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Abstract. Optimized decisions is required by businesses (analysts) if
they want to stay open. Even thought some of these are from the know-
how of the managers/executives, most of them can be described mathe-
matically and solved (semi)-optimally by computers. The Group Modular
Choquet Random Technique for Order of Preference by Similarity to Ideal
Solution (GMC-RTOPSIS) is a Multi-Criteria Decision Making (MCDM)
that was developed as a method to optimize the later types of problems,
by being able to work with multiple heterogeneous data types and inter-
action among different criteria. On the other hand the Choquet integral is
widely used in various fields, such as brain-computer interfaces and clas-
sification problems. With the introduction of the CC-integrals, this study
presents the GMC-RTOPSIS method with CC-integrals. We applied 30
different CC-integrals in the method and analyzed its results using 3 dif-
ferent methods. We found that by modifying the decision-making method
we allow for more flexibility and certainty in the choosing process.

Keywords: CC-integral · Decision making · Generalized choquet
integral · GMC-RTOPSIS

1 Introduction

Business managers rely on the right decisions to keep their business competi-
tive. Many times a decision has to be made by multiple analysts and consid-
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ering various criteria. This is a time consuming and expensive task. Although,
most of the time, it can be solved by an algorithm or mathematical model, like
route, supplier chain, and location problems [1,7,24], releasing the pressure of
the decision from the managers, and allow them to work on other processes of
the company/industry.

The Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) [12] is one of the multi-criteria decision making (MCDM) methods that
ranks the best possible solution among a set of alternatives. This approach is
based on pre-defined criteria, using the alternative’s distance to the best and
worst possible solutions for the problems, Positive and Negative Ideal Solutions
(PIS and NIS), respectively.

In 2017, the Group Modular Choquet Random TOPSIS (GMC-RTOPSIS)
[15] was introduced. The method generalized the original TOPSIS allowing it
to deal with multiple and heterogeneous data types. The approach models the
interaction among the criteria by using the discrete Choquet integral [6]. The
Choquet integral allows a function to be integrated by using non-additive fuzzy
measures [5,6], which means that it can consider the interaction among the
elements that are being integrated [9,21]. The GMC-RTOPSIS learns the fuzzy
measure associated with the criteria with a Particle Swarm Optimization (PSO)
algorithm [26].

The CT -integrals [19] is a generalization of the Choquet integral that replaces
the product operation by triangular norm (t-norm) functions [13]. The CT -
integrals are a family of integrals that are pre-aggregation functions [19]. Addi-
tionally, CT -integrals are averaging functions, i.e., the result is always between
the minimum and maximum of the input.

The T-separation measure [27] was introduced and applied in the GMC-
RTOPSIS instead of the Choquet integral. In this study, the authors consid-
ered five different T-separation measures to tackle Case Study 2 from [15]. The
problem consists of choosing a new supplier for a company by asking various
decision-makers to give their opinions with different criteria. The problem is
posed with a variety of data types, such as probability distributions, fuzzy num-
bers, and interval numbers. The paper also proposed to use the t-norm that
better discriminates the first ranked alternative to the second one by calculating
the difference of the rankings. The approach presented good results when using
the �Lukasiewicz t-norm (T �L), giving a better separation between the ranked
alternatives than the standard Choquet integral.

After introducing theCT -integrals, Lucca et al. haveproposed theCC-integrals
[18]. CC-integrals are a generalization of theChoquet integral in its expanded form,
satisfying some properties, such as averaging, idempotency, and aggregation [11].
The authors applied the CC-integral in classification problems, showing that the
function based on the minimum is the one that produced the highest performance
of the classifier. The CC-integrals have been studied in the literature by Dimuro
et al., where the properties of CMin integrals [10,16,20] were analyzed.

In this paper, we expand the analysis of the CC-separation measure study
[28] by increasing the number of CC-integrals analyzed, elevating the 11 from
the previews article to 30 in this one. We, again, apply the CC-integrals in



Application and Comparison of CC-integrals 131

an application as an example, the same used in [15,27,28]. To better visualize
the analysis by using the ΔR1,R2 difference we plotted it for each of the 30
different CC-integrals. Thereafter, in addition to using the ΔR1,R2 difference, we
also analyze the results using the mode functions to find the alternative which
most appears as first in the ranks. Finally, we introduce a new way to compare
the ranks produced by different copula functions by using a mix of the ΔR1,R2

difference and the mode function.
The paper is organized as follows: Sect. 2 introduces the basic concepts about

the fuzzy set theory and TOPSIS decision making, in addition to reviewing
the definition of CC-separation measure. In Sect. 3 we detail our experiment,
the required definitions of the decision-making problem and also introduce an
alternative approach to compare the results from different CC-integrals. Lastly,
the conclusion is in Sect. 4.

2 Background Theory

In this section, we recall the preliminary concepts necessary to develop the paper.

2.1 Fuzzy Set Theory

A Fuzzy Set [29] is defined on a universe X by a membership function μa : X →
[0, 1], denoted by

a = {〈x, μa(x)〉 | x ∈ X} .

We call a trapezoidal fuzzy number (TFN) the fuzzy set denoted by
a = (a1, a2, a3, a4), where a1 ≤ a2 ≤ a3 ≤ a4, if the membership function
μa is defined on R as:

μa(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a1
a2−a1

, if a1 ≤ x < a2

1, if a2 ≤ x ≤ a3

a4−x
a4−a3

, if a3 < x ≤ a4

0, otherwise.

A measure of the distance between two TFNs a = (a1, a2, a3, a4) and
b = (b1, b2, b3, b4) is defined as:

d(a, b) =

√
√
√
√1

4

4∑

i=1

(ai − bi)
2
.

The defuzzified value of a TFN a = (a1, a2, a3, a4) is given by:

m(a) =
a1 + a2 + a3 + a4

4
.

An intuitionistic fuzzy set (IFS) A is defined on a universe X by a member-
ship function μA : X → [0, 1] and a non-membership function νA : X → [0, 1]
such that μA(x) + νA(x) ≤ 1, for all x ∈ X, that is:
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A = {〈x, μA(x), νA(x)〉 | x ∈ X} .

Let μ̃A and ν̃A be the maximum membership degree and the minimum
non-membership degree, respectively, of an IFS A.

An IFS A is an intuitionistic trapezoidal fuzzy number (ITFN), denoted by

A = 〈(a1, a2, a3, a4) , μ̃A, ν̃A〉
where a1 ≤ a2 ≤ a3 ≤ a4, if μA and vA are given, for all x ∈ R, by

μA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a1
a2−a1

μ̃A, if a1 ≤ x < a2

μ̃A, if a2 ≤ x ≤ a3

a4−x
a4−a3

μ̃A, if a3 < x ≤ a4

0, otherwise

and

νA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−ν̃A

a1−a2
(x − a1) + 1, if a1 ≤ x < a2

ν̃A, if a2 ≤ x ≤ a3

1−ν̃A

a4−a3
(x − a4) + 1, if a3 < x ≤ a4

1, otherwise.

The distance between two ITFNs A = 〈(a1, a2, a3, a4) , μ̃A, ν̃A〉 and B =
〈(b1, b2, b3, b4) , μ̃B , ν̃B〉 is:

d(A,B) =
1
2

[dμ̃(A,B) + dν̃(A,B)]

where

dκ(A,B) =
{

1
4

[

(a1 − b1)2 + (1 + (κA − κB)2)

(1 + (a2 − b2)2 + (a3 − b3)2)

− 1 + (a4 − b4)2
]}1/2

for κA = μ̃A and κB = μ̃B when κ = μ; and for κA = ν̃A and κB = ν̃B when
κ = ν.

Aggregation functions (AF) [11] are used to unify inputs into a single value
representing them all and are defined as a function that maps n > 1 arguments
onto the unit interval, that is, a function f : [0, 1]n → [0, 1] such that the
boundaries, f(0) = 0 and f(1) = 1, with 0,1 ∈ [0, 1]n, and the monotonicity
properties, x ≤ y =⇒ f(x) ≤ f(y), ∀x,y ∈ [0, 1]n, hold.

A triangular norm (t-norm) is an aggregation function T : [0, 1]2 → [0, 1]
that satisfies, for any x, y, z ∈ [0, 1]: the commutative and associative properties
and the boundary condition.

An overlap function [3] O : [0, 1]2 → [0, 1] is a function that satisfies the
following conditions:
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– O is commutative;
– O(x, y) = 0 ⇐⇒ xy = 0;
– O(x, y) = 1 ⇐⇒ xy = 1;
– O is increasing;
– O is continuous.

A bivariate function Co : [0, 1]2 → [0, 1] is called a copula [22] if, for all
x, x′, y, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′, the following conditions hold:

– Co(x, y) + Co(x′, y′) ≥ Co(x, y′) + Co(x′, y);
– Co(x, 0) = Co(0, x) = 0;
– Co(x, 1) = Co(1, x) = x.

The Choquet integral is defined based on a fuzzy measure [25], that is, a
function m from the power set of N to the unit interval, m : 2N → [0, 1], that
for all X,Y ⊂ N holds the conditions:

(1) m(∅) = 0 and m(N) = 1;
(2) if X ⊂ Y , then m(X) ≤ m(Y ).

From this, Choquet defined the integral as: Let m be a fuzzy measure. The
Choquet integral [6] of x ∈ [0, 1]n with respect to m is defined as:

Cm : [0, 1]n → [0, 1]

x →
n∑

i=1

(
x(i) − x(i−1)

)
m(A(i))

where (i) is a permutation on 2N such that x(i−1) ≤ x(i) for all i = 1, . . . , n,
with x(0) = 0 and A(i) = {(1), . . . , (i)}.

Notice that one can use the distributive law to expand the Choquet integral
into:

Cm =
n∑

i=1

(
x(i)m(A(i)) − x(i−1)m(A(i))

)
(1)

Recently, the Choquet integral was generalized by copula functions. By sub-
stituting the product operator by copulas in the expanded form of the Choquet
integral (Eq. 1), CC-Integrals [18] were introduced.

Let m be a fuzzy measure and Co be a bivariate copula. The Choquet-like
integral based on copula with respect to m is defined as a function CCo

m : [0, 1]n →
[0, 1], for all x ∈ [0, 1]n, by

CCo
m =

n∑

i=1

Co
(
x(i), m(A(i))

) − Co
(
x(i−1), m(A(i))

)
(2)

where (i), x(i) and A(i) is defined as the Choquet integral.
It is important to note that the Choquet integral, the CT -integrals, and

the CC-integrals are averaging functions, i.e., the results from them are always
bounded by the minimum and maximum of their input.
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2.2 Decision Making

The GMC-RTOPSIS [15] is a decision making algorithm that improved the clas-
sic TOPSIS [12] by allowing groups of decision-makers, modularity in the input,
multiple input types and, by using the Choquet integral, the ability to measure
the interaction among different criteria.

Figure 1 shows an overview of the decision making process with the Choquet
integral. Here three different decision-makers give their ratings for three products
based on three criteria. These ratings are then processed and inserted in the
Choquet integral, where the interaction between the criteria is calculated. After,
the results are ranked according to their highest classiness coefficient value.

Fig. 1. Image description of the decision making process using the Choquet integral.
Source: the authors [28].

To describe the GMC-RTOPSIS method let q represent the q-th decision
maker in a collection of Q ∈ N = {1, 2, 3, . . .} ones. Let A = {A1, . . . , Am}
be the set of alternatives for the problem and Cq = {C1, . . . , Cnq

} represent the
criteria set for decision maker q. With C = {C1, . . . ,CQ} = {C1, . . . , Cn}, where
n =

∑Q
q=1 nq, representing the criteria set of all the decision makers. From these

notations we can represent each of the q-th decision maker by the matrix below
(Eq. (3)), called decision matrix DM:

DMq =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1 C2 · · · Cnq

A1 sq
11(Y

q) sq
12(Y

q) · · · sq
1nq

(Y q)

A2 sq
21(Y

q) sq
22(Y

q) · · · sq
2nq

(Y q)

...
...

...
. . .

...
Am sq

m1(Y
q) sq

m2(Y
q) · · · sq

mnq
(Y q)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

Each matrix cell sq
ij(Y

q), with 1 ≤ i ≤ m, 1 ≤ j ≤ nq, is called the rating
of the criterion j for alternative i. Also, notice that the rating is a function
of Y = (Yrand, Ydet), which are factors that model random and deterministic
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events. Random events are modeled by stochastic processes, and deterministic
are events which are not random, like time, location or a parameter of a random
event. A fixed value x of the deterministic vector is called a state, and the set of
all states is represented by X .

In possession of all decision matrices from all decision-makers Q, the algo-
rithm can be applied. The process is quite similar to the original TOPSIS, pre-
sented in 1981. It uses the same definition of Positive Ideal Solution (PIS) and
Negative Ideal Solution (NIS) that are, respectively, the one that is closer to
the best possible solution and the one that is distant from the best possible
solution, see Eq. (4). The most significant difference is that each criterion may
use a different distance measure since each may have its own type. So, the dis-
tances of each criterion are calculated separately and aggregated afterward in
the separation measure step of the algorithm (see Fig. 2).

Fig. 2. Diagram of the GMC-RTOPSIS process. The separation measure step is where
the CC-separation measure is used. Source: The authors [28].

In order to ease the comprehension of our approach, we present in Fig. 2 the
steps of the GMC-RTOPSIS, where:

Step 0. Select a state x ∈ X not yet processed;
Step 1. Normalize all matrices;
Step 2. Select the PIS, denoted by s+j (Y ), and the NIS, denoted by s−

j (Y ),
considering, for each j ∈ {1, . . . , n}, respectively:
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s+j (Y ) =

⎧
⎨

⎩

max
1≤i≤m

sij , if it is a benefit criterion,

min
1≤i≤m

sij , if it is a cost/loss criterion,

s−
j (Y ) =

⎧
⎨

⎩

min
1≤i≤m

sij , if it is a benefit criterion,

max
1≤i≤m

sij , if it is a cost/loss criterion;
(4)

Step 3. Calculate the distance measure for each criterion Cj , with j ∈ {1, . . . , n},
to the PIS and NIS solutions, that is,

d+ij = d(s+j (Y ), sij(Y )),

d−
ij = d(s−

j (Y ), sij(Y )),

where i ∈ {1, . . . , m} and d is a distance measure associated with the criteria
data type;
Step 4. Calculate the separation measure, for each i ∈ {1, . . . , m}, using the
Choquet integral as follows:

S+
i (Y ) =

√
√
√
√

n∑

j=1

((
d+i(j)

)2

−
(
d+i(j−1)

)2
)

mY (C+
(j))

S−
i (Y ) =

√
√
√
√

n∑

j=1

((
d−

i(j)

)2

−
(
d−

i(j−1)

)2
)

mY (C−
(j))

where d+i(1) ≤ . . . ≤ d+i(n), d−
i(1) ≤ . . . ≤ d−

i(n), for each j ∈ {1, . . . , n},
C+

(j) is the criterion correspondent to d+i(j), C−
(j) is the criterion correspon-

dent to d−
i(j), C+

(j) = {C+
(j), C

+
(j+1), . . . , C

+
(n)}, C−

(j) = {C−
(j), C

−
(j+1), . . . , C

−
(n)},

C+
(n+1) = C−

(n+1) = ∅, d+i(0) = d−
i(0) = 0 and mY is the learned fuzzy measure by

a particle swarm optimization algorithm [26].
Here, the separation measure is the square root of the Choquet integral of
squared distances, and this means that it is the square root of a d-Choquet
integral [4]. Also, for each state, we may have a different fuzzy measure, which
means that the fuzzy measure is dependent on Ydet

Step 5. For each i ∈ {1, . . . , m}, calculate the relative closeness coefficient to the
ideal solution with:

CCi(Y ) =
S−

i (Y )
S−

i (Y ) + S+
i (Y )

;

Step 6. By using probability distributions in the DM, it is introduced a boot-
strapped probability distribution in the CCi values, so as a point representation
for this distribution we minimize a pre-defined risk function:
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cci = arg min
c

R(c)

= arg min
c

∫

R

L(c, CCi(Y )) dF (CCi(Y )); (5)

Step 7. If there is at least one non-processed state x, return to Step 0;
Step 8. Aggregate the cci values from all the states with ĉci = fx∈X (cci(x)),
where f is an aggregation function.
Step 9. Finally, rank the alternatives from the highest to the lowest ĉci values.

2.3 Generalization of the GMC-RTOPSIS by Using CC-Integrals

Using the Choquet integral in the separation measure, the GMC-RTOPSIS
method allows for interaction among different criteria. This is the step where
this study incorporates the CC-integrals in place of the Choquet integral.

We remind the definition of the CC-separation measure by:

Definition 1 (CC-separation measure [28]). Let Co be a bivariate copula
and m a fuzzy measure. A CC-separation measure S∗ : [0, 1]2 → [0, 1] is defined,
for all i ∈ {1, . . . , m}, by the functions:

S+
i (Y ) =

√
√
√
√

n∑

j=1

Co

((
d+i(j)

)2

, mY

(
C+

(j)

))

− Co

((
d+i(j−1)

)2

, mY

(
C+

(j)

))

S−
i (Y ) =

√
√
√
√

n∑

j=1

Co

((
d−

i(j)

)2

, mY

(
C−

(j)

))

− Co

((
d−

i(j−1)

)2

, mY

(
C−

(j)

))

where d+i(j), d−
i(j), C+

(j), C−
(j) and mY are defined as in Step 4 of the GMC-

RTOPSIS algorithm. Note that the separation measure is the squared root of the
CC-integral, which is an aggregation function as shown in [18].

3 Experiments

In this section, we present the application of the CC-separations in the GMC-
RTOPSIS. To do so, we start describing the methodology adopted in the study;
after that, the example in which we apply our approach is described, and lastly,
the obtained results are presented and discussed.

3.1 Methodology

In this study, we will apply the proposed CC-separation measure to the Case
Study 2 introduced in [15] and used in [27] to ease the comparison between the
different CC-integrals.

To perform the simulation, we used 10,000 samples from the DM. We also
applied a particle swarm optimization to learn the fuzzy measure using 30 par-
ticles and 100 interactions. The PSO is used since the original method had good
outcomes with the method.
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Table 1. Examples of Copulas [28].

(I) T-norms

Definition Name/Description

TM (x, y) = min{x, y} Minimum

TP (x, y) = xy Algebraic Product

TL(x, y) = max{0, x + y − 1} �Lukasiewicz

TNM (x, y) ={
min {x, y} if x + y > 1

0 otherwise

Nilpotent Minimum

THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy

otherwise
Hamacher Product

(II) Non-associative overlap functions

Definition Reference/Description

OB(x, y) = min{x
√

y, y
√

x} Cuadras-Augé family of copulas [22]

OmM (x, y) = min{x, y} max{x2, y2} [8,23]

Oα(x, y) = xy(1 + α(1 − x)(1 − y)),

where α ∈ [−1, 0[ ∪ ]0, 1]
[2,17]

(III) Non-associative copulas, which are neither t-norms nor overlap functions

Definition Reference/Description

CF (x, y) = xy + x2y(1 − x)(1 − y) [13]

CL(x, y) = max{min{x, y
2
}, x + y − 1} [2]

CDiv(x, y) =
xy+min{x,y}

2
[2]

We highlight that we used 20 different values for the α parameter, varying it by 0.1 from −1.0 to
1.0 excluding 0.0, as the function Oα is not defined for this value.

For the risk function, given in Eq. (5), we used the squared loss (Table 1):

L(cc, CCi) = (cc − CCi)2 .

This results in the mean function being the point estimator for the process.
Also, we used the Weighted Arithmetic Mean aggregation function for Step

8 of the algorithm:

WAMi = w(S1) · cci(S1) + w(S2) · cci(S2).

For the analysis of the results from the different copula functions, we use two
different approaches. The first one is by using the Big Delta [28], defined bellow,
to see which copula function gives the biggest difference between rankings first
and second.

ΔR1,R2 = max (ĉ1) − max (ĉ2)

where ĉ1 = {ĉci | i ∈ {1, . . . , m}} and ĉ2 = ĉ1 − {max (ĉ1)}.
The latter is by using the mode function in the first of the ranks, which gives

the most appeared alternative.
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Lastly, it is important to notice that since we are only changing the Cho-
quet function in the method, it maintains the original complexity described in
Lourenzutti et al. [14].

3.2 The Decision-making Problem

This section describes the investigated problem to which we apply the GMC-
RTOPSIS with the CC-integrals.

A company needs a new supplier for a provision and is evaluating four dif-
ferent suppliers, namely A1, A2, A3 and A4. The company called three of its
managers to analyze the suppliers and give their ratings based on their criteria.

The first manager is a budget manager. He considered the price per batch
(in thousands) as C

(1)
1 , warranty (in days) as C

(1)
2 and payment conditions (in

days) as C
(1)
3 . Also, it was considered that the demand for the product is higher

in December. He modeled it by using a binary variable τ , that is τ = 0 when
the month is between January and November, and τ = 1 when it is December.
Finally, he assigned a weight for each of his criterion with a weighting vector:
w(1) = (0.5, 0.25, 0.25).

The second manager, a product manager, considered the price as C
(2)
1 , deliv-

ery time (in hours) as C
(2)
2 , production capacity C

(2)
3 , product quality C

(2)
4 and

the time to respond to a support request (in hours) as C
(2)
5 . Additionally, to

account for the reliability in the production process and what a failure in the
process could cause to the supplier’s production capacity, he let Pi be a random
variable such that Pi = 0 occurs when there are no failures in the production
process of the supplier Ai, and Pi = 1 when there are failures. Also, in December,
the production is accelerated, so the chance of failure is higher, so he modeled a
stochastic process with the help of the function:

fi(x, y) = x
(
1 + y(Pi + τ)2

)
.

Lastly, the production capacity was modeled by using ITFNs:

s213 =
(
(0.81+P1 , 0.91+P1 , 1.01+P1 , 1.01+P1), 1.0, 0.0

)

s223 =
(
(0.81+4P2 , 0.91+4P2 , 1.01+4P2 , 1.01+4P2), 0.7, 0.1

)

s233 =
(
(0.61+2P3 , 0.71+2P3 , 0.81+2P3 , 1.01+2P3), 0.8, 0.0

)

s243 =
(
(0.51+3P4 , 0.61+3P4 , 0.81+3P4 , 0.91+3P4), 0.8, 0.1

)
.

This manager selected the same weight for all criteria, i.e.,
w(2) = (0.2, 0.2, 0.2, 0.2, 0.2).

The commercial manager was the third. He considered the product lifespan
(in years) as C

(3)
1 , social and environmental responsibility as C

(3)
2 , the quantity of

quality certifications as C
(3)
3 and the price as C

(3)
4 . The weighting vector provided

by this manager is w(3) = (0.25, 0.12, 0.23, 0.4).
The Pi distribution was determined by historical data of each supplier and

it is given as follows:
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Table 2. Decision matrices for the managers [28].

(a) Budget manager

Alternatives C
(1)
1 C

(1)
2 C

(1)
3

τ = 0 τ = 1

A1 260.00(1 + 0.15τ) 90 G G
A2 250.00(1 + 0.25τ) 90 P W
A3 350.00(1 + 0.20τ) 180 G I
A4 550.00(1 + 0.10τ) 365 I W

(b) Production manager

Alternatives C
(2)
1 C

(2)
2 C

(2)
3 C

(2)
4 C

(2)
5

A1 260.00 U(f1(48, 0.10), f1(96, 0.10)) s213 I [24, 48]
A2 250.00 U(f2(72, 0.20), f2(120, 0.20)) s223 P [24, 48]
A3 350.00 U(f3(36, 0.15), f3(72, 0.15)) s233 G [12, 36]
A4 550.00 U(f4(48, 0.25), f4(96, 0.25)) s234 E [0, 24]

(c) Commercial manager

Alternatives C
(3)
1 C

(3)
2 C

(3)
3 C

(3)
4

A1 Exp(3.5) W 1 260.00
A2 Exp(3.0) W 0 250.00
A3 Exp(4.5) P 3 350.00
A4 Exp(5.0) I 5 550.00

Table 3. Linguistic variables and their respective trapezoidal fuzzy numbers [28].

Linguistic variables Trapezoidal fuzzy numbers

Worst (W) (0, 0, 0.2, 0.3)

Poor (P) (0.2, 0.3, 0.4, 0.5)

Intermediate (I) (0.4, 0.5, 0.6, 0.7)

Good (G) (0.6, 0.7, 0.8, 1)

Excellent (E) (0.8, 0.9, 1, 1)

For τ = 0:

p(P1 = 0|S1) = 0.98,

p(P2 = 0|S1) = 0.96,

p(P3 = 0|S1) = 0.97,

p(P4 = 0|S1) = 0.95.

For τ = 1:

p(P1 = 0|S2) = 0.96,

p(P2 = 0|S2) = 0.92,

p(P3 = 0|S2) = 0.96,

p(P4 = 0|S2) = 0.90.
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Considering all the DMs, we have the following underlying factors: a random
component Yrand = (P1, P2, P3, P4) and a deterministic component Ydet = τ that
has two states: S1 when τ = 0 and S2 when τ = 1. The underlying factors can be
represented by Y = (Yrand, Ydet). The managers agreed that the state S2 was
more important, since the production is higher, so they gave it a higher weight
for it in the aggregation step (Step 8 of the method) by setting w(S1) = 0.4 and
w(S2) = 0.6.

The DMs of all managers are presented in Table 2, where the linguistic vari-
ables (W, P, I, G and E) are defined as in Table 3.

The company, considering the opinion of manager 2 more important, assigned
a weighting vector for the managers represented by w = (0.3, 0.4, 0.3). Fur-
thermore, they wanted to include some interaction between the criteria, so a
variation of 30% was allowed for each fuzzy measure in relation to the coefficient
in the additive fuzzy measure. This measure is calculated computationally by
means of the PSO algorithm [15,26].

3.3 Results

The aggregated ranked results are presented in Table 4 (mean and standard
deviations shown in Table 5). The table shows for each copula function Co, the
rank of alternatives from columns 2 to 5, with each alternative’s aggregated value
inside parenthesis. Column ΔR1,R2 shows the difference between the aggregate
values between the alternative ranked first and the second.

To ease the comprehension of the results, we provide in Fig. 3, for each con-
sidered CC-integral, the difference between the first (A3) and second (A4) ranked
alternative. Also, in that Figure, we sort the ranks from the biggest to the small-
est values of ΔR1,R2. The functions are presented in the X axis, where the value
adopted by the function is provided. The Y axis are the values related to the
difference value. Finally, for each function, we provide the value of the difference
above each line.

From Fig. 3, one can observe that the biggest difference is achieved by the
�Lukazievicz t-norm. On the other hand, the smallest difference is achieved by
the Oα, with the parameter set as −1.

Our first analysis used the ΔR1,R2 as the criterion to choose which rank one
should consider when using multiple CC-integrals. From that we can see that for
the t-norms the values are proportional to the ones presented in the study that
used CT -integral instead of the Choquet integral [27]. As in that paper, here the
T �L t-norm has the biggest difference, with ΔR1, R2 = 0.0700. Although the T �L
presented such a big difference, the other t-norms did not do so well. One can
see that only the TMN t-norm performs well compared with the copulas, such
as Oα and CF .

The second biggest difference was achieved by using the copula Oα with α
parameter set to 0.6, with ΔR1, R2 = 0.0502. The next of this family tested was
the one with α = −0.2, where it resulted in a quite lower difference value, with
only ΔR1, R2 = 0.0425. Among the other tested overlap functions from the α
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Table 4. Rank of the alternatives with each of the Co, ordered by the biggest ΔR1,R2

value.

Co Ranked 1st Ranked 2nd Ranked 3rd Ranked 4th ΔR1,R2

TL A3(0.6462) A4(0.5762) A1(0.4616) A2(0.3782) 0.0700

O0.6 A3(0.5897) A4(0.5395) A1(0.4716) A2(0.4282) 0.0502

CF A3(0.5991) A4(0.5525) A1(0.4453) A2(0.4194) 0.0466

O−0.2 A3(0.6034) A4(0.5609) A1(0.4498) A2(0.4034) 0.0425

TNM A3(0.5919) A4(0.5493) A1(0.4713) A2(0.3910) 0.0425

O0.3 A3(0.5959) A4(0.5574) A1(0.4584) A2(0.4104) 0.0385

O−0.4 A3(0.6002) A4(0.5621) A1(0.4441) A2(0.4012) 0.0382

O−0.3 A3(0.5989) A4(0.5616) A1(0.4436) A2(0.4059) 0.0373

O−0.8 A3(0.6089) A4(0.5735) A1(0.4368) A2(0.3936) 0.0354

O0.5 A3(0.5910) A4(0.5563) A1(0.4573) A2(0.4191) 0.0347

O0.8 A3(0.5847) A4(0.5502) A1(0.4546) A2(0.4082) 0.0345

O−0.9 A3(0.6096) A4(0.5752) A1(0.4252) A2(0.3930) 0.0344

O0.2 A3(0.5917) A4(0.5578) A1(0.4658) A2(0.4066) 0.0339

O−0.5 A3(0.6020) A4(0.5706) A1(0.4390) A2(0.3989) 0.0314

O0.1 A3(0.5953) A4(0.5659) A1(0.4453) A2(0.3962) 0.0294

OmM A3(0.5995) A4(0.5715) A1(0.4454) A2(0.3927) 0.0280

O−0.6 A3(0.5960) A4(0.5695) A1(0.4344) A2(0.3955) 0.0265

O−0.1 A3(0.5934) A4(0.5676) A1(0.4545) A2(0.3990) 0.0258

O0.4 A3(0.5821) A4(0.5575) A1(0.4648) A2(0.4157) 0.0246

CDiv A4(0.5234) A3(0.5016) A1(0.4868) A2(0.4250) 0.0218

O0.9 A3(0.5775) A4(0.5558) A1(0.4498) A2(0.4039) 0.0217

O0.7 A3(0.5797) A4(0.5590) A1(0.4425) A2(0.4048) 0.0207

O−0.7 A3(0.5959) A4(0.5766) A1(0.4256) A2(0.3876) 0.0193

O1.0 A3(0.5764) A4(0.5578) A1(0.4370) A2(0.4061) 0.0187

CL A4(0.5273) A3(0.5097) A1(0.4914) A2(0.4361) 0.0176

THP A3(0.5351) A4(0.5221) A1(0.5049) A2(0.4308) 0.0131

TP A3(0.5821) A4(0.5701) A1(0.4346) A2(0.3977) 0.0120

OB A3(0.5511) A4(0.5395) A1(0.4713) A2(0.4133) 0.0116

TM A4(0.5229) A3(0.5118) A1(0.4737) A2(0.4386) 0.0110

O−1.0 A3(0.5980) A4(0.5894) A1(0.4234) A2(0.3765) 0.0086

family the ΔR1,R2 differences ranged from as low as 0.0086 to as high as 0.0385,
for α = −1.0 and α = 0.3 respectively.

The copula CF had the third biggest ΔR1,R2, difference achieving 0.0466.
On the other hand, the CDiv had less than half of the CF difference with only
ΔR1,R2 = 0.0218. And lower was the CL with a difference of ΔR1,R2 = 0.0176.



Application and Comparison of CC-integrals 143

Table 5. Mean and standard deviation of the alternatives for State 1 and State 2.
The highest mean for each function and state is in boldface and the alternative with
highest mean for the criterion has an asterisk*.

State State 1 (S1, τ = 0) State 2 (S2, τ = 1)

Ai A1 A2 A3 A4 A1 A2 A3 A4

Co Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev

CDiv 0.5100 0.0101 0.4654 0.0187 0.5139 0.0202 0.5221 0.0191 0.4713 0.0293 0.3980 0.0088 0.4934 0.0242 0.5242 0.0307

CF 0.4774 0.0181 0.4604 0.0173 0.6074 0.0858 0.5270 0.0135 0.4239 0.0194 0.3921 0.0208 0.5935 0.0710 0.5695 0.0174

CL 0.5251* 0.0082 0.4670 0.0144 0.5335 0.0058 0.5242 0.0126 0.4690 0.0427 0.4155 0.0165 0.4938 0.0186 0.5293 0.0314

O1.0 0.4339 0.0356 0.4248 0.0151 0.5802 0.0584 0.5673 0.0155 0.4390 0.0293 0.3937 0.0139 0.5739 0.0539 0.5514 0.0263

O0.9 0.4679 0.0126 0.4350 0.0100 0.5900 0.0592 0.5597 0.0088 0.4377 0.0297 0.3831 0.0156 0.5691 0.0544 0.5532 0.0269

O0.8 0.4704 0.0130 0.4357 0.0112 0.5882 0.0664 0.5581 0.0100 0.4441 0.0383 0.3898 0.0186 0.5824 0.0544 0.5449 0.0337

O0.7 0.4579 0.0203 0.4318 0.0113 0.5938 0.0625 0.5619 0.0111 0.4323 0.0382 0.3868 0.0156 0.5703 0.0564 0.5570 0.0329

O0.6 0.4852 0.0134 0.4791* 0.0232 0.5742 0.0731 0.5078 0.0108 0.4625 0.0266 0.3943 0.0165 0.6001 0.0593 0.5607 0.0214

O0.5 0.4856 0.0142 0.4466 0.0124 0.5918 0.0851 0.5455 0.0119 0.4385 0.0303 0.4008 0.0139 0.5904 0.0597 0.5635 0.0194

O0.4 0.4788 0.0130 0.4427 0.0133 0.5630 0.0678 0.5493 0.0135 0.4554 0.0284 0.3977 0.0159 0.5948 0.0708 0.5629 0.0201

O0.3 0.4688 0.0173 0.4379 0.0154 0.5952 0.0733 0.5518 0.0139 0.4515 0.0224 0.3921 0.0186 0.5964 0.0570 0.5611 0.0205

O0.2 0.4686 0.0167 0.4292 0.0152 0.5932 0.0689 0.5630 0.0133 0.4639 0.0382 0.3916 0.0213 0.5907 0.0613 0.5543 0.0308

O0.1 0.4568 0.0127 0.4282 0.0117 0.6013 0.0791 0.5656 0.0098 0.4377 0.0275 0.3749 0.0223 0.5913 0.0611 0.5661 0.0232

O−0.1 0.4585 0.0152 0.4256 0.0121 0.5993 0.0672 0.5683 0.0103 0.4518 0.0210 0.3813 0.0162 0.5895 0.0678 0.5671 0.0188

O−0.2 0.4721 0.0134 0.4311 0.0113 0.6046 0.0773 0.5631 0.0088 0.4349 0.0345 0.3849 0.0210 0.6026 0.0615 0.5595 0.0302

O−0.3 0.4708 0.0142 0.4328 0.0157 0.6056 0.0738 0.5571 0.0145 0.4254 0.0353 0.3879 0.0184 0.5944 0.0611 0.5646 0.0318

O−0.4 0.4616 0.0145 0.4256 0.0158 0.6069 0.0787 0.5649 0.0144 0.4325 0.0411 0.3850 0.0167 0.5958 0.0665 0.5602 0.0360

O−0.5 0.4637 0.0150 0.4228 0.0138 0.6218 0.0731 0.5702 0.0121 0.4225 0.0353 0.3830 0.0139 0.5888 0.0662 0.5709 0.0318

O−0.6 0.4564 0.0131 0.4228 0.0138 0.6108 0.0865 0.5686 0.0117 0.4197 0.0408 0.3773 0.0159 0.5862 0.0679 0.5701 0.0362

O−0.7 0.4291 0.0111 0.4121 0.0135 0.5998 0.0743 0.5796 0.0127 0.4232 0.0298 0.3713 0.0172 0.5933 0.0635 0.5746 0.0272

O−0.8 0.4546 0.0148 0.4174 0.0151 0.6272 0.0767 0.5739 0.0138 0.4250 0.0379 0.3777 0.0155 0.5967 0.0720 0.5733 0.0322

O−0.9 0.4347 0.0115 0.4183 0.0153 0.6194 0.0818 0.5713 0.0158 0.4189 0.0308 0.3762 0.0124 0.6030 0.0710 0.5778 0.0273

O−1.0 0.4290 0.0108 0.4030 0.0101 0.6123 0.0716 0.5921* 0.0079 0.4196 0.0354 0.3588 0.0193 0.5885 0.0664 0.5876 0.0281

OB 0.4843 0.0148 0.4443 0.0138 0.5584 0.0422 0.5487 0.0101 0.4626 0.0360 0.3926 0.0156 0.5462 0.0388 0.5334 0.0306

OmM 0.4519 0.0134 0.4218 0.0171 0.6119 0.0772 0.5668 0.0156 0.4411 0.0308 0.3733 0.0150 0.5912 0.0789 0.5746 0.0271

THP 0.4976 0.0083 0.4648 0.0141 0.5328 0.0169 0.5253 0.0125 0.5097* 0.0198 0.4081 0.0114 0.5367 0.0207 0.5199 0.0157

TL 0.4702 0.0482 0.4360 0.0116 0.6438* 0.0367 0.5588 0.0119 0.4558 0.0506 0.3397 0.0334 0.6478* 0.0477 0.5878* 0.0250

TM 0.4701 0.0478 0.4615 0.0217 0.5326 0.0018 0.5279 0.0231 0.4761 0.0270 0.4234* 0.0232 0.4980 0.0087 0.5195 0.0269

TP 0.4567 0.0120 0.4270 0.0093 0.5976 0.0655 0.5674 0.0098 0.4198 0.0396 0.3782 0.0190 0.5718 0.0605 0.5719 0.0360

Additionally, one can see that the TP t-norm resulted in one of the smallest
ΔR1,R2 differences. This may consequently introduce a doubt on which of the
alternatives is the better one, since their aggregated values are close. Moreover,
notice that when using Cdiv, CL and TM copulas the alternatives A3 and A4

change position. This is from the influence of the state 2 result, where these
functions may have weighted higher criteria for alternative A4. Furthermore,
the relative small difference ΔR1,R2 make the top of the rank prone to invert
positions.

Last, it is observable in the obtained results that the copulas THP , TP , OB

and TM obtained a similar performance in the lowest part of the table, with the
smallest separations.

Our second analysis considers the mode function applied to the ranked first
alternatives. From the 30 mix of Co functions and parameters (when necessary),
27 of them ranked first the Alternative 3 (A3) and only 3 ranks have Alternative
4 (A4) as the first one. Additionally to the alternative A3 appearing much more
in first, one can notice that the ΔR1,R2 difference generally achieves much high
degrees, being up to 3.2 times the difference to when the alternative A4 is ranked
first.
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Fig. 3. ΔR1,R2 differences between the 2nd and 1st ranked alternatives, ordered by
biggest to lowest.

3.4 An Alternative Approach to Multiple Ranks Resulted
by CC-Integrals

From the results one can see that the alternative A3 was much more preferable to
rank as first one when compared to alternative A4 because of both, the biggest
ΔR1,R2 differences and also the fact that this alternative (A3) appears much
more in the first place, when multiple Co functions are used in the CC-separation
measure. But this is not always the case, when we have alternatives much more
close together this may give agglomerate both ranks, that is, half + 1 of the
results may give alternative Au as the first one and the other half - 1 may give
alternative Av as the first in the rank. Additionally, the ΔR1,R2 = ΔAu,Av

may
be too similar to ΔR1,R2 = ΔAv,Au

for some Co functions.
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To overcome this little issue, we suggest the use of ΔR1,R2 differences’ mean
for each alternative ranked first. That is:

ΔAi,R1,R2 =
|ARi|
|AR| ·

∑

ΔR1,R2∈ARi

ΔR1,R2

where ARi is the set of ΔR1,R2 values that has the alternative Ai as ranked first
and AR is the set of all ranked alternatives.

By calculating this for each alternative that achieved first rank we can com-
pare and use the one with the biggest ΔAi,R1,R2 value.

For example, take the problem described early in this article. There we have
27 of the 30 CC-integrals ranking the alternative A3 as the first one and only
3 ranked alternative A4 as the first. Therefore we can use the above formula to
see which one to choose. For the alternative A3 we have:

ΔA3,R1,R2 =
|AR3|
|AR| ·

∑

ΔR1,R2∈AR3

ΔR1,R2 =
27
30

· 0.8301 = 0.7471.

And for alternative A4:

ΔA4,R1,R2 =
|AR4|
|AR| ·

∑

ΔR1,R2∈AR4

ΔR1,R2 =
27
30

· 0.0504 = 0.0454.

Therefore, since 0.7471 > 0.0454 we should use the alternative A3. Surely
that for this problem it was not necessary to use this method since the ΔR1,R2

and the mode had already demonstrated clearly that the alternative A3 should
be the chosen one.

4 Conclusion

The GMC-RTOPSIS is a decision method that chooses the alternative that is
closer to an ideal solution. It is capable of dealing with multiple data types as
inputs and, also, through the Choquet integral, considers the interaction among
different criteria.

In this paper, we extend the study of the CC-separation measure. That is a
measure to be used in the GMC-RTOPSIS method that utilizes the CC-integrals
instead of the Choquet integral. The CC-integrals is a generalization of the Cho-
quet integral that presented good results when applied in classification problems.

By using an example from the literature, we tested the method with 30 differ-
ent copula functions, with one of them using 20 distinct parameters. When ana-
lyzing by using the Big Delta function the results indicate that the �Lukasiewicz
t-norm is the best copula function to use in this example problem since it gives
the greatest separation between the alternatives ranked first and second. Addi-
tionally, the Overlap alpha family, with α = 0.6, the CF and the TNM also
presented good separations.
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Additionally, we demonstrated how to use the mode function as an alternative
to the Big Delta. Moreover, we introduced a solution to when some alternatives
may be too close together that both, the Big Delta difference and the mode
function may have too similar results. The solution is to use the Big Delta
means for each alternative ranked first and, then, compare its result.

By being able to verify the separation between the ranks, we can choose more
confidently the alternative that better suits the problem. Therefore, by using
multiple functions in the CC-separation measure, we can see how the problem
behaves in different situations.
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