®

Check for
updates

Optimization of Deep Learning Based
Brain Extraction in MRI for Low

Resource Environments

Siddhesh P. Thakur’?3@®), Sarthak Patil'?34®, Ravi Panchumarthy®®,
Deepthi Karkada®®, Junwen Wu®®, Dmitry Kurtaev®®, Chiharu Sako!2
Prashant Shah®®, and Spyridon Bakas!2:3(&)

! Center for Biomedical Image Computing and Analytics (CBICA),
University of Pennsylvania, Philadelphia, PA, USA
sbakas@upenn.edu
2 Department of Radiology, Perelman School of Medicine,

University of Pennsylvania, Philadelphia, PA, USA
3 Department of Pathology and Laboratory Medicine, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
4 Department of Informatics, Technical University of Munich, Munich, Germany
5 Intel Health and Life Sciences, Intel Corporation, Santa Clara, CA, USA

Abstract. Brain extraction is an indispensable step in neuro-imaging
with a direct impact on downstream analyses. Most such methods have
been developed for non-pathologically affected brains, and hence tend
to suffer in performance when applied on brains with pathologies, e.g.,
gliomas, multiple sclerosis, traumatic brain injuries. Deep Learning (DL)
methodologies for healthcare have shown promising results, but their
clinical translation has been limited, primarily due to these methods suf-
fering from i) high computational cost, and ii) specific hardware require-
ments, e.g., DL acceleration cards. In this study, we explore the potential
of mathematical optimizations, towards making DL methods amenable
to application in low resource environments. We focus on both the qual-
itative and quantitative evaluation of such optimizations on an existing
DL brain extraction method, designed for pathologically-affected brains
and agnostic to the input modality. We conduct direct optimizations and
quantization of the trained model (i.e., prior to inference on new data).
Our results yield substantial gains, in terms of speedup, latency, through-
put, and reduction in memory usage, while the segmentation performance
of the initial and the optimized models remains stable, i.e., as quanti-
fied by both the Dice Similarity Coefficient and the Hausdorff Distance.
These findings support post-training optimizations as a promising app-
roach for enabling the execution of advanced DL methodologies on plain
commercial-grade CPUs, and hence contributing to their translation in
limited- and low- resource clinical environments.

Keywords: Low resource environment - Deep learning -
Segmentation + CNN - Convolutional neural network - Brain
extraction + Brain tumor - Glioma - Glioblastoma - BraT§S -
OpenVINO - BrainMaGe - GaNDLF

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

A. Crimi and S. Bakas (Eds.): BrainLes 2021, LNCS 12962, pp. 151-167, 2022.
https://doi.org/10.1007/978-3-031-08999-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08999-2_12&domain=pdf
http://orcid.org/0000-0003-4807-2495
http://orcid.org/0000-0003-2243-8487
http://orcid.org/0000-0002-5417-6605
http://orcid.org/0000-0002-0623-548X
http://orcid.org/0000-0001-5913-4722
http://orcid.org/0000-0002-8822-8741
http://orcid.org/0000-0003-3243-3954
http://orcid.org/0000-0003-1055-574X
http://orcid.org/0000-0001-8734-6482
https://doi.org/10.1007/978-3-031-08999-2_12

152 S. P. Thakur et al.

1 Introduction

One of the most important first steps in any neuro-imaging analysis pipeline
is brain extraction, also known as skull-stripping [1,2]. This process removes
all non-brain portions in a brain scan and leaves the user with the portion of
the image that is of maximal interest, i.e., the brain tissue and all associated
pathologies. This step is an indispensable pre-processing operation that has a
direct effect on subsequent analyses, and also used for de-identification purposes
[3]. Enabling this to run on clinical workstations could have a tremendously pos-
itive impact on automated clinical workflows. The effects of the quality of brain
extraction in downstream analyses have been previously reported, for studies on
tumor segmentation [4-6] and neuro-degeneration [7].

This study specifically focuses on glioblastoma (GBM), which is the most
aggressive type of adult brain tumors. GBM has poor prognosis despite current
treatment protocols [8,9], and its treatment and management is often problem-
atic with a necessity of requiring personalized treatment plans. To improve the
treatment customization process, computational imaging and machine learning
based assistance could prove to be highly beneficial. One of the key steps for this
would be to enable a robust approach to obtain the complete region of imme-
diate interest irrespective of the included pathologies that would result in an
improved computational workflow.

While deep learning (DL) has been showing promising results in the field of
semantic segmentation in medical imaging [4,10-17], the deployability of such
models poses a substantial challenge, mainly due to their computational foot-
print. While prior work on brain extraction has focused on stochastic modeling
approaches [1,2,18], modern solutions leveraging DL have shown great promise
[12,15]. Unfortunately, models trained for this application also suffer from such
deployment issues, which in turn reduces their clinical translation.

In recent years, well-known DL frameworks, such as PyTorch [19] and Ten-
sorFlow [20] have enabled the democratization of DL development by making
the underlying building blocks accessible to the wider community. They usu-
ally require the help of moderately expensive computing with DL acceleration
cards, such as Graphical Processing Units (GPUs) [21] or Tensor Processing
Units (TPUs) [22]. While these frameworks will work on sites with such compu-
tational capacity (i.e., GPUs and TPUs), deploying them to locations with low
resources is a challenge. Most DL-enabled studies are extremely compute inten-
sive, and the complexity of the pipeline makes them very difficult to deploy,
especially in tightly controlled clinical environments. While cloud-based solu-
tions could be made available, patient privacy is a major health system concern,
which requires multiple legal quandaries to be addressed prior to uploading data
to the cloud. However, the availability of such approaches for local inexpensive
compute solutions would be the sole feasible way for their clinical translation.

Quantizing neural networks can reduce the computational time required for
the forward pass, but more importantly can reduce the memory burden during
the time of inference. Post-quantization, a high precision model is reduced to a
lower bit resolution model, thus reducing the size of the model. The final goal is

DL Optimization for Brain Extraction 153

to leverage the advantages of quantization and optimization, while maintaining
the segmentation performance of the full precision floating point models as much
as possible. Such methods can facilitate the reduction of the required memory
to save and infer the generated model [23].

In this paper, we take an already published DL method, namely Brain Mask
Generator (BrainMaGe)! [15], and make it usable for low resource environments,
such as commercial-grade CPUs with low memory, and older generation CPUs
by leveraging the advantages of quantization and optimization for performance
improvements. We provide a comprehensive evaluation of the observed perfor-
mance improvements across multiple CPU configurations and quantization meth-
ods for the publicly available TCGA-GBM dataset [6,24,25], as well as a private
testing dataset.

2 Methods

2.1 Data

We identified and collected n = 864 multi-parametric magnetic resonance images
(mpMRI) brain tumor scans from n = 216 GBM patients from both private
and public collections. The private collections included n = 364 scans, from
n = 91 patients, acquired at the Hospital of the University of Pennsylvania
(UPenn). The public data is available through The Cancer Imaging Archive
(TCIA) [24] and comprises of the pre-operative mpMRI scans of The Cancer
Genome Atlas Glioblastoma (TCGA-GBM, n = 125) [6,25] collection. The final
dataset (Tablel) included n = 864 mpMRI scans from n = 216 subjects with
4 structural modalities for each subject available, namely T1-weighted pre- &
post-contrast (T1, & T1Gd), T2-weighted (T2) and T2 fluid attenuated inversion
recovery (FLAIR). Notably, the multi-institutional data of the TCGA-GBM
collection is highly heterogeneous, including scan quality, slice thickness between
different modalities, scanner parameters. For the private collection data, the T1
scans were taken with high axial resolutions. The brain masks for the private
collection data were generated internally and went through rigorous manual
quality control, while the brain masks for the TCGA-GBM data were provided
through the International Brain Tumor Segmentation (BraTS) challenge [4-6,
26-28).

2.2 Data Pre-processing

All DICOM scans were converted to the Neuroimaging Informatics Technology
Initiative (NIfTT) [29] file format to facilitate computational analysis, following
the well-accepted pre-processing protocol of the BraTS challenge [4-6,26-28].
Specifically, all the mpMRI volumes were reoriented to the left-posterior-superior
(LPS) coordinate system, and the T1Gd scan of each patient was rigidly (6
degrees of freedom) registered and resampled to an isotropic resolution of 1mm3

! https://github.com/CBICA /BrainMaGe.

https://github.com/CBICA/BrainMaGe

154 S. P. Thakur et al.

Table 1. The distribution of all the datasets used in the study.

Dataset No. of subjects | No. of mpMRI scans
TCGA-GBM | 125 500
UPenn 91 364
Total 216 864

based on a common anatomical atlas, namely SRI24 [30]. We chose this atlas
[30] as the common anatomical space, following the convention suggested by the
BraTs$ challenge. The remaining scans (i.e., T1, T2, FLAIR) of each patient were
then rigidly co-registered to this resampled T1Gd scan by first obtaining the rigid
transformation matrix to T1Gd, then combining with the transformation matrix
from T1Gd to the SRI24 atlas, and resampling. For all the image registrations
we used the “Greedy”? tool [31], which is a central processing unit (CPU)-
based C++ implementation of the greedy diffeomorphic registration algorithm
[32]. Greedy is integrated into the ITK-SNAP? segmentation software [33,34], as
well as into the Cancer Imaging Phenomics Toolkit (CaPTk)* [35-39]. We fur-
ther note that use of any non-parametric, non-uniform intensity normalization
algorithm [40-42] to correct for intensity non-uniformities caused by the inho-
mogeneity of the scanner’s magnetic field during image acquisition, obliterates
the T2-FLAIR signal, as it has been previously reported [5]. Thus, taking this
into consideration, we intentionally apply the N4 bias field correction approach
[41] in all scans temporarily’ to facilitate an improved registration of all scans
to the common anatomical atlas. Once we obtain the transformation matrices
for all the scans, then we apply these transformations to the non-bias corrected
images. This complete pre-processing is available through CaPTk, as officially
used for the BraT§S challenge (Fig. 1).

2.3 Network Topology

We have used the 3D implementation [10], of the widely-used network topology
of U-Net [44], with added residual connections between the encoder and the
decoder, to improve the backpropagation process [10,13,15,44-46]. The actual
topology used here is highlighted in Fig. 2. The U-Net topology has been exten-
sively used in semantic segmentation of both 2D and 3D medical imaging data.
The U-Net consists of an encoder, which contains convolutional layers and down-
sampling layers, a decoder offering upsampling layers (applying transpose con-
volution layers), and convolutional layers. The encoder-decoder structure con-
tributes towards automatically capturing information at varying resolutions and
scales. There is an addition of skip connections, which includes concatenated fea-
ture maps paired across the encoder and the decoder layer, to improve context

2 github.com /pyushkevich/greedy, hash: 1a871cl, Last accessed: 27/May/2020.
3 itksnap.org, version: 3.8.0, last accessed: 27/May/2020.
4 www.cbica.upenn.edu/captk, version: 1.8.1, last accessed: 11/February/2021.

http://www.github.com/pyushkevich/greedy
www.itksnap.org
www.cbica.upenn.edu/captk

DL Optimization for Brain Extraction 155

FLAIR

>

Axial

Coronal

'
VT il

z
=
@©
N
B

FLAIR

Coronal Axial

Sagittal

Fig. 1. Example of MRI brain tumor scan from a randomly selected subject from the
test set. The Original scans (A) include the skull and other non-brain tissues, and (B)
the corresponding scan slices depicting only the brain.

and feature re-usability. The residual connections utilize additional information
from previous layers (across the encoder and decoder) that enable a segmentation
performance boost.

156 S. P. Thakur et al.

W

ki 7 S
024 1024

®
" Bottleneck Conv

& K L 5 I
125 128 128 128 128 128 4

Fig. 2. The U-Net topology with residual connections from GaNDLF was used for this
study. Figure was plotted using PlotNeuralNet [43].

2.4 Inference Optimizations

In this work, we used the OpenVINO toolkit (OV) for the optimizations of the
BrainMaGe model. First, in order to provide estimates of scalability of the model
performance in low resource environments, we conduct a comparison between
the inference performance of the optimized OV model with that of the PyTorch
framework. We further show a comparison of the optimized model performance
across various hardware configurations typically found in such environments.
We then showcase further performance improvements obtained through post-
training quantization of the model and perform similar comparisons across differ-
ent hardware configurations. In summary, for the BrainMaGe model, we explored
both (i) conversion from PyTorch to the optimized model with an additional
intermediate conversion to ONNX, which lead to an intolerable accuracy drop
during the PyTorch to ONNX conversion step, and (ii) direct conversion from
PyTorch to the model’s optimized intermediate representation format.

2.4.1 OpenVINO Toolkit

OV is a neural network inference optimization toolkit [47], which provides infer-
ence performance optimizations for applications using computer vision, natu-
ral language processing, and recommendation systems, among others. Its main
components are two: 1) A model optimizer and 2) an inference engine. The OV
model optimizer, provides conversion from a pre-trained network model trained
in frameworks (such as PyTorch and TensorFlow) into an intermediate represen-
tation (IR) format that can be consumed by its second main component, i.e., its
inference engine. Other types of formats that are supported include the ONNX
format. Hence, for frameworks like TensorFlow and PyTorch, there is an inter-
mediate conversion step that can be performed offline. While support for direct
conversion from the PyTorch framework is limited, there are specific extensions
[48] that enable this. The OV inference engine, provides optimized implementa-
tions for common operations found in neural networks, such as convolutions, and
pooling operations. OV also provides graph level optimizations, such as opera-
tor fusion and optimizations for common neural network patterns through the

DL Optimization for Brain Extraction 157

Ngraph library [49]. These optimizations can provide direct improvements in the
execution time of the model, enabling the latter for low- (or limited-) resource
environments with tight compute constraints.

2.5 Network Quantization

Quantization is an optimization technique that has been adopted in recent times,
to improve inference performance of neural network models [50,51]. It involves a
conversion from a high precision datatype to a lower-precision datatype. In this
study, we specifically discuss the quantization of a 32-bit floating point (FP32)
model to an 8-bit integer (INT8) model as provided by Eq. 1:

Outrnrs = round(scale * Inppsa + 2er0of fset) (1)

where the scale factor provides a mapping of the FP32 values to the low-precision
range. The zero,ffser provides a representation of the FP32 zero value to an
integer value [52,53].

We have explored leveraging quantization for further improvements in infer-
ence, while maintaining the model’s segmentation performance. Quantization
has many benefits, including (i) speedup improvements, and (ii) reduction of
memory utilization. There are two popular approaches to model quantization,
namely:

1. Quantization-aware training [54], which involves training the neural net-
work with fake quantization operations inserted in the network graph. The
fake quantization nodes are able to learn the range of the input tensors and
hence this serves as a simulation of the quantization.

2. Post-training quantization [55], which is the idea where the quantization
process is performed post-training, but prior to the actual inference. A subset
of the training dataset is selected for calibration, and this dataset is used to
learn the minimum and maximum ranges of the input weights and activations
for tensor quantization.

In this study, we have focused on exploring post-training quantization using
the OV AccuracyAware technique [56], which provides model optimizations
while explicitly limiting the segmentation performance drop. The intuition of
the method is that the quantization is targeted towards all eligible layers in the
topology. However, if a segmentation performance drop is observed, greater than
the user-specified threshold, the layers that contribute the most to the segmen-
tation performance drop are iteratively reverted back to the original datatype,
until the desired segmentation performance level is achieved.

2.5.1 Quantitative Evaluation
The segmentation performance of the model is quantitatively evaluated accord-
ing to (i) the Dice Similarity Coefficient [57] (a widely used and accepted metric

158 S. P. Thakur et al.

for quantifying segmentation results [58]), (ii) the 95" percentile of the (sym-
metric) Hausdorff Distance (commonly used in Biomedical Segmentation chal-
lenges) (iii) memory utilization, and (iv) inference performance (latency). We
further report the model performance for each stage of optimization, i.e., for the
1) baseline PyTorch implementation, 2) OV optimized FP32 model, and 3) OV
optimized model converted to INT8 format through the post-training quantiza-
tion step (Table4). It is important to note that quantization to lower precision
formats, such as INTS8, typically results in a small drop in segmentation per-
formance but this is highly dependent on the dataset. In our case, we do not
notice any loss in segmentation performance after converting the model to the
OV optimized model format.

2.6 Experimental Design

In favor of completeness, we chose five hardware platforms from various CPU
generations, to benchmark our various model configurations. We ran inference
benchmarks on all five hardware platforms with n = 132 images from the TCGA-
GBM dataset. The results are reported based on average of running inferences
on these images with a batch size of n = 1. See Tables 2 and 3 for the detailed
hardware and software configurations.

Table 2. The detailed hardware configurations used in for our experiments. Hyper-
threading and turbo was enabled for all.

Config 1 Config 2 Config 3 Config 4 Config 5
Platform Kaby Lake Coffee Lake Ice Lake -U Tiger Lake Cascade Lake
CPU Core(TM) i5-7400 Core(TM) X-GOLD 626 | Core(TM) i7-1065G7 | Core(TM) i7-1185G7 | Xeon(R) Gold 6252N

CPU @ 3.00 GHz CPU @ 2.60 GHz CPU @ 1.30 GHz CPU @ 3.00 GHz CPU @ 2.30GHz
Nodes, 1,1 1,1 1,1 1,1 1,2
Sockets
Cores /socket, 4,4 8,16 4,8 4,8 24, 48
Threads/socket
Mem config: DDR4, 2, 4GB, DDR4, 2, 8GB, LPDDR4, 2, 4GB, DDR4, 2, 8GB, DDR4, 12, 16 GB,
type, slots, 2133MT/s 2667 MT/s 3733MT/s 3200MT/s 2933 MT/s
cap, speed
Total memory 8GB 16GB 8GB 16 GB 192GB
Advanced AVX2 AVX2 AVX2, AVX512, AVX2, AVX512, AVX2, AVX512,
technologies DL Boost (VNNI) DL Boost (VNNI) DL Boost (VNNI)
TDP 90W 95 W 15W 28W 150 W

Table 3. Details of the topology implementation. We used the 3D-ResU-Net architec-
ture with 1 input channel, 2 output classes, and number of initial filters as 16.

Framework | OpenVINO 2021.4 PyTorch 1.5.1, 1.9.0
Libraries nGraph/MKLDNN MKLDNN

Model Resunet_ma.xml, Resunet_ma.bin | Resunet_ma.pt
Input shape | (1, 1, 128, 128, 128) (1, 1, 128, 128, 128)
Precision FP32) INTS8 FP32) INTS8

DL Optimization for Brain Extraction 159

3 Results

Of particular interest are the results obtained using the Hardware Configuration
4 (Core(TM) i7-1185G7 @ 3.00 GHz machine), which describes the current gen-
eration of hardware available in the consumer market. We further summarize the
results obtained from all hardware configurations, in Fig.3. Table4 shows the
summary of these metrics running on the hardware configuration 4, using the
n = 132 images from the public dataset. We also compare the results obtained
using PyTorch v.1.5.1 and PyTorch v.1.9.0. Notably the dynamic quantization
methodology on PyTorch v.1.9.0 did not yield any performance improvement.
With FP32 precision, the performance between the PyTorch and the OV models
is identical. Although memory utilization is slightly better with PyTorch v.1.9.0,
the inference performance (latency) is 1.89x better with OV. When assessing
the INT8 quantized/OV model, the performance drop is negligible, with compa-
rable memory utilization, but with a 6.2x boost in ‘latency’, when compared to
PyTorch v.1.9.0. The memory utilization and the model performance are similar
across the hardware configurations, with some variations in ‘latency’. On the
client hardware platforms (Configurations 1, 2, 3, and 4), with OV FP32 preci-
sion, we observed up to 2.3x improvements in latency. The OV INTS8 precision
yielded further speedups up to 6.9x. On server hardware platforms (Configu-
ration 5), with OV FP32 precision, we observed upto 9.6x speedup and with
the INT8 precision we observed a speedup up to 20.5x. Figure3 illustrates
the speedup per configuration, and Fig.4 highlights some example qualitative
results. The additional boost in performance with INT8 quantized model in Con-
figurations 3, 4, and 5, is due to the hardware platform’s advanced features, i.e.,
AVX512 & Intel DL Boost technology [59,60].

Table 4. Summary of accuracy, memory utilization and performance (latency) on the
hardware configuration 4: Core(TM) i7-1185G7 @ 3.00 GHz.

DL framework | Version | Precision | Average Average Memory Avg. latency
dice score Hausdorff utilization speedup
distance (normalized) (normalized)
PyTorch 1.5.1 FP32 0.97198 2.6577 £ 3.0 1 1
1.9.0 FP32 0.97198 2.6577 £ 3.0 |0.769 3.8
OpenVINO 2021.4 | FP32 0.97198 2.6577 £+ 3.0 1.285 7.1
INTS8 0.97118 2.7426 £+ 3.1 0.907 23.3

160 S. P. Thakur et al.

Mean Inference Time Speedup with OpenVINO with all the cores
Dataset: Private, 132 images

N
v

m PyTorch 1.9.0-cpu (Baseline)
H Speedup with OpenVINO FP32

m Speedup with OpenVINO INT8
15
9.60
10
6.93 6.24
. . i 334.67
1 1.90 1< 1 1.69 1 1.90 1

o mm il - o o -
Core(TM) i5-7400 Core(TM) X-GOLD Core(TM)i7-1065G7 Core(TM)i7-1185G7 Xeon(R) Gold 6252N
CPU @ 3.00GHz 626 @ 2.60GHz CPU @ 1.30GHz @ 3.00GHz CPU @ 2.30GHz

20.57

N
o

Mean Inference Time Speedup
Higher is Better

Fig. 3. Speedup across different platforms using all the cores available on a processor.

3.1 Core Scaling Improvements Across Various CPUs

Additionally, we performed a core scaling performance benchmarking to deter-
mine the scalability aspects of the model and the hardware. By limiting the
number of threads to run the inference, we performed benchmarking on all the
hardware configurations. Figure5 shows a trend of increased performance with
the increase in the number of threads. A slight drop in speedup can be observed
if the number of threads assigned is greater than the number of physical cores.
This is due to the imbalance and over-subscription of the threads. When vary-
ing the number of threads for inference, the memory utilization and accuracy
are similar to running on all the threads available. The performance of both
the PyTorch and the OV models improved with the increase in the number
of threads allocated to the inference. However, the speedup achieved with the
OV optimized FP32 and INT8 models, over PyTorch, is substantial and can be
observed on all hardware configurations. Figure 5f shows the average inference
time speedup achieved by limiting the number of threads on different hardware
configurations.

4 Discussion

In this study, we investigated the potential contributions of mathematical opti-
mizations of an already trained Deep Learning (DL) segmentation model, to
enable its application in limited-/low-resource environments. We specifically
focused on a MRI modality agnostic DL method, explicitly designed and devel-
oped for the problem of brain extraction in the presence of diffuse gliomas [14,15].
We explored these mathematical optimizations, in terms of their potential model
improvements on 1) execution time, for different hardware configurations (i.e.,
speedup, Fig.3), 2) speedup, as a function of increasing number of CPU cores

DL Optimization for Brain Extraction 161

Sagittal Coronal

o~
o
a
q
>
(©]

OV-INT8

Fig. 4. Qualitative comparison of results for one of the subjects with high resolution
T1 scans across the 3 visualization slices. “GT” is the ground truth mask, “PT-FP32”
is the mask generated by the original PyTorch FP32 model, “OV-FP32” is the output
of the optimized model in FP32, and “OV-INTS” is the output of the optimized model
after quantizing to INTS.

162 S. P. Thakur et al.

Core Scaling Performance
Kaby Lake, Core i5-7400 CPU @ 3.00GHz
4 cores, 4 threads, 1 socket, RAM: 8 GB

—a—PyTorch 1.9.0-cpu (Baseline)
—e—Speedup with OpenVINO FP32
6 —=—Speedup with OpenVINO INT8

Mean Inference Time Speedup
Higher is Better
IS

Threads

(a) Hardware Configuration 1

Core Scaling Performance
Ice Lake-U, Core i7-1065G7 CPU @ 1.30GHz
4cores, 8 threads, 1 socket, RAM: 8 GB

—a—PyTorch 1.9.0-cpu (Baseline)

Mean Inference Time Speedup
Higher is Better
IS

—"90— o — 0o ——o
0
0 1 2 3 4 5 6 7 8
#Threads

—e—Speedup with OpenVINO FP32
—=—Speedup with OpenVINO INT8

(c) Hardware Configuration 3

Core Scaling Performance
Cascade Lake, Xeon Gold 6252N CPU @ 2.30GHz
48 cores, 96 threads, 2 socket, RAM: 192 GB

——PyTorch 1.9.0-cpu (Baseline)
—e—Speedup with OpenVINO FP32
—m—Speedup with OpenVINO INT8

Higher is Better

Mean Inference Time Speedup

0 20 40 60 80 100
Threads

(e) Hardware Configuration 5

Fig.5. Core scaling performance improvements, across various hardware configura-
tions, shown in (a—e). The average speedup across all hardware configurations, and

120

Core Scaling Performance
Coffee Lake, Core X-GOLD 626@ 2.60GHz
8cores, 16 threads, 1 socket, RAM: 16 GB

—a—PyTorch 1.9.0-cpu (Baseline)
—e—Speedup with OpenVINO FP32
—=—Speedup with OpenVINO INT8

Ey

Higher is Better
IS

i

Mean Inference Time Speedup

Threads

(b) Hardware Configuration 2

Core Scaling Performance
Tiger Lake, Core i7-1185G7 @ 3.00GHz
4cores, 8 threads, 1 socket, RAM: 16 GB

././'\./I

—a—PyTorch 1.9.0-cpu (Baseline)
—e—Speedup with OpenVINO FP32
—m—Speedup with OpenVINO INT8

—oo— ST———eo——*

Higher is Better
IS ES ©

~

Mean Inference Time Speedup

#Threads

(d) Hardware Configuration 4

Mean Inference Time Speedup with OpenVINO by core scaling across
different hardware configs
Dataset: Private, 132 images

m Core Scaling PyTorch 1.9.0-cpu (Baseline)
m Core Scaling Average Speedup with OpenVINO FP32
20 | mCore Scaling Average Speedup with OpenVINO INT8
16{58

i i i
165 1.75|
1 1 1

Core(TM)i7- Core(TM)i7- Xeon(R) Gold
106567 CPU@ 1185G7 @ 3.00GHz 6252N CPU @
30GHz

B 337 387

L 174 L 199
, mill =i

Core(TM) 57400 Core(TM) X-GOLD
CPU@3.00GHz 626 @ 2.60GHz

Mean Inference Time Speedup
Higher is Better

(f) Summary speedup comparisons.

comparison with the PyTorch baseline performance (f).

for all the hardware configuration we considered (Fig.5), 3) memory require-

ments (Table4), and 4) segmentation performance. Our results yield a distinct

speedup, and a reduction in computational requirements, while the segmentation
performance remains stable, thereby supporting the potential of the proposed

solution for application in limited-/low-resource environments.

DL Optimization for Brain Extraction 163

For these intended inference time optimizations (i.e., applied in the already
trained model), we have particularly focused on using the post-training quantiza-
tion technique. We observe that the largest improvement in terms of speedup was
obtained from the post-training quantized INT8 model, which ended up being
> 23z faster than the native single-precision implementations, while producing a
negligible segmentation performance drop as measured by both the Dice Similar-
ity Coefficient and the Hausdorff distance (Table4). Post training quantization
is the quickest method of obtaining the quantized INT8 model and is desirable in
situations where the “accuracy” (i.e., segmentation performance) drop is mini-
mal, as well as within an acceptable threshold. In scenarios where the “accuracy”
drop is greater than the acceptable threshold, quantization aware training could
be an alternative approach to help in obtaining such potential improvements.
However, such optimization (quantization aware training) would require model
re-training.

The total number of parameters of the BrainMaGe 3D-ResU-Net model are
8.288x 10°, for which the number of Floating point operations per second (Flops)
required for the OV FP32 model are 350.72665 x 10°, whereas for the OV INTS8
model the number of Flops required are 2.09099 x 10° and number of Integer
operations per second (Iops) required are 348.63566 x 10°. We observed that
approximately 99.4% of Flops have been converted to Iops in the optimized
INTS8 model, resulting in two major computational benefits: (i) With lower pre-
cision (INT8), there is an improved data transfer speed through the memory
hierarchy due to better cache utilization and reduction of bandwidth bottle-
necks, thus enabling to maximize the compute resources; (1) With hardware
advanced features [59,60], the number of compute operations per second (OPS)
are higher, thus reducing the total compute time. These two benefits of reduced
memory bandwidth and higher frequency of OPS with the lower precision model
resulted in substantial improvements (Table4).

In favor of transparency and reproducibility, we make publicly available the
optimized BrainMaGe brain extraction model, through its original repository®.
Furthermore, a more generalized solution will also be made publicly available
through the Generally Nuanced Deep Learning Framework (GaNDLF)® [13],
towards enabling scalable end-to-end clinically-deployable workflows.

We consider the immediate future work as a three-fold: 1) performance eval-
uation of quantization aware training compared against post-training quantiza-
tion; 2) extended evaluation on a larger multi-institutional dataset [61,62], as
well as evaluation of additional network topologies; 3) a comprehensive anal-
ysis covering additional hardware configurations; 4) assessment of the poten-
tial contributions of these mathematical optimizations for varying DL work-
loads, beyond segmentation and towards regression and classification tasks in
the healthcare domain.

5 https://github.com/CBICA /BrainMaCe.
5 https://github.com/CBICA /GaNDLF.

https://github.com/CBICA/BrainMaGe
https://github.com/CBICA/GaNDLF

164 S. P. Thakur et al.

Acknowledgments. Research reported in this publication was partly supported by
the National Cancer Institute (NCI) and the National Institute of Neurological Dis-
orders and Stroke (NINDS) of the National Institutes of Health (NIH), under award
numbers NCI:U01CA242871 and NINDS:R01NS042645. The content of this publica-
tion is solely the responsibility of the authors and does not represent the official views
of the NIH.

References

1. Smith, S.M.: “Bet: Brain extraction tool,” FMRIB TRO0SMS2b, Oxford Centre
for Functional Magnetic Resonance Imaging of the Brain). Department of Clinical
Neurology, Oxford University, John Radcliffe Hospital, Headington, UK (2000)

2. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3),
143-155 (2002)

3. Schwarz, C.G., et al.: Identification of anonymous MRI research participants with
face-recognition software. N. Engl. J. Med. 381(17), 1684-1686 (2019)

4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor
segmentation, progression assessment, and overall survival prediction in the brats
challenge. arXiv preprint arXiv:1811.02629 (2018)

5. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

6. Bakas, S., et la.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.
org/10.7937/K9/TCIA.2017. KLXWJJ1Q

7. Gitler, A.D., Dhillon, P., Shorter, J.: Neurodegenerative disease: models, mecha-
nisms, and a new hope. Disease Models Mech. 10, 499-502 (2017). 28468935[pmid]

8. Ostrom, Q.T., Rubin, J.B., Lathia, J.D., Berens, M.E., Barnholtz-Sloan, J.S.:
Females have the survival advantage in glioblastoma. Neuro-oncol. 20, 576-577
(2018). 29474647 [pmid]

9. Herrlinger, U., et al.: Lomustine-temozolomide combination therapy versus stan-
dard temozolomide therapy in patients with newly diagnosed glioblastoma with
methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase
3 trial. Lancet 393, 678-688 (2019)

10. Cigek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424-432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8_49

11. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nat. Methods 18(2), 203211 (2021)

12. Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial
neural networks. Hum. Brain Mapp. 40(17), 4952-4964 (2019)

13. Pati, S., et al.: Gandlf: a generally nuanced deep learning framework for scalable
end-to-end clinical workflows in medical imaging. arXiv preprint arXiv:2103.01006
(2021)

14. Thakur, S.P.: Skull-stripping of glioblastoma MRI scans using 3D deep learning. In:
Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 57-68. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_6

http://arxiv.org/abs/1811.02629
https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
http://arxiv.org/abs/2103.01006
https://doi.org/10.1007/978-3-030-46640-4_6

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

DL Optimization for Brain Extraction 165

Thakur, S., et al.: Brain extraction on MRI scans in presence of diffuse glioma:
multi-institutional performance evaluation of deep learning methods and robust
modality-agnostic training. Neuroimage 220, 117081 (2020)

Bhalerao, M., Thakur, S.: Brain tumor segmentation based on 3D residual U-net.
In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 218-225.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_21
Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for
accurate brain lesion segmentation. Med. Image Anal. 36, 61-78 (2017)

Leung, K.K., et al.: Brain maps: an automated, accurate and robust brain extrac-
tion technique using a template library. Neuroimage 55(3), 1091-1108 (2011)
Paszke, A., et al..: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8026-8037
(2019)

Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
vol. 16, pp. 265-283 (2016)

Lin, HW., Tegmark, M., Rolnick, D.: Why does deep and cheap learning work so
well? J. Stat. Phys. 168, 1223-1247 (2017)

Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit
(2017)

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: training neural networks with low precision weights and activations
2016

(Clark? K., et al.: The cancer imaging archive (TCIA): Maintaining and operating
a public information repository. J. Digit. Imaging 26, 1045-1057 (2013)
Scarpace, L., et al.: Radiology data from the cancer genome atlas glioblastoma
multiforme [TCGA-GBM] collection. Cancer Imaging Arch. 11(4), 1 (2016)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(brats). IEEE Trans. Med. Imaging 34(10), 1993-2024 (2014)

Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/
10.7937/K9/TCIA.2017.GJQTROEF

Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor
segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314
(2021)

Cox, R., et al.: A (sort of) new image data format standard: Nifti-1: We 150.
Neuroimage 22 (2004)

Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The sri24 multichannel
atlas of normal adult human brain structure. Hum. Brain Mapp. 31, 798-819
(2009)

Yushkevich, P.A.) Pluta, J., Wang, H., Wisse, L.E., Das, S., Wolk, D.: Fast auto-
matic segmentation of hippocampal subfields and medial temporal lobe subregions
in 3 tesla and 7 tesla t2-weighted MRI. Alzheimer’s & Dementia: J. Alzheimer’s
Assoc. 12(7), P126-P127 (2016)

Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construc-
tion for computational anatomy. Neuroimage 23, S151-S160 (2004)

Yushkevich, P.A.; et al.: User-guided 3D active contour segmentation of anatomi-
cal structures: significantly improved efficiency and reliability. Neuroimage 31(3),
1116-1128 (2006)

Yushkevich, P.A. et al.: User-guided segmentation of multi-modality medical imag-
ing datasets with ITK-snap. Neuroinformatics 17(1), 83-102 (2019)

https://doi.org/10.1007/978-3-030-46643-5_21
https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
http://arxiv.org/abs/2107.02314

166

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

52.

S. P. Thakur et al.

Davatzikos, C., et al.: Cancer imaging phenomics toolkit: quantitative imaging
analytics for precision diagnostics and predictive modeling of clinical outcome. J.
Med. Imaging 5(1), 011018 (2018)

Rathore, S., et al.: Brain cancer imaging phenomics toolkit (brain-CaPTk): an
interactive platform for quantitative analysis of glioblastoma. In: Crimi, A., Bakas,
S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp.
133-145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_12
Pati, S., et al.: The cancer imaging phenomics toolkit (CaPTk): technical overview.
In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 380-394.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_38

A. Fathi Kazerooni, H. Akbari, G. Shukla, C. Badve, J. D. Rudie, C. Sako, S.
Rathore, S. Bakas, S. Pati, A. Singh, et al., ” Cancer imaging phenomics via captk:
multi-institutional prediction of progression-free survival and pattern of recurrence
in glioblastoma,” JCO clinical cancer informatics, vol. 4, pp. 234-244, 2020
Rathore, S., et al.: Multi-institutional noninvasive in vivo characterization of
IDH, 1p/19q, and egfrviii in glioma using neuro-cancer imaging phenomics toolkit
(neuro-captk). Neuro-oncol. Adv. 2(Supplement_4), iv22-iv34 (2020)

Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic
correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging
17(1), 87-97 (1998)

Tustison, N.J., et al.: N4itk: improved N3 bias correction. IEEE Trans. Med. Imag-
ing 29(6), 1310-1320 (2010)

Larsen, C.T., Iglesias, J.E., Van Leemput, K.: N3 bias field correction explained as
a Bayesian modeling method. In: Cardoso, M.J., Simpson, 1., Arbel, T., Precup,
D., Ribbens, A. (eds.) BAMBI 2014. LNCS, vol. 8677, pp. 1-12. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12289-2_1

Igbal, H.: Harisigbal88/plotneuralnet v1.0.0, December 2018

Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234-241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance
of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.)
LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179-187. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46976-8_19

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778 (2016)

Openvino™ toolkit overview (2021). https://docs.openvinotoolkit.org/latest/
index.html

Pytorch extension for openvino™ model optimizer (2021). https://github.com/
openvinotoolkit /openvino_contrib/tree/master /modules/mo_pytorch

Cyphers, S.; et al.: Intel nGraph: an intermediate representation, compiler, and
executor for deep learning. arXiv preprint arXiv:1801.08058 (2018)

Wu, H., Judd, P., Zhang, X., Isaev, M., Micikevicius, P.: Integer quantiza-
tion for deep learning inference: principles and empirical evaluation. CoRR, vol.
abs/2004.09602 (2020)

Choukroun, Y., Kravchik, E.;, Yang, F., Kisilev, P.: Low-bit quantization of neural
networks for efficient inference. In: ICCV Workshops, pp. 3009-3018 (2019)
Quantization algorithms. https://intellabs.github.io/distiller/algo_quantization.
html

https://doi.org/10.1007/978-3-319-75238-9_12
https://doi.org/10.1007/978-3-030-46643-5_38
https://doi.org/10.1007/978-3-319-12289-2_1
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46976-8_19
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://github.com/openvinotoolkit/openvino_contrib/tree/master/modules/mo_pytorch
https://github.com/openvinotoolkit/openvino_contrib/tree/master/modules/mo_pytorch
http://arxiv.org/abs/1801.08058
https://intellabs.github.io/distiller/algo_quantization.html
https://intellabs.github.io/distiller/algo_quantization.html

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

DL Optimization for Brain Extraction 167

Int8 inference (2021). https://oneapi-src.github.io/oneDNN/dev_guide_inference_
int8.html

Tailor, S.A., Fernandez-Marques, J., Lane, N.D.: Degree-quant: quantization-aware
training for graph neural networks. arXiv preprint arXiv:2008.05000 (2020)

Fang, J., Shafiee, A., Abdel-Aziz, H., Thorsley, D., Georgiadis, G., Hassoun, J.H.:
Post-training piecewise linear quantization for deep neural networks. In: Vedaldi,
A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp.
69-86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_5
Openvino™ toolkit accuracyaware method (2021). https://docs.openvinotoolkit.
org/latest /workbench_docs_Workbench_DG _Int_8_Quantization.html

Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric anal-
ysis of white matter lesions in MR images: method and validation. IEEE Trans.
Med. Tmaging 13(4), 716-724 (1994)

Reinke, A., et al.: Common limitations of performance metrics in biomedical image
analysis. Med. Imaging Deep Learn. (2021)

Arafa, M., et al.: Cascade lake: next generation intel Xeon scalable processor. IEEE
Micro 39(2), 29-36 (2019)

Lower numerical precision deep learning inference and training (2018). https://
software.intel.com/content /www /us/en/develop/articles/lower-numerical-
precision-deep-learning-inference-and-training.html

Davatzikos, C., et al.: Ai-based prognostic imaging biomarkers for precision neuro-
oncology: the respond consortium. Neuro-oncol. 22(6), 886-888 (2020)

Bakas, S., et al.: iGlass: imaging integration into the glioma longitudinal analysis
consortium. Neuro Oncol. 22(10), 1545-1546 (2020)

https://oneapi-src.github.io/oneDNN/dev_guide_inference_int8.html
https://oneapi-src.github.io/oneDNN/dev_guide_inference_int8.html
http://arxiv.org/abs/2008.05000
https://doi.org/10.1007/978-3-030-58536-5_5
https://docs.openvinotoolkit.org/latest/workbench_docs_Workbench_DG_Int_8_Quantization.html
https://docs.openvinotoolkit.org/latest/workbench_docs_Workbench_DG_Int_8_Quantization.html
https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-and-training.html
https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-and-training.html
https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-and-training.html

	Optimization of Deep Learning Based Brain Extraction in MRI for Low Resource Environments
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Data Pre-processing
	2.3 Network Topology
	2.4 Inference Optimizations
	2.5 Network Quantization
	2.6 Experimental Design

	3 Results
	3.1 Core Scaling Improvements Across Various CPUs

	4 Discussion
	References

