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Abstract. Availability of large, diverse, and multi-national datasets is
crucial for the development of effective and clinically applicable AI sys-
tems in the medical imaging domain. However, forming a global model by
bringing these datasets together at a central location, comes along with
various data privacy and ownership problems. To alleviate these prob-
lems, several recent studies focus on the federated learning paradigm, a
distributed learning approach for decentralized data. Federated learning
leverages all the available data without any need for sharing collabora-
tors’ data with each other or collecting them on a central server. Stud-
ies show that federated learning can provide competitive performance
with conventional central training, while having a good generalization
capability. In this work, we have investigated several federated learning
approaches on the brain tumor segmentation problem. We explore differ-
ent strategies for faster convergence and better performance which can
also work on strong Non-IID cases.

Keywords: Federated learning · Collaborative learning · Brain tumor
segmentation · Medical imaging

1 Introduction

Computer-aided approaches utilizing deep learning models have become promi-
nent in the domain of medical image processing [18]. The amount and diversity of
training data used to develop these models are important for model success and
generalizability [25–27]. Currently, the inadequacy of medical data sources and
labeled data have become a bottleneck and led to poor performance of the deep
learning based solutions [30]. In order to overcome these issues, there are several
initiatives to form diverse datasets to train reliable and robust models that have
good generalization ability and clinical usability. EndoCV Challenges incorpo-
rates diverse endoscopy video frames from several institutions worldwide, includ-
ing different modalities and organs to utilize deep learning methods to detect
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artifacts and diseases [1,2,21,22]. BraTS Challenges brings multi-institutional
multi-parametric magnetic resonance imaging (mpMRI) scans for the analysis
of brain tumors and the dataset has been continuously growing [6]. Although
these initiatives are very important for reliable and clinical-ready models, they
are not feasible to scale because it requires a tremendous work. First of all, it
is difficult to represent whole distribution (e.g., minority and under-represented
groups) as it requires healthy collaborations with many institutions and immense
annotations. Secondly, data properties such as image modalities and resolutions
are in a constant change that leads to distribution shift over time; therefore, col-
lecting and processing all the data for once does not work either. Moreover, due
to the data privacy regulations, collecting sensitive patient data from different
institutions and hospitals is not always applicable. The federated learning (FL)
concept offers a solution in such situations where data privacy and ownership are
a problem by enabling collaborators train a common global model without dis-
closing their local data [15,19]. Several studies employing FL approaches in the
medical domain have reported successful results [8,25,26]. These studies have
drawn the attention of researchers into FL for medical imaging and made it a
popular research field recently.

In this study, we propose various FL approaches for the Federated Tumor
Segmentation (FeTS) Challenge [20]. For the Task-1 of the challenge, the partic-
ipants are provided with an FL environment setup that is based on the OpenFL
[24] framework and they are requested to develop strategies for the development
of the methods in order to extract much of the knowledge from the collabo-
rators. In this task, the participants are allowed to modify four functions: 1)
custom performance metrics, 2) collaborator selection, 3) hyperparameter selec-
tion, and 4) custom aggregator. Our proposed methods took the 3rd place in the
competition.

2 Related Work

Recently, the use of FL has been increasing in the medical field. In [11], Huang
et al. proposed Loss-based Adaptive Boosting Federated Averaging (LoAdaBoost
FedAvg) on critical care database data called as MIMIC-III [13]. In this method,
the collaborators with higher losses than the previous round median loss are
retrained before sending to the server for model aggregation. In [16], Li et al.
have proposed a federated learning system for brain tumor segmentation on
BraTS 2018 dataset [6] and have shown the trade-off between privacy protection
costs and model performance. Similarly, in [26], Sheller et al. have compared
federated learning and other data private collaborative learning approaches such
as institutional incremental learning and cyclic institutional incremental learning
on brain tumor segmentation task. This study has shown that FL can overcome
institutional biases and form a global model that has better generalization where
data amount and data diversity are inadequate. In [8], Dou et al. have used FL
architecture to detect chest CT abnormalities in COVID-19 patients and showed
that federated global model outperforms in terms of generalizability on external
datasets better than individual models and their ensemble.
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3 Data

(a) Natural split, partitioning 1. (b) Artificial split, partitioning 2 :
5 largest institutions are splitted

further according to the tumor sizes.

Fig. 1. The data distribution in the training dataset splits.

The Federated Tumor Segmentation (FeTS) challenge 2021 is the first chal-
lenge in the federated medical imaging area. The challenge data set is composed
of multi-institutional magnetic resonance images from the International Brain
Tumor Segmentation (BraTS) challenge and other independent institutions in
the FeTS initiative [3–5,20,24]. The training set contains 341 images, institution-
based split of which is given in Fig. 1. The validation and the tests sets contain
111 and 166 images, respectively. The segmentation annotations of the chal-
lenge dataset were performed by annotators whose experience levels vary with
respect to their clinical and academic backgrounds. Then, these annotations were
approved by two experienced board-certified neuroradiologists with more than
12 years of experience [20].

4 Methods

4.1 Aggregator

In a real-life FL setting, the data distribution of collaborators is non independent
identically distributed (non-IID) because collaborators may have different data
distribution and the number of observations. The difference in device capabilities,
user demographic information, or geographic location can be major reasons for
the non-IIDness [14,19].

When collaborators have access to differing amounts of data and when they
use the same number of epochs E in their local training, they would perform
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different numbers of local updates τ . If a collaborator has ni samples, number of
local gradient descent (GD) iterations is τi = Eni/B, where B is the mini-batch
size. In [29], Wang et al. have shown that the heterogeneity in collaborators’
local progresses causes convergence to a stationary point of mismatched objective
function, which is different from the true objective, when vanilla weighted aver-
aging is used. Instead, they propose FedNova, a normalized averaging method
that prevents bias toward clients performing more local updates. The shared
global model is updated as in Eq. 1.

xt+1 = xt − τeff

m∑

i=1

pi
Δt

i

τ t
i

(1)

where pi denotes the relative sample size of the collaborator i (i.e., pi = ni/n
where n is the total number of samples), τeff =

∑m
i=1 piτi, Δt

i = xt − xt+1
i ,

and m is the total number of collaborators. Since the number of samples ni for
collaborator i is directly proportional to the number of local iteration τi and the
relative sample size pi, this formula can be rewritten as in Eq. 2.
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where γ refers to the aggregator learning rate, which can be increased or
decreased according to FL training needs. As given in Eq. 2, FedNova corre-
sponds to a uniform averaging with adjustable step size (or learning rate) on
the aggregator. FedNova aims to prevent exacerbation of client drifts caused by
relative sample sizes pi. When there is a significant difference between the num-
ber of samples in the collaborators, as in the FeTS Challenge dataset, FedAvg
creates a bias toward the collaborators having more samples (Fig. 2). Although
validation set (named Val-1 in Sect. 5) results reported during the training may
seem good as its data distribution directly comes from the training set, out-of-
distribution performance results may not be satisfactory. Wang et al. [29] have
shown that FedNova generally achieves 6–9% higher accuracy than FedAvg on
a non-IID version of CIFAR-10 dataset.
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Fig. 2. Naive weighted averaging (FedAvg) creates bias toward collaborators having
higher number of samples, which may adversely affect the out-of-distribution perfor-
mance. On the other hand, FedNova gives equal weights to all collaborators acting as
a regularizer.

Another approach to deal with convergence issues when collaborators’
data distribution is non-IID is Federated Averaging with server momentum
(FedAvgM). The momentum on top of the Stochastic Gradient Descent (SGD)
has proven to provide a significant success in accelerating the training and damp-
ening the oscillations [9]. In [10], Hsu et al. have shown that as the level of non-
IIDness increases, the performance of the FedAvgM stays relatively constant
while federated averaging falls rapidly. Moreover, [23] has shown the improved
effect of adaptive optimizers such as Adam and RMSProp, which are based on
momentum, on top of the federated averaging.

In FedAvgM, the average of the gradients are added to the accumulated gra-
dient which is multiplied by a β parameter to adjust effect of the momentum
as shown in Eq. 3. Then this weighted accumulated gradient is used to update
weights of the current communication round as in Eq. 4. Here, an aggregator
learning rate γ can be used to adjust the step size on the server (in our experi-
ments β is chosen as 0.9 and γ is chosen as 1).

Δwt+1 =
m∑

i=1

piΔwi
t+1

vt+1 = βvt + Δwt+1 (3)

wt+1 = wt − γvt+1 (4)

where pi denotes the relative sample size of the collaborator i (i.e., pi = ni/n
where n is the total number of samples), and m is the total number of collabo-
rators.

Along with FedNova and FedAvgM, other aggregator functions (Table 1) have
been implemented and experimented in the FeTS Challenge. However, in this
article, only the results for FedNova and FedAvgM are presented. Please visit
https://github.com/eceisik/FeTS Challenge METU FL Team to see all imple-
mented methods by the METU FL Team.

https://github.com/eceisik/FeTS_Challenge_METU_FL_Team
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Table 1. The list of other aggregator methods implemented.

Function name Explanation

Make aggregation
with improved nodes

All collaborators participate in each round of FL, but
only those that have improved validation scores partici-
pate in the main model aggregation

Coordinate-wise
median aggregation

Main model weights are determined by taking the median
of the collaborators weights. Median is more robust to the
outliers and extreme values than mean

4.2 Collaborator Selection

How to choose collaborators that will take part in each round is another impor-
tant dimension of the FeTS Challenge. We used “all collaborators train” as a
collaborator choice function and all collaborators participated in each FL round.

We implemented two alternative collaborator choice functions given in
Table 2. If the focus is on the convergence time metric, the method called as
“choose random nodes with faster ones” could be more preferable. This method
does not introduce any extra communication delays, because once a random col-
laborator is selected, only those that are faster than the selected one participate
in the training for the FL round (i.e., selected collaborator creates an upper
bound for the other selected collaborators in terms of time). Although the num-
ber of collaborators participate in each round varies, the working mechanism
tends to favor the fastest collaborators. Being fast, in this case, depends on two
factors namely the amount of available computation/communication resources
and the number of samples in a collaborator. On the other hand, the institutions
having fewer patient images may be over represented, which is a disadvantage
of this method.

4.3 Hyperparameter Selection

For the hyperparameter selection, an adaption of AdaComm [28] with a learning
rate scheduling scheme is used. AdaComm [28] is an adaptive communication
strategy that saves communication delay and enables fast convergence by fed-
erated averaging less frequently in early training rounds and later increasing
communication frequency. In [28], experimental converge analysis was examined
on wall-clock time instead of communication round. It is shown that using more
local updates in the early rounds of training resulted in a faster decrease in loss
but also a higher error. For this reason, it starts with a large number of updates
per round and gradually decreases as the model starts to converge.

In the original version of AdaComm, the method is based on the number of
local updates in an IID setting. However, in the challenge, the data distribu-
tion is extremely uneven. While Institute-1 has 37.83% of the data, Institute-14
has 0.88% of the whole training data (Fig. 1). Using the same number of local
updates for each collaborator could potentially cause over-representation of some
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Table 2. The list of other collaborator choice methods implemented.

Function name Explanation

Choose random
nodes with faster

ones

For the first round, all collaborators participate in the
training and round time statistics are recorded. After the
first round, a random collaborator is selected and partic-
ipates in the current FL round with other collaborators
that are faster than itself

Random
collaborators train

A random subset of collaborators are selected for each
FL round

small data provider institutions. By considering the non-IID nature of the data
distribution, our aggregation method mechanism, and the fact that the number
of local updates is directly proportional to the number of epochs, we adapted this
method based on the decaying number of epoch (AdaptiveEpoch). Basically, the
number of epochs per round at each FL round decays according to the relative
difference between the initial loss and current round loss as stated in Eq. 5.

Et =

⌈√
F (xT=t)
F (xT=0)

E0

⌉
(5)

where T denotes the number of FL rounds, t denotes the round number, Et

denotes the number of epochs at a given round t, and F (x) is the objective
function with respect to model parameters denoted by x.

Learning rate scheduling is a commonly used technique to train deep neural
networks in a centralized manner [9]. Studies show that learning rate scheduling
is also necessary for FedAvg to converge to an optimum point of loss function [17].
However, there are many strategies for scheduling and there is no benchmark for
their performances. In this study, we have adopted decay learning rate on plateau
approach. This strategy brings two new parameters namely patience and decay
factor. In our implementation, learning rate scheduling tracks the target perfor-
mance metric, which is the mean Dice score for ET, TC and WT labels, and if
there is no improvement on the target performance metric for a patience number
of round, the learning rate is updated by scaling with the decay factor. Exper-
iments show that learning rate scheduling provides faster convergence, more
relaxed learning rate selection, higher convergence score, and reduced oscilla-
tions when training converges [9]. The list of hyperparameter selection methods
are given in Table 3. For AdaptiveEpoch initial epoch E0 is set to 8; for the
LR scheduling, the initial LR is set to 0.0002 and patience is set as 15. For the
constant hyperparameters, default values were used (LR = 0.00005, epoch per
round = 1).
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Table 3. The list of other hyperparameter selection methods.

Function name Explanation

Constant
hyperparameters

Use fixed hyperparameters for each FL round

LRScheduling
hyperparameters

Learning rate decays according to the value of average
Dice score with given patience scheme

AdaptiveEpoch
The number of epochs per round decays according to the
decrease in the initial loss

5 Experimental Results and Discussion

Before the FL training, the training dataset is split into train and validation
sets as 80% and 20%, respectively. The performance results of the aggregated
and individual models on validation sets are logged at each FL round (it is
integrated with the FeTS Challenge source code). Unless otherwise stated, all
reported performance metrics and loss graphs belong to this validation set of
partitioning 2.csv. The mean Dice score refers to the average of Dice scores of
ET, TC, and WT labels.

Fig. 3. The performance comparison of FedAvg, FedNova, and FedAvgM.

Figure 3 shows the performances of FedAvg, FedNova, and FedAvgM on
aggregator mean dice score, aggregator loss, and aggregator sensitivity metrics.
Since medical datasets may contain institutional biases [26] and FedAvg have an
undesirable effect of favoring these biases, FedNova is expected to have better
performance on the non-training sets. However, since samples of institutions’
distributions of training and validation sets are similar to each other, we observe
nearly identical performance for both FedAvg and FedNova. Yet, models built
with FedNova are expected to have better inferences on the out-of-distribution
dataset [29], and as such, they are expected to be more suitable for real-life
use-case scenarios. On the other hand, FedAvgM outperforms both FedAvg and
FedNova on all metrics. Therefore, we have preferred FedAvgM as the aggregator
method in the FeTS challenge.
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Fig. 4. The impacts of LR scheduling on FedAvg, FedNova, and FedAvgM.

Figure 4 shows the effect of the LR scheduling approach on each aggregation
method. For both FedAvg and FedNova, it can be observed on both loss function
and performance metrics that LR scheduling has an evident effect on their per-
formances. In particular, a sharp increase on performance metrics occurs when
the LR is decayed. On the other hand, LR scheduling has no improvement on
FedAvgM. One possible reason might be since FedAvgM converges much faster
than the FedAvg and FedNova, it may have directly reached the optimum region
where it does not need any scheduling. However, it should be noted that we have
used fixed values for starting learning rate, decay rate, and patience parameters;
therefore, more experiments with different set of values should be performed to
make a comment on effect of LR scheduling on FedAvgM.

AdaptiveEpoch helps training converge in fewer rounds with higher perfor-
mance due to having more local epochs than using the constant hyperparame-
ters as seen in Fig. 5. The AdaptiveEpoch method improves the performance of
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both FedAvg, FedNova, and FedAvgM on aggregator loss, aggregator mean dice
score, and aggregator sensitivity metrics. The improvement achieved on aggrega-
tor methods by AdaptiveEpoch is much more significant than the LR scheduling.
The performance increase can be observed both on loss and performance metrics.

Fig. 5. The impacts of adaptive epoch on FedAvg, FedNova, and FedAvgM.

Figure 6 shows the performance comparison of different hyperparameter
strategies on FedAvgM. Accordingly, LR scheduling, AdaptiveEpoch, and Adap-
tiveEpoch+LR scheduling improves the baseline model performance. Adap-
tiveEpoch and AdaptiveEpoch+LR scheduling provides faster convergence than
LR scheduling. However, there is no significant difference between AdaptiveEp-
och and AdaptiveEpoch+LR scheduling. Due to the time and resource con-
straints, the number of FL round was set to 70 for all experiments, which in
turn limited the effect of LR scheduling and AdaptiveEpoch+LR scheduling due
to incomplete decaying of LR.
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Fig. 6. The impacts of hyperparameter setting strategies on FedAvgM

Table 4 shows the mean dice score and convergence score obtained on the
validation set. These experiments are performed by using partitioning-2 as data
split. The convergence score is computed as the area under the validation learn-
ing curve where the horizontal axis is the runtime, and the vertical axis is the
performance. Most of the time, FedAvgM outperforms others and achieves the
best mean Dice score and the convergence score for all hyperparameter choice
strategies except for LR scheduling. It is expected and in line with the results
that are presented in Fig. 4. Nevertheless, the convergence score is based on
the validation set reported during the FL training; therefore, the comparison of
convergence scores on an out-of-distribution set is still an open question.

Table 4. The mean Dice score and convergence scores on the validation set.

Validation mean dice Convergence score

FedAvg FedNova FedAvgM FedAvg FedNova FedAvgM

Constant Hyperparameters 0.753 0.753 0.793 0.770 0.770 0.788
LR Scheduling 0.782 0.776 0.781 0.761 0.759 0.744
AdaptiveEpoch 0.796 0.790 0.821 0.797 0.797 0.804
AdaptiveEpoch+LR Scheduling 0.783 0.787 0.814 0.781 0.785 0.795

Table 5 presents the results of the our challenge submission on the challenge
test set with convergence score of 0.770. The results are provided by the FeTS
initiative.
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Table 5. The scores were obtained on Leader Board 2 of Task 1 that our team (METU
FL) won the 3rd rank in the FeTS Challenge.

μ σ Q1 Q2 Q3

Dice ET 0.719 0.268 0.676 0.811 0.887
Dice WT 0.794 0.228 0.807 0.882 0.917
Dice TC 0.741 0.286 0.674 0.870 0.931

Sensitivity ET 0.817 0.277 0.812 0.930 0.974
Sensitivity WT 0.860 0.236 0.869 0.942 0.977
Sensitivity TC 0.832 0.278 0.861 0.945 0.981

Specificity ET 0.999 0.002 0.999 0.999 0.999
Specificity WT 0.998 0.004 0.998 0.998 0.999
Specificity TC 0.999 0.003 0.999 0.999 0.999

Hausdorff95 ET 34.430 96.022 1.414 2.449 9.027
Hausdorff95 WT 19.199 57.799 3.162 5.431 10.355
Hausdorff95 TC 35.288 91.651 2.236 6.240 17.051

6 Conclusion

In this study, we perform comprehensive experiments to compare different hyper-
parameter selection strategies and aggregation methods. The experiments reveal
that FedAvgM has better performance than FedAvg and FedNova. Moreover, it
is shown that the AdaptiveEpoch approach provides performance increase and
faster convergence. However, LR scheduling is not effective with FedAvgM or
AdaptiveEpoch. Therefore, it can be said that methods that work well indi-
vidually may not work well together when combined, or one can reduce the
effectiveness of the other. For instance, while AdaptiveEpoch results in better
validation mean dice scores and convergence scores than using constant hyper-
parameter strategy, when it is combined with LR scheduling, all mean dice and
convergence scores get worse for all aggregation methods (see Table 4).

During the experiments, all collaborators have participated in the local train-
ing process for all rounds. Instead, collaborator choosing methods such as clus-
tering collaborators based on the update similarity or increasing the likelihood
of being chosen collaborators that improved the performance for the random
collaborator choice can be utilized to improve performance.

Moreover, in the medical image domain, there is generally high interobserver
variability in annotations, which can be considered label noise. For example, if
an institution’s label quality is low, the model coming from that institution will
adversely affect the global model; therefore, weights coming from that institution
should be handled carefully. There are defense mechanisms such as KRUM [7],
BARFED [12], or trimmed mean [31] that can overcome the attacks in federated
learning to some extent. These defense strategies may be used to overcome the
label noise.
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7 GPU Training Times

Computation time and cost, as well as energy consumption, are important fac-
tors determining the direction of future research and adoption of the technology
in real life. Table 6 shows the detailed GPU training times of the experiments
that are run on single NVIDIA A100-80GB GPU. LR scheduling has no signif-
icant effect on the training times. On the other hand, although AdaptiveEpoch
strategy brings an increase in performance metrics, its usage nearly doubles the
total training time due to longer round times.

Table 6. The detailed GPU training times (hour).

FedAvg FedNova FedAvgM Total

Constant Hyperparameters 36.7 36.4 34.8 107.9
LR Scheduling 35.1 36.7 36.8 108.6
AdaptiveEpoch 67.2 69.0 68.9 205.1
AdaptiveEpoch+LR Scheduling 65.5 65.8 66.4 197.7

Total 204.5 207.9 206.9 619.3

Acknowledgment. This work has been supported by Middle East Technical Uni-
versity Scientific Research Projects Coordination Unit under grant number GAP-
704-2020-10071. The numerical calculations reported in this paper were performed
using TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA
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