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Abbreviations

10 MWT 10-M walk test
ADL Activity of Daily Living
ARAT Action Research Arm Test
BBT Box and Block Test
Cis Confidence intervals
EMG Electromyography
FAS Functional Ability Scale (subscale

of the Wolf Motor Function Test)
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Abstract 

In this chapter, we provide a review of the 
current applications of wearable sensors in the 
field of stroke rehabilitation. Four key points are 
discussed in this review. First, wearable sensors 
are a viable solution for monitoring movement 
during rehabilitation exercises and clinical 
assessments, but more work needs to be done 
to derive clinically relevant information from 
sensor data collected during unstructured activ-
ities. Second, wearable technologies provide 
critical information related to the performance 
of activities in daily life, information that is not 
necessarily captured during in-clinic assess-

ments. Third, wearable technologies can provide 
feedback and motivation to increase movement 
in the home and community settings. Finally, 
technologies are rapidly emerging that can 
complement “traditional” wearable sensors and 
sometimes replace them as they provide less 
obtrusive means of monitoring motor function in 
stroke survivors. These developing technologies, 
as well as readily available wearable sensors, are 
transforming stroke rehabilitation, their develop-
ment is progressing at a fast pace, and their use 
so far has allowed us to gather important 
information, that we would have not been able 
to collect otherwise, which has tremendous 
potential to further advance stroke rehabilitation. 
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FMA-UE Fugl-Meyer Assessment, Upper
Extremity subsection

ICF International Classification of
Functioning, Disability and Health

IMU Inertial Measurement Unit
IoT Internet of Things
LL Lower Limb
MAL Motor Activity Log
MLA Machine Learning Algorithms
MMG Mechanomyography
RFID Radio Frequency IDentification
RMSE Root Mean Square Error
SARAH Semi-Automated Rehabilitation at

the Home
TIS Trunk Impairment Scale
TUG Timed Up-and-Go
UL Upper Limb
UWB Ultra-WideBand
WMFT Wolf Motor Function Test

Wearable sensors could be used in many ways in
stroke rehabilitation. They could be used to per-
form clinical assessments, facilitate the design of
patient-specific rehabilitation strategies, enable the
delivery of high-dosage interventions, and track
clinical outcomes. The use of wearable sensors
could help rehabilitation specialists to address the
increasing demand and decreasing access to
rehabilitation care that the shortage of rehabilita-
tion specialists is expected to cause [ ]. Tracking
the response of each patient to the prescribed
intervention would allow therapists to carefully
adjust the intervention strategy throughout the
therapy period and achieve optimal clinical out-
comes on a patient-by-patient basis. Furthermore,
wearable sensors could help rehabilitation spe-
cialists to deliver interventions in the home setting
and to monitor subjects in the community, thus
reducing the therapists’ workload and facilitating

1

the delivery of long-term interventions that may
be most effective in maximizing motor gains.
Figure shows a schematic representation of
how we envision that wearable sensors could be
applied across the continuum of care.

21.1

468 C. P. Adans-Dester et al.

The material in this chapter is organized in the 
following four parts:

. Monitoring stroke survivors during the per-
formance of rehabilitation exercises and clin-
ical assessments.

. Monitoring stroke survivors during the per-
formance of activities of daily living (in the 
home and community settings) with the goal 
of capturing what patients “do” as opposed to 
what they “are capable of doing”.

. Monitoring stroke survivors to generate 
feedback and provide motivation to maximize 
the amount and quality of motor practice.

. Monitoring stroke survivors using emerging 
technologies that overcome the limitations of 
“traditional” wearable sensors and systems. 

Herein, we will primarily focus on upper-limb 
(UL) rehabilitation after stroke (i.e., arm and hand 
movements), though in some sections of the 
chapter, we will provide insights into the use of 
wearable technology to monitor and enable lower 
limb rehabilitation (i.e., balance and mobility 
training). In each section, we will elaborate on the 
clinical importance of the applications discussed, 
provide examples of what has been accomplished 
so far, and suggest how these technologies should 
be integrated into the clinical workflow in the 
future. While this chapter is focused on stroke 
rehabilitation, many of the applications of wear-
able technology herein discussed are relevant not 
only to designing interventions for other neuro-
logical diseases, but also to geriatric and muscu-
loskeletal rehabilitative care. 

21.1 Introduction 

Because we anticipate an interdisciplinary 
readership, in the box below, we provide the 
definitions of a few terms utilized throughout this 
chapter to facilitate a common understanding of 
the used terminology.



ICF domain definitions and their link
with other common terms used across
disciplines
Impairment: is a deficit in body structure
or function. Example: a loss of muscle
strength, or somatosensation in the upper
limb post stroke. It is the accumulation of a
few or many impairments that lead to
limitations in the capacity for and perfor-
mance of the activity. Common clinical
tests to measure impairment in rehabilita-
tion: Fugl-Meyer Upper Extremity test,
grip strength, monofilament testing.

Capacity for activity: is the execution
of an activity in a structured environment,
such as in the clinic or a laboratory. Other
common terms used to describe the same
idea include “function”, “functional
capacity”, and “capability”. Examples:
activities such as dressing, typing or
walking. Common clinical tests to measure
upper limb capacity in rehabilitation:

Action Research Arm Test, Wolf Motor
Function Test, Box and Block Test.

Performance of activity: is the execu-
tion of activity in the unstructured, real-
world environment, that is measured in the
home and/or community with the existing
facilitators and barriers. Examples: activi-
ties such as cooking or bathing in the home
environment (that might or might not have
been modified after the stroke). Common
ways to measure upper limb performance:
motor Activity Log (self-perceived mea-
sure) and accelerometry (direct measure).

Participation: is the fulfillment of life
roles and responsibilities. Participation
typically requires the performance of mul-
tiple activities in the motor, cognitive, and
language domains. Examples: caring for a
child or working. Common clinical tests to
measure participation: stroke impact scale
and Neuro-Quality of Life.
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Fig. 21.1 Conceptual representation of the application of 
wearable sensors across the continuum of rehabilitation 
care. In the clinic (left), sensors are used to measure 
movement patterns during the rehabilitation sessions. 
Sensor data is used to estimate clinical scores and evaluate 
progression. This information is used to adjust the 

therapeutic plan. In the home environment (right), sensors 
can be used to monitor patients’ movements as well as 
provide feedback and motivation to keep practicing in 
order to improve motor performance. Clinicians and 
engineers who are part of the care team (top) are given 
access to the data to make informed decisions
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21.2 Wearable Sensors 
for Assessments Performed 
in the Clinic 

21.2.1 Why Would One Want to Use 
Wearable Sensors 
for Assessments 
Performed in the Clinic? 

Numerous studies have shown that rehabilitation 
interventions are beneficial across a number of 
neurological conditions as they result in a 
decrease in the severity of disability [2]. How-
ever, choosing the most effective intervention 
among the myriad of available rehabilitation 
approaches is challenging [3, 4]. High variability 
in the response to interventions aimed to restore 
UL function is observed across patients [5, 6], 
hence pointing to the need for designing “preci-
sion rehabilitation” interventions that account for 
the unique characteristics of each individual. The 
need to develop patient-specific interventions is 
paramount in the broad field of medicine [7–9] 
and is gradually emerging as a topic of great 
interest in the field of rehabilitation as investi-
gators explore approaches relying on patients’ 
genotype [10–12] and motor phenotype [13–15] 
to develop subject-specific interventions. 

In this context, it is important that rehabilita-
tion specialists be provided with tools to monitor 
the motor recovery process, assess if the ongoing 
intervention is leading to the anticipated clinical 
results, and adjust the intervention if needed. 
Interventions are typically structured according 
to the ICF model [16]. Rehabilitation specialists 
use this framework to evaluate interventions and 
rely on clinical outcome measures to capture 
different ICF domains (i.e., Body Function and 
Structures, Activity, and Participation). Clinical 
outcome measures are often based on the obser-
vation of subjects’ motor behaviors (e.g., to 
capture motor impairments and activity limita-
tions). Unfortunately, these methods suffer from 
several shortcomings. For instance, only a lim-
ited number of rehabilitation specialists undergo 
the rigorous training needed to properly 

administer these evaluations. Despite training, 
substantial inter-rater variability is frequently 
observed. Besides, oftentimes clinical scales are 
prone to subjectivity and are marked by low 
resolution, and hence limited ability to capture 
change. These assessments are also time-
consuming and can be impractical to administer 
on a regular basis throughout the period of 
intervention. 

Outcome measures are too many times col-
lected only at baseline and at discharge. This is a 
problem because the lack of longitudinal data 
tracking progression prevents rehabilitation spe-
cialists from examining the potential need to 
adjust the intervention to maximize motor gains. 
To address this problem, researchers and clini-
cians have started to explore the use of wearable 
sensing technology to collect longitudinal data 
and derive estimates of clinical outcome mea-
sures (i.e., clinical scores). Over the past decade, 
wearable technology has matured to the extent 
needed to provide clinicians with an effective 
tool to monitor outcomes and facilitate delivering 
interventions [17–20]. This technology has 
tremendous potential for assessing the benefits of 
rehabilitation interventions [21]. Wearable sen-
sors are a ubiquitous and unobtrusive tool to 
quantify movement, gather important data during 
the administration of clinical assessments, and 
track motor behaviors during an intervention 
period to monitor progression. 

21.2.2 Assessing Arm and Hand 
Movements of Stroke 
Survivors in the Clinic 

21.2.2.1 Estimating Movement 
Kinematics 

Most ADLs require the performance of reaching 
movements, which are marked in stroke sur-
vivors by greater trunk movement and limited 
elbow extension. Nonetheless, clinical tests often 
fail to measure a range of motion during the 
performance of motor tasks. Kinematic assess-
ments are considered a gold standard for



objective evaluation of movement. In stroke 
rehabilitation, it is important to capture move-
ment characteristics and deficits in order to refine 
and evaluate interventions [22]. However, kine-
matic evaluations in the clinic are limited due to 
the lack of time, training, cost, and equipment 
needed (i.e., marker-based optical tracking sys-
tems). Over the past decades, quite a few 
approaches marked by different levels of com-
plexity have used wearable IMUs to track limb 
movements. For instance, methods have been 
developed that allow one to reconstruct the 
kinematics of movement from accelerometer, 
gyroscope, and magnetometer data recorded 
using sensors placed on different body segments. 
Kinematic analysis with wearable sensors has 
been shown to be an objective, sensitive to 
change, and quantitative means of measuring 
motor impairment. A review of all the approa-
ches proposed so far is beyond the scope of this 
chapter. Herein, we provide instead examples of 
clinical applications of these technologies. 
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For example, Schwarz et al. [23] used a por-
table IMU system to measure UL kinematics. 
A total of eight IMUs and sensors were placed on 
the upper body, including a fingertip force-
sensing resistor to detect interaction forces 
between the object and the fingers. Data was 
collected during the performance of functional 
reach-to-grasp and object displacement tasks. 
The authors were able to extract parameters such 
as trunk compensation, shoulder flexion-
extension and abduction-adduction, elbow 
flexion-extension, forearm supination-pronation, 
wrist flexion-extension, and flexion-extension of 
the fingers. In addition, the authors found evi-
dence of joint coupling during the performance 
of object displacement tasks via the analysis of 
the correlation between elbow flexion-extension 
and trunk movements. 

Hand function is important for the perfor-
mance of ADLs, but hand kinematics is difficult 
to collect. Gloves instrumented with IMUs and 
magnetic sensors can be used to reconstruct joint 
motion and provide clinicians with valuable 
information [24]. Using this type of system in the 
clinical setting is attractive but has major draw-
backs such as the interference with tactile and 

proprioceptive feedback when manipulating an 
object, sanitation concerns if the sensors are used 
by multiple patients and the time required to 
properly don/doff the glove. Researchers have 
investigated a novel method of finger movement 
tracking based on wearable capacitive strain 
sensors to address some of the glove’s limitations 
[25]. Other emerging technologies will be dis-
cussed in Sect. 21.5 of this chapter. 

More recently, Nie et al. [26] reported the use 
of a portable, open-source solution to estimate 
the position of the wrist during reaching move-
ments with two IMUs. Their method allows one 
to track the wrist position and average active 
range of motion during reaching movements with 
relatively high accuracy (within 1.0–2.5 cm) 
compared to a marker-based optical tracking 
system. In addition, a sweeping task allowed the 
authors to derive two different clinically relevant 
metrics. The horizontal sweep area “(i.e., reach-
ing workspace)” and the smoothness of the 
sweeping movement are indicative of movement 
impairments (smoother movements indicate less 
impaired UL following a stroke). To improve the 
clinical implementation of such measures, the 
authors purposefully decided to make their 
methods available and transparent for others to 
use with any sensor capable of estimating limb 
orientation. 

So far, the research findings support the 
clinical suitability of sensor-based motion anal-
ysis to track UL movements in stroke survivors. 
However, the implementation of such methods 
outside the research setting remains to be tested. 

21.2.2.2 Estimating Clinical Scores 
Over the past two decades, researchers have 
increasingly incorporated the use of wearable 
sensors into their stroke rehabilitation work [27], 
both to measure UL activity in the home and to add 
to the traditional methods of assessments in the 
clinic. Several research groups have studied the use 
of IMUs to assess motor function more objectively, 
some as a way to automate or instrument the 
assessment of motor function in the clinical setting, 
others to derive UL motor impairments by esti-
mating various clinical scores from data collected 
during the performance of predefined motor tasks.



Figure 21.2 represents a methodology to derive 
clinically relevant information from wearable sen-
sors. First, different combinations of wearable 
sensors are used to collect data sometimes during 
the performance of the clinical test itself, other 
times during specific tasks or general arm move-
ments. Then, data are processed using machine 
learning algorithms (MLA) to derive estimates of 
the outcome of choice. Here, we provide some 
examples of clinical score estimates relevant to 
stroke rehabilitation. 
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Fig. 21.2 Conceptual representation of methods com-
monly used to estimate clinical scores. Data is collected 
with wearable sensors positioned on the upper limbs 
during the performance of functional tasks. Accelerometer 
data is fed to a machine learning algorithm to derive 

estimates of the clinical scores of interest. Reproduced 
and modified with permission from Adans-Dester et al. 
(https://doi.org/10.1038/s41746-020-00328-w, licensed 
under CC BY 4.0) 

Fugl-Meyer Assessment 

The Fugl-Meyer Assessment, Upper-Extremity 
subscale (FMA-UE) is a clinical test designed to 
evaluate motor impairments that have been tested 
extensively in the stroke population [28]. A total 
of 33 items assessing voluntary movement, 
reflexes, grasp, and coordination are tested; each 
item is rated on a 3-point ordinal scale. 

The first method to derive the FMA-UE 
scores is the instrumentation of the test with 
wearable sensors. For example, researchers used 
two accelerometers and seven flex sensors to 
monitor the movements of the UL during the 
performance of 7 movements derived from the 
FMA-UE [29]. They used MLA to predict the 
FMA scores based on wearable sensor data and 
demonstrated the possibility to achieve a 

coefficient of determination as high as *0.92. 
Considering that the FMA scale is time-
consuming and complicated to perform, using 
only seven items of the FMA reduces the time to 
gather data as long as the patient’s impairments 
allow for easy donning and doffing the sensors. 

Another method is to use data collected dur-
ing the performance of functional tasks. Del Din 
et al. [30] selected a subset of eight tasks from 
the Wolf Motor Function Test (WMFT) and used 
six accelerometers placed on the affected arm and 
the trunk. They used a Random Forest MLA to 
estimate FMA-UE scores. Their results were 
marked by a root mean squared error (RMSE) of 
4.7 points of the FMA-UE. 

Some have tried to combine inertial mea-
surement and mechanomyography (MMG) to 
better quantify hand and wrist motor function 
during the estimation of FMA-UE scores. 
Researchers used 3 IMUs (torso, arm, and fore-
arm) and MMGs placed on finger and wrist 
flexors to collect data during the performance of 
FMA-UE tasks. Unfortunately, the detection of 
the tasks performed by study volunteers was 
marked by only 75% accuracy for gross move-
ments and 62% accuracy for distal motor tasks 
(hand and wrist) [31]. These results are not 
encouraging, not only because of the relatively 
low accuracy, but also because the data was 
collected during the performance of the clinical

https://doi.org/10.1038/s41746-020-00328-w


test. Therefore, in this scenario, wearable sensors 
did not streamline the clinical evaluation. 
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Functional Ability Scale 

The Functional Ability Scale (FAS) is used to 
assess the quality of movement via observation 
of the performance of the items of the Wolf 
Motor Function Test (WMFT). The WMFT is 
commonly used to quantify UL motor function 
with timed functional tasks [32]. It consists of 17 
items progressing from proximal to distal and 
from least to most complex UL movements. Each 
item is used to assess speed and movement 
quality. The FAS relies on a 6-point ordinal scale 
to rate the quality of the movement observed by 
the clinician. 

Patel et al. [33] used accelerometers placed on 
the hand, forearm, upper arm, and trunk to collect 
data during the performance of a subset of eight 
motor tasks taken from the WMFT and derive 
accurate estimates of the total FAS scores pro-
vided by a clinician. They showed that it is 
possible to achieve estimates of the total FAS 
score marked by a bias of 0.04 points on the scale 
and a standard deviation of 2.43 points when 
using as few as three sensors to collect data 
during the performance of six motor tasks. 

Box and Block Test 

The Box and Block Test (BBT) is commonly 
used to measure manual dexterity. The BBT is 
scored by counting the number of blocks carried 
over a partition from one compartment to another 
over one minute [34]. During the investigation of 
the MusicGlove, a sensorized glove was used to 
retrain hand function by playing games similar to 
“Guitar Hero”, researchers found that the 
MusicGlove game scores are strongly correlated 
with the BBT scores [35]. 

Action Research Arm Test 

The Action Research Arm Test (ARAT) is a 
common activity level (capacity) measure used in 
stroke rehabilitation studies. The test has four 
subscales to evaluate gross motor, grasp, grip, 

and pinch. An ordinal scale is used by the clin-
ician to score the observed ability and quality of 
the task performance. To enhance objectivity and 
provide additional information on capacity, 
Resnik et al. instrumented the ARAT test using 
IMUs and EMG sensors [36]. Five parameters 
associated with the ARAT were derived (move-
ment time, smoothness, hand trajectories, trunk 
stability, and grasping muscle activity). They 
found a strong correlation between the ARAT 
scores and the movement time and smoothness. 
While the instrumented ARAT allows one to 
quantify movement parameters and might pro-
vide a better insight into arm motor function, it is 
quite cumbersome to administer, and the data 
processing remains lengthy. 

To address some of these limitations and to 
set the preliminary groundwork for evaluating 
UL outside the clinic, Bochniewicz et al. used a 
single IMU at the wrist during the performance 
of four ADL tasks (i.e., laundry and kitchen 
activities, shopping, and making a bed) [37]. The 
authors trained a MLA to distinguish between 
functional (i.e., manipulating an object) and non-
functional tasks (i.e., arm swing while walking). 
The percentage of time spent using the arm to 
accomplish a functional task was correlated with 
the ARAT scores. The authors noted the short-
comings of using only one IMU at the wrist for 
ADLs requiring little to no arm movements. 

Estimating More than One Clinical Scale 

Adans-Dester et al. estimated two different clini-
cal scores from the same dataset [38]. The authors 
developed machine learning-based algorithms to 
estimate FAS and FMA-UE scores via the anal-
ysis of accelerometer data collected during the 
performance of functional motor tasks, that are 
part of the Wolf Motor Function Test (Fig. 21.3 
a). The accelerometer data was segmented to 
select epochs associated with the performance of 
specific movement components (e.g., forward 
arm reaching, pronation-supination movements). 
Data features were derived from each epoch and 
fed to a machine learning algorithm based on a 
regression implementation of a Random Forest. 
Separate models were built to estimate the FAS



and the FMA-UE scores. FAS estimates were 
marked by an RMSE of 0.38 points and a coef-
ficient of determination (r2 ) of 0.79 (Fig. 21.3b). 
The magnitude of the estimation error was 
deemed satisfactory, especially given the 
exploratory nature of the study. For the FMA-UE 
estimates, the authors used the output of the FAS 
estimation algorithm as an input to the FMA 
estimation module. The RMSE was equal to 3.99 
points with a coefficient of determination (r2 ) 
equal to 0.86 (Fig. 21.3c). This work is especially 
relevant to an application in the clinic as with one 
set of functional tasks, researchers were able to 
accurately estimate a measure of impairment and 
one of movement quality. 
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Fig. 21.3 Data collected using accelerometers during the 
performance of functional tasks (panel A) were used to 
derive estimates of the FAS (panel B) and the FMA-UE 

(panel C) clinical scores. Reproduced and modified with 
permission from Adans-Dester et al. (https://doi.org/10. 
1038/s41746-020-00328-w, licensed under CC BY 4.0) 

All the examples discussed above show the 
feasibility of deriving estimates of clinical scores 
via the analysis of data collected using wearable 
sensors. However, these techniques require going 
through the clinical test items or through a list of 
predefined motor tasks, which does not help to 
reduce the burden of administering evaluations. 
In addition, data processing remains labor-
intensive in several of these cases. We hope 
that, in the future, researchers will find a way to 
derive clinical scores from wearable sensor data 
collected during the performance of unstructured 
activities and to streamline the analysis of such 

data. As such, using wearable sensors to estimate 
clinical scores would not only reduce the time 
needed to perform clinical assessments, but also 
allow clinicians to evaluate the effects of the 
intervention more regularly, facilitate the docu-
mentation of patients’ response to the interven-
tion, and adjust rehabilitation interventions as 
required to better meet the needs of their patients. 

21.2.2.3 Wearable Sensors to Facilitate 
Upper Limb Training 
in the Clinic 

The ArmeoSenso (Hocoma, Switzerland) is an 
example of a commercially available system for 
rehabilitation using wearable sensors [39]. Three 
IMUs are attached to the forearm, upper arm, and 
trunk to track arm movements in a three-
dimensional space. The tracked UL movements 
serve as input for therapy games. Using such 
systems can enable group training in the clinic, 
allowing therapists to treat several patients 
simultaneously and potentially reduce therapy 
costs. Although we are not aware of any study 
using the ArmeoSenso for group training, Witt-
mann et al. [40] provided evidence that the 
ArmeoSenso can be used for self-directed arm 
therapy and enable high-dosage UL therapy that 
might result in improvements in arm function.

https://doi.org/10.1038/s41746-020-00328-w
https://doi.org/10.1038/s41746-020-00328-w


Also, Widmer et al. [41] used the ArmeoSenso in 
a study in which therapists provided minimum 
supervision during the training sessions. These 
studies provide direct evidence of the suitability 
of the system for self-directed, home-based 
therapy and indirect evidence of its suitability 
for group therapy. 
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The MusicGlove is a commercially available 
instrumented glove that requires the user to 
practice individual finger and grasping move-
ments to play a music-based video game to retrain 
hand motor function after stroke (Fig. 21.4). 
A study comparing conventional UL training to 
training with the MusicGlove in chronic stroke 
survivors reported improved hand function rela-
ted to grasping small objects (measured with the 
Box and Block Test) in the group using the 
MusicGlove [42]. No difference was found 
between training types for other measures of UL 
impairment (i.e., FMA-UE, WMTF, force). 
However, when the device was used for home-
based hand therapy and compared to a conven-
tional home exercise program, results showed an 
improvement in self-reported quality and amount 
of use (MAL scale) [43]. One of the attractiveness 
of this device for rehabilitation in the clinic is its 
low cost (*$2500 for the clinic and *$350 for 

the individual version). In addition, the ease of 
use of the device allows patients to use it by 
themselves in between therapy sessions or for use 
in group therapies where a single therapist can 
oversee numerous patients. 

Fig. 21.4 The MusicGlove is 
a system that integrates 
wearable technology and an 
interactive game (e.g., the 
Guitar Hero) to train hand 
dexterity. Reproduced with 
permission from Flint 
Rehabilitation Devices, LLC 

Wearable sensors have also been looked at as 
a way to provide feedback in the clinic. For 
example, Arteaga et al. [44] developed and tested 
a low-cost prototype (*$100) of a wearable 
device to detect undesired postures in stroke 
survivors. The system consisted of 10 IMUs to 
track patients’ posture and a combination of 
beeper, vibration, and LED light to provide 
feedback. While their pilot study showed the 
ability of the system to detect bad postures, 
unfortunately, it lacked testing in stroke sur-
vivors and seemed cumbersome to use, based on 
the number of sensors and equipment needed. 

Wearable sensors to deliver rehabilitation 
interventions also provide an objective way to 
measure arm and hand movements during ther-
apy. The feedback provided on the movement 
performance can provide much-needed motiva-
tion for stroke patients. It is important to note that 
the cost-benefit ratio of using wearable sensor-
based methods to facilitate UL training in a 
rehabilitation setting needs to be examined.
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21.2.3 Assessing and Treating 
Balance and Mobility 
of Stroke Survivors 
in the Clinic 

Stroke survivors and others living with neuro-
logical diseases often present with balance and 
gait deficits associated with an increased risk of 
falls which impacts not only the quality of life, 
but also increased costs of care due to hospital-
izations resulting from a fall [45]. It is, therefore, 
important for clinicians to quantify those deficits 
and identify patients at risk. For instance, the 
discharge plan will be different for patients with 
severe mobility impairments than those with mild 
ones. These assessments will also guide the 
rehabilitation plan and choice of assistive devices 
necessary for safe ambulation. 

21.2.3.1 Estimating Clinical Scores 

10-m Walk Test 

The 10-m walk test (10 MWT) is used in the 
clinic to assess walking speed and determine the 
level of gait impairment following a stroke. The 
test records the time required to ambulate (often at 
a self-selected pace) 6 m on a 10-m walkway, the 
distance is then divided by the time to provide the 
speed in meters per second. However, this test 
does not provide any information on the gait 
quality, which may be problematic as one can 
walk faster but with compensatory strategies or , 
on the contrary, walk slower but with a better gait 
quality. Therefore, some researchers tried to 
complement the traditional gait speed assessment 
by using wearable sensors. Bergamini et al. [46] 
used a set of five IMUs to collect 3D linear 
accelerations and angular velocities from the pel-
vis, sternum, and head during the 10MWT per-
formance. The amplitude of the accelerations and 
the gait symmetry measures they derived can 
provide the clinician with knowledge of the motor 
strategies and walking abilities of the patients, 
which complements the traditional speed infor-
mation. More recently, Garcia et al. [47] tested  the  
use of only one IMU placed at the waist to derive 
a gait smoothness metric via the estimation of 

SPARC (spectral arc length). They identified via 
the IMU a reduced smoothness (lower SPARC) in 
stroke survivors, compared to healthy controls. 
The variability in smoothness during the 10MWT 
was higher in severely impaired stroke partici-
pants. In addition, they found that a smoother gait 
was correlated with lower limb (LL) spasticity and 
vice versa. Their results show that IMUs can 
provide complementary and clinically relevant 
information to the 10MWT and has the potential 
to be used in an outdoor environment. 

Timed Up-and-Go Test 

The Timed Up-and-Go (TUG) test is widely used 
clinically to evaluate mobility, balance, and fall 
risks in adults. The instrumented TUG (iTUG) 
requires patients to walk more than the original, 
non-instrumented version (7 m vs. 3 m, respec-
tively) but allows one to gather more clinically 
relevant information than the conventional TUG, 
which only reports the time to complete the task. 
Researchers used a set of five IMUs for the 
iTUG: bilaterally on the wrists, bilaterally on the 
shanks, and one on the trunk [48, 49]. In addition 
to the total time, the iTUG can provide a 
breakdown of the test with the following: sit-to-
walk duration and peak velocity, turning duration 
and peak velocity, and turn-to-sit duration and 
peak velocity. Gait metrics can also be derived to 
provide relevant information on the gait quality 
such as cadence, speed, stride length, and gait 
asymmetry. Even though it might not be faster 
than performing instrumented clinical tests, the 
iTUG allows one to gather more data on move-
ment quality which is not available otherwise 
with most gait and mobility tests. 

Trunk Impairment Scale 

Impairments in trunk control often result in 
decreased balance, increased risk of falls, and can 
severely affect activities of daily living. In stroke, it 
can be assessed using clinical outcome measures 
such as the Trunk Impairment Scale (TIS) [50]. 
Researchers developed an instrumented version of 
the TIS with the hope of providing more detailed 
and clinically relevant information about trunk



movement and how it relates to trunk impairments 
[51]. They used a commercially available system 
(Valedo, Hocoma, Switzerland) that includes three 
IMUs to measure trunk movement (in degrees) and 
velocity of body segments [52]. The system was 
assessed as a valid and reliable method to estimate 
trunk movements when compared to using an 
optoelectronic system in healthy participants [53]. 
Researchers found a moderate correlation between 
the instrumented TIS and scores attributed by 
clinicians. Using the wearable sensor system to 
instrument the TIS provides more information 
about trunk movements than the TIS. For instance, 
the ability to detect small changes in the range of 
motion that may not be observed clinically [51]. 
Nonetheless, this system with IMUs only on the 
trunk cannot account for LL compensatory 
movements which are commonly used by stroke 
survivors. 
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21.2.3.2 Wearable Sensors to Facilitate 
Gait Training 
in the Clinic 

In the SIRRACT trial, researchers used IMUs 
bilaterally at the ankles to monitor LL movements 
performed by stroke survivors during their inpa-
tient stay [54]. The aim of this intervention was to 
motivate patients and their therapists to engage in 
more gait practice to obtain improved walking-
related outcomes. During this randomized clinical 
trial, participants followed their conventional 
therapies while wearing the sensors. Activity 
summaries (i.e., walking speed, distance, dura-
tion) derived from the sensor data was used to 
provide an augmented feedback intervention that 
was compared with feedback about walking 
speed alone. The key findings showed that pro-
viding augmented feedback beyond speed alone 
did not increase the time spent practicing or 
improve walking outcomes and found that during 
the inpatient stay, only a modest amount of time 
was spent walking. The authors pointed out that 
these results did likely reflect the constraints of 
inpatient rehabilitation such as space to practice 
walking and time spent focusing on other aspects 
of rehabilitation. 

Another study by Byl et al. [55] found that 
providing dynamic visual kinematic biofeedback 

from pressure sensors and IMUs during gait 
training had similar effects to verbal feedback 
provided by the therapist. While these results are 
not encouraging the use of the system in the 
clinic when a therapist is available to provide 
oversight, they demonstrate the potential of using 
wearable sensors for gait training with limited 
therapist supervision. 

21.2.4 Could Wearable Sensor-Based 
Evaluations Be Useful 
to Clinicians? A Possible 
Future Scenario 

If data can be acquired and processed using 
streamlined procedures, then wearable sensors 
could enable data to be collected with minimal 
patients’ and clinicians’ burdens. These methods 
could allow clinicians to track the motor recovery 
trajectory of stroke survivors as schematically 
represented in Fig. 21.5. The figure shows a 
hypothetical case in which a patient undergoes a 
36-week intervention. During this period of time, 
wearable sensors are used to monitor the subject. 
After 18 weeks, clinical score estimates and 
kinematic parameters derived from the sensor 
data, are available and define the motor recovery 
trajectory observed in response to the interven-
tion until that point in time (orange circles in 
Fig. 21.5). The data can be used by rehabilitation 
specialists to assess if the patient is responding 
adequately to the ongoing intervention or if an 
adjustment to the intervention strategy is needed. 
Importantly, the information could be used to 
predict the patient’s response to the intervention 
for the remaining weeks of the intervention per-
iod (green circles in Fig. 21.5). 

Such models could also account for the 
patient’s clinical phenotype and hence generate 
predictions based on both the information gener-
ated by the wearable sensors and the anticipated 
response to the intervention based on the patient’s 
clinical characteristics. In this context, the above-
described methods could be relied on to assess and 
predict the effectiveness of a given therapeutic 
intervention. The approach described in this 
hypothetical clinical scenario captures the essence



of precision rehabilitation in which clinicians 
design patient-specific interventions, set clinical 
objectives, track patient’s response using wearable 
sensors, and periodically evaluate the effectiveness 
of the ongoing intervention based on the observed 
recovery trajectory. Future work should fully 
enable this approach by further improving the 
unobtrusiveness and ease of use of wearable sen-
sors and by developing fully automated data 
analysis procedures, for instance, for the segmen-
tation of the sensor data based on detecting data 
characteristics associated with the performance of 
motor tasks suitable to derive reliable estimates of 
clinical scores. Discussing these implementation 
challenges with patients, clinicians, and engineers 
during future research and product development 
will likely result in more widespread and accessi-
ble use of wearable sensors in the clinic. 
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Fig. 21.5 Monitoring the motor recovery trajectory 
using wearable sensors. The time series represent the 
recovery trajectory of a hypothetical subject undergoing 
rehabilitation. The estimated information (orange circles) 
are clinically relevant measures of arm movements. The 
predicted information (green circles) is modeled based on 
the time series of the previously estimated information 
(orange circles) and the subject’s clinical phenotype. 

Fitting a function (e.g., a polynomial equation) leads to 
generating a curve that represents the recovery trajectory. 
In addition, confidence intervals are generated for both the 
estimated and predicted clinically relevant information. 
Reproduced and modified with permission from Adans-
Dester et al. (https://doi.org/10.1038/s41746-020-00328-
w, licensed under CC BY 4.0) 

21.3 Wearable Sensors to Measure 
Movement in the Field 

21.3.1 Why Would One Want 
to Measure Movement 
in the Field? 

The first and simplest answer to this question is 
because it is movement in the field, i.e., activity 
performance in everyday life, that persons with 
stroke care most about. People with stroke are 
referred to or seek out rehabilitation services to 
improve the performance of an activity in their 
home and their community. Indeed, self-
identified rehabilitation goals are nearly always 
(88%) about improving performance in daily life 
[56]. In contrast, researchers and clinicians rarely
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place performance of daily activity at the center 
of their measured treatment goals (Lang et al. 
unpublished data). Clinicians in the current 
stroke rehabilitation delivery model focus on 
measuring impairments and capacity (see Box in 
the Introduction section for definitions) with the 
assumption and hope that improvements in these 
measurement levels will translate to improve-
ments in performance in daily life. 
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The second answer to this question is that the 
capacity for movement assessed in the clinic 
does not necessarily provide accurate and 
actionable information about the performance of 
movement in the field. This conflict is illustrated 
with walking data in Fig. 21.6. The red oval 
highlights a portion of the data around 0.75 m/s 
walking speed where some individuals are 
walking only 2000–4000 steps/day, while others 
are walking 8000 or even 12,000 steps/day. 
Without wearable sensors (here attached to the 
unaffected ankle) quantifying walking perfor-
mance in the field, neither rehabilitation clini-
cians nor their patients would know how much 
walking in the field occurs. 

The third answer to why one would want to 
measure movement in the field is because 

improvements in movement assessed at the 
impairment and capacity levels within the clinic 
often do not translate to improvements in the 
performance of activities in daily life. Fig-
ure 21.7 shows an example of this, where there is 
a clear improvement over the course of outpatient 
therapy services on a common standardized test 
of UL capacity (Fig. 21.7a) but no change in 
movement performance in daily life (Fig. 21.7b) 
as measured with wearable sensors in the field. 

Fig. 21.6 Measures taken in the clinic are not consis-
tently related to measures taken in the field. Scatterplot of 
people (n = 37) receiving outpatient therapy services post 
stroke. X-axis: in-clinic measure of walking capacity 
using the 10 MWT. Y-axis: in the field measurement of 
walking performance quantified by steps/day. The dashed 
red oval illustrates how individuals with a small range of 
walking speeds can have very different amounts of 
walking in the field. Data from Holleran et al. (https:// 
doi.org/10.1097/NPT.0000000000000327) 

Multiple reports have now shown a discrep-
ancy in stroke rehabilitation outcomes in move-
ment capacity assessed in the clinic versus 
movement performance assessed in the field [57– 
60]. In a recent analysis (Lang et al., unpublished 
data, N = 138), the majority (58%) of people 
receiving outpatient services at five rehabilitation 
clinics around the United States improved their 
capacity to complete UL and walking activities, 
as measured by in-clinic assessments, but failed 
to improve their movement performance in the 
field, as measured with wearable sensors. An 
additional 17% improved both capacity and 
performance, 24% improved on neither, and 1% 
improved on performance but not capacity. 
These data illustrate the point that just because 
someone can execute actions in a clinic or lab-
oratory does not mean the person will carry over 
and execute those actions outside the clinic, 
within an unstructured home and community 
environment. For example, a person can have the 
strength and coordination to reach and grasp a 
cup with the paretic UL and demonstrate that 
capability on a standardized test, but when at 
home, may (implicitly) choose to reach and grasp 
cups with the non-paretic limb due to conve-
nience, efficiency, and/or safety [61, 62]. As 
implicit choices accumulate across activities, 
hours, and days in the field, the limited activity of 
the paretic (or both limbs) can be quantified by 
numerous wearable sensor variables [63–68] that 
quantify duration, magnitude, variability, and 
relative limb activity symmetry. If clinical deci-
sions are based only on the measurement of 
movement in the clinic, rehabilitation clinicians 
and patients will be missing information needed 
to address patient goals and improve movement 
performance in daily life. Wearable sensors,

https://doi.org/10.1097/NPT.0000000000000327
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therefore, provide an important opportunity for 
future improvement of stroke rehabilitation ser-
vices and stroke rehabilitation outcomes. 
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Fig. 21.7 Improvements in in-clinic measures often do 
not carry over to improvements in the field. Example of an 
individual receiving outpatient therapy services for the 
upper limb post stroke. This 47-year-old started outpatient 
services (time 0) 28 days post stroke, after an inpatient 
rehabilitation stay. Rehabilitation continued until 5 months 
post stroke (time 4). Symbols are assessment time points; 

thick lines represent best fit models. A: Results from in-
clinic assessment on the Action Research Arm Test 
(ARAT, higher = better, 57 = normal). B: Results from 
monitoring in the field with bilateral, wrist-worn sensors. 
The use ratio is a ratio of the duration of the paretic limb use 
to the non-paretic limb use over a 24 h wearing period 
(higher = better, normative values *0.9–1.0) 

21.3.2 Monitoring Upper Limb 
Movements in the Field 

The most common option to measure UL 
movement is with tri-axial accelerometers. Many 
commercially available, research-grade devices 
also contain gyroscopes, magnetometers, incli-
nometers, and optical sensors. In patient studies, 
these devices are typically worn on one or both 
wrists, with monitoring occurring for at least 
24 h [69]. Wrist-worn devices capture move-
ments of the upper arm, forearm, and wrist, but 
not fine dexterous movement of the fingers. 
Wrist-worn sensors work well for people who are 
moderately to severely affected post stroke. 
Wrist-worn sensors quantify UL movement with 
reasonable accuracy because these individuals 
cannot make small, fractionated movements of 
the fingers without moving the wrist, forearm, 
and/or upper arm [70]. In persons with very mild 
stroke, where impairments are relatively isolated 
to dexterous movement of the fingers, then sen-
sors worn on the fingers in addition to the wrist 

may be needed to better capture UL movement in 
the field [71]. 

If one is to monitor UL movement in the field 
for adequate durations (e.g., 24 or more hours), 
then the wearable sensors or system of wearable 
sensors must meet four practical considerations. 
First, being able to monitor both ULs simulta-
neously is usually necessary, i.e., the sensors 
need to be worn on both the paretic and non-
paretic limbs post stroke. This is because of the 
enormous heterogeneity in how much/how often 
humans move throughout a day, but the tight 
homogeneity in the relative movement of one 
limb versus the other in neurologically-intact 
individuals across the lifespan [63, 72, 73]. 
Second, wearable sensors that are on the wrist or 
fingers need to be waterproof. Humans wash 
their hands and encounter water during many 
activities throughout the day. If the sensors have 
to be removed every time hand-washing is nee-
ded, then the likelihood of the sensors being 
worn and worn correctly decreases substantially. 
Third, straps or pockets that secure the sensors to 
the UL need to be comfortable and sufficiently 
easy for a person with stroke to don and doff 
(alternatively, sufficiently easy for a caregiver to 
don/doff). Uncomfortable or too tight sensors on 
the ULs will be removed, while too loose sensors 
will not accurately track movement. And fourth,



the fewer number of sensors can be worn on the 
limb to get the necessary data, the greater the 
probability they will be worn for the assigned 
monitoring period. Wearable systems with mul-
tiple sensors [74] are feasible for in-clinic mea-
surement, but often will not be worn, worn 
correctly, or result in loss of the sensors when 
monitoring in the field. If wearable sensors have 
an attractive appearance (e.g., a ring looks like a 
piece of jewelry), then that will further increase 
wearing compliance. Developing or adapting 
sensors and sensor systems that adhere to these 
practical considerations will further the imple-
mentation of wearable sensors into routine stroke 
rehabilitation care. 
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One of the major challenges to the widespread 
adoption of wearable sensors in routine stroke 
rehabilitation care is the lack of clinical valida-
tion [68, 75]. The problem is not in the verifi-
cation of the sensors themselves, but in the 
clinical validation of the algorithms developed 
by researchers to derive metrics of clinical rele-
vance. Clinical validation efforts lag behind the 
engineering development of sensor hardware and 
software, perhaps because clinical validation is 
time-consuming, expensive, and requires inter-
disciplinary teams. Clinical validation is ham-
pered by four key issues. First, a large number of 
variables have been proposed in various research 
studies, with many different variable names and 
often different formulae that may be capturing 
similar or related constructs of movement [68]. 
Second, variables can be mathematically-
complex (e.g., Spectral Arc Length as a quan-
tification for UL movement smoothness [76, 77]) 
and thus hard to interpret clinically with respect 
to daily activity in the field. Third, there are 
insufficient validation data to indicate which 
variables carry clinical meaning and are ready to 
be deployed widely in clinical practice. Most 
variables have been evaluated in small samples 
of control or stroke participants at a single point 
in time. Only a few variables have been evalu-
ated longitudinally in larger samples but lack 
data on either responsiveness to change and/or 
how much change is clinically meaningful to 
patients. One UL variable, the use ratio, is widely 
used in research and is close to be ready for 

clinical implementation after being proposed 
20 years ago [65]. And fourth, UL movement 
performance in daily life is a complex construct 
that is likely multidimensional [68, 73, 78]. Thus, 
there is a high probability that UL movement in 
the field may be most appropriately represented 
by multiple variables, not any single variable [79, 
80]. For example, the use ratio (Fig. 21.7b) 
provides information about the relative duration 
and symmetry of UL movement throughout the 
day, but other variables could be needed to 
understand the magnitude and variability. Solv-
ing these four issues variable-by-variable for the 
stroke rehabilitation population will require a 
large investment of engineering and clinical 
resources if wearable sensors are to become 
ubiquitous in UL stroke rehabilitation care. 

21.3.3 Monitoring Lower Limb 
Movements in the Field 

Monitoring LL movement in the field shares 
many of the same benefits and challenges as 
monitoring UL movement. Unlike the UL, 
walking is the one essential LL movement 
activity that rises above all the others. Regaining 
the ability to walk is the number one goal of most 
persons undergoing stroke rehabilitation [81, 82]. 
The primary method to quantify walking per-
formance in the field has been with sensors that 
count steps/day. Clinicians face a dilemma when 
trying to use wearable sensors to record steps per 
day in the field for their patients with stroke. On 
the one hand, consumer-grade devices worn on 
the wrist can be inexpensive and are readily 
available, but can be wildly inaccurate for the 
majority of persons with stroke who walk slowly, 
asymmetrically, and/or use assistive devices [83– 
87]. On the other hand, research-grade sensors 
are expensive and not easy for clinicians to 
deploy in a busy clinical environment. A collab-
orative effort to develop a wearable sensor sys-
tem that is cost-effective, simple to use, and 
accurately quantifies walking performance in the 
field across a broad range of walking abilities 
will be necessary to make monitoring a routine in 
clinical stroke rehabilitation practice. Study



protocols to capture walking performance typi-
cally record behavior for more days (e.g., 5– 
7 days [88]) than are seen in UL studies [1–3, 
69], because of the high amount of variability in 
daily stepping in persons with stroke [89]. 
Compliance with wearing tends to decrease over 
time, especially when people have to wear them 
at multiple time points [90]. 
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As with UL monitoring, walking performance 
in daily life may eventually be best represented 
by multiple variables, not a single variable. 
Steps/day measures the amount but can miss 
other aspects such as gait asymmetry, the ability 
to navigate various environments (e.g., outdoor 
walking, stairs), and potentially falls. Many of 
the emerging technologies (see below) could 
present new opportunities for building multi-
variate feedback regarding walking. If feedback 
is provided in a simple, compelling interface for 
clinicians and persons with stroke, there is a 
greater likelihood of implementation. 

21.3.4 Critical Information Learned 
from Wearable Sensing 
in the Field that Would 
not Be Known Otherwise 

While there is much work to be done before 
wearable sensors and systems are perfected, 
important knowledge for stroke rehabilitation has 
already been learned by monitoring movement in 
the field. Here three examples of new knowledge 
that could only be obtained from wearable sens-
ing are provided. The first two examples are from 
samples of persons with stroke wearing bilateral, 
wrist-worn accelerometers for 24 or more hours, 
while the third is from persons with a stroke 
wearing a finger/wrist tracking device for 24 h. 

Wearable sensors have challenged assump-
tions about how persons with stroke maintain the 
overall amount of UL activity in daily life by 
compensating with their paretic limb. If the 
overall amount of activity was maintained, then 
one would expect a negative correlation between Fig. 21.8 Relationship between movement activity of 

the paretic (y-axis) vs non-paretic (x-axis) upper limbs in  
46 adults with chronic stroke. UL: upper limb. Data from 

 Bailey et al. 2015 (https://doi.org/10.1179/1074935714Z. 
 0000000040) 

the activity of the paretic limb and the activity of
the non-paretic limb (i.e., the paretic limb activity
would increase as the non-paretic limb decreased

in order to maintain the overall amount of 
activity). As can be seen in Fig. 21.8, however, 
there is a strong, positive correlation (r = 0.78, 
p < 0.01) between the duration of use of the 
paretic versus non-paretic UL post stroke. This 
positive correlation indicates that as people move 
the paretic limb less throughout the day, they 
move the non-paretic limb less too. They are not 
compensating as much with the non-paretic limb 
as assumed, but instead doing less activity 
overall. Interestingly, this relationship is true 
both early [91] and later after stroke [92]. Stroke 
rehabilitation clinicians and researchers would 
not know about the limited UL movement in 
daily life without monitoring movement in the 
field with wearable sensors. 

Wearable sensors are also changing percep-
tions about the recovery of UL movement post 
stroke. Decades of research on recovery trajec-
tories post stroke indicate that larger, rapid 
changes occur in the first few weeks, with 
smaller, slower changes occurring later [93–98]. 
Changes in impairment generally precede chan-
ges in functional capacity by around one week, 
such that as movement control returns, individ-
uals regain the ability to execute functional tasks
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[ , ]. The common perception has been that
as functional capacity improves in the clinic, then
improvements are incorporated into daily life at
home and in the community (i.e., activity per-
formance in the field improves). If this percep-
tion were correct, one would expect recovery
trajectories where a plateau of impairment-level
measures occurs first, followed by plateaus in
capacity measures, and then finally by plateaus in
performance level measures. As can be seen in
Fig. , wearable sensors have discredited that
perception [

21.9
]. A prospective longitudinal

cohort (n = 67) of persons was followed from
2 weeks out to 24 months after first-ever stroke,
with bi-weekly measurements of UL impairment
(Fugl-Meyer scale [ ]), capacity (Action
Research Arm test [ ]), and performance (use
ratio and hours of paretic limb activity [ ]). UL
performance in daily life (blue line) plateaued
surprisingly early after stroke. Plateaus in per-
formance did not lag plateaus in impairment
(gray line) and capacity (black line), but instead
slightly preceded or occurred at the same time
[ ]. These data imply that UL movement in the
field settles into a stable pattern early and often
before neurological and functional recovery is
finished. The early plateau in UL performance

79

92
99
28

79

9796 strongly suggests that to improve stroke reha-
bilitation outcomes, interventions that pair motor 
training and intentional health behavioral inter-
ventions are needed [100, 101]. 
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Fig. 21.9 Average trajectories of change over time for 
impairment (in clinic, gray) capacity (in clinic, black), and 
performance (in the field, blue). Arrows mark the time of 
plateau; values are means (95% Cis). Values on the y-axis 
are theoretical and not intended to be compared across the 

three trajectories. ARAT: Action Research Arm Test; 
FMA-UE: Fugl-Meyer Assessment Upper Extremity 
subsection. Data from Lang et al., 2021 (https://doi.org/ 
10.1177/15459683211041302) 

Finally, wearable sensors have provided new 
insights into the detailed nature of the relation-
ship between capacity and performance. As dis-
cussed in Sect. 21.3.1 and shown in Fig. 21.9, 
improvements in movement assessed at the 
capacity level within the clinic often do not 
translate into improvements in the performance 
of activities in daily life. Schweighofer et al. 
[102] hypothesized that real-world UL perfor-
mance lags clinically-demonstrated UL capacity 
until UL capacity reaches a threshold; they gen-
erated this “Threshold Hypothesis” based on 
self-reported use of the amount of hand use at 
home. Data acquired from a novel wearable 
sensor (called Manumeter) recently confirmed 
this hypothesis (Fig. 21.10)  [103]. The Manu-
meter consists of a watch-like sensor and a small 
permanent magnet worn as a ring. The watch-like 
sensor uses an array of magnetometers to detect 
changes in the magnetic field as the ring moves 
due to finger or wrist movement. A total of 29 
stroke survivors wore the Manumeter at home 
during their daily activities for 6–9 h. Capacity

https://doi.org/10.1177/15459683211041302
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was measured in the laboratory using the 
Box and Blocks Test (BBT), which requires 
individuals to pick up and transport as many 
small blocks as possible in 60 s. Most partici-
pants with BBT scores <30 had a low 
finger/wrist movement count intensity of around 
200 counts/h, which is the amount of counts to 
be expected due to “false positives” from envi-
ronmental magnetic fields. Then, there was an 
increase in hand use intensity as participants’ 
BBT scores increased beyond 30, consistent with 
the Threshold Hypothesis. Thus, achieving a 
50% score on a capacity measure predicted the 
start of use of the hand at home (i.e., increasing 
performance). 
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Fig. 21.10 Left: The Manumeter, a device that counts 
finger/wrist movements by measuring changes in the 
magnetic field at the wrist sensor produced by the ring. 
Right: Hand use intensity (i.e., “performance”) measured 
at home for 29 stroke survivors with different levels of 
hand capacity, as quantified by the Box and Blocks Test 

(BBT) Score. For the circles, each color represents one 
subject, and each subject can have one to three samples 
for up to three different days. Data from Schwerz de 
Lucena et al. 2021 (https://doi.org/10.3390/s21041502, 
licensed under CC BY 4.0) 

21.4 Wearable Sensors to Motivate 
Movement and Exercise in the 
Community 

Wearable sensing technologies have proven useful for 
promoting the activity and health of people without 
disabilities. For example, a 2007 systematic review in 
JAMA found that daily pedometer feedback is an 
effective way to increase walking activity and thereby 
improve difficult-to-change health outcomes such as 
body mass index and blood pressure [104]. Recog-
nizing this finding, many companies now sell wearable 

sensors and phone apps for counting steps. The global 
fitness tracker market is projected to grow from $36.34 
billion in 2020–$114.36 billion in 2028 [105]. 

Goal setting with feedback is known to be a 
powerful modulator of performance [106] and 
indeed it appears to be a key requirement for the 
successful use of such fitness trackers. Based on 
an analysis in the systematic review of pedometer 
feedback referred to above, setting a step goal 
(e.g., 10,000 steps) was significantly associated 
with an equivalent one-mile increase in 
steps/day, while individuals who did not set a 
goal did not significantly increase their step 
count. In the context of rehabilitation, a seminal 
multisite randomized controlled trial on the use 
of quantitative performance feedback, the SIR-
ROWS study, showed that providing individuals 
post stroke with their completion time in a 
10 MWT at regular intervals throughout reha-
bilitation therapy, along with a simple comment 
on whether that time exceeded their previous 
time, significantly improved their gait speed over 
the course of therapy compared to individuals 
who did not receive this feedback [107]. Pre-
sumably, the quantitative feedback caused 
patients to set a goal of improving their gait 
speed at the next test. Goal setting is thought to 
affect performance through four mechanisms: 
(1) directing attention toward goal-relevant
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activities and away from goal-irrelevant activi-
ties; (2) energizing greater effort; (3) increasing 
persistence; and (4) stimulating arousal, discov-
ery, and use of relevant strategies [106], all of 
which could play a role in rehabilitation. 
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When considering the motivation for applying 
wearable sensing in rehabilitation practice, a key 
issue is increasing amounts of movement prac-
tice. While rehabilitation research has not yet 
been able to precisely define sufficient, patient-
specific goals for the amount of practice in a 
scientific way, there is a broad consensus that 
patients typically do not practice enough. In-
clinic therapy sessions achieve a limited number 
of practice repetitions [108], and health payors 
limit the number of reimbursed therapy sessions. 
Therapists, therefore, create home exercise pro-
grams to increase rehabilitation doses. Yet 
adherence to home programs is low, even if the 
prescribed exercise program is unambitious 
[109–111]. Further, as reviewed above, the 
amount of use of an impaired limb in daily life is 
often low, even for people with substantial 
functional capacity. Low daily use of a limb is 
thought to create a “vicious cycle”, contributing 
to further degradation of movement ability [102]. 
Thus, a primary goal for wearable sensing after 
stroke is to create a “virtuous cycle”, in which 
patients move more frequently, whether during 
exercise sessions or during daily life, in order to 
promote movement recovery. 

21.4.1 Promoting Upper Limb 
(UL) Movement 

Despite the availability of a clear pragmatic goal 
(i.e., facilitating more movement practice), few 
wearable sensing studies have attempted to 
achieve this goal [27]. Initial studies suggest that 
increasing movement is possible, but likely 
requires goal setting and coaching along with 
wearable feedback. Delivering improved UL 
outcomes may also be possible but may be more 
difficult than what might have been expected 
given the pedometer literature. 

21.4.1.1 Providing Feedback on UL 
Movement Amount 

Whitford et al. [112] were among the first to study 
the use of wearable sensors to generate feedback 
about UL use in stroke survivors. In their study, 
eight chronic stroke survivors wore accelerometers 
without feedback screens on both wrists during 
waking hours for three weeks. Research therapists 
visited their homes three times per week to collect 
and process data. They provided feedback on the 
amount of activity and disparity of activity 
between arms through verbal discussion and by 
presenting graphs. At each of these feedback ses-
sions, participants also set two goals related to 
increasing their paretic UL activity. Their therapist 
reviewed progress toward these goals with them at 
the next session. This strategy significantly 
increased participants’ perception of paretic UL 
activity. Yet no improvements in actual activity of 
the UL (as measured using the accelerometers) or 
in functional outcomes were found. 

Another recent study provided feedback on 
the number of wrist and finger movements made 
throughout the day to try to motivate increased 
UL use [113]. Twenty chronic stroke participants 
wore the Manumeter, the wristwatch-like device 
described above that senses the magnetic field of 
a small magnet ring worn on the index finger, 
using a nonlinear detection algorithm to calculate 
the number of finger movements [103]. Partici-
pants in the experimental group received real-
time feedback on finger movement counts and a 
daily goal personalized to their impairment level. 
Subjects in the control group used the device as a 
wristwatch, but the device still tracked the 
number of finger movements. Both groups also 
were given a home exercise program described in 
a booklet. After data analysis, it was found that 
the experimental group chose to wear the 
Manumeter for approximately one hour more 
each day, but did not increase their finger 
movement intensity, measured as counts per 
hour. Scores on the BBT and MAL did not 
improve significantly at 3 months, although 
scores on the FMA-UE and the ARAT improved 
for both groups.
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21.4.1.2 Reminders to Move 
A different approach is to use a wearable device 
to provide reminders (or “nudges”) to move the 
limb, usually in the form of vibrations [18]. In 
this case, the device can provide the nudge after 
sensing a period of relative inactivity, or, alter-
nately, the device need not necessarily sense limb 
movement, but instead can provide reminders 
based on a timer, similar to a water intake man-
agement app. Three pilot studies have shown the 
feasibility of this approach. Signal et al. [114] 
studied via an observational methodology con-
ducted when stroke patients were inpatients 
whether “haptic nudges” caused an increase in 
probability of moving their arm. They used a 
Bluetooth-enabled wearable device to provide 
three consecutive vibratory stimuli of 0.3 s 
duration at 150 Hz within 1.5 s, with a magni-
tude similar to a phone vibration. Patients were 
instructed to “move, try and move, or visualize 
moving their (affected) arm” following a nudge. 
Observers discreetly followed stroke inpatients 
out of their field of view, logging UL movement 
for one minute every 10 min. They randomly 
delivered haptic nudges or no intervention just 
before the observation periods. The odds ratio of 
moving the UL following a haptic nudge relative 
to no nudge was 1.44, demonstrating an increase 
in UL activity in response to the haptic nudge. 

A second feasibility study used an 
acceleration-sensing wristband with seven stroke 
patients ⩽ 28 days post stroke for four weeks 
[115]. Therapists reviewed movement activity 
data twice weekly with their patients. The 
wristband was programmed with a personalized 
threshold for providing a vibratory prompt (5, 25 
or 50% greater than the median activity). Mean 
activity increased in the hour following a prompt 
(by 11–29%) compared to the previous hour, as 
measured by the accelerometer in the wristband. 
96% of patients expressed a preference that 
reminders be delivered once per hour, rather than 
2, 3, or 4 times per hour. 75% of patients 
expressed a preference that the target threshold 
for triggering vibration be set at the lowest set-
ting (i.e., 5% above the previous median baseline 
activity). In a follow-up pilot study [116], the 
same research group studied 33 patients 0– 

3 months after stroke receiving a four-week, self-
directed therapy program with a twice-weekly 
therapy review. The wristband adjusted the 
threshold and frequency of delivery of the 
vibration prompt based on the activity level of 
the wearer. The wristbands were worn for 79% of 
the recommended time (between 8 AM and 8 
PM). Patients again showed a preference for 
hourly prompts and not more frequent prompts. 
While clinical outcome measures were acquired, 
no statistical comparisons were made with a 
control group in this pilot feasibility study. 

In terms of the therapeutic efficacy of this 
reminder approach, a vibration-based, remind-to-
move sensor was tested in a study with 84 stroke 
survivors who had the first stroke in the last six 
months [117]. Participants were randomly allo-
cated to either an experimental group (device 
worn with vibrations delivered), sham group 
(device worn with no vibrations), or control 
group (usual therapy). The patients wore the 
wrist vibrator for three consecutive hours daily 
over four weeks. The device emitted a vibration 
cue similar to the vibration mode of a mobile 
phone every 10 min. The vibration would not 
stop until a button on the device was pressed. 
A small but statistically significant greater 
improvement in one of the clinical outcomes (the 
ARAT) was observed. A significant difference in 
the amount of arm activity between groups 
(measured by an accelerometer embedded in the 
wristband) was also observed. 

These studies suggest that providing move-
ment reminders through vibratory inputs can 
increase the amount of UL activity and that this 
increase may have at least a small therapeutic 
benefit. 

21.4.1.3 Providing Feedback 
on Exercise Activities 

Wearable sensors can also be used to provide 
users with feedback as they perform exercise 
activities at home. In this case, other types of 
non-worn sensors, such as camera-based systems 
or instrumented objects, can serve similar func-
tions. There is a large and growing literature on 
clinical trials conducted with a variety of sensor-
based exercise systems, and numerous



commercial systems are available. Here, we 
briefly review two important studies that focused 
on using wearable sensors to provide feedback 
on exercise activities. 
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A key concern of rehabilitation therapists in 
providing home exercise is their inability to 
provide real-time feedback on the quality of the 
exercise. Performing poor quality exercise is 
thought by some to be suboptimal or even 
detrimental to recovery. Wearable sensors have 
shown potential to help solve this problem. Lee 
et al. asked 20 people with stroke to wear IMUs 
on each wrist as they performed assessments and 
participated in UL therapy [18]. Using video 
analysis as the gold standard, they showed that 
they could distinguish goal-directed movements 
(such as participating in an UL assessment, 
ADLs, or therapy) from non-goal-directed 
movements (such as arm swing, gesturing, and 
resting periods) with an accuracy of 87%. During 
the performance of a particular exercise (“arm 
raise in the sagittal and coronal planes”), they 
could identify when the therapist provided cor-
rective feedback with an accuracy of 84%. 

Chae et al. used a wrist-worn sensor to detect 
when individuals with chronic stroke were per-
forming UL exercise at home [118]. They 
assigned patients four UL exercises (Bilateral 
Flexion, Wall Push, Active Scapula, and Towel 
Slide). Based on in-clinic data, they showed that 
they could identify the type of exercise from this 
small set with up to 98% accuracy. The system 
also recorded exercise repetition counts and 
duration of exercise, reporting it via an app to a 
supervising therapist who then contacted the 
patients once a week to review their progress. 
A control group received the exercise program 
on paper without a sensor and was also contacted 
once a week. A total of 38 participants were 
enrolled. All participants in the control group had 
dropped out after 18 weeks, while 12 of 22 in the 
wearable sensor group persevered to the end. 
They observed improvements in the WMFT and 
range of motion of shoulder flexion and internal 
rotation in the sensor group, while the control 
group showed only a significant change in 
shoulder internal rotation. 

These studies outline the potential for wear-
able sensors to provide movement quality feed-
back, and to serve as a motivational aid by giving 
therapists a “window” into their patients’ home 
exercise adherence. 

21.4.2 Providing Feedback on Lower 
Limb (LL) Movement 
Amount 

Research progress with wearable sensors for 
encouraging walking after stroke is more devel-
oped than research to encourage UL activity. 
A 2018 Cochrane review examined the available 
evidence regarding the effectiveness of wearable 
sensors (such as pedometers, Fitbit, and Garmin 
watches) as well as smartphone activity monitors 
for increasing physical activity levels for people 
with stroke [119]. This review found four studies 
that met its criteria with a total of 245 partici-
pants in the subacute or chronic phase post 
stroke. All studies compared the use of an 
activity monitor plus another rehabilitation 
intervention that was focused on walking versus 
the other intervention alone. The review found 
no clear effect of the use of activity monitors on 
step count in a community setting or in an 
inpatient rehabilitation setting. 

More studies have been published since this 
review with mixed results. Mandigout et al. 
studied 83 participants at an average time of 
2.4 months after stroke [120]. Participants were 
randomly assigned to receive individualized 
coaching or standard care for six months. The 
coaches monitored physical activity with an 
activity tracker (SenseWear Armband) and con-
ducted home visits and made a weekly phone call 
to review activity. The difference between the 
two groups was not significant at any evaluation 
time point for the primary endpoint, the 6 MWT. 

On the other hand, Montserrat randomized 41 
chronic stroke survivors to a conventional reha-
bilitation program or to a Multimodal Rehabili-
tation Program that monitored adherence to 
physical activity [121]. The multimodal program 
combined an app with GPS and accelerometer-



based sensing to monitor walking distance and 
speed, a pedometer, a WhatsApp group, an 
exercise program with aerobic, task-oriented, 
balance, and stretching components, and a pro-
gressive daily ambulation program that was 
monitored by the app and pedometer. At the end 
of the intervention, community ambulation 
increased more in the intervention group (38.95 
vs. 9.47 min), and sitting time decreased more in 
the intervention group (by 3 vs. 0.5 h/day). 
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Although it focused on a broader population 
than just stroke patients, a recent pragmatic 
clinical trial of 300 mobility-impaired patients 
(including stroke patients) likewise found a 
benefit from a multimodal program incorporating 
digital technology [122]. A physical therapist 
individually prescribed technology that included 
virtual reality video games, activity monitors, 
and handheld computing devices. The technol-
ogy was used for six months in the hospital and 
at home; patients used on average four tech-
nologies in the hospital and two at home. The 
most commonly used digital technology in the 
home was a wearable activity monitor (Fitbit or 
Garmin, used by 98%), followed by an iPad 
exercise app (used by 86%). Changes in mobility 
scores (measured by the performance-based 
Short Physical Performance Battery) were about 
10% higher in the intervention group compared 
to the control group (p = 0.006). However, there 
was no evidence of a difference between groups 
for an upright time at 6 months. 

21.4.3 Summary 

In summary, the promise of using wearable 
sensors to encourage UL and LL activity in the 
community after stroke has not yet been realized. 
For the UL, at this early stage of research, the 
reminder paradigm has perhaps shown more 
potential for increasing activity and reducing 
impairment than the paradigm of goal setting 
with performance feedback from a wearable 
sensor. For the LL, recent studies suggest that 
programs that incorporate wearable sensors into 
multimodal therapy programs may be more 

effective at increasing walking activity than 
programs that focus on goal setting with perfor-
mance feedback alone. We suggest that opti-
mizing the programmatic context in which 
wearable feedback is delivered will be important 
for realizing the potential of this technology, and 
will likely include intentional health behavioral 
interventions, as suggested above. Key factors to 
consider are the way goals are set, the specific 
form of the performance feedback (including 
both quantity and quality feedback), the avail-
ability and nature of therapist coaching, and the 
integration of a diversity of therapeutic activities 
along with the wearable feedback. 

21.5 Emerging Technologies and 
Their Potential Applications 

The previous sections of this chapter have pro-
vided an overview of prior work focused on 
facilitating the implementation of rehabilitation 
interventions and the assessment of clinical out-
comes by relying on wearable sensors consisting 
of “units” (often relying on wireless technology) 
that are typically attached to body segments 
using elastic straps (e.g., wristbands). In this 
section, we will consider other technologies. 
Recent advances in e-textiles and materials sci-
ence have allowed researchers to explore the use 
of garments with embedded sensors as well as 
the development of sensors that conform to the 
anatomy in a way that is similar to an adhesive 
bandage (often referred to as e-skin sensors). 
Furthermore, because contextual information is 
often essential to perform a meaningful analysis 
of movement patterns, researchers have begun to 
explore the use of wearable cameras to gather 
such information. Radio tags and radar-like 
technologies could be utilized to gather contex-
tual information, but their use has so far received 
little consideration in the field of rehabilitation. 
Recent advances in video analysis techniques, 
largely enabled by the development of deep 
learning-based algorithms, have generated sig-
nificant interest among rehabilitation specialists. 
These techniques provide an unprecedented



capability to track movement patterns with low-
cost cameras and are likely to replace the use of 
wearable sensors in systems designed for home-
based rehabilitation. Finally, existing and 
emerging wearable, as well as contactless tech-
nologies, provide researchers and clinicians with 
the ability to monitor the physiology of patients 
in the home and community settings. Although a 
thorough discussion of their potential applica-
tions to stroke rehabilitation is beyond the scope 
of this chapter, in this section, we briefly mention 
a few examples. 
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21.5.1 E-textiles 

E-textiles are fabrics designed to enable embed-
ding electronics in objects and garments, thus 
allowing researchers and clinicians to monitor 
patients outside of the laboratory. A recent review 
by Angelucci et al. [123] provides a summary of 
the methods (e.g., coating and printing) tradi-
tionally used to make conductive yarns and then 
use them to make e-textile garments by relying on 
techniques such as knitting, weaving, and 
embroidery. The development of e-textile sys-
tems for patient monitoring was originally moti-
vated by the assumption that providing patients 
with garments equipped with sensors would have 
resulted in better compliance than the use of 
wireless sensors to be strapped to body segments. 

The first steps toward developing e-textile 
systems were marked by major contributions by 
Jayaraman et al. [124–126] and by De Rossi 
et al. [127–129]. Seminal work by Jayaraman 
et al. [124–126] resulted in the development of 
conductive yarns enabling the connection of 
sensors embedded in the garment to a data log-
ging unit, hence allowing researchers to monitor 
patients’ physiology. Shortly after the publica-
tion of this work, De Rossi et al. [127–129] 
introduced the use of conductive polymers to 
print strain sensors on lycra garments. This work 
was particularly focused on monitoring move-
ment patterns in individuals undergoing rehabil-
itation. Following their initial work with a focus 
on developing e-textile garments, De Rossi and 
colleagues implemented a fully-functioning 

platform to monitor stroke survivors and facili-
tate the performance of rehabilitation exercises 
[130]. 

Unfortunately, technical limitations marked 
these initial prototype e-textile systems. 
Researchers found it challenging to develop e-
textile garments that could be washed multiple 
times without being damaged. Besides, compo-
nents such as the connectors between the con-
ductive elements of the garment and the 
traditional electronics (e.g., data logging units) to 
be used with the garment turned out to be diffi-
cult to manufacture in a way that met the tech-
nical specifications of the problem at hand. 
Nonetheless, this seminal work generated a great 
deal of interest in the application of e-textiles in 
the rehabilitation of patients with neurological 
conditions, including stroke, as summarized in a 
review paper by McLaren et al. [131]. Interest-
ingly, this review devoted significant attention to 
e-textile gloves and socks [132]. These are 
interesting technologies, though e-textile gloves 
have been found by many researchers to be of 
limited use in stroke survivors, because these 
patients have difficulties donning and doffing 
gloves, particularly on their stroke-affected hand. 
Similarly, e-textile socks have been seldom uti-
lized in clinical studies, as researchers have often 
found it more practical to use instrumented 
insoles to collect proxy measures of ground 
reaction forces. 

New approaches to the development of e-
textile garments are currently emerging that 
appear to have addressed the main limitations of 
previously developed prototype systems. An 
example of the techniques used in recently 
developed e-textile systems is shown in 
Fig. 21.11. These e-textile garments are based on 
embedding flexible electronics in pocket-like 
components typically referred to as “textile 
channels”. The use of traditional integrated cir-
cuits allows researchers to take advantage of 
advances in sensing technology. New materials 
are used to encapsulate electronic components, 
thus making them washable and mechanically 
robust. 

It remains to be seen if these new approaches 
to the development of e-textile garments can



deliver on the promise to achieve higher com-
pliance than wearable sensors that are strapped to
body segments. That said, the use of e-textile
garments is appealing in clinical applications

requiring long-term monitoring as one would
anticipate that patients would prefer wearing a
garment with embedded sensors rather than
having to don and doff multiple elastic straps
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Fig. 21.11 Recent implementations of e-textile garments 
rely on deploying multiple sensors (panel a) embedded 
using pocket-like textile channels (panel b) containing 
sensor islands (panel c) equipped with traditional inte-
grated circuits on a flexible substrate (made of copper and 
polyimide layers) covered by thermoplastic polyurethane 
(TPU) and a washable encapsulant. The garment, shown 
in panel d (scale bar: 10 cm), carries flexible-stretchable 
electronic strips (right) and woven electronic strips in a 
knit textile (left) as per the example shown in panel e 

(scale bar: 1 cm). Examples of temperature and 
accelerometer integrated circuits are shown in panel f 
(scale bar: 3 mm). Panel g shows an example of an 
interconnect module (scale bar: 2 mm). Panel h shows a 
cross-sectional view of a sensor module embedded in a 
polydimethylsiloxane (PDMS) layer (scale bar: 2 mm). 
Reproduced with permission from Wicaksono et al. 
(https://doi.org/10.1038/s41528-020-0068-y, licensed 
under CC BY 4.0)

https://doi.org/10.1038/s41528-020-0068-y


equipped with sensing technology every day 
during the monitoring period. Similarly, one 
would anticipate that patients required to perform 
vigorous motor activities (e.g., aerobic exercises) 
would prefer wearing an e-textile garment rather 
than elastic straps equipped with sensors because 
elastic straps would be more likely to interfere 
with the movements to be performed and migrate 
during the performance of motor tasks.
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21.5.2 E-Skin Sensors 

The development of stretchable electronics 
matching the mechanical characteristics of the 
epidermis, which was pioneered by John Rogers’ 
research group [133, 134], enabled the develop-
ment of e-skin sensors. These are sensors that, 
when attached to the skin like an adhesive ban-
dage, stretch in the same way as the skin does in 
response to the movement of body segments. 
This technology has recently led to the imple-
mentation of movement tracking systems like the 

one schematically represented in Fig. 21.12. This 
figure shows recent work by Kim et al. [135] 
aimed to detect and estimate the characteristics of 
movements involving different body segments 
(panel a) from data collected by relying on e-skin 
sensors positioned on specific body landmarks. 
The e-skin sensors allow one to capture skin 
topographical changes associated with the target 
movement. For instance, movements of the index 
finger are detected, and their biomechanical 
characteristics are estimated using an e-skin 
sensor positioned at the wrist (panel b of 
Fig. 21.12). High sensitivity to the movements of 
the index finger is achieved by relying on laser-
induced nanoscale cracking—shown in the inset 
of panel b (scale bar: 40 lm)—of specific ele-
ments of the mesh displayed in panel c (scale 
bar: 1 mm). Advanced data analysis techniques 
that rely on deep neural networks are used to 
estimate the biomechanical characteristics of the 
index finger movements. 

Fig. 21.12 E-skin sensors can be used to monitor move-
ments involving different body segments (panel a). The 
sensors are positioned on specific anatomical landmarks 
(panel b) with laser-induced cracking (panel b inset) 
affecting specific elements of the mesh structure (panel c) 
used to build the sensor. Data collected using the sensor is 

processed by deep neural networks (panel d) that generate 
estimates of the biomechanical characteristics of the 
movement performed with the monitored body segment. 
Reproduced with permission from Kim et al. (https://doi. 
org/10.1038/s41467-020-16040-y, licensed under CC BY 
4.0) 

As the technology rapidly evolves and major 
advances in the field of flexible and printed

https://doi.org/10.1038/s41467-020-16040-y
https://doi.org/10.1038/s41467-020-16040-y


electronics are expected over the next few years 
[136], the interest in potential clinical applica-
tions of e-skin sensors, including stroke rehabil-
itation, is rapidly growing [137]. E-skin sensors 
are expected not only to facilitate tracking the 
movement of body segments, but also to enable 
the detection of the activity of muscles either by 
electrode arrays mounted on a flexible substrate 
or by detecting changes in the shape of body 
segments associated with the contraction of 
muscles. 
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The use of e-skin sensors is very appealing for 
short-term (i.e., a few days) monitoring of motor 
activities in stroke survivors. When used for 
longer periods of time, e-skin sensors are likely 
to cause skin irritation as adhesive components 
are typically used to secure the sensors to the 
skin and such materials tend to cause skin irri-
tation when utilized over long periods of time. 
Nonetheless, e-skin sensors are marked by min-
imum obtrusiveness and optimal wearability. 
Hence, a growing interest in this technology is 
expected over the next years. 

21.5.3 Wearable Cameras 

The use of wearable cameras (Fig. 21.13, left 
panel) in the field of rehabilitation was originally 
proposed to validate the detection of motor 
activities achieved via the analysis of wearable 
sensor data and provide contextual information. 
The manuscripts by Doherty et al. [138] and by 
Lee et al. [71] are examples of this body of work 
that relied on egocentric video recordings (i.e., 
recordings that approximate the visual field of 
the camera wearer) to capture the environmental 
conditions in which tasks were performed and 
hence infer the nature of the tasks. Ad-hoc 
techniques to analyze egocentric video record-
ings were developed to facilitate the identifica-
tion of the environment where motor tasks were 
performed and the conditions in which they were 
performed. These techniques allowed researchers 
to minimize the need to manually annotate 
lengthy recordings. The manuscript by Yan et al. 
[139] provides an example of such video analysis 
techniques. 

Wearable cameras have also been used to 
replace wearable sensors. Seminal work by Zariffa 
and Popovic [140] explored this application of 
wearable cameras nearly a decade ago. Subse-
quently, the research group led by Jose Zariffa 
further developed this technique in a series of 
studies carried out first in individuals with spinal 
cord injury and later in stroke survivors. The right 
panel of Fig. 21.13 shows examples of the motor 
tasks analyzed via recordings collected using a 
wearable camera [141]. In this specific project, the 
research team used a convolutional neural net-
work to detect the position of the hands in the 
video frames and used a Random Forest-based 
classifier to detect when subjects manipulated 
objects. Subsequent work by the same group 
explored the combined use of object detectors and 
trackers [142] as well as the detection of com-
pensatory movement strategies adopted by 
patients with UL motor impairments [143]. 

This body of work was focused on the 
application of wearable cameras to detect and 
assess the quality of UL movements in individ-
uals with spinal cord injury. Whereas initial work 
was carried out in the laboratory, recent studies 
have explored the use of this technology in the 
field [144]. Importantly in the context of this 
book chapter, the same research group has started 
to explore the use of this technology to monitor 
UL movements performed by stroke survivors 
[145]. The authors were able to demonstrate the 
feasibility of tracking hand use and determining 
if the stroke-affected hand was utilized for the 
stabilization or the manipulation of objects. 

Researchers can now rely on a large body of 
work focused on the development of techniques 
for the analysis of egocentric video recordings. 
Studies relevant to the application of wearable 
cameras in the field of rehabilitation were 
recently reviewed by Bandini and Zariffa [146]. 
The authors surveyed techniques designed to 
identify the hands or parts of them in the video 
frames and to detect the task performed by the 
camera wearer. They also provided a summary of 
the various applications of these techniques that 
are currently pursued by researchers, including 
remote assessment of hand function and gesture 
recognition. Novel video analysis techniques are



task requirements. Furthermore, the development
of techniques for quasi-real-time analysis of
video recordings gathered using wearable cam-
eras could provide an opportunity to generate
stimuli to encourage the use of the stroke-
affected hand. Techniques previously developed
using wearable sensors positioned bilaterally at
the wrist to detect UL activities and deliver
stimuli to encourage stroke survivors to use their
stroke-affected arm [ ] have been shown to be
effective in pilot clinical studies (unpublished
results). Systems relying on wearable cameras
could provide additional information suitable to
choose the timing of the stimuli delivered to
remind stroke survivors to use their stroke-

18

emerging that are expected to further facilitate 
the analysis of egocentric video recordings by 
addressing challenges such as those associated 
with the continuous change in visual field due the 
movements of the body segment the wearable 
camera is attached to [147]. 
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Fig. 21.13 A wearable camera (left panel) can be utilized as an alternative to wearable sensors to detect UL motor 
activities (right panel). Reproduced with permission (Vicon Revue camera picture courtesy of Oxford Metrics, UK—left 
panel; Likitlersuang et al. (https://doi.org/10.1186/s12984-019-0557-1, licensed under CC BY 4.0)—right panel) 

Future developments in this research area are 
expected to focus on more complex analyses of 
the contextual information gathered using wear-
able cameras. For instance, the identification of 
objects in the video frames could determine the 
degree of hand dexterity required for their 
manipulation, which, in turn, could provide a 
reference to evaluate if the movements of the 
stroke-affected hand are adequate to meet the

https://doi.org/10.1186/s12984-019-0557-1


affected limb in a way that is most likely to lead 
to a positive behavioral change. For instance, 
stimuli could be delivered when the patient is 
engaged in a task that has been identified by the 
patient—in consultation with the therapist—as a 
task suitable to increase the use of the stroke-
affected arm. 
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21.5.4 Radio Tags and Radar-Like 
Technologies to Gather 
Contextual Information 

Whereas the use of wearable cameras could 
provide useful contextual information, privacy 
concerns are likely to limit their use and 
encourage researchers to seek alternative 
approaches. In a controlled environment (such as 
the home), systems relying on radio tags and 
radar-like technologies provide an interesting 
alternative to the use of wearable cameras. 
Whereas a review of these technologies is 
beyond the scope of this chapter, it is important 
to point out that significant advances have been 
achieved toward providing accurate data about 
the position in the home environment of people 
and objects using a variety of techniques. Herein, 
we have chosen to briefly comment on the use of 
ultra-wideband (UWB) radio systems [148] and 
radar-like technologies [149] as we believe that 
these techniques are particularly promising. 

The localization of UWB radio tags is a well-
studied problem. Capra et al. [148] explored the 
use of this technology to track the position of 
patients in the home environment and provide 
immediate assistance when a fall is detected using 
a wearable sensor connected to the UWB net-
work. Localization algorithms relying on UWB 
radio tags use sets of transceivers with a mini-
mum of three units utilized as anchor points (i.e., 
units set in known positions) that serve as a ref-
erence to locate radio tags in the environment. 
Radio signals are exchanged among the anchor 
point units and the radio tags. Estimates of the 
time of flight (i.e., the time needed to receive a 
radio signal) for different anchor points are used 
as input to a triangulation algorithm that deter-
mines the position of the radio tags relative to the 

anchor point units. Recent advances in UWB 
technology include the development of methods 
for self-calibration of the position of anchor point 
units [150], thus making the deployment of UWB 
localization systems both simple and inexpensive. 

UWB localization systems can be looked 
upon as part of a broad category of systems 
including those that rely on Internet of Things 
(IoT) and radio frequency identification (RFID) 
technologies, which are becoming common place 
and provide the opportunity to track the position 
of people and objects in the home environment as 
reviewed by Landaluce et al. [151]. Besides, 
researchers have developed several techniques to 
take advantage of and merge the information 
gathered in the environment using different 
wireless technologies in ways that are suitable for 
tracking purpose [152]. Researchers are begin-
ning to envision tracking stroke survivors as they 
move from room to room in the home environ-
ment (e.g., they move to the kitchen at lunch-
time) and detect their proximity to objects (e.g., a 
cutting board on the kitchen counter) that enable 
inferring that they are engaged in specific activ-
ities (e.g., preparing a meal). This contextual 
information could be utilized to analyze sensor 
data accounting for the activity that stroke sur-
vivors are engaged in. Also, contextual infor-
mation could be used to generate stimuli to 
encourage patients to use their stroke-affected 
arm to perform specific activities. 

Radar-like systems [153, 154] designed for 
deployment in the home setting [155] are rapidly 
emerging as ideally suited to track people’s 
location. Seminal work by Dina Katabi’s group 
[153, 154] relies on the analysis of how radio 
signals bounce off the body to track the position 
of people in the home environment. Figure 21.14 
shows a prototype system developed by Dina 
Katabi’s research team at MIT (left panel) and a 
graphical representation of the radio signals that 
bounce off the body of the study volunteer as he 
walks in the room (right panel). The technique 
developed by this research team can achieve an 
accuracy of 10–20 cm, which is generally satis-
factory in the context of the above-mentioned 
applications. Among all available technologies 
for position tracking, this appears to be the most



promising. It does not require anything else than 
positioning in the home a box similar to a WiFi 
router. Importantly, it does not require that 
patients wear sensors or radio tags and it does not 
require a complicated installation. Current 
implementations are challenged when tracking 
people in crowded environments. However, that 
is a situation that seldom occurs in the home of 
stroke survivors, where typically the system 
would need to track a few individuals at the most. 
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21.5.5 Modern Video Analysis 
Techniques 

The development of advanced machine learning 
techniques that has taken place over the past 
decade has led to a new generation of video 
analysis techniques that are dramatically trans-
forming the field of movement science. A num-
ber of sophisticated software libraries have been 
made available to the scientific community 
including DeepPose [156], DeeperCut [157], 
OpenPose [158, 159], ArtTrack [160], Dee-
pLabCut [161], Alpha-Pose [162], and Media-
Pipe [163–165]. These software libraries rely on 
deep learning algorithms designed to track 
anatomical landmarks (referred to as “key-
points”)—such as the ankle, knee, and hip joint 

positions—and derive a simplified representation 
of the body as shown in Fig. 21.15a. This pro-
cess is referred to as “pose estimation” and can 
be implemented by using low-cost video cam-
eras. Although the results are not as accurate as 
those obtained by using traditional, high-cost, 
camera-based motion capture systems, these 
modern video analysis techniques provide a valid 
low-cost alternative when the application at hand 
does not have stringent accuracy requirements. It 
turns out that this is the case for many clinical 
applications such as the assessment of motor 
patterns to estimate the severity of motor 
impairments and the generation of feedback 
during the performance of rehabilitation exer-
cises (e.g., to detect and discourage compen-
satory movement strategies). 

Fig. 21.14 Radar-like systems can provide a totally 
unobtrusive way to monitor patients’ position in the home 
environment and hence infer contextual information of 
great use in home-based interventions. The sensor (left 
panel) consists of a radio transmitter/receiver array. The 

radio transmission bounces off the person, for instance, 
while walking and result in a “radio signature” (right 
panel) from which the position of the patient can be 
inferred with a 10–20 cm accuracy. Reproduced with 
permission from Prof Katabi’s webpage 

The above-stated considerations have gener-
ated tremendous interest among researchers and 
clinicians for these techniques. Recent reviews 
have discussed their potential impact on clinical 
practice [166–168]. However, clinical adoption is 
still limited. A large number of studies have been 
focused on the technical validation of these 
techniques, especially in the analysis of gait pat-
terns [169–172]. Recent publications have started 
to discuss the possibility of using these tech-
niques to derive proxies for clinical assessment 
measures [173, 174]. A few studies have explored



Fig. 21.15 Output of the OpenPose algorithm used to
generate a stick figure representation of the patient (a).
Keypoints used to track hand movements (b). Stick figure

representation derived using OpenPose overlaid to a video
frame (c). Output of the algorithm used to track objects
(d). Reproduced with permission from Ahmed et al.

their use for tracking UL and hand movements 
[175, 176]. The manuscript by Ahmed et al. is 
particularly interesting as it explores an important 
application of modern video analysis techniques, 
namely tracking movement during the perfor-
mance of home-based rehabilitation exercises. 
The manuscript provides details about the work 
accomplished toward the development of a plat-
form for UL home-based exercises named the 
Semi-Automated Rehabilitation at the Home 
(SARAH) system. Figure 21.15 shows some of 
the key components of the system: the stick figure 
representation of the body obtained using Open-
Pose [158, 159] (panel A), the keypoints used to 
track hand movements (panel B), the OpenPose 
stick figure representation overlaid on a video 
frame (panel C), and the output of the object 
tracking and recognition algorithm used in the 
study (panel D) [177]. 
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21.5.6 Collecting Non-motor Data 

Although this chapter is devoted to movement 
tracking-based techniques, wearable sensors can 
provide additional information that is relevant to 
stroke rehabilitation. For instance, wearable 
sensors provide a convenient way to monitor 
systemic responses associated with vigorous 
exercise, which should be monitored in stroke 
survivors [178]. The use of wearable sensors and 
systems in this context is becoming common 

place in clinical studies [179] and adoption in the 
clinic is ramping up. Additional applications of 
wearable technology are emerging. For instance, 
commercially available wearable systems pro-
vide a convenient, unobtrusive way to monitor 
sleep quality. An example of a sleep report 
generated by a finger-worn wearable sensor is 
shown in Fig. 21.16. Sleep quality is important 
not only as a proxy for wellness and psycho-
logical status, but also in the context of motor 
learning. In fact, motor learning studies have 
pointed out the important role played by sleep in 
the processes associated with the consolidation 
of learned motor patterns [180]. 

In the future, we envision that metrics of this 
type will be used routinely in clinical care. 
However, clinical studies are needed to develop 
reliable metrics that could inform the design of 
personalized (i.e., patient-specific) interventions 
that account for multiple physiological factors 
and the general well-being of patients. 

21.5.7 What Emerging Technologies 
Could Do 
that “Traditional” 
Technologies Do not … 

E-textiles provide an alternative form factor that 
patients might prefer over traditional wearable 
systems for long-term monitoring applications. 
Traditional wearable sensors are typically



attached to the body via elastic straps. When 
multiple sensors have to be used for a long per-
iod of time on a daily basis, they are rapidly 
perceived by patients as obtrusive. In contrast, an 
e-textile t-shirt could be used to embed multiple 
sensors and require donning and doffing a single 
item. 
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Fig. 21.16 Subject wearing a commercially available 
ring sensor (right, picture from Oura Health Oy) that 
provides measures of sleep quality via the companion 
smartphone application (left). Sleep quality is relevant to 
stroke rehabilitation in many ways, including the impact 
on the consolidation of motor gains 

Nonetheless, e-textiles cannot always conform 
perfectly to the anatomy and often do not provide 
a stable contact between the sensing elements 
and the patient’s skin. In these circumstances, 
researchers can rely on e-skin sensing technol-
ogy. The quality of the contact with the skin 
achieved using e-skin sensors is unprecedented. 
In these specific applications, e-skin sensors 
deliver high-quality data that would be difficult 
to achieve with traditional wearable sensing 
technology as well as with e-textiles. 

When the analysis of data collected using 
wearable sensors requires contextual informa-
tion, one can rely on wearable cameras to collect 
egocentric video recordings. Patients would wear 
traditional sensors or e-textiles or an e-skin sen-
sor or a combination of all of the above. The 
egocentric video recordings would provide con-
text and hence facilitate the analysis of the data. 

However, this approach clearly presents privacy 
concerns. 

When one needs to monitor patients in the 
home environment, then wearable cameras can 
be replaced by other technologies such as radio 
tags and radar-like technology solutions. 
Whereas further research is needed to develop 
and test contactless technologies—like the ones 
mentioned above—to track patients in the home 
setting with high accuracy, existing radio tag 
systems and radar-like technology solutions 
provide sufficient accuracy to enable inferring 
important contextual information. 

Researchers and the rehabilitation technology 
industry have relied on wearable sensors to 
generate feedback during the performance of 
therapeutic exercises (whether in the clinic or at 
home). The use of modern video analysis tech-
niques is now replacing traditional sensors in this 
context. In fact, the use of video analysis tech-
nology is more convenient as it does not require 
any donning and doffing of sensor units, which is 
often problematic for stroke survivors. A prefer-
ence for video analysis solutions would be 
expected when one implements rehabilitation 
interventions using interactive games. This 
solution would be less attractive when clinicians 
would like to monitor rehabilitation in an inpa-
tient gym, where a large number of patients 
would like to be present at the same time. 

Finally, it should be emphasized that “tradi-
tional” consumer electronics provide data that is 
highly relevant to stroke rehabilitation. For 
instance, in this section, we mentioned the 
capability of several wearable systems of moni-
toring sleep quality. As it is known that sleep 
quality affects the consolidation of learned motor 
patterns, it is expected that—in the near future— 
we will witness a growing use of wearable sen-
sors to monitor physiological variables such as 
sleep quality and autonomic dysregulation. 

21.6 Conclusions 

The body of work discussed in this chapter 
suggests that the use of wearable sensors will 
soon become an important tool in rehabilitation,



including in the context of home-based moni-
toring and tele-rehabilitation of stroke survivors. 
Different clinical applications of wearable sen-
sors are marked by different challenges. For 
example, setting goals and providing feedback is 
quite intuitive for users in the case of LL (gait) 
applications where step counts, distance walked, 
and stair climbing measures can be used as 
intuitive metrics to set target levels of activity. 
Wearable sensors to obtain such metrics can be 
unobtrusive as typically only one sensor is nee-
ded to collect data to derive such metrics, and 
many commercially available solutions exist. 
However, translating this approach to UL inter-
ventions is challenging. It may require wearing 
more than one IMU (e.g., wearing sensors to 
track the movement of multiple fingers) and 
doing so bilaterally. Consensus on relevant 
parameters that should be used to set goals and 
provide feedback to patients has yet to be 
established. In addition, approaches based on 
wearable sensors to encourage activity may need 
to be combined with behavioral interventions to 
assure that motor gains are sustained over time. 
Patients need to be engaged and care about the 
metrics provided by wearable sensors. It is 
important that patients relate changes in motor 
behaviors and health outcomes (e.g., decreased 
stroke risk). In the context of rehabilitation, set-
ting achievable targets that encourage the per-
formance of new activities appears to be an 
effective strategy to maximize adherence to an 
exercise program and sustain changes over time. 
In the context of home-based monitoring and 
exercises, systems based on wearable sensing 
technology (examples in Sects. 21.2.2 and 
21.2.4) enable the performance of therapeutic 
exercises, often in a non-immersive virtual 
environment with gamification, and are a great 
tool to provide feedback and motivation to 
patients. 
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Another factor to consider is accessibility to 
commercially available wearable sensors for at-
home deployment. Currently, about one fifth of the 
adult population is using a wearable device (i.e., 
either a smart watch or a wearable fitness tracker) 
on a regular basis [181]. From a prevention per-
spective, this is a positive trend as many people are 

encouraged to develop healthy habits and pay 
attention to their motor activities, sleep quality, 
and physiological data. However, reports show 
that young adults and women from higher-income 
households and with a college education are 
among the top users of these technologies. Liter-
acy level and socioeconomic status appear to be 
highly correlated with the adoption of wearable 
technology and its use to facilitate adherence to a 
healthy lifestyle. In addition, the algorithms used 
in consumer-grade devices often show limited 
accuracy in patients with motor impairments, 
which negatively affects the adherence and use-
fulness of these systems in a rehabilitation context. 
As activity trackers collect a big amount of data on 
physical metrics and health, another issue to be 
carefully considered are the barriers to data sharing 
that one might encounter either because of 
patients’ preference or because of regulatory 
requirements. As wearable devices become part of 
our daily lives and clinical care, ethical consider-
ations about data sharing and use of the data (e.g., 
for secondary analyses) need to be carefully con-
sidered. Also, the use of prompts to change 
patients’ behavior has to be carefully considered 
from an ethical standpoint. 

Nonetheless, wearable sensors are a unique 
tool that allows to gather data inside and outside 
the clinic for a longer period than the more 
classical data snapshots of movement and phys-
iology taken with classical assessment methods 
used in rehabilitation. In the future, the use of 
wearable sensors during daily life activities could 
allow researchers to precisely evaluate the effects 
of novel therapies (i.e., new rehabilitation 
approaches or regeneration therapies). This 
would enable the implementation of precision 
rehabilitation in which clinicians design patient-
specific interventions, set clinical objectives, 
track patient’s response using wearable sensors, 
and periodically evaluate the effectiveness of the 
ongoing intervention based on the recovery tra-
jectory defined by the time series of clinical score 
estimates derived from wearable sensor data. 

In conclusion, wearable sensors and their 
applications in stroke rehabilitation are pro-
gressing at a fast pace in research laboratories. 
Their use in the clinic remains sparse.



Improvements in the adoption of this technology, 
which has been shown to be clinically useful in 
many ways, could be achieved by a stronger 
focus on involving end-users in the early stages 
of the development of wearable technology 
solutions. Besides, a stronger focus on develop-
ing systems that are very simple to use and 
require virtually no set-up time would benefit 
adoption as clinical sites are often extremely 
busy and every minute of clinicians’ schedule is 
typically fully booked. To achieve a ubiquitous 
implementation of wearable sensors, researchers, 
clinicians, stroke survivors, caretakers, and 
engineers need to work together. It is apparent 
that more work and research need to be done to 
improve currently available wearable sensors and 
systems in terms of their usability and applica-
bility in a clinical setting. However, we should 
emphasize that research that has relied on wear-
able technology to collect data from stroke sur-
vivors has allowed us to gather important 
information that we would have not been able to 
collect without the use of wearable sensors and 
systems and that such information is reshaping 
stroke rehabilitation. 
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