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Abstract. We present a method to segment MRI scans of the human
brain into ischemic stroke lesion and normal tissues. We propose a neural
network architecture in the form of a standard encoder-decoder where
predictions are guided by a spatial expansion embedding network. Our
embedding network learns features that can resolve detailed structures in
the brain without the need for high-resolution training images, which are
often unavailable and expensive to acquire. Alternatively, the encoder-
decoder learns global structures by means of striding and max pooling.
Our embedding network complements the encoder-decoder architecture
by guiding the decoder with fine-grained details lost to spatial down-
sampling during the encoder stage. Unlike previous works, our decoder
outputs at 2× the input resolution, where a single pixel in the input
resolution is predicted by four neighboring subpixels in our output. To
obtain the output at the original scale, we propose a learnable down-
sampler (as opposed to hand-crafted ones e.g. bilinear) that combines
subpixel predictions. Our approach improves the baseline architecture by
≈11.7% and achieves the state of the art on the ATLAS public bench-
mark dataset with a smaller memory footprint and faster runtime than
the best competing method. Our source code has been made available
at: https://github.com/alexklwong/subpixel-embedding-segmentation.

1 Introduction

A stroke occurs when a lack of blood flow prevents brain tissue from receiving
adequate oxygen and nutrients. This condition affects over 795,000 people annu-
ally [28]. The severity of the outcome, including disability and paralysis, depends
on the location and intensity of the stroke, as well as the time of diagnosis [2,30].
Preserving cognitive and motor functions, therefore, hinges on localizing stroke

A. Wong and A. Chen—Authors with equal contributions.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-08999-2 6.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Crimi and S. Bakas (Eds.): BrainLes 2021, LNCS 12962, pp. 75–87, 2022.
https://doi.org/10.1007/978-3-031-08999-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08999-2_6&domain=pdf
https://github.com/alexklwong/subpixel-embedding-segmentation
https://doi.org/10.1007/978-3-031-08999-2_6
https://doi.org/10.1007/978-3-031-08999-2_6


76 A. Wong et al.

lesions quickly and precisely. However, doing so manually requires expert knowl-
edge, is time consuming, and is ultimately subjective [11,13].

We focus on automatically segmenting ischemic stroke lesions, which account
for 87% of all strokes [28], from T1-weighted anatomical magnetic resonance
imaging (MRI) brain scans. These lesions are characterized by high variability
in location, shape, and size – the latter two are problematic for conventional con-
volutional neural networks (CNNs) where precision of irregularly shaped lesion
boundaries and recall of small lesions are critical measures of success. Due to
aggressive spatial downsampling (i.e. max pooling, strided convolutions) custom-
ary in CNNs, details of local structures are lost in the process. Yet, the spatial
downsampling is necessary for obtaining a global representation of the input
while using fixed-size filters with limited receptive fields. The outcome of which
are segmentations with ambiguous boundaries between lesion and normal tissues
and missed lesions that occupy small number of voxels in the MRIs.

We propose to retain small local structures by learning an embedding that
maps the input to high dimensional feature maps of twice the input resolution.
Unlike the typical CNN, we do not perform lossy downsampling on this rep-
resentation; hence, the embedding preserves local structures, but lacks global
context. When combined with the standard encoder-decoder e.g. U-Net [19],
the embedding complements the encoder-decoder by supplying the decoder with
fine-grained detail information to guide segmentation. Our network also outputs
at twice the resolution of the input, representing each element in the input with
a 2 × 2 neighborhood of predictions. The final output is obtained by combining
the four predictions (akin to an ensemble) as a weighted sum where the contribu-
tion of each prediction is learned from the data. Our design not only enables the
network to produce robust segmentations but also localize small lesions (Fig. 3).

Our contributions include (i) an embedding function that preserves fine-
grained details of the input by mapping it to larger spatial dimensions, (ii) a
neural network architecture that leverages the complementary strengths of the
proposed embedding and an encoder-decoder to produce predictions at twice the
input resolution, and (iii) a learnable downsampler that combines local predic-
tions in an ensemble fashion to yield robust segmentations at the input resolu-
tion. Our approach improves the baseline U-Net architecture by ≈ 11.7% and
achieves the state of the art on the ATLAS [11,12] dataset with lower computa-
tional burden than the best competing method.

2 Related Work

Lesion Segmentation. Early works [4] aggregated classification results for
the center pixel of patches sampled from an image. However, [4] lacked global
context, so [21] addressed this with multi-stage cascaded hierarchical models.
More recent works build upon the U-Net [19], a 2D fully-convolutional net-
work with skip connections and up-convolutions. For example, [14] used a Dual
Path Network [3] encoder while [26] leveraged dilated convolutions to inexpen-
sively increase receptive fields. Furthermore, [1] fused the U-net with other
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high-performing modules, the BConvLSTM [24] and the SENet [8], and [18]
introduced X-blocks to the U-Net, leveraging depthwise separable convolutions
to reduce computational load. [31] used skip connections between successive
encoder resolutions to prevent the loss of features and ConvLSTM [23] modules
to maintain localization.

Recent works also leveraged 3D architectural backbones to improve localiza-
tion. [32] performed 3D convolutions on a subsection of the scan and fused the
results with 2D convolutions. [9] proposed an attention gate to combine 2D seg-
mentations along the axial, sagittal, coronal planes into a 3D volume. However,
these works use significantly larger memory footprints and 3D convolutions are
computationally expensive – limiting the models’ practicality. We note that while
conventional architectures perform well globally (i.e. recovering the coarse shape
of lesions) they struggle to segment small lesions that blend into the background.

Super-Resolution. There is an abundance of works in natural images super-
resolution [5,6,22,25,29] and a growing number in medical imaging. [20] pro-
posed to map MRI images from low to high-resolution with an overcomplete
dictionary. [16] leveraged SRCNN [5] for super-resolving 2D MRI images and
fused them to obtain a 3D volume. [17] handled arbitrary scaling factors with a
3D architecture for multi-modal 3D data. However, these works require low and
high-resolution image pairs for training and are limited to the super-resolution
task while our method does not rely on a larger resolution ground truth. More
recently, [27] introduced Kite-Net, an upsampling encoder that outputs a latent
at 8× resolution followed by a max-pooling decoder to downsample back to
the original resolution. Kite-Net is used in parallel with a U-Net for lesion seg-
mentation. Our approach draws inspiration from super resolution and latent
over-representations as methods to retain local structure that are often lost in
spatial downsampling. However, unlike [27], we avoid downsampling the latent
with pooling (which discards information), and instead employ lossless space-to-
depth and depth-to-space [22] operations to retain fine-grained details. Further-
more, we propose to learn a subpixel embedding at 2× the original resolution
to guide our segmentation, which uses a much smaller memory footprint than
[27]. We show that our approach can capture small lesions that are missed by
[18,19,27,31,32].

3 Method

We propose a method to partition a 3D MRI volume X ∈ R
C×H×W into lesion

(positive, 1) and normal (negative, 0) classes. Our method takes, as input, a
3D slice of c consecutive 2D images x ∈ R

c×H×W (c is an odd integer) from X
and predicts the binary segmentation for the image x̄ ∈ R

1×H×W , the c+1
2 -th

image of x. In other words, x is a sliding window of c images centered at a
target image x̄. To avoid sampling out of bounds, we perform mean padding of
size c−1

2 × H × W on both sides of X before sampling x (see Sec. 1 of Supp.
Mat. for more details). To segment a single image x̄, we propose to learn a deep
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Fig. 1. Network architecture. SPiNis comprised of (i) a U-Net based encoder-decoder
that produces subpixel predictions f0

ω(x) at 2× the input resolution, which are guided
by (ii) a subpixel embedding that captures local structure. The final output fω(x) is
achieved by combining local predictions in a 2 × 2 neighborhood as a weighted sum
based on the per element contribution predicted by a (iii) learnable downsampler.

neural network fω, parameterized by ω, where f : R
c×H×W �→ [0, 1]1×H×W

is a function that takes the 3D slice x as an input and outputs the sigmoid
response fω(x), a confidence map corresponding to lesions in x̄. To obtain the
binary segmentation of X, we aggregate our predictions by running fω for all
x and setting any response greater than a threshold of 0.5 to the lesion class.
We note that our method can be extended to multi-class segmentation simply
by expanding our output to [0, 1]K×H×W for K classes, and choosing the class
with highest response, i.e. arg max fω(·), to yield the segmentation.

3.1 Network Architecture

Our network fω (Fig. 1) is composed of two modules: (i) an encoder-decoder
(based on U-Net [19]) that outputs at 2× the input resolution, e.g. 2H × 2W ,
whose predictions are guided by (ii) a network that maps the input x to a high
dimensional embedding space also at twice the input resolution. The result is a
confidence map comprised of “subpixel” predictions – the output class for each
input pixel is represented by four predictions within a 2×2 neighborhood. Rather
than using hand-crafted downsampling techniques (e.g. bilinear, nearest neigh-
bor) to obtain the output at the original (1×) spatial resolution, we propose a
learnable downsampler that predicts the weight, or contribution, of each sub-
pixel prediction in a local region corresponding to the pixel in the 1× resolution.
For simplicity, we refer to our embedding function as a subpixel embedding and
our overall architecture (fω) as a subpixel network or “SPiN” for short (Fig. 1).
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Fig. 2. Learnable Downsampler, Space-to-Depth and Depth-to-Space. (a): Learnable
Downsampler predicts the contribution h(z) of each subpixel prediction in f0

ω(x) by
conditioning on f0

ω(x) and the latent vector g(x). Subpixel predictions f0
ω(x) are rear-

ranged to the resolution of the input using Space-to-Depth. The final output fω(x)
is produced by taking the element-wise dot product between h(z) and the reshaped
f0

ω(x). (b) Space-to-Depth reduces resolution by rearranging elements from the spatial
dimensions into the channel dimensions, where each 2×2 neighborhood is reshaped to a
4 element vector. Depth-to-Space conversely performs spatial expansion by rearranging
elements from the channel dimensions to height and width dimensions.

Subpixel embedding consists of feature extraction and spatial expansion
phases. Feature extraction is performed by two ResNet blocks [7] with 16 filters
per layer; we also use stride of 1 and zero-padded edges to minimize spatial
reduction. The extracted 16 × H × W feature maps are fed to a depth-to-space
module [22] that rearranges elements from the channel dimension to the height
and width dimensions (see Fig. 2-(b)). The resulting set of 4 × 2H × 2W feature
maps with twice the spatial resolution then undergoes a 1 × 1 and a 3 × 3 con-
volution layers, with 8 filters each. The resulting 8× 2H × 2W high dimensional
feature maps, produced by our subpixel embedding function, resolve fine local
details by increasing the feature map resolution and thus representing informa-
tion at each pixel location with four “subpixel” feature vectors.

When used as skip connections, these embeddings complement the standard
U-Net architecture that obtains a global representation of the input by spatial
downsampling (striding and max pooling), which naturally discards local detail.
Hence, we propose to inject these embeddings into the decoder via feature con-
catenation at the original (1×) resolution and at the 2× output resolution. To
reduce the height and width dimensions of the embeddings to match the feature
maps at the 1× resolution, we propose a space-to-depth module, which performs
the inverse operation of depth-to-space (see Fig. 2-(b)), yielding 32 × H × W
feature maps. Unlike striding and pooling, the depth-to-space operation is infor-
mation preserving as it rearranges feature vectors from the height and width
dimensions to their channel dimension. The result is fed through a 3 × 3 con-
volutional layer with 8 filters and concatenated with the feature maps of the
decoder at the 1× resolution. Similarly, the embeddings at 2× resolution undergo
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a separate 3×3 convolution to yield the output resolution guidance before being
concatenated with their corresponding feature maps in the decoder. Finally, the
2× decoder output f0

ω(x) ∈ [0, 1]1×2H×2W is produced by convolving a single
3 × 3 filter over the resulting latent vector g(x) ∈ R

24×2H×2W . We use subpixel
guidance (SPG) to refer to the process of learning and injecting the embedding as
skip connections, which substantially helps with localizing small lesions missed
by previous works [18,19,31,32] (see Fig. 3). We note that SPG is light-weight
and only uses 16K parameters.

Learnable downsampler takes the concatenation z = [g(x); f0
ω(x)] of the

latent vector g(x) and the 2× resolution output f0
ω(x) and predicts h(z), where

h : R25×2H×2W �→ [0, 1]4×H×W . In other words, h(z) is a set of 4 × H × W
values that determine the contribution of each subpixel prediction in a 2 × 2
neighborhood of f0

ω(x). To achieve this, we first perform space-to-depth on z to
rearrange each 2 × 2 neighborhood into a 4 element vector. This is followed by
two 3 × 3 convolutions of 16 filters and a 1 × 1 convolution with 4 filters. h(z) is
the softmax response of the result along the channel dimension.

To obtain the final output fω(x), we utilize space-to-depth to rearrange f0
ω(x)

into the shape of 4×H×W (to match the shape of h(z)) and take its element-wise
dot product with h(z). With an abuse of notation, fω(x) = f0

ω(x) ·h(z). Because
h(z) is conditioned on the latent vector g(x) of the input, the predicted weights
respect lesion boundaries to yield detailed segmentations. This is unlike bilinear
or nearest-neighbor downsampling where weights are predetermined and inde-
pendent of the input. We note that our learnable downsampler is also lightweight
and only consists of 11K parameters.

3.2 Loss Function

We assume a training set of {(x(n), ȳ(n))}N
n=1, where ȳ(n) is the ground truth

corresponding to x̄(n), the image located at the center of x(n). To train SPiN,
we minimize the standard binary cross entropy loss,

�(y, ȳ) =
1

|Ω|
∑

u∈Ω

−(
ȳ(u) log y(u) + (1 − ȳ(u)) log(1 − y(u))

)
, (1)

where Ω ⊂ R
2 denotes the spatial image domain, u a pixel coordinate, and

y = fω(x) the network output. The loss over the training set of N samples reads

L(ω) =
1
N

N∑

n=1

�(fω(x(n)), ȳ(n))). (2)

We note that previous works [31,32] used soft Dice loss (an approximation of
the true Dice score) to counter the class imbalance between normal and lesion
tissues, characteristic in the lesion segmentation problem. However, a minimizer
of cross entropy equivalently minimizes Dice, and empirically, we found that
directly minimizing cross entropy yields better performance for our model. We
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Table 1. Evaluation metrics. IOU denotes Intersection Over Union, and DSC denotes
Dice similarity coefficient. TP, FN and FP correspond to true positive, false negative
and false positive respectively.

Metric IOU DSC Precision Recall

Definition TP
TP+FN+FP

2×TP
2×TP+FN+FP

TP
TP+FP

TP
TP+FN

hypothesize that our SPG allows small lesions to be recovered more easily, mak-
ing our method more conducive to minimizing cross entropy, which is not prone
to the noisy training signal inherent in soft Dice. We demonstrate this in row 7 of
Table 4 in our ablation studies. Also, we note that our loss can be easily extended
for multi-class classification to accommodate multiple lesion categories.

4 Experiments and Results

We demonstrate our method on the Anatomical Tracings of Lesion After Stroke
(ATLAS) MRI dataset [11,12], using the metrics defined in Table 1. ATLAS con-
tains 304 T1-weighted MRI scans of stroke patients with corresponding lesion
annotations. The data is collected from 11 research sites worldwide, manually
annotated, and post-processed (i.e. smoothing and defacing for privacy), leav-
ing 239 patient scans with 189 2D images (197 × 233 resolution) each. Since no
official data split is provided by [11], previous works [18,31,32] evaluated their
methods using k-fold cross validation and randomly sampled data splits. How-
ever, the value of k and samples within each split varied across works. Due to
the lack of consistency, the reported results are not directly comparable. Thus,
we propose a training (212 patients) and a held-out testing (27 patients) split
to standardize the evaluation protocol for more rigorous comparisons. We pro-
vide quantitative comparisons against [18,19,27,31,32] on the proposed training
and testing split in Table 2. We also show qualitative (Fig. 3) and quantitative
(Table 3) comparisons on segmenting small lesions using a subset of test set: 490
images containing only lesions smaller than 100 pixels (0.2% of the image). All
reported results for previous works are obtained using their training procedures
and open-sourced code. We also provide details on our training and testing split
in Sec. 2 of Supp. Mat. and further k-fold cross validation comparisons in Sec. 3
of Supp. Mat.

Implementation Details. Our model is implemented in PyTorch [15] and
optimized using Adam [10]. We used an initial learning rate of 3×10−4, decreased
it to 1 × 10−4 after 400 epochs, and to 5 × 10−5 after 1400 epochs for a total
of 1600 epochs. We choose c = 5 for the number images in the input x. During
training, x̄ and its corresponding x are randomly sampled from X. Training takes
≈8 h on an Nvidia GTX 1080 GPU, and inference takes ≈ 11 ms per 2D image.
For data augmentation, we randomly perform (i) horizontal and vertical flips,
(ii) rotation between −30◦ and 30◦, and (iii) add zero-mean Gaussian noise with
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Fig. 3. Qualitative results on ATLAS. Columns 2–8 show (zoomed in) head-to-head
comparisons across all methods for highlighted areas in column 1. Row 1 demon-
strates that SPiNoutperforms existing works in capturing shape and boundary details
in medium-sized, irregularly-shaped lesions. Furthermore, rows 2 and 3 demonstrate
SPiN’s ability to localize small lesions that are missed by other models.

Table 2. Quantitative comparison on ATLAS. SPiNoutperforms all methods across
all performance metrics. It is also one of the least computationally expensive models,
i.e. smallest test time memory footprint, second in training memory usage, and third
fastest in runtime per patient (189 images).

Method Performance metrics Runtime (s) Memory usage (GB)

DSC IOU Precision Recall Train Test

U-Net [19] 0.584 0.432 0.674 0.558 1.375 2.291 1.181

D-UNet [32] 0.548 0.404 0.652 0.521 3.425 15.426 15.426

CLCI-Net [31] 0.599 0.469 0.741 0.536 8.860 7.853 7.853

KiU-Net [27] 0.524 0.387 0.703 0.459 1.05 23.566 1.555

X-Net [18] 0.639 0.495 0.746 0.588 5.046 11.839 11.839

SPiN(Ours) 0.703 0.556 0.806 0.654 2.145 3.273 0.803

standard deviation of 1 × 10−2 to training samples. We perform augmentation
with a probability of 1 for 1400 epochs and decrease it to 0.5 thereafter so
training samples will be closer to the true distribution of the dataset.

ATLAS Test Set. Table 2 shows that our approach outperforms competing
methods [18,19,27,31,32] across all evaluation metrics. Specifically, we beat the
best performing method X-Net [18] by an average of ≈10.4% with a 72.3% reduc-
tion in training memory and a 57.5% runtime reduction during inference. Our
approach also uses a smaller memory footprint, containing only ≈5.3M param-
eters, compared to ≈15M in [18]. Another key comparison is with KiU-Net,
which learns a representation at 8× the original input spatial resolution. Unlike
us, KiU-Net [27] uses max pooling layers, which discards information, to reduce
the size of their high resolution representation to the original (1×) resolution.
Whereas, we maintain the 2× resolution of our embedding until the output layer,
which yields subpixel predictions that are aggregated by our learnable downsam-
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Table 3. Evaluation on small lesion subset. While [31] achieves the highest precision,
we note they have the second lowest recall out of all methods – missing small lesions can
negatively impact patient recovery. In contrast, our method ranks second in precision
and first across all other metrics.

Method DSC IOU Precision Recall

U-Net [19] 0.368 0.225 0.440 0.316

D-UNet [32] 0.265 0.180 0.377 0.264

CLCI-Net [31] 0.246 0.178 0.662 0.215

KiU-Net [27] 0.246 0.255 0.466 0.206

X-Net [18] 0.306 0.213 0.546 0.268

SPiN(Ours) 0.424 0.269 0.546 0.347

Table 4. Ablation study on ATLAS. Removing SPG and/or LD results in performance
decrease (rows 1, 2, 6), and SPG cannot be substituted with more parameters or
interpolation (rows 3–5). The best results are achieved by our full model (row 8).

Method DSC IOU Precision Recall

Without SPG, LD (Baseline) 0.634 0.487 0.707 0.606

Without SPG 0.637 0.487 0.701 0.613

Replace SPG with addit. convolutions 0.627 0.475 0.721 0.596

Replace SPG w/bilinear upsampling 0.663 0.513 0.780 0.600

Replace SPG w/nearest upsampling 0.660 0.513 0.762 0.626

Replace LD with downsampling 0.670 0.526 0.786 0.625

Full model with soft Dice loss 0.684 0.546 0.729 0.672

Full model 0.703 0.556 0.806 0.654

pler to the 1× resolution. Admittedly, this comes at the cost of runtime – our
method requires 2.145 s per patient and KiU-Net [27] requires 1.05 s. However,
we outperform [27] by an average of 33.7% across all metrics and reduce test
time memory by half. We show qualitative comparisons in row 1 of Fig. 3 where
the segmentation produced by our approach better captures irregularly shaped
lesions than those predicted by competing methods.

Small Lesion Segmentation. Here, we consider the task of segmenting lesions
that occupy fewer than 100 pixels or 0.2% of the image. Due to the challenging
nature of the task, we observe an expected drop in performance across all meth-
ods (trained on the proposed split) when segmenting small lesions (Table 3), as
compared to doing so for all lesion sizes (Table 2). However, we still outperform
all competing methods – by even larger margins than on the full test set. This
shows that competing methods, while able to localize large and medium sized
lesions, actually perform poorly on small lesions. With the exception of preci-
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sion, where we tie for second with X-Net [18], we rank first in all other metrics.
We note that while CLCI-Net [31] has the highest precision, it also achieved
second lowest recall, meaning that it misses many small lesions, which is critical
to clinical prognosis and thus patient recovery. This is also reflected in DSC and
IOU where we outperform [31] by 72% and 51%, respectively. Qualitatively, rows
2 and 3 in Fig. 3 show that our method successfully localized small lesions that
[18,19,27,31,32] missed entirely.

Ablation Studies. Table 4 shows the effect of each of our contributions to
architectural design. Row 1 shows that our baseline, a U-Net [19] based encoder-
decoder, performs significantly worse by 11.7% than the proposed approach
because it lacks fine local details from SPG and uses bilinear downsampling
instead of a learnable downsampler (LD). Including LD alone, but not SPG
(row 2) provides no improvement as the network only learns a coarse global
representation, but is still missing details lost during spatial downsampling.

In row 3, we show that solely increasing parameters (i.e. adding ResNet
blocks [7] to the baseline) brings no improvement, which suggests that the per-
formance boost is not a result of a larger network. In fact, SPG and the learnable
downsampler marginally increase the model size as they only combine for 27K
parameters. Rows 4 and 5 show that using hand-crafted 2× resolution images
(from bilinear, nearest neighbor upsampling) does provide some gain. In these
experiments, we replace SPG with different interpolation methods and the higher
resolution images undergo 3×3 convolutions before being passed as skip connec-
tions to the decoder. However, because the 2× representation is not learned, as
it is with SPG, the result is still ≈6% worse than our full model. Our learnable
downsampler (LD) contributes 4.4% to our performance (row 6) as removing LD
and replacing it with bilinear interpolation smooths lesion boundaries, resulting
in loss of details. Finally, we justify the use of cross entropy for our loss func-
tion; row 7 demonstrates that minimizing a soft Dice loss, as in [31,32], results in
worse performance. The best performance is achieved with our full model using
SPG and LD, and minimizing cross entropy (row 8).

5 Discussion

We propose SPiN, a network architecture that learns a spatially increasing
embedding that, when used as guidance for an encoder-decoder network, helps
ensure that small structures are not lost through spatial downsampling in the
encoder. We note that our embedding does not create extra spatial information
(data processing inequality), but serves as a means for better characterization of
local regions for the downstream segmentation task. While we outperform exist-
ing works and improve on small lesion segmentation, we do cost more memory
and compute than the baseline. However, the extra cost is within reason (1 GB
of memory for training and ≈ 0.7 s in runtime) and does not limit applicability.
Despite the improved segmentation performance, we would like to address that
there is still room for improvement, especially with small lesions. The highest
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recall of 0.347 achieved by our model is admittedly low compared to recall met-
rics on the full dataset, implying that many small lesions still pass undetected.
We note that this is one of the first works to study subpixel architectures in
lesion segmentation, and we hope our optimistic results will motivate further
exploration in this direction.
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