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Abstract. Semantic segmentation of brain tumors is a fundamental
medical image analysis task involving multiple MRI imaging modali-
ties that can assist clinicians in diagnosing the patient and successively
studying the progression of the malignant entity. In recent years, Fully
Convolutional Neural Networks (FCNNs) approaches have become the
de facto standard for 3D medical image segmentation. The popular “U-
shaped” network architecture has achieved state-of-the-art performance
benchmarks on different 2D and 3D semantic segmentation tasks and
across various imaging modalities. However, due to the limited kernel
size of convolution layers in FCNNs, their performance of modeling
long-range information is sub-optimal, and this can lead to deficiencies
in the segmentation of tumors with variable sizes. On the other hand,
transformer models have demonstrated excellent capabilities in capturing
such long-range information in multiple domains, including natural lan-
guage processing and computer vision. Inspired by the success of vision
transformers and their variants, we propose a novel segmentation model
termed Swin UNEt TRansformers (Swin UNETR). Specifically, the task
of 3D brain tumor semantic segmentation is reformulated as a sequence
to sequence prediction problem wherein multi-modal input data is pro-
jected into a 1D sequence of embedding and used as an input to a hier-
archical Swin transformer as the encoder. The swin transformer encoder
extracts features at five different resolutions by utilizing shifted windows
for computing self-attention and is connected to an FCNN-based decoder
at each resolution via skip connections. We have participated in BraTS
2021 segmentation challenge, and our proposed model ranks among the
top-performing approaches in the validation phase.

Code: https://monai.io/research/swin-unetr.

Keywords: Image segmentation · Vision transformer · Swin
transformer · UNETR · Swin UNETR · BRATS · Brain tumor
segmentation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Crimi and S. Bakas (Eds.): BrainLes 2021, LNCS 12962, pp. 272–284, 2022.
https://doi.org/10.1007/978-3-031-08999-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08999-2_22&domain=pdf
https://monai.io/research/swin-unetr
https://doi.org/10.1007/978-3-031-08999-2_22


Swin Transformers for Semantic Segmentation of Brain Tumors 273

1 Introduction

There are over 120 types of brain tumors that affect the human brain [27]. As we
enter the era of Artificial Intelligence (AI) for healthcare, AI-based intervention for
diagnosis and surgical pre-assessment of tumors is at the verge of becoming a neces-
sity rather than a luxury. Elaborate characterization of brain tumors with tech-
niques such as volumetric analysis is useful to study their progression and assist in
pre-surgical planning [17]. In addition to surgical applications, characterization of
delineated tumors can be directly utilized for the prediction of life expectancy [32].
Brain tumor segmentation is at the forefront of all such applications.

Brain tumors are categorized into primary and secondary tumor types. Pri-
mary brain tumors originate from brain cells, while secondary tumors metastasize
into the brain from other organs. The most common primary brain tumors are
gliomas, which arise from brain glial cells and are characterized into low-grade
(LGG) and high-grade (HGG) subtypes. High grade gliomas are an aggressive
type of malignant brain tumors that grow rapidly and typically require surgery
and radiotherapy and have poor survival prognosis [40]. As a reliable diagnos-
tic tool, Magnetic Resonance Imaging (MRI) plays a vital role in monitoring
and surgery planning for brain tumor analysis. Typically, several complimentary
3D MRI modalities, such as T1, T1 with contrast agent (T1c), T2 and Fluid-
attenuated Inversion Recovery (FLAIR), are required to emphasize different tis-
sue properties and areas of tumor spread. For instance, gadolinium as the contrast
agent emphasizes hyperactive tumor sub-regions in the T1c MRI modality [15].

Furthermore, automated medical image segmentation techniques [18] have
shown prominence for providing an accurate and reproducible solution for brain
tumor delineation. Recently, deep learning-based brain tumor segmentation tech-
niques [19,20,30,31] have achieved state-of-the-art performance in various bench-
marks [2,7,34]. These advances are mainly due to the powerful feature extraction
capabilities of Convolutional Neural Networks (CNN)s. However, the limited ker-
nel size of CNN-based techniques restricts their capability of learning long-range
dependencies that are critical for accurate segmentation of tumors that appear
in various shapes and sizes. Although several efforts [10,23] have tried to address
this limitation by increasing the receptive field of the convolutional kernels, the
effective receptive field is still limited to local regions.

Recently, transformer-based models have shown prominence in various
domains such as natural language processing and computer vision [13,14,37]. In
computer vision, Vision Transformers [14] (ViT)s have demonstrated state-of-the-
art performance on various benchmarks. Specifically, self-attentionmodule inViT-
based models allows for modeling long-range information by pairwise interaction
between token embeddings and hence leading to more effective local and global
contextual representations [33]. In addition, ViTs have achieved success in effec-
tive learning of pretext tasks for self-supervised pre-training in various applica-
tions [8,9,35]. In medical image analysis, UNETR [16] is the first methodology
that utilizes a ViT as its encoder without relying on a CNN-based feature extrac-
tor. Other approaches [38,39] have attempted to leverage the power of ViTs as
a stand-alone block in their architectures which otherwise consist of CNN-based
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components. However, UNETR has shown better performance in terms of both
accuracy and efficiency in different medical image segmentation tasks [16].

Recently, Swin transformers [24,25] have been proposed as a hierarchical
vision transformer that computes self-attention in an efficient shifted window
partitioning scheme. As a result, Swin transformers are suitable for various down-
stream tasks wherein the extracted multi-scale features can be leveraged for fur-
ther processing. In this work, we propose a novel architecture termed Swin UNEt
TRansformers (Swin UNETR), which utilizes a U-shaped network with a Swin
transformer as the encoder and connects it to a CNN-based decoder at different
resolutions via skip connections. We validate the effectiveness of our approach
for the task of multi-modal 3D brain tumor segmentation in the 2021 edition of
the Multi-modal Brain Tumor Segmentation Challenge (BraTS). Our model is
one of the top-ranking methods in the validation phase and has demonstrated
competitive performance in the testing phase.

2 Related Work

In the previous BraTS challenges, ensembles of U-Net shaped architectures have
achieved promising results for multi-modal brain tumor segmentation. Kamnit-
sas et al. [21] proposed a robust segmentation model by aggregating the outputs
of various CNN-based models such as 3D U-Net [12], 3D FCN [26] and Deep
Medic [22]. Subsequently, Myronenko et al. [30] introduced SegResNet, which
utilizes a residual encoder-decoder architecture in which an auxiliary branch is
used to reconstruct the input data with a variational auto-encoder as a surrogate
task. Zhou et al. [42] proposed to use an ensemble of different CNN-based net-
works by taking into account the multi-scale contextual information through an
attention block. Zhou et al. [20] used a two-stage cascaded approach consisting
of U-Net models wherein the first stage computes a coarse segmentation predic-
tion which will be refined by the second stage. Furthermore, Isensee et al. [19]
proposed the nnU-Net model and demonstrated that a generic U-Net architec-
ture with minor modifications is enough to achieve competitive performance in
multiple BraTS challenges.

Transformer-based models have recently gained a lot of attraction in com-
puter vision [14,24,41] and medical image analysis [11,16]. Chen et al. [11] intro-
duced a 2D U-Net architecture that benefits from a ViT in the bottleneck of the
network. Wang et al. [38] extended this approach for 3D brain tumor segmen-
tation. In addition, Xie et al. [39] proposed to use a ViT-based model with
deformable transformer layers between its CNN-based encoder and decoder by
processing the extracted features at different resolutions. Different from these
approaches, Hatamizadeh et al. [16] proposed the UNETR architecture in which
a ViT-based encoder, which directly utilizes 3D input patches, is connected to a
CNN-based decoder. UNETR has shown promising results for brain tumor seg-
mentation using the MSD dataset [1]. Unlike the UNETR model, our proposed
Swin UNETR architecture uses a Swin transformer encoder which extracts fea-
ture representations at several resolutions with a shifted windowing mechanism



Swin Transformers for Semantic Segmentation of Brain Tumors 275

Fig. 1. Overview of the Swin UNETR architecture. The input to our model is 3D
multi-modal MRI images with 4 channels. The Swin UNETR creates non-overlapping
patches of the input data and uses a patch partition layer to create windows with
a desired size for computing the self-attention. The encoded feature representations
in the Swin transformer are fed to a CNN-decoder via skip connection at multiple
resolutions. Final segmentation output consists of 3 output channels corresponding to
ET, WT and TC sub-regions.

for computing the self-attention. We demonstrate that Swin transformers [24]
have a great capability of learning multi-scale contextual representations and
modeling long-range dependencies in comparison to ViT-based approaches with
fixed resolution.

3 Swin UNETR

3.1 Encoder

We illustrate the architecture of Swin UNETR in Fig. 1. The input to the
Swin UNETR model X ∈ R

H×W×D×S is a token with a patch resolution of
(H ′,W ′,D′) and dimension of H ′ ×W ′ ×D′ × S. We first utilize a patch parti-
tion layer to create a sequence of 3D tokens with dimension of
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and project them into an embedding space with dimension C. The self-attention
is computed into non-overlapping windows that are created in the partitioning
stage for efficient token interaction modeling. Figure 2 shows the shifted win-
dowing mechanism for subsequent layers. Specifically, we utilize windows of size
M ×M ×M to evenly partition a 3D token into
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a given layer l in the transformer encoder. Subsequently, in layer l + 1, the par-
titioned window regions are shifted by
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voxels. In subsequent

layers of l and l + 1 in the encoder, the outputs are calculated as

ẑl = W-MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl

ẑl+1 = SW-MSA(LN(zl)) + zl

zl+1 = MLP(LN(ẑl+1)) + ẑl+1.

(1)
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Here, W-MSA and SW-MSA are regular and window partitioning multi-head
self-attention modules respectively; ẑl and ẑl+1 denote the outputs of W-MSA
and SW-MSA; MLP and LN denote layer normalization and Multi-Layer Per-
ceptron respectively. For efficient computation of the shifted window mechanism,
we leverage a 3D cyclic-shifting [24] and compute self-attention according to

Attention(Q,K, V ) = Softmax
(
QK�
√
d

)
V. (2)

In which Q,K, V denote queries, keys, and values respectively; d represents the
size of the query and key.

The Swin UNETR encoder has a patch size of 2×2×2 and a feature dimen-
sion of 2×2×2×4 = 32, taking into account the multi-modal MRI images with 4
channels. The size of the embedding space C is set to 48 in our encoder. Further-
more, the Swin UNETR encoder has 4 stages which comprise of 2 transformer
blocks at each stage. Hence, the total number of layers in the encoder is L = 8.
In stage 1, a linear embedding layer is utilized to create H

2 × W
2 × D

2 3D tokens.
To maintain the hierarchical structure of the encoder, a patch merging layer is
utilized to decrease the resolution of feature representations by a factor of 2 at
the end of each stage. In addition, a patch merging layer groups patches with
resolution 2×2×2 and concatenates them, resulting in a 4C-dimensional feature
embedding. The feature size of the representations are subsequently reduced to
2C with a linear layer. Stage 2, stage 3 and stage 4, with resolutions of H

4 ×W
4 ×D

4 ,
H
8 × W

8 × D
8 and H

16 × W
16 × D

16 respectively, follow the same network design.

3.2 Decoder

Swin UNETR has a U-shaped network design in which the extracted feature rep-
resentations of the encoder are used in the decoder via skip connections at each
resolution. At each stage i (i ∈ {0, 1, 2, 3, 4}) in the encoder and the bottleneck
(i = 5), the output feature representations are reshaped into size H

2i × W
2i × D

2i

and fed into a residual block comprising of two 3×3×3 convolutional layers that
are normalized by instance normalization [36] layers. Subsequently, the resolu-
tion of the feature maps are increased by a factor of 2 using a deconvolutional
layer and the outputs are concatenated with the outputs of the previous stage.
The concatenated features are then fed into another residual block as previously
described. The final segmentation outputs are computed by using a 1 × 1 × 1
convolutional layer and a sigmoid activation function.
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Fig. 2. Overview of the shifted windowing mechanism. Note that 8 × 8 × 8 3D tokens
and 4 × 4 × 4 window size are illustrated.

Table 1. Swin UNETR configurations.

Embed dimension Feature size Number of blocks Window size Number of heads Parameters FLOPs

768 48 [2, 2, 2, 2] [7, 7, 7] [3, 6, 12, 24] 61.98M 394.84G

3.3 Loss Function

We use the soft Dice loss function [29] which is computed in a voxel-wise man-
ner as

L(G,Y ) = 1 − 2
J

J∑

j=1

∑I
i=1 Gi,jYi,j

∑I
i=1 G

2
i,j +

∑I
i=1 Y

2
i,j

. (3)

where I denotes voxels numbers; J is classes number; Yi,j and Gi,j denote the
probability of output and one-hot encoded ground truth for class j at voxel i,
respectively.

3.4 Implementation Details

Swin UNETR is implemented using PyTorch1 and MONAI2 and trained on a
DGX-1 cluster with 8 NVIDIA V100 GPUs. Table 1 details the configurations
of Swin UNETR architecture, number of parameters and FLOPs. The learning
rate is set to 0.0008. We normalize all input images to have zero mean and
unit standard deviation according to non-zero voxels. Random patches of 128 ×
128 × 128 were cropped from 3D image volumes during training. We apply a
random axis mirror flip with a probability of 0.5 for all 3 axes. Additionally, we
apply data augmentation transforms of random per channel intensity shift in the
range (−0.1, 0.1), and random scale of intensity in the range (0.9, 1.1) to input
image channels. The batch size per GPU was set to 1. All models were trained
1 http://pytorch.org/.
2 https://monai.io/.

http://pytorch.org/
https://monai.io/
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Fig. 3. A typical segmentation example of the predicted labels whic are overlaid on
T1, T1c, T2 and FLAIR MRI axial slices in each row. The first two rows depict ∼75th
percentile performance based on the Dice score. Rows 3 and 4 depict ∼50th percentile
performance while the last two rows are at ∼25th percentile performance. The image
intensities are on a gray color scale. The blue, red and green colors correspond to TC,
ET and WT sub-regions respectively. Note that all samples have been selected from
the BraTS 2021 validation set. (Color figure online)
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for a total of 800 epochs with a linear warmup and using a cosine annealing
learning rate scheduler. Fonr inference, we use a sliding window approach with
an overlapping of 0.7 for neighboring voxels.

3.5 Dataset and Model Ensembling

The BraTS challenge aims to evaluate state-of-the-art methods for the seman-
tic segmentation of brain tumors by providing a 3D MRI dataset with voxel-
wise ground truth labels that are annotated by physicians [3–6,28]. The BraTS
2021 challenge training dataset includes 1251 subjects, each with four 3D MRI
modalities: a) native (T1) and b) post-contrast T1-weighted (T1Gd), c) T2-
weighted (T2), and d) T2 Fluid-attenuated Inversion Recovery (T2-FLAIR),
which are rigidly aligned, and resampled to a 1 × 1 × 1 mm isotropic resolu-
tion and skull-stripped. The input image size is 240 × 240 × 155. The data were
collected from multiple institutions using various MRI scanners. Annotations
include three tumor sub-regions: the enhancing tumor, the peritumoral edema,
and the necrotic and non-enhancing tumor core. The annotations were com-
bined into three nested sub-regions: Whole Tumor (WT), Tumor Core (TC),
and Enhancing Tumor (ET). Figure 3 illustrates typical segmentation outputs
of all semantic classes. During this challenge, two additional datasets without
the ground truth labels were provided for validation and testing phases. These
datasets required participants to upload the segmentation masks to the organiz-
ers’ server for evaluations. The validation dataset, which is designed for interme-
diate model evaluations, consists of 219 cases. Additional information regarding
the testing dataset was not provided to participants.

Our models were trained on BraTS 2021 dataset with 1251 and 219 cases
in the training and validation sets, respectively. Semantic segmentation labels
corresponding to validation cases are not publicly available, and performance
benchmarks were obtained by making submissions to the official server of BraTS
2021 challenge. We used five-fold cross-validation schemes with a ratio of 80:20.
We did not use any additional data. The final result was obtained with an
ensemble of 10 Swin UNETR models to improve the performance and achieve
a better consensus for all predictions. The ensemble models were obtained from
two separate five-fold cross-validation training runs.

4 Results and Discussion

We have compared the performance of Swin UNETR in our internal cross vali-
dation split against the winning methologies of previous years such as SegRes-
Net [30], nnU-Net [19] and TransBTS [38]. The latter is a ViT-based approach
which is tailored for the semantic segmentation of brain tumors.
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Table 2. Five-fold cross-validation benchmarks in terms of mean Dice score values. ET,
WT and TC denote Enhancing Tumor, Whole Tumor and Tumor Core respectively.

Swin UNETR nnU-Net SegResNet TransBTS

Dice Score ET WT TC Avg ET WT TC Avg. ET WT TC Avg. ET WT TC Avg.

Fold 1 0.876 0.929 0.914 0.906 0.866 0.921 0.902 0.896 0.867 0.924 0.907 0.899 0.856 0.910 0.897 0.883

Fold 2 0.908 0.938 0.919 0.921 0.899 0.933 0.919 0.917 0.900 0.933 0.915 0.916 0.885 0.919 0.903 0.902

Fold 3 0.891 0.931 0.919 0.913 0.886 0.929 0.914 0.910 0.884 0.927 0.917 0.909 0.866 0.903 0.898 0.889

Fold 4 0.890 0.937 0.920 0.915 0.886 0.927 0.914 0.909 0.888 0.921 0.916 0.908 0.868 0.910 0.901 0.893

Fold 5 0.891 0.934 0.917 0.914 0.880 0.929 0.917 0.909 0.878 0.930 0.912 0.906 0.867 0.915 0.893 0.892

Avg. 0.891 0.933 0.917 0.913 0.883 0.927 0.913 0.908 0.883 0.927 0.913 0.907 0.868 0.911 0.898 0.891

Table 3. BraTS 2021 validation dataset benchmarks in terms of mean Dice score and
Hausdorff distance values. ET, WT and TC denote Enhancing Tumor, Whole Tumor
and Tumor Core respectively.

Dice Hausdorff (mm)

Validation dataset ET WT TC ET WT TC

Swin UNETR 0.858 0.926 0.885 6.016 5.831 3.770

Evaluation results across all five folds are presented in Table 2. The proposed
Swin UNETR model outperforms all competing approaches across all 5 folds
and on average for all semantic classes (e.g. ET, WT, TC). Specifically, Swin
UNETR outperforms the closest competing approaches by 0.7%, 0.6% and 0.4%
for ET, WT and TC classes respectively and on average 0.5% across all classes in
all folds. The superior performance of Swin UNETR in comparison to other top
performing models for brain tumor segmentation is mainly due to its capability
of learning multi-scale contextual information in its hierarchical encoder via the
self-attention modules and effective modeling of the long-range dependencies.

Moreover, it is observed that nnU-Net and SegResNet have competitive
benchmarks in these experiments, with nnU-Net demonstrating a slightly better
performance. On the other hand, TransBTS, which is a ViT-based methodology,
performs sub-optimally in comparison to other models. The sub-optimal perfor-
mance of TransBTS could be attributed to its inefficient architecture in which
the ViT is only utilized in the bottleneck as a standalone attention module, and
without any connection to the decoder in different resolutions.

The segmentation performance of Swin UNETR in the BraTS 2021 validation
set is presented in Table 3. According to the official challenge results3, our bench-
marks (Team: NVOptNet) are considered as one of the top-ranking methodolo-
gies across more than 2000 submissions during the validation phase, hence being
the first transformer-based model to place competitively in BraTS challenges.
In addition, the segmentation outputs of Swin UNETR for several cases in the
validation set are illustrated in Fig. 3. Consistent with quantitative benchmarks,
the segmentation outputs are well-delineated for all three sub-regions.

3 https://www.synapse.org/#!Synapse:syn25829067/wiki/612712.

https://www.synapse.org/#!Synapse:syn25829067/wiki/612712
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Table 4. BraTS 2021 testing dataset benchmarks in terms of mean Dice score and
Hausdorff distance values. ET, WT and TC denote Enhancing Tumor, Whole Tumor
and Tumor Core respectively.

Dice Hausdorff (mm)

Testing dataset ET WT TC ET WT TC

Swin UNETR 0.853 0.927 0.876 16.326 4.739 15.309

Furthermore, the segmentation performance of Swin UNETR in the BraTS
2021 testing set is reported in Table 4. We observe that the segmentation per-
formance of ET and WT are very similar to those of the validation benchmarks.
However, the segmentation performance of TC is decreased by 0.9%.

5 Conclusion

In this paper, we introduced Swin UNETR which is a novel architecture for
semantic segmentation of brain tumors using multi-modal MRI images. Our
proposed model has a U-shaped network design and uses a Swin transformer
as the encoder and CNN-based decoder that is connected to the encoder via
skip connections at different resolutions. We have validated the effectiveness of
our approach by in the BraTS 2021 challenge. Our model ranks among top-
performing approaches in the validation phase and demonstrates competitive
performance in the testing phase. We believe that Swin UNETR could be the
foundation of a new class of transformer-based models with hierarchical encoders
for the task of brain tumor segmentation.
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