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Abstract. Deep neural network methods have led to impressive break-
throughs in the medical image field. Most of them focus on single-modal
data, while diagnoses in clinical practice are usually determined based
on multi-modal data, especially for tumor diseases. In this paper, we
intend to find a way to effectively fuse radiology images and pathology
images for the diagnosis of gliomas. To this end, we propose a collabora-
tive attention network (CA-Net), which consists of three attention-based
feature fusion modules, multi-instance attention, cross attention, and
attention fusion. We first take an individual network for each modal-
ity to extract the original features. Multi-instance attention combines
different informative patches in the pathology image to form a holistic
pathology feature. Cross attention interacts between the two modalities
and enhances single modality features by exploring complementary infor-
mation from the other modality. The cross attention matrixes imply the
feature reliability, so they are further utilized to obtain a coefficient for
each modality to linearly fuse the enhanced features as the final represen-
tation in the attention fusion module. The three attention modules are
collaborative to discover a comprehensive representation. Our result on
the CPM-RadPath outperforms other fusion methods by a large margin,
which demonstrates the effectiveness of the proposed method.
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1 Introduction

Gliomas are the most common primary intracranial tumors, accounting for 40%
to 50% of all cranial tumors. World Health Organization (WHO) grading sys-
tem grade the gliomas from 1 (least malignant and best prognosis) to 4 (most
malignant and worst prognosis). According to the pathological malignancy of
the tumor cells, brain gliomas are also divided into low-grade gliomas (including
astrocytoma, oligodendroglioma) and high-grade gliomas (glioblastoma). Mag-
netic resonance imaging (MRI) is the common examination method for gliomas,
which is mainly used to identify low-grade gliomas and high-grade gliomas.
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Due to the limitation of MRI in the identification of astrocytoma and oligo-
dendroglioma, pathology images are also used. Hence, the diagnosis of gliomas
in clinical practice is based on multiple modalities of medical images, which
requires the doctors to have a rich experience. Computer aided diagnosis (CAD)
systems are in demand to facilitate the diagnosis process.

Convolutional neural network (CNN) is the most widely used deep learning
model to learn complex discriminative features of images and various architec-
tures of CNN have been proposed, such as VGG16 [1], ResNet [2], and Densenet
[3]. These networks achieve human-level performance on many tasks in the nat-
ural image field. Moreover, deep learning methods also bring significant progress
in the medical field. For instance, the U-Net [4] architecture was proposed for the
segmentation of neuronal structures and performed well on a variety of biomed-
ical segmentation tasks. However, most models only focus on single modality
data, such as X-ray images [5], CT images [6], or MRI images [7].

In order to obtain more information for better decision, learning methods on
multi-modal data has been a growing trend. Incorporating visual information
on many speech tasks has achieved great gains, such as speech enhancement
[8], speech separation [9,10]. Pretraining on vision and language data quickly
become a popular task after the advent of BERT [11]. In the medical image field,
multi-modal data refers to the images taken by different inspection methods and
non-image data [36]. Although there are some public multi-modal datasets like
BraTs [12,37–39], CHAOS [13], CPM-RadPath [14,40], the methods of fusing
the multi-modal data are still deficient. To the best of our knowledge, most fusion
methods on medical images are limited to direct fusion by concatenating or linear
weighting at the input-level [15–17], feature-level [18–20,28], or decision-level
[21–23]. Pandya et al. [24] introduced a multi-channel MRI embedding strategy
to improve the result of deep learning-based tumor segmentation models. This
method linearly fused four modalities at the input-level. Neubauer et al. [18]
improved the performance of tumor delineation by merging the features of MRI
and PET/CT data after two modality-specific encoders. Kamnitsas et al. [22]
trained three networks separately and averaged the confidence of each network
as the final result.

MRI images and pathology images are the most common inspection meth-
ods for gliomas diagnoses. CPM-Radpath [14,40] provided both modalities to
evaluate the performance of computer-aided systems. This task is difficult as the
two modalities are totally different. MRI images are 3D scanning data of the
brain, while pathology images are 2D microscopy data of the sliced tissue. Ma
et al. [25] fused the final results of the two modalities by logistic regression. Xue
et al. [26] proposed a dual path model and fused the features before the last
fully connected layer directly. However, due to the great difference between the
two modalities, the relation between them is quite complicated and it can not
be captured by these simple fusion methods. In this work, we adopt the power-
ful modeling capability of the attention mechanism and propose a collaborative
attention network (CA-Net). It consists of three attention based feature fusion
modules. Multi-instance attention combines different pathology patch features.
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Fig. 1. The pipeline of the proposed framework. Features from the pathology image
and the MRI image are fused by three modules, Multi-Instance Attention (MIA), Cross
Attention (CA), Attention Fusion (AF) to identify three subtypes of gliomas.

Cross attention implicitly captures the relation between the two modalities and
enhances both features by the complementary information from the other modal-
ity. Attention fusion fuses the two features according to the reliability of each
feature, which is computed based on the learned cross attention matrixes, and
obtain the final feature representation.

2 Method

Based on pathology images and MRI images, our task is to identify the subtypes
of gliomas. The pipeline of the proposed CA-Net is shown in Fig. 1, including five
parts, two feature extractors of pathological images and MRI images, three col-
laborative attention-based feature fusion modules, i.e. Multi-Instance Attention
(MIA), Cross Attention (CA), Attention Fusion (AF).

2.1 Features Extraction

The resolution of pathological images is around 100000 × 100000, which is too
huge for computation devices to process. A typical solution is extracting patches
from the whole slide image. We exclude the white background regions and crop
patches sized 256 × 256 without overlap. Then we filter out the patches that
have low entropy. The extracted patches are then fed to a Densenet [3] structure
network which consists of four stages and the number of dense blocks in each
stage is 4, 8, 12, and 24.

The MRI images of each patient contain four types of scans, including T1,
T2, T1-CE, and Flair. In order to reduce the useless information, extraction of
the lesion is first performed by a U-Net structured lesion segmentation model
with 23 layers, which is pre-trained on BraTS2019 [12,37–39]. Lesion regions
are then cropped and resized to 128 × 128 × 128. The four types of scans are
concatenated to form a 4D tensor. The feature extractor is a 3D-Densenet [3],
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Fig. 2. The architecture of the Multi-instance Attention module (MIA). Features from
different patches are fused by adaptively learned coefficients to form a holistic feature.

which consists of four stages and the number of dense blocks in each stage is 4,
8, 12, and 12.

Both the pathology image and MRI image feature extractors are trained
with a cross-entropy loss. Since the pathological images are only annotated with
image labels, we have no label for each patch. Thereby, we directly assign the
whole image label to the sampled patches, as most studies [27] do.

2.2 Multi-instance Attention

There are multiple patches and multiple features in each pathology image, which
is unbalanced when fusing with the radiology feature. So we should combine the
features of all the patches to form a holistic feature, which is similar to the
setting in multi-instance learning (MIL). The extracted patch is regarded as an
instance and we shall build a bag feature to represent the pathology image. To
this end, we propose a multi-instance attention module, as illustrated in Fig. 2.

For the convenience of parallel training, we only sample a fixed number (500
in this paper) of instances for training and inference. All the sampled instances
with a feature size of c × 8 × 8 are sent to a global average pooling (GAP) layer,
result in a feature size of c × 1. c is the channel number. Then the attention
coefficient is computed by Eq. 1.

aj =
exp(wT tanh(vgj))

∑M
j=1 exp(wT tanh(vgj))

(1)

gj is the feature of the jth instance after GAP. M is the number of instances.
w ∈ RM×1, v ∈ RM×c are the parameters of two fully connected layers. Tanh
is employed as the activation function. The learned attention coefficients are
further utilized to accumulate all the instances’ features and get the bag-level
feature.

2.3 Cross Attention

Pathology features and radiology features have plenty of complementary infor-
mation. Previous feature fusion methods including concatenation and linear
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Fig. 3. The architecture of the cross-attention module.

fusion can not effectively explore the relation between the two modalities. In
this work, we propose a cross-attention module to deeply learn their relations,
which is illustrated in Fig. 3.

Attention is a popular mechanism in deep learning models, especially after
the introduction of self-attention [29]. The most frequently used attention is
scaled dot-product attention, which computes the relation by the dot product of
the feature vector. The dot-product attention implies that similar features have a
close relation. However, in our task, the features come from two totally different
modalities, therefore, it’s not a valid way to adopt the dot-product attention.
We adopt additive attention [30] to explore the relationship between different
modalities, which is formulated as follows:

eij = f(qi, kj), (2)

αij =
exp(eij)

∑N
k=1 exp(eik)

, (3)

gi =
∑N

j=1
αijkj . (4)

The pathology feature size is c × 8 × 8 and the radiology feature size is
c × 4 × 4 × 4. Both of them are reshaped to c × 64 before sent to the attention
module. c is the channel number, i.e. feature length. Attention is computed
at every position. qi is the query feature from one modality and kj is the key
feature from the other modality. N is the number of positions (64 in our setting).
A shared multi-layer perceptron (MLP) followed by a softmax normalization is
employed to learn their relation. Note that qi and kj are concatenated before
sent to the MLP, which means eij will be different when the modality of the
query feature changes. Then the complementary feature from the other modality
can be obtained by a simple linearly weighted summation. The complementary
feature gi is added to the original query feature qi to enhance the feature of each
modality, obtaining Fp and Fr.
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2.4 Attention Fusion

The last step is to fuse the features from the two modalities. Although the
enhanced feature of each modality has contained the information of both modal-
ities, we believe that the representational ability, i.e. reliabilities, of them are
still different. An easy solution is to learn an adaptive linear coefficient for each
modality. But this will bring in extra parameters, which will lead to overfitting.
We notice that the attention matrix in the cross-attention module refers to the
relation between two modalities. Thereby, we attempt to explore the reliability
according to the attention matrix. Actually, when eij in Eq. 2 is bigger, it means
the query feature qi is more dependent on the key feature kj , implying that
the query feature is less reliable. Although the query feature is enhanced by the
cross attention module, the complementary feature is scaled by a normalized
coefficient αij for the sake of stable training. Hence, the enhanced feature still
does not contain sufficient complementary information. Thus we can infer the
feature reliability according to eij . We compute the reliability as in Eq. 5.

r =
1

∑N
i=1

∑N
j=1 σ(eij)

(5)

σ is a measure function, which is sigmoid in this work. The final feature
representation is obtained by Eq. 6.

F =
rpFp + rrFr

rp + rr
(6)

Fp and Fr are the enhanced pathology feature and radiology feature. rp and
rr are the corresponding reliabilities calculated by Eq. 5 when taking pathology
features and radiology features as the query feature, respectively. The higher the
reliability is, the higher the weight is.

The final feature representation is sent to the classifier to be classified into
three subtypes of gliomas. The loss function is cross entropy. The three attention
based feature modules are jointly trained, while the feature extractors of the two
modalities are trained independently.

3 Results

3.1 Experiment Setup

Dataset. CPM-RadPath [14,40] consists of 221 paired radiology images and
histopathology images for training. Since we can not obtain the validation data
and test data, we only utilized its training data for experiments. Due to the
limited number of images in medical tasks, all the experiments were evaluated
by 3-folder cross-validation. The MRI images of each patient contain four types
of scans, Flair, T1, T1-Ce, and T2. Due to the differences in the staining process
of slices, pathology images have a big variance in color, we converted the RGB
pathology images into gray images. CPM-RadPath aims to distinguish between
three subtypes of brain tumors, namely astrocytoma, oligodendroglioma, and
glioblastoma. The number of each subtype is shown in Table 1.
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Table 1. Data distribution of different subtypes in CPM-RadPath.

Subtype A O G Total

Number 54 34 133 221

A: astrocytoma, O: oligoden-
droglioma, G: glioblastoma

Implementation Details. Feature extractors of pathology images and radiol-
ogy images were trained with a batch size of 400 and 20 respectively, and the
number of feature channel was set to 64. Xavier initialization was adopted in
all the models. Parameters were optimized by SGD [31], and the weight decay
and momentum were set as 1e−4 and 0.95 respectively. The learning rate was
initially set to 0.001 and was divided by 10 at 50% and 75% of the total training
epochs. All the models were trained based on MXNet [32] for 200 epochs on
a TeslaV100 GPU. For the pathology images, the same augmentation methods
as the study [35] were used, including random brightness and contrast, random
saturation and hue, flip, and rotation. Random crop and flip were adopted as
data augmentation for the radiology images.

The feature extractors of the two modalities were first trained with a cross-
entropy loss. Then we frozen the feature extractors and jointly trained the three
attention modules.

3.2 Results of Gliomas Classification

The same evaluation metrics of the CPM-RadPath challenge [14,40] were
employed to evaluate the effectiveness of the proposed method in this paper.

Results on a Single Modality. The dataset consists of pathology images and
radiology images (MRI). We first evaluated the performance on single modality
data. Results are displayed in Table 2. Compared with the pathology image, the
results of the radiology image are much worse. The reason is that astrocytoma
and oligodendroglioma only have a slight difference in radiology images, so it is
difficult for models to learn a discriminative feature. And that is also why we
need pathology images in this task.

When evaluated on the pathology images, we compared our multi-instance
attention with another common feature fusion method, max-out [33]. Max-out
selects the biggest value among all the extracted patches as the output for each
feature element. We do not use concatenation because the patch number is
too much, i.e. 500, leading to a higher feature length, which is hard to fuse
with the radiology feature. Compared with max-out, our multi-instance atten-
tion achieved higher performance, indicating that different patches have differ-
ent importance and our attention mechanism can effectively incorporate all the
patches.
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Table 2. Results on a single modality.

Data Balanced-acc F1-micro Kappa

Radio 0.722 0.818 0.683

Patho (Max-out) 0.877 0.917 0.852

Patho (MIA) 0.887 0.925 0.866

Results on Multiple Modalities. Then we evaluated our methods on the
multiple modality data. Since the training of feature extraction and feature fusion
are independent, we directly used the output feature of the single modality model
as the input feature of the fusion stage. Particularly, the pathology feature refers
to the feature obtained by our proposed multi-instance attention. We compared
our methods with other feature fusion methods and the results are displayed in
Table 3. Simply concatenating the features is treated as the baseline. Xue et al.
[26] fused the two features by a learned linear weight, while Ma et al. [25] fused
the scores of each modality by logistic regression. We reimplemented them on
the proposed framework.

Table 3. Comparison of different methods on multi-modal data.

Method Balanced-acc F1-micro Kappa

Concat 0.866 0.917 0.851

Linear Feature Fusion 0.886 0.932 0.878

Linear Score Fusion 0.886 0.933 0.876

Ours w/o Attention Fusion 0.891 0.940 0.892

Ours 0.912 0.948 0.906

As pathology features and radiology features focus on different characteris-
tics of gliomas, simple concatenation can not capture the relation between the
two modalities. So when we concatenated pathology features and radiology fea-
tures, the results got even worse compared with the single pathology feature.
Linear feature fusion and score fusion introduce extra parameters to capture the
relation between the two modalities, thus they got an improvement and were
higher than every single modality. The results show that the two modalities are
complementary and can benefit from each other.

The linear fusion method is a simple linear combination of two features and
there is no interaction between the two modalities. So we propose the cross
attention module to interact between the two modalities and intend to enhance
single modality features by digging complementary information from the other
modality. The enhanced features are further fused by two linear weights which
are derived from the attention matrix, i.e. attention fusion. As Table 3 shows, our
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results outperform other methods by a large margin. We also conducted an abla-
tion experiment that replaced the attention fusion module with a concatenation
operation. The performance is also higher than other methods, which further
demonstrates that the cross-attention module can explore complementary infor-
mation from each other and form a comprehensive feature representation.

4 Conclusion

In this paper, we propose a collaborative attention network to utilize multi-
ple modality data for the diagnosis of gliomas. The network consists of three
attention-based feature fusion modules. The multi-instance attention combines
different patch features from the pathology images to construct a holistic pathol-
ogy feature. Then the pathology feature and radiology feature are fused by the
cross attention module. The final feature representation is obtained by the atten-
tion fusion module. Experimental results on CPM-RadPath demonstrate the
effectiveness of the proposed method.

The proposed attention fusion module recovers the reliability of different
features according to their cross-attention matrices. No additional parameters
are introduced in this module and it can be implemented with one line of code.
Thereby, it can be served as a plug-and-play module and used in other multi-
feature fusion tasks.
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