and the parser generator CUP [7]
respectively. The scanner performs the lexical analysis, converting the input
characters into a sequence of tokens. These tokens are then passed to the parser,
which performs the syntactic analysis and constructs an abstract syntax tree.
After the construction of an abstract syntax tree, it is passed to the semantic
analysis.

With the implementation of the semantic analysis, the particularities arising
from the properties of a reversible language become clear: As in a conventional
language, Janus defines rules for the visibility of identifiers and restrictions on
types of variables and expressions. In addition to classical analysis passes, that
insert declarations into a symbol table and check the visibility and types of used
variables and expressions, another pass has to be defined, the aim of which is to
check the reversibility of individual instructions. Most importantly, assignments
need to be reversible. For instance, assigning a constant value to a variable is
not reversible, as the previous value of the variable would be required in order
to be able to assign it to the variable in backwards execution. An exception are
local and delocal statements which initialize respectively delete a variable.
These are mutually inverse and thus need to occur in pairs.
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Interpreter 3-Address-Code RSSA

Front-End

sample.ja

Compiler

future back-endsBack-Ends

sample.c sample.rssa

gcc

sample
(forwards &
backwards)

gcc

sample
(forwards &
backwards)

sample.c

Fig. 1. Overview of our compiler.

To circumvent this problem with assignment, Janus only allows +=, -=, and ^=
(the latter representing an XOR operation). The operations += and -= are mutu-
ally inverse, ^= is inverse to itself. In addition, control constructs such as condi-
tional or loop require assertions at the end, such that the assertion becomes the
condition during backwards execution and vice versa. Procedure calls in Janus
are call-by-reference and use the keyword call; during backwards execution,
the procedure body will simply be executed backwards; the inverse of a call
is uncall. Please note that variable-aliasing would prevent reversibility and is
thus forbidden.

RSSA is, as mentioned before, a reversible form of SSA, i.e., each variable can
only be assigned once and different “versions” of a variable need to be used when
a variable has got multiple assignments. In “conventional” SSA, Φ-functions are
used to merge two versions into a new one, for example after a conditional
statement where one version of each variable exists for each of the two branches.

Mogensen observed that this technique, although well known, is not applica-
ble in RSSA, as the merge operation is not reversible since it turns two pieces of
information into one. Thus, RSSA uses entry- and exit points: In the simplest
form, l(x1, ..., xn) <- is an unconditional entry point and represents just a
label. l1(x1, ..., xn)l2 <- c, where c is a condition, is a conditional entry
point with the following semantics: If entered through a jump to l1, c is evaluated
and is verified to be true, or a runtime-error will be generated; if entered though
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a jump to l2, c is verified to be false, or a runtime error is created. Exit points
are either -> l(x1, ..., xn) (unconditional) or c -> l1(x1, ..., xn)l2
(conditional), where c is evaluated and a jump to l1 is performed if true, or to
l2 otherwise. The parameters x1, ..., xn are passed from exit- to entry-point
by value. In backwards execution, jumps are performed from entry- to exit-point
accordingly.

In RSSA, the semantics of procedure calls is call-by-value-result (see the
second but last line on the right in the example depicted in Fig. 2), which is
equivalent to call-by-reference when aliasing is forbidden.

In Janus, as well as in RSSA, all variables need to be deleted properly to avoid
memory garbage, as it would prevent reversibility. In Janus, local variables can
be created with a local declaration and need to be explicitly destroyed using
a delocal statement. A local-statement is of the form local t x=e, where t
is a type, x is a variable and e is an expression; a delocal-statement is of the
same form. In forwards execution, a runtime occurs, when the evaluation of e
in the delocal-statement yields a value different to the current value of x. In
backwards execution, this applies to the local-statement accordingly.

Such a delocal-statement is translated to an assignment with a constant
value on the left-hand side (!) – see line 11 in the example in Fig. 4 – and is
called finalizer. If this constant value is not equal to the value of the expression
on the right-hand side, a runtime error will be generated.

The RSSA semantics ensure proper destruction of the first variable on the
right-hand-side of assignment, as well as variables passed as parameters in exit
points.

An example of a Janus program together with its RSSA translation is shown
in Fig. 2.

procedure inc ( i n t n , i n t r e s )
r e s += n
re s += 1

procedure main ( )
i n t i
i n t x
i += 10
c a l l i n c ( i , x )

begin inc (n0 , r e s 0 )
r e s 1 := r e s 0 + (n0 ˆ 0)
r e s 2 := r e s 1 + (1 ˆ 0)

end inc (n0 , r e s 2 )

begin main ( i 0 , x0 )
i 1 := i 0 + (10 ˆ 0)
( i 2 , x1 ) := c a l l i n c ( i 1 , x0 )

end main ( i 2 , x1 )

Fig. 2. Example for translation of a procedure call.
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3 Optimizations

Optimization in our compiler is performed on the RSSA-code. Prior to all opti-
mizations, the RSSA-Code is split into building blocks, such that all statements
in the building blocks are executed in the same order from the first to the last
statement. A building block consists of the largest possible set of instructions
such that the above requirement is fulfilled. In RSSA, building blocks can be
identified easily as each entry-point is the start of a new block, and each exit-
point is the end of the current block. The begin-statement of a procedure is
a start of a block, too. Thus, in the example of Fig. 4, there are four building
blocks: Lines 1–3, 4–6, 7–8, 9–12. The building blocks form a set of vertices in
a graph, where the (directed) edges are determined through the jumps from an
exit-point to the corresponding entry-point. This graph is usually called program
graph.

3.1 Procedure Inlining

Procedure inlining is independent of the direction of execution and can thus be
implemented in a straightforward manner by substituting the procedure call with
the procedure body. Of course, it needs to be ensured that variables are renamed
and care needs to be taken that recursion does not lead to infinite inlining or huge
programs. uncall statements are inlined by replacing them with the inverse of
the procedure body, i.e., the statements are inserted in reverse order and inverted
according to their semantics. Our strategy is to first inline procedures smaller
than a given size (configurable via the command-line), followed by procedures
which are called only once (leading to the fact that these procedures can be
eliminated completely). In addition, it is possible to specify allow-lists and block-
lists of procedures to be always inlined or never.

3.2 Local Common-Subexpression Elimination

We have developed and implemented a new algorithm that uses a directed-
acyclic multigraph to represent the different dependencies between common-
subexpressions local to a block but also their sequence and relations between
the creation of a variable and its destruction. This approach is different to con-
ventional local common-subexpression elimination where a simple graph is suf-
ficient (see for example [1]). Since common-subexpressions do occur frequently,
this optimization typically leads to considerable performance improvements.

We have described our algorithm in detail in [4].

3.3 Constant Propagation and Folding

Constant propagation identifies occurrences of variables with a constant value.
Constant folding is a technique to evaluate expressions at compile-time when
the operands are known to have constant values [15].
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It turns out that constant propagation for reversible programs can be per-
formed twice, i.e., forwards and backwards: Not only definitions such as (in
Janus) local int i=0 but also their inverse delocal int i=10 can be taken
into account since the semantics enforce that the value of i in this case needs
to be 10 when reaching the delocal-statement. These are translated to RSSA
initializers and finalizers, and the same rule applies.

Our compiler will invert the current building block and perform constant
propagation and folding again by replacing constants and computing the values
of expressions in case all their operands are constant. The idea for this approach
was suggested by Mogensen in [14]. As far we know, our compiler is the first
implementation.

Again, more details are provided in [4]. Especially when used together with
inlining, constant propagation is a very powerful optimization technique as
shown in Fig. 3, which shows a simple Janus program with two procedures on the
left, and the optimized RSSA code on the right. As one can see, both procedure
calls have been inlined completely. In addition, constant propagation recognizes
the fact that x is a constant and thus can be removed from the list of parameters
passed to the procedure. Thus, the whole program is reduced to only three lines
of code.

procedure i 1 ( i n t n , i n t r )
n −= 1
c a l l i 2 (n , r )

procedure i 2 ( i n t n , i n t r )
r += n∗n

procedure main ( )
i n t y
l o c a l i n t x = 10
c a l l i 1 (x , y )
d e l o c a l i n t x=9

begin main (y0 )
i n 9 i n 3 r 1 := y0 + (9 ∗ 9)

end main ( i n 9 i n 3 r 1 )

Fig. 3. Example for inlining and constant propagation.

3.4 Dead-Code Elimination

As the name of this optimization already suggests, the aim is to remove code
that does not change the behavior of the program, such as code that will never be
executed or only changes the state of variables that will not be used thereafter.

To our knowledge, this is the first description of such an optimization for
reversible programs.

Prior to describing the algorithm, a few definitions need to be given.

Definition 1. “A definition is an assignment of some value to a variable.” [15,
p. 218].
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Definition 2. “A variable is considered dead if it is not used on any path in the
program graph from the position of its definition in the code to the exit point. An
instruction is dead if it computes only values that are not used on any executable
path from this instruction to the exit point.” [15, p. 592].

“Use” in this regard refers to an occurrence of the variable where the current
value of the variable is required. A formal definition for RSSA is given in Table 1.

Rarely do programmers include dead instructions in their code – the typical
use case for dead-code elimination is after the application of other optimization
techniques, such as constant propagation and common-subexpression elimina-
tion. It is thus worthwhile implementing dead-code elimination.

We are going to look at intra-procedural analysis only as opposed to inter-
procedural analysis. I.e., the analysis required for dead-code elimination exam-
ines each procedure individually, and it is assumed that through procedure calls
and uncalls all variables in the argument lists are used and defined.

Accordingly, all output parameters of a procedure (when analysing the pro-
cedure for forwards execution) and all input parameters (in case of backwards
execution) must be considered to be used. Thus, it is possible to focus the anal-
ysis on local variables only, as shown in the example of Fig. 4.

1 procedure f ( i n t x , i n t y )
2 l o c a l i n t z = 0
3
4 i f x=0
5 y+=1
6 f i x=0
7
8 z+=x+y
9 de l o c a l i n t z = x + y

1 begin f ( x0 , y0 )
2 z0 := 0 ˆ (0 ˆ 0)
3 x0 == 0 −> Lf5 ( y0 , z0 , x0 ) Lf6
4 Lf5 ( y1 , z1 , x1 ) <−
5 y4 := y1 + (1 ˆ 0)
6 −> Lf7 ( z1 , y4 , x1 )
7 Lf6 ( y2 , z2 , x2 ) <−
8 −> Lf8 ( z2 , y2 , x2 )
9 Lf7 ( z7 , y8 , x7 ) Lf8 <− x7 == 0

10 z8 := z7 + (x7 + y8 )
11 0 := z8 ˆ (0 ˆ 0)
12 end f ( x7 , y8 )

Fig. 4. Example for dead-code elimination.

Let us informally perform the analysis for the Janus program:
Firstly, a local variable z is declared and defined. Because of the += operator,

line 8 in the Janus program is a use of and at the same time another definition
of z. Lastly, in line 9 the variable z is destroyed. Thus, z does not contribute
to the computation of the final values of x and y (it only contributes to itself)
and thus, lines 2, 8, and 9 can be eliminated. Obviously – and this was already
mentioned in [14] – a local variable can only exist between its local and delocal
instructions.

Observation 1. A local variable, i.e., a variable that is not a formal parameter
of the procedure (in Janus), respectively a formal parameter of a begin or end-
instruction in RSSA , can only exist between its local and delocal instructions
(in Janus), respectively its initialization and its finalization in RSSA.
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Since a local variable always needs to be destroyed via a delocal-statement in
Janus, respectively a finalizer statement in RSSA, the final value of this variable
needs to be available in these statements. This leads us to the second observation:

Observation 2. It is not possible to remove a definition of a variable only. Thus,
the variable needs to be completely removed by eliminating all its occurrences
or not at all.

Please note that this is different to conventional dead-code elimination,
where, for example, in a C-fragment such as int x; x=0; x=1; the definition
x=0 could be eliminated.

It is well-known that liveness in conventional programming is a backwards
data-flow problem that is solved by iterating through the program bottom-to-
top. When looking at the RSSA program, we come to the same conclusion as
above when tracing the different versions of z: z8 is finalized in line 11, in line
9 it is created using z7 which in turn is a parameter of the conditional entry
point Lf7(...)Lf8. Hence, we need to look at the two building blocks that end
with exit points to Lf7 resp. Lf8. In these, no version of z is used, hence the
parameters of the respective entry points Lf5 and Lf6 are not required, neither
is z0 in the exit point in line 3. Finally, we conclude that this variable is dead
and all occurrences of versions of z can be eliminated.

Before analysing backwards execution, we need to provide some basic con-
cepts:

The well-known data-flow algorithm for liveness analysis for “forwards-only”
programs [15], firstly computes the sets of variables defined prior to being used
(if at all) in a block b (DEF (b)) and the set of variables used prior to being
defined (if at all) (USE(b)). DEF (b) and USE(b) are then used to compute the
set of live variables IN(b) at the beginning of the block, starting with the last
block, i.e., the block containing the end-Statement. The IN -set is propagated
upwards to the predecessors of b. For each predecessor b′, the set OUT (b′) is
the union of all successors of b′. These computations form a system of equations
that can be solved iteratively as a fixpoint always exists. Please note that loops
in the program will lead to the fact that we may need to compute IN and
OUT multiple times for a given block. Kildall’s worklist algorithm [8] is a well-
established solution for data-flow problems.

Observation 3. Since RSSA is a reversible static-single-assignment form, there
can’t be any uses prior to a definition in a block. Consequently, USE (as defined
above) would always be empty and DEF would always contain all variables. It
is thus sufficient for RSSA to define USE as the set of all variables used after
its definition and focus on this set only.

Due to the semantics of procedure calls (in the case of intra-procedural anal-
ysis), we conclude that variables which are parameters of the end-statement are
live after the statement since they will be passed back to the caller. Due to the
symmetry of forwards and backwards execution, the converse is also true: All
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variables that are parameters of the begin-statement are live at the start of the
begin-statement.

There are cases, where a variable is live at some point when looking only at
forwards execution, but is considered dead at the same point looking at back-
wards execution. As an example, we use the code shown in Fig. 4 (on the left-hand
side) and show the reverse RSSA code on the right-hand side.

1 begin f ( x0 , y0 )
2 z0 := 0 ˆ (0 ˆ 0)
3 x0 == 0 −> Lf5 ( y0 , z0 , x0 ) Lf6
4
5 Lf5 ( y1 , z1 , x1 ) <−
6 y4 := y1 + (1 ˆ 0)
7 −> Lf7 ( z1 , y4 , x1 )
8
9 Lf6 ( y2 , z2 , x2 ) <−

10 −> Lf8 ( z2 , y2 , x2 )
11
12 Lf7 ( z7 , y8 , x7 ) Lf8 <− x7 == 0
13 z8 := z7 + (x7 + y8 )
14 0 := z8 ˆ (0 ˆ 0)
15 end f ( x7 , y8 )

1 begin f ( x7 , y8 )
2 z8 := 0 ˆ (x7 + y8 )
3 z7 := z8 − ( x7 + y8 )
4 x7 == 0 −> Lf7 ( z7 , y8 , x7 ) Lf8
5
6 Lf7 ( z1 , y4 , x1 ) <−
7 y1 := y4 − (1 ˆ 0)
8 −> Lf5 ( y1 , z1 , x1 )
9

10 Lf8 ( z2 , y2 , x2 ) <−
11 −> Lf6 ( y2 , z2 , x2 )
12
13 Lf5 ( y0 , z0 , x0 ) Lf6 <− x0 == 0
14 0 := z0 ˆ (0 ˆ 0)
15 end f ( x0 , y0 )

Fig. 5. Example for differences in forwards and backwards execution.

In forwards execution, z is only used after the if-statement, whereas it is used
before when the procedure is executed backwards. Since procedure f consists of
four building blocks, forwards analysis would report z to be used in different
building blocks than in backwards analysis. Thus, the sole information which
variables are live, is not sufficient. In traditional liveness-analysis, the set of
variables that are live at the beginning of a block is computed by taking the set
of live variables at the end of the block, subtracting the set of variables defined
in the block prior to being used in the block, and joining the result with the set
of variables used in the block prior to being defined in the block.

For reversible programs, our approach is to utilize only USE-sets and not
remove the variables that are defined in the block (DEF ), since in backwards
execution the inverse would happen.

By utilizing USE only, we collect all used variables from the end-statement
up to the begin-statement. I.e., we will finally end up not only with the param-
eters of the end-statement, as pointed out already, but with all used variables.

In the example of Fig. 4, our algorithm will identify all versions of x and y
as begin used in procedure p. In the Janus program, z is not required, and thus,
the different versions of z are neither required in the RSSA program.

As RSSA contains statement types that are quite different from conventional
procedural programming languages, the definitions of USE for all kinds of RSSA-
instructions are different, too, as can be seen in Table 1. Should an operand of
an instruction be a constant, it is ignored. Hence, in Table 1 a, b, c, r, x, y, z refer
to variables only.
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Table 1. USE for RSSA statements.

Statement USE

L(a1, . . . , an) ← ∅
L1(a1, . . . , an)L2 ← c == d {c, d}
begin f(a1, . . . , an) ∅
→ L(a1, . . . , an) ∅
c == d → L1(a1, . . . , an)L2 {c, d}
end f(a1, . . . , an) ∅

x := y + (r ∗ t)

{
{r, t, y}, if x ∈ OUT

∅, otherwise

a, b := x, y

{
{x, y}, if a ∈ OUT ∨ b ∈ OUT

∅, otherwise

M [x]+ = y ∗ z {x, y, z}
M [x] < − > M [y] {x, y}
x := M [y] := z {y, z}
(r1, . . . , ri) := call f(a1, . . . , aj) {a1, . . . , aj}
(r1, . . . , ri) := uncall f(a1, . . . , aj) {a1, . . . , aj}

Since we have already identified that DEF -sets are not meaningful in case
of reversible programs, we have chosen to simplify the computation of IN and
OUT by utilizing USE only. Note, USE depends on OUT because we will just
propagate USE in each block from bottom to top. For dead-code elimination
analysis, we need to work backwards and start at the last block, which we will
call bend, – as we did already in our informal analysis. All variables that are
parameters of the end-instruction will be passed back to the caller and are thus
live.

Combining all previous observations leads to the algorithm for determining
used variables as shown in Algorithm 1.

As we pointed out above, the analysis might yield different results when the
program is executed backwards. In a reversible program, however, both execution
directions are relevant. Consequently, we must assume that a variable contained
in either of the result sets is used by the program. We execute the algorithm
twice on any procedure p, once on the forward version of a procedure and once
on its inverse. The union of both sets is constructed as a single result. We call
this set USED(p).

As the set of variables in a procedure is finite, and IN(b) can only grow,
the algorithm will terminate with a fix point for In(bbegin). The algorithm is
also correct, i.e., a variable that is used in the procedure will finally always be
contained in USED(p), which is ensured by the conservative definition of USE
for each instruction and the fact that the algorithm joins these to compute IN(b).
Branches are merged together by joining the sets of the successors (line 12).
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Algorithm 1 Used variables Algorithm.
1: procedure UsedVars(p) � Used variables of procedure p
2: Pending := {b : b is a block}
3: for all block b do
4: IN(b) := ∅
5: end for
6: while Pending �= ∅ do
7: Choose block b from Pending and remove b from Pending
8: TEMP (b) := ∅
9: if b = bend then

10: Set OUT (bend) to the set of all variables in the parameter list
11: else
12: OUT (b) :=

⋃
b′∈Succ(b) IN(b′)

13: � Succ(b) denotes the set of all successors of block b in the program graph.
14: end if
15: for all Statement s in b in reverse order do
16: TEMP (b) := TEMP (b) ∪ USE(s)
17: end for
18: if IN(b) �= TEMP (b) then
19: IN(b) := TEMP (b)
20: Pending := Pending ∪ Pred(b)
21: � Pred(b) denotes the set of all predecessors of block b in the program graph.
22: end if
23: end while
24: return In(bbegin)
25: � bbegin denotes the block containing the begin-statement
26: end procedure

Loops lead to a next iteration and thus a potentially larger IN(b) set. Induction
over all instructions and blocks will provide a formal proof.

In order to eliminate dead code, we finally iterate through all blocks of the
procedure, to eliminate all statements where a variable v occurs that is not
contained in USED(p). Please note that it is not possible that other variables
occuring in the same statement depend on v, since the analysis would otherwise
have indicated that v is used. Likewise, we eliminate v from all parameter lists
of entry points, as well as the corresponding parameters in the respective exit
points.

The final resulting code of the application of the algorithm to the program
in Fig. 5 is shown in Fig. 6.
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1 begin f ( x0 , y0 )
2 x0 == 0 −> Lf5 ( y0 , x0 ) Lf6
3 Lf5 ( y1 , x1 ) <−
4 y4 := y1 + (1 ˆ 0)
5 −> Lf7 ( y4 , x1 )
6 Lf6 ( y2 , x2 ) <−
7 −> Lf8 ( y2 , x2 )
8 Lf7 ( y8 , x7 ) Lf8 <− x7 == 0
9 end f ( x7 , y8 )

Fig. 6. Example after dead-code elimination.

4 Example

In order to demonstrate our results, we are going to reuse the example from
S. Muchnick’s book [15] in Fig. 7 with the Janus code on the left and the RSSA
code on the right.

1 procedure m( in t n)
2 l o c a l i n t i=1
3 l o c a l i n t j=2
4 l o c a l i n t k=3
5 l o c a l i n t l=5
6
7 from i=1 do
8 i += j
9 l += j + 1

10 j += 2
11 loop
12 k −= j
13 un t i l ( j <= n)
14
15 d e l o c a l i n t l=8
16 d e l o c a l i n t k=3
17 d e l o c a l i n t j=4
18 d e l o c a l i n t i=3

1 begin m(n0 )
2 i 0 := 0 ˆ (1 ˆ 0)
3 j 0 := 0 ˆ (2 ˆ 0)
4 k0 := 0 ˆ (3 ˆ 0)
5 l 0 := 0 ˆ (5 ˆ 0)
6 −> Lm1 ( i 0 , l 0 , j 0 , n0 , k0 )
7 Lm1 ( i 1 , l 1 , j 1 , n1 , k1 )Lm3 <− i 1 == 1
8 i 2 := i 1 + ( j 1 ˆ 0)
9 l 2 := l 1 + ( j 1 + 1)

10 j 2 := j 1 + (2 ˆ 0)
11 j 2 <= n1 −> Lm4 ( k1 , j 2 , l 2 , i 2 , n1 )Lm2
12 Lm2 ( k2 , j 3 , l 3 , i 3 , n2 ) <−
13 k3 := k2 − ( j 3 ˆ 0)
14 −> Lm3 ( i 3 , l 3 , j 3 , n2 , k3 )
15 Lm4 ( k4 , j 4 , l 4 , i 4 , n3 ) <−
16 0 := l 4 ˆ (8 ˆ 0)
17 0 := k4 ˆ (3 ˆ 0)
18 0 := j 4 ˆ (4 ˆ 0)
19 0 := i 4 ˆ (3 ˆ 0)
20 end m(n3 )

Fig. 7. Example from Advanced Compiler Design and Implementation.

The compiler will compute the USED-set for m as { i4, j2, i2, i3, j1,
i0, j4, j3, i1,n2, n1, j0, n3, n0}.

Thus, variables k and l with their instances k0, k1, k2, k3, k4 and l0,
l1, l2, l3, l4 are not used and will be eliminated from the program, resulting
in the code in Fig. 8.

Calling the unoptimized procedure 10 000 times leads to the execution of
230 003 RSSA instructions in 348 ms in our Java-based virtual machine (also
available at [17]), whereas the optimized procedure requires only 180 003 instruc-
tions which are executed in 227 ms, which is a 34% improvement for this (artifi-
cial) example. Using our new stack-based virtual machine [5], we are able to call
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1 begin m(n0 )
2 i 0 := 0 ˆ (1 ˆ 0)
3 j 0 := 0 ˆ (2 ˆ 0)
4 −> Lm1 ( i 0 , j 0 , n0 )
5 Lm1 ( i 1 , j 1 , n1 )Lm3 <− i 1 == 1
6 i 2 := i 1 + ( j 1 ˆ 0)
7 j 2 := j 1 + (2 ˆ 0)
8 j 2 <= n1 −> Lm4 ( j 2 , i 2 , n1 )Lm2

9 Lm2 ( j 3 , i 3 , n2 ) <−
10 −> Lm3 ( i 3 , j 3 , n2 )
11 Lm4 ( j 4 , i 4 , n3 ) <−
12 0 := j 4 ˆ (4 ˆ 0)
13 0 := i 4 ˆ (3 ˆ 0)
14 end m(n3 )

Fig. 8. Optimized example from Advanced Compiler Design and Implementation.

the procedure 10 000 000 times in 7 089 ms, respectively 5 073 ms for the opti-
mized version, which is a speed-up of 28%. In reality, improvements from dead
code elimination alone will be lower for real-world examples (as is also the case
for traditional languages), and depend heavily on the programming style of the
developer.

For the Janus self-interpreter [20] executing the Fibonacci example 10 times,
the number of RSSA instructions executed in the virtual machine could be
reduced by constant propagation, common sub-expression elimination, proce-
dure inlining as well as dead code elimination from 199 000 instructions to 178 000
instructions, which is a 11% improvement. The execution time was reduced from
633 ms to 547 ms, which is a 14% improvement.

A further example is a program that calls and uncalls a procedure for matrix
inversion 10 000 times. The Janus program contains 182 lines, the unoptimized
RSSA code 465 lines, and the optimized version 918 lines (due to inlining). Using
the Java-based virtual machine, the unoptimized program executes 35,4 million
instructions within 12 787 ms; the optimized version executes only 20,8 million
instructions (41% less) and requires 9 515 ms, which is a speedup of 25.5%.

It is worthwhile noticing that, although only reversible updates are allowed in
Janus and RSSA—which leads to fewer optimization opportunities, as explained
above—, we also eliminate the cleanup (finalization) of unused variables, leading
to further savings in execution time.

5 Conclusions and Outlook

We have briefly shown optimization algorithms for procedure inlining, common-
subexpression elimination, and constant propagation and folding, as well as in
detail for dead-code elimination. As far as we know, these are the first algorithms
for optimization of reversible programs.
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Mogensen [14] provides some suggestions on potential optimizations, further
work or implementations of these are currently not known to us. Our rc3 com-
piler is to our knowledge the first optimizing compiler for reversible languages. It
is publicly available for download from our university’s GIT repository (see [17]).

The inherent requirements of reversible computing require extensions of “tra-
ditional” algorithms to be able to apply them to reversible languages: Traditional
data-flow analysis determines IN and OUT sets either in a forwards manner, i.e.
stepping from one basic block to its successors, or vice versa. But, in a reversible
world, “forwards” and “backwards” in terms of direction of execution are not
distinguishable, making the application of these well-known algorithms by Kil-
dall [8] and others quite difficult.

Further optimizations we are currently exploring are the extension of the
above from the local scope, i.e., within a building block, to a global one, i.e.,
across all blocks of a procedure, as well as loop optimizations such as loop-
unrolling or loop-invariant code motion. Using loop-unrolling, loop variables will
be replaced by constant values leading to further opportunities for constant-
propagation and folding.

With regards to applicability to other programming language paradigms, we
conclude that these do require a translation to intermediate code, too. To our
mind, RSSA is independent from high-level languages and could thus be used
for example for other reversible imperative languages including object-oriented
languages as well. Obviously (as is also the case for conventional languages), poly-
morphism in object-oriented languages can lead to the fact, that it is unknown at
compile-time which method will be called. As is the case for conventional object-
oriented languages, the correct method to be invoked can only be determined at
runtime via the dispatch table of the current object. RSSA does not provide such
a means for dynamic binding, and inlining is only possible if the compiler knows
which method will be called, whereas the other shown optimisations within a
procedure can be applied. Of course, each reversible intermediate language will
require a corresponding definition of USE for each kind of statement.

Functional languages typically require different optimization techniques such
as strictness analysis or tail recursion elimination, i.e. the transformation of
recursion into simple loops. The latter seems to be very difficult for reversible
imperative languages due to the requirement for loops to be reversible.

Acknowledgements. We would like to thank the reviewers who had provided valu-
able feedback and suggestions for improvement.
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