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Abstract. The problem of tumor growth prediction is challenging, but
promising results have been achieved with both model-driven and statis-
tical methods. In this work, we present a framework for the evaluation
of growth predictions that focuses on the spatial infiltration patterns,
and specifically evaluating a prediction of future growth. We propose
to frame the problem as a ranking problem rather than a segmentation
problem. Using the average precision as a metric, we can evaluate the
results with segmentations while using the full spatiotemporal predic-
tion. Furthermore, by applying a biophysical tumor growth model to 21
patient cases we compare two schemes for fitting and evaluating predic-
tions. By carefully designing a scheme that separates the prediction from
the observations used for fitting the model, we show that a better fit of
model parameters does not guarantee a better predictive power.

Keywords: Glioma · Growth model · Validation · Magnetic resonance
imaging · Brain

1 Introduction

As the diagnosis and delineation of glioma has improved with machine learning
[4], researchers look towards the more challenging task of predicting the dis-
ease trajectory into the future [8,19]. However, the problem of tumor growth is
challenging in many ways, not just by the lack of publicly available data. The
variables of clinical importance, such as the speed of infiltration and prolifer-
ation, are unknown and the problem of estimating them from observations is
ill-posed. Furthermore, the observations we do have are flawed as tumor cells
are known to spread beyond the visible boundary on MR imaging [22].

Despite these challenges, biophysical growth models have shown promise in
their ability to predict the spatial growth patterns for individual cases. They
are model-driven and strongly rooted in a mechanistic understanding of tumor
growth. Delineations of the tumor on MR imaging typically form the input for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Crimi and S. Bakas (Eds.): BrainLes 2021, LNCS 12962, pp. 100–111, 2022.
https://doi.org/10.1007/978-3-031-08999-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08999-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-08999-2_8


Evaluating Glioma Growth Predictions as a Forward Ranking Problem 101

individual model fitting, with follow-up imaging providing the gold standard of
evaluation. Though other methods of evaluation exist, such as biopsy samples
[10] or PET imaging [18], for most clinical cases consecutive delineations are the
best approximation for a ground truth.

Due to the nature of the data, growth predictions are often framed as a seg-
mentation problem. For example, by using an overlap metric such as the Dice
Similarity Coefficient based on a sample in time [7,19]. Although this metric
comes natural to the ground-truth data, it is less representative of the underly-
ing problem. The main disadvantage of overlap-based metrics is that they treat
all voxels equally, while some errors are more significant than others. Intuitively,
we would want to assign more significance to false negative predictions at a
large distance to the predicted tumor boundary as they represent a larger dis-
agreement to the model and would likely require a large adjustment to predict
correctly. This intuition is represented in metrics based on the segmentation
boundary, such as the symmetric surface distance used in Konukoglu et al. [17].
But even a distance metric compares only to a single point in time, and using a
boundary metric becomes less appropriate when the ground truth contains new
disconnected lesions.

Another challenge in the evaluation of tumor growth predictions is the entan-
glement of model fit and prediction. All tumor growth models require an initial
observation to fit model parameters. The goodness-of-fit is measured using the
segmentation on this initial observation and the prediction is performed from the
time of onset, through the initial observation towards the future [3]. The opti-
mization of this inverse problem is an important topic for research, not in the
least because the growth parameters can be of prognostic value by themselves
[21], but often these methods are evaluated in simulated data. The clinical real-
ity will not adhere to the strict assumptions made in the model, and therefore
the predictive value of the model depends not only on the effectiveness of the
model fitting but also on the correctness of the assumptions.

An ideal test of a prediction model would require a strict separation of model
fitting and evaluation. However, in the problem of personalized tumor growth
models this separation is not strictly possible because the initial condition used
for the parameter fit is also part of the final tumor shape used for evaluation.
Especially with models that simulate the full growth trajectory, there is a risk
that model fit on the initial condition is strongly entangled with the prediction of
growth. After all, if the shape of the initial lesion is not estimated correctly then
this error will propagate to the estimation the future disease trajectory. This
work explores the distinction between goodness-of-fit at the initial time-point,
and predictive performance for future time-points by comparing two temporal
evaluation schemes, one of which aims to strictly separate the initial condition
from the predicted growth behavior.

In this work we propose the following contributions:

1. A novel framing of tumor growth as a ranking problem, with the Average
Precision as the performance metric
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2. The application of this evaluation framework on a biophysical tumor growth
model and a dataset of 21 patient cases, to explore the relation between
goodness-of-fit at the initial time-point, and predictive performance for future
time-points.

2 Methods

2.1 Tumor Growth as a Ranking Problem

In this section, we propose that tumor growth prediction could be framed as a
ranking problem, aimed at predicting the relative time-to-invasion of each voxel
in the brain. Based on this perspective, we propose an evaluation metric for
assessing the quality of the predictions (i.e., rankings) resulting from any growth
model. This problem formulation is aimed at predicting infiltrative growth in a
spatial sense, and simplifies the problem by disregarding the speed of growth
and potential mass effect.

We assume that a growth model could produce a segmentation of the tumor
S(t) at any time t > 0. It may therefore assign to every location in the brain a
time T (x), which is the first time t when the tumor reaches that location. As we
do not require an accurate estimation of the growth speed, we require only that
the estimated T (x) is a ranking of voxels in the brain, such that:

T (xa) > T (xb) ⇔ ∃t : xa /∈ S(t), xb ∈ S(t). (1)

The ranking can be evaluated by a sampling of the ground-truth segmen-
tation S′, by using the Average Precision (AP). The AP is defined as the area
under the Precision-Recall (PR) curve:

AP = Σt(R(t) − R(t − 1))P (t), (2)

where R(t) and P (t) are the recall and precision at a threshold t on the time-to-
invasion ranking T , leading to the predicted segmentation S(t) = {x : T (x) ≤ t},
and comparing to the reference segmentation S′:

P (t) =
|S(t) ∩ S′|

|S(t)| , R(t) =
|S(t) ∩ S′|

|S′| . (3)

The AP metric weighs the precision scores are with the difference in recall,
so that all tumor volume predictions S(t) are taken into account from the tumor
onset to the time when the recall is 1. This is when the ground-truth segmenta-
tion is completely encompassed by the prediction S(t). An evaluation based on a
single time t would represent a point on the PR curve. If we take a volume-based
sample, where the estimated tumor volume equals the observed tumor volume,
i.e. |S(t)| = |S′|, this is the time t where R(t) = P (t).

Formulating the problem as a ranking and using the AP has a number of
qualitative advantages. First, the ranking T has a direct local connection to
the speed of the tumor boundary. If the ranking is smooth, the gradient of the
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T represents the local movement of the visible tumor boundary. It automati-
cally assigns a larger weight to certain parts of the prediction, depending on the
assigned ranking T , regardless of any assumptions on the significance of distance
in space or time. We might quantify the agreement between T and S locally by
using the rank of the voxel T (x) as a threshold on the PR curve. A local predic-
tion T (x) is in agreement with S′ if it is part of the ground-truth segmentation
(x ∈ S′) and can be included with high precision P (T (x)), or else if it falls
outside S′ but can be excluded with high recall R(T (x)). Figure 1 illustrates the
computation of the AP metric and this local measure of disagreement.

Fig. 1. Left: cross-section of tissue segmentation of a specific case with thresholds on
the T map, generated by a tumor growth model, indicated as segmentation boundaries.
The ground-truth segmentation S′ is indicated by a red overlay. Middle: corresponding
Precision-Recall curve with the same thresholds indicated. The sample with a corre-
sponding volume is marked on the PR curve. Right: quantification of agreement by
R(T (x)) outside S′ and P (T (x))) for voxels inside S′.

2.2 Example Growth Model

To illustrate the the proposed framework for evaluating tumor growth predic-
tions, a traditional diffusion-proliferation model was used with anisotropic dif-
fusion, informed by diffusion tensor imaging (DTI). This model is intended to
illustrate the use of the evaluation framework, but it is not our aim to present a
novel or improved growth model. The model is defined by a partial differential
equation for the cell density c, which changes with each timestep dt according
to:

dc

dt
= ∇(D∇c) + ρc(1 − c), (4)

D∇c · nδΩ = 0, (5)

where ρ is the growth factor, nδΩ is the normal vector at the boundary between
the brain and CSF, and D is a tensor comprising an isotropic and anisotropic
component:

D = κ(x)I + τF (x)T(x), (6)
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where κ and τ are parameters to weigh the two components, I is the identity
matrix, F (x) is the local Fractional Anisotropy (FA) and T is the normalized
diffusion tensor [11].

The isotropic diffusion depends on the local tissue type [14], as defined by
a separate parameter κw and κg for voxels in the white matter (W) and grey
matter (G) respectively:

κ(x) =

{
κw x ∈ W
κg x ∈ G

To go from a prediction of c(t, x) to a time-to-invasion ranking T (x), a thresh-
old cv is applied at each iteration such that T (x) = mint c(t, x) > cv, where the
visibility threshold is set as cv = 0.5. The initial condition of the model is pro-
vided by an initial cell density c(t = 0), which can be defined in two ways: 1)
as a gaussian distribution centered at a location xs and a standard deviation of
1mm; 2) based on a segmentation by setting the cell density at c = cv for voxels
inside the segmentation [7].

The model was implemented in FEniCS [1] in a cubic mesh of 1mm isotropic
cells, using a finite element approach and Crank-Nicolson approximations for
the time stepping. It has four unknown parameters (ρ, τ , κw, κg) and, in case
of the first approach for setting c(t = 0), an initial location xs. The method for
fitting xs is explained below.

Fit of Initial Point. A fit of the point xs is essential for the model initial-
ization from tumor onset, and its location depends on the model parameters.
Konukoglu et al. [17] have shown that an eikonal approximation can effectively
mimic the evolution of the visible tumor boundary. In this work, we use an
eikonal approximation that assumes the visible tumor margin moves at a speed
v of v = 4

√
ρTr(D), in order to estimate xs for a given set of model param-

eters, by optimising the approximation of the initial tumor S0 in terms of the
Dice overlap at equal volume using Powell’s method [20]. To be more robust
to the optimization seed, considering that the optimization landscape may have
mutliple local minima, the optimization was repeated for ten runs with different
random seeds to increase the chance of finding the global optimum for xs.

3 Experiments

3.1 Dataset

A retrospective dataset was selected from Erasmus MC of patients who a) were
diagnosed with a low-grade glioma; b) were treated with surgical resection, but
received no chemo- or radiotherapy; and c) had a DTI and 3D T1-weighted scan
before resection, and two follow-up scans (before and after tumor progression).
This resulted in data of 21 patients, after one dataset was excluded due to failed
registration. Note that the time difference between the measurement of initial
tumor and the two follow-up scans varied from a few months to several years.
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3.2 Temporal Evaluation Schemes

In the typical timeline of fit and evaluation [14,17], described in Fig. 2 as the
bidirectional scheme, the model is fitted on a tumor segmentation S0 and then
simulated from onset, through S0, to the point of evaluation S2. In other words,
the prediction contains the behavior that it is fitted on.

We compare this method to a strictly forward evaluation scheme that sep-
arates the model fit from the prediction as much as possible. As described in
Fig. 2 as the forward scheme, the parameters (in this case xs) are fitted on an
initial time-point S0 and then used to make a prediction between two follow-up
scans S1 and S2. By running the prediction from a segmentation S1 instead of
an initial location xs, the potential error in fitting S0 does not propagate to the
evaluation, which is based purely on the growth behavior between S1 and S2

that is unknown when fitting the model.

Fig. 2. Overview of two temporal evaluation schemes. Bidirectional: a growth model is
fitted to the initial tumor and simulated from a seed point to generate a voxel ranking
T . Forward: parameters are fitted to the initial tumor and then the model is initialized
with a segmentation S1 obtained after resection to generate the voxel ranking T . Images
from left to right: example of tissue segmentation with S0 outlined, tissue segmentation
with resection cavity removed and S1 outlined, example of final ranking T used for the
evaluation with resection cavity and S1 removed, quantification of agreement between
T (x) and S2.

For our dataset, we need to consider the role of the tumor resection. In both
schemes, the resection cavity as estimated by the aligment of the tissue at S0

and S1, is removed from the region of interest for evaluation. In the forward
scheme, any voxels in the segmentation S1 are also removed from the region
of interest, leaving only the new growth visible in S2 for evaluation. So where
the bidirectional scheme evaluates predictive performance on the entirety of the
remaining tumor, using S0 only to initialize the location of onset, the forward
scheme evaluates purely predictive performance based on the knowledge of S1.
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3.3 Data Preprocessing

Running a growth model from onset requires knowledge of the underlying healthy
tissue. Removing pathology from an image is a research problem in itself, but
commonly a registration approach with a healthy brain - often an atlas - is used
[5,14,18]. In this study we used the contralateral side of the brain as a refer-
ence for healthy brain structure (similar to [6]). This is possible because in our
dataset all lesions were strictly limited to one hemisphere. Using a registration
of the T1-weighted image with its left-right mirrored version, all segmentations
were transferred to the contralateral healthy side of the brain. To prevent unre-
alistic warping of the image due to image intensity changes in the tumor, while
still capturing its mass effect, the b-spline registration was regularized with a
bending energy penalty [16]. The weight of this penalty with the mutual infor-
mation metric was tuned on a number of cases using visual inspection of the
transformation.

The model input is a segmentation of the brain, separated into white matter
(W) and gray matter (G), potentially an estimate of the local diffusion based
on Diffusion Tensor Imaging (DTI), and a binary segmentation of the tumor.
Segmentations of the brain and brain tissue were produced using HD-BET [13]
and FSL FAST [23] respectively. For the pre-operative images, which did not
include a T2W-FLAIR sequence, S0 was segmented manually. Tumor segmenta-
tions S1 and S2 for consecutive images were produced using HD-GLIO [12,15]
and corrected manually where necessary. Alignment with the space of S0 was
achieved with a b-spline registration, which was evaluated visually. Datasets were
excluded if the registration did not produce a reasonable aligment.

As no registration or segmentation will be perfect, some inconsistencies
remain that prevent a perfect prediction. To not punish the model unfairly,
the voxels in S falling outside the brain were disregarded in the computation of
the AP metric.

3.4 Parameters

As the variation of diffusive behavior within the brain is a defining factor for
the tumor shape, and from a single observation it is impossible to estimate all
parameters simultaneously, we kept the proliferation constant at ρ = 0.01 while
using the parameters κw, κg and τ as parameters of interest. These parame-
ters were not fitted but rather varied systematically, as listed in the legend of
Fig. 3. For this range of seven growth model parameter settings, the AP per-
formance was measured for goodness-of-fit on the baseline segmentation S0 and
predictive performance on S2, according to the two evaluation schemes. The rela-
tion between goodness-of-fit and predictive performance was quantified using
a patient-wise Spearman correlation across different growth model parameter
settings. The mean of the patient-wise correlation coefficients was tested for a
significant difference from zero using a one-sample t-test.
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4 Results

Figure 4 shows two examples of the model input and results, in terms of the
images used for tumor segmentation at the three timepoints, the segmentations
and their mirrored counterparts and the results of a specfic model (κw = 0.1,
κg = 0.1 and τ = 10) using both the forward and bidirectional evaluation scheme.
The local values of R(T (x)) and P (T (x)) indicate where the model results are
most in disagreement with the ground-truth segmentation S2.

Figure 3 shows a comparison of the goodness-of-fit, which is measured by the
AP on the initial tumor segmentation S0, and the final predictive performance
on S2.

Fig. 3. Comparison of goodness-of-fit versus predictive performance for the two evalua-
tion setups. Results for the same patient on different parameter sets are interconnected.

Comparing the performance between different growth model parameter set-
tings, it is clear that goodness-of-fit is generally higher and more dependent on
the model parameters than the predictive performance. From the growth model
parameter settings, typically the best goodness-of-fit (AP on S0) was achieved
with low diffusion (κw = 0.01) while the worst fit was achieved when the dif-
ference in κ between white and gray matter was large (κw = 0.1, κg = 0.01 or
κg = 0.02).

From the results of the bidirectional evaluation scheme, going from an intitial
point through S0 to S2, it seems that there is a relation between the goodness-of-
fit and the predictive performance. However, this relation disappears when using
the forward evaluation scheme. These observations are confirmed by the mean
patient-wise correlation coefficients, which were 0.24 (p = 0.06) for the forward
scheme and −0.03(p = 0.76) for the bidirectional scheme.
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Fig. 4. Example of image processing results for two patients. Top row: T2W imag-
ing showing the initial tumor (left) and T2W FLAIR images showing the tumor after
surgery (middle) tumor and at recurrence (right). Bottom row, left: T1W imaging with
boundary of resection cavity (cyan), S1 (yellow) and S2 (red). Both the original seg-
mentations and the mirrored segmentations are shown. Bottom, middle: Visualization
of the local quantification of agreement by R(T (x)) outside S2 and P (T (x))) for voxels
inside S2, for one parameter setting in the forward evaluation scheme. Bottom, right:
same visualization for the bidirectional evaluation scheme, same parameter setting.
(Color figure online)
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5 Discussion

This work presents a formulation of the tumor growth predictions as a forward
ranking problem, and describes the Average Precision metric for its evaluation.
By formulating the problem in this way we can evaluate the full spatiotemporal
results, even if the observations are only snapshots in the form of a segmenta-
tion. A further advantage is found in the direct link to local growth speed and
quantification of the local model agreement. Though these advantages are only
of a qualitative nature, and do not provide a direct benefit to the model itself,
we believe it to be a useful step in the development and specifically evaluation of
growth models. An important underlying assumption in this framework is that
the time axis is not quantified, so the prediction does not provide information
on the overall speed of growth or any potential mass effect. Predicting these
factors is a highly relevant problem as well, but to predict both spatial distri-
bution, mass effect and speed of growth would likely require at least multiple
time-points for model fitting or additional clinical parameters. This is currently
not feasible with the data available in clinical practice. For a model that does
provide information on growth speed and mass effect, the AP metric could be
combined with other metrics to separately evaluate the different factors of tumor
growth.

The importance of problem formulation is further illustrated with the two
temporal evaluation schemes. Specifically for personalized tumor growth models,
which are fitted to an initial tumor shape, this work presents an alternative
forward scheme that separates the goodness-of-fit from the evaluation of future
predictions. In the forward scheme, the model is initiated with a segmentation
instead of an initial point of onset, so that errors made in fitting the initial
tumor do not propagate to the final prediction. The aim of this scheme is to
evaluate the predictive value of the model and its parameters separately from
the goodness-of-fit at the initial observation.

By comparing the bidirectional and forward evaluation schemes in a dataset
of 21 patients, using a biophysical growth model, we show that the choice of
evaluation greatly affects the relative performance of models. This is illustrated
with different parameter setting of the same model, not with different models,
but with the purpose of showing the difficulty of evaluating true predictive per-
formance in general. In this case, for our specific model and parameter settings,
the difference in performance between parameter settings can be attributed to
a better fit of the initial situation, and not necessarily a prediction of unseen
behavior. We must note, however, that often the goal in tumor growth mod-
elling is to find the model that best fits the available data on a fundamental
level, both initially and in the future, and overfitting is not an immediate con-
cern with strongly model-driven research.

The dataset used in this research was a selection of patients that underwent
surgical resection, but no radio- or chemotherapy. Although it is fair to assume
that the diffusive behavior of the tumor is not affected during the surgery, so the
model parameters would stay the same, the future growth pattern can be affected
by the removal of tumor tissue. The decompression that occurs at resection also
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complicates the registration of post-operative imaging, which led to the exclusion
of one patient due to a failed registration. However, with surgical resection being
the recommended treatment for most glioma patients, this is a complicating
factor that is difficult to avoid in clinical datasets and in any application in
clinical practice.

As new methods of tumor growth prediction are developed, and even fully
data-driven models are emerging using machine learning, comparing model per-
formance becomes increasingly relevant. For that purpose, the framing of the
problem is essential. Between the actual mechanisms of tumor growth and the
segmentation is a flawed observation on MR imaging, the rather difficult prob-
lem of segmentation and registration and an estimate of the time horizon. Those
factors, combined with limited data and the fact that glioma are naturally unpre-
dictable are a major reason why tumor growth models have relied heavily on sim-
ulations [9] and qualitative observations [2] for their validation. This work is a
step towards the comparison and clinical evaluation of tumor growth predictions
that fits their spatiotemporal nature, and allows for localized interpretation.

Acknowledgements. This work was supported by the Dutch Cancer Society (project
number 11026, GLASS-NL) and the Dutch Organization for Scientific Research
(NWO).

References

1. Alnaes, M.S., et al.: The FEniCS Project Version 1.5 3(100), 9–23 (2015)
2. Angeli, S., Emblem, K.E., Due-Tonnessen, P., Stylianopoulos, T.: Towards patient-

specific modeling of brain tumor growth and formation of secondary nodes guided
by DTI-MRI. NeuroImage Clin. 20, 664–673 (2018)

3. Angelini, E., Clatz, O., Mandonnet, E., Konukoglu, E., Capelle, L., Duffau, H.:
Glioma dynamics and computational models: a review of segmentation, registra-
tion, and in silico growth algorithms and their clinical applications. Curr. Med.
Imaging Rev. 3(4), 262–276 (2007)

4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain
tumor segmentation, progression assessment, and overall survival prediction in the
BRATS challenge. arXiv 124 (2018)

5. Bakas, S., et al.: GLISTRboost: combining multimodal MRI segmentation, regis-
tration, and biophysical tumor growth modeling with gradient boosting machines
for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels,
H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30858-6 13

6. Clatz, O., et al.: Realistic simulation of the 3-D growth of brain tumors in MR
images coupling diffusion with biomechanical deformation. IEEE Trans. Med.
Imaging 24(10), 1334–1346 (2005)

7. Elazab, A., et al.: Post-surgery glioma growth modeling from magnetic resonance
images for patients with treatment. Sci. Rep. 7(1), 1–13 (2017)

8. Elazab, A., et al.: GP-GAN: brain tumor growth prediction using stacked 3D gen-
erative adversarial networks from longitudinal MR Images. Neural Netw. 132,
321–332 (2020)

https://doi.org/10.1007/978-3-319-30858-6_13


Evaluating Glioma Growth Predictions as a Forward Ranking Problem 111

9. Ezhov, I., et al.: Neural parameters estimation for brain tumor growth modeling.
In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 787–795. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32245-8 87

10. Gaw, N., et al.: Integration of machine learning and mechanistic models accurately
predicts variation in cell density of glioblastoma using multiparametric MRI. Sci.
Rep. 9(1), 1–9 (2019)

11. Gholami, A., Mang, A., Biros, G.: Mathematical Biology An inverse problem
formulation for parameter estimation of a reaction-diffusion model of low grade
gliomas. J. Math. Biol. 72, 409–433 (2016)

12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nat. Methods 18, 203–211 (2020)

13. Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial
neural networks. Hum. Brain Mapp. 40(17), 4952–4964 (2019)

14. Jacobs, J., et al.: Improved model prediction of glioma growth utilizing tissue-
specific boundary effects. Math. Biosci. 312, 59–66 (2019)

15. Kickingereder, P., et al.: Automated quantitative tumour response assessment of
MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective
study. Lancet Oncol. 20(5), 728–740 (2019)

16. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox
for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1),
196–205 (2010)

17. Konukoglu, E., et al.: Image guided personalization of reaction-diffusion type tumor
growth models using modified anisotropic eikonal equations. IEEE Trans. Med.
Imaging 29(1), 77–95 (2010)

18. Lipkova, J., et al.: Personalized radiotherapy design for glioblastoma: integrat-
ing mathematical tumor models, multimodal scans, and Bayesian inference. IEEE
Trans. Med. Imaging 38(8), 1875–1884 (2019)

19. Petersen, J., et al.: Deep probabilistic modeling of glioma growth. In: Shen, D.,
et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 806–814. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32245-8 89

20. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization with-
out derivatives. Technical report (2009)

21. Raman, F., Scribner, E., Saut, O., Wenger, C., Colin, T., Fathallah-Shaykh, H.M.:
Computational Trials: unraveling motility phenotypes, progression patterns, and
treatment options for glioblastoma multiforme. PLoS ONE 11(1), e0146617 (2016)

22. Silbergeld, D.L., Chicoine, M.R.: Isolation and characterization of human malig-
nant glioma cells from histologically normal brain. J. Neurosurg. 86(3), 525–531
(1997)

23. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a
hidden Markov random field model and the expectation-maximization algorithm.
IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

https://doi.org/10.1007/978-3-030-32245-8_87
https://doi.org/10.1007/978-3-030-32245-8_89

	Evaluating Glioma Growth Predictions as a Forward Ranking Problem
	1 Introduction
	2 Methods
	2.1 Tumor Growth as a Ranking Problem
	2.2 Example Growth Model

	3 Experiments
	3.1 Dataset
	3.2 Temporal Evaluation Schemes
	3.3 Data Preprocessing
	3.4 Parameters

	4 Results
	5 Discussion
	References




