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Abstract. In the scientific community, the topic of traffic control for promoting
sustainable transportation in freeway networks is a relatively new field of research
that is becoming increasingly relevant. Sustainability is a critical factor in the
design and operation of mobility and traffic systems, which impacts the devel-
opment of freeway traffic control strategies. According to sustainable notions,
freeway traffic controllers should be designed to maximize road capacity, min-
imize vehicle travel delays, and reduce pollution emissions, accidents, and fuel
consumption. The problem is full of uncertainty, there is no way to model the
whole system analytically, thus a fuzzy modeling approach seems to be not only
adequate but necessary. In this study, a Fuzzy Cognitive Map based model (FCM)
and a connected simple Fuzzy Inference System (FIS) are presented, as the tools to
analyze freeway traffic data with the goal of traffic flowmodeling at amacroscopic
level, in order to address congestion-related issues as the core of the sustainability
improvement strategies. Besides presenting a framework of Fuzzy system-based
controllers in freeway traffic, the results of this work indicated that FIS and FCM
are capable of realizing traffic control strategies involving the implementation of
ramp management policies, controlling vehicle movement within the freeway by
mainstream control, and routing vehicles along alternative paths via the execution
of suitable route guidance strategy.

Keywords: FCM · FIS · Congestion prediction · Sustainability · Freeway
networks

1 Introduction

The expanding number of vehicles has exacerbated traffic congestion, resulting in longer
travel times and a decrease in driver confidence in the reliability of traffic services [1].
Moreover, congestion has become a global problem that hinders developing a robust
and sustainable transportation infrastructure system. This problem is mainly caused by
urbanization, expansion of the number of motor vehicles and associated infrastructure,
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and the growth of ride-share and courier services. This latter becoming even more pop-
ular because of the recent pandemic situation. Congestion has been defined based on a
variety of approaches [2]. Congestion in the traffic flow state is most commonly defined
as when demand for travel exceeds the capacity of a road section, e.g., the freeway.
Also, congestion arises when the normal flow of traffic is disrupted by a dense con-
centration of vehicles, resulting in higher travel time [3]. Despite substantial advance-
ments in information and communication technology, it appears that full utilization of
such novel technologies to reduce freeway traffic congestion has not been appropriately
obtained [4]. Nevertheless, the rapid growth of personal vehicles has resulted in conges-
tion on a daily basis, both recurrent and non-recurrent, spanning thousands of kilometers
worldwide. Therefore, congestions significantly restrict accessible infrastructure capac-
ity during rush hours when needed; consequently, delays, high environmental pollution,
and decreased traffic safety occur. Such effects were noted frequently in the event of
non-recurring congestions caused by incidents and freeway maintenance [5].

However, many current infrastructures cannot be modified to satisfy ever-increasing
traffic volume, mainly due to physical and financial limitations. In this context, the
progress of planning and managing tools for traffic systems remains critical in order
to maximize the efficiency of the existing freeway network without requiring signif-
icant infrastructure improvements [6]. Due to a large portion of the freeway network
being incapable of meeting current mobility needs, affecting drivers in the form of
congestion, worsened air pollution, and declining safety, various researches have been
conducted to advance planning and control techniques for freeway traffic networks. For-
mer researchers were primarily concerned with mitigating congestion problems, but the
current global roadmaps for eco-innovation in transportation systems necessitate the
fulfillment of much better policies [7]. This requires a reframing of conventional control
approaches for a more sustainable perspective because then control purposes cover not
only the optimal use of freeway network capacity but the minimization of emission, fuel
consumption, accidents, etc. [6].

Computational Intelligence (CI) methods as nature-inspired techniques have been
used to address multi-criteria issues in real-world settings [8]. Neural networks, evolu-
tionary computation, and fuzzy systems are the main CI based approaches [9]. Although
the majority of existing CI methods to address the problem of vehicle traffic routing
and congestion are based on evolutionary computation [10], fuzzy inference-based tech-
niques are also widely applied in traffic-related problems [11]. However, the abilities of
the CI techniques concerning sustainable freeway traffic control are relatively neglected.
Significant characteristics of sustainable road traffic control mechanisms include traffic
flow, dispersion, emission, consumption, and safety models [12]. Accordingly, in this
study, flow-based modeling at a macroscopic level is considered to analyze freeway traf-
fic data by employing Fuzzy Cognitive Maps (FCM) and Fuzzy Inference System (FIS)
to address congestion-related issues as the core of the sustainability improvement strate-
gies. In addition to providing a generic framework of Fuzzy system-based controllers
in freeway traffic, the extended aim of this study is to contribute to the implementa-
tion of a sustainable and responsive traffic control and management system. The main
contribution of the proposed system is modeling and computing imprecise traffic data
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at the macroscopic level and mitigating harmful economic, social, and environmental
repercussions of congestion in freeway networks.

This work is conducted into five sections. Section 2 introduces traffic flow models
with sustainable objectives. An FIS designed for congestion level prediction and an FCM
developed for traffic flow simulation after introducing the case study are presented in
Sect. 3. In Sect. 4, the results of both fuzzy system-based methods are analyzed, while
some conclusions are drawn in Sect. 5.

2 Traffic Flow Models with Sustainable Objectives

Sustainable mobility encompasses a wide variety of issues, from environmental protec-
tion to social and economic growth. In this perspective, road transportation is critical for
economic growth and social well-being, as it is still the most widely used mode of trans-
port for passengers and commodities. In this view, sustainable transportation aims tomeet
economic and social needs while also providing a sustainable and accessible service that
improves availability and connections for all users. Given the intricacy of the topic, the
scientific community has been investigating transportation sustainability-related issues
for several decades [13]. Among these problems, reducing traffic congestion becomes the
prime common objective of conventional freeway traffic control systems. As previously
highlighted, the expansion of freight and passenger mobility systems has contributed to
the socio-economic growth of a society. However, it has also led to the spreading of con-
gestion and, as a result, a deterioration of the existing mobility service. Such congestion
can manifest itself in various ways, from just forming bottlenecks and increasing travel
times to significantly deteriorating the system and bringing vehicular traffic to a halt.

Additionally, as acknowledged by the research conducted in [14], repeated exposure
to congestion results in an increase in driver irritation, as drivers view the additional time
required to reach their destination as wasted time that could be used for other purposes.
Identifying appropriate traffic control actions is a possible approach for expediting the
procedure towards resolving congestion and, subsequently, a better sustainable mobil-
ity system. Various control measures (Fig. 1) can be employed to manage the flow of
traffic on a freeway network. The primary options include ramp management, i.e., ramp
metering in conjunction with traffic lights at on-ramps; mainstream control, e.g., vari-
able speed limits, keep-lane directives, lane control, and congestion warnings; and route
guiding, i.e., typically, particular indications are displayed at junctions [15].

Fig. 1. Various traffic control strategies [15]
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To design these control actions, an appropriate modeling approach needs to be
defined, not only for describing traffic flow behaviors but also for assessing all
sustainability-connected problems. Figure 2 depicts the primary modeling criteria for
sustainable freeway traffic control mechanisms, among which the traffic flow-based
model is discussed in further detail.

Framework for modeling sustainable 
freeway traffic control 

Traffic Flow 
Models 

Emission 
Models 

Consumption 
Models 

Dispersion 
Models Safety Models

Fig. 2. Modeling framework for sustainable freeway traffic control methods [6]

Traffic flow models were developed in response to the requirement to represent the
dynamic behavior of real-world traffic systems mathematically. Apart from evaluation
and prediction of the system, traffic flow models can be used to define planning actions,
evaluate the effects of new infrastructures or changes to current freeway layouts, and
develop, simulate, and evaluate specific control mechanisms. Beginning with work by
[16] in the 1950s, a diverse spectrum of traffic flow models with varying features and
applications has been developed. Different criteria can be used to classify traffic models
[17]. The commonest classification scheme for traffic flow representation is based on
their level of detail, with macroscopic, microscopic, and mesoscopic models being the
most prevalent.

The most typical and consolidated method of traffic regulation is at the macroscopic
level (road-based control measures, i.e., mainstream control, ramp management). Fur-
ther classification of macroscopic forms is based on the continuous or discrete character
of the features representing time and space. Macroscopic discrete models are the most
commonly used ones for freeway traffic control because their lowdegree of detail and dis-
cretization enable a low computational complexity, making them particularly well suited
for real-time control systems in vast freeway traffic networks. The model’s focus in this
work is on discrete macroscopic characteristics, emphasizing overall vehicle behavior
within hourly time intervals. In addition, instead of employing continuous variables, the
related variables are discretized (both spatially and temporally), i.e., freeways are viewed
as a collection of sections with fixed lengths, and time is correspondingly divided into
distinct intervals [18]. Consequently, these features rely frequently on standard mathe-
matical methodologies, which are regularly incapable of modeling the intricacy of road
traffic characteristics and complex interactions among involved parameters. Moreover,
these parameters are greatly affected by imprecise and uncertain qualities because of
being imposed by constant dynamic behaviors of drivers; therefore, these properties and
their varying levels of vagueness need to be included in mathematical reasoning.
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3 Fuzzy System-Based Controllers in Transportation

As an essential part of computational intelligence, fuzzy systems use methods and tech-
niques comparable to humanobservation, reasoning, and decision-making for computing
under imprecise conditions. Fuzzy systems lay the groundwork for combining subjective
and objective inputs to handle numerical and linguistic data. In the field of transporta-
tion engineering, these systems have been widely used. In [19], the freeway-related
speed is regulated using measurements and expert knowledge data through speed advi-
sory boards. Other researchers introduce current and potential traffic network control
and management issues by surveying some commonly used computational intelligence
paradigms, analyzing their applications in traffic signal control [20]. In order to sea-
port operations, [21] presents a fuzzy system-based method for determining an optimal
investment plan. In [22], a fuzzy system-based lane-changing model that accounts for
and simulates drivers’ socio-demographics was developed to increase the realism of
lane-changing operations in work zones.

Even though fuzzy system methods have been used for various traffic-related topics,
their application for traffic control in the context of sustainable mobility on freeway
networks has been overlooked. However, sustainable mobility is a relatively new area
of research that is gaining increasing attention within the scientific community of traffic
control experts. In continuation, a Fuzzy Inference System (FIS) and a Fuzzy Cognitive
Map (FCM) that were preliminarily designed and developed in [23, 24] respectively, are
employed parallelly (see Fig. 3) for traffic control with sustainable mobility purposes
in freeway networks at a macroscopic level (road-based control measures, e.g., main-
stream control, ramp management). In Fig. 3 a feedback loop is presented as a generic
framework of a supervised vehicular traffic system by the proposed fuzzy system-based
controllers. In this framework, preventive and uncontrollable inputs are two distinct
forms of inputs that influence the characteristics of the system. Preventive inputs are
generated from fuzzy controllers that through preassigned actuators, transmitted to the
freeway network, e.g., in case of mainstream control, preventive inputs generated by FIS
are the number of vehicles that need to be entered in the next segment of the freeway
to avoid breaking down of the flow by predefined means such as VMSs. Meanwhile,
uncontrollable inputs denote unmanipulable external issues that affect the density of the
segment, such as weather-related issues or lane drop caused by accident. Within this
context, performance demands are the controllers’ computational-related requirements,
e.g., time, rule generation, and performancemeasurements are the key indicators through
which evaluating the applicability and efficacy of the control strategy in relation with
sustainability-related objectives such as reducing congestion, emission, and travel time
is possible.

3.1 The Case Study

The proposed FIS and FCM models were developed using data from the Hungarian
freeway networks, wherein their users encounter complicated and dynamic congestion
patterns. Apart from other factors, such as the relatively heavy road traffic resulting
from Hungary’s pivotal placement within Europe’s transit system and corridor network
[25], this is primarily as a result of an increase in the number of registered vehicles in
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Fig. 3. A framework of Fuzzy system-based controllers in freeway traffic

Hungary, which increased by around 25% between 2010 and 2018 [26]. These issues
cause complicated behavior in road traffic, including spatial and temporal changes.
The dataset is derived from the Hungarian e-toll system’s online transaction processing
server, an electronic system maintained by the Hungarian national toll payment services
for the country’s whole network of freeways and primary roads. This system offers
the guidance and support of freeway usage authentication, admittance, levying, and
eventually collecting tolls on conventional road sections tollways.

The dataset contains the following independent variables: the freeway’s name, the
section’s name (identifier), the number of e-toll collected over one week in each section
(segment) of the 212 freeway sections (links), which latter is used as a proportional
criterion of the number of vehicles, the time (per minute), the day, the section’s length,
and the number of lanes in each section. These links contain a total of 2446 distinct
segments. Each segment is between 100 and 18,000 m long. In designing the FIS engine
and input and output variables clustering ranges, the entire dataset and freeway sections
are analyzed; in the developed FCM to keep the model effective and timely, a sample
of 58 segments was chosen, representing the entire set of freeway sections connecting
Budapest to the Austrian border.

The majority of road traffic models are designed to describe the behavior of traffic-
related variables over a wide range of operations, which recognized locations playing
a critical part in the dataset under investigation. This dataset can reflect real-time road
traffic behavior based on location. A sample of connections between three segments A,
B, and C is shown in Fig. 4. The provided dataset is based on time series; therefore,
present traffic circumstances in upstream segments can project future road traffic flow
conditions in downstream segments.

Figure 5 shows the causal linkages and correlations between the segments. The first
digit on the horizontal axis represents the day,whereas the second and third digits indicate
the time (in 24-h format); actual behavior of road traffic flow through time can be seen,
demonstrating how traffic flow in the upstream segment might affect the downstream
segments. The calculated road traffic flow correlation among segments confirms that A
and B correlate 0.03, A andC have a correlation of 0.9, and B andC have a correlation of
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Fig. 4. An example of segments’ connections

0.1; using these values, various conclusions, and correlation analyses can be performed
to assess the behavior patterns and severity of traffic flow in the freeway.

Fig. 5. Causal relations of traffic streamflow on the segments

3.2 The Fuzzy Inference System

Zadeh’s original fuzzy set theory [27] has been later used to address a range of industrial
and scientific concerns in various technology and science domains. The properties of
fuzzy sets, coupled with their possible representation in linguistic terms, provide a com-
putational algorithm for modeling and addressing imprecision and uncertainty-involved
problems. Therefore, this work for detecting traffic congestion introduces a fuzzy infer-
ence model based on the Mamdani algorithm [28] implemented in MATLAB’s Fuzzy
Logic Toolbox R2021a. The developed model is designed to analyze and predict the
severity of congestion in a freeway network. The model fuzzy inference system’s layout
in MATLAB with assigned input and output variables is presented (Fig. 6, for further
details, see [23]).
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Mamdani 
Fuzzy 

Inference 
System            
(MFIS)

Fig. 6. Schematic representation of the proposed FIS

Specifying the model’s input and output parameters is the initial step in developing
a fuzzy inference model. The model will use three input parameters (length, number of
lanes, and flow) and one output parameter (level of congestion). There are four primary
design steps in the proposed Mamdani fuzzy inference algorithm:

1) Determining the numerical ranges for input and output linguistic variables. The
following are the input variables:

• Flow, the number of vehicles passing through a specific segment per time unit,
which time interval equals 60 min,

q = n

T
= n

∑n
i=0i

(1)

where q is the average number of vehicles (n) that pass a segment during a unit
of time (T).

• Length of each segment of freeway networks in kilometers.
• Lane, the number of lanes in each segment.

2) Triangular and trapezoidalmembership functions are used for determining the degree
of matching of the input and output parameters, as they capture and express the
properties of the case study’s fuzzy set. Equations 2 and 3 define these triangular
and trapezoidal membership functions, respectively:

μ�(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x < αmin
x−αmin
β−αmin

, x ∈ (αmin, β)
αmax−x
αmαx−β

, x ∈ (β, αmax)

0, x > αmax

(2)

μ�(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ αmin
x−αmin
β1−αmin

, x ∈ (αmin, β1)
αmax−x
αmαx−β2

, x ∈ (β2, αmax)

0, x ≥ αmax

(3)
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3) If-then fuzzy rules determine the input-output connections. Based on the available
dataset, percentile distribution of the data, and expert assessment, in the case study, a
total of 75 rules were applied. To develop the inference and nonlinear surface model,
these rules were implemented in the MATLAB Fuzzy Rule Editor.

4) Centroid of area as the defuzzification operator was used to detect the matching
action (level of congestion) to be performed. This operator is denoted as follows:

ZCOA = ∫Z μA(z)zdz

∫Z μA(z)dz
(4)

where z is the fuzzy system output and aggregated output membership function is given
as μA(z).

3.3 The Fuzzy Cognitive Map

As a further development of classic cognitive maps [29], Kosko [30] established the
notion of the Fuzzy Cognitive Map (FCM) in order to address limitations associated
with the binary structure of the original cognitive map model. FCMs combine the idea
of cognitivemaps and the concept of fuzzy set initially introduced byZadeh [27],with the
additional idea of signed fuzzy effects, forming a special kind of artificial neural network
or fuzzy bipolar graph. It features fuzzy nodes or concepts (components) that are used to
characterize the non-binary aspects of the modeled system’s concepts and their gradual
intensities of causal relationships. A simple FCM is schematically illustrated in Fig. 7;
linkages and interrelationships between concepts are modeled using weighted arcs.

Fig. 7. A basic schematic illustration of FCM [24]

Determining activation values for the concepts related to weight assignments is
critical in developing the FCM-based road traffic flow model. The presented model
assigns activation values using an inference rule derived from Eqs. (5) and (6) in
Table 1. Thus, the proposed integration places a premium on two critical aspects: not
only may activation values be computed using the values of the connected concepts and
their associated causal weights at each time step, but concepts can also reflect their past
values.

Consequently, every freeway segment is signified by a concept whose value is taken
as the density ρ of segment i of link m, and the weighted arcs are set to a constant value
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Table 1. Involved methods and the proposed inference rule

Author/s Equation/Method Application

[31] ρm,i(t + 1) =
ρm,i(t) + Ts

Lmλm
[qm,i−1(t) − qm,i(t)]

(5) Calculating the density
of segment i in link m at
different time frames

[32] A(t+1)
i = f

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∑

j = 1

i �= j

wjiA
(t)
j + A(t)

i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6) Calculating the value of
concept Ci at time t,
wherein the value of Ci
may represent the
calculated density in the
given segment

[24] ρ
(t+1)
m,i = f

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∑

j = 1

i �= j

ρ
(t)
m,i,jWij + ρ

(t)
m,i,i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7) The proposed inference
rule for predicting the
density of segment i in
link m in t + 1 time step
by considering the
previous density value of
the given segment

based on variables Lmλm as an approximation of the capacity; where Lm denotes the
lengths of the segments of link m , and λm denotes the quantity of the available lanes
in link m. The concepts and the weights are initialized using the aforementioned values.
Following that, the system is allowed to interact, and after each iteration, the new state
vector is given newly generated values. This procedure will be repeated until the model
reaches an equilibrium state by exhibiting a stabilized condition at a fixed numerical
boundary (see further details in [24]).

4 Results and Discussion

In this section, further discussion on the advantages of each fuzzy system-based method
is deliberated. FIS and FCM are developed in connection with traffic control strategies,
i.e., mainstream control, ramp management, route guidance, in freeway networks based
on the data analysis at a macroscopic level. In particular, with considering sustainable
objectives such as the reduction of the traffic emission, and improving road safety.
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4.1 FIS in Congestion Level Prediction

Mainstream control is used to manage the traffic flow of vehicles traveling on the main-
line, often by providing suitable indicators to drivers viaVariableMessage Signs (VMSs)
or traffic lights.At amacroscopic level, thesewidespread controlmeasures aim tohomog-
enize traffic conditions, prevent the formation of recurrent congestion, and reduce the
likelihood of vehicle crashes. An additional purpose is to address the emergence of non-
recurring congestion problems by boosting the system’s efficiency under situations of
low capacity [33]. The proposed FIS aims to improve mobility and safety conditions in
freeways by suggesting or imposing appropriate speed limits displayed utilizing VMSs.
As seen in the preceding section, the level of congestion in each segment is determined
using three types of accessible row data: the number of vehicles in a specific time unit,
the number of lanes, and the length of the provided segment. All of these input data sup-
plied approximations of the segment’s relative capacity tomeet recently formed demand,
which could result in a change in the Level of Congestion (LOC). The collected findings
demonstrate how effective the suggested FIS is at generalizing complicated nonlinear
links between congestion levels and other numerical characteristics of the traffic.

The suggested FIS’s interdependence between input variables and LOC may be
proven by applying a fuzzy control surface in a visual insight view (Fig. 8). It demon-
strates the existence of a correlation between LOC and the input variables. The most
dramatic change occurs in the LOC when the length is between 4 and 6 km, and the
lane count is 2 or 3 (Fig. 8 part I). Additionally, when the length variable is between
approximately 1 and 6 km, an intensive reaction (approximately 50% rise) in the LOC
occurs in each segment with a rising flow rate of more than 200 vehicles (Fig. 8 part II).
Increasing or decreasing the number of lanes has the most significant effect on the LOC.
Segments with 3 or 4 lanes will not encounter severe congestion, but raising of the flow
rate by 200 vehicles in segments with fewer than two lanes can raise the LOC by more
than 50% (Fig. 8 part III).

Fig. 8. Rule surface of LOC for length and lane (I), and length and flow (II), and flow and lane
(III)

The developed FIS in this study can provide a prediction of congestion severity when
input data is inserted. As a sample of the proposed model application from Fig. 9, it can
be observed that if real-time input parameter properties are entered as follows:

Flow rate= 253, the segment has two lanes and 5.16 km length, then the LOCwould
be predicted as 281, which is categorized based on the assigned membership function,
for the level of congestion-free.
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Congestion measurement is critical for optimizing traffic management and control.
The decision-making process that follows in order to create a sustainable transportation
system is mainly dependent on current road traffic patterns. Hence, the method used
to evaluate the severity of congestion should be realistic enough to enable decision-
makers to carry out the necessary steps to alleviate congestion and to build quickly a
resilient and sustainable transportation system. Therefore, transportation engineers have
identified specific characteristics that are frequently required in a congestion measure
[34, 35]. A practical congestion assessment ought to have mainly the following: non-
technical individuals should be able to understand and interpret the outcomes of the
analysis straightforwardly, give a constant range of possible values, be capable of being
utilized for predictive and statistical analysis, and be universally applicable to a variety
of road types. Besides all these characteristics, as opposed to conventional methods
of traffic detection, the proposed mechanism has a sophisticated discipline known as
approximate reasoning [36, 37] through which exact traffic connected properties (e.g.,
geometric features including junctions, bifurcations, off-ramps, and on-ramps) that can
be assigned in both microscopic and mesoscopic types of traffic modeling are sacrificed,
to reach significantly low time and computational efforts.

Fig. 9. A sample of the lookup diagram of the fuzzy rules, when: Flow = 253, Length = 5.16,
Lane = 2, and the predicted LOC is 281

4.2 FCM in Traffic Flow Simulation

Complex road traffic flow processes are characterized by a variety of interdependent
and interrelated elements. Therefore, FCM as a computational intelligence method is
presented to address networks of freeways included imprecision and uncertainty. These
uncertainties from the macroscopic modeling point of view are mainly connected with
road traffic flow, density, and approximate capacity associated variables that can increase
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the probability of a breakdown and shift the free flow state of traffic to congested flow
[18]. In the proposed FCM, segments of each link (freeway) are assigned as the con-
cepts (nodes), where calculated density defines their values. In Fig. 10, a geographical
representation of the selected segments is presented.

Fig. 10. Geographical locations of the selected segments

In Fig. 11, the FCM is illustrated with initialized weights and concepts. FCM begins
to analyze the performance of the process. In every running step of the FCM, the state
of concepts is computed on the basis of Eq. 7 in Table 1. Greater activation values in the
concepts (segments) are indicated by larger nodes in the modeled FCM; they represent
greater density and show stronger activation values that cause a greater impact on the
network. Three alternative freeways that can be chosen from Budapest to the Austrian
border are illustrated by S1, S2, and S3 and their 58 nodes in the network. S1 includes
nine segments that end at segment ES1 and combines with one of the S2 segments; S3,

Fig. 11. FCM model of the road traffic flow
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as the most chosen route, also has close interaction with the segments in S2, which both
end at segment E as the last Hungarian segment before entering Austrian territory.

To see how alteration in variables properties (i.e., change in the number of lanes or
altering in the flow rate) affect system behavior, the FCM traffic flow simulation of the
initial states is shown in Table 2 wherein the road segments are defined by nodes, e.g.,
S3a, S3b,… and the calculated values indicate the segments’ density. This model offers
multiple contributions through which the most common traffic control approaches, such
as ramp management and route guiding, can be implemented. Accordingly, as one of
the common causes of severe LOC, i.e., based on Fig. 8 part III, a lane-drop scenario
is simulated in a two-lane segment (S3h). However, one of the lanes is reduced, the
density declined just marginally, obviously indicating that the remaining lane’s density
rose considerably and reached severe LOC. In comparison to the initial states, changing
in the density values among connected segments, i.e., S3g and S3i can be seen in Table
3, wherein the density of S3i is dropped by 11% and subsequently slight decrease in S3j,
while in the upstream side S3g and S3f are escalated by 16% and 8% respectively.

Table 2. Initial simulation result of the traffic flow density in the chosen network

Step S3 S3a S3b S3c S3d S3e S3f S3g S3h S3i S3j S3k S3l S3m S3n

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

2 0.67 0.71 0.73 0.65 0.71 0.74 0.73 0.74 0.64 0.68 0.80 0.70 0.76 0.66 0.67

3 0.67 0.72 0.76 0.63 0.72 0.77 0.76 0.78 0.63 0.68 0.85 0.72 0.79 0.66 0.66

4 0.67 0.72 0.77 0.63 0.72 0.78 0.77 0.79 0.63 0.67 0.85 0.73 0.80 0.67 0.65

5 0.67 0.72 0.77 0.62 0.72 0.78 0.77 0.79 0.63 0.66 0.85 0.73 0.80 0.67 0.65

6 0.67 0.72 0.77 0.62 0.72 0.78 0.77 0.79 0.63 0.66 0.85 0.73 0.80 0.67 0.65

7 0.67 0.72 0.77 0.62 0.72 0.78 0.77 0.79 0.63 0.66 0.85 0.73 0.80 0.67 0.65

Table 3. Traffic flow density in one lane reduction scenario

Step S3 S3a S3b S3c S3d S3e S3f S3g S3h S3i S3j S3k S3l S3m S3n

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

2 0.67 0.71 0.73 0.65 0.71 0.74 0.74 0.74 0.62 0.68 0.80 0.70 0.76 0.66 0.67

3 0.67 0.72 0.76 0.63 0.72 0.77 0.78 0.78 0.61 0.68 0.85 0.72 0.79 0.66 0.66

4 0.67 0.72 0.77 0.63 0.72 0.77 0.79 0.79 0.61 0.67 0.83 0.73 0.80 0.67 0.65

5 0.67 0.72 0.77 0.62 0.72 0.79 0.84 0.84 0.61 0.64 0.83 0.73 0.80 0.67 0.65

6 0.67 0.72 0.77 0.62 0.72 0.79 0.84 0.94 0.63 0.62 0.82 0.73 0.80 0.67 0.65

7 0.67 0.72 0.77 0.62 0.72 0.79 0.84 0.94 0.63 0.59 0.82 0.73 0.80 0.67 0.65
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The simulations demonstrated the FCM’s capabilities as a feasible computational
intelligence method, not only at the macroscopic modeling level to investigate the over-
all behavior of road traffic flow but also to capture the involved features in terms of
examining and monitoring meaningful alterations within freeway networks. These char-
acteristics offer valuable information and can contribute to beneficial results related to
the traffic control strategies with sustainable objectives, such as prediction and surveil-
lance of the road traffic flow state in complex networks for reducing traffic emissions
and improving road safety; the estimation of the influence of new road constructions or
comparing the impacts of various development scenarios for planning purposes; predict-
ing the effects of road capacity alteration, e.g., in maintenance purposes; and detecting
dynamic congestion patterns and prone error locations for optimizing rampmanagement
and route guidance toward eco-routing [10].

Additionally, as opposed to the obsolete traffic control with fixed strategies that were
derived from historical data, current methods, regardless of their unique characteristics,
are capable of functioning online based on real-time qualities originating from the road
network. The presented FIS and FCM are also able to provide analyses and predictions
to feed these traffic control strategies, e.g., mainstream control, ramp management,
and route guidance. Moreover, in the classification of the traffic controllers, the local
strategies are in the basis of localized data generated by sensors located near the related
actuators, while in the global control mechanism, the collected segments data is not
considered independently but as an input to analyze the entire freeways network state
[15]. Therefore, in the illustrated framework (see Fig. 3), FIS can be proposed as a local
traffic controller that can be applied to mainstream control mechanisms and FCM as a
global one that is able to compute the dynamics of the whole system in favor of ramp
metering and route guiding.

5 Conclusion

The concept of incorporating sustainability considerations into the design of a traffic con-
troller is relatively recent and emerged within the scientific community of traffic control
engineers. Moreover, the rapid advancement of road traffic flow modeling necessitates
special attention on evaluating the capabilities of various computational intelligence
techniques in this field. Therefore, this work proposed FIS and FCM as two compu-
tational intelligence methods in analyzing freeway traffic data concerning traffic flow
modeling at the macroscopic level for addressing congestion-related issues as the core
of the sustainability improvement strategies. While there is no certainty that congestion
can be eliminated altogether due to the world’s expanding population, these methods are
presented to alleviate congestion to a reasonable degree.

This research approach introduced new applications of FIS and FCM to modeling
complex freeway networks, with a particular emphasis on practical vehicular traffic
congestion control strategies, such as ramp management, mainstream control, and route
guidance, with the primary goal of increasing freeway safety and emission reduction.
Additionally, by using these methodologies as the primary reason for developing and
managing transportation systems, sustainability-related objectives can be improved. It
is possible that the FIS and FCM models cannot capture all of the contributions of a
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macroscopic traffic flow control strategy, according to the problem’s complexity, and
as such the derived findings may vary from the real state of the freeway traffic. Any
estimation technique, however, will inherently include a trade-off between model per-
formance and operating time. In this perspective, methods based on fuzzy systems offer
significant advantages in traffic control measures. Additionally, the study’s dataset does
not include all segments that potentially influence road traffic behavior, but only those
that include the e-toll network. It is important to note that by incorporating additional
mapping and data, the resolution of the representation of freeway networks can be sig-
nificantly increased, resulting in more accurate but also more complex FCM models
with refined simulation results. Therefore, as a next phase in the research, it would be
highly important to take into account the entire involved segments in the freeway net-
works with a particular emphasis on bottleneck locations, as well as combining FCM
with other algorithms such as Dijkstra to develop a real-time route guidance generation
method.
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