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Abstract. Glioblastoma (GBM) is the most aggressive primary
brain tumor. The standard radiotherapeutic treatment for newly diag-
nosed GBM patients is Temozolomide (TMZ). O6-methylguanine-DNA-
methyltransferase (MGMT) gene methylation status is a genetic
biomarker for patient response to the treatment and is associated with
a longer survival time. The standard method of assessing genetic alterna-
tion is surgical resection which is invasive and time-consuming. Recently,
imaging genomics has shown the potential to associate imaging phenotype
with genetic alternation. Imaging genomics provides an opportunity for
noninvasive assessment of treatment response. Accordingly, we propose a
convolutional neural network (CNN) framework with Bayesian optimized
hyperparameters for the prediction of MGMT status from multimodal
magnetic resonance imaging (mMRI). The goal of the proposed method
is to predict the MGMT status noninvasively. Using the RSNA-MICCAI
dataset, the proposed framework achieves an area under the curve (AUC)
of 0.718 and 0.477 for validation and testing phase, respectively.
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1 Introduction

The most prevalent malignant primary brain tumor in adults is glioblastoma
(GBM) which accounts for 48.3% of all malicious brain tumors [1]. The first
line radiotherapeutic treatment for GBM patients is Temozolomide (TMZ). The
methylation state of the O6-methylguanine-DNA-methyltransferase (MGMT)
gene promoter has been a significant biomarker for tumor response to TMZ
treatment [2]. MGMT methylation status is associated with prolonged survival
time in GBM patients [3]. The standardized method for evaluation of MGMT
status is surgical resection which is invasive and time-consuming. Recently, dif-
ferent studies [4,5] have found that genetic alternations are linked to phenotypic
changes and can be detected using magnetic resonance imaging (MRI) features.
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Predicting MGMT status using MRI features can be broadly categorized into two
categories: application of machine learning (ML) or deep learning (DL) models.
Several studies focused on quantitative and qualitative feature extraction from
pre-operative MRI, and then predicting MGMT status utilizing the extracted
features in different ML models. V. G. Kanas et al. [6] apply quantitative and
qualitative features extracted from segmented tumors, and then apply several
dimensionality reduction methods for multivariate analysis of MGMT status.
Another study by T. Sasaki et al. [7], the authors apply supervised principal
component analysis to predict MGMT status utilizing shape and texture fea-
tures. On the other hand, Authors in [8] apply different architectures of residual
CNN to predict MGMT status. P. Chang et al. [9] focus on 2D CNN filters
to extract features, and then apply principal component analysis (PCA) for
dimensionality reduction of features that is used in the classification of genetic
mutations. The study by E. Calabrese et al. [10] has cascaded deep learned based
tumor segmentation with MGMT classification. After 3D tumor segmentation on
multiparametric MRI sequence, pyradiomics is utilized for extraction of image
features followed by random forest method to analyze the likelihood of MGMT
status in patients. Most of the studies require extensive image pre-processing,
feature extraction, and tumor segmentation before classifying MGMT methyla-
tion status.

In this work, we propose a deep learning-based approach with CNN that does
not require tumor segmentation and feature extraction. In addition, to find the
optimal hyperparameters in CNN we utilize Bayesian Optimization method.

2 Method

2.1 Description of Dataset

The dataset [11-15] is divided into three cohorts as follows: training, valida-
tion and testing. The training dataset consists of 585 patients. Each patient has
four modalities of MRI scans in DICOM (Fig.1): Fluid Attenuated Inversion
Recovery (FLAIR), T1-weighted pre-contrast (T1w), T1-weighted post-contrast
(T1wCE), and T2-weighted (T2). The MGMT status distribution of the training
cohort is as follows: 307 patients are methylated, and 278 patients are unmethy-
lated. The validation cohort consists of 87 patients. Note that the ground truth
of validation data and testing data are kept private by the challenge organizers.

2.2 Radiogenomic Classification Model

A convolution neural network is a stacking of convolutional layers. The layers
can be categorized into different stages where each stage has a same type of
convolutional layer. Each convolution filter is made up of image pixel values
that are modified throughout training. The model’s parameters are adjusted
variables that can be approximated or learned from the data and incorporated
within the learning process [16]. The model parameters are not selected manually



Radiogenomic Prediction of MGMT 359

Patient_ID: 810 MGMT_Status: 0

FLAIR T1wCE

Patient_ID: 579 MGMT_Status: 1

FLAIR Tlw T1wCE T2w

Fig. 1. Representation of MRI modalities with MGMT Status. MGMT status (0) and
(1) indicates unmethylated and methylated status.

such as weights in neural network. Hyperparameters are factors that impact the
model’s training or behavior. Hyperparameters are non-model parameters that
cannot be anticipated from the data set but can be customized by subject matter
experts or via trial and error until an acceptable accuracy is attained [17].

To obtain high accuracy in classification tasks, users must properly handle
the hyperparameter setting procedure, which varies depending on the algorithm
and data collection. This procedure can be carried out by using the algorithm’s
default values or manually configuring them. Another alternative is to use data-
dependent hyperparameter-tuning approaches, which aim to reduce the algo-
rithm’s estimated generalization error over a hyperparameter search space [17].
There are different methods such as random search, grid search, and Bayesian
optimization to automatically configure the hyperparameters. Grid Search eval-
uates the learning algorithm using all possible hyper-parameter combinations
[18]. Every parameter has the same chance of influencing the process. In Grid
Search’s there are a lot of hyper-parameters to set, and the algorithm’s evaluation
phase is highly expensive. Random searches utilize the same search space as Grid
search using a random process. This method does not produce as accurate results
as Grid Search, but it takes less time to compute. The first two approaches are
computationally expensive because random combination of hyperparameters are
considered. Bayesian Optimization use sequential method for global optimization
of objective function [19].
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The main idea behind Bayesian Optimization method is to limit the objec-
tive function’s evaluation phase by devoting more effort to select the next set of
hyper-parameter values. This method is specifically designed to solve the prob-
lem of determining the maximum of an objective function f: X — R, given
as,

argmazzex f(x) (1)

where, X corresponds to hyperparameter space which can be considered as three-
dimensional hypermeter space [19].

The two basic component of Bayesian Optimization is statistical modeling
and acquisition function to determine the next sampling of hyperparameters
[20]. The statistical model generates a posterior probability distribution that
specifies the objective function’s possible values at potential locations [21]. With
the increment in data observations the algorithm performance improves and a
potential region on hyperparameters space is determined using Gaussian Pro-
cess. A Gaussian Process (GP) is a robust prior distribution on functions and a
stochastic process [23]. A multi-variate gaussian process is completely defined by
its mean and covariance matrix. The acquisition function determines the maxi-
mum of objective function at a particular point. The aquistion function consists
of exploration and exploitation phase. The objective of exploration phase is sam-
pling to optimize the search space and the target of exploitation phase to focus
on reduced search space to select optimum samples [24].

The Bayesian optimization method employs a surrogate model that is fitted
to the real model’s observations [25]. In this case, the real model is the Convolu-
tional Neural Network (CNN) with hyperparameters selected for an iteration. In
each iteration, it quantifies the uncertainty in the surrogate model using Gaus-
sian process [26]. Then for next iteration, hyperparameter set is chosen using an
acquisition function that balances the need to explore the whole search space
versus focusing on high-performing sections of the search space.

The proposed pipeline in the Fig. 3 shows data augmentation steps in input
data. After the input is provided in the CNN model (Fig.2), hyperparameter
optimization is performed utilizing the Bayesian Optimization method which
provides the tunned model with optimized hyperparameters [27]. The tunned
model is utilized for a classification model of the methylation status.

2.3 Training Stage

In the training phase, we randomly split the data into 80% training and 20%
validation on the basis on methylation and unmethylation status. In training
phase, we consider only the T1-weighted post-contrast (T1wCE) modality of
MRI. The pre-processing steps consist of selecting fixed number of slices for
each patient. At first, we sort out the middle slice number from the list of slices
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Fig. 2. Architecture of Convolutional Neural Network (CNN) model in pipeline.
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Fig. 3. Overview of the proposed radiogenomic classification pipeline.

for each patient. Afterwards, the slices that are in the range of 25% above the
middle slice and 75% below the middle slice is selected with a fixed interval.
The interval is three but if a patient data contains less than 10 slices then the
interval is changed to one. The selected slices are resized into 32 x 32-pixel value
and normalized between 0 and 255.
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Fig. 4. The Area Under Curve (AUC) in the training stage.

The pre-processed data is augmented prior to feeding into CNN model. The
data augmentation includes random flip along the horizontal axis and random
rotation with scale of 0.1. For hyperparameters optimization the number of trials
is 20 and objective function is to minimize the validation loss. During parame-
ter optimization, the bounded learning rate is between 0.0003 and 0. 003. The
tunned model is trained for 200 epochs with Adam optimizer. Figure 4 shows the
area under curve in the training phase with hyperparameter parameter optimized
model.

3 Online Evaluation Results

We apply our proposed method to the online validation data which consists of
87 patients. The data is available in the RSNA-MICCAI Brain Tumor Radio-
genomic classification competition under the Kaggle Platform [15]. We apply the
pre-processing steps that are discussed in the previous section. The area under
curve (AUC) value in the validation phase is 0.718. In addition, the proposed
method is utilized on testing data which is kept private by the challenge organiz-
ers. The area under (AUC) value in the testing phase is 0.477. The performance
of classification model is shown in the Table 1.



Radiogenomic Prediction of MGMT 363

Table 1. Performance of classification model using online evaluation

Phase Area Under Curve (AUC)
Validation | 0.718
Testing 0.477

4 Discussion

In this study, we have applied CNN with Bayesian hyperparameters optimiza-
tion for classification of MGMT status in Glioblastoma (GBM) patients from
MRI. As it can be seen the model performance on testing data drops compared
to validation data which might be caused by the lack of generalization of model
in the testing data. Moreover, the predictive feature (MGMT) is not directly
visible in imaging data which is rather a genomic biomarker identified by molec-
ular analysis in tissue specimens. However, several studies [28-30] have shown
that genetic alterations express themselves as phenotypic changes that can be
identified by MRI features extracted from the segmented tumor. In our proposed
framework, we do not consider tumor segmentation to extract features from the
segmented tumor. We utilize the pre-processed DICOM directly to evaluate the
methylation status in GBM patient. The goal of the proposed method is to sim-
ulate the real-world clinical scenario and asses how well the model generalizes
the data obtained from different sources.

The selected slices contain the middle slice and slices selected at a regular
interval for each patient. The CNN with Bayesian optimized hyperparameters
assist the model to obtain better classification accuracy as depicted in Fig. 4 and
in the validation phase of the challenge as shown in Table 1. The training phase
contains a simple architecture of CNN and tunned with hyperparameters that
is obtained by reducing an objective function in Bayesian process. Therefore,
the tunning of the hyperparameters improve the performance when the data
distribution is similar in training and validation phase. The dataset consists of
multiple image samples from 18 institutions [31]. The source of data and distribu-
tion of test data is completely different [31] and hence the classification model is
unable to generalize the new data distribution and the selected hyperparameters
are not the optimized ones in testing data.

Bayesian Optimization is included in the pipeline to obtain hyperparameters
that assist in better classification performance by optimizing the search space.
The objective of the Bayesian approach is to reduce the validation loss in each
trial and shrink the hyperparameter space after each trail. After completion of
pre-defined trials on training data, best hyperparameters are included in the final
training of the classification model. However, such hyperparameter optimization
may not be able to generalize to data from different source.
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5 Conclusion

In this paper, we propose a CNN model with Bayesian Optimized hyperpa-
rameters to classify MGMT methylation status in glioblastoma patients. Bayes
Optimization is applied to obtain the hyperparameters for the CNN model. The
goal of this work is to predict the MGMT status using non-invasive MRI fea-
tures. The proposed approach does not require extensive tumor segmentation,
image pre-processing, and feature extraction steps to predict MGMT status.
The proposed method is evaluated on validation and testing dataset provided
by RSNA-MICCAI The validation and testing area under curve (AUC) were
0.718 and 0.477 respectively.

Acknowledgements. We acknowledge partial support from National Institutes of
Health grant # R01 EB020683.

References

1. Ostrom, Q.T., et al.. CBTRUS statistical report: primary brain and other central
nervous system tumors diagnosed in the United States in 2012-2016. Neuro. Oncol.
21(Suppl 5), 1-100 (2019)

2. Liu, D., et al.: Imaging-genomics in glioblastoma: combining molecular and imaging
signatures. Front. Oncol. 11, 2666 (2021)

3. Nam, J.Y., De Groot, J.F.: Treatment of glioblastoma. J. Oncol. Pract. 13(10),
629-638 (2017)

4. Korfiatis, P., et al.: MRI texture features as biomarkers to predict MGMT methy-
lation status in glioblastomas. Med. Phys. 43(6), 2835-2844 (2016)

5. Hajianfar, G., et al.: Noninvasive O6 Methylguanine-DNA methyltransferase sta-
tus prediction in glioblastoma multiforme cancer using magnetic resonance imag-
ing radiomics features: univariate and multivariate radiogenomics analysis. World
Neurosurg. 132, 140-161 (2019)

6. Kanas, V.G., et al.: Learning MRI-based classification models for MGMT methyla-
tion status prediction in glioblastoma. Comput. Methods Programs Biomed. 140,
249-257 (2017)

7. Sasaki, T., et al.: Radiomics and MGMT promoter methylation for prognostication
of newly diagnosed glioblastoma. Sci. Rep. 9(1), 1-9 (2019)

8. Korfiatis, P., Kline, T.L., Lachance, D.H., Parney, I.F., Buckner, J.C., Erickson,
B.J.: Residual deep convolutional neural network predicts MGMT methylation
status. J. Digital Imaging 30(5), 622-628 (2017). https://doi.org/10.1007/s10278-
017-0009-z

9. Chang, P., et al.:Deep-learning convolutional neural networks accurately classify
genetic mutations in gliomas. Am. J. Neuroradiol. 39(7), 1201-1207 (2018)

10. Calabrese, E., et al.: A fully automated artificial intelligence method for non-
invasive, imaging-based identification of genetic alterations in glioblastomas. Sci.
Rep. 10(1), 1-11 (2020)

11. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain
Tumor Segmentation and Radiogenomic Classification. https://arxiv.org/abs/
2107.02314. Accessed 09 Aug 2021


https://doi.org/10.1007/s10278-017-0009-z
https://doi.org/10.1007/s10278-017-0009-z
https://arxiv.org/abs/2107.02314
https://arxiv.org/abs/2107.02314

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

Radiogenomic Prediction of MGMT 365

Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Trans. Med. Imaging. 34(10), 1993-2024 (2015). https://doi.org/
10.1109/TMI.2014.2377694

Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections
with expert segmentation labels and radiomic features. Nat. Sci. Data. 4, 170-171
(2017). https://doi.org/10.1038/sdata.2017.117

Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-GBM collection. In: The Cancer Imaging Archive (2017).
https://doi.org/10.7937/K9/TCIA.2017. KLXWJJ1Q

Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-LGG collection. In: The Cancer Imaging Archive (2017).
https://doi.org/10.7937/K9/TCIA.2017.GJQTROEF

Luo, G.: A review of automatic selection methods for machine learning algorithms
and hyper-parameter values. Netw. Model Anal. Health Inform. Bioinform. 5, 1-6
(2016)

Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281-305 (2012)

Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods for metamodel
validation with recommendations for evolutionary computation. Evol. Comput.
20, 249-275 (2012)

Alibrahim, H., Ludwig, S.A.: Hyperparameter optimization: comparing genetic
algorithm against grid search and Bayesian optimization. In: 2021 IEEE Congress
on Evolutionary Computation (CEC), Krakéw, Poland (2021). https://doi.org/10.
1109/CEC45853.2021.9504761

Dewancker, 1., McCourt, M.J., Clark, S.C.: Bayesian Optimization for Machine
Learning : A Practical Guidebook. arXiv:abs/1612.04858 (2016)

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: 24th International Conference on Neural Information Processing
Systems (NIPS 2011), Red Hook, NY, USA (2011)

Frazier, P.: A Tutorial on Bayesian Optimization. arXiv:abs/1807.02811 (2018)
Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von
Luxburg, U., Réitsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63-71.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

Borgli, R.J., Kvale Stensland, H., Riegler, M.A., Halvorsen, P.: Automatic hyper-
parameter optimization for transfer learning on medical image datasets using
Bayesian optimization. In: 13th International Symposium on Medical Information
and Communication Technology (ISMICT), Oslo, Norway (2019)

Fraccaroli, M., Lamma, E., Riguzzi, F.: Automatic setting of DNN hyper-
parameters by mixing Bayesian optimization and tuning rules. In: Nicosia, G.,
et al. (eds.) LOD 2020. LNCS, vol. 12565, pp. 477-488. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64583-0-43

Guillemot, M., Heusele, C., Korichi, R., Schnebert, S.: Maxime petit and liming
Chen: tuning neural network hyperparameters through Bayesian optimization and
Application to cosmetic formulation data (2019)

Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 2951-2959 (2012)

Liu, D., et al.: Imaging-genomics in glioblastoma: combining molecular and imag-
ing signatures. Front. Oncol. 11, 2666-2021 (2021). https://www.frontiersin.org/
article/10.3389/fonc.2021.699265


https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
https://doi.org/10.1109/CEC45853.2021.9504761
https://doi.org/10.1109/CEC45853.2021.9504761
http://arxiv.org/1612.04858
http://arxiv.org/1807.02811
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1007/978-3-030-64583-0_43
https://www.frontiersin.org/article/10.3389/fonc.2021.699265
https://www.frontiersin.org/article/10.3389/fonc.2021.699265

366 W. Farzana et al.

29. Hajianfar, G., et al.: Noninvasive O6 Methylguanine-DNA methyltransferase sta-
tus prediction in glioblastoma multiforme cancer using magnetic resonance imag-
ing radiomics features: univariate and multivariate radiogenomics analysis. World
Neurosurg. 132, 140-161 (2019). https://doi.org/10.1016/j.wneu.2019.08.232

30. Korfiatis, P., et al.: MRI texture features as biomarkers to predict MGMT methy-
lation status in glioblastomas. Med. Phys. 43(6), 2835-2844 (2016). https://doi.
org/10.1118/1.4948668

31. RSNA-MICCAI Brain Tumor Radiogenomic Classification-Kaggle. https://www.
kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification. Accessed 09
Aug 2021


https://doi.org/10.1016/j.wneu.2019.08.232
https://doi.org/10.1118/1.4948668
https://doi.org/10.1118/1.4948668
https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification

	Radiogenomic Prediction of MGMT Using Deep Learning with Bayesian Optimized Hyperparameters
	1 Introduction
	2 Method
	2.1 Description of Dataset
	2.2 Radiogenomic Classification Model
	2.3 Training Stage

	3 Online Evaluation Results
	4 Discussion
	5 Conclusion
	References




