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Artificial Intelligence, Deep Learning, 
and Machine Learning Applications 
in Total Hip Arthroplasty

Abstract  Artificial intelligence (AI) recently gained popularity in total hip arthro-
plasty (THA) applications due to several reasons including technological improve-
ments such as availability of data storage, processor capabilities, AI technique 
developments, and surgery-related improvements including presurgical analysis 
techniques developed and data collected for input to algorithms  (Mont, et al. J 
Arthroplast. 34(10):2199–200, 2019). In this work the focus will be on the research 
literature covering AI, deep learning (DL), and machine learning (ML) techniques 
that relate to only THA. This coverage excludes the combined results for total knee 
arthroplasty (TKA) and THA unless THA is analyzed independently from 
TKA. Applications determined include THA-related economic analysis and pay-
ment models, patients’ well-being, risk of blood transfusion, hip fracture detection 
(Kim and MacKinnon. Clin Radiol. 73:439–45, 2018). Biomechanical consider-
ations, optimal implant design, post-THA implant brand detection, hip disability 
upon THA, inpatient and outpatient THA surgery detection, automating and improv-
ing angle of acetabular component, text-based database search for THA-related fac-
tors, mechanical loosening detection of the transplant, patient comfort after THA, 
and implant failure detection. Many more applications are possible using AI, DL, 
and ML with few of them suggested in the conclusion section.

1 � Introduction

Development of algorithms allowing to make informed decisions based on patterns 
learned from data and mimicking human behavior by using technology has been 
one of the goals of researchers for real-life applications. Impact of AI, DL, and ML 
applications recently (within the last 5 years) started to gain popularity even though 
research on deep learning applications on THA can be seen as early as 1997 [1]. 
One of the key aspects of THA is to be one of the most successful orthopedic pro-
cedures developed in the twentieth century, a feature that can allow to make informed 
judgments by using algorithms for classification and prediction noting the ability to 
clearly distinguish many aspects of the operational procedures. For instance, there 
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are certain aspects that are clinically observed such as cement versus cementless 
THA procedures and reasons for implant failures that are known to train algorithms 
by using the corresponding data sets that can help with accurate results for testing 
algorithms on testing sets. Large number of features (i.e., input variables) and slow-
ness of manual processes encourage researchers to investigate the use of AI/DL/ML 
algorithms to determine models that allow predictions by incorporating all the fea-
tures simultaneously. Some of the challenges that we can list here with these algo-
rithms in applications can include the small size of the sample set used for modeling 
that would not necessarily allow generalization (depending on conditions) and a 
team of interdisciplinary researchers with a broad knowledge of concepts. One 
other challenge is applicability of the developed models on data sets. Throughout 
this article, we will cover the research literature on AI, DL, and ML techniques that 
relate to only THA.  This coverage excludes the combined results for total knee 
arthroplasty (TKA) and THA unless THA is analyzed independently from 
TKA. Applications determined include THA-related economic analysis and pay-
ment models, patients’ well-being, major complication analysis, sensor-based gait 
analysis of THA patients, risk of blood transfusion, hip fracture detection, biome-
chanical considerations, optimal implant design, post-THA implant brand detec-
tion, hip disability upon THA, inpatient and outpatient THA detection, automating 
and improving angle of acetabular component, text-based database search for THA-
related factors, mechanical loosening detection of the transplant, patient comfort 
after THA, and implant failure detection. Even though the following three sections 
are categorized into AI, DL, and ML, some of the articles have mixes of these meth-
ods. The last section is devoted to discussion and potential future research directions 
by using AI, DL, and ML.

2 � Machine Learning

A machine learning algorithm is designed in [2] to propose a risk-adjusted patient-
specific payment model (PSPM) that considers patient comorbidity used on preop-
erative big data to predict length of stay (LOS) and patient-specific inpatient 
payments after primary THA.  The eight variables used are age group, ethnicity, 
gender, Charlson Comorbidity Index (based on comorbidities such as congestive 
heart failure renal disease and cancer documented from the 12 months before the 
hospitalization to 3 days after discharge), discharge disposition, type of admission, 
all patient refined (APR) risk of mortality, and APR severity of illness (minor, mod-
erate, major, and extreme comorbidities). Data collected from 122,334 patients 
between 2012 and 2016 undergoing primary THA for osteoarthritis is used to train 
a naïve Bayesian model. Performance of the machine learning model is evaluated by 
using percentage of accuracy and area under the curve calculations. Age, race, gen-
der, and comorbidity scores are determined to be the most important characteristics 
for the generated model to demonstrate validity, reliability, and responsiveness for 
receiver operating characteristic curve values of 87% for LOS and 71% for LOS 
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payment. The patient complexity and error for predicting payment are determined 
to be correlated with 3% for moderate, 12% for major, and 32% for extreme comor-
bidities. The ML algorithm is determined to be good for predicting LOS and pay-
ment prior to primary THA.

Noting the financial challenges faced by the patients, authors of [3] developed 
logistic regression, artificial neural networks and random forest model. The data-
base use consisted of 63,859 recorded patients from 2017 to 2018. No overnight 
stay in the hospital is compared to 1–3  days of stay for the models developed. 
Among the 40 candidate variables chosen for modeling, top 10 important features/
variables included ethnicity, anesthesia type, race, BMI, age, blood urea nitrogen, 
year, albumin, sodium, and white blood cell count for the developed models by 
using artificial neural network (ANN), random forest, and multivariable regression 
in predicting same-day discharge patients after primary THA. Area under the curve 
and accuracy values are 71.5% and 65% for logistic regression, 76.2% and 73% for 
ANN, and 80.4% and 81% for random forest. Therefore, ANN and random forest 
are determined to be the outstanding classifiers for utilization in the future. These 
models demonstrated reliability for their future use in ambulance utilization and 
patient discharge. We refer to [33] for an elastic-net penalized logistic regression 
model developed for prediction of prolonged postoperative opioid prescriptions of 
THA patients.

Clinically significant outcome (CSO) for the patient-reported health state (PRHS) 
is modeled in [4] by using stochastic gradient boosting, random forest, support vec-
tor machine, ANN, and logistic regression. Variables used included preoperative 
PRHS, BMI, age, drug allergies, preoperative opioid use, smoking history, prior 
ipsilateral hip surgery excluding a THA, and diabetes. Data collected between 2014 
and 2017 on a total of 407 patients are analyzed based on discrimination, calibra-
tion, Brier score, and decision curve analysis. Stratified splitting of 80–20 on 
training-testing is conducted on the data. The minimal clinically important differ-
ence (MCID) is calculated for the PRHS by using a distribution. Feature selection 
with random forest algorithms was used recursively to determine the subset of vari-
ables to be employed for final algorithm development. Discrimination, calibration, 
Brier score, and decision curve analysis indicated the random forest algorithm to 
perform better on predicting patient’s achievement of clinically meaningful improve-
ments for the PRHS. It is also observed that preoperative PRHS score, BMI, age, 
and preoperative opioid use are the most important features. Clinically meaningful 
improvement for the PRHS after THA is determined for 69.2% of patients.

Machine learning methods are utilized in [5] for modeling major complications 
of patients after THA. Approximately 90,000 THA patients of a California hospital 
are included in the data set with 545 patients that had major complications. Variables 
included in the analysis included age, gender, race, ethnicity, insurance, and medi-
cal comorbidities that are used as the variables of the developed models. 
AutoPrognosis, logistic regression, random forest, gradient boosting, XGBoost, and 
AdaBoost are compared for their accuracies. AutoPrognosis model demonstrated 
higher accuracy (73.2%) when compared to logistic regression that had 64.4% and 
other machine learning algorithms. The outcomes of the modeling resulted in 
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classification attributes to differ for AutoPrognosis and logistic regression: Five fea-
tures that appeared to be the most important in risk prediction for using AutoPrognosis 
are chronic obstructive pulmonary disease (COPD), dementia, malnutrition, malig-
nancy, and Medicare coverage, while logistic regression indicated the importance of 
variables such as chronic atherosclerosis, renal failure, and chronic obstructive pul-
monary disease. The success and discriminative ability of AutoPrognosis is due to 
analyzing complex nonlinear relationships and be able to capture variables that 
logistic regression and other machine learning algorithms could not capture. It is 
concluded by the authors that providing more accurate prognostic information by 
using AutoPrognosis can help facilitating well-versed preoperative shared 
decision-making.

Falling impacts the THA patients’ well-being and increases the chance of post-
surgical procedures due to issues that may arise. Wearable sensors can be integrated 
into fall risk assessment tools to collect data on patients’ functional ability. Support 
vector machine (SVM) and linear discriminant analysis classifier are developed and 
tested in [6] to predict the risk of THA patients’ falling by using the sensor-collected 
data. Research data is collected at three different stages: preoperatively, 2-week 
THA follow-up, and 6-week THA follow-up. Feature variables consisted of preop-
erational and operative trajectory data. Preoperation set consisted of sensor-derived 
metrics collected preoperatively, while operative trajectory set combined sensor-
derived metrics from preoperative and 2-week postoperative appointments. A total 
of 96 patients initiated the research, and this number is reduced to 72 at the end of 
the data collection period. SVM demonstrated success based on the measured 87% 
accuracy, 97% sensitivity, 46% specificity, and 82% area under the curve (AUC) for 
the preoperative appointment. Upon adding 2-week postoperative data to the preop-
erative data, an overall improved performance of 90% accuracy, 93% sensitivity, 
59% specificity, and 88% AUC is achieved by using the linear discriminant analysis 
classifier. The importance of the high accuracy of the fall risk prediction models is 
emphasized for THA patients.

Logistic regression is compared to six machine learning algorithms in [7] for 
predicting the risk of blood transfusion in both THA and TKA by using long short-
term memory networks (LSTM), RF, decision tree (DT), k-nearest neighbors 
(KNN), SVM, and naïve Bayes classifier. Here we report only the results attained 
for THA; the postoperative transfusion rate of 22.79% for THA of the 12,642 
patients is observed. The variables considered included age, sex, BMI, hemoglobin, 
type 2 diabetes, operation time, tranexamic acid use, interoperative blood loss, and 
hypertension. A tenfold cross-validation strategy is used to quantify the predictive 
ability of each model defined as the AUC of the receiver operating characteristic. 
Both LSTM and RF models had significantly better accuracies than LR, Naïve 
Bayes, KNN, SVM, and DT.  Hypertension is determined to be a risk factor for 
transfusion.

24 statistical models are designed in [8] for prediction of hip fractures over time 
in 4722 women and 717 men with 5 years of follow-up. AUC values of 92% by 
using the bootstrap aggregated flexible discriminant analysis and 89% by using 
Extreme Gradient Boosting (GB) are determined to be the best “female model” and 
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best “male model,” respectively. Identifying features of the model included bone 
mineral density, glucose measurements, and osteoarthritis diagnosis. ML demon-
strated improvement on hip fracture prediction beyond logistic regression.

Length of stay and cost of THA patients’ predictive modeling are conducted in 
[9] by using naïve Bayes machine learning algorithm. Feature selection included 
age, sex, ethnicity, race, type of admission, risk of mortality, and severity of illness. 
Accuracies of 76.5% for length of stay and 79% for cost are attained with perfor-
mances of 88% and 89% for length of stay and cost, respectively. Model error and 
risk of mortality are determined to be positively correlated indicating validity of 
increase in risk-adjusted payment for each risk of mortality. Due to the cost of deliv-
ery of hip fracture care depending on non-modifiable patient-specific factors, the 
bundled care is concluded to be an inconvenient payment model for hip frac-
tures in [9].

Biomechanical and bone quality data attained from CT, electromyography, and 
gait analysis are used in [10] for making a THA surgical decision prosthesis adapta-
tion to the bone by using the BMD of the proximal and the distal region of the femur 
and cementation. Feature selection for RF included base of support, BMD of the 
proximal region of femur, and start and stop of the electromyographic signals. 
Feature selection for GB included base of support, toe in/out operated, velocity, 
healthy leg BMD, and start and stop of the electromyographic signals. Random 
forests (RF) and gradient boosted tree are performed as classifiers on 51 patients’ 
data based on the splitting of the data into 75% training and 25% testing sets. RF 
method had the best results utilizing the training set, while GB on the test set dem-
onstrated good results including 92.9% accuracy, 100% specificity, and 85.7% value 
of under the curve of receiver operator characteristic. Features playing key roles in 
the choice of cemented or uncemented prosthesis selection are determined to be the 
skeletal muscle parameters such as the start and stop of muscle contraction from 
EMG signals and temporal and spatial gait parameters. The usefulness of the regres-
sion analysis for predicting the BMD of the distal and proximal parts of the operated 
femur after 1 year from the surgery is also demonstrated to be useful by the authors 
as a part of the patient follow-up.

Optimal implant design parameter characteristics are structured in [11] by inte-
grating biomechanical analysis into machine learning techniques. 3D finite element 
analysis is integrated into ANN and SVM with the selected implant geometric fea-
tures including stem length, lateral thickness, medial thickness, and the distance 
between the implant neck and the central stem surface. The output is designed to be 
the strain reduced by the presence of the hip implant. A pattern-search minimization 
algorithm is used to identify the optimal geometry of the implant by exploring new 
values of the input parameters in an iterative fashion. The optimization algorithm 
explored unseen values of the selected parameters of the hip implant geometry to 
minimize the function. Four geometrical ranges are explored for the dimensions of 
the bone by considering a clinically admissible shape. ANN and SVM techniques 
had similar pattern to the pattern-search minimization algorithm; optimizing param-
eters of the SVM had better prediction of the lower random errors; therefore, it had 
better results than ANN. An optimized implant that had reduced stress shielding is 
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observed to need a decreased stem length and a reduced implant surface contact 
with the bone. In the case of thinner stems, the two radiuses associated with the stem 
width at the distal cross section in contact with the bone played a role for better 
stress shielding results.

3 � Deep Learning

A deep learning application by using ANN on a network that learns and predicts 
LOS, inpatient charges, and discharge disposition by using 78,335 primary THA is 
implemented in [12]. The 15 preoperative attributes included age, gender, ethnicity, 
race, type of admission, location of admission (emergency department or not), 
patient code, risk of mortality (minor, moderate, major, severe), patient’s severity of 
illness, number of associated chronic conditions and diagnoses, comorbidity status, 
weekend or weekday admission, hospital type, patient’s income quartile, and inter-
nal or external (i.e., transfer) patient. All patient refined risk (i.e., minor, moderate, 
major, severe) is a composite disease-specific (i.e., minor 25% uncomplicated dia-
betes, moderate 25% diabetes with kidney disease, major 25% prior ketoacidosis, 
extreme 25% prior diabetic coma) measure accounting for the number and severity 
of underlying comorbidities. These attributes are used for generation of four hidden 
layers with 112, 56, 28, and 14 nodes from the input to the final layer that are heu-
ristically chosen. Glorot normalization algorithm is used for initialization of each 
hidden layer node, and rectified linear activation function is applied by using a ker-
nel constraint. Softmax activation function is used for the output layer consisting of 
the number of classes to determine the probabilities. Metrics used for validity 
included accuracy and area under the receiver operating characteristic curve. ANN 
learning in the first 30 training rounds resulted area under the curve values of 82% 
for LOS, 83.4% for charges, and 79.4% for disposition. Patient-specific payment 
model introduced established a risk increase of 2.5% for moderate, 8.9% for major, 
and 17.3% for severe comorbidities. These results are found to be reliable and valid 
for using the tier-based patient-specific payment model for future purposes.

A hip implant recognition algorithm is designed in [13] to detect implantation on 
170 postoperative hip anteroposterior x-rays collected from 5 hospitals that incor-
porated 29 implant brands. Images are manually labeled, and they are successfully 
trained for the stem detection model. A six-layered convolutional neural network 
(CNN) in Keras deep learning platform is developed. 224 × 224 grayscale image 
inputs are used that had two layers of convolution and one max pooling layer to 
generate a feature map that is fed into two fully connected layers that generated 29 
class outputs. Validation on 25% of training set is conducted based on the recogni-
tion model that had detection and clustering. 99% area under the curve value is 
attained from the receiver operating characteristic curve generated from a test set 
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containing 25% of all stem-cropped images. The generated CNN showed usefulness 
in predicting stem detection in THA applications.

Classification of the quality (e.g., the staying length in hospital) after THA pro-
cedure in Taiwan is modeled in [14]. The proposed approach incorporated expert 
knowledge, global discretization, imbalanced bootstrap technique, reduct and core 
methods, rough sets, rule induction, and rule filter. Logistic regression, SVM, and 
multilayer perceptron (MLP) are utilized for modeling. The second version of 
Learning from examples module (LEM2) algorithm is applied for symbolic attri-
butes in their work. The LEM2 algorithm calculates a single local covering for each 
concept from a decision table to generate decision rules. Calculation of each rule’s 
quality index is based on a specific rule quality function that depends on the mea-
sure of support, consistency, and coverage to determine the strength of the rules [35]. 
Another application used in [14] is rough set theory (RST) approach that is intro-
duced for AI applications. RST is a soft computing technique first proposed by 
Pawlak [15] that uses mathematical modeling to address class data classification 
problems and identified to be a very useful tool for decision support systems, espe-
cially in cases in which hybrid data, vague concepts, and uncertain data are involved 
in the decision process [16]. In conclusion, RST is found to be the best model among 
all considerations as a feasible choice for classification learning of imbalanced class 
data and combination of core attributes. Comparison of accuracy of different meth-
ods for both options of all 17 attributes and 7 core attributes in the THA data set had 
strong outcomes with a minimum of 85% accuracy calculation.

Prediction of the dependent variable hip disability and osteoarthritis outcome 
score (HOOS) is the primary outcome of [17] by utilizing THA results. A total of 
160 patients with 44% female population is included in the study. The authors used 
the least absolute shrinkage selection operator (LASSO) [18] as the machine learn-
ing algorithm for predictive analysis. LASSO can reduce overfitting through penal-
ization of the regression coefficients by sometimes reducing to zero resulting in 
excluding a predictor entirely so that the out-of-sample prediction accuracy is maxi-
mized. The main objective of LASSO is to minimize the mean squared error by 
reducing the coefficients. Post-surgery and 3-month follow-up data for analysis of 
HOOS is collected. In total a 23-item rating scale is designed with 25 coefficients 
utilized in the model. Independent variables included the following:

•	 Clinical and demographic variables such as such as age, gender, race, Hispanic 
ethnicity, marital status, level of education categorized into less than a college 
degree, college degree, or advanced degree, employment status, number of hours 
worked per week, planned legal action, and worker’s compensation status.

•	 Patient-reported health and health habits, smoking status (smoked vs. never 
smoked), BMI, and exercise of number of days per week of mild, moderate, and 
strenuous.

•	 Cognitive appraisal processes using Brief Appraisal Inventory© [19].
•	 Surgical approaches including direct lateral, anterolateral, and direct anterior 

methods.
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LASSO is determined to be a weak predictor that failed to include several impor-
tant variables that are often considered important in predictive modeling in surgical 
outcomes such as smoking, age, level of education, and frequency of exercise. 
Diagnostic plots revealed at most moderate difficulties with the final model that 
utilized the 2-month postsurgical collected data. The most predictive independent 
variables of postoperative HOOS are determined to be cognitive appraisal pro-
cesses. Variables predicting a worse HOOS are anterior surgical approach, increased 
BMI, thoughts of work, frequent comparison to healthier peers, and increased medi-
cal comorbidities. Variables that predicted a better HOOS consisted of thoughts 
related to family interaction, trying not to complain, employment at the time of 
surgery, and helping others. In conclusion, authors pointed out the need of an accu-
rate predictive model need due to limited ability to identify patients at risk of having 
a mismatch in outcome following THA based on the models generated.

THA patient designation using machine learning for inpatient and outpatient 
classification is implemented in [20]. Of the 1409 medicare patients included in the 
study by using the data between 2017 and 2019, 77.4% of the patients experienced 
THA. 80% of the data is used for training and 20% for testing. Extreme Gradient 
Boosting (XGBoost) is a machine learning tool building predictive models utilizing 
gradient boosting framework. Inpatient/outpatient are predicted target variables 
used for the XGBoost method as the training data. Input variables used in the model 
included the following:

•	 Patient demographics such as age, gender, and BMI.
•	 Diagnosis leading to joint pain such as rheumatoid arthritis, osteoarthritis, and 

avascular necrosis.
•	 Past medical history such as cardiac history, history of a venous thromboembolic 

event [VTE], diabetes mellitus [DM], and other rheumatologic disease.
•	 Charlson Comorbidity Index (CCI).
•	 American Society of Anesthesiologists’ Physical Status Classification (ASA).
•	 Revised Cardiac Risk Index.
•	 Modified Frailty Index (mFI).
•	 Preoperative functional scores.
•	 Hip disability and osteoarthritis outcome score (HOOSJR).
•	 VR12 physical component.
•	 VR12 mental component (mcs) scores.

The XGBoost model demonstrated 78.7% accuracy for predicting an inpatient or 
outpatient stay with 81.5% that is observed to be the area under the receiver operat-
ing characteristic curve. The most influential features in the predictive model 
included BMI, age, functional scores, and ASA Physical Status Classification.

Angular position of the acetabular component is observed to be a risk factor in 
implant dislocation following THA. A deep learning approach is undertaken in [21] 
to automate the angle measurement with the goal of increasing accuracy in mea-
surements, reducing human error, and speeding up the measurement process. The 
data consisted of 600 anteroposterior (AP) radiographs taken from equal number of 
male and female THA patients from 2000 to 2017 with 300 of the cases ultimately 
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dislocated and 300 cases without dislocation. Among these cases, 200 had osteoar-
thritis, 200 had rheumatoid arthritis, and 200 had other indications. Manual annota-
tion, augmentation, and random splitting for 80% training, 10% validation, and 
10% testing data sets are applied. Training of the models based on sex, underlying 
pathology, and ultimate dislocation status are critical considerations in the models 
generated. Two U-Net CNN models are formed to segment AP pelvis and cross-
table lateral hip images independently. The encoders of both models had the 
VGG-16 architecture, and initial weights were pooled from a model pretrained on 
the ImageNet database. Well-known Adam optimizer is used after training the net-
work’s decoder layers for 50 epochs with a batch size of 8. Model performance is 
evaluated on independent test data sets that were not used for training and valida-
tion. The inclination angle model had performance values of 91.3% for acetabular 
component and 84.3% for ischial tuberosity. The anteversion angle model had per-
formance value of 90.3% only for acetabular component. Less than 2.5% of the 
cases had differences of 5° or more when human and deep learning measurements 
are compared. The high accuracy of the CNN models showed their effectiveness in 
automating the measurement of angular position of acetabular components.

Deep learning and machine learning models are developed in [22] as a part of 
natural language processing for efficient and accurate hip dislocation detection fol-
lowing primary THA by using standard (radiology notes) and non-standard (follow-
up telephone notes) free-text medical narratives. After preprocessing, 105 out of 
1890 patients had a dislocation sustained that resulted in a total of 380 radiology 
and 174 telephone notes. No indication of a dislocation is found in 2634 radiology 
and 609 telephone notes. Traditional machine learning models used included gener-
alized linear model, KNN, random forest, SVM, and shallow neural network. The 
deep learning models included long short-term memory (LSTM) model and a CNN 
model. The classification of both deep and machine learning models is tuned to 
detect radiology notes that relate to three categories: (1) current dislocation, (2) 
evidence of previous dislocation, and (3) no dislocation. The proposed CNN model 
achieved the best overall performance for classification of both the radiology and 
telephone notes into the above-mentioned three categories. Therefore, the devel-
oped CNN model in [22] can be used for accurate and efficient hip dislocation 
detection from free-text medical narratives.

Mechanical loosening detection of THA implants is analyzed in [23] by using a 
deep learning algorithm and two different methods that utilize saliency maps and 
activation maximization [8]. Saliency map identifies the pixels most significantly 
affect the CNN classification output by ranking all the pixels of an input image 
based on their relative influence on a specific class score. An input image is gener-
ated by activation maximization for each filter that maximizes that filter’s output 
[8]. 40 patients’ image-specific saliency maps are used in [23] for training a CNN 
with 17 mechanically loose and 23 with well-fixed THA for detecting mechanical 
loosening of THA implants by classifying the input x-rays into categories of “loose” 
and “well-fixed.” The first layer of CNN that looks directly at the x-ray image learns 
to detect very simple patterns such as horizontal and vertical lines in the image, 
while deeper layers that consist of middle and last convolutional layers learned 
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more complex filters. The usefulness of combining saliency maps and activation 
maximization is shown for accurate mechanical loosening detection that can be 
used by decision-makers for revision surgeries.

AI, DL, and ML are also used for research on hip fractures that relate to THA; 
we cover only one research article in this area of interest as an example of an appli-
cation; however, this area of interest is not a direct application of THA; therefore, it 
is not covered here extensively. Detection of hip fractures by using a deep convolu-
tional neural network (DCNN) on plain pelvic radiographs upon THA is designed 
in [24]; 25,505 limb radiographs collected between the beginning of 2012 and end 
of 2017 are used with the retraining of 3605 frontal pelvic radiographs. Some of the 
deep learning research evaluating medical images use cropped images to avoid 
“black box” mechanisms such as [25] and enhance the accuracy of final validation, 
while authors of [24] reduced the image matrix size to 512 × 512 pixels instead. 
DenseNet-121 is used as the architecture of the designed neural network by using 
pixel values from the digital images as inputs using convolution and pooling tech-
niques on each layer and to adjust the weights in the neural network according to the 
difference between the output and true label. Designed DCNN yield to strong results 
including 91% accuracy, 98% sensitivity, 2% false-negative rate, and 98% area 
under the receiver operating characteristic curve (AUC) when tested on 100 addi-
tional images collected during 2017. Gradient-weighted class activation mapping 
(Grad-CAM) is used by the authors to confirm the validity of the model, and 95.9% 
accuracy is attained by using the visualization algorithm for lesion identification 
(Figs. 1 and 2).

Fig. 1  An image that can be detected easily using DL of polyethylene wear on a radiograph [26]
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Fig. 2  Two images of gradient-weighted class activation mapping used for visualizing the class of 
discriminative regions for DL applications [24]

4 � Artificial Intelligence

One of the earliest applications of ANN on THA is focused on patient comfort after 
THA based on bodily pain reduction in [1]. A total of 221 patients’ survey data on 
14 variables included gender, race, income, education, age at surgery, BMI, marital 
status, availability of help at home, preoperative effect of pain on physical function, 
preoperative support requirements, preoperative reported change in health over the 
year prior to surgery, pain-limiting activities’ frequency, effect of pain on work, and 
preoperative SF-36 pain score. The ANN designed is trained by using 26 input 
nodes to predict the relative success of THA surgery using the presurgical patient 
survey information and a backpropagation feedforward neural network training to 
predict the output variable using the jackknife method. The best ANN achieved 83% 
of total percentage correctness and 62% of weighted percentage correctness. Area 
under the receiver operating characteristic curve is determined to be 79%. In con-
clusion, authors pointed out the success of neural networks to predict the success of 
THA accurately. Such an approach found to be feasible for predicting patients at 
greatest risk of poor outcomes based on their reported surveys.

The usefulness of ANN for failed implant identification is investigated in [27]. A 
total of 2116 AP hip radiographs capturing femoral stem implantation following 
THA from 2002 to 2019 are analyzed. Training is conducted on 1410 AP hip radio-
graphs with an additional 706 used for validation and a unique consecutive series of 
324 radiographs used for testing accuracy. The neural network architecture 
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performance is trained, validated, and tested by using AlexNet, DenseNet, 
GoogLeNet, Inception-ResNet-v2, Inception-v3, ResNet-101, ResNet-50, 
ResNet-18, SqueezeNet, VGG-19, and VGG-16. Among all the options, Dense-Net 
201 architecture attained 100% accuracy in training data, 95.15% accuracy on vali-
dation data, and 91.16% accuracy that outperformed the other options. The ANN 
utilization in iPhone 6 cellular phone application resulted in approximately 1-second 
runtime. Therefore, the ANN designed is determined to be a strong predictor for 
failed implant identification.

It is important to determine the manufacturer and the model of the hip implant 
upon hip arthroplasty. Radiographs are used for implant classification by experts 
specialized in the subject matter. Delays in care, increased morbidity, and additional 
economic burden are consequences of unidentifiable hip implants. A CNN algo-
rithm is designed in [28] for differentiating and detecting 18 different hip implants 
by Zimmer, DePuy, Stryker, and Smith & Nephew manufacturers based on plain 
radiographs. 1972 AP plain radiographs from 4 sites are collected with 1559 used 
for training, 207 used for validation, and 206 used for external testing of the 
CNN. Input images are rescaled to 299 × 299 pixels. After preprocessing, inception 
V3 network is utilized with pixel normalization to the range of −1 to 1. The network 
is trained by using all training images for a total of 1000 epochs. Accuracy, sensitiv-
ity, specificity, and area under the receiver operating characteristics curve of the 
model are calculated for determining model performance in predicting the correct 
implant during both validation and external testing sets. Designed CNN demon-
strated progressive “learning” through the 1000 epochs by improving validation 
accuracy and decreasing validation loss function values. CNN achieved 99.6% 
accuracy, 94.3% sensitivity, 99.8% specificity, and a value of 99.9% for area under 
the receiver operating characteristics curve as the average of all 18 manufacturers’ 
implant identification. Implant stem designs for all of accuracy, sensitivity, and 
specificity included the following:

•	 100% for Zimmer Biomet Arcos, Zimmer Biomet Taperloc, DePuy Corail, 
DePuy SROM, Smith & Nephew Birmingham, Smith & Nephew Synergy, 
Stryker ABG, and Stryker Exeter

•	 At least 99.5% for DePuy AML, DePuy Summit, Stryker PCA, and Stryker 
Restoration Modular.

The other six brands also had strong results with a minimum of 98.1% accuracy 
and a minimum value of 98.3% specificity, except with two minimum values of 
66.7% sensitivity attained for two brands. Hence the CNN generated in [28] for dif-
ferentiating the 18 hip arthroplasty implant models from four industry leading man-
ufacturers demonstrated its effectiveness (Fig. 3).

An ANN non-parametric metamodel is used as a tool for sensitivity analysis in a 
cost-effectiveness model in [29]. The decision analytical model used is developed in 
[30] to investigate the effectiveness and cost-effectiveness of alternative hip pros-
theses. The metamodels are developed in two stages with the first screening phase 
emphasizing a nonlinear factor screening for importance analysis to reduce the 
number of variables attained from the simulation and second phase employing an 
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Fig. 3  An image of DePuy anatomic medullary locking cup with acetabular cup system liner [26]

ANN to structure an input-output relationship of the cost-effectiveness model [29]. 
The performance of the resulting ANN is compared with multiple linear regression 
and Gaussian process based on Charnley and Spectron prosthesis. 12 of the 31 fea-
tures are selected from the simulation. Mean square error of prediction and mean 
absolute percentage deviation of the ANN meta models displayed the best perfor-
mance measures for predicting both costs and quality-adjusted life years for the two 
prostheses. Overall, both ANN and linear regression models predicted the quality-
adjusted life years highly accurately while ANN showing the best predictive capa-
bility for costs in THA model. ANN model is determined to be a good predictive 
modeling technique for health economic simulations.

Automated record search for text detection by using ANN in comparison to clas-
sic record search by two manual reviewers is investigated in [31]. Manual patient 
record analysis included hospitalization report, surgery report, and postoperative 
outpatient clinical report and excluded radiographic, laboratory, and pathology 
reports that were not reviewed. Surgery and implant characteristics such as implant 
size and implant articulation were extracted with any reported adverse events, and 
their respective treatments were recorded. The purpose of ANN development is to 
establish ease of access and increasing quality of accurate monitoring of the THA 
patients’ records. A text mining engine utilizing a natural language processing tech-
nology and machine learning for extracting key concepts from electronic medical 
records are the two key components of the algorithm. Recall, precision, accuracy, 
and F-values are used as the statistical measures for the data collected from 532 
patients and 613 hips. As a result, the comparison of manual and ANN search for 
implant characteristics resulted in significantly higher accuracy of the algorithm 
with 94.8% than the accuracy of the reviewer with 93.4%. ANN algorithm demon-
strated better results than the manual process even in the case of existing clear 
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pattern for implant sizes with low-level training. Overall performance of the algo-
rithm is measured as 96% for recall, 88% for precision, and an F-value of 0.89 for 
all adverse events. The automated ANN search algorithm is determined to be capa-
ble of analyzing and interpreting large quantities of electronic medical records 
faster than the manual search with a performance level equivalent of comparable or 
slightly better than a human reviewer.

5 � Conclusion and Possible Improvements

In this work applications of AI, DL, and ML that relate to THA in the research lit-
erature are covered. A variety of research results are covered throughout this article 
with implant design and failure, post-THA patient satisfaction, database search and 
text detection, and biomechanical considerations. Deep learning results attained for 
the THA applications covered in this work particularly have strong results for the 
most part. Current applications of the algorithms have limited scope; however, more 
advanced results can be attained. Such applications can include parallel computing, 
integration of DL directly into hardware applications used in THA, and integrating 
optimization algorithms into AI/DL/ML algorithms. Supervised learning methods 
can be particularly helpful in applications. Adaptive learning approaches can also be 
included based on multiple surgeries on same patient types. There are many more 
AI/DL/ML applications that can be integrated into other advanced technologies that 
can guide surgeons during THA. We must note the results of the reviewed articles 
in this work are particular instances of applications of the AI theory; therefore, they 
may not be able to yield good results in other collected data sets necessarily; there 
are many factors that play in such research results.

To the best of our knowledge, utilization of AI, DL, and ML on psychological 
treatment of patients to prevent them go through THAs has not been investigated in 
the research literature. Such research requires specific data collection from THA 
candidates who go through psychological treatment; after such a therapy, patients’ 
decision to pursue or not pursue with THA treatment can be determined. The cur-
rent practice in elective orthopedics does not routinely include psychological inter-
ventions despite evidence that psychological factors such as personality, anxiety, 
depression, and negative thinking styles can influence outcomes and recovery from 
surgery [32]. In fact, there is very limited research and investment on impact of 
psychological treatment on patients to prevent going through THA, and the majority 
of the literature focuses on the impact of psychological treatment based on pre- and 
post-THA outcomes. The application of AI theory with the corresponding feature 
(i.e., variable) selection during psychological treatment and analyzed along with the 
success of the treatment for declining occurrence of THA appears as a brand-new 
research area. Noting that the average age of THA patients is getting younger over 
the years, effectiveness of psychological treatment can be investigated for declining 
the increase in THA over the years. This idea leaves us with a brand-new THA 
research area application from a psychological standpoint that can also be applied 
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in other surgical procedures: Can we use AI, DL, and ML effectively to determine 
features that help THA candidates prevent going through THA after psychological 
treatments and help them to heal naturally? If the answer is yes, then these features 
can help to decline the increase in THA procedures by the help of psychologists 
focusing on helping the patients.
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