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Abstract. In recent years, deep learning techniques have shown poten-
tial for incorporation in many facets of the medical imaging pipeline,
from image acquisition/reconstruction to segmentation/classification to
outcome prediction. Specifically, these models can help improve the effi-
ciency and accuracy of image interpretation and quantification. However,
it is important to note the challenges of working with medical imaging
data, and how this can affect the effectiveness of the algorithms when
deployed. In this review, we first present an overview of the medical
imaging pipeline and some of the areas where deep learning has been
used to improve upon the current standard of care for brain lesions. We
conclude with a section on some of the current challenges and hurdles
facing neuroimaging researchers.
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1 Introduction

The advent of noninvasive imaging technologies such as magnetic resonance
imaging (MRI) and computed tomography (CT) has revolutionized medicine,
enabling clinicians to make informed decisions for diagnosis, surgical planning,
and treatment response assessment. In recent years, access to larger and more
comprehensive repositories of patient imaging data along with advances in com-
putational resources has closed the gap between machine and human. Specif-
ically, artificial intelligence (AI) based algorithms can now interpret imaging
scans at the level of expert clinicians.

While the majority of current research is focused on the interpretation of
medical imaging, upstream aspects of the imaging pipeline are primed to be
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improved via AI as well. Briefly, the imaging pipeline can be broken into three
steps: 1) acquisition/reconstruction, 2) analysis, and 3) interpretation (Fig. 1).
The first step in the pipeline is image acquisition, wherein raw data that is
not visually interpretable by a human is gathered. This raw data must then be
reconstructed into an anatomical image. For example, when performing an MRI,
data is acquired at specific frequency bands in the Fourier domain and is then
reconstructed into the spatial domain for human interpretation. The next step is
image analysis, wherein both qualitative and quantitative information regarding
the pathology of interest is gleaned. Finally, the last step is image interpretation,
wherein a trained clinician makes judgments regarding tasks such as diagnosis
or treatment planning. For instance, given a tumor’s volume and location in the
brain, a clinician may decide to utilize radiation in lieu of surgery. This general
workflow is shown in Fig. 1.

Even though imaging has been used in clinical practice for many decades,
problems still persist that hamper its efficacy. For example, patient motion dur-
ing image acquisition may render a scan unreadable since most reconstruction
algorithms are incapable of correcting for motion blur. Even when a scan is per-
fectly acquired, the complete manual analysis may be too time-consuming to be
feasible, resulting in metrics such as the response assessment in neuro-oncology
(RANO) criteria [49] to be used as a proxy measure for full volumetric tumor
burden. In the following sections, we will discuss some of the problems that
arise in the standard imaging pipeline and the opportunities that exist to uti-
lize advanced deep learning techniques to improve the efficiency of each of these
steps.

Fig. 1. The imaging pipeline is made up of three main components: 1) acquisi-
tion/reconstruction, 2) analysis, and 3) interpretation. Image acquisition and recon-
struction entails converting sensor domain data into the spatial domain. Image
enhancement/super-resolution can either be done in parallel with reconstruction, or
as a separate step. Image analysis for brain lesions includes anatomical and tumor
segmentations, along with automatic RANO measures. Finally, image interpretation
includes survival prediction, tumor histopathologic grading, and radiogenomic correla-
tions, among other applications.
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2 Opportunities in Image Acquisition and Reconstruction

The first step in the imaging pipeline is acquisition and reconstruction. When
an image is acquired, it is encoded into an intermediate representation of the
image target known as the sensor domain. For this intermediate representa-
tion to lead to an image, the function or encoding method used to encode the
image into the sensor domain must be inverted in a process known as recon-
struction. Image reconstruction is required for many kinds of medical imaging,
including MRI, CT, and positron emission tomography. Existing approaches for
reconstruction are incomplete since noisy, real-world data often precludes knowl-
edge of an exact inverse transform. To overcome the problems with conventional
image reconstruction methods, researchers have in recent years begun testing
deep learning-based approaches.

One example of a unified framework for deep learning-based image recon-
struction is Automated Transform by Manifold Approximation (AUTOMAP)
[54]. AUTOMAP is implemented with a deep neural network architecture com-
posed of fully connected layers followed by convolutional layers. Zhu et al. gen-
erated training data by taking a large set of images from a natural scene and
inverse encoding them into the sensor domain with the desired encoding function
to create a paired dataset. The network was then trained in a supervised learning
manner, enabling the network to learn the optimal strategies for image recon-
struction. The trained neural network was then applied to MRI images of the
human brain. Surprisingly, they found that training on images of objects such
as animals and plants (rather than MRI of the brain) still allowed for accurate
reconstruction of brain MRI images for three of the four commonly used encoding
schemes they tested, which implies the robustness of their approach. Moreover,
AUTOMAP implicitly learned how to denoise imaging, removing common arti-
facts such as zipper artifacts that would have persisted if the image had been
reconstructed by conventional methods. When tested against simulated data
using known ground truth, AUTOMAP reconstructed images were thus more
accurate and had a higher SNR. The study opened opportunities for adopting
deep learning approaches for image reconstruction of a wide range of different
imaging modalities without having to learn complex, modality-specific physics.

Another groundbreaking reconstruction model for accelerated MRI is the
Variational Network (VN) [21]. One of the biggest concerns about using learning-
based reconstruction methods in the clinical workflow was that they may not
preserve pathology-related features that are rare or specific to certain patients.
For efficient and accurate reconstruction of MRI data, they proposed a trainable
formulation for accelerated parallel imaging-based MRI reconstruction inspired
by variational methods and deep learning. VN incorporates key concepts from
compressed sensing, formulated as a variational model within a deep learning
approach. This approach is designed to learn a complete reconstruction proce-
dure for complex multi-channel MRI data, including all free parameters that need
to be established empirically. Hammernik et al. train the model on a complete
clinical protocol for musculoskeletal imaging, evaluate its performance on vari-
ous accelerating factors, and train on both normal and pseudo-random Cartesian
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2D sampling. Using clinical patient data, they investigated the ability of the VN
approach to preserve unique pathologies not included in the training dataset.
Surprisingly, it was able to preserve important features not present in the train-
ing data, outperforming conventional reconstructions for a range of pathologies
while providing unprecedented reconstruction speeds.

3 Opportunities in Image Analysis

The second step in the imaging pipeline is analysis. Here, information neces-
sary for downstream tasks is either manually or automatically extracted. Med-
ical image analysis covers a wide span of topics, including but not limited to
anatomical segmentation and volumetric quantification, extraction of parameter
maps from diffusion/perfusion imaging, and groupwise population analyses. In
this section, we will specifically look at examples involving brain tumor segmen-
tation.

Primary and metastatic brain tumors account for nearly 200,000 new cases
in the US every year, and imaging plays a crucial role in optimizing patient care
[43,48]. Segmentation of tumor boundaries is a necessary component for suc-
cessful surgical and radiotherapy treatment planning [14]. Unfortunately, tumor
segmentation is a challenging task requiring substantial domain expertise. Fur-
thermore, as many studies have shown, motion artifacts, field inhomogeneities,
and differences in imaging protocols both within and across medical institutions
lead to non-negligible amounts of human error as well as significant amounts of
intra- and inter-rater variability [31].

To combat these issues, researchers have turned to deep learning as it has
the potential to produce accurate and reproducible results many orders of mag-
nitude faster than can be accomplished manually. The shift to trainable AI is
being further encouraged by the release of open-source datasets with high-quality
annotations such as that from the Multimodal Brain Tumor Segmentation Chal-
lenge (BraTS) [4,6–8,33].

Variations of 3D U-Nets [46] have provided state-of-the-art results for seg-
mentation of primary brain tumors. For example, Myronenko won the 2018
BRATS challenge utilizing an asymmetrical residual U-Net, where most of the
trainable parameters of the model resided in the encoder. Furthermore, in con-
trast to the standard U-Net framework which uses four or five downsampling
operations in the encoder, he applied only three in order to preserve spatial con-
text [36]. Other modifications to the U-Net structure have also been used with
success. Jiang et al. won the 2019 challenge using a two-stage cascaded asym-
metrical residual U-Net, where the second stage of their cascade was used to
refine the coarse segmentation maps generated by the first stage [27]. The sec-
ond place that year was awarded to Zhao et al., who utilized dense blocks along
with various optimization strategies such as variable patch/batch size training,
heuristic sampling, and semi-supervised learning [52]. It is important to note that
while architectural modifications to the U-Net can provide performance boosts,
they are not always necessary. Indeed, Isensee et al. won the 2020 challenge
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with their architecture coined “No New-Net”, highlighting that a vanilla U-
Net coupled with excellent training and optimization strategies can still achieve
state-of-the-art results. Moreover, they achieved an average testing set dice score
of 88.95% for whole tumor segmentation, achieving segmentation performance
indistinguishable from human experts [25].

Similar strategies have been shown to work for metastatic brain tumors,
which present additional hurdles compared to primary brain tumors. Patients
with metastases often present with more than one target lesion along with micro-
metastases spread systemically across the brain parenchyma. Micro-metastases
are particularly challenging to segment due to their size and limited contrast
enhancement. Various approaches have been proposed, from two-stage detec-
tion/segmentation pipelines to modifications of the loss function. While these
approaches have yielded some improvement in performance, much work is still
needed. For example, Zhou et al. developed a two-stage pipeline consisting of a
detection stage followed by a segmentation stage. While they reported an excel-
lent dice score of 87% on large metastases (≥6 mm), their results dropped to
just 17% for micro-metastases (<3 mm) [53]. This trend is seen in other studies
as well [11,47], indicating the strong need for better segmentation algorithms for
brain metastases cases.

Longitudinal measurement of lesion burden is the basis for treatment
response assessment. While volumetric measurement would be the ideal metric
for lesion burden, the aforementioned issues with manual tumor segmentation
necessitate the use of proxy measures such as RANO. RANO for gliomas is
defined as the product of the maximum bidimensional diameters of the largest
axial cross-section of the tumor on MRI [49]. Even this metric is subject to inter-
rater variability, since different raters may choose differing slices based on their
subjective assessment of which axial slice has the largest tumor area. To auto-
mate this process, Chang et al. developed a tool called AutoRANO which used
the outputs of a segmentation model capable of running on post-operative imag-
ing to derive RANO measurements. He noted that AutoRANO had a higher
correlation with manual contrast-enhancing volume than did manual RANO
measures performed by expert radiologists, suggesting that AutoRANO may be
a more accurate measure of tumor burden than manual RANO [14]. Similar work
has been done to automate bi-directional measurements for other tumor types,
with equally promising results [40].

4 Opportunities in Image Interpretation

The final step in the imaging pipeline is interpretation. From a machine learning
standpoint, this is often framed as a classification problem. For example, with
regards to brain tumors, image classification tasks include but are not limited
to identifying subtypes, predicting pseudo-progression versus true progression,
ascertaining tumor malignancy status, and identifying treatment responders.
Indeed, two key facets in which the rise of AI has been particularly exciting
include radiogenomics and survival prediction.
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Radiogenomics refers to the correlation between imaging features and specific
gene expression patterns/molecular profiles of tumors. Such approaches have
mainly been studied for primary gliomas, but interest is accruing to replicate
such studies for brain metastases and spinal cord tumors as well. The ability to
predict molecular marker status noninvasively is important since a priori knowl-
edge of the mutational status of key genes together with radiographic suspicion
of a neoplasm might favor early intervention and/or mutation-specific thera-
peutic interventions. In the case of gliomas, the MGMT gene, which codes for
an enzyme responsible for DNA repair following alkylating agent chemother-
apy, may be silenced by methylation of its promoter during tumor development,
thereby preventing repair of DNA damage. This increases the potential effec-
tiveness of alkylating agent chemotherapy for these patients [23]. In order to
demonstrate that a deep learning model could predict MGMT methylation sta-
tus from imaging without the need for explicitly providing a tumor segmentation,
Korfiatis et al. [30] trained three deep residual neural networks of varying sizes on
a training dataset of 110 patients with T2-weighted MRI, artificially increasing
the size of this dataset by splitting all 3D imaging into 2D axial slices. Here, the
authors found that deeper, more parametrized networks produce better results,
with their ResNet50 model achieving an accuracy of 94.9% on the test set (45
patients with 2612 slices). Another key gene conferring longer survival in glioma
patients is IDH, which in its wild-type form codes for an enzyme responsible for
the conversion of isocitrate to a-ketoglutarate in the Krebs cycle. Gliomas har-
boring the IDH1/2 mutation carry a significantly increased overall survival than
the corresponding wild type [12]. Chang et al. [12] used a similar methodology
as Korfiatis et al. [30] for the prediction of IDH status, utilizing a residual neural
network with 2D inputs. In this case, the network required a predefined tumor
segmentation, since it was trained on cropped tumor images only. The authors
performed exceptional multi-institutional evaluation, acquiring data from three
different sites, and reporting a final accuracy and AUC on a testing set of 147
patients of 87.6% and 0.95, respectively. Similarly, Akkus et al. [2] focused on
the prediction of 1p19q co-deletion, a highly prognostic molecular marker asso-
ciated with longer survival in low-grade glioma (LGG) patients. With only 387
slices in the training data, the authors noted extreme overfitting, initially see-
ing perfect training sensitivity, specificity, and accuracy. To mitigate this, they
made use of data augmentation techniques such as random translations, rota-
tions, and flips, resulting in an increased final test set accuracy from 63.3% to
87.7%. Additionally, Chang et al. [16] aimed to integrate prediction of MGMT
methylation status, IDH mutation status, and 1p19q codeletion into a single
residual network. After five-fold cross-validation on their dataset of 259 patients
(5259 slices), they achieved mean accuracy of 83%, 94%, and 92%, respectively,
on the three tasks. Finally, MGMT methylation status prediction from MRI was
a key component of the BraTs 2021 challenge, in which many teams utilized
machine learning techniques for non-invasive assessment.

Survival analysis is a technique employed in cohort and other longitudinal
studies to predict the time it takes for a particular event to occur. In these stud-
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ies, individuals are followed from an initial observation (e.g. study enrollment,
time of diagnosis/treatment) until the occurrence of a subsequent event (e.g.,
death, disease, relapse) or until follow-up is no longer possible. Depending on
what event is used, the time between the two is denoted as progression-free sur-
vival or overall survival (OS) [39]. Survival analyses of brain tumors have utilized
both radiomics based approaches and deep learning, as well as an integration
of the two. Ujjwal et al. [5] proposed a three-step framework for OS predic-
tion which involved segmentation, radiomic feature extraction, and a survival
prediction model to stratify patients into three survival groups (short-, mid-,
and long-term survivors) and to predict OS. This approach achieved accuracy
scores of 0.571 and 0.558 on validation and testing cohorts of 53 and 130 cases
respectively. Finally, Han et al. [22] incorporated both hand-crafted radiomics
features and deep features generated by a pretrained CNN on a dataset of 178
high-grade glioma patients (50 local, and 128 from TCGA), applying feature
selection and Elastic Net-Cox modeling to classify patients into short- and long-
term survivors. This combined feature analysis framework resulted in a log-rank
test p-value of <0.001 for the 50 patient local cohort, and a corresponding value
of 0.014 for the 128 patient TCGA cohort.

5 Challenges

As mentioned in the previous sections, there are significant opportunities to
improve clinical decision-making and patient management using AI. However,
it is important to keep in mind certain caveats and challenges to developing
effective deep learning models for healthcare applications. First, it is important
to acknowledge the brittleness of deep learning models, or in other words, the lack
of generalizability across different acquisition settings and patient populations
[15,18]. For example, different hospitals may have MRI scanners with different
field strengths or use different scanning protocols. Different hospitals may also
admit patients of different age groups or racial backgrounds. These institutional
differences are further exacerbated by the fact that many medical datasets are
small, either due to rare pathology, costly human annotations, or simply due to
difficulty in extracting data from antiquated electronic medical record systems.
Indeed, empirical studies have shown that there is a drop in the performance of
deep learning models for brain lesions when evaluated at institutions different
from the ones in which they were trained [3,44]. One approach to handle the issue
of generalizability is to accumulate large quantities of diverse, multi-institutional
patient data. However, logistical issues, as well as patient privacy concerns may
render this impractical. Another approach involves fine-tuning the existing model
on a small quantity of new data when there is dataset shift [44]. More generally,
continuous learning methods allow models to be “living” and to be refined as the
data changes [42]. Other approaches include methods to adapt either the data
or the model itself to be able to handle new domains with approaches under the
umbrella of domain adaptation [28,51]. If large quantities of data are available,
but not shareable between institutions, distributed learning approaches can be
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used to train models without the need to share patient data, overcoming patient
privacy barriers [13,45].

Another major challenge facing trainable AI models is the lack of definitive
ground truth. For example, for the segmentation of brain lesions, there is often
subjectivity involved in determining tumor boundaries, especially for lesions
that are diffusely edematous. Similarly, the boundaries of contrast enhancement
may be ambiguous as well due to the presence of necrotic regions. This sub-
jectivity is primarily due to the spatial resolution limitations of MRI, which
makes categorizing tumor components into discrete bins of necrosis, enhanc-
ing, or edema difficult. Thus, it is unsurprising that there is significant intra-
and inter-rater variability for neuroimaging related segmentation [10,17,34]. In
the case of radiogenomic prediction using ground truth from a single biopsy
site, there is also uncertainty stemming from regional intra-lesional genetic het-
erogeneity of tumors [37,38,41,50]. This is further compounded by multi-focal
lesions, which can also display genetic heterogeneity across lesions from the same
patient [1]. For other prediction tasks, such as prognostic assessment, there may
be significant confounders that are not incorporated into the inputs, such as
degree of resection and chemotherapeutic regimen. Taken together, the clinical
utility and efficacy of machine learning models may be limited if there is no
way to handle uncertainty within the data. One way to potentially mitigate this
problem is to utilize deep learning methods that can estimate uncertainty to
provide multiple possible outputs, mimicking variability by different clinicians
[29]. Another viable approach is to train networks to directly report a measure
of uncertainty, thus allowing clinicians to stratify network outputs by the degree
of confidence [24,32]. This would enable flagging of highly uncertain cases for
further manual expert review.

A final challenge that should be mentioned is the reproducibility of deep
learning studies for neuroimaging. With the rapid pace of advances within the
field, new research often builds upon previous work to yield improvements in
performance. However, without the release of code, much effort would need to
be devoted to reproducing previously published results for further evaluation and
development [20]. As such, there has been a growing trend towards the release of
open-source frameworks for medical AI to allow for greater collaboration within
the research and clinical communities [9,19,26]. On a similar front, the public
release of code is increasingly becoming the expectation for publication [35].
However, this is not without potential concerns of its own, since it may result in
the accidental leaking of protected patient health information or may deter the
commercialization of research.

6 Conclusion

Significant progress has been made in the last few years to automate and increase
the efficiency of all steps in the imaging pipeline via the use of deep learning.
Specifically, greater accessibility to large-scale multi-institutional datasets and
better computational resources together have led to advances in image recon-
struction, analysis, and interpretation. Our review has highlighted some of the
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exciting AI research being performed at each of these steps in the imaging
pipeline, and some challenges and pitfalls that all researchers working with neu-
roimaging data must acknowledge.
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