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Abstract. Tumor delineation is critical for the precise diagnosis and
treatment of glioma patients. Since manual segmentation is time-
consuming and tedious, automatic segmentation is desired. With the
advent of convolution neural network (CNN), tremendous CNN mod-
els have been proposed for medical image segmentation. However, the
small size of kernel limits the shape of the receptive view, omitting the
global information. To utilize the intrinsic features of brain anatomical
structure, we propose a modified U-Net with an attention block (AttU-
Net) to tract the complementary information from the whole image. The
proposed attention block can be easily added to any segmentation back-
bones, which improved the Dice score by 5%. We evaluated our approach
on the dataset of BraTS 2021 challenge and achieved promising perfor-
mance on this dataset. The Dice scores of enhancing tumor, tumor core,
and whole tumor segmentation are 0.793, 0.819, and 0.879, respectively.
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1 Introduction

Glioma is the most common tumor of the central nerves system in adults and
glioblatoma is the most aggressive one, with nonspecific signs and symptoms.
Early diagnosis and promote therapy are main determinants of prognosis. Mag-
netic resonance images (MRI) is wildly utilized in clinical practice for tumor
localization, diagnosis, risk stratification and precise resection.

Therefore, tumor delineation is quite important but manual segmentation is
rather time-consuming. Automatic and precise tumor segmentation is desired.
This year, the Brain Tumor Segmentation (BraTS) challenge is held to encourage
the development of brain tumor segmentation [2,3]. Consistent with clinical prac-
tice, four common MRI sequences, a native pre-contrast (T1), a post-contrast
T1-weighted (T1Gd), a T2-weighted (T2) and a T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR), are provided for segmentation. Figure 1 shows an exam-
ple of image set. The tumor tissue shown in MRI could be categorized into 3
sub-regions, i.e., the enhancing tumor (ET), the tumor core (TC) and the whole
tumor (WT). The TC entails the ET and the necrotic (NCR), while the whole
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tumor (WT) describes the whole tumor region, consisting TC and the peritu-
moral edematous/invaded tissue (ED) [4,5,15]. There is an intersection between
ET, TC and WT, for prediction convenience, the independent regions, NCR, ED
and ET, are set to segmentation labels. As shown in the Fig. 1, there is clear
inclusion relation between target labels, i.e., ED /∈ ET, NCR.

Fig. 1. An example image set. Four sequences are provided. Ground Truth is tumor
manual segmentation results, where red presents NCR (the smallest sub-region), green
refers to ED and yellow is ET. Red plus yellow region is tumor core and all the three
region together is WT. (Color figure online)

Recently, tremendous deep learning approaches for brain tumor segmentation
have been proposed. U-Net [16] is a prevailing backbone in medical image seg-
mentation, with symmetric encoder and decoder structure. Kayalibay et al. pro-
posed a successful U-Net variant for BraTS 2015, and achieved state of art results
that year [12]. Later, Fabian et al. enhanced the U-Net’s skip-connection strat-
egy, which was added after convolution layer in each encode and decode stage,
to maintain previous extracted feature, and achieve promising performance in
BraTS 2017 [10]. Moreover, Isensee et al. proposed a compositive and automatic
segmentation framework with preprocessing, network and post-processing, which
could automatically configures itself and suit for the most of tasks [8], and this
network achieved top performance in BraTS2020 [9].

However, there are intrinsic drawbacks lying behind CNN. For brain datasets,
its symmetric anatomical structure information would dramatically facilitate the
pathology segmentation, i.e., doctors will highly concern about the asymmetric
structure. Whereas, the size of CNN kernel is rather small, generally 3×3, leading
to local receptive view and omitting global information while extracting feature
[1,18]. In this way, the introduction of attention mechanism for global relation
extraction, could alleviate the aforementioned drawback. Attention mechanism
was first proposed for natural language processing task to perceive context [17].
Its promising performance boosted mass related research in the filed of com-
puter vision [6,14]. Hu et al. first combined attention mechanism with CNN
for classification. The attention map weighted the feature map, as the output
of the attention block [7]. In [13], a lightweight attention mechanism were pro-
posed, which applied to the feature maps of decoder, for retinal vessel image
segmentation.
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Inspired by the aforementioned works, we proposed a 3D attention U-Net,
namely AttU-Net for brain tumor segmentation. The contribution of our app-
roach can be summarized as follows.

1) We propose a segmentation model which could segment pathology with com-
plementary information from the intrinsic anatomical brain structure. The
attention maps are utilized for the enhancement of the determinant feature
for segmentation.

2) We modify a light-weight attention block for volume data and combine it
with U-Net organically. The proposed attention block could easily adapt for
any common backbone.

3) We propose a fully automatic 3D segmentation framework for brain tumor,
and validate it with a public dataset from BraTS 2021.

2 Methods

The overall structure of AttU-Net consists five components, i.e., an encoder, a
symmetric decoder, attention blocks, multi-scale supervision and skip-connection
strategy, shown in Fig. 2. We will formulate the backbone first in the Sect. 2.1
and then elaborate the structure of the attention block in Sect. 2.2.

2.1 Network Architecture

The backbone is modified from the typical U-Net [16]. The encoder is composed
of five convolution blocks, connected by the maximum pooling layer. Each of
convolution block consists of three 3 × 3 × 3 convolution layers with stride 2 to
reduce feature resolution, and followed by a Leaky-ReLu Activation Layer. The
decoding process is symmetric with encoder, also with five block but connected
by up-sampling layer. The shape of feature map in each encoder convolution
blocks are 16, 32, 64, 128 and 256, while the order in decoder is opposite. The
attention blocks (named A) are added to encoding process, to track feature
correlation, which will be elaborated later. The last convolution layer in decoder
is a 1 × 1 × 1 convolution, and the number of output channel is 4, representing
background, NCR, ET and ED. Moreover, we leverage multi-scale supervision for
details segmentation. The output of each stage will go over a 1×1×1 convolution
layer to predict multi-scale segmentation map, followed by up-sampling. The
reshaped predicted map will be added to the final segmentation map (Fig. 3).

2.2 Attention Block

As stated previously, the anatomic structure of brain is intrinsic symmetric. We
assume that the region which is heterogeneous compared with the other side has
higher probability to be tumor [11]. In order to extract global feature, we adopt
a pixel-wise attention block to weight the middle layer feature map. We propose
a slice-self attention block, to extract the asymmetric regions, which can indicate
areas at risk.
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Fig. 2. The network structure of AttU-Net, which consists of an encoder, a symmet-
ric decoder, skip-connection strategy, attention blocks and multi-scale supervision. A
stands for attention block. The depths of feature map are signed above.

Fig. 3. The structure of attention block, which consists of feature mapping, similarity
calculation and skip-connection. FE , FD and FE+D present the feature from encoder,
the feature from decoder in the same stage and concatenated feature, respectively.

An attention block consists three stages, feature mapping, similarity calcu-
lation and skip-connection. Feature mapping stage is to map the three origin
feature map to the space K, Q, V for following calculation. K, Q are calculated
from feature of decoder (FD) and the feature from encoder in the same stage
(FE), respectively, while V are calculated from the feature after skip-connection
(FD+E). The target feature are first go over a convolution layer with 1×1×1 ker-
nel, to reduce dimension. FD and FE ∈ RD×C×H×W while FD+E ∈ RD×C×H×W ,



306 S. Wang et al.

and the outputs of the convolution layer are all ∈ RD/2×C×H×W . Since it’s more
convenient to compute similarity matrix in two dimension, we flatten the feature
map from D/2 × C × H × W to D/2 × C × N , where N = H × W . Then, we
compute attention map with K and Q, using

A = KTQ, (1)

where A presents attention map ∈ RD/2×N×N . Since similarity matrix is a coef-
ficient matrix whose value should be within [0,1], so we apply softmax on the
previous result. As mentioned before, the attention map indicates the pixel-wide
similarity, the aji represents the similarity between kj and qi. Since we compute
the feature with encoder feature and decoder feature, the attention map high-
lights model attention, where is determinant to segmentation results. Then we
utilize the attention map to weight V, calculated it by function f(·) = V · A,
∈ RD/2×C×N . Finally, we reshape the previous result to D/2 × C × N , and
concatenate which with original feature FD+E , using

Yi = λ(
N∑

i=1

(aijVj)) + FE+D∗
j
, (2)

where Y represents output of attention block, X stands for FD+E after first
convolutional layer and λ is a hyper parameter. The input of attention map
FD+E ∈ R2D×C×H×W while the output ∈ RD×C×H×W .

The Dice loss is utilized as loss function. Since, it’s a four classes segmentation
task, while training, we noticed that NCR (label 1) was the most difficult part.
Hence we utilized weighted Dice score, that is,

Loss = λ1LDice(Lab1)+λ2LDice(Lab2)+λ3LDice(Lab3))+λ0LDice(Lab0), (3)

where Lab0 means value equal to 0, etc. Based on experiments, we set λ1 = 1.2
while others = 1.

3 Experiments

3.1 Dataset

The proposed model was evaluated in the BraTS2021 challenge dataset which
contains 1000 training instances and 216 validation instances, each of which
consists four sequence, i.e., T1, T2, T1-Gd and FLAIR. The training sets is
consisted of labeled image for supervised learning. The depth, width and length
of 3D brain MR images are 155, 240, 240, respectively.
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Table 1. The quantitative results of the proposed on test dataset.

Teams Dice Hausdorff Distance (mm)

ET TC WT ET TC WT

Mean 0.793 ± 0.253 0.819 ± 0.267 0.879 ± 0.146 23.0 ± 80.3 20.7 ± 71.5 7.80 ± 14.2

Median 0.886 0.925 0.930 1.72 3.16 2.83

3.2 Pre-processing

To reduce the modeling difficulty, we omitted noisy information from original
image, by cropping the image into 128× 128 × 128 size. Later, data augmen-
tation techniques, including random crop, flipping, rotation, were utilized to
improve model generalization ability. Four sequences were concatenated into
four channel and the shape of input was 128× 128 × 128.

3.3 Implementations

We treated brain MRI as volume data with the depth, width and length were 155,
240, 240, respectively. Four sequences would be concatenated as four dimensions
data, [4, 155, 240, 240], as a whole input. The origin images have been cropped
into [4, 128, 128, 128], which could roughly contain all the brain tissue. The
training process adopted the batch iteration method, with the batch size as 8,
1000 epochs performed. The model was implemented in Pytorch and optimized
by the Adam algorithm. The initial learning rate was set to 0.004, and decay
with epoch growing, updated by the equation,

lr =
1
8

∗ lrinit ∗ (
1 − epoch

epochmax
)0.9. (4)

The all model was performed on four NVIDIA GTX 3080Ti grahics cards. Train-
ing time was about 12 h per model using 4 GPUs.

Table 2. Sensitivity and specificity results of the proposed model on test dataset.

Teams Sensitivity Specificity

ET TC WT ET TC WT

Mean 0.814 0.872 0.828 1.000 0.999 1.000

Median 0.251 0.155 0.259 0.000 0.001 0.001
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Table 3. The quantitative results of the abaltion study on validation dataset. The
AttU-NET represents the proposed model, while the U-Net has the same backbone as
AttU-Net but without attention blocks. U-NET∗ is the structure without multi-scale
strategy.

Teams Dice Hausdorff Distance (mm)

ET TC WT ET TC WT

U-NET∗ 0.745 ± 0.294 0.752 ± 0.320 0.863 ± 0.159 29.2 ± 90.7 20.6 ± 66.1 8.54± 14.8

U-NET 0.748 ± 0.290 0.767 ± 0.302 0.871 ± 0.136 30.8 ± 93.5 18.2 ± 61.0 6.99 ± 9.82

AttU-NET∗ 0.782 ± 0.257 0.774 ± 0.301 0.895 ± 0.098 21.5 ± 77.4 17.1 ± 60.8 6.85 ± 12.1

AttU-NET 0.808 ± 0.242 0.818 ± 0.276 0.912 ± 0.092 18.7 ± 73.7 17.6 ± 65.6 4.60±8.48

Fig. 4. The segmentation results. Three Prediction samples for randomly were selected
slices from middle, top and bottom, respectively. AttU-Net obtained more precise pre-
diction, especially on the edge and tiny regions, than U-Net. The predicited edge of
AttU-Net is smoother and suit for origin image, represented by arrows.

3.4 Results

Our approach achieves final Dice score (on the testing dataset) 0.793, 0.879, 0.819
and Hausdorff Distance (HD) 23.1 mm, 7.80 mm and 20.7 mm on label ET, WT
and TC respectively, as shown in Table 1. The sensitivity and specificity are also
presented in Table 2. In general, the performance of the delineation of WT is
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much better than the other two labels. The reason for dramatic gap between the
performance among labels may lie in the different size among them. Generally,
the size of the of ET is dramatically smaller than WT region and with more
variant shape, which would be more challenging for automatic segmentation.

In order to compare the performance of different strategies, we also present
the quantitative results of ablation study on the validation dataset, shown in the
Table 3, since the ground-truth of test dataset is not public.

The proposed network achieved the best value in almost every metrics, except
for HD of TC. The performance of attention block can be clearly indicated by the
metrics value’s gap between Att-UNet and baseline U-Net. The baseline U-Net
shares the same convolution backbone, but without attention block, achieving
0.748, 0.767 and 0.871 Dice scores on label ET, TC and WT, respectively. Atten-
tion block strategy improved the segmentation results by nearly 5%. Moreover,
the multi-scale segmentation strategy could dramatically benefit the prediction,
especially for edge and tiny regions, shown in Fig. 4.

The predicted results are presented in Fig. 4. Our algorithm is capable to
detect large tumor regions as well as small details. The predicted edge of Att-
Unet is smoother than baseline U-Net. However, there are drawback of seg-
menting the slices near top. Since the proposed model did not consider spatial
information. We tried to flatten the last dimension (C, H, W) to calculate spatial
similarity, but the results was under desired and additional computing consump-
tion was introduced. It may be due to the lose of position after flatten.

3.5 Conclusion

In this paper, we designed an AttU-Net for the BraTS2021 challenge. We lever-
aged attention blocks to extract symmetric shape information. Moveover, we
modified segmentation backbone from U-Net, adapting for volume datasets. On
the validation set, we achieved Dice score 0.808, 0.818 and 0.913 on label ET,
TC and WT, respectively. Due to the time limits, we omitted the number of
architectural variants. As mentioned before, there were some outliers prediction
on the slices near the top of brain. It may be due to the lacks of spatial infor-
mation, since it just calculates the similarity within one slice. Moreover, there
are intrinsic relation between targets regions, we could constrains the prediction
using prior relation in the future.
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