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Abstract. Brain tumor segmentation from multiple Magnetic Reso-
nance Imaging (MRI) modalities is a challenging task in medical image
computation. The main challenges lie in the generalizability to a variety
of scanners and imaging protocols. In this paper, we explore strategies
to increase model robustness without increasing inference time. Towards
this aim, we explore finding a robust ensemble from models trained using
different losses, optimizers, and train-validation data split. Importantly,
we explore the inclusion of a transformer in the bottleneck of the U-
Net architecture. While we find transformer in the bottleneck performs
slightly worse than the baseline U-Net in average, the generalized Wasser-
stein Dice loss consistently produces superior results. Further, we adopt
an efficient test time augmentation strategy for faster and robust infer-
ence. Our final ensemble of seven 3D U-Nets with test-time augmentation
produces an average dice score of 89.4% and an average Hausdorff 95%
distance of 10.0 mm when evaluated on the BraTS 2021 testing dataset.
Our code and trained models are publicly available at https://github.
com/LucasFidon/TRABIT BraTS2021.

Keywords: BraTS 2021 · Segmentation · Deep learning · Brain
tumor · Transformers · Test-time augmentation

1 Introduction

Gliomas are the most common malignant brain tumors. Broadly, Gliomas are
categorized into aggressive high-grade and slow-growing low-grade types. In both
types of Gliomas, changes in tissues caused by tumor cells can be captured using
multi-modality Magnetic Resonance Imaging (MRI). The commonly used modal-
ities are T1, T2, contrast-enhanced T1 (ceT1), and FLAIR. These modalities are
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the default choice for the radiologist to identify the tumor type and its progres-
sion stage. Towards this objective, accurate and automatic brain tumor segmen-
tation based on multi-parametric MRI is an active field of research [23] and
could support diagnosis, surgery planning [11,12], follow-up, and radiation ther-
apy [1,2]. The BraTS 2021 challenge has offered an unique and unprecedented
opportunity to machine learning researchers to develop a clinically deployable
solution for Glioma multi-class segmentation.
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Fig. 1. Illustration of the 3D U-Net [10] architecture used. Blue boxes represent
feature maps. IN stands for instance normalization [32]. The design of this 3D U-Net
was determined using the heuristics of nnU-Net and our previous work [13,16,17,21].
(Color figure online)

Aiming for computational efficiency, we use 3D U-Net, and its recent trans-
former variation, TransUNet [9], as the primary models and focus on finding
better learning schemes, such as, augmentation, loss function, optimizer, and
efficient inference routine for ensemble model. Recently it has been shown that
different loss function combinations may have a crucial impact on the resul-
tant segmentation [24]. In our settings, we use the Generalized Wasserstein Dice
loss [15] that has shown superior segmentation performance as compared to the
mean Dice loss [26,28,30] in the BraTS 2020 challenge [16] and for other medical
image segmentation tasks [8,31]. We investigate the effect of different state-of-
the-art optimizers, such as, SGD, SGDP [20], ASAM [25]. Lastly, we use an
efficient test-time ensemble approach for the final segmentation result.

2 Methods and Materials

2.1 Data

We have used the BraTS 2021 dataset1 [3] in our experiments. No additional
data were used. The dataset contains the same four MRI sequences (T1, ceT1,
1 https://www.synapse.org/#!Synapse:syn25829067/wiki/610865.
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T2, and FLAIR) for all cases, corresponding to patients with either a high-grade
Gliomas [5] or a low-grade Gliomas [6]. All the cases were manually segmented
for peritumoral edema, enhancing tumor, and non-enhancing tumor core using
the same labeling protocol [3,4,7,27]. The training dataset contains 1251 cases,
and the validation dataset contains 219 cases. MRI for training and validation
datasets are publicly available, but only the manual segmentations for the train-
ing dataset are available. The evaluation on the validation dataset was performed
using the BraTS 2021 challenge online evaluation platform2. For each case, the
four MRI sequences are available after co-registration to the same anatomical
template, interpolation to 1mm isotropic resolution, and skull stripping [27].

2.2 Deep Learning Pipeline

We used the DynU-Net of MONAI [29] to implement a baseline 3D U-Net with
one input block, 4 down-sampling blocks, one bottleneck block, 5 upsampling
blocks, 32 features in the first level, instance normalization [32], and leaky-ReLU
with slope 0.01. An illustration of the architecture is provided in Fig. 1. We have
used the same pipeline for our participation to the FeTA challenge 2021 [14].

Transformers have recently received attention in medical image computing
for their multi-hop attention mechanism. As a second network architecture, we
replace the bottleneck block of the U-Net with a vision transformer as proposed
by [9]. We use the identical transformer architecture for our experiment as in [9].
A transformer in the bottleneck allows to accumulate the global context of the
image and learn an anatomically consistent representation of the tumor classes.

Table 1. Network architecture specification

Network No. of parameter Avg. inference time

3D U-Net [10] 31.2M 6 s

TransUNet [9] 116.7M 10 s

Table 1 shows a comparison in terms of the number of parameters and infer-
ence time between 3D U-Net and transUNet. For both networks, we train using
a patch size of 128 × 192 × 128.

2.3 Loss Function

We have experimented with two loss functions: the sum of the cross-entropy loss
and the mean-class Dice loss

LDL+CE = LDL + LCE (1)

2 https://www.synapse.org/#!Synapse:syn25829067/wiki/.
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and the sum of the cross entropy loss and of the generalized Wasserstein Dice
loss3 [15,16].

LGWDL+CE = LGWDL + LCE (2)

where LCE is the cross entropy loss function

LCE(p̂,p) = −
N∑

i=1

L∑

l=1

pi,l log(p̂i,l) (3)

with N the number of voxels, L the number of classes, i the index for voxels, l
the index for classes, p̂ = (p̂i,l)i,l the predicted probability map, and p = (pi,l)i,l
the discrete ground-truth probability map.

LDL is the mean-class Dice loss [26,30]

LDL(p̂,p) = 1 − 1
L

L∑

l=1

2
∑N

i=1 pi,lp̂i,l∑N
i=1 pi,l +

∑N
i=1 p̂i,l

(4)

And LGWDL is the generalized Wasserstein Dice loss [15]
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LGWDL(p̂,p) = 1 − 2
∑

l �=b

∑
i pi,l(1 − WM (p̂i,pi))

2
∑

l �=b[
∑

i pi,l(1 − WM (p̂i,pi))] +
∑

i W
M (p̂i,pi)

∀i, WM (p̂i,pi) =
L∑

l=1

pi,l

(
L∑

l′=1

Ml,l′ p̂i,l′

)

(5)
where WM (p̂i,pi) is the Wasserstein distance between predicted p̂i and ground
truth pi discrete probability distribution at voxel i. M = (Ml,l′)1≤l, l′≤L is a
distances matrix between the BraTS 2021 labels, and b is the class number cor-
responding to the background. For the classes indices 0: background, 1: enhancing
tumor, 2: edema, 3: non-enhancing tumor, we set

M =

⎛

⎜⎜⎝

0 1 1 1
1 0 0.7 0.5
1 0.7 0 0.6
1 0.5 0.6 0

⎞

⎟⎟⎠ (6)

The generalized Wasserstein Dice loss [15] is a generalization of the Dice Loss
for multi-class segmentation that can take advantage of the hierarchical structure
of the set of classes in BraTS. When the labeling of a voxel is ambiguous or too
difficult for the neural network to predict it correctly, the generalized Wasserstein
Dice loss and our matrix M are designed to favor mistakes that remain consistent
with the sub-regions used in the evaluation of BraTS, i.e., core tumor and whole
tumor.

3 https://github.com/LucasFidon/GeneralizedWassersteinDiceLoss.

https://github.com/LucasFidon/GeneralizedWassersteinDiceLoss
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2.4 Optimization

Common Optimization Setting: For each network, the training dataset was
split into 95% training and 5% validation at random. The random initialization
of the weights was performed using He initialization [19] for all the deep neu-
ral network architectures. We used batch size 2. The CNN parameters used at
inference corresponds to the last epoch. We used deep supervision with 4 levels
during training. Training each 3D U-Net required 16GB of GPU memory.

SGD: SGD with Nesterov momentum. The initial learning rate was 0.02, and
we used polynomial learning rate decay with power 0.9 for a total of 500 epochs.

ADAM [22]: For Adam, we used a linear warmup for 1000 iterations for the
learning rate from 0 to 0.003 followed by a constant learning rate schedule at
the value 0.003 for 500 epochs.

Adaptive Sharpness-Aware Minimization (ASAM) [18,25]: We have used
SGD as the base optimizer with the initial learning rate set to 0.02 and we used
polynomial learning rate decay with power 0.9 for a total of 500 epochs. We used
the default hyperparameters of ASAM [25], ρ = 0.5, and η = 0.1. We have used
the PyTorch implementation of the authors4.

SGDP [20]: For SGD Projected (SGDP), we have used the exact same hyper-
parameter values as for SGD. We have used the PyTorch implementation of the
authors5.

2.5 Data Augmentation

We have used random zoom (zoom ratio range [0.7, 1.5] drawn uniformly at ran-
dom; probability of augmentation 0.3), random rotation (rotation angle range
[−15◦, 15◦] for all dimensions drawn uniformly at random; probability of aug-
mentation 0.3), random additive Gaussian noise (mean 0, standard deviation 0.1;
probability of augmentation 0.3), random Gaussian spatial smoothing (standard
deviation range [0.5, 1.5] in voxels for all dimensions drawn uniformly at ran-
dom; probability of augmentation 0.2), random gamma augmentation (gamma
range [0.7, 1.5] drawn uniformly at random; probability of augmentation 0.3),
and random right/left flip (probability of augmentation 0.5).

2.6 Inference

Single Models Inference: For the models evaluated and compared in Fig. 2,
a patch-based approach is used. The input image is divided into overlapping
patches of size 128 × 192 × 128. The patches are chosen, so that neighboring
patches have an overlap of at least half of their volume. The fusion of the patch

4 https://github.com/SamsungLabs/ASAM.
5 https://github.com/clovaai/AdamP.

https://github.com/SamsungLabs/ASAM
https://github.com/clovaai/AdamP
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prediction is performed using a weighted average of the patch predictions before
the softmax operation. The weights are defined with respect to the distance of
a voxel to the center of the patch using a Gaussian kernel standard deviation
for each dimension equal to 0.125×patch-dimension. In addition, test-time aug-
mentation [33] is used with right-left flip. The two softmax predictions obtained
with and without right-left flip are merged by averaging.

Ensemble Inference: For the ensembles, the inference is performed in two
steps. During the first step, a first segmentation is computed using only one
model and the inference procedure for single models. In practice, we used the
first model of the list and did not tune the choice of this model.

The first segmentation is used to estimate the center of gravity of the whole
tumor. In the second step, we crop a patch of size 128 × 192 × 128 with a center
chosen as close as possible to the center of gravity of the tumor so that the
patch fits in the image. The segmentation probability predictions of all the mod-
els of the ensemble are computed for this patch. The motivation for this two-step
approach is to reduce the inference time as compared to using the patch-based
approach described above for all the models of the ensemble. This strategy is
based on the assumption that a patch of size 128 × 192 × 128 is large enough
to always contain the whole tumor. During the second step, test-time augmen-
tations with right-left flip and zoom with a ratio of 1.125 are used. The four
segmentation probability predictions obtained for the different augmentations
(no flip - no zoom, flip - no zoom, no flip - zoom, and flip - zoom) are combined
by averaging the softmax predictions. For the full image segmentation prediction,
the voxels outside the patch centered on the tumor are set to the background.

3 Results

As a primary metric, we report the mean and the standard deviation of the Dice
score and the Hausdorff distance for each class. Percentiles are common statistics
for measuring the robustness of automatic segmentations [13]. To evaluate the
robustness of the different models, we report the percentiles of the Dice score at
25% and 5% and the percentiles at 75% and 95% of the Hausdorff 95% distance.
In Table 2, we report the validation scores of our individually trained models.
In Table 3 we compare two ensemble strategies as described in the previous
section. In the ensemble models, we don’t include the TransUNet model as their
individual performance is marginally worse than the 3D U-Net model.

4 Discussion

From Table 2, we see that 3D U-Net trained with generalized Wasserstein Dice
loss performs consistently better than the one with Dice loss (baseline model).
TransUNet does not offer any improvement over the baseline. Rather the per-
formance deteriorates slightly. We hypothesize that over-parameterization can
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Table 2. Segmentation results on the BraTS 2021 Validation dataset. The
evaluation was performed on the BraTS online evaluation platform. ET: Enhancing
Tumor, WT: Whole Tumor, TC: Tumor Core, Std: Standard deviation, px: Percentile
x. The split number corresponds to the random seed that was used to split the training
dataset into 95% training/5% validation at random.

Dice score (%) Hausdorff 95% (mm)

Model ROI Mean Std p25 p5 Mean Std p75 p95

3D U-Net ET 82.6 23.7 83.6 7.7 17.9 73.7 2.2 25.4

GWDL + CE SGD TC 86.4 20.1 86.8 37.7 11.2 50.1 4.2 19.4

Split 1 WT 92.5 7.4 90.7 82.1 3.8 5.7 3.6 17.7

3D U-Net ET 82.2 24.0 82.9 7.2 17.8 73.7 2.4 18.1

GWDL + CE SGD TC 86.5 20.4 86.1 37.7 11.1 50.1 4.4 21.3

Split 2 WT 92.5 7.4 90.6 82.6 3.8 5.9 3.7 11.5

3D U-Net ET 81.9 24.5 82.5 5.3 19.5 77.5 2.2 31.7

GWDL + CE SGD TC 85.7 21.6 86.0 30.5 11.5 50.1 4.2 20.8

Split 27 WT 92.5 7.1 90.5 81.7 4.0 6.2 3.9 10.6

3D U-Net ET 81.9 24.9 83.0 0.0 21.1 81.0 2.2 67.0

GWDL + CE SGD TC 86.5 20.7 87.2 38.5 9.5 43.7 4.1 16.9

Split 1227 WT 92.5 7.3 90.6 81.1 3.8 5.8 3.7 11.7

3D U-Net ET 82.4 24.4 83.2 2.9 19.5 77.5 2.4 30.3

GWDL + CE SGD TC 85.8 21.7 86.3 27.6 11.5 50.1 4.6 23.0

Split 122712 WT 92.4 7.1 90.2 81.7 4.1 7.0 3.9 11.4

3D U-Net ET 81.7 24.9 82.9 0.0 21.3 81.1 2.4 89.3

DL + CE SGD TC 86.5 20.4 86.3 40.2 11.0 50.1 4.1 17.9

Split 1 WT 92.5 7.2 90.6 80.2 3.9 6.7 3.9 9.8

3D U-Net ET 82.1 24.2 82.8 5.4 19.5 77.5 2.5 31.3

GWDL + CE SGDP TC 86.3 20.5 86.4 40.4 9.7 43.7 4.1 20.2

Split 1 WT 92.6 7.4 90.5 82.0 3.8 5.9 3.7 11.0

3D U-Net ET 80.0 25.7 81.5 0.0 23.4 84.5 3.0 373.1

GWDL + CE ASAM TC 85.4 21.5 86.1 35.3 12.2 50.8 4.2 21.7

Split 1 WT 91.9 7.9 90.0 77.2 5.4 10.7 4.2 22.0

TransUNet ET 79.7 25.3 80.1 0.0 22.4 81.0 3.0 113.4

GWDL + CE SGD TC 84.5 22.0 84.5 36.5 8.7 36.5 4.9 24.9

Split 1 WT 91.8 7.3 90.2 77.2 4.4 7.6 4.1 12.7

TransUNet ET 80.9 24.1 81.2 6.5 18.5 73.6 3.0 37.7

GWDL + CE ADAM TC 84.8 21.9 84.7 36.44 10.3 43.8 4.6 24.6

Split 1 WT 91.9 7.8 90.0 80.1 4.1 6.5 4.1 14.9

TransUNet ET 80.2 25.5 80.4 0.0 23.1 84.3 3.0 373.1

GWDL + CE SGDP TC 85.2 21.9 85.6 27.6 11.45 50.0 4.5 19.9

Split 1 WT 92.0 7.4 90.1 79.7 4.7 9.1 4.0 18.0
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Table 3. Segmentation results on the BraTS 2021 Validation dataset for
ensembling and test-time augmentation. The evaluation was performed on the
BraTS online evaluation platform. ET: Enhancing Tumor, WT: Whole Tumor, TC:
Tumor Core, Std: Standard deviation, px: Percentile x. Best values are in bold.

Dice score (%) Hausdorff 95% (mm)

Model ROI Mean Std p25 p5 Mean Std p75 p95

3D U-Net ET 82.0 24.4 83.0 3.1 19.5 77.5 2.3 30.0

Ensemble TC 86.6 20.2 86.5 39.2 9.5 43.7 4.1 20.1

WT 92.6 7.2 90.6 82.0 3.9 6.3 3.6 12.8

3D U-Net ET 84.0 22.0 84.2 21.6 12.7 60.6 2.2 16.0

Ensemble TC 87.0 20.0 86.8 43.1 11.0 50.1 4.1 18.7

Zoom augmentation WT 92.7 7.2 90.6 82.1 3.9 6.3 3.6 12.6

Table 4. Segmentation results on the BraTS 2021 Testing dataset using
ensembling and test-time augmentation. The evaluation was performed by the
BraTS 2021 challenge organizers using our docker submission. ET: Enhancing Tumor,
WT: Whole Tumor, TC: Tumor Core, Std: Standard deviation, px: Percentile x.

Dice score (%) Hausdorff 95% (mm)

Model ROI Mean Std p25 Mean Std p75

3D U-Net ET 87.4 17.6 85.2 10.1 53.5 2.0

Ensemble TC 87.8 23.6 91.3 15.8 66.7 3.0

Zoom augmentation WT 92.9 9.0 91.6 4.1 7.3 3.7

be an issue in this case. The optimizer SGDP and ASAM perform similar to the
baseline SGD. From Table 3, we see that ensemble strategy helps in increasing
the robustness of the model. The best ensemble strategy turns out to be including
zoom as a test time augmentation. This approach was submitted for evaluation
on the BraTS 2021 testing dataset and the results can be found in Table 4. In
conclusion, this paper proposes a detailed comparative study on the strategies
to make a computationally efficient yet robust automatic brain tumor segmen-
tation model. We have explored ensemble from multiple training configurations
of different state-of-the-art loss functions and optimizers, and importantly, test-
time augmentation. Future research will focus on further strategies on test-time
augmentation and test-time hyper-parameter tuning.
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