
A Parallel Declarative Framework
for Mining High Utility Itemsets

Amel Hidouri1,2(B), Said Jabbour2, Badran Raddaoui4, Mouna Chebbah3,
and Boutheina Ben Yaghlane1

1 LARODEC, University of Tunis, Tunis, Tunisia
boutheina.yaghlane@ihec.rnu.tn

2 CRIL - CNRS UMR 8188, University of Artois, Lens, France
{hidouri,jabbour}@cril.fr

3 LARODEC, Univ. Manouba, ESEN, Manouba, Tunisia
mouna.chebbah@esen.tn

4 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Paris, France
badran.raddaoui@telecom-sudparis.eu

Abstract. One of the most active research topics in data mining is pat-
tern discovery involving the well-known task of enumerating interesting
patterns from databases. The problem of mining high utility itemsets is
to find the set of items with the highest utility values based on a given
minimum utility threshold. However, due to the advancement of big data
technologies, finding all itemsets is much more harder due to the huge
number of patterns and the large required resources. Parallel processing
is an effective way to efficiently address the problem of mining patterns
from large databases. Based on classical propositional logic, we propose
in this paper a parallel method to handle efficiently the problem of dis-
covering high utility itemsets from transaction databases. To do this, a
decomposition technique is used to splitting the original problem of min-
ing high utility itemsets into smaller and independent sub-problems that
can be handled easily in a parallel manner. Then, empirical evaluations
on different real-world datasets show that the proposed method is very
efficient while being flexible enough to handle additional user constraints
when discovering closed high utility itemsets.

Keywords: Data mining · High utility · Symbolic Artificial
Intelligence · Propositional satisfiabilty · Parallel solving

1 Introduction

Pattern extraction is a well-known task in data mining that aims to infer knowl-
edge based on different types of interesting measures. Discovering High Utility
Itemsets (HUIM, for short) is one of the fundamental tasks in pattern discov-
ery that generalizes the classical problem of frequent itemsets mining (FIM, for
short). In fact, traditional FIM techniques are still insufficient for discovering
the most valuable itemsets, e.g., when an itemset with a high profit is regarded
as infrequent. Unfortunately, the FIM task is not appropriate to deal with this
c© Springer Nature Switzerland AG 2022
D. Ciucci et al. (Eds.): IPMU 2022, CCIS 1602, pp. 624–637, 2022.
https://doi.org/10.1007/978-3-031-08974-9_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08974-9_50&domain=pdf
https://doi.org/10.1007/978-3-031-08974-9_50


Parallel Mining HUI Based on SAT 625

research question because the importance of an itemset is binary and it is only
determined by the occurrence of such itemset in the database. To address the
previous limitation, the HUIM task was introduced as new paradigm to discover
the set of items that appear together in a transaction database and have a high
importance to the end-user, i.e., which is expressed by a utility function. So,
an itemset is coined a high utility itemset (HUI, for short) if its utility value is
greater than a user specified threshold.

In the literature, different proposals have been developed to handle HUIM.
These approaches mainly differ in terms of data structures and search strate-
gies used to exploring the search space and the database scanning optimization.
Nonetheless, the main limitation of this line of research concerns its sequen-
tial computational power constraints, which make it more expensive and causes
scalability issues, especially when dealing with highly dense and huge databases.
Recently, parallel computing with multi-core machine has received a great atten-
tion to overcome this limitation and to improve the performance of sequential
algorithms. Particularly, the popularity of multi-core architectures allows var-
ious data mining problems to be handled in parallel. Parallel computing has
been recently used to improve the performance of HUIM algorithms by accel-
erating the mining of high utility itemsets in transaction databases. Among
these proposals, one can cite pEFIM [14], an extension of the EFIM algo-
rithm, and MCHMiner [17], an extension of iMEFIM (especially exploited for
dynamic transaction databases), that used simple static load balancing between
different processors. Moreover, the CLB and PLB algorithms [1], parallel-based
extensions of ULB-Miner [4], combine the tree and utility-list structures while
applying a parallel processing when mining candidate itemsets. Additionally,
other approaches are based on distributed systems to find HUIs from transac-
tion databases. Among these algorithms, we note P-FHM+ [15] and PHUI-
Growth [13].

Symbolic Artificial Intelligence has recently been used to solve different data
mining problems [3]. It is based on a declarative language to express constraints
over patterns. Declarative methods have been then used to model data mining
tasks as a constraints network or a propositional formula (Propositional Sat-
isfiability SAT, for short) where the found models correspond exactly to the
required patterns. More interestingly, such methods enable users to constraint
the desired motifs by adding new constraints without modeling the underly-
ing problem from scratch. Unfortunately, the main challenging point for such
approaches is the scalability issue when dealing with large datasets.

Parallel SAT solving has received a lot of attention in the SAT community.
Indeed, two kinds of approaches have been proposed. The first category divides
the search space using a divide-and-conquer principle that primarily divides the
search space using the well-known guiding-path concept [18]. The second one
makes use of a Portfolio [7] of DPLL engines, allowing them to compete and
collaborate to be the first to solve a given instance. In this paradigm, each solver
works on the original formula, and the search space is not divided. In general,
the portfolio employs a variety of search engines to increase the likelihood that



626 A. Hidouri et al.

one of them will solve the problem, as well as various strategies for search space
exploration with clause sharing to avoid redundancy. The divide-and-conquer
paradigm is clearly the most convenient for our purpose, as our goal is to split
the transaction database in order to generate several formulas of reasonable size.

In this paper, we present PSAT-HUIM, a new parallel algorithm for efficiently
enumerating high utility itemsets embedded in transaction databases. Based on
the divide and conquer paradigm, we present a parallel declarative method, that
extends the work of [9], to discover the set of high utility itemsets. We also show
through extensive experiments on different real-world datasets the efficiency of
our PSAT-HUIM approach.

2 Background

In this section, we present the relevant preliminaries and definitions related to
the HUIM and the propositional satisfiability problems, respectively.

2.1 High Utility Itemset Mining Problem

Let Ω represents a universe of unique items (or symbols) that appear in a
database. A transaction database D = {T1, T2, . . . , Tm} is a set of m trans-
actions such that each transaction Ti is a set of items (i.e., Ti ⊆ Ω), and Ti has
a unique identifier i called its transaction identifier (TID, for short). In what
follows, we give some additional definitions related to the high utility mining
problem.

Definition 1 (Internal Utility). For each transaction Ti such that a ∈ Ti,
a positive number wint(a, Ti) is called the internal utility of the item a (e.g.,
purchase quantity).

Definition 2 (External Utility). Each item a ∈ Ω is associated with a posi-
tive number wext(a), called its external utility (e.g., unit profit).

Definition 3 (Utility of an item/itemset in a transaction). Given a
transaction database D , the utility of an item a in a transaction (i, Ti) ∈ D ,
denoted by u(a, Ti), is u(a, Ti) = wint(a, Ti)×wext(a). Then, the itemset’s utility
X in Ti, written as u(X,Ti) is defined as follows:

u(X,Ti) =
∑

a∈X

u(a, Ti) (1)

Definition 4 (Utility of an itemset in a database). Let D be a transaction
database. The utility of an itemset X in D , denoted by u(X,D), is defined as:

u(X,D) =
∑

(i,Ti)∈D | X⊆Ti

u(X,Ti) (2)



Parallel Mining HUI Based on SAT 627

Example 1. We assume that Consider the transaction database in Table 1. We
assume that this database represents a set of products in a retail store. In
addition, the external utility of items, i.e., the price of each item, is given
in Table 2. Clearly, the utility of the itemset {b, d} is computed as follows:
u({b, d}) = u({b, d}, T2) + u({b, d}, T4) = 24.

Table 1. A sample transaction database

TID Items

T1 (a, 3) (c, 1) (e, 3)

T2 (a, 2) (b, 1) (c, 3) (d, 4) (e, 3)

T3 (a, 5) (c, 1) (d, 1)

T4 (b, 4) (d, 3) (e, 1)

T5 (a, 1) (d, 2) (e, 2)

Table 2. The external utilities of the itemsets

Item Unit profit

a 4
b 2
c 1
d 2
e 3

Definition 5 (High Utility Itemset). An itemset X is called a high utility
itemset (HUI) in a database D if its utility value is greater than a minimum
utility threshold θ, i.e., u(X) ≥ θ.

Definition 6 (Closed high utility itemset). Let D be a transaction
database. X is called a closed high utility itemset if there exists no high util-
ity itemset X ′ such that X ⊂ X ′, and ∀(i, Ti) ∈ D , if X ∈ Ti then X ′ ∈ Ti.

Problem Statement. Given a transaction database D and a user-specified
minimum utility threshold θ, the goal of computing (closed) high utility itemsets
problem consists of finding the set of all (closed) high utility itemsets in D with
a utility no less than θ, i.e.,
HUI = {X : u(X,D) | X ⊆ Ω, u(X,D) ≥ θ}
Example 2. Let us consider again the transaction database given in Example 1.
Given a minimum utility threshold θ = 45, then the set of high utility itemsets
with their utility in the database of Table 1 is {{a, c} : 45, {a, d} : 46, {a, e} : 59}.



628 A. Hidouri et al.

In order to prune the search space, existing proposals of HUIM use the so-
called Transaction Weighted Utilization (TWU, for short), which is an upper
bound of the utility measure, together with the property of anti-monotonicity in
order to filter out the candidate itemsets that are not high utility. More formally,

Definition 7 (Transaction Utility). The transaction utility of a transaction
Ti in a database D , denoted by TU(Ti), is the sum of the utility of all items in
Ti, i.e.,

TU(Ti) =
∑

a∈Ti

u(a, Ti) (3)

Definition 8 (Transaction Weighted Utilization). The transaction
weighted utilization of an itemset X in a transaction database D , denoted by
TWU(X,D), is defined as:

TWU(X,D) =
∑

(i,Ti)∈D | X⊆Ti

TU(Ti) (4)

2.2 Propositional Logic and SAT Problem

A propositional language L consists of three main components: a countable set
of propositional variables P for which we use the letters p, q, r, etc. to range over
P, a set of logical connectives such as ¬,∧,∨,→ and the two logical constants 

(true or 1) and ⊥ (false or 0). A literal is a propositional variable p or its negation
¬p. Propositional formulas of L will be denoted as Φ, Ψ , etc. We also use P(Φ)
to denote the set of propositional variables occurring in the propositional formula
Φ. A Boolean interpretation Δ of a formula Φ is defined as a function from P(Φ)
to (0, 1), i.e., Δ : P(Φ) → (0, 1). Now, a model of a formula Φ is a Boolean
interpretation Δ that satisfies Φ. We use Mod(Φ) to denote the set of models of
Φ. A formula Φ is satisfiable if there exists a model of Φ. Then, Φ is valid or a
theorem, if every Boolean interpretation is a model of Φ. As usual, |= refers to
the logical inference and |=up the one restricted to unit propagation.

Now, a clause is a disjunction of literals. A formula Φ is in conjunctive normal
form (CNF, for short) if Φ can be written as a conjunction of a finite set of clauses.
We stress here that any propositional formula can be rewritten as a CNF one
by applying the linear Tseitin’s encoding [16]. The decision problem verifying
the satisfiability of a propositional formula in CNF is called SAT. Given a CNF
formula Φ, SAT aims to identify if Φ possesses a model or not. Interestingly, state-
of-the-art SAT solvers have been shown to be very useful for handling various
real-world problems, including overlapping community detection in graphs [10,
11], data mining [12], etc.

3 SAT Encoding of (Closed) High Utility Itemset Mining

In this section, we review the formulation of closed HUIM problem into proposi-
tional satisfiability [8]. The proposed encoding consists in a set of propositional



Parallel Mining HUI Based on SAT 629

variables to represent both items and transactions of the considered transaction
database D . More precisely, each item a (resp. each transaction identifier i),
is associated with a propositional variable, denoted by pa (resp. qi). Given a
Boolean interpretation Δ, the itemset and its cover i.e., the set of transactions
in which it appears are simply expressed as the sets {a ∈ Ω | Δ(pa) = 1} and
{i ∈ N | Δ(qi) = 1}, respectively. Now, the translation of the HUIM task into
propositional satisfiability is obtained by introducing a set of logical constraints
as depicted by Fig. 1. The first propositional formula (5) encodes the cover of
the candidate itemset. This formula expresses that the itemset appears in the
ith transaction, i.e., qi = true. In other words, the candidate itemset is not sup-
ported by the ith transaction (i.e., qi is false), when there exists an item a (i.e.,
pa is true) that does not belong to the transaction (a ∈ Ω\Ti); when qi is false.
This means that at least an item not appearing in the transaction i is set to
true.

Fig. 1. SAT-based encoding scheme for HUIM.

The constraint over the utility of the itemset X in D is expressed using the
linear inequality (7) requiring at least a threshold θ. Notice that Constraint (7)
can be translated into clauses or managed in the solver as proposed in [8]. By the
use of additional variables, Constraint (7) can be rewritten as a conjunction of
the constraints (8) and (9). Lastly, the propositional formula (6) allows to select
the set of closed HUIs in D . It ensures that if the candidate itemset is involved
in all transactions containing the item a, then a must belong to the itemset. As
shown in [8], the CNF formula (5)∧ (8)∧ (9) encodes the HUIM problem, while
the formula (5) ∧ (8) ∧ (9) ∧ (6) encodes the closed HUIM problem.

Example 3. The formula encoding the problem of mining closed HUIs of Exam-
ple 1 with θ = 20 is as follows:



630 A. Hidouri et al.

¬q1 ↔ (pb ∨ pd) ¬q3 ↔ (pb ∨ pe) ¬q4 ↔ (pa ∨ pc) ¬q5 ↔ (pb ∨ pc)

ra1 ↔ pa ∧ q1 rc1 ↔ pc ∧ q1 re1 ↔ pe ∧ q1 ra2 ↔ pa ∧ q2 rb2 ↔ pb ∧ q2

rc2 ↔ pc ∧ q2 rd2 ↔ pd ∧ q2 re2 ↔ pe ∧ q2 ra3 ↔ pa ∧ q3 rc3 ↔ pc ∧ q3

rd3 ↔ pd ∧ q3 rb4 ↔ pb ∧ q4 rd4 ↔ pd ∧ q4 re4 ↔ pe ∧ q4 ra5 ↔ pa ∧ q5

rd5 ↔ pd ∧ q5 re5 ↔ pe ∧ q5

(pa ∨ q4) ∧ (pb ∨ q1 ∨ q3 ∨ q5) ∧ (pc ∨ q4 ∨ q5) ∧ (pd ∨ q1) ∧ (pe ∨ q3)

12ra1 + rc1 + 9re1 + 8ra2 + 2rb2 + 3rc2 + 8rd2 + 9re2 + 20ra3 + rc3 + 2rd3 + 8rb4 + 6rd4 + 3re4+

4ra5 + 4rd5 + 6re5 ≥ 20

4 Parallel High Utility Itemsets Mining Using
Propositional Satisfiability

In this section, we present a parallel approach based on propositional logic to
computing high utility itemsets from transaction databases. Our proposed algo-
rithm improves the state-of-the-art SAT-based approach presented in [9] by uti-
lizing a multi-core architecture. In fact, two types of solvers have been devel-
oped in the literature to solve SAT problems in parallel: divide-and-conquer
and portfolios. The first category is of particular interest in this paper, since
in pattern mining we deal with an enumeration task. Thus, the divide-and-
conquer paradigm aims to split the search space into many sub-spaces, explored
in parallel by SAT solvers. Generally, divide-and-conquer based approaches use
the well-known guiding-path concept to divide the search space [2]. In fact, a
guiding-path consists to restrict the search space to a given region by adding
constraints to the original problem. However, the main challenge of parallel pro-
cessing is the load balancing between processors, which is important to avoid
idleness. Our proposed approach relies on an effective static load balancing that
initially split the work among processors using a heuristic cost function, while
each processor has a direct and equal access to memory, i.e., shared-memory
(SMP) architecture. The main advantage of this system is that it is easy to
implement. More precisely, in our case, we decompose the enumeration of the
whole models of Φ by generating a number of sub-formulas {Φ1, . . . , Φn} using
the guiding-path concept. Such sub-formulas are then distributed between cores
for resolution. The goal is then to avoid encoding the whole transaction database
by generating numerous sub-problems with reasonable size that can be solved in
a parallel.

Formally, let Φ be a formula and Ψ1, . . . , Ψn a set of formulas over P(Φ).
Then, Ψ1, . . . , Ψn is a guiding-path set if and only if:


 ≡ Ψ1 ∨ . . . ∨ Ψn



Parallel Mining HUI Based on SAT 631

Ψi ∧ Ψj |= ⊥,∀ i �= j

Clearly, the satisfiability of Φ is related to the satisfiability of at least Φ∧Ψi,
for i ∈ [1..n]. Moreover, the following result holds:

Mod(Φ) =
n⋃

i=1

Mod(Φ ∧ Ψi)

In addition, for i �= j, we have Mod(Φ ∧ Ψi) ∩ Mod(Φ ∧ Ψj) = ∅ allowing to
enumerate the models of Φ ∧ Ψi independently.

For the high utility itemsets mining task using propositional logic, we define
the guiding path set as:

Ψi = pai
∧

∧

j<i

¬paj

It is easy to check that this set of formulas is a guiding path one. In fact, Ψi

requires that the literal pai
is true, i.e., the itemset must contain ai while the

literals that represent the items aj with j < i are false. Interestingly, Φ(D , θ)∧Ψi

is equivalent to Φ(Di, θ) ∧ Ψi i.e., the encoding can be restricted to transactions
involving ai where the items aj , j < i are removed (as depicted in Fig. 2). As per-
formed, the size of the generated sub-formulas Φ(Di, θ)∧ Ψi can be considerably
reduced.

Example 4. Let us consider again the transaction database in Table 1. Figure 2
shows the sub-table obtained by considering the guiding-path set as explained
above.

Fig. 2. Item based partitioning tree of the database in Table 1

Now, our parallel SAT-based approach to enumerating all (closed) HUIs from
transaction databases is depicted in Algorithm 1. The algorithm takes as inputs
a transaction database D , a minimum utility threshold θ, and a number of cores
k, and returns all (closed) HUIs embedded in D . First, the SAT-based model



632 A. Hidouri et al.

Algorithm 1: Parallel SAT for High Utility Itemset Mining (PSAT-HUIM)
Input: D : a transaction database, θ: a minimum utility threshold, k: a number

of cores
Output: S: the set of all high-utility itemsets

1 Ω = 〈a1, . . . , an〉 ← items(D);
2 S ← ∅ ; /* set of models (HUIs) */
3 Γ ← ∅;
4 for i in [0..k − 1] do
5 initSolver(i);
6 Si ← ∅;
7 end
8 for i in [1..n] do
9 if TWU(ai,D) ≥ θ then

10 Di ← {(j, Tj) ∈ D | ai ∈ Tj} ;
11 for b ∈ items(Di) do
12 if TWU(b,Di) < θ then
13 Γ ← Γ ∧ ¬pb;
14 end
15 end
16 Ψi ← pai ∧

∧

j<i

¬paj ;

17 Si ← dpll_Enum(Φ(Di, θ) ∧ Ψi ∧ Γ, θ); /* Solved by calling
Solver[i%k] */

18 S ← S ∪ Si ;
19 end
20 end
21 return S;

enumeration solvers are initialized. Each one is associated to a given thread or
core i. Notice that our division strategy consists to assign the sub-problem i
to the solver i%k. During the decomposition, an item ai is selected and the
transactions containing ai are then picked to construct the sub-database Di for
encoding. Clearly, all items b with TWU(b,Di) < θ cannot be part of a (closed)
HUI, and then are propagated to false (lines 11–14). The set of k solvers is then
launched in parallel, the solver number (i%k) is run successively on the formula
ΦDi

and the set of models Si are returned (line 17). Finally, the union of all
models Si for i ∈ [1..k] yields the entire set of models. Such set corresponds to the
entire set of found (closed) HUIs, that will be finally returned by our algorithm.
Let us notice that the guiding path for the HUIM task is generated using an
ordering over the variables encoding items. This order must be well chosen for
an efficient SAT resolution. The strategy used in this paper consists to sort
the items according to their frequency in the initial database. The motivation
behind such heuristic is to allow generating small sub-problems by starting with
less frequent items.



Parallel Mining HUI Based on SAT 633

5 Experimental Results

We conducted an experimental evaluation of our parallel SAT-based formula-
tion of HUIM task using numerous real-world transaction databases. Experi-
ments are carried out on a personal computer equipped with an Intel Core i7
processor and 16GB of RAM at 2.8 Ghz running macOS 10.13.4. Empirical
evaluations were performed on seven real-life datasets commonly used in the
HUIM literature. These datasets are available from the Open source Data Min-
ing Library (SPMF) [6]. These benchmarks are Chess, Foodmart, Mushroom,
Retail, Accidents, Kosarak and Chainstore. They have a variety of character-
istics and contain data from real-world scenarios. Our algorithm is written in
C++, and we used the MiniSAT solver [5], which is slightly modified for the
model enumeration problem. Let us note here that the computation time for
our approach includes both the encoding and solving time. In Table 3, we report
the number of transactions (#Trans), the number of items (#Items), and the
average transaction length (AvgTransLen).

Table 3. Datasets characteristics

Instance #Trans #Items AvgTransLen

Chess 3196 75 37
Foodmart 4141 1559 4.42
Mushroom 8124 119 23
Retail 88162 16470 10.3
Accidents 340183 468 33.8
Kosarak 990002 41270 8.1
Chainstore 1112949 46086 7.23

We conduct two types of experiments in order to evaluate the efficiency of
our proposed SAT method for computing the set of all HUIs from databases. In
the first one, we assess our algorithm’s performance on each dataset for various
minimum utility thresholds while considering 1, 2 and 4 cores. In the second, we
demonstrate the effectiveness of our load balancing strategy among the different
cores. Figure 3 displays the running time of our SAT-based algorithm on each
dataset.

5.1 Parallel Evaluation

According to Fig. 3, the performance of our SAT-based approach depends on
the considered dataset and the minimum utility threshold values as well as the
considered cores number. As expected, the parallel based approach allows to
significantly reduce the running time of mining the set of HUIs. Clearly, this
latter decreases as the number of cores increases. For almost tested datasets, the



634 A. Hidouri et al.

solving time is divided by two when the number of cores pass from 1 to 2. More
specifically, for Accidents dataset and θ = 17.5× 106, the running time with one
core exceeds 450 s while this time is approximately equal to 300 seconds with
two cores, and for kosarak we move from 90 seconds with one core to 50 seconds
with two cores for θ = 1.2 × 106. We can also remark that the gain in terms of
solving time is greater when the number of cores increases from 1 to 2 rather
than 2 to 4. To summarize, the multi-core architecture outperforms sequential
architecture on all tested datasets.

Fig. 3. Performance gain w.r.t. the number of cores

Let us recall here that we use a splitting method where the resulting sub-
formulas are shared fairly between cores for a better load balancing. The next
sub-section is dedicated to the load balancing analysis.

5.2 Load Balancing

This subsection provides an empirical analysis of the CPU time with different
number of cores on all datasets to assess the suitability of our load balancing
strategy. For this, we fix the number of cores to 4 for each value of minimum
utility threshold. We report in Fig. 4 the average running time over cores as well
as the minimum and maximum time to quantify the idleness of some cores. We
mention here that the tighter the difference between minimum and maximum
running time is, the better the load balancing is. As we can observe the relative



Parallel Mining HUI Based on SAT 635

Fig. 4. Load unbalancing between cores

load unbalancing for the datasets Chainstore, Retail and Kosarak is very limited.
Thus, all the cores spent almost the same time to solve their assigned sub-
problems. Overall, our guiding paths generation principle allows to balance the
number of found models between the different threads. These results indicate
that our SAT method is both efficient and scalable.



636 A. Hidouri et al.

6 Conclusion

In this paper, we considered a parallel approach to compute the set of all (closed)
high utility itemsets using propositional logic. The proposed approach is based
on divide and conquer paradigm for a multi-processor architecture. A decompo-
sition approach is provided to avoid modeling the entire transaction database
by considering numerous but smaller sub-problems that can be handled easily
in parallel. The empirical evaluation tends to support our splitting strategy by
providing interesting load balancing among cores.

As a future work, we want to investigate two research directions. In the
first one, we plan to develop a parallel SAT approach with a dynamic splitting
strategy in order to reduce the load balancing effect. In the second, we aim to
extend our proposal for a distributed approach to avoid the disadvantage of
shared memory in multi-core architecture when handling more large datasets.

Acknowledgements. This research has received support from the ANR CROQUIS
(Collecting, Representing, cOmpleting, merging, and Querying heterogeneous and
UncertaIn waStewater and stormwater network data) project, grant ANR-21-CE23-
0004 of the French research funding agency Agence Nationale de la Recherche (ANR).

References

1. Atmaja, E.H.S., Sonawane, K.: Parallel algorithm to efficiently mine high utility
itemset. In: ICT Analysis and Applications, pp. 167–178 (2022)

2. Böhm, M., Speckenmeyer, E.: A fast parallel sat-solver-efficient workload bal-
ancing. Ann. Math. Artif. Intell. 17, 381–400 (1996). https://doi.org/10.1007/
BF02127976

3. Coquery, E., Jabbour, S., Sais, L., Salhi, Y., et al.: A sat-based approach for discov-
ering frequent, closed and maximal patterns in a sequence. In: ECAI, pp. 258–263
(2012)

4. Duong, Q.-H., Fournier-Viger, P., Ramampiaro, H., Nørvåg, K., Dam, T.-L.: Effi-
cient high utility itemset mining using buffered utility-lists. Appl. Intell. 48(7),
1859–1877 (2017). https://doi.org/10.1007/s10489-017-1057-2

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

6. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.,
et al.: SPMF: a java open-source pattern mining library. J. Mach. Learn. Res. 15,
3389–3393 (2014)

7. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel sat solver. J. Satisfiability
Boolean Model. Comput. 6, 245–262 (2010)

8. Hidouri, A., Jabbour, S., Raddaoui, B., Yaghlane, B.B.: A sat-based approach for
mining high utility itemsets from transaction databases. In: International Confer-
ence on Big Data Analytics and Knowledge Discovery, pp. 91–106 (2020)

9. Hidouri, A., Jabbour, S., Raddaoui, B., Yaghlane, B.B.: Mining closed high utility
itemsets based on propositional satisfiability. Data Knowl. Eng. 136, 101927 (2021)

10. Jabbour, S., Mhadhbi, N., Raddaoui, B., Sais, L.: Sat-based models for overlapping
community detection in networks. Computing 102(5), 1275–1299 (2020)

https://doi.org/10.1007/BF02127976
https://doi.org/10.1007/BF02127976
https://doi.org/10.1007/s10489-017-1057-2
https://doi.org/10.1007/978-3-540-24605-3_37


Parallel Mining HUI Based on SAT 637

11. Jabbour, S., Mhadhbi, N., Raddaoui, B., Sais, L.: A declarative framework for
maximal k-plex enumeration problems. In: AAMAS (2022, to appear)

12. Jabbour, S., Sais, L., Salhi, Y.: Mining top-k motifs with a sat-based framework.
Artif. Intell. 244, 30–47 (2017)

13. Lin, Y.C., Wu, C.W., Tseng, V.S.: Mining high utility itemsets in big data. In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 649–661
(2015)

14. Nguyen, T.D., Nguyen, L.T., Vo, B.: A parallel algorithm for mining high utility
itemsets. In: International Conference on Information Systems Architecture and
Technology, pp. 286–295 (2018)

15. Sethi, K.K., Ramesh, D., Edla, D.R.: P-FHM+: parallel high utility itemset mining
algorithm for big data processing. Procedia Comput. Sci. 132, 918–927 (2018)

16. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Automation of Reasoning, pp. 466–483 (1983)

17. Vo, B., Nguyen, L.T., Nguyen, T.D., Fournier-Viger, P., Yun, U.: A multi-core
approach to efficiently mining high-utility itemsets in dynamic profit databases.
IEEE Access 8, 85890–85899 (2020)

18. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover
and its application to quasigroup problems. J. Symb. Comput. 21, 543–560 (1996)


	A Parallel Declarative Framework for Mining High Utility Itemsets*-6pt
	1 Introduction
	2 Background
	2.1 High Utility Itemset Mining Problem
	2.2 Propositional Logic and SAT Problem

	3 SAT Encoding of (Closed) High Utility Itemset Mining
	4 Parallel High Utility Itemsets Mining Using Propositional Satisfiability
	5 Experimental Results
	5.1 Parallel Evaluation
	5.2 Load Balancing

	6 Conclusion
	References




