®

Check for
updates

An Approach to Evolution Management
in Integrated Heterogeneous Data Sources

Darja Solodovnikova®®®, Laila Niedrite®, and Lauma Svilpe

Faculty of Computing, University of Latvia, Riga, Latvia
{darja.solodovnikova, laila.niedrite}@lu.lv

Abstract. In this paper we target the current problem of evolution of heteroge-
neous data sources of a data warehouse. Evolution may be caused by changes in
the structure of data sources that are often independent from a data warehouse as
well as by changes in information requirements. The solution we introduce in this
paper is based on the architecture of a data analysis system that apart from a data
highway that collects and transforms data also employs a metadata repository and
various tools that provide different kinds of analysis of stored data. The unique
feature of our solution is an adaptation component that incorporates mechanisms
for automatic discovery of changes in the structure of integrated data sets and
propagation of these changes in a data warehouse and other components of a data
analysis system. In addition to the presentation of our approach, we give details
of approbation of our software prototype in the case study system.

Keywords: Evolution - Data warehouse - Change propagation - Metadata -
Heterogeneous data

1 Introduction

Data warehouses have been used for decades to support the analysis of integrated data.
However, before recently, mainly structured data stored in relational databases have
been used to populate data warehouses. Due to new technological developments, cur-
rently data that should be analyzed in the decision-making process are becoming more
and more enormous and heterogeneous and traditional solutions based on relational
databases have become unusable to process all these data volumes.

Besides, changes in the structure of large heterogeneous and often independent data
sources occur more frequently, but finding a solution to problems caused by this evolu-
tion is a more challenging task for several reasons. On one hand, there is currently no
standard architecture that is commonly used to support the analysis of heterogeneous
data sources. On the other hand, data sources we are working with are often semi-
structured and unstructured and it is a complex task to detect and process changes in
such sources. And finally, in modern systems data may be generated at a higher rate,
and this means that changes should be also handled somehow immediately after they
occurred.

© Springer Nature Switzerland AG 2022
J. Filipe et al. (Eds.): ICEIS 2021, LNBIP 455, pp. 47-70, 2022.
https://doi.org/10.1007/978-3-031-08965-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08965-7_3&domain=pdf
http://orcid.org/0000-0002-5585-2118
http://orcid.org/0000-0002-8173-6081
https://doi.org/10.1007/978-3-031-08965-7_3

48 D. Solodovnikova et al.

The goal of our study is to develop a solution to collect, store and analyze data from
multiple heterogeneous data sources as efficiently as possible, while also processing
changes in the structure of data that occur as a result of evolution. In our approach
presented in this paper we use a well-known data warehouse paradigm and extend it
with the processing of semi-structured and unstructured data sets as well as mechanisms
for discovery and automatic or semi-automatic propagation of changes in these data
sets.

The present paper is an extended version of our paper [20]. In this paper, we provide
details of the implementation of the change discovery and propagation tool and results
of the approbation of the proposed approach in the case study system. In addition to that,
this paper includes the statistical analysis of the supported change adaptation scenarios
which demonstrates how well our approach allows to reduce human participation in the
evolution management process.

The rest of this paper is organized as follows. In Sect. 2 we review related work. In
Sect. 3 we give details of our proposed approach to evolution management. In Sect. 4,
the case study system and examples of real-world changes are discussed. In addition to
experiments, the overall statistical evaluation of the developed solution is presented in
Sect. 5. The paper ends with conclusions drawn based on the evaluation of the proposed
approach presented in Sect. 6.

2 Related Work

A great research effort has been devoted to studying the problem of schema evolution
in relational databases. The offered solutions to evolution problems in this domain can
be classified into two categories: schema adaptation and schema versioning. The goal
of approaches in the former category [1] is to adapt just the existing data warehouse
schema or ETL processes [2] without keeping the history of changes, while approaches
in the latter category [3—5] maintain multiple versions of schema that are valid dur-
ing some period of time. Another related research papers [6,7] deal with a formal
description of information requirements and their influence on the evolution changes.
All the above-mentioned approaches target data warehouses implemented in relational
database environments, thus, they cannot be utilized directly to perform adaptation of
data warehouses that integrate big data sources.

Several articles reviewing current research directions and challenges in the fields
of data warehousing and Big Data mention also evolution problems. The authors in
[8] mention dynamic design challenges for Big Data applications, which include data
expansion that occurs when data becomes more detailed. A review paper [9] indi-
cates research directions in the field of data warehousing and OLAP. Among others,
the authors mention the problem of designing OLAP cubes according to user require-
ments. Another recent vision paper [10] discusses the variety of big data stored in the
multi-model polystore architectures and suggests that efficient management of schema
evolution and propagation of schema changes to affected parts of the system is a com-
plex task and one of the topical issues.

Various recent studies have been devoted to solving the evolution problems in the
Big Data context. In the paper [11], we summarized the research made in the field of

An Approach to Evolution Management in Integrated Heterogeneous Data 49

Big Data architectures and analyzed available approaches with the purpose to identify
the most appropriate solution for the evolution problems. The most relevant studies that
deal with evolution problems are also discussed in this section.

We have also found several studies that deal with evolution problems in systems
aimed at Big Data storage and analysis. An architecture that exploits Big Data tech-
nologies for large-scale OLAP analytics is presented in the paper [12]. The architecture
supports source data evolution by means of maintaining a schema registry and enforcing
the schema to remain the same or compatible with the desired structure.

Another study that considers evolution is presented in the paper [13]. The author
proposes a data warehouse solution for Big Data analysis that is implemented using
MapReduce paradigm. The system supports two kinds of changes. Slowly changing
dimensions are managed with methods proposed in [14] and fact table changes are
handled by schema versions in metadata. Unlike our proposal, the system does not
process changes in heterogeneous data sources.

A solution to handling data source evolution in the integration field was presented
in the paper [15]. The authors propose the Big Data integration ontology for the def-
inition of integrated schema, source schemata, their versions and local-as-view map-
pings between them. When a change at a data source occurs, the ontology is supple-
mented with a new release that reflects the change. Our approach differs in that the
proposed architecture is OLAP-oriented and is capable of handling not only changes in
data sources, but also information requirements.

There is also the latest study presented in [16] dedicated to evolution problems in
heterogeneous integrated data sources. The authors propose to use deep learning to
automatically deal with schema changes in such sources.

A tool for evolution management in multi-model databases is presented in the paper
[17]. The solution includes a multi-model engine that is a mediator between a user
and databases of various formats. The engine accepts commands of a special schema
evolution language and propagates them to affected entities in multi-model databases.
The integration of multiple databases is based on a special abstract model. In contract
to the solution presented in the paper [17], we use different architecture that physically
integrates data at different levels, as well as employs a data warehouse which allows to
perform OLAP operations.

In the paper [18] we analyzed studies dedicated to metadata employed to describe
heterogeneous data sources of data lakes and we concluded that none of the examined
metadata models reflect evolution. For our solution, we adapted the metadata model
proposed in [19] to describe data sources of a data lake. The authors distinguish three
types of metadata: structure metadata that describe schemata of data sources, metadata
properties and semantic metadata that contain annotations of source elements. In our
approach, we extended the model with metadata necessary for evolution support.

3 The Proposed Approach to Evolution Management

In this section, let us concentrate on the description of our solution to topical evolution
problems. Our approach allows to perform OLAP operations and conduct other types
of analysis on integrated data from multiple heterogeneous sources as well as detects
evolution in these sources and facilitates evolution management.

50 D. Solodovnikova et al.

3.1 Data Warehouse Architecture

Analytic Tools

Source Layer
Semi- Data Analyst g S =i
structured
Data Source -

Pre-]

n" Level

\ —
Top Line —— Data computed
arehouse

OLAP Cubes

Visualization
Tools
Management
Tool

Evolution Adaptation Business
Metadata Metadata Analyst

Fig. 1. Data warehouse architecture for evolution management.

Our approach is based on the system architecture that is composed of various compo-
nents that provide data flow and processing from the source level to the data stored in
the data warehouse. The interaction of these components is shown in Fig. 1. A more
detailed description of the architecture is provided in the paper [21].

The central component of the architecture is a data processing pipeline that we
call data highway. We followed the idea and the concept of the data highway first pre-
sented in [14]. At the source level, data is obtained from various heterogeneous sources
(including big data sources) and loaded into the first raw data level of the data high-
way in its original format. Different types of data sources are supported in our app-
roach: structured (database tables), semi-structured (such as XML, JSON, CSV, etc.),
and unstructured data (text or PDF files, photos, videos). Then, data for each subsequent
data highway level is obtained from the previous level by performing transformations,
aggregations and integrating separate data sets. The number of levels, their contents and
the frequency of their updating are determined by the requirements of a particular sys-
tem. The final level of the highway is a data warehouse which stores structured aggre-
gated multidimensional data. Various types of analysis are provided on pre-calculated
OLAP cubes introduced to improve query performance as well as data at various levels
of the data highway.

Another essential component of the architecture is the metastore that incorporates
five types of interconnected metadata necessary for the operation of various parts of the
architecture. Schematic metadata describe schemata of data sets stored at different lev-
els of the highway. Mapping metadata define the logic of ETL processes. Information
about changes in data sources and data highway levels is accumulated in the evolution
metadata. Cube metadata describe schemata of pre-computed cubes. Adaptation meta-
data accumulate proposed changes in the data warehouse schema as well as additional
information provided by the developer required for change propagation. We give an
overview of the metadata that we maintain in the metastore to support the adaptation of
the system after changes in data sources and information requirements in Subsects. 3.3
and 3.4.

An Approach to Evolution Management in Integrated Heterogeneous Data 51

Metadata at the metastore are maintained via the metadata management tool that
integrates the unique feature of the architecture - the adaptation component that is aimed
at handling changes in data sources or other levels of the data highway. Change handling
is performed in the following steps:

— Changes are detected by the change discovery algorithm of the adaptation compo-
nent and information about them is recorded in the evolution metadata.

— Change handling mechanism of the adaptation component determines possible sce-
narios for each change propagation. The information about possible scenarios for
each change type is stored in the adaptation metadata.

— Scenarios that may be applied to handle changes are provided to a data warehouse
developer who chooses the most appropriate ones.

— The adaptation component leads the implementation of the chosen scenarios. Since
certain scenarios may require additional data from the developer, such data are
entered by the developer via the metadata management tool and stored in the adap-
tation metadata after the respective scenario has been chosen.

3.2 Atomic Change Types

Various kinds of changes to data sets employed in each level of the data highway must
be handled by the adaptation component. Based on possible operations that may be
applied to various elements of the schematic metadata model, we defined a set of atomic
change types that must be supported in our proposed solution. These types classified
according to the part of the metadata model they affect follows:

— Schematic changes: addition of a data source, deletion of a data source, addition of a
data highway level, deletion of a data highway level, addition of a data set, deletion
of a data set, change of data set format, renaming a data set, addition of a data item,
change of a data item type, renaming a data item, deletion of a data item from a data
set, change of a data item type, addition of a relationship, deletion of a relationship,
addition of a mapping, deletion of a mapping;

— Changes in metadata properties: addition of a metadata property, deletion of a meta-
data property, update of a value of a metadata property.

3.3 Schematic, Mappings and Evolution Metadata

To accumulate metadata about the structure of data sources as well as data sets included
at various levels of the data highway and to maintain information about changes that
occur in them, we use the metadata model presented in Fig. 2.

The class Data Set is used to represent a collection of Data Items that are individ-
ual pieces of data. The class Data Set is split into three sub-classes structured, semi-
structured and unstructured data set, according to the type and format. A data set may
be obtained from a Data Source or it may be a part of a Data Highway Level. Relation-
ships between data items in the same data set or across different data sets, for example,
foreign key, composition, predicate or equality, are implemented by means of an asso-
ciation class Relationship.

52 D. Solodovnikova et al.

«enumeration» Data Highway Level
Data Source VelocityType
< — +Name: String
«enumeration» +game_. S_mn_gs) Batch
SSFormatType escription: String Near real-time
Real-time
XML
JSON Structured Data Set \ S"jam /
csv 3
1.* i
HTML «enumeration»
Excel IS~ ~/\ Data Set RoleType
Key-Value ’| semi-structured Data Set +Name: String DW Dimension
RDF - D +Description: String DW Fact table
+Format: SSFormatType +Velocity: Velocity Type [==="""""""> bw Attribute
+Frequency: Strin
«enumeration» g +R0|g: RoIgType 9 DW Measure
USFormatType
Unstructured Data Set
Text document
image R +Format: USFormatType «enumeration»
Video ItemType
Audio B
Sensor - - . Column
Geospatial Relationship | . -1--F = [‘Chlld 1 /E\lter_?jent
+Type: RelationshipType 4 Obr'l L;[e
ject
«enumeration» B 0-1 Data item 7 Array
RelationshipType |,---~ T +parent | *Name: String +arget| Text block
Composition L Metadata Property [:;‘{)ﬁ‘:‘: gi'@%’gg Key
Foreign key +Name: String *
Predicate +Value: String
N
X l . Mapping
+origifr = - -
Author 0.1 * +Operation: String
- * *
+Username: String ? - ”
\ Change
i 0.1 i i *
«enumeration» | Y17 +Datetime: Datetime
StatusType +Status: StatusType * -
= 5| +Type: ChangeType «gaumerauon»
In proaress +Description: String [---.__ angeType
b +AttrName: String Addition
* | +NewAttrvalue: String Deletion
* +OldAttrvalue: String Attribute value update

Fig. 2. Schematic and evolution metadata model [18].

We introduced an association class Mapping to make it possible to follow the lin-
eage of data sets. A mapping defines a way how a target data item is derived from
origin data items by a transformation function stored in the attribute Operation of the
association class Mapping.

To represent other characteristics of data apart from their structure, we included a
class Metadata Property. Examples of metadata properties are file or table name, size,
character set, data type, length, precision, scale, or even mechanism used to retrieve
data from a data source. Each property is represented by a name:value pair to allow
for some flexibility as metadata properties of different elements may vary considerably.
If a property has been entered manually by a user, we associate such property with an
Author who recorded it.

Finally, a class Change is included in the model to store information about evo-
Iution. Each instance of the class Change is associated with one of the classes in the
model which determines the element of the model that was affected by the change.
In the metadata, we store the date and time when the change took place, type of the
change and status that determines whether that change is new, already propagated or
being currently processed. If a change was performed manually by a known user, the
corresponding Author is associated with it.

An Approach to Evolution Management in Integrated Heterogeneous Data 53

3.4 Adaptation Metadata

The metadata presented previously allow to describe the structure of data highway lev-
els and properties of data sets and to store data on discovered changes. The metadata
essential for change propagation are demonstrated in Fig. 3. The metadata model incor-
porates a class Change from the evolution metadata. Based on data in this class, it is
possible to determine the atomic change type that is used to select possible scenarios
for change processing.

Change Adaptation Condition Change Adaptation Operation «enumeration»
i OperationType
éi?::;;?;i;l(;:z +Condition: String +Operation - - P - VP
""" +Type: ConditionType +Type: OperationType Automatic
Automatic Manual
Manual 1 . 1
*) * «enumeration»
— - - - AtomicChangeType
Manual Condition Fulfillment| [Change Adaptation Scenario Step| 0..1
- - Data item addition
+Status: FulfillmentStatusType +ChangeType: AtomicChangeType tprevious | pata highway level addition
Data set addition
,77 1 A SS—— Data source addition
* : . -
«enumeration») Relatlpnshlp f'i_ddmon
FulfillmentStatusType Mapping addition L
N Metadata property addition
Fulfilled . Change Adaptation Process Data item deletion
Not fulfilled +DateTime: Timestamp
+ E i
<enumeration» . Type: ExecutionStatusType K ———
StatusType 1 | ExecutionStatusType
New Change X Executed
In progress L.
Processed “~-.y| +Datetime: Datetime Author Not executed
+Status: StatusType *0.1 "y e
«enumeration» +Type: ChangeType (& | FUsername: String «enumeration
ChangeType | ...>| tDescription: String DataType
+AttrName: Strin iti
Addition +NewAttrvalue: Sg!ring N Additional Data Dataset example
Deletion +OldAttrValue: String +Data: Text < Alternative data item
Attribute value update +Type: DataType Alternative data source

Fig. 3. Adaptation metadata model.

Metadata for Change Adaptation Scenarios. The classes Change Adaptation Opera-
tion, Change Adaptation Condition and Change Adaptation Scenario Step are intended
for storing information about change adaptation scenarios and their components.

Instances of the class Change Adaptation Operation are operations that must be
performed to handle a change in the system. An operation is assigned a type that indi-
cates whether it can be performed manually or automatically. In the former case, a
textual description of what the developer must do to perform the operation is stored in
the attribute Operation. In the latter case, the name of the procedure to be executed is
stored there.

Although a type of change can be determined at the time of its occurrence, it does
not guarantee the existence of an unambiguous change adaptation scenario. There are
various conditions under which scenarios can branch out. To store these conditions,
the class Change Adaptation Condition was introduced. Each instance of this class has
two attributes: type of the condition and the condition definition. Manual conditions
allow developers choose scenarios that are more suitable for the particular situation if

54 D. Solodovnikova et al.

multiple change adaptation scenarios exist. If the condition is executable manually, a
textual description of the condition is stored in the attribute Condition. If the condition
is automatic, the name of the function to be executed is stored there.

Each change adaptation scenario is a series of sequential steps. The steps of each
scenario are reflected by the class Change Adaptation Scenario Step. Each step of a
scenario is associated with an atomic change type, an adaptation operation, a set of
conditions that must be fulfilled for the step to be executed, as well as the previous
step of the same scenario. Having a link to the previous step maintains the sequence
of operations and facilitates adjustments to adaptation scenarios. Multiple adaptation
scenarios correspond to each atomic change type.

Change Adaptation Operation and Change Adaptation Condition are independent
classes and their instances are actually building blocks of scenarios. At the time of the
system installation, first, all possible operations and conditions are added to the meta-
data. Then, scenarios are constructed by selecting appropriate operations and conditions
and arranging them in a sequence. This way, the classes Change Adaptation Operation,
Change Adaptation Condition and Change Adaptation Scenario Step are pre-filled with
data manually before any changes occur. On one hand, such approach allows to easily
modify existing scenarios by removing steps or inserting new ones. On the other hand,
new instances of these classes may be added later during the usage of the system if new
scenarios become necessary.

Metadata for Change Propagation. The classes Change Adaptation Process, Manual
Condition Fulfillment and Additional Data were included in the model to support actual
change propagation. To store information about the execution of each operation during
the change propagation process, we introduced the class Change Adaptation Process
which reflects the adaptation scenario steps corresponding to each actual change that
occurred in the system. Each instance of Change Adaptation Process is linked with the
adaptation operation via the Change Adaptation Scenario Step and is associated with
a corresponding Change. To keep track of the change propagation process, the status
of the operation is also stored, as well as the date, time and the user who executed the
operation.

During the change propagation, automatic conditions can be checked before each
step since they do not require the intervention of the developer. However, when eval-
uating a manual condition, it is necessary to keep information about the decision the
developer has made. For this purpose, we introduced a class Manual Condition Fulfill-
ment.

Moreover, various additional data may be required to be provided by a developer to
perform operations and to evaluate conditions. If any additional information is needed,
it is reflected by a class Additional Data, which is associated with a particular Change
and stores information on a data type or purpose for which the additional data is used,
as well as the data itself.

3.5 Change Discovery in Data Sources

The main task of the adaptation component of our proposed architecture is to detect
changes that have taken place and to propagate each discovered change. Most of the

An Approach to Evolution Management in Integrated Heterogeneous Data 55

atomic changes supported by our approach may be identified automatically by the
change discovery algorithm implemented as a part of the adaptation component and
described in detail in the paper [22]. Manually introduced changes are processed by
the metadata management tool, however, automatic change discovery is triggered when
any new data are loaded from data sources into the data highway by wrappers or during
ETL processes.

Initially, the change detection algorithm gathers schema metadata and properties of
existing data sources and data highway levels in temporary metadata. For metadata col-
lection, special procedures are used depending on the format of data sets. Structured,
semi-structured and unstructured data sets are handled by different procedures. To iden-
tify changes in metadata, a change discovery algorithm first processes data sources
and data highway levels, then data sets and data items, and finally mappings and rela-
tionships. For each processed element, the algorithm compares metadata that describe
the current structure and features of data used in the system with the metadata avail-
able at the metastore and identifies differences that determine types of atomic changes
occurred. The identified changes are then saved in the evolution metadata.

3.6 Change Propagation

After changes have been detected and recorded in the evolution metadata, the adap-
tation component must first generate potential adaptation scenarios for each change
and then execute scenarios according to branching conditions. We predefined adapta-
tion scenarios for each atomic change type and operations and conditions necessary for
each scenario. The full list of scenarios along with their components can be found in
the paper [20], but we will focus on the details of change handling mechanism in this
subsection.

In order to successfully propagate any change to the system, the change handling
mechanism analyzes schematic and mapping metadata as well as change adaptation
scenarios, operations and conditions predefined for each atomic change type. Based
on the analysis results, the mechanism creates metadata necessary for change handling
and leads the change propagation process by evaluating automatic conditions and per-
forming automatic operations. There are two stages of the change handling mechanism
described in detail in the following subsections.

Creation of Change Adaptation Scenarios. The goal of the first stage of the change
handling process is to determine potential change adaptation scenarios and create initial
instances of the classes Change Adaptation Process and Manual Condition Fulfillment.

The high-level pseudocode of the initial change processing stage implemented as a
procedure CreateChangeAdaptationProcess is presented as Algorithm 1. First, changes
with the status New are selected. These are changes that have not been processed
yet. Then for each new change, the atomic change type is determined by the function
GetChangeType. After that, all scenario steps predefined for the determined change type
are selected and the corresponding instances of the class Change Adaptation Processes
are created. Then, manual conditions for the current scenario step are selected, linked
with the currently processed change and saved as an instance of the class Manual Con-
dition Fulfillment with the status Not fulfilled. If, according to scenario definition, the

56 D. Solodovnikova et al.

same manual condition must be evaluated for multiple scenario steps, only one instance
of the class Manual Condition Fulfillment is created. Finally, the status of the change is
updated to In progress so that handling of this change can be considered as initiated.

Procedure CreateChangeAdaptationProcess()

while exists Change C where C.status = *New’ do

vProcessCreated < false;

vChangeType < GetChangeType(C);

if vChangeType is not null then

foreach Scenario step S that exists for vChangeType do

P « InsertChangeAdaptationProcess(S,C);

foreach Condition M that exists for scenario step S where M.type =
"Manual’ and not exists Manual condition fulfillment for Change C
and Condition M do

InsertManualConditionFulfillment(C, M);
end
vProcessCreated «— true;

end

if vProcessCreated then
UpdateChangelnProgress(C);

end

end
end

end
Algorithm 1. Creation of change adaptation scenarios.

Execution of Change Adaptation Scenarios. When all initial metadata are created,
the second stage of the change handling mechanism - execution of change adaptation
scenarios is run. Scenario execution is based on condition checks and execution of oper-
ations. Manual operations and conditions require the intervention of a developer. In such
a case, the algorithm is stopped and resumed only when the developer has made his or
her decision regarding manual conditions or performed the specified operation.

The Algorithm 2 demonstrates the pseudocode of the procedure RunChangeAdapta-
tionScenario that executes an adaptation scenario for a specific change. First, the func-
tion GetChangeAdaptationScenarioSteps retrieves adaptation process steps as instances
of the class Change Adaptation Process created during the previous stage of the mech-
anism. Then for each step that has not been previously executed and has a status Not
executed, the change propagation is continued only if it is necessary to perform an auto-
matic operation, as well as the corresponding conditions are met. Manual conditions are
checked using instances of the class Manual Condition Fulfillment. For automatically
evaluable conditions, a function name is obtained from the attribute Condition of the
class Change Adaptation Condition. By running the corresponding function it is possi-
ble to evaluate the condition fulfillment. Following the same principle, the procedures
for performing operations of the change adaptation scenario are also executed. Their
names are stored in the column Operation of the class Change Adaptation Operation.
After execution of each process step, that the status of the process step is set as executed.

An Approach to Evolution Management in Integrated Heterogeneous Data 57

Procedure RunChangeAdaptationScenario(C: Change)
Steps «— GetChangeAdaptationScenarioSteps(C);
foreach process step S in Steps do
if S.Type = Not executed then
O «— GetProcessStepOperation(S);
if O.OperationType = Automatic and ConditionsFulfilled(C, S) then
ExecuteAdaptationProcessStep(C,0);
S.Type <+ Executed;
end
exit;
end

end

end
Algorithm 2. Execution of change adaptation scenarios.

3.7 Change Adaptation Scenarios

After any changes have been detected, the adaptation component of our proposed archi-
tecture must first generate potential adaptation scenarios for each change and then exe-
cute scenarios according to branching conditions. We have predefined adaptation sce-
narios for each change type and operations and conditions necessary for each scenario.

Several change adaptation scenarios for real-world changes that occurred in the
case study system are described in Subsect. 4.4, however, in our paper [20] the detailed
explanation of each scenario is given.

In general, for changes that involve addition of new data items, mappings, relation-
ships, data sets, data sources or data highway levels, the adaptation component requires
human participation to handle the change. The scenarios for these changes are mainly
semi-automatic and include operations for additional metadata definition, provision of
example data sets and/or discovery of structure of newly created elements.

However, when existing data items, mappings, data sets, data sources or data high-
way levels are deleted, usually multiple scenarios exist for each change. The goal of
such scenarios is to try to replace the missing element with others or remove it and other
dependent elements from ETL processes (so that this element is no longer updated) if
replacement is not possible. If a relationship is deleted, the scenario is selected based
on the relationship type. For foreign key, mappings that involve that foreign key are
determined automatically and a developer must modify them. If a composition relation-
ship is deleted from an XML document, the structure of that document is updated in the
metadata.

Changes that involve renaming any element are usually processed automatically and
only one scenario is available for each of such change type. The idea of the scenario is
to update the metadata with a new name of an element.

Change of a data set format is processed semi-automatically. The idea of the avail-
able scenarios is to determine mappings that define transformations for the changed data
set so that a developer can manually redefine them. If a structure of a data set changed

58 D. Solodovnikova et al.

along with its format, metadata describing a new structure are automatically gathered
before other operations.

If data type of a data item is changed it must be determined whether a new type
can still be used in mappings. Otherwise, the developer must manually modify ETL
processes and mapping metadata.

Finally, any changes to metadata properties require human participation. In many
cases changes in metadata properties impact the definition of ETL processes and map-
pings, however, it is rarely possible to determine dependent mappings automatically.
If it is not possible, the developer is just informed about the change and must make a
decision about the change propagation.

3.8 Implementation

We implemented a software prototype that includes the functionality of the metadata
management tool, adaptation component and metadata repository (metastore) of the
data warehouse architecture. Other components of the architecture depend on the sys-
tem that our approach is applied to. Depending on the technologies used for the imple-
mentation of the data highway of the architecture, the prototype must be supplemented
with procedures for automatic propagation of operations made by the tool in the meta-
data to the corresponding data sets. Wrappers that extract data from sources and collect
metadata about source structure must be implemented and injected into the tool. Cur-
rently, there are wrappers for gathering metadata from relational, XML and unstructured
text and PDF data sources.

For each of the automatically executable operation, we implemented a procedure
that modifies the metadata and if necessary makes changes to the structure of data sets.
We also implemented special functions that check each of the automatically evaluable
conditions.

The following technologies were used for the prototype implementation:

— The metastore is implemented as a relational database Oracle in accordance with the
designed metadata models.

— Two packages that perform metadata creation, change discovery and change treat-
ment are implemented at the database using PL/SQL.

— The application contains a web interface with back-end implemented using PHP
Laravel framework.

— For the operation of the application, Oracle database, web server and PHP engine
are necessary.

4 Proof of Concept - Publication Data Warehouse

To perform an experimental approbation of the software prototype in order to validate
the proposed approach to evolution handling, the developed solution was applied to the
data warehouse that integrates data on research publications authored by the faculty
and students of the University of Latvia. The system was appropriate for the appro-
bation since it integrated data from multiple heterogeneous data sources and several

An Approach to Evolution Management in Integrated Heterogeneous Data 59

changes occurred in its data sources and business requirements. The goal of the case
study system is to integrate data about publications from multiple heterogeneous data
sources and to provide these data for analysis in a data warehouse. The architecture of
the developed system that includes data sources and data highway levels is shown in
Fig. 4.

Source Layer

1* Level 2" Level
Raw Source Structured
Data Data

Extractor

Metastore

Fig. 4. Architecture of the publication data warehouse [18].

4.1 Data Sources

Data for the data warehouse are collected from one structured and three semi-structured
data sources. None of the data sources contain information about absolutely all publica-
tions, so data at the sources are complementary, hence, they must be merged to obtain
the most complete view on each publication.

LUIS is a university management system implemented in Oracle database. Along
with information necessary for the provision of various university processes, LUIS
stores data about publications entered by publication authors or administrative staff.
We gather these publication data as well as data about authors and their affiliations
from LUIS.

Aleph is an external library management system that stores data about books and
other resources available at various libraries of educational institutions in Latvia. In
addition to that, Aleph contains information on papers affiliated with the University
of Latvia. Data in Aleph are entered by librarians. For the data warehouse, we gather
bibliographic data about publications in XML format using a special API.

Scopus and Web of Science (WOS) are external indexation systems. Data from these
systems are collected in XML format using API. We use four data set types from Sco-
pus: publication bibliographic data, author data, affiliation data, and data about publica-
tion citation metrics. Only one data set type is available to the University of Latvia from
WOS. It contains citation information, limited bibliographic information and author
data (names, surnames and ResearcherID field).

4.2 Data Highway

The data highway of the publication system consists of three levels. First, data from
data sources are ingested and loaded into the raw data level. We loaded data from the
relational database LUIS into Hive tables using Scoop. For other sources, we first col-
lected data files using API and saved them in Linux file system, then transferred these
data to HDFS using a custom script.

60 D. Solodovnikova et al.

In level 2 of the data highway, we transformed XML files into Hive tables. Data
obtained from LUIS were not included in the 2nd level since they did not require addi-
tional transformation.

Finally, we implemented a data warehouse in Hive. Partially transformed data from
external sources were integrated with LUIS data and loaded into the data warehouse.
We also solved several data quality issues and performed elimination of duplicate pub-
lications in this process.

4.3 Metadata

Since we had access directly to LUIS data source, we embedded a procedure directly
into the data source system that collects metadata about the structure and other meta-
data properties of tables used to populate the publications system. After source data in
XML format are loaded from other data sources, we run another procedure that collects
metadata about the structure of XML documents. This procedure was already available
in LUIS, so we reused it.

Using the metadata management tool, we initially defined mappings between data
items of the three data highway levels and metadata properties that were not discovered
automatically.

4.4 Evolution

During operation of the publication system, several changes occurred in data sources,
as well as in business requirements. Changes in data sources were discovered during
the comparison of the metadata present in the metastore and structure and properties of
the data incoming from the data sources. Changes in business requirements resulted in
a manual modification of the system and metadata via the metadata management tool.
Such real-world changes include an addition of new data items and removal of existing
data items in data sources, addition of a new data source and change in a value of a data
set property. In order to practically verify our solution, we also emulated test cases for
other types of changes. Due to space limitations, in the following sub-sections we give
only examples of several real-world changes to demonstrate how they were handled
according to our approach.

Addition of a Data Source. In line with new requirements, the publication sys-
tem was supplemented by a new data source DSpace that contained full text files of
papers and metadata associated with them as tags. This change was implemented semi-
automatically using the metadata management tool.

To create a new data source, the developer first manually entered data source name
and description in the form via the metadata management tool. Then, a new record
corresponding to the new source was created in the metadata table Data Source that
implements the class Data Source from the schematic metadata model. Automatically,
a linked record in the table Change that implements the class Change with the type
Addition was created too.

An Approach to Evolution Management in Integrated Heterogeneous Data 61

There is only one adaptation scenario defined for the addition of a new data source.
According to scenario definition, if a new data source is required for decision making,
examples of data sets from the new source must be added manually so that the metadata
collection procedures can generate the necessary metadata for the new source structure.
The adaptation component must then create the data structures according to the data sets
of the new source at the first level of the data highway. The developer must then define
schemas of other new data highway levels, ETL processes, and create the corresponding
metadata.

To handle the change, the developer initiated the change handling process in the
metadata management tool. The change adaptation process steps given in Fig. 5 were
created with the status Not executed.

Change adaptation process steps Run change adaptation scenario

Condition
Operation Status Type type Condition Status

Scenario steps
Add dataset examples. Set Manual

executed

change_adaptation.get_dataset_structure Not Automatic Automatic change_adaptation.dataset_example_added
executed condition

change_adaptation.add_dataset_to_1st_dhighlevel Not Automatic Automatic
executed condition

Define other data highway levels Set Manual Automatic

executed condition

Define ELT processes in mapping metadata. & Manual Automatic

executed condition

Fig. 5. Change adaptation scenario for the addition of a data source.

No manual conditions were created, but according to the definition of the scenario,
the automatic condition change_adaptation.dataset_example_added must be checked
after the execution of the operation Add dataset examples. This condition verifies that
a developer added examples of data sets in a new data source. The status of the change
was updated to In progress.

Since the first step of the scenario must have been performed manually, the devel-
oper added 4 data set examples used in the new data source. Three of the new data sets
were XML files describing properties of papers and one data set was a PDF of a paper
full text. The files were uploaded into the folder at the server, but the data about data set
examples were saved in the metadata. The metadata stored for the data set examples are
shown in Fig. 6. Then, the developer set the status of the first process step Add dataset
examples as Executed.

Since there were no manual conditions that must have been checked or verified and
the next 2 steps of the process are automatically executable, the developer launched
change adaptation scenario via the metadata management tool. The tool executed 2
procedures corresponding to the automatic process steps.

The procedure change_adaptation.get_dataset_structure analyzed the structure of
the example files and created metadata describing the structure and properties of 4 new
data sets that correspond to the data set examples. These data sets were added to the new

62 D. Solodovnikova et al.

Change adaptation additional data Create additional data

Type Data
Dataset Format: XML: Path: files/40QocpiQgrofZKofpVBt1IfauFUUPvpj)zFekpyT.xml; Data source name: ds_items; Data source description: ;
example Velocity: Batch; Frequency: Daily

Dataset Format: XML: Path: files/MJpZsdpYhjyL50LTtGIn64HbdUaArNCiA1K5nySg.xml; Data source name: ds_bitstreams; Data source description: ;
example Velocity: Batch; Frequency: Daily

Dataset Format: XML: Path: files/KueiufsA67VHOAAbJSWPMfgNkNhL7OPsILWAEZD4.xml; Data source name: ds_metadata; Data source

example description: ; Velocity: Batch; Frequency: Daily

Dataset Format: Text; Path: files/SwfxGTukdNYDZLofuHHISUxVko5926fpLoZICWuc.pdf; Data source name: ds_bitstream; Data source description: ;
example Velocity: Batch; Frequency: Daily

Fig. 6. Data set examples for the addition of a data source.

data source. For PDF file, the procedure also created metadata properties: file extension
(PDF) and file path at the server.

The procedure change_adaptation.add_dataset_to_lst_dhighlevel copied the meta-
data describing the structure and properties of 4 new data sets created in the previous
step to the data highway level Raw data level and created mappings from data items in
the data source to data items in the first data highway level.

The last two steps of the change adaptation process (Define other data highway lev-
els and Define ETL processes in mapping metadata) were executed manually by the
developer using the metadata management tool. After the developer performed all nec-
essary manual actions and set the aforementioned two steps as executed, he must have
launched the change adaptation process again. Since there were no more adaptation pro-
cess steps with the status Not executed, the change status was modified to Processed.

Addition of a Data Item. There were several changes of the type: data item addition in
the case study system. Let us discuss one of them. A new XML element citeScoreYear-
Info was added to the data set SCOPUS_RA that represents citation metrics obtained
from the data source SCOPUS. It was composed of several sub-elements that were also
absent in the previously gathered data sets.

The change was detected automatically by the change discovery algorithm that ana-
lyzed metadata describing the existing data set and compared it with the actual structure
of the data set. The data set SCOPUS_RA of the data source SCOPUS was automati-
cally supplemented with a new data item citeScoreYearInfo and its sub-elements in the
schematic metadata. Since SCOPUS_RA is an XML data set, relationships of the type:
composition were created for all parent and child data items that are descendants of the
data item citeScoreYearInfo. Automatically, the record in the table Change with the type
Addition was created too for the parent element citeScoreYearInfo, the change records
were not created for sub-elements.

In general, if a data item has been added to an existing data set which is a part
of a data highway level, mapping metadata and properties of the new data item are
created. If the developer has made this change, he or she must specify a name, type,
and (if applicable) data warehouse role of the new data item, the data set that contains
the new data item, mapping metadata, and metadata properties. If an additional data
source which was not previously used in the system is required for data loading, it must
be added by implementing the change Addition of a data source. If a new data item
has been added to a source data set, such change is processed automatically. Metadata
describing the new data item is collected by the adaptation component, and the new

An Approach to Evolution Management in Integrated Heterogeneous Data 63

data item is added to the data set at the first level of the data highway that corresponds
to the source data set.

So, when the developer initiated the change handling process of the addition of the
data item citeScoreYearInfo, the change adaptation process steps shown in Fig. 7 were
created. As it is seen in the figure, there are 2 different scenarios for this change type.
The choice of scenario in this case depends on two automatic conditions that check to
which element a new data item was added (to data source or data highway level). One
manual condition If a new data source is required was created and associated with the
last scenario step Add new data source. The status of the change was updated to In
progress.

Change adaptation process steps Run change adaptation scenario

Condition

Operation Status Type type Condition Status
Scenario steps
change_adaptation.add_dataitem_to_1st_dhighlevel ~ Not Automatic Automatic change_adaptation.dataitem_added_to_datasource

executed condition
Scenario steps
Define mapping for the new data item and Set Manual Automatic ~ change_adaptation.dataitem_added_to_dhlevel
metadata properties. executed condition

Add new data source Not Manual ~ Manual If anew data source is required o

executed condition manual

condition
fulfilled

Fig. 7. Change adaptation scenarios for the addition of a data item.

Since in this case, the new data item was added to a source dataset, the first scenario
which was fully automatic was selected and the developer just launched the change
adaptation process. The change handling mechanism executed the single step of the
scenario change_adaptation.add_dataitem _to_Ist_dhighlevel which added the new data
item along with all its sub-elements to the data set at the first level of the data highway
that corresponded to the source data set. This was done by

— copying the schematic and mapping metadata describing the new data item and its
sub-elements to the data highway level Raw Source Data;

— creating a new relationship with the type Composition which specified that the new
data item citeScoreYearlnfo is a child of a data item citeScoreYearInfoList that was
already present at the first data highway level;

— creating mappings from new data items in the data source to new data items in the
first data highway level.

Since there were no more adaptation process steps with the status Not executed, the
status of the change was set to Processed.

Deletion of a Data Item. An XML element /PPList was removed from the Scopus
metrics obtained from SCOPUS data source. It was composed of several subelements
that were also absent in the previously gathered data sets.

This change was detected automatically by the change discovery algorithm that ana-
lyzed metadata at the metastore describing the data set and compared it with the actual

64 D. Solodovnikova et al.

structure of the same data set. The missing element and its sub-elements were discov-
ered in the data set SCOPUS_RA. In the metadata, the corresponding Data Set was
marked as deleted and date and time of the change discovery was recorded. Automati-
cally, the record in the table Change with the type Deletion was created for the parent
element /PPList, but change records were not created for sub-elements.

In general, there are 3 possible scenarios for the propagation of the addition of a
data item, two of them involve human participation and one is fully automatic. If the
deleted data item belonged to a source data set, two adaptation scenarios can be applied:

— Replacement of a Deleted Data Item with Data from Other Sources or Data Sets. In
order to implement this adaptation scenario, the developer must provide additional
information on an alternative data item or a formula that calculates the deleted data
item from other data items. Since the alternative data item or other data items used in
the formula might not be present in the system, it may be necessary to add metadata
about the structure and properties of the new data items.

— Data item skipping. If the deleted data item can not be replaced by others or calcu-
lated by any formula, the adaptation component automatically determines data items
of the data highway affected by the change and modifies ETL processes along with
the mapping metadata to skip these affected data item.

If the developer has deleted a data item from a data set that is a part of a data high-
way level, the change is propagated automatically. Any other data items that have been
obtained from the deleted data item are identified by analysing the mapping metadata. If
such data items exist, the deleted data item is replaced in the mapping metadata and ETL
processes. Such replacement is performed automatically if a data source from which the
deleted data item was extracted is still available. If the data source is not available any
more, the change must be processed by one of the above described scenarios.

In case of the deletion of a data item IPPList, the change adaptation processes
demonstrated in Fig. 8 were created when the developer initiated change propagation
in the metadata management tool. As it is shown in the figure, there are 3 different
scenarios for this change type.

According to the definition of the scenarios, two automatic conditions must be
checked before the execution of the first step of each scenario. These conditions deter-
mine whether the deleted data item was removed from an existing data set which is a
part of a data source or a data highway level. Two manual conditions were also created.
If a data item gets deleted from a data set belonging to a data source, a developer must
evaluate whether there is an option to replace a deleted data item with data obtained
from other existing data items and set the corresponding manual condition as fulfilled.
This allows the change handling process execute the scenario unambiguously.

Since in this case, the data item IPPList was deleted from a source data set, the
condition change_adaptation.dataitem_from_datasource returned true and only the first
two scenarios could be executed. As it was not possible to substitute the deleted data
item by another data item present in any of the data sources, the developer selected the
second scenario and set the condition If there are no options to replace data item with
data from another data items as fulfilled. After that, the developer just launched the
change adaptation process because the only step of it was executable automatically.

An Approach to Evolution Management in Integrated Heterogeneous Data 65

Change adaptation process steps Run change adaptation scenario

Condition
Operation Status Type type Condition Status
Scenario steps
Define alternative data items Not Manual Automatic change_adaptation.dataitem_from_datasource
executed condition
Manual If there is an option to replace data item with G
condition data from another data items]
condition
fulfilled
change_adaptation.set_alternative_data_items Not Automatic Automatic change_adaptation.alternative_data_items_added
executed condition

Scenario steps

change_adaptation.skip_dependent_dataitems Not Automatic Automatic change_adaptation.dataitem_from_datasource
executed condition
Manual If there are no options to replace data item with Set
condition data from another data items manual

condition
fulfilled

Scenario steps

change_adaptation.replace_dependent_dataitems ~ Not Automatic Automatic change_adaptation.dataitem_from_dhlevel
executed condition

Fig. 8. Change adaptation scenarios for the deletion of a data item.

The change handling mechanism executed the step change_adaptation.
skip_dependent_dataitems, which set all mappings that involve the deleted data item
as well as depend on other data items that are obtained from the deleted data item as
deleted. Then, the same actions were performed with mappings involving sub-elements
of the deleted data item. As a result, the data items affected by the change would not be
updated anymore.

Since the selected scenario did not include any other adaptation process steps, the
change handling mechanism set change status to Processed.

Update of a Metadata Property Value. During the operation of the publication sys-
tem, the API request used to obtain Scopus metrics was changed. The information about
the API request was represented as a metadata property with the name API request. The
change was discovered during the execution of the script that extracts data from the API
since the script executed with errors. The change had to be processed manually since
the new API request could not be discovered automatically. The developer updated the
value of the metadata property using the metadata management tool. As a result, the
record in the table Change with the type Metadata value update was created. The val-
ues of the property before and after modification as well as the name of the property
were also added to the evolution metadata.

In general, the update of a metadata property value is an example of a change that
is handled fully manually in the following way. If change in a value of a property has
not been recorded as another change type (for example, as a change of data set format
or data item type), it must be checked whether the changed property has been used in
ETL procedures. In this case, all dependent ETL procedures must be adapted to utilize
the new value of the property.

So, to process the change in the API request, the developer initiated the change prop-
agation and one change adaptation process step shown in Fig. 9 was created. According

66 D. Solodovnikova et al.

to the definition of the scenario, one manual condition If changed property is used in
ETL procedures was created and associated with the only scenario step. The status of
the change was updated to In progress.

Change adaptation process steps Run change adaptation scenario

Condition
Operation Status Type type Condition Status

Scenario steps
Adapt dependent ETL procedures to utilize the ~ Not Manual Manual If changed property is used in S el
new value of the property executed condition ETL procedures ondition fulfilled

Fig. 9. Change adaptation scenario for the update of a metadata property.

Since the only adaptation scenario step must be executed manually and the condition
that must be checked before the step execution is also manual, the scenario execution
was performed by the developer. In this case, the scenario contained the instructions for
the developer to be executed to process the change. When the developer updated the
script used for data acquisition from the data source, set the condition and scenario step
as executed, the change handling mechanism set change status to Processed.

5 Statistical Evaluation of the Proposed Approach

For the 20 atomic change types listed in Subsect. 3.2, we defined 34 different change
adaptation scenarios. These scenarios were constructed from a total of 36 different oper-
ations and 46 conditions.

The distribution of scenarios by types (see Table 1) shows that 20% of scenarios
are fully automatic and only 15% of all scenarios are fully manual. Even though the
majority of scenarios still require human participation, in 85% of cases the proposed
approach to evolution management reduces the manual work.

Table 1. Distribution of scenarios by type.

Type Number | Percentage
Automatic 7 15%
Semi-automatic | 22 20%
Manual 5 65%
Total 34 100%

Figure 10 demonstrates the distribution of individual conditions and operations used
in scenarios by type. It can be observed that half of all operations that reflect steps
of change adaptation scenarios are automatically executable. The same indicator for
conditions is also close to the half (46%).

Figure 11 shows the proportions of automatic and manual operations and conditions
within each change adaptation scenario. The total ratio of automatic and manual parts
of all scenarios is 54 to 61, i.e. almost half (47%) of all scenario parts are executable
automatically.

An Approach to Evolution Management in Integrated Heterogeneous Data 67

Conditions Operations

S’

Fig. 10. Distribution of conditions and operations by type.

Scenarios

100%
80%
60%
40%
20%

0%

1234567 8 910111213141516171819202122232425262728293031323334

W Automatic operations/conditions ® Manual operations/conditions

Fig. 11. Proportions of automatic operations/conditions.

In addition to real-world changes described in Sect. 4.4, we emulated test cases for
every atomic change type based on the data sources and data highway of the case study
system described in Sect. 4 to verify the completeness of our solution. For change types
that can be propagated following multiple scenarios, we successfully tested all scenarios
defined in our solution.

Since in our solution we mainly operate with metadata and examples of data sets
that are not usually huge in terms of volume, we have not performed separate tests on
the performance of the change propagation mechanism. The most data-intensive change
adaptation operations in our solution are those that analyze the structure of example
data sets. However, since example data sets are much smaller in volume comparing to
data sets that are used for data loading, there are no performance issues even for the
aforementioned operations.

6 Conclusions

In this paper, we presented a solution to problems caused by the evolution of heteroge-
neous data sources or information requirements of the data analysis system that utilizes
data warehouse features for analysis support. The main results of our study include:

— A data warehouse architecture that allows to integrate data of various types and
formats and analyze it using OLAP as well as other data analysis methods;

68 D. Solodovnikova et al.

— A metadata repository that describes structure and other features of data sets
involved in integration and analysis in a flexible way, as well as changes occurred in
these data sets;

— A list of atomic changes that may occur in a data analysis system along with multiple
automatic, semi-automatic and manual change adaptation scenarios for each change
type;

— An adaptation metadata model for flexible storage of change adaptation scenarios
that allows definition of new operations and conditions and construction of new
scenarios out of them:;

— An algorithm for automatic discovery of changes occurred in the system that saves
information about detected evolution in the metadata repository;

— A mechanism for processing of discovered changes and changes performed man-
ually that generates one or several change adaptation processes for each change
according to change adaptation scenarios defined in the metadata and manages step-
by-step execution of these processes;

— A prototype of a tool for the management of metadata and change handling that
encompasses the implementation of the aforementioned algorithms.

There are several benefits of the proposed approach comparing to manual processing
of changes in data sources and information requirements:

— Changes of certain types are discoverable automatically, which is faster than a
human can detect them;

— Comprehensive information about changes occurred is available to the developer in
one place;

— Management of evolution is ensured with less human participation;

— Change processing is transparent as all operations performed and conditions verified
are available to the developer;

— The proposed approach is flexible and may be extended by defining additional opera-
tions and conditions in the corresponding metadata tables, then building new change
adaptation scenarios from them and assigning these scenarios to change types.

The possible directions of future work include development of additional automatic
scenarios for changes that currently require human involvement and preferences for
change adaptation scenarios that can be set by a developer to promote automatic change
handling. To implement this additional functionality, we are working on the metadata
that would allow to save user preferences if evolution of certain elements in the system
is probable in the future and a mechanism that would automatically propagate changes
in the data highway. Since our architecture is built based on the data lake paradigm
and source data are initially loaded in their original format, we can safely perform
change propagation. In case if any change was processed incorrectly, the system can be
recovered using the history of performed change adaptation operations available in the
metastore.

References

1. Bentayeb, F., Favre, C., Boussaid, O.: A user-driven data warehouse evolution approach for
concurrent personalized analysis needs. Integr. Comput.-Aided Eng. 15(1), 21-36 (2008)

10.

11.

12.

13.

15.

16.

17.

20.

An Approach to Evolution Management in Integrated Heterogeneous Data 69

. Wojciechowski, A.: ETL workflow reparation by means of case-based reasoning. Inf. Syst.

Front. 20, 21-43 (2018)

. Ahmed, W., Zimdnyi, E., Wrembel, R.: A logical model for multiversion data warehouses. In:

Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 23-34. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10160-6_3

. Golfarelli, M., Lechtenborger, J., Rizzi, S., Vossen, G.: Schema versioning in data ware-

houses: enabling cross-version querying via schema augmentation. Data Knowl. Eng. 59(2),
435-459 (2006)

. Malinowski, E., Ziményi, E.: A conceptual model of temporal data warehouses and its trans-

formation to the ER and object-relational models. Data Knowl. Eng. 64(1), 101-133 (2008)

. Thenmozhi, M., Vivekanandan, K.: An ontological approach to handle multidimensional

schema evolution for data warehouse. Int. J. Database Manag. Syst. 6(3), 33-52 (2014)

. Thakur, G., Gosain, A.: DWEVOLVE: a requirement based framework for data warehouse

evolution. ACM SIGSOFT Softw. Eng. Notes 36(6), 1-8 (2011)

. Kaisler, S., Armour, F., Espinosa, J.A., Money, W: Big data: issues and challenges moving

forward. In: Proceedings of the 2013 46th Hawaii International Conference on System Sci-
ences, HICSS 2013, pp. 995-1004. IEEE Computer Society (2013). https://doi.org/10.1109/
HICSS.2013.645

. Cuzzocrea, A., Bellatreche, L., Song, L.-Y.: Data warehousing and OLAP over big data:

current challenges and future research directions. In: Proceedings of the Sixteenth Inter-
national Workshop on Data Warehousing and OLAP (DOLAP 2013), San Francisco, Cali-
fornia, USA, pp. 67-70 (2013)

Holubova, 1., Klettke, M., Storl, U.: Evolution management of multi-model data. In: Gade-
pally, V., et al. (eds.) DMAH/Poly -2019. LNCS, vol. 11721, pp. 139-153. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-33752-0_10

Solodovnikova, D., Niedrite, L.: Handling evolution in big data architectures. Balt. J. Mod.
Comput. 8(1), 21-47 (2020)

Sumbaly, R., Kreps, J., Shah, S.: The big data ecosystem at linkedin. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, SIGMOD 2013,
pp. 1125-1134. ACM, New York (2013). https://doi.org/10.1145/2463676.2463707

Chen, S.: Cheetah: a high performance, custom data warehouse on top of MapReduce. VLDB
Endow. 3(2), 1459-1468 (2010)

. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional

Modeling, 3rd edn. Wiley, Hoboken (2013)

Nadal, S., Romero, O., Abelld, A., Vassiliadis, P., Vansummeren, S.: An integration-oriented
ontology to govern evolution in Big Data ecosystems. In: Workshops of the EDBT/ICDT
2017 Joint Conference (2017)

Wang, Z., Zhou, L., Das, A., Dave, V., Jin, Z., Zou, J.: Survive the schema changes: integra-
tion of unmanaged data using deep learning. arXiv preprint arXiv:2010.07586 (2020)
Holubova, 1., Vavrek, M., Scherzinger, S.: Evolution management in multi-model databases.
Data Knowl. Eng. 136 (2021)

. Solodovnikova, D., Niedrite, L., Niedritis, A.: On metadata support for integrating evolving

heterogeneous data sources. In: Welzer, T., et al. (eds.) ADBIS 2019. CCIS, vol. 1064, pp.
378-390. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30278-8_38

. Quix, C., Hai, R., Vatov, I.: Metadata extraction and management in data lakes with GEMMS.

Complex Syst. Inform. Model. Q. 9, 67-83 (2016)

Solodovnikova, D., Niedrite, L., Svilpe, L.: Managing evolution of heterogeneous data
sources of a data warehouse. In: Proceedings of the 23rd International Conference on Enter-
prise Information Systems, ICEIS 2021, vol. 1, pp. 1-2. Online Streaming (2021)

https://doi.org/10.1007/978-3-319-10160-6_3
https://doi.org/10.1109/HICSS.2013.645
https://doi.org/10.1109/HICSS.2013.645
https://doi.org/10.1007/978-3-030-33752-0_10
https://doi.org/10.1145/2463676.2463707
http://arxiv.org/abs/2010.07586
https://doi.org/10.1007/978-3-030-30278-8_38

70

21.

22.

D. Solodovnikova et al.

Solodovnikova, D., Niedrite, L.: Towards a data warehouse architecture for managing big
data evolution. In: Proceedings of the 7th International Conference on Data Science, Tech-
nology and Applications (DATA 2018), Porto, Portugal, pp. 63—70 (2018)

Solodovnikova, D., Niedrite, L.: Change discovery in heterogeneous data sources of a data
warehouse. In: Robal, T., Haav, H.-M., Penjam, J., Matulevicius, R. (eds.) DB&IS 2020.
CCIS, vol. 1243, pp. 23-37. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57672-13

https://doi.org/10.1007/978-3-030-57672-1_3
https://doi.org/10.1007/978-3-030-57672-1_3

	An Approach to Evolution Management in Integrated Heterogeneous Data Sources
	1 Introduction
	2 Related Work
	3 The Proposed Approach to Evolution Management
	3.1 Data Warehouse Architecture
	3.2 Atomic Change Types
	3.3 Schematic, Mappings and Evolution Metadata
	3.4 Adaptation Metadata
	3.5 Change Discovery in Data Sources
	3.6 Change Propagation
	3.7 Change Adaptation Scenarios
	3.8 Implementation

	4 Proof of Concept - Publication Data Warehouse
	4.1 Data Sources
	4.2 Data Highway
	4.3 Metadata
	4.4 Evolution

	5 Statistical Evaluation of the Proposed Approach
	6 Conclusions
	References

