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Abstract. The implementation of intelligent systems in the processes
brings the industries of the mining and metallurgy sectors closer to the
context of Industry 4.0 and provides significant improvements, especially
in the production and consumption of raw materials and internal prod-
ucts. In this work, we propose an Artificial Intelligence System in Deep
Learning with Edge Computing to recognize the quasi-particles of the
Hybrid Pelletized Sinter (HPS) process in the steel industry. We train our
model with the aXeleRate tool using the Keras-Tensorflow framework
and MobileNet architecture. We then tested the model in an embed-
ded system using the SIPEED MaiX Dock board. The model validation
results were 98.60% precision and 100.00% recall. Bench-scale test results
were 100.00% precision and 70.00% recall. The results were promising
and indicate the feasibility of the proposal.

Keywords: Artificial intelligence + AIoT + Edge computing

1 Introduction

The mining-metallurgical sector is one of the most traditional productive areas
and in recent years, innovation and technology have developed new methods of
production and development [2,12,19,24,27,28]. Thus, innovative projects are
essential for the modernization of these processes, as they are of high economic
interest. In the steel industry, one of the main process parameters is the particle
size distribution of materials [35]. This concept means the size distribution of
the present particles, which allows their employability in the productive process.

When transiting through the production plant, engineers and operators need
to know the granulometric distribution continually. This information is essential
as a process parameter or for making decisions under critical conditions. Along
the steel industry process, the materials are transported using conveyor belts
in many stages. These granulometric distribution changes can jeopardize the
process if they are not within the required specifications [9].
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Thus, the implementation of an algorithm in an embedded system that clas-
sifies quasi-particles according to their particle size distribution provides a way
to solve this problem and improve the production process. Quasi-particles are
micro agglomerates of materials formed in the HPS (Hybrid Pelletized Sinter)
process [9,16]. We divided this problem into two steps: i) quickly identify the
presence of a tray containing a sample of quasi-particles in the industrial sam-
pler; ii) perform the particle size distribution of the material present in the
tray. Therefore, the objective of this work is to propose the implementation of
deep learning (DL) algorithm embedded in an edge computing device to classify
images according to the presence or absence of quasi-particles samples in a tray,
i.e., step i) of this process.

In this first conjecture, the user must photograph a sample of the material on
the conveyor belt. The result is accessible through the display and also through a
wireless network connection, which aims to classify that image as a quasi-particle
sample with or without quasi-particle in the tray, or if there is another object
causing interference. The use of artificial intelligence in edge computing devices
is still an open problem, and the use of edge Al devices allows the expansion of
deep learning to the IoT (Internet of Things) [5]. The implementation of an edge
computing solution avoids a high throughput of data transmission. This trend
takes the information and communication resources to the edge, with faster
services and responses to the end-user [5].

The fast response to detected conditions enables a better process control. For
instance, a granulometry pattern above the expected is an indicator of elevated
moisture, which can cause clogging in the material transfer chutes between the
conveyor belts. This event can paralyze the whole production process, exposing
the operators to risk conditions and losing productivity.

In the industry’s routine, this process can take a long time and does not guar-
antee quality. In many cases, this process takes substantial time changes, making
it impossible to enable quick responses due to changes in production variables. In
current applications, checking the particle size distribution of certain materials
takes place through a manual process. In this task, an operator collects a sample
of material from the production process and manually analyzes it with the aid
of a series of sieves in a laboratory to obtain the particle size distribution. This
procedure takes place several times a day, and the information obtained is used
as a parameter for making decisions about the process.

Thus, manual analysis motivated the development of a DL-based device to
detect the quasi-particle sample. We also incorporated this algorithm into a
specialized edge computing device to detect quasi-particles from the Hybrid Pel-
letized Sinter (HPS) steelmaking process.

This work consists of the extended version of the paper [21] published in the
ICEIS 2021 conference proceedings. Here, we organized the work to facilitate
the reader’s understanding of the methodological approach. As this work is an
extended version, we analyzed further related works, creating a solid theoretical
framework for our approach.

This paper is organized as follows: In Sect. 2, we review the literature and
some ground concepts of this topic. Section 3 presents some of state-of the-art
the related work. In Sect. 4, we present a description of the appliance features,
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including the Deep Learning algorithm and the specialized hardware. In Sect. 5,
we explain the employed experimental methodology. The results are presented
in Sect. 6, and we present further discussions in Sect. 7.

2 Theoritical References

In this section, we present some theoretical references about the concepts applied
to develop the proposed solution. This proposal’s main element is a Convolu-
tional Neural Network (CNN) applied to an edge computing solution. The pro-
posal relates to the usage of an application in images of dense scenes. Thus, it
is necessary to discuss both the issues related to the targeted problem itself and
the matters related to the Edge Al concept.

Some of the problems faced in this matter are similar to others presented in
the literature. For instance, we observed similar features from this work in preci-
sion agriculture appliances [11,25], and even in counting people in agglomeration
[32]. Among the presented challenges, we enforce some aspects:

— Occlusion - often quasi-particles overlap, causing partial occlusion;

— Complex background - homogeneity in the shape, texture, or color of the
background and objects;

— Rotation - images are often rotated at different angles;

— Lighting changes - images are exposed to different light levels during the day;

— Image resolution and noise - limits detection of small objects.

2.1 Deep Learning in Dense Scenes

Lecun et al. [14] state that Deep Learning (DL) is a set of techniques from
the Machine Learning universe, often referred to as Artificial Intelligence. These
algorithms’ formalization comes from the Artificial Neural Networks (ANN),
containing multiple hidden layers and massive training datasets. According to
Zhang et al. [32], DL algorithms represent state of the art on Machine Learning
techniques. Nonetheless, the detection of objects in dense scenes is particularly
challenging.

Zhang et al. [32] separate dense scenes into two different classes: quantity
dense scenes and internally dense scenes. In the first one, there is a large number
of objects of interest in the scene. The second one happens when the objects have
dense inner attributes. In both cases, labeling the data is a significant challenge,
as the classification is affected by noise and resolution on small objects detection.
According to these authors, the best DL architectures for classification in dense
scenes are VGGNet, GoogLeNet, ResNet. Also, the best architecture for object
detection are DetectNet and YOLO.

Gao et al. [7] analyzed 220 related works to understand the crowd counting
process systematically. These authors point out that the main challenge is the
detection of small objects in a scene. This trait happens as in crowd scenes,
the individuals’ heads are often too small. According to the authors, the most
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successful techniques for counting crowds based on detection are SSD, YOLO,
and RCNNs. Although these architectures had success in sparse scenes, these
networks had unsatisfactory results given scenes with occlusion, disorder, and
dense background. Furthermore, SSD is not efficient with small objects on the
images, as its intermediate layers resource mapping may dilute the detected
object’s information. For the R-CNN, Zhou et al. [33] proposed an improvement
based on PCA Jittering to enhance the detection of small objects on the Faster
R-CNN architecture.

The presented work display some of the challenges in developing Convolu-
tional Neural Networks (CNNs) capable of analyzing dense scenes with occluded
objects. This issue is more significant when the dataset complexity increases.
Developers often follow a synthetic database procedure to solve this problem,
with further validation with actual real data. The obtained results are usu-
ally good, except if there is a substantial deviation from the synthetic and real
datasets [32].

2.2 Edge AI Concepts

Another critical aspect of the solution is the algorithm persistence in edge com-
puting applications. The evolution of embedded computing technologies raises
the challenge of providing machine learning as services in edge applications with
quality. Thus, the creation of reduced models and specialized hardware create
the concept of an “Edge AI” [31]. This novel perspective targets using machine
learning in edge devices with independence from cloud applications.

Nonetheless, developing machine learning and especially DL models for edge
computing devices is a challenging task. Deep Neural Networks (DNNs) are gen-
erally computationally intensive models and require high computational power
[15]. Moving this application to the cloud requires high data throughput through
a network infrastructure. The growing number of devices can easily exceed net-
work capabilities [17].

Zhou et al. [34] state that there are some issues to solve for enabling the Edge
AT development. Among these challenges, we enforce:

— Programming and Software Platforms;
— Resource-Friendly Edge AT;
— Computational-Aware Techniques.

Another aspect to be considered when developing new edge computing solu-
tions is hardware restrictions. As mentioned earlier, most DL architectures
require high computational performance. One result of this problem is the inte-
gration of dedicated hardware to optimize Edge AT solutions [4,10,20,22].

The approach and recent availability of Edge AI solutions have contributed
to reconciling the concepts of edge computing and Al, and allow critical com-
puting and latency Al-based applications to run in real-time [1,30]. The authors
consider that edge and cloud are complementary: in the division of the AI life-
cycle workflow, we can deploy model training in the cloud and perform inference
at the edge.
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Cornetta and Touhafi [4] presented a review of the most popular machine
learning algorithms to run on resource-constrained embedded devices. The deep
learning techniques used in IoT devices were Artificial Neural Networks (ANN)
and Recurrent Neural Networks (RNN) and, for the authors, solutions based on
TensorflowLite are not yet fully implementable in embedded devices.

The work by Liu et al. [18] proposed a multisensor data anomaly detection
method based on edge computing in underground mining. In general, IoT tech-
nology is widely used in underground mining construction safety monitoring and
early warning, however, some problems are associated with data anomalies, such
as 1) sensor failures, ii) environmental changes, and; iii) wireless data interfer-
ence. Other problems are associated with cloud processing: i) amount of invalid
and redundant data transmission that wastes limited network resources, ii) some
sensor data that has real-time requirements for detecting anomalies that may
be delayed, iii) latency to the cloud can be prohibitive for delay-sensitive appli-
cations and, iv) the transfer of sensitive data retrieved by IoT devices can raise
privacy issues [1,18,30].

Lin et al. [17] implemented a YOLOv3-based pavement defect detection sys-
tem in an embedded Xilinx ZCU104 system. The authors compacted the model
without significantly reducing accuracy by the quantization method, reducing
the size of the original model by 23% and comparing performance on the Xilinx
ZCU104 with an embedded Nvidia TX2 system. The running speed of Xilinx
7ZCU104 was 27.4 FPS, which met the requirements of low power consumption
and real-time response.

Cob-Parro et al. [3] presented an intelligent video surveillance system to
detect, count, and track people in real-time on an embedded hardware system
with vision processing units (VPUs) modules on the UpSquared2 embedded
platform and MobileNet-SSD architecture for the task. The model achieved an
mAP (Mean Average Precision) of 72.7%. Edge Al performance on CPU was
13.93 ms while on VPU it was 8.71 ms.

3 Related Work

Given the importance of the iron ore agglomeration stage for the later stages
of the process, several studies have been carried out to control and monitor the
variables that interfere in the sintering and pelletizing processes.

Dias [6] proposed a granulometric control system for iron ore pellets by con-
trolling the water injection in the pellet drum, which, until then, was done man-
ually by the operators according to the need of the process. The results showed
that water addition tends to increase the pellets’ granulometry and that the
control tends to homogenize the pellets. However, for the controlled variable to
present stabilization, it would be necessary to study other parameters, such as
water saturation due to pellet recirculation outside the required particle size
range.

Studies on the influence of raw materials in the cold agglomeration pro-
cess of the HPS process were also studied, as shown in Januzzi [9]. The work
had the objective to characterize the raw materials, study the contribution of
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each of them in the cold agglomeration process, and adjust the parameters to
improve the process’s performance. One of the measures taken was the changes
in the granulometric distribution curves of serpentinite, limestone, and man-
ganese ore, which promoted an improvement in the quasi-particles’ average size.
Consequently, this measure causes “a positive effect on the suction pressure in
the sinter allowing the increase of layer height, gain in productivity and sin-
ter production” [9], once again demonstrating the importance of granulometric
distribution in the iron ore agglomeration process.

For the case where the manual control depended on the area operators to
obtain the adequate granulometry of the raw pellet, Passos et al. [23] developed
its work in the implementation of an advanced control system (SCAP) intending
to control the granulometry of the pellets raw materials acting on the speed and
feeding of the disks. The results showed the stability of the production process,
mainly in controlling the pellets’ granulometric distribution, the stability of the
dosage of inputs, and the hardening furnace’s increased permeability.

Souza [29] proposed the use of deep learning algorithms to identify iron
ore particles and measure their linear dimensions from images obtained in the
primary crushing operation. The authors evaluated the SSD, Faster R-CNN,
YOLOv3, and U-NET algorithms. The particles from the bench images con-
sisted of 4.8 mm to 19 mm fragments and the fragments from the industrial area
video images had dimensions greater than 200 mm. The results obtained in the
training of SSD, Faster R-CNN, and YOLOv3 networks showed low accuracy
and low assertiveness index. The U-NET network had an accuracy of 91.3%.
From the generated masks, the authors developed a routine with the OpenCV
computer vision library to generate a bounding box over the mask and supply
the side length of the box to measure the object.

Other works aimed to obtain the particle size distribution by images in iron
ore agglomeration processes. For example, to characterize ultra-fine materials
and medium-sized consumption, Gontijo [8] performed prior image processing
in a Scanning Electron Microscope (SEM). The image particles were digitized,
scaled in software, classified by color into size ranges (intervals), and, after clas-
sification, generated graphs of particle size distributions.

The work by Santos et al. [26] proposed an automatic image analysis routine
to identify the sintering quasi-particles and classify them into three classes, calcu-
late the fraction of the class area, circularity, and thickness of the adherent layer,
and, finally, quantify the mineral phases present in the quasi-particle nuclei. The
authors used samples produced in a pilot sinter plant, which were classified into
the following size ranges: >4.76 mm, 2.83-4.76 mm, and 1.00-2.83 mm, and the
size fraction of >1.0 mm was discarded.

Images were acquired by light reflected light microscopy with approximately
50x magnification and resolution of 2.05 wm/pixel. For digital image processing
and analysis, the authors used the Fiji image processing package. With the com-
puter used, the developed routine was able to process a 4.76 mm grain image in
about 6 min, while a 1.00 mm grain image took about 18 min due to the increased
number of particles.
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In the final result, the authors considered that the developed routine provided
good performance and speed, compared to human performance, as the system
was able to process 1.00mm samples in about 20 min, while an operator can
take up to 6h. Santos et al. (2019) concluded the work considering a future
work with the use of Convolutional Neural Networks (CNN) for segmentation,
as “CNNs can achieve high efficiency in classification and segmentation problems,
combining and sometimes exceeding performance human, as they are capable of
processing highly abstract resources” [26].

4 Edge AI Hardware

In this work, we decided to implement the solution using the SIPEED MAiX
Dock board, displayed in Fig.1. Some performance numbers of the board are
shown in Table 1. The work of Klippel et al. [13] demonstrates the comparison
between SIPEED MaiX BiT, Raspberry Pi 3, and Jetson Nvidia Nano cards.
The authors implemented the SIPEED MaiX BiT for the detection of tears in
conveyor belts. The SIPEED MaiX Dock board is similar to the one used in this
work, and we follow the methodology proposed by Klippel et al. [13].

Fig. 1. SiPEED M1 Dock - demonstration [21].

Table 1. Embedded platform performance numbers [21].

Parameter Characteristics

CPU 64-bit RISC-v processor and core
Chipset K210 - RISC -V

Image recognition | qvg at 60 fps/vg at 30 fps

Clock (GHz) 0.40

AT resources KPU

OS/Language uPython

Dimensions (mm) |60 x 43 x 5

This platform has an onboard device with artificial intelligence (AI) hardware
acceleration. MAiX is the module explicitly developed for SIPEED, designed to
perform Al. It offers high performance considering a small physical and energy
area, allowing the implantation of high precision Al and a competitive price.
The main advantages of this device are:
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— Complete hardware and software infrastructure to facilitate the deployment
of Al-based solutions;

— Good performance, small size, low energy consumption, and low cost, which
allows a broad deployment of high quality AI on board;

— It can be used for an increasing number of industrial use cases, such as pre-
dictive maintenance, anomaly detection, machine vision, robotics, and voice
recognition.

The SiIPEED MAiX acts as the master controller, and the hardware has a
KPU K210. MaixPy is a framework designed for AloT programming, prepare
on an AloT K210 chip, and based on the Micropython syntax. MicroPython is a
lean and efficient implementation of the Python 3 programming language, which
includes a small subset of the standard Python library, and is optimized to run
on microcontrollers and in restricted environments, facilitating programming on
the K210 hardware. MAiX supports a fixed-point model that a conventional
training structure trains according to specific restriction rules and has a model
compiler to compile models in its model format. It is compatible with network
architectures Tiny-Yolo and MobileNet-v1.

The Kendryte K210 is a dual-core RISCV64 SoC with Al capability that has
machine vision capabilities and can perform low energy consumption Convolu-
tional Neural Networks (CNNs) calculations, with features for object detection,
image classification, detection and face recognition, obtaining target size and
coordinates in real-time and obtaining the type of target detected in real-time.
The KPU is a generalpurpose neural network processor with internal convolu-
tion, normalization, activation, and pooling operations. According to the manu-
facturer, it also has the following characteristics:

— Supports the fixed-point model that the conventional training structure trains
according to specific restriction rules;

— There is no direct limit on the number of network layers, and each layer of
the convolutional neural network parameters can be configured separately,
including the number of input and output channels, the width of the input
and output line, and the height of the column;

— Support for 1 x 1 and 3 x 3 convolution kernels;

— Support for any form of activation function;

— The maximum size of the supported neural network parameter for real-time
work is from 5 MiB to 5.9 MiB.

This work’s main contribution is the implementation of a deep learning

method on an edge device for application aimed at the industrial environment,
including practical tests on embedded hardware.

5 Experimental Metodology

This section assesses the experimental methodology used to validate the appli-
ance, given the targeted hardware. For this matter, we present the employed
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dataset, training process, and evaluation metrics. We test a pilot application
classifier’s performance and validate the model’s transfer into the desired hard-
ware.

5.1 Dataset

We did not find any available database of iron ore quasi-particles or micro-
agglomerates. Therefore, one of our contributions was establishing a method to
elaborate a dataset with real images of an industrial environment. The images
used in the classifier training were elaborated from quasi-base reals in the indus-
trial environment, and synthetic images were created on a bench scale. In the
production process, a sampler removed several of the quasi-particles in trays
with the help of an operator. These samples are taken to a nearby environment
and photographed following a pre-established pattern.

We generated a dataset with 1368 images to create a pilot appliance, contain-
ing 1140 for training and 228 for validation (80/20 ratio). The dataset has three
different classes: quasi-particle, non-category, and empty. We also added 343 syn-
thetic images produced on the benchscale for the quasi-particle class training,
as presented in Fig.2. These images were generated to avoid the problems of
overlapping and occlusion of the particles. We also added another 343 images of
samples of quasi-particles carried out in a company in the mining-metallurgical
sector with real data to contribute to the quasi-particle training dataset.

(b)

Fig. 2. Images of quasi-particles trays (main class), in: a) real industrial image; b)
synthetic image produced on a bench scale.
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5.2 Training the Deep Learning Model

We conducted the training of the deep learning model on the Google Collabo-
ratory platform. This process was carried out using the aXeleRate! tool. This
application is a tool for training classification and detection models developed
using the Keras/Tensorflow framework.

To perform the desired task, we chose to use the MobileNet as CNN architec-
ture. We used version 0.75 MobileNet-224 v1, configured as a classifier, with 224
inputs, two layers fully connected with 100 and 50 neurons, and a dropout of 0.5.
The training session held thirty epochs, and the learning rate adopted was 0.001.
The initial weights of the model were loaded, considering the previous training
with the ImageNet dataset. Also, data augmentation was performed during the
training.

5.3 Edge AI Construction

For training, we implemented the aXeleRaTe framework, a Keras based
framework for AI on the Edge, to run computer vision applications (image classi-
fication, object detection, semantic segmentation) on edge devices with hardware
acceleration. AXeleRate simplifies the training and conversion of computer vision
models and is optimized for workflow on the local machine and Google Colab.
Supports conversion of trained model to: .kmodel (K210) and .t¢flite formats.

Figure 3 displays the process of using aXeleRate, with the main steps indi-
cated by the blue circles. In (1), the dataset is loaded from Google Drive for
training in the Keras-Tensorflow framework. Then (2), the model is delivered in

B ~ EENE ay (5]
At Es = "
EERE rEru@ mp model. tflite mp @ aly
P~ [ AP 6
1 O O P 5 R & |-
%EE%E%SS(‘-’% Tensor 9 model.kmodel
2 R 3 ) 1o S S T mmmmm) model.h5 Ol'
s e P -
A T S
dataset training compile the model
o
L v 4
Google Drive o
oXeleRate
o2
Jupyter
S’

Fig. 3. Training and compilation with aXeleRate [21].

! https://github.com/ATWintermuteAI/aXeleRate.
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the .h5 format for classification and returns to Tensorflow (3) to be converted
into the .tflite format (4). Thus, it is delivered to nncase (5) to be compiled into
the format .kmodel (6), which is executed by KPU (7).

We assembled a SiPEED Dock plate for the execution of the bench-scale
model with synthetic images. For this test, we used two Python scripts used for
the tests. The first to capture photos with 224 x 224 resolution and storage on
the SD card. The second to test the model from the storage data set previously
stored on the SD card.

5.4 Evaluation Metrics

At first, the classification model’s performance was calculated using the Con-
fusion Matrix, which shows the classification frequencies for each class of the
model. From this data, we extract the parameters: precision, given by 1, recall
given by 2 and FI, given by 3. These parameters define how well the model
worked, how good the model is for predicting positives, and the balance between
the precision and the recall of the model.

For this matter, we followed the presented definitions: TP is a true-positive
sample, FP is a false-positive sample, TN is a true-negative sample, and FN is a
false-negative. TP occurs when the main class prediction is correct, and FP when
it is mispredicted. TN occurs when the alternative class prediction is correct and
FN when it is mispredicted.

N TP 0
recision = —————————
p TP+ FP
TP
P — 2
T TP FN @)

P19 precision * recall

precision + recall

6 Results

We present here the obtained results from the application of this procedure. Our
preliminary results indicate the system feasibility and show the constraints to
transport the model into the Edge Al device.

6.1 Training Model Performance

The training elapsed time was 54 min, reaching an accuracy of 98.60%. Figure 4
displays the evolution of the accuracy throughout the training stage. As displayed
in the graph, the model’s training converged in just ten iterations, indicating that
the model had no great difficulty in differentiating the classes of images present
in the database.
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Fig. 4. Metrics for the training process [21].

To validate the model, we created a dataset with 228 images (Table 2). These
frames were divided into three classes, containing 76 images each class: quasi-
particle, non-category, and empty (empty refers to the same tray, but without
the presence of quasiparticles). Table 3 displays the confusion matrix considering
quasi-particles as the main class and Table 4 shows the performance indicators.

Table 2. Distribution of images in the dataset by class.

Dataset Class Number of Source Total number
images per class of images
Validation set | quase_particle | 76 38 real 228

38 synthetic

non_category | 76
Empty 76

Table 3. Confusion matrix of model - validation set [21].

Predict
quase_particle | non_categpry | Empty
Real | quase_particle | 76 0 0
non_category |1 74 1
Empty 0 0 76
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Table 4. Trained model performance at validation set [21].

Indicator | Value
Precision | 98,60%
Recall 100%
F1 99,34%

The model precision was 98.60%. The application displayed problems in clas-
sifying some uncategorized images with quasi-particle and empty trays. The data
suggest a good recall, which means that the model had a small error rate in
the quasi-particles’ classification when they were indeed quasi-particles. These
results demonstrate the feasibility of the recognition process using the proposed
dataset. This value enabled a balance in the F1 score.

6.2 Model Performance at Edge AI

We also tested the performance of the classifier in the edge computing candidate
platform. After training, we loaded the model into the SIPEED Maix Dock for
testing, as showed in Fig. 5. For this matter, we tested the system using images
from the three classes (quasi-particle, non-category, and empty). Table 5 displays
the confusion matrix and Table 6 shows the performance indicators.

In contrast to the value achieved in the validation set, or recall in the test
set dropped to 70%, evaluated from the SIPEED embedded system. This result
indicates that the model had to test positively for image simulations similar
to industrial environment images, as specified in Figs.6 and 7, although for
synthetic images with spaced particles there was no difficulty, as defined in Fig. 8.

The work of Klippel et al. [13] implemented the SIPEED MaiX BiT to detect
failures in conveyor belts. Our results for training performance are similar to the
results obtained by Klippel et al. In the test performance, we obtained a lower
recall, as shown.

The recall value in the tests does not match the results obtained in the tests
carried out by Klippel et al. [13] To justify the value of 70%, we understand that
the data set can be improved to only real images in future analyses. Also, there
is a possibility of overfitting during training. In order to verify this hypothesis,
we intend to increase the database in future works.
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Fig. 5. SIPEED MaiX Dock - test demonstration [21].

Table 5. Confusion matrix of model - test set [21].

Predict
quase_particle | non_categpry | Empty
Real | quase_particle | 7 2 1
non_category |0 9 1
Empty 0 0 10

Table 6. Trained model performance at test set [21].

These data demonstrate the difficulty of reconciling results obtained on a

Indicator

Value

Precision

100,00%

Recall

70,00%

F1

82,35%

bench scale with results close to real environments.
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Fig. 6. Example of recognition of quasi-particles simulating sampling in an industrial
environment during the test using SIPEED [21].

Fig. 7. Example of error in recognizing quasi-particles simulating sampling in an indus-
trial environment during the test using SIPEED [21].
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Fig. 8. Example of recognition of quasi-particles with sample developed on a bench
scale during the test using SIPEED [21].

7 Conclusion

In this work, we implement the first stage of the pipeline to perform the recog-
nition of quasi-particle images, with the identification of the sample through
images with Deep Learning (DL). The objective was to classify trays containing
quasi-particles, allowing them to differentiate themselves from other objects and
even from empty trays. We train our model for and embed it to perform real-time
inference on specialized Edge AI hardware. The advantages are (i) the start of
the pipeline for automatic detection of industrial samples that are taken for par-
ticle size analysis, as this activity is performed manually; (ii) Edge Al embedded
hardware implementation; (iii) solution developed for real-time inferential.

In developing the solution, we implemented a Convolutional Neural Network
(CNN) to classify the images obtained in the industry and in a bench-scale
to classify three situations. The main class is the recognition of the sample
containing the process quasi-particles. The trained, validated, and evaluated
model was embedded in an Edge Computing device for testing and evaluated
again. The dataset images comprise situations such as dense scenes, problems
such as occlusion, complex background changes, and light variations. Although
there are wide applications of DL in dense scenes, there are still open questions
to be resolved in the research process.

Deep learning models are computationally intensive. To perform real-time
edge inference, we tested our application on the embedded SiIPEED MaiX Dock
board. This board features hardware and software infrastructure to enhance
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Edge AI application development. Tests with SIPEED allow the detection of
quasi-particles in synthetic images without difficulties, with the spaced distri-
bution of particles and control of variability in the environment, such as lumi-
nosity. However, tests with real images had some flaws, evidenced by the drop
in recall to 70%. Overfitting may have occurred during or training or, during
tests, influences associated mainly with daylight, occlusion between particles,
color homogeneity, and overlapping between objects.

Our work contributed to the implementation and evaluation of a work devel-
oped with a dataset of real images of the steel industry. Collecting data in an
industrial environment can be challenging, and in the early stages of develop-
ment, researchers sometimes choose to obtain their synthetic data in a bench-
scale and controlled environment. From the results obtained in this step, it was
possible to raise new hypotheses of approaches to improve the deep learning
algorithm. Furthermore, the results were promising and indicate the feasibility
of the proposal. We are in development for future work on the segmentation of
quasi-particles in the samples by size classes.
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