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Abstract. Learning from class-imbalanced datasets has gained sub-
stantial attention in the machine learning community, leading to solu-
tions for healthcare, security, banking, etc. Specifically, binary imbal-
anced problems has received the most interest in the field. Yet, there
has been little emphasis given to dealing with multi-class imbalance
learning. Data imbalance can significantly worsen the classification per-
formance, especially in the presence of other data difficulties such as
uncertainty, i.e., ambiguous samples and noise. In this paper, we present
an evidential hybrid re-sampling method for dealing with class imbal-
ance in the multi-class setting. This technique uses the evidence the-
ory to assign a soft label to each object. This evidential modeling pro-
vides more information about each object’s region, which improves the
selection of objects in both undersampling and oversampling. Our app-
roach firstly selects ambiguous majority instances for undersampling,
then oversamples minority objects through the generation of synthetic
examples in borderline regions to better improve minority class borders.
An adjustment has also been integrated in order to avoid excessive over-
sampling and undersampling. Benchmarking results have shown signif-
icant improvement of G-Mean of AUC metrics over other popular re-
sampling methods.

Keywords: Resampling · Multi-class imbalance · Evidence theory ·
Data uncertainty

1 Introduction

Class imbalance is a very common situation in classification problems, specifi-
cally in many real-world scenarios such as intrusion detection [4], medical diag-
nosis [15], and fraud detection [16]. Formally, an imbalanced dataset contains
at least one class with much fewer number of examples than the other classes.
The underrepresented classes are called minority classes while the others with
larger number of instances are referred to as majority classes. In most cases,
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classification models tend to favor majority classes due to their large presence,
while incorrectly classifying the instances from the minority classes. This raises
a problem since minority classes often have more importance than the majority
ones. For instance, in the medical domain, our interest is to detect patients with
diseases, which could be a rare pattern (minority).

A lot of studies has been carried out in order to enhance classification per-
formance on binary datasets, in which there is only one minority class and one
majority class. Among many strategies, re-sampling is an effective approach for
learning from class-imbalanced datasets. It aims at rebalancing the training set
at the preprocessing level by adding synthetic minority objects (oversampling),
removing majority samples (undersampling), or both (hybrid resampling). As a
consequence, it improves the effects. The most traditional resampling techniques
are random oversampling (ROS) and random undersampling (RUS). The former
randomly selects minority objects and simply replicates them, while the latter
randomly removes majority instances. Although it might seem that these ran-
dom solutions are effective since the class distribution is balanced, they can lead
to different issues. For instance, ROS can lead to overfitting, and RUS can poten-
tially remove meaningful samples from the data [11]. Therefore, other methods
have been suggested to make re-sampling less naive.

The most popular solution based on this logic is Synthetic Minority Over-
sampling Technique (SMOTE) [6], which is considered as the baseline for most
contributions. Unlike ROS, SMOTE interpolates between minority objects that
are close to each other, to create new synthetic minority instances. Unfortunately,
SMOTE has some issues regarding overgeneralization and amplification of prob-
lems already present in the data, that is, data uncertainty involving class over-
lapping and noise [23]. In [12], authors suggested BorderlineSMOTE, a SMOTE
variant with the goal of identifying borderline minority class objects to generate
new samples. In fact, applying oversampling on the borders of the minority class
allows the improvement of the visibility of minority objects. Safe-Level-SMOTE
[5] is another technique which only selects objects in safe region for oversam-
pling. Clustering has also been introduced in many oversampling methods [8] to
smartly select the regions where to create synthetic points. More recently, some
interests have been pointed towards generative adversarial networks as the basis
for oversampling [24].

Regarding undersampling, contributions focused on intelligent selection of
unwanted majority samples to discard, rather than randomly removing them.
Traditionally, Editing Nearest Neighbors (ENN) [29] and Tomek Links (TL) [14]
are occasionally used for undersampling. Similar to oversampling, clustering-
based undersampling was presented in a number of works [27] to improve the
selection of majority objects to remove.

The combination of oversampling and undersampling is also a useful strat-
egy to re-balance the dataset. Traditionally, methods combine SMOTE’s over-
sampling with undersampling filtering techniques. In [3], for example, the
authors proposed two hybrid sampling approaches: SMOTE-ENN and SMOTE-
TOMEKLINKS. Since SMOTE can potentially expand the minority set regions
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Fig. 1. Data difficulties in multi-class imbalanced datasets.

by interpolating new synthetic samples into the majority set clusters. This
is called over-generalization. The application of ENN [29] to the SMOTE-
oversampled training set tends to remove examples from both classes, meaning
that every observation misclassified by its nearest neighbors is cleaned from the
training data. Similar to SMOTE-ENN, instead of eliminating only the major-
ity examples that form a Tomek Link, examples from both classes are deleted.
SMOTE-RSB* [21] is another method that combines SMOTE for oversampling
with the Rough Set Theory as a cleaning technique. Nevertheless, learning from
multi-class imbalanced datasets has not been as heavily researched. This is due
to the complexity of multi-class relationships compared to two-class problems.
Rather than directly applying these methods to the multiple classes, many meth-
ods focus on decomposing multi-class problems into binary ones. For instance,
the One-Versus-One (OVO) approach [13] is a decomposition scheme developed
to modify the multi-class problem into multiple binary sub-problems, one for
each pair of classes. Each sub-problem is trained on a binary classifier, ignoring
the remaining instances not belonging the pair. Similarly to OVO, One-Versus-
All (OVA) [22] is another decomposition framework which transforms the multi-
class data into multiple binary sub-problems. However, OVA trains a classifier
for each class in the training dataset. Other variants of these methods were
also suggested [19], mostly to improve the combination of classifiers decisions.
Even though binarization is simple and straightforward approach for learning
from multiple class problems, it may lead to some regions being ignored and left
unlearned. Specifically, when there is high data uncertainty, such as ambiguity
created by high overlapping, and noise. These issues cannot be dealt with using
decomposition techniques.

To handle the drawbacks of existing re-sampling algorithms, this paper
presents an algorithm named Multi-Class Evidential Hybrid re-Sampling (MC-
EVHS). It is an extension of the method proposed in [10] to specifically deal
with imbalanced datasets with multiple classes and other data difficulties, i.e.,
overlapping classes, label noise and outliers, as illustrated in Fig. 1. This app-
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roach uses evidence theory in order to represent memberships, before combining
oversampling and undersampling. Utilizing this theory provides us with more
information in order to better choose the locations of newly generated objects
and which majority instances to remove. Consequently, we apply an evidential
version of SMOTE on the minority classes, and evidential undersampling on
majority classes. Since we are dealing with multiple classes, we also propose a
mechanism to identify which classes to consider for oversampling or undersam-
pling, in addition to an improved way of controlling the amount of re-sampling
that should be performed for each class. This adds an adaptive behavior to our
approach.

This paper will be divided as follows. First, evidence theory is recalled in
Sect. 2. Section 3 details each step of our idea. Experimental evaluation is dis-
cussed in Sect. 4. We finish our paper with a conclusion and an outlook on future
work in Sect. 5.

2 Evidence Theory

The theory of evidence [7,25,26], also referred to as Dempster-Shafer theory
(DST) or belief function theory, is a flexible and well-founded framework for the
representation and combination of uncertain knowledge. The frame of discern-
ment defines a finite set of M exclusive possible events, e.g., possible labels for
an object to classify, and is denoted as follows:

Ω = {w1, w2, ..., wM} (1)

A basic belief assignment (bba) denotes the amount of belief stated by a
source of evidence, committed to 2Ω, i.e., all subsets of the frame including
the whole frame itself. Precisely, a bba is represented by a mapping function
m : 2Ω → [0, 1] such that: ∑

A∈2Ω

m(A) = 1 (2)

Each mass m(A) quantifies the amount of belief allocated to an event A of
Ω. A focal element is a subset A ⊆ Ω where m(A) �= 0.

The Plausibility function is another representation of knowledge defined by
Shafer [25] as follows:

Pl(A) =
∑

B∩A �=∅
m(B), ∀ A ∈ 2Ω (3)

Pl(A) represents the total possible support for A and its subsets.

3 Evidential Hybrid Re-sampling for Multi-class
Imbalanced Data

MC-EVHS is a re-sampling method which combines oversampling and undersam-
pling to re-balance multi-class datasets. It firstly assigns soft evidential labels
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to each object in the dataset. The theory of evidence is used here to represent
memberships towards each class, and also each meta-class (overlapping between
classes). This allows us to represent data uncertainty. The computed soft labels
are then used to select unwanted majority samples for undersampling, and pick
the right regions for oversampling the minoirty classes.

The definitions of majority and minority classes in multi-class imbalance have
been discussed in many works. In this paper, we consider a minority each class
that has a number of objects less than the mean s of the number of objects in
each class.

For all classes with a number of objects higher than the mean s, the assigned
memberships are used to smartly perform undersampling. Our version of under-
sampling has an adaptive behavior, since the number of removed objects depends
on the amount of overlap and noise present in the corresponding majority class.
However, each majority class size should not get inferior to the calculated mean
s.

Regarding all classes with a number of objects lower than the mean s, we
use the calculated evidential memberships in order to perform oversampling in
the borders of the minority class. Similarly to undersampling, our version of
oversampling adapts to each class and generates synthetic minority instances
only in the wanted locations. The only stopping criterion is not exceeding the
mean s.

3.1 Computation of Evidential Labels

Our proposed approach proceeds by determining the centers of each class and
meta-class (the overlapping region), then creating a bba based on the distance
between each object and each class center.

The class centers are calculated using the mean value of the training set in
the corresponding class. Regarding the overlapping regions represented by meta-
classes, the centers are defined by the barycenter of the involved class centers as
follows:

CU =
1

|U |
∑

ωi∈U

Ci (4)

where ωi are the classes in U , U represents the meta-class, and Ci is the corre-
sponding center.

After the creations of centers, we assign to each example a soft evidential label
represented by a bba over the frame of discernment Ω = {ω1, ..., ωM , ω0}, where
the M classes are represented. The proposition ω0 is included in the frame of
discernment to represent the outlier, i.e., assignment of objects that are far from
any class in the data. It is important to note that not all meta-classes should be
considered as potential focal elements. Indeed, some classes do not overlap, and
so no object needs to be assigned to the meta-class involving them. Additionally,
it would be more computationally efficient to not calculate the mass value for
this type of meta-classes. As enforced in [17], the meta-class center should be
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closer to the centers of its involved classes than to other incompatible classes’
centers.

Let xs be an object belonging to the training set. The idea is that each class
or meta-class center represents a piece of evidence to the evidential membership
of xs. Accordingly, the mass values for each focal element in regard to xs’s mem-
berships should depend on d(xs, C), that is, the distance between the respective
class center C and xs. The farther the center is, the lower the mass value for the
corresponding class. By analogy, the closer xs is to a class/meta-class center, the
more likely it belongs to it. Hence, the initial unnormalized masses should be
represented by decreasing distance based functions. We use the Mahalanobis dis-
tance [18], in this work, as recommended by [17] in order to deal with anisotropic
datasets. Meta-classes U are chosen based on the constraint given above. The
unnormalized masses are calculated accordingly:

m̂({ωi}) = e−d(xs,Ci) (5)

m̂(U) = e−γ λ d(xs,CU ), for |U | ≥ 1 (6)

m̂({ω0}) = e−t (7)

where λ = β 2α. A value of α = 1 is fixed as recommended to obtain good results
on average, and β is a parameter such that 0 < β < 1. It is used to tune the
number of objects committed to the overlapping region. The value of γ is equal
to the ratio between the maximum distance of xs to the centers in U and the
minimum distance. It is used to measure the degree of distinguishability among
classes in U . The smaller γ indicates a poor distinguishability degree between
the classes of U for xs. The outlier class ω0 is taken into account in order to deal
with objects far from all classes, and its mass value is calculated according to
an outlier threshold t.

Finally, the unnormalized belief masses are normalized as follows:

m(A) =
m̂(A)∑

B⊆Ω m̂(B)
(8)

3.2 Evidential Adaptive Undersampling

This part consists of downsampling the majority classes. As mentioned above,
this is dedicated to the classes whose size is higher than the mean size, corre-
sponding to a majority. The created bbas are used here to determine whether
an object is necessary for the learning phase or not. The logic behind our idea
is to discard the samples which have a high uncertainty, that is, samples which
present a relatively higher difficulty to correctly classify. These types of instances
involve high ambiguity (class overlapping samples), outliers, and label noise. The
evidential membership is used to detect those samples.
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Class Overlapping. In our framework, overlapping objects have high masses
assigned to meta-class focal elements, i.e., non-singleton propositions. For exam-
ple, a sample with the maximum mass assigned to U = {ω1, ω2, ω3} signifies
that it is located in the region intersecting the three classes ω1, ω2, and ω3. This
specific instance can be removed in the undersampling phase, in order to reduce
the data ambiguity and reduce majority classes’ sizes, at the same time.

Since class overlap has not been mathematically well characterized, some
control over the number of examples removed should be set up. Consequently,
the selected objects for undersampling are sorted in a descending order based
on the average mass value attributed to non-singleton elements μ̄. Formally, for
a selected object xi:

μ̄xi
=

∑
|A|>1 m(A)

k
, A ∈ 2Ω (9)

where k represents the number of non-singleton focal elements. In other words,
the more ambiguous objects (higher imprecision) are firstly removed until the
size of the corresponding majority class reaches the mean s.

Regarding majority objects whose highest mass is not assigned to a non-
singleton proposition (meta-class), we can safely say that they are not located
in an overlapping region. However, they could be situated far from all classes
(outlier), or in a different class (label noise). To further detect those types of
samples, the maximum plausibility Plmax = maxω∈ΩPl({ω}) is used.

Outliers. This type of objects are located far from any class in the data. Typ-
ically, this could be described as the state of ignorance in our framework. Thus,
objects with maximum plausibility assigned to ω0, i.e., Plmax = Pl({ω0}), are
eliminated from the dataset.

Label Noise. Reasonably, a safe object should have the maximum plausibility
assigned to its label. Otherwise, it could be considered as located in another class,
which could be described as label noise. Following this logic, each object, with
the maximum plausibility affected to another label than its own, is discarded
from the dataset.

3.3 Evidential Adaptive Oversampling

In order to strengthen the presence of minority classes in the dataset, an oversam-
pling phase is added to make the borders of each minority class more robust. Our
objective, in this phase, is to emphasis the borders of each minority class, much
like other oversampling techniques such as BorderlineSMOTE [12]. Another
aspect of our approach is avoiding oversampling noisy examples and outliers.

The previously calculated bbas are used in the phase to smartly pick the
regions where synthetic minority objects should be created. Minority instances
are sorted into three probable categories, similar to the cleaning step: overlap-
ping, label noise, or outlier. If an object does not correspond to one of the three
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categories, it is considered as located in a safe region and is not selected for the
creation of new synthetic objects. The same is valid for label noise and outliers.
Indeed, selecting noisy objects and outliers to generate new samples could lead
to overgeneralization, which is a significant disadvantage of many oversampling
techniques [12].

Our evidential approach to oversampling consists of generating synthetic
minority data near the borderline objects of the minority class. The idea is
to empower the minority class borders in order to avoid the misclassification of
difficult objects. Formally speaking, only objects whose highest mass is commit-
ted towards an overlapping region are selected for oversampling. This procedure
also helps us avoid selecting objects which are committed towards label noise
and outlier. Indeed, selecting those objects would amplify the problems already
present in the dataset.

As mentioned above, the number of generated examples is also controlled
and the size of each minority class should not exceed the mean s. In fact, the
objects in the corresponding minority class are sorted in descending order based
on Eq. 9. The idea behind this is to give priority towards minority objects with
higher uncertainty in order to generate synthetic object in difficult-to-classify
locations.

4 Experimental Study

In this section, we will present firstly the setup of the conducted experiments in
Subsect. 4.1. Lastly, we will show the results and discuss them in Subsect. 4.2.

4.1 Set-up

Datasets. In this work, seven multi-class imbalanced datasets were selected
from the KEEL repository [2]. The details of each dataset are summarized in
Table 1, where we describe the number of samples, number of features, number
of classes, and the class distributions.

Table 1. Description of the imbalanced datasets selected from the KEEL repository.

Datasets Class Distrib. Features Samples #Class

Dermatology 112; 61; 72;49; 52; 20 34 366 6

Wine 71; 59; 48 13 178 3

Pageblocks 492; 33; 8; 12; 3 10 548 5

Thyroid 17; 37; 666 21 720 3

Hayes-roth 51; 51; 30 4 132 3

Contraceptive 629; 511; 333 9 1473 3

Yeast 463; 429; 244; 163; 51; 44; 35; 30; 20; 5 8 1484 10
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Evaluation Metric. We evalute the performance of the compared techniques
multi-class Geometric-Mean measure (G-Mean), which is the standard G-Mean
calculated for each class separately by means of One-v-All strategy. The latter
strategy was also used to compute the Area Under the ROC Curve (AUC), which
is a popular metric to evaluate a model based on how good it separates the
classes. For better assessment of the different performances, statistical analysis
was run using the Wilcoxon’s signed rank tests [28] for the significance level of
α = 0.05.

Baseline Classifier. As a baseline classifier, we use the decision tree classifier,
more specifically CART. For all experiments, the implementation provided in
the scikit-learn machine learning python library [20] was used, with the default
parameters unchanged.

Compared Methods and Parameters. We aimed at comparing our method
against re-sampling approaches specifically proposed for multi-class imbalanced
datasets: Mahalanobis Distance Oversampling (MDO) [1], Static-SMOTE (S-
SMOTE) [9], the basic version of SMOTE paired with the One-Versus-One strat-
egy (SMOTE-MC), in addition to baseline (BL) with no re-sampling performed.

The considered parameters for our proposed method MC-EVHS are: α was
set to 1 as recommended in [17], the tuning parameter t for m({ω0}) was fixed
to 2 to obtain good results in average, and we tested three different values for
β in {0.3, 0.5, 0.7} and selected the most performing one for each dataset, since
the amount of class overlap differs in each case. For the other reference methods,
we used the recommended parameters in their respective original papers.

4.2 Results and Discussion

In order to evaluate whether any of the methods perform consistently better
than the other, we use a 10-fold stratified cross validation. The G-Mean and
AUC results are presented respectively in Table 2 and Table 3. The two tables
indicate that our approach MC-EVHS consistently produced the best results,
in terms of G-Mean and AUC, when applying to these benchmarking datasets.
Our proposal obtains the highest metric in 5 out of 7 datasets for both G-Mean
and AUC. We can notice that all performances deteriorates with the increase
of noise and overlap present in the dataset. However, our approach performed
significantly better in datasets where there are many difficult-to-classify objects,
in a consistent manner. It is safe to say that our approach is robust when applied
on complex datasets.

The results for Wilcoxon’s pairwise test are shown in Table 4. R+ represents
the sum of ranks in favor of MC-EVHS, R−, the sum of ranks in favor of the
reference methods, and exact p-values are calculated for each comparison. All
pairwise comparisons can be considered as statistically significant with a level
of 5% since all p-values are lower than the threshold 0.05. Thus, we can safely
say that our method performed significantly better than MDO, Static-SMOTE,
and SMOTE-MC.
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Table 2. G-Mean results for KEEL datasets using CART.

Datasets BL SMOTE-MC S-SMOTE MDO MC-EVHS

Dermatology 0.921 0.937 0.904 0.931 0.952

Wine 0.887 0.936 0.919 0.887 0.920

Thyroid 0.933 0.919 0.933 0.933 0.981

Hayes-roth 0.804 0.788 0.779 0.804 0.820

Contraceptive 0.442 0.441 0.448 0.442 0.460

Pageblocks 0.492 0.460 0.553 0.492 0.542

Yeast 0.599 0.635 0.642 0.599 0.699

Table 3. AUC results for KEEL datasets using CART.

Datasets BL SMOTE-MC S-SMOTE MDO MC-EVHS

Dermatology 0.917 0.950 0.933 0.947 0.955

Wine 0.888 0.938 0.894 0.888 0.950

Thyroid 0.983 0.983 0.989 0.983 0.985

Hayes-roth 0.796 0.801 0.757 0.796 0.811

Contraceptive 0.470 0.464 0.476 0.470 0.477

Pageblocks 0.852 0.943 0.938 0.952 0.954

Yeast 0.664 0.674 0.715 0.664 0.715

Table 4. Pairwise comparisons of obtained G-Mean and AUC scores based on
Wilcoxon’s signed ranks test.

Comparisons G-Mean AUC

R+ R− p-value R+ R− p-value

MC-EVHS vs BL 28.0 0.0 0.0078125 28.0 0.0 0.0078125

MC-EVHS vs SMOTE-MC 26.0 2.0 0.0234375 28 0.0 0.0078125

MC-EVHS vs S-SMOTE 26.0 2.0 0.0234375 19.0 9.0 0.0373677

MC-EVHS vs MDO 28.0 0.0 0.0078125 28.0 0.0 0.0078125

5 Conclusion

The aim of this paper was to specifically develop an approach for handling multi-
class imbalanced datasets. Our method MC-EVHS can exploit the computed
evidential memberships to better choose the locations for oversampling minority
classes, and improve the selection of objects to eliminate in the undersampling
phase. Evidence theory is an ideal tool in this case to express the different data
difficulties that could be present in the dataset, i.e., class overlap, label noise
and outliers. The conducted experiments confirmed the effectiveness of our pro-
posed method and on the basis of a thorough statistical analysis, we may confirm
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that MC-EVHS performed significantly better than some popular methods. Fur-
ther, the combination of undersampling and oversampling paired with evidential
memberships, can reduce the multi-class imbalance problem, without excessive
use of re-sampling.

As future work, we propose to investigate the wider applicability of MC-
EVHS with very large datasets and extreme levels of imbalance.
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