®

Check for
updates

Process Mining: A 360 Degree Overview

Wil M. P. van der Aalst®)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de
http://www.vdaalst.com/

Abstract. Process mining enables organizations to uncover their actual
processes, provide insights, diagnose problems, and automatically trig-
ger corrective actions. Process mining is an emerging scientific disci-
pline positioned at the intersection between process science and data
science. The combination of process modeling and analysis with the
event data present in today’s information systems provides new means to
tackle compliance and performance problems. This chapter provides an
overview of the field of process mining introducing the different types of
process mining (e.g., process discovery and conformance checking) and
the basic ingredients, i.e., process models and event data. To prepare
for later chapters, event logs are introduced in detail (including pointers
to standards for event data such as XES and OCEL). Moreover, a brief
overview of process mining applications and software is given.

Keywords: Process mining + Event data - Process modeling *+ Process
discovery

1 Introduction

Process mining can be defined as follows: process mining aims to improve opera-
tional processes through the systematic use of event data [1,2]. By using a com-
bination of event data and process models, process mining techniques provide
insights, identify bottlenecks and deviations, anticipate and diagnose perfor-
mance and compliance problems, and support the automation or removal of
repetitive work. Process mining techniques can be backward-looking (e.g., find-
ing the root causes of a bottleneck in a production process) or forward-looking
(e.g., predicting the remaining processing time of a running case or providing
recommendations to lower the failure rate). Both backward-looking and forward-
looking analyses can trigger actions (e.g., countermeasures to address a perfor-
mance or compliance problem). The focus of process mining is on operational
processes, i.e., processes requiring the repeated execution of activities to deliver
products or services. These can be found in all organizations and industries,
including production, logistics, finance, sales, procurement, education, consult-
ing, healthcare, maintenance, and government. This chapter provides a 360°
overview of process mining, introducing basic concepts and positioning process
mining with respect to other technologies.

© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 3-34, 2022.
https://doi.org/10.1007/978-3-031-08848-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_1&domain=pdf
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-08848-3_1

4 W. M. P. van der Aalst

The idea of using detailed data about operational processes is not new. For
example, Frederick Winslow Taylor (1856-1915) collected data on specific tasks
to improve labor productivity [35]. With the increasing availability of computers,
spreadsheets and other business intelligence tools were used to monitor and ana-
lyze operational processes. However, in most cases, the focus was on a single task
in the process, or behavior was reduced to aggregated Key Performance Indicators
(KPIs) such as flow time, utilization, and costs. Process mining aims to analyze
end-to-end processes at the level of events, i.e., detailed behavior is considered in
order to explain and improve performance and compliance problems.

Process mining research started in the late 1990s [23]. In 2004 the first version
of the open-source platform ProM was released with 29 plug-ins. Over time the
ProM platform was extended and now includes over 1500 plug-ins. The first
commercial process mining tools appeared around 15 years ago. Today, there
are over 40 commercial process mining tools and process mining is used by
thousands of organizations all over the globe. However, only a small fraction of
its potential has been realized. Process mining is generic and can be applied in
any organization.

statistics simu lation

datawarehousing

operations research

datamining
workflow management

artificial intelligence concurrency theory

process discovery

business process management

process
science

operations management

unsupervised learning

data
science

machine learning

process
mining

conforman ce checking

A . industrial engineering
supervised leaming

process modeling

data management

planning and control

business intelligence

Fig. 1. Process mining = data science N process science.

Figure 1 shows that process mining can be seen as the intersection of data
science and process science. In [2], the following definition is proposed: “Data
science is an interdisciplinary field aiming to turn data into real value. Data may
be structured or unstructured, big or small, static or streaming. Value may be
provided in the form of predictions, automated decisions, models learned from
data, or any type of data visualization delivering insights. Data science includes
data extraction, data preparation, data exploration, data transformation, stor-
age and retrieval, computing infrastructures, various types of mining and learn-
ing, presentation of explanations and predictions, and the exploitation of results

Process Mining: A 360 Degree Overview 5

taking into account ethical, social, legal, and business aspects.” In [2], process
science is used as an umbrella term to refer to the broader discipline that com-
bines knowledge from information technology and knowledge from management
sciences to improve and run operational processes. In the more recent [12], the
following definition is proposed: “Process science is the interdisciplinary study of
continuous change. By process, we mean a coherent series of changes that unfold
over time and occur at multiple levels.” In [12], we emphasize the following key
characteristics of process science: (1) processes are in focus, (2) processes are
investigated using scientific methods, (3) an interdisciplinary lens is used, and
(4) the goal of process science is to influence and change processes to realize
measurable improvements. As stated in [2] and visualized in Fig. 1; process min-
ing can be viewed as the link between data science and process science. Process
mining seeks the confrontation between event data (i.e., observed behavior) and
process models (hand-made models or automatically discovered models), and
aims to exploit event data in a meaningful way, for example, to provide insights,
identify bottlenecks, anticipate problems, record policy violations, recommend
countermeasures, and streamline processes.

information
systems
extract /A
process conformance predictions

i
models rZ;I)SI!any + performance apply + improvements

. diagnostics compare - -
e ﬁ = enrich P <X L=

data discover

e

|
L
e
i’
| ‘I

explor

e select
1 filter show show Mk act
clean model interpret
. ‘ adapt drill down

transform

—

>
X
b

|
B

Fig. 2. 360° overview of process mining.

Figure 2 shows a high-level view of process mining. Fvent data need to be
extracted from information systems used to support the processes that need to
be analyzed. Customer Relationship Management (CRM), Enterprise Resource
Planning (ERP), and Supply Chain Management (SCM) systems store events.
Examples are SAP S/4HANA, Oracle E-Business Suite, Microsoft Dynamics
365, and Salesforce CRM. Next to these sector-agnostic software systems, there
are more specialized systems such as Health Information Systems (HIS). All of
these systems have in common that they are loaded with event data. However,
these are scattered over many database tables and need to be converted into a
format that can be used for process mining. As a consequence, data extraction

6 W. M. P. van der Aalst

is an integral part of any process mining effort, and may be time-consuming.
Events are often represented by a case identifier, an activity name, a timestamp,
and optional attributes such as resource, location, cost, etc. Object-centric event
data allow events to point to any number of objects rather than a single case
(see Sect. 3).

Once extracted, event data can be explored, selected, filtered, and cleaned (see
Fig. 2). Data visualization techniques such as dotted charts and sequence dia-
grams can be used to understand the data. Often, the data need to be scoped to
the process of interest. One can use generic query languages like SQL, SPARQL,
and XQuery or a dedicated Process Query Language (PQL). Data may be incom-
plete, duplicated, or inconsistent. For example, month and day may be swapped
during manual data entry. There is a variety of techniques and approaches to
address such data quality problems [34].

The resulting dataset is often referred to as an event log, i.e., a collection of
events corresponding to the selected process. Process discovery techniques are
used to automatically create process models. Commercial tools typically still
resort to learning the so-called Directly-Follows Graph (DFG) which typically
leads to underfitting process models [3]. If two activities do not occur in a fixed
order, then loops are created. This leads to Spaghetti-like diagrams suggesting
repetitions that are not supported by the data. However, there are numerous
approaches to learning higher-level models represented using Business Process
Model and Notation (BPMN), Petri nets, or Unified Modeling Language (UML)
activity diagrams. In contrast to DFGs, such models are able to express concur-
rency. Example techniques to discover such models are the Alpha algorithm [8],
region-based approaches [11,13,33,36], inductive mining techniques [28,29], and
the split miner [9]. The process model returned may aim to describe all behavior
observed or just the dominant behavior. Note that the event log only contains
example behavior, is likely to be incomplete, and at the same time may contain
infrequent behavior.

The combination of a process model and event data can be used to conduct
conformance checking and performance analysis (Fig. 2). The process model may
have been discovered or made by hand. Discovered process models are descrip-
tive and hand-crafted models are often normative. Conformance checking relates
events in the event log to activities in the process model and compares both. The
goal is to find commonalities and discrepancies between the modeled behavior
and the observed behavior. If the process model is normative, deviations cor-
respond to undesired behavior (e.g., fraud or inefficiencies). If the model was
discovered automatically with the goal of showing the dominant behavior, then
deviations correspond to exceptional behavior (i.e., outliers). Note that most
processes have a Pareto distribution, e.g., 80% of the cases can be described by
only 20% of the process variants. It is often easy and desirable to create a process
model describing these 80%. However, the remaining 20% cannot be discarded
since these cases cover the remaining 80% of the process variants and often also
the majority of performance and compliance problems. Sometimes event logs are
even more unbalanced, e.g., it is not uncommon to find logs where 95% of the
cases can be described by less than 5% of the process variants. In the latter case,

Process Mining: A 360 Degree Overview 7

it may be that the remaining 5% of cases (covering 95% of the process variants)
consume most of the resources due to rework and exception handling.

Since events have timestamps, it is easy to overlay the process model with
performance diagnostics (service times, waiting times, etc.). After discovering
the control-flow, the process model can be turned into a stochastic model that
includes probabilities and delay distributions.

After applying conformance checking and performance analysis techniques,
users can see performance and compliance problems. It is possible to perform
root-cause analysis for such problems. One may find out that critical deviations
are often caused by a particular machine or supplier, or that the main bottleneck
is caused by poor resource planning or excessive rework for some product types.
In a procurement process, price changes by a particular supplier may explain
an increase in rework. If “Receive Invoice” often occurs before “Create Pur-
chase Requisition”, then this signals a compliance problem in the same process.
These are just a few examples. In principle, any process-related problem can be
diagnosed as long as event data are available.

The right-hand side of Fig. 2 shows that process mining can be used to (1)
transform and improve the process and (2) automatically address observed and
predicted problems. The stochastic process models discovered from event data
can be used to conduct “what-if” analysis using simulation or other techniques
from operations research (e.g., planning). The combination of event data and
process models can be used to generate Machine Learning (ML) problems. ML
techniques can be used to predict outcomes without being explicitly programmed
to do so. The uptake of ML in recent years can be attributed to progress in
deep learning, where artificial neural networks having multiple layers progres-
sively extract higher-level features from the raw input. ML techniques cannot be
applied directly to event data. However, by replaying event data on discovered
process models, it is possible to create a range of supervised learning problems.
Examples include:

— What is the remaining processing time of a particular insurance claim?
Are we able to handle 95% of the cases within one week?

— Is this application going to deviate from the normative process?

— Will this patient be moved to the intensive care unit?

Will we have enough free beds in the intensive care unit tomorrow?

It is important to note that the right-hand side of Fig. 2 (i.e., extraction, dis-
covery, conformance checking, and performance analysis) cannot be supported
using mainstream Artificial Intelligence (AI) and Machine Learning (ML) tech-
nologies (e.g., neural networks). One first needs to discover an explicit process
model tightly connected to the event data, to pose the right questions. However,
process mining can be used to create AI/ML problems. The combination can
be used to trigger corrective actions or even complete workflows addressing the
problem observed. This way, event data can be turned into actions that actively
address performance and compliance problems.

8 W. M. P. van der Aalst

2 Process Models

There are many notations to describe processes, ranging from Directly-Follows
Graphs (DFGs) and transition systems, to BPMN and Petri nets. We will use
an example to gently introduce these notations. Consider a process involving the
following activities: buy ingredients (bi), create base (cb), add tomato (at), add
cheese (ac), add salami (as), bake in oven (bo), eat pizza (ep), and clean kitchen
(ck). We will call this fictive process the “pizza process” and use this to illustrate
the key concepts and notations.

add cheese
(ac)

add tomato
‘ (at) '
add salami
(as)

. buy create base bake in oven eat pizza clean kitchen
ingredients
(bi) (cb) (bo) (ep) (ck)
start

end

Fig. 3. BPMN model of the “pizza process”. The three toppings (tomato, cheese, and
salami) can be added in any order.

Figure 3 shows a process model using Business Process Model and Nota-
tion (BPMN) [17]. The process starts with activity buy ingredients (bi) followed
by activity create base (cb). Then three activities are executed in any order:
add tomato (at), add cheese (ac), and add salami (as). After all three toppings
(tomato, cheese, and salami) have been added, the activities bake in oven (bo),
eat pizza (ep), and clean kitchen (ck) are performed in sequence. Assuming that
the three concurrent activities are performed in some order (i.e., interleaved),
there are 3! = 6 ways to execute the “pizza process”. The two diamond-shaped
symbols with a + inside denote parallel gateways. The first one is a so-called
AND-split starting the three concurrent branches and the second one is a so-
called AND-join. The BPMN process starts with a start event (shown as a circle)
and ends with an end event (shown as a thick circle).

Fig. 4. Petri net modeling the “pizza process” with activities buy ingredients (bi),
create base (cb), add cheese (ac), add tomato (at), add salami (as), bake in oven (bo),
eat pizza (ep), and clean kitchen (ck).

Figure 4 models the same process in terms of a Petri net. This model also
allows for 3! = 6 ways to execute the “pizza process”. The circles correspond

Process Mining: A 360 Degree Overview 9

to places (to model states) and the squares correspond to transitions (to model
activities). Places may hold tokens. A place is called marked if it contains a
token. A marking is a distribution of tokens over places. In Fig.4, the source
place (i.e., the input place of transition bi) is marked, as is indicated by the
token (the black dot). A transition is enabled if all input places are marked. In
the initial marking shown in Fig. 4, transition bi (corresponding to activity buy
ingredients) is enabled. A transition that is enabled may fire (i.e., it may occur).
This means that a token is removed from each of the input places and a token
is produced for each of the output places. Note that transition c¢b consumes one
token and produces three tokens (one for each output place) and transition bo
consumes three tokens (one for each input place) and produces one token. The
process ends when a token is put on the sink place, i.e., the output place of ck.
In total there are 2 + 23 + 3 = 13 reachable markings. Although the behavior of
the Petri net in Fig. 4 is the same as the BPMN model in Fig. 3, it is easier to
refer to the states of the process model.

Fig. 5. Process tree of the “pizza process”: —(bi, ¢b, A(ac, at, as), bo, ep, ck).

Figure 5 models the “pizza process” using a process tree. This representation
is rarely presented to end-users, but several mining algorithms use this internally.
Process trees are closer to programming constructs, process algebras, and regular
expressions. The graphical representation can be converted to a compact textual
format: —(bi, cb, A(ac, at, as), bo, ep, ck). A sequence operator — executes its
children in sequential order. The root node in Fig.5 denotes such a sequence,
i.e., the six child nodes are executed in sequence. The third child node models
the parallel execution of its three children. This subtree can be denoted by
A(ac, at, as). Later we will see that there are four types of operators that can
be used in a process tree: — (sequential composition), x (exclusive choice), A
(parallel composition), and O (redo loop). The semantics of a process tree can
be expressed in terms of Petri nets, e.g., Fig.5 and Fig.4 represent the same
process.

10 W. M. P. van der Aalst

Fig. 6. DFG of the “pizza process”. Note that the behavior is different, e.g., one may
add 10 toppings to the pizza.

Most of the process mining tools directly show a Directly-Follows Graph (DFQG)
when loading an event log. This helps get a first impression of the behavior
recorded. Figure 6 shows a DFG for our running example. There are two special
nodes to model start (») and end (M). The other nodes represent activities. The
arcs in a DFG denote the “directly-follows relation”; e.g., the arc connecting cb
to at shows that immediately after creating the pizza base cb one can add tomato
paste at. Activity cb has three outgoing arcs denoting a choice, i.e., cb is directly
followed by at, ac, or as. Activity at also has three outgoing arcs denoting that one
can add another topping (ac or as) or bake the pizza (bo). Note that the behav-
ior of the DFG in Fig. 6 is different from the three models shown before (i.e., the
BPMN model, the Petri net, and the process tree). The DFG allows for infinitely
many ways to execute the “pizza process” (instead of 3! = 6). For example, it is
possible to create a pizza where each of the toppings was added 10 times. The prob-
lem is that whenever two activities can occur in any order (e.g., at and ac), there
is immediately a loop in the DFG (even when both happen only once).

0

(ac)

buy
ingredients
bi

create base clean kitchen
(cb) (ck)

add
mushrooms
am)

Fig. 7. BPMN model of the extended “pizza process”.

To explain other process constructs such as choice, skipping, and looping we
extend the “pizza process”. First of all, we allow for adding multiple servings of
cheese, i.e., activity ac can be executed multiple times after creating the pizza
base and before putting the pizza in the oven. Second, instead of adding salami as
a topping one can add mushrooms, i.e., there is a choice between as (add salami)
and am (add mushrooms). Third, the eating of the pizza may be skipped (i.e.,
activity ep is optional).

Process Mining: A 360 Degree Overview 11

Figure 7 shows the BPMN model with these three extensions. In total six
exclusive gateways were added: three XOR-splits and three XOR-joins (see the
diamond-shaped symbols with a x inside). After adding cheese, one can loop
back. There is a choice between adding salami and adding mushrooms. Also the
eating of the pizza can be skipped.

Fig. 8. Petri net modeling the extended “pizza process” with two silent transitions (to
skip eating the pizza and to add more cheese), and a transition am corresponding to
activity add mushrooms.

Figure 8 shows a Petri net modeling the extended process. A new transition
am (add mushrooms) has been added. Transitions as and am share an input
place. If the input place is marked, then both transitions are enabled, but only
one of them can occur. If as consumes the token from the shared input place, then
am gets disabled. If am consumes the token from the shared input place, then as
gets disabled. This way, we model the choice between two toppings: salami and
mushrooms. Figure 8 also has two new so-called silent transitions denoted by the
two black rectangles. Sometimes such silent transitions are denoted as a normal
transition with a 7 label. Silent transitions do not correspond to activities and
are used for routing only, e.g., skipping activities. In Fig. 8, there is one silent
transition to repeatedly execute ac (to model adding multiple servings of cheese)
and one silent transition to skip ep.

Fig.9. Process tree of the extended “pizza process”: —(bi,cb, A(O(ac,T), at,
x (as, am)), bo, x(ep, T), ck).

12 W. M. P. van der Aalst

The process tree in Fig.9 has the same behavior as the BPMN model and
Petri net just shown. The process tree uses all four operators: — (sequential
composition), x (exclusive choice), A (parallel composition), and O (redo loop).
A silent activity is denoted by 7 and cannot be observed. The process tree in
Fig. 9 can also be visualized in textual form: —(bi, ¢b, A(O(ac, 7), at, x(as, am)),
bo, x(ep,T), ck).

To understand the notation, we first look at a few smaller examples. Process
tree X (a,b) models a choice between activities a and b. Process tree x(a,7) can
be used to model an activity a that can be skipped. Process tree O(a,7) can
be used to model the process that executes a at least once. The “redo” part is
silent, so the process can loop back without executing any activity. Process tree
O(7,a) models a process that executes a any number of times. The “do” part
is now silent and activity a is in the “redo” part. This way it is also possible to
not execute a at all.

Now let us take a look at the three modifications of our extended “pizza pro-
cess”: O(ac, 7) models that multiple servings of cheese can be added, x (as, am)
models the choice between salami and mushrooms, and X(ep,7) models the
ability to skip eating the pizza.

The DFG shown in Fig. 10 incorporates the three extensions. Again, the
behavior is different from Figs.7, 8, and 9. Unlike the other models, the DFG
allows for adding multiple servings of salami, mushrooms, and tomato paste. It is
impossible to model concurrency properly, because loops are added the moment
the order is not fixed. Therefore, DFGs are suitable for a quick first view of the
process, but for more advanced process analytics, higher-level notations such as
BPMN, Petri nets, and process trees are needed.

Fig. 10. DFG of the extended “pizza process”. Note that the process becomes increas-
ingly Spaghetti-like, allowing for process executions different from the BPMN model,
the Petri net, and the process tree.

Note that, in this section, we focused on control-flow. However, process mod-
els can be extended with frequencies, probabilities, decision rules, roles, costs,
and time delays (e.g., mean waiting times). After discovering the control-flow
and replaying the event data on the model, it is easy to extend process models
with data, resource, cost, and time perspectives.

Process Mining: A 360 Degree Overview 13

3 Event Data

Using process mining, we would like to analyze and improve processes using
event data. Table 1 shows a fragment of an event log in tabular form. One can
think of this as a table in a relational database, a CSV (Comma Separated
Value) file, or Excel spreadsheet. Each row in the table corresponds to an event.
An event can have many different attributes. In this simple example, each event
has five attributes: case, activity, timestamp, resource, and customer. Most pro-
cess mining tools and approaches require at least three attributes: case (refers
to a process instance), activity (refers to the operation, action, or task), and
timestamp (when did the event happen). These three attributes are enough to
discover and check the control-flow perspective. A case may refer to an order,
a patient, an application, a student, a loan, a car, a suitcase, a speeding ticket,
etc. In Table 1, each case refers to a pizza being produced and consumed. In
Sect. 2 we showed process models describing this process. However, now we start
from the observed behavior recorded in the event log. We can witness the same
activities as before: buy ingredients (bi), create base (¢b), add cheese (ac), add
tomato (at), add salami (as), add mushrooms (am), bake in oven (bo), eat pizza
(ep), and clean kitchen (ck). Table1 uses a simple time format (e.g., 18:10) to
simplify the presentation (i.e., we skipped the date). Systems often use the ISO
8601 standard (or similar) to exchange date- and time-related data, e.g., 2021-
09-21T18:10:00+00:00. In the remainder, we formalize event data and provide
useful notions to reason about both observed and modeled behavior. We start
with some basic mathematical notations.

Table 1. Fragment of a larger event log with 6400 events, i.e., the whole table has
6400 rows. These events describe the production of 800 pizzas. Each row refers to an
event having five attributes, including the three mandatory ones: case, activity, and
timestamp.

Case Activity Timestamp | Resource | Customer
pizza-56 | buy ingredients (b7) | 18:10 Stefano | Valentina
pizza-57 | buy ingredients (b7) | 18:12 Stefano | Giulia
pizza-57 | create base (cb) 18:16 Mario Giulia
pizza-56 | create base (cb) 18:19 Mario Valentina
pizza-57 | add tomato (at) 18:21 Mario Giulia
pizza-57 | add cheese (ac) 18:27 Mario Giulia
pizza-56 | add cheese (ac) 18:34 Mario Valentina
pizza-56 | add tomato (at) 18:44 Mario Valentina
pizza-56 | add salami (as) 18:45 Mario Valentina
pizza-56 | bake in oven (bo) 18:48 Stefano | Valentina
pizza-57 | add salami (as) 18:50 Mario Giulia

(continued)

14 W. M. P. van der Aalst

Table 1. (continued)

Case Activity Timestamp | Resource | Customer
pizza-56 | eat pizza (ep) 19:10 Valentina | Valentina
pizza-58 | buy ingredients (bz) | 19:17 Stefano | Laura
pizza-57 | bake in oven (bo) 19:23 Stefano | Giulia
pizza-57 | eat pizza (ep) 19:27 Giulia Giulia
pizza-57 | clean kitchen (ck) | 19:44 Mario Giulia
pizza-58 | create base (cb) 19:48 Mario Laura
pizza-58 | add salami (as) 19:49 Mario Laura
pizza-58 | add tomato (at) 19:55 Mario Laura
pizza-56 | clean kitchen (ck) | 20:08 Mario Valentina
pizza-58 | add cheese (ac) 20:13 Mario Laura
pizza-58 | bake in oven (bo) 20:29 Stefano | Laura
pizza-58 | eat pizza (ep) 20:48 Laura Laura
pizza-58 | clean kitchen (ck) |20:51 Mario Laura

3.1 Notations

B(A) is the set of all multisets over some set A. For some multiset b € B(A),
b(a) denotes the number of times element a € A appears in b. Some examples:
by = []; by = [xvmay]v by = [.’E,y72]7 by = [xaxvyvmvyaz]a and b = [xSayzaZ] are
multisets over A = {x,y,z}. b is the empty multiset, by and b3 both consist
of three elements, and by, = bs, i.e., the ordering of elements is irrelevant and a
more compact notation may be used for repeating elements. The standard set
operators can be extended to multisets, e.g., © € ba, by Wbz = by, b5 \ by = b3,
|bs| = 6, etc. {a € b} denotes the set with all elements a for which b(a) > 1.
b(X) = > ,ex b(z) is the number of elements in b belonging to set X, e.g.,
bs({z,y}) =3+2=5.b<V if b(a) < ¥V(a) for all a € A. Hence, b3 < by and
by £ bz (because by has two z’s). b < b if b < b and b # b'. Hence, bs < by and
by £ b5 (because by = bs).

o = {(a1,as,...,a,) € X* denotes a sequence over X of length |o| = n.
o; = a; for 1 <14 <|o|. () is the empty sequence. o1 - 09 is the concatenation of
two sequences, e.g., (z,z,y) - (z,y, z) = (z,z,y,2,y, z). The notation [a € o] can
be used to convert a sequence into a multiset. [a € (z,7,y,z,y, 2)] = [23, 2, 2].

f € X — Y is a total function, ie., f(z) €Y foranyz € X. fe X A Y
is a partial function with domain dom(f) C X. If x & dom(f), then we write
f(x) = L, i.e., the function is not defined for x.

3.2 Standard Event Log

An event log is a collection of events. An event e can have any number of
attributes, and often we require the following three attributes to be present:

Process Mining: A 360 Degree Overview 15

case # case(€), activity #4ct(€), and timestamp #+ime(€). Table 1 shows example
events. If e is the first visible event, then # .45 (€) = pizza-56, #4c¢(e) = bi (buy
ingredients), and #iime(e) = 18:10. For simplicity, we write 18:10, but the full
timestamp includes a date and possibly also seconds and milliseconds.

To formalize event logs, we introduce some basic notations.

Definition 1 (Universes). U, is the universe of events, Uyct is the universe
of activities, Ucqse 15 the universe of cases, Uime 1S the universe of timestamps,
Uaie = {act, case, time, ...} is the universe of attributes, Uyq is the universe of
values, and Upmap = Uarr 7 Upar is the universe of attribute-value mappings.
We assume that Uger U Uease U Uime C Upat, L & Upar, and for any [€ Upap:
flact) € Upet U{L}, f(case) € Upase U{L}, and f(time) € Upime U {L}.

Note that standard attributes of an event (activity, case, timestamp, etc.)
are treated as any other attribute. f € Uy,qp is a function mapping any sub-
set of attributes onto values. For example, f could be such that dom(f) =
{case, act, time, resource, customer, cost, size}, f(case) = pizza-56, f(act) = bi,
f(time) = 2021-09-21T18:10:00+00:00, f(resource) = Stefano, f(customer) =
Valentina, f(size) = 33cm, and f(cost) = €9.99. Note that the last two
attributes are not shown in Tablel. and that 2021-09-21T18:10:00+00:00 is
abbreviated to 18:10.

To be general, we assume that events are partially ordered. Recall that a
strict partial order is irreflexive (e £ e), transitive (e; < ex and es < ez implies
e1 < e3), and asymmetric (if e; < e, then es A e1).

Definition 2 (Event Log). An event log is a tuple L = (E,#, <) consisting
of a set of events EE C Uey, a mapping # € E — Upap, and a strict partial
ordering < C E x E on events.

For any e € E and att € dom(#(e)): #arr(e) = #(e)(att) is the value of
attribute att for event e. For example, #act(€), #ecase(€), and #iime(e) are the
activity, case, and timestamp of an event e.

The ordering of events respects time, i.e., if e1,ea € E, #ume(er) # L,
#time(GQ) 7& J—7 and #time(el) < #time(62); then €2 74 €1.

To be general, events can have any number of attributes and no attribute is
mandatory. However, when using simplified event logs, we only consider events
having a case and activity (with an order derived using timestamps).

Assume L = (E,#, <) is the event log in Table 1. The whole event log has
6400 events, i.e., the table has many more rows. Let E = {eq, ea, ..., €s400} be the
whole set of events and assume the first event shown in Table 1 is e433. #(e433)
is a mapping with dom(#(eqss)) = {case, act, time, resource, customer} (the
columns shown in the table). # cqse (€433) = Dizza-56, #40t(€433) = bi (buy ingre-
dithS), #time (6433) = 18:10, #resou'rce (6433) = Stefano, and #custamer(e433) =
Valentina. Assuming that the event identifiers follow the order shown in
Table 1, the last event visible in the table is e456, and # qse(€a56) = pizza-58,
#act(6456) = ck (Clean kitchen), #time(€456) = 20:51, #resource(6456) = Mario,

16 W. M. P. van der Aalst

and # customer (€456) = Laura. Assuming a total order as shown in the Table,
€433 < €434, €434 < €435, €455 < €456, €433 < €456, €tC.

As stated in Definition 2, < is a strict partial order and it is not allowed
that timestamps (when present) and the partial order disagree. Using Table 1
and the event identifiers es33 and ey56. It cannot be that ess56 < €433, because
Htime(€456) > Htime(€a33). For two arbitrary events e; and ey it cannot be
that both #yme(e1) < Frme(ea) and es < e;. However, it can be that
Hiime(€1) < Ftime(€2) and e £ ea (the time perspective is more fine grained) or
that #ime(€1) = F#ume(€2) and e; < ea (the partial order is more fine grained).
Optionally, the partial order can be derived from the timestamps (when present):
<= {(e1,e2) € E X E | #time(€1) < #time(e2)}. In this case, the event log is
fully defined by L = (E,#) (no explicit ordering relation is needed).

It should be noted that in the often used BPI Challenge 2011 log provided
by a Dutch academic hospital [16], 85% of the events have the same timestamp
as the previous one. This is because, for many events, only dates are available.
Many publicly available event logs have similar issues, for example, in the so-
called Sepsis log [30], 30% of the events have the same timestamp as the previous
one. In this event log, activities for the same case are sometimes batched, leading
to events with the same timestamp. These examples illustrate that one should
inspect timestamps and not take the order in the event log for granted. It may
be beneficial to use partially ordered event data in case of data quality problems
or when there is explicit causal information.

3.3 Simplified Event Log

For process mining techniques focusing on control-flow, it often suffices to focus
only on the activity attribute and the ordering within a case. This leads to a
much simpler event log notion.

Definition 3 (Simplified Event Log). A simplified event log L € B(Uget™)
is a multiset of traces. A trace o = (a1,a2,...a,) € Uset™ 1S a sequence of
activities. L(c) is the number of times trace o appears in event log L.

Consider case pizza-56 in Table 1. There are eight events having this case
attribute. By ordering these events based on their timestamps we get the trace
Opimanss = (b1, ¢b, ac, at, as, bo, ep, ck). We can do the same for the other two
cases shown in Table 1: 0,,,,.5» = (bi, cb, at, ac, as, bo, ep, ck) and 0,;,,..5s = (b1,
cb, as, at, ac, bo, ep, ck). We are using the same shorthands as before, i.e., buy
ingredients (b7), create base (¢b), add cheese (ac), add tomato (at), add salami
(as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen
(ck).

The same trace may appear multiple times in a log. For example, L =
[(a,b,c,e)0 (a,c,b,e)?, (a,d,e)] is a simple event log with 10+ 5+ 1 = 16 cases
and 40 + 20 + 3 = 63 events.

An event log with events having any number of attributes (Definition 2) can
be transformed into a simplified event log by ignoring the additional attributes

Process Mining: A 360 Degree Overview 17

and sequentializing the events belonging to the same case. Events without a case
or activity attribute are ignored in the transformation process.

Definition 4 (Conversion). An event log L = (E,#, <) defines a simplified
event log L € B(Uye™) that is constructed as follows:

- E' ={e € E|#case(€) # L AN #act(e) # L} are all events having an activity
and a case attribute.

C = {#cuse(e) | e € E'} and A = {#4ct(e) | e € E'} are the cases and
activities in L.

— For any case c € C':

o E.={e € E'| #cusc(e) =c} are the events in c,

e 0. = (e1,62,...,¢en) is a (deterministically chosen) sequentialization of
the events in c, i.e., 0. is such that {e1,ea,...,e,} = E., |E.| = |o¢|, and
forany1l<i<j<n:e; Ae.

o G, = (#act(e1), #act(€2), ..., #act(€n)) € A* is the trace corresponding
to ¢ (i.e., the events in o. are replaced by the corresponding activities).

~ L=1[6.|ce O] € B(A*) is the simplified event log derived from L.

Let L = (E,#,<) be the event log corresponding to the events visible
in Tablel (assuming the order in the table). Then: L = [(bi, cb, ac, at, as,
bo, ep, ck), (bi, cb, at, ac, as, bo, ep, ck), (bi, cb, as, at, ac, bo, ep, ck)]. Table 1 only
shows a fragment of the whole event log. For the whole event log L =
(E,#,<), we have L= [(bi, cb, ac, at, as, bo, ep, ck)*%0, (bi, cb, at, ac, as, bo, ep,
ck)?%9 . (bi, cb, as, at, ac, bo, ep, ck)1°0, (bi, cb, ac, as, at, bo, ep, ck)®°, (bi, cb, at,
as, ac, bo, ep, ck)?, (bi, cb, as, ac, at, bo, ep, ck)?>]. This event log has 800 cases
and 6400 events. Using process discovery techniques we can automatically dis-
cover the models in Figs. 3, 4, 5 and 6 from such an event log. If the event log
also has cases where cheese is added multiple times (e.g., (bi, ¢b, ac, at, ac, ac, as,
bo, ep, ck)), mushrooms are added instead of salami (e.g., (b7, cb, ac, at, am, bo,
ep, ck)), and the eating activity is skipped (e.g., (bi, ¢b, ac, at, as, bo, ck)), then
we can automatically discover the models in Figs. 7, 8, 9 and 10 using suitable
process mining techniques.

3.4 Object-Centric Event Logs

Table 1 corresponds to a conventional “flat” event log where each event (i.e., row)
refers to a case, activity, and timestamp. It is very natural to assume that an
event has indeed a timestamp and refers to an activity. However, the assumption
that it refers to precisely one case may cause problems [4]. Object-Centric Event
Logs (OCEL) aim to overcome this limitation [22]. In OCEL, an event may refer
to any number of objects (of different types) rather than a single case. Object-
centric process mining techniques may produce Petri nets with different types
of objects [7] or artifact-centric process models [18,19].

18 W. M. P. van der Aalst

Table 2. Fragment of a larger Object-Centric Event Log (OCEL) with four types of
objects: pizza, resource, customer, and location. One event may refer to a set of objects,
e.g., three pizzas, three customer, and a location.

Activity Timestamp | Pizza Resource Customer Location
buy ingredients (bi) | 18:10 {pizza-56, |{Stefano} {Valentina, |{supermarket}

pizza-57, Giulia,

pizza-58} Laura}
create base (cb) 18.16 {pizza-57} |{Mario, Stefano} | {Giulia} {kitchen-1}
create base (cb) 18.19 {pizza-56} |{Mario, Stefano} |{Valentina} |{kitchen-1}
add tomato (at) 18.21 {pizza-57} |{Mario} {Giulia} {kitchen-1}
add cheese (ac) 18.27 {pizza-57} |{Mario} {Giulia} {kitchen-1}
add cheese (ac) 18.34 {pizza-56} |{Mario} {Valentina} |{kitchen-1}
add tomato (at) 18.44 {pizza-56} |{Mario} {Valentina} |{kitchen-1}
add salami (as) 18.45 {pizza-56} |{Mario} {Valentina} |{kitchen-1}
bake in oven (bo) 18.48 {pizza-56} |{Stefano} {Valentina} |{kitchen-1}
add salami (as) 18.50 {pizza-57} |{Mario} {Giulia} {kitchen-1}
eat pizza (ep) 19.10 {pizza-56} |{Valentina} {Valentina} |{restaurant}
bake in oven (bo) |19.23 {pizza-57} |{Stefano} {Giulia} {kitchen-1}
eat pizza (ep) 19.27 {pizza-57} |{Giulia} {Giulia} {restaurant}
create base (cb) 19.48 {pizza-58} |{Mario, Stefano} | {Laura} {kitchen-2}
add salami (as) 19.49 {pizza-58} |{Mario} {Laura} {kitchen-2}
add tomato (at) 19.55 {pizza-58} |{Mario} {Laura} {kitchen-2}
clean kitchen (ck) [20.08 0 {Mario} 0 {kitchen-1}
add cheese (ac) 20.13 {pizza-58} |{Mario} {Laura} {kitchen-2}
bake in oven (bo) 20.29 {pizza-58} |{Stefano} {Laura} {kitchen-2}
eat pizza (ep) 20.48 {pizza-58} |{Laura} {Laura} {restaurant}
clean kitchen (ck) |20.51 0 {Mario} [{kitchen-2}

To understand the problem, we use Table 2, which shows OCEL data in tab-
ular form. Compared to Table 1, we do not assume a single case notion. Instead,
an event may refer to any number of objects. In this toy example, we assume
four types of objects: pizza, resource, customer, and location. Assume that e is
the first event listed in Table2. #,.(e) = bi (buy ingredients), #yime(e) =
18:10, #pizza(e) = {pizza-56,pizza-57,pizza-58}, #resource(€) = {Stefano},
customer(€) = {Valentina, Giulia, Laura}, and #jocation(€) = {supermarket}.
Note that in Table1 there were three bi (buy ingredients) events, one for each
pizza. Hence, Table?2 is closer to reality if the ingredients were indeed bought
in the same visit to the supermarket. In a classical event log with a single case
identifier, we need to artificially replicate events (one bi event per pizza). This
may lead to misleading statistics, i.e., there was just one trip to the supermarket
and not three. The three pizzas were created on demand, so the bi event also
refers to the three customers. Table 2 also shows that creating the pizza base is
team work, i.e., all ¢b events are done by both Mario and Stefano. If we assume

Process Mining: A 360 Degree Overview 19

that e is the last event visible in Table2, then #,.:(e) = ck (clean kitchen),
#time(e) = 20.51, #pizza(e) =0, #resource(e) = {Mario}, #customer(e) =0,
and #iocation (€) = {kitchen-2}. This expresses that, according to this event log,
cleaning the second kitchen is unrelated to the pizza prepared in it.

Definition 2 can be easily extended to allow for Object-Centric Event Logs
(OCEL). We just need to assume that event attributes include object types
and that attribute-value mappings may yield sets of values (e.g., objects) rather
than individual values. Without fully formalizing this, we simply assume that
Uobjtyp < Uaue is the universe of object types, Uqp;s is the universe of objects, and
PUobjs) € Uyar (i-e., values can be sets of objects). Moreover, for any f € Upqp
and ot € Uopjeyp N dom(f): f(ot) C Uopjs. Hence, attribute value mappings can
be used to also map object types onto sets of objects.

To apply classical process mining techniques, we need to convert the object-
centric event data to traditional event data. For example, we need to convert
Table 2 into Table1 if we pick object type pizza as a case notion. This is called
“flattening the event log” and always requires picking an object type as a case
notion. This can be formalized in a rather straightforward manner.

Definition 5 (OCEL Conversion). Let L = (E,#, <) be an event log having
an object type ot € Uopjryp such that for any e € E: #41(e) C Uppjs s the set of
objects of type ot involved in event e. Based on this assumption, we can create

a “flattened event log” Lot € B(Uaet™) that is constructed as follows:

- E ={ee€ E| #o(e) 0N H#act(e) # L} are all events having an activity
and referring to at least one object of type ot.

= O =U.cp #ot(e) and A = {#aci(e) | e € E'} are the objects of type ot and
activities in L.

— For any object 0o € O:

o E,={ec€ E'|o€ #,(e)} are the events involving object o,

e 0, = {e1,ea,...,¢e,) is a (deterministically chosen) sequentialization of
the events involving o, i.e., o, is such that {e1,es,...,en} = E,, |E,| =
loo|, and for any 1 <i<j<n:e; 4e;.

o G, = (Fact(e1), #Hact(€2), ..., #act(en)) € A* is the trace corresponding
to o (i.e., the events in o, are replaced by the corresponding activities).

~ L=16,]0€ 0] € B(A*) is the simplified event log derived from L.

Definition 5 shows that any OCEL can be transformed into a simplified event
log. The simplified event log is a multiset of traces where each trace refers to
the “lifecycle” of an object. Consider for example G,,,....6 = (bi, cb, ac, at, as,
bo, ep) showing the lifecycle of pizza-56 in Table2. Fgiorano = (bi, cb, cb, bo, bo,
cb, bo) is the trace corresponding to resource Stefano. Gyaienina = (b1, b, ac, at,
as, bo, ep) is the trace corresponding to customer Valentina. This trace is now
the same as 0,,,..56, but this would not be the case if Valentina eats multiple
pizzas (e.g., in subsequent visits to the restaurant). 6., permare: = (i) is the trace
corresponding to the location “supermarket” (assuming there was just one visit
to the supermarket). & c.aumane = (€D, €p, €p) is the trace corresponding to the

20 W. M. P. van der Aalst

location “restaurant” (again considering only the events visible in Table 2). These
traces are rather short because we only consider the events shown in Table 2.

By converting an OCEL to a conventional event log, we can apply all existing
process mining techniques. For each object type, we can create a process model
showing the “flow of objects” of that type. However, flattening the event log
using ot as a case notion potentially leads to the following problems.

— Deficiency: Events in the original event log that have no corresponding events
in the flattened event log disappear from the data set (i.e., #:(e) =). For
example, when selecting object type pizza as a case notion, the clean kitchen
events disappear from the event log.

— Convergence: Events referring to multiple objects of the selected type are
replicated, possibly leading to unintentional duplication (i.e., |#,:(€))| > 2).
For example, when selecting object type pizza as a case notion, the first event
in Table 2 will be mapped onto three events in the flattened event log. When
selecting object type resource as a case notion, all create pizza base events
are duplicated in the flattened event log. The replication of events can lead
to misleading diagnostics.

— Divergence: Events referring to different objects of a type not selected as the
case notion may still be considered causally related because a more coarse-
grained object is shared. For example, when selecting object type location as
a case notion, events corresponding to different pizzas are interleaved and one
can no longer see the causal dependencies.

The first two problems are easy to understand: events disappear com-
pletely (deficiency) or are replicated leading to potentially misleading manage-
ment information (convergence). The problem of divergence is more subtle. To
understand this better, consider Gyemen: = (cb, cb, at, ac, ac, at, as, bo, as, bo,
ck) describing the “lifecycle” of the first kitchen. In this trace one can see cb
followed by cb (two subsequent create pizza base events) and ac followed by
ac (two subsequent add cheese events). However, these events refer to different
pizzas and are not causally related. The discovered process model is likely to
show loops involving ¢b and ac, although these events occur precisely once per
pizza.

In summary, one can create different views on the process by flattening the
event data for selected object types, but one should be careful to interpret these
correctly (e.g., be aware of data duplication and the blurring of causalities).

The running “pizza process” example is not very realistic, and is only used
to introduce the basic concepts in a clear manner. Earlier, we mentioned CRM
systems like Salesforce and ERP systems like SAP S/4HANA, Oracle E-Business
Suite, and Microsoft Dynamics 365. These systems are loaded with event data
scattered over many database tables. ERP and CRM systems are widely used,
broad in scope, and sector-agnostic. Also, more sector-specific systems used in
banking, insurance, and healthcare have event data distributed over numerous
tables. These tables refer to different types of objects that are often in a one-
to-many or many-to-many relation. This immediately leads to the challenges
described before.

Process Mining: A 360 Degree Overview 21

Let us consider two of the processes almost any organization has: Purchase-
to-Pay (P2P) and Order-to-Cash (O2C). The P2P process is concerned with
the buy-side of an organization. The O2C process is concerned with the sell-side
of a company. In the P2P process the organization is dealing with purchasing
documents, items, suppliers, purchase requisitions, contracts, receipts, etc. Note
that there may be many purchase orders per supplier and an order may consist
of multiple items. Hence, events may refer to different objects and also multiple
objects of the same time. In the O2C process, we can witness similar phenomena.
A customer may place three orders on the same day and each order may have
several items. Items from different orders may end up in the same delivery.
Moreover, items in the same order may end up in different deliveries.

P2P and O2C processes are considered simple and there is a lot of experience
with extracting such data from systems such as SAP. Still, these processes are
more complicated than what many people think. It is not uncommon to find
thousands of process variants. This offers great opportunities for process min-
ing, because unexpected variants provide hints on how to improve the process.
However, one should not underestimate the efforts needed for data extraction.
Therefore, we discussed OCEL as it sits in-between the real database tables
in systems such as SAP, Oracle, and Salesforce, and the flattened event logs
assumed by most systems.

3.5 XES Standard

The initial version of the XES (eXtensible Event Stream) format was defined
by the IEEE Task Force on Process Mining in September 2010. After several
iterations, XES became the official IEEE standard for storing event data in 2016
[24]. XES is supported by most of the open-source process mining tools and many
of the leading commercial tools. The goal is to facilitate the seamless exchange
of event data between different systems. Of course, it is also possible to do this
using relational databases or simple file formats. However, XES adds semantics
to the data exchanged. Therefore, we focus on the concepts and refer to [24] for
the syntax.

Figure 11 shows the XES meta model expressed in terms of a UML class
diagram. A XES document (e.g., an XML file) contains one log consisting of any
number of traces. Each trace describes a sequential list of events corresponding
to a particular case. The log, its traces, and its events may have any num-
ber of attributes. Attributes may be nested. There are five core types: String,
Date, Int, Float, and Boolean. XES does not prescribe a fixed set of mandatory
attributes for each element (log, trace, and event), e.g., an event can have any
number of attributes. However, to provide semantics for such attributes, the log
refers to so-called XES extensions. An extension gives semantics to particular
attributes. For example, the Time extension defines a timestamp attribute of
type zs:dateTime. This corresponds to the #,.(€e) attribute used before. The
Organizational extension defines a resource attribute of type ws:string, i.e., the

22 W. M. P. van der Aalst

<declares>
P R CEEEETE T TP P R EEEEE PP PP P EEEREE S Extension

<defines> <defines>
Classifier

<trace-global>

<contains>

<contains>

<contains>

Boolean

Fig. 11. Meta model of XES [24]. A log contains traces and each trace contains events
[2,24]. Log, traces, and events have attributes. Extensions may define new attributes
and a log should declare the extensions used in it. Global attributes are attributes
that are declared to be mandatory. Such attributes reside at the trace or event level.
Attributes may be nested. Event classifiers are defined for the log and assign a “label”
(e.g., activity name) to each event. There may be multiple classifiers.

Hresource (€) attribute. Users can define their own extensions. For example, it is
possible to develop domain-specific or even organization-specific extensions.

XES also supports three concepts that are of general interest and important
for process mining: classifiers, lifecycle information, and activity instances. These
concepts are interrelated as is discussed next.

Classifiers are used to attach labels to events. There is always at least one
classifier and by default; this is the activity name. When turning an event log L
into a simplified event log L € B(Uget™) in Definition 4, we are using this default
classifier: each event e is mapped onto #,.:(e). However, it is also possible to
project events onto resources, locations, departments, etc., or combinations of
attributes. An event classifier assigns to each event an identity, which makes
it comparable to other events (via their assigned identity). Event classifiers are
defined for the whole log, and there may be an arbitrary number of classifiers.

Thus far, we implicitly assumed that events are atomic. Therefore, an event
has a timestamp. To handle activities that take time, XES provides the possi-
bility to represent lifecycle information and to connect events through activity
instances. An activity instance is a collection of related events that together rep-
resent the execution of an activity for a case. For example, an activity instance

Process Mining: A 360 Degree Overview 23

may be composed of a start event and a complete event. This way, we can
derive information about the duration of an activity instance. The XES lifecy-
cle model distinguishes between the following types of events: schedule, assign,
withdraw, reassign, start, suspend, resume, abort, complete, autoskip, and man-
ualskip. Using this XES extension, an event e has an attribute #y,.(e). For
example, assume that e; and e, are two events that belong to the same activity
instance and #ype(€1) = start and #¢ype (e2) = complete. #yime(€2) — #iime(€1)
is the duration of the activity. Similarly, we can measure waiting times, etc. Note
that classifiers can also use lifecycle information, e.g., an event e is identified by
the pair (#act(€), #type(€)). This implies that when we discover process models,
there may be activities (a,start) and (a, complete).

Many XES logs contain lifecycle information, but few contain explicit activity
instances. This implies that heuristics are needed to link events. For example,
(a,start) is coupled to the first (a,complete) following it. However, in the trace
(..., (a,start),..., (a,start),..., (a,complete),..., (a,complete),...), there are
two possible ways to match starts and ends. Fortunately, it is often possible to
extract activity instances from the original data source.

4 Different Types of Process Mining

After introducing multiple ways to represent process models (BPMN, Petri nets,
process trees, and DFGs) and different types of events logs (e.g., XES and
OCEL), we now briefly introduce some of the standard process mining tasks
(see Fig.12). As a starting point, we assume that high-quality event data are
available. In practice, it is often time-consuming to extract event data from
existing systems. As mentioned before, events may be scattered over multiple
database tables or even multiple information systems using different identifiers.
When starting with process mining, data extraction and data cleaning may take
80% of the time. Of course, the exact percentage depends on the type of process
and information system. Also if the data pipeline is set up properly, this is a
one-time effort that can be reused continuously.

4.1 Process Discovery

Event logs contain example behavior. The challenge is to discover a process
model based on such example behavior. The model should not be “overfitting”
(i.e., simply enumerating the observed example traces) and not “underfitting”
(i.e., allow for behavior unrelated to what was observed). This is a difficult
task and numerous algorithms have been proposed in literature, including the
Alpha algorithm [8], region-based approaches [11,13,33,36], inductive mining
techniques [28,29], and the split miner [9]. A baseline approach is the creation
of a DFG, where the observed activities are added as nodes and two nodes a
and b are connected through a directed arc if activity a is directly followed by
activity b at least once. Obviously, such an approach is too simplistic and leads
to underfitting process models. If activity a is directly followed by activity b in

24 W. M. P. van der Aalst
information
systems
extracl‘ /—\
process conformance predictions

) models | ool
R »

event 2: Conformance agposfic 4: Comparative
— o Checking = " Process Mining
W

Discovery 3: Performance

Analysis -
explore select
filter show sho act
clean model interpret
= adapt drill dogs

6: Action-Oriented
‘l:l Process Mining
9
o A
AT transform

ﬁ

Fig. 12. Six frequently used types of process mining.

one case and activity b is directly followed by activity a in another case, then a
loop is introduced. The techniques mentioned above address this problem and
are able to uncover concurrency. However, there are many other challenges. The
event log may contain infrequent behavior, i.e., traces or patterns which are less
frequent compared to the mainstream behavior. Should this infrequent behavior
be included or not? Hence, most approaches are parameterized to discard rare
behavior. On the one hand, we often want to leave out infrequent behavior
to simplify models. On the other hand, one cannot assume to have seen all
behavior. Concurrency leads to an exponential number of states and a factorial
number of possible traces. An unbounded loop leads to infinitely many possible
traces. Process discovery is further complicated by the fact that event logs do
not contain negative examples (i.e., traces that cannot happen) and are often
incomplete (i.e., only a small fraction of all possible behavior is observed).

It is important to focus on a particular process or problem, having a particular
goal in mind. One needs to select and filter the data based on a well-defined
goal. Randomly using sliders to simplify process models may be useful for a first
exploration, but will rarely lead to the desired insights.

To introduce process discovery, we focus on the control-flow, i.e., the ordering
of activities. However, process models may include other perspectives, including
time, data, resources, costs, etc. For example, a choice may be based on the
attributes of the case or preceding event, and we may attach resource allocation
rules to activities (e.g., role information and authorizations). Process discovery
may add such perspectives, but we typically try to get clarity on the control-flow
first. If no reasonable control-flow can be established, one should not try to add
additional perspectives. Several process discovery techniques are explained in
detail in [5,10].

Process Mining: A 360 Degree Overview 25

4.2 Conformance Checking

Conformance checking requires both an event log and a process model as
input. The goal is to indicate where log and model disagree. To illustrate
this consider Figs.7, 8, and 9. These three models describe exactly the same
behavior of the extended “pizza process” that can be compactly described
as —(bi, cb, N(O(ac,7), at, x(as, am)), bo, x (ep, 7), ck). Let M = {(bi, cb, ac,
at, as, bo, ep, ck,), ... (bi, cb, am, at, ac, ac, ac, bo, ep, ck,), ... {bi, cb, at, ac, am,
bo, ck)} be the infinite set of all traces allowed by the BPMN model, Petri net,
and process tree depicted in the three figures. Let L € B(Uye™) be an event log
containing 800 traces. Assume o1 = (bi, cb, ac, at, as, bo, ep, ck) € L, oo = (bi,
¢cb, ac, ac, at, am, ep, ck) € L, and o3 = (bi, ¢b, at, ac, at, as, bo, ck) € L. Hence,
L =[01,02,05,...] and |L| = 800. 01 € M, i.e., this is a perfectly fitting trace.
o9 € M because activity bo (bake in oven) is missing, i.e., someone was eating
an uncooked pizza. o3 € M because activity at (add tomato) occurs twice. The
goal of conformance checking is to detect such deviations.

Lg = [0 € L | 0 € M| is the multiset of fitting traces and Lge, = [0 € L |
o ¢ M] is the multiset of deviating traces. Hence, fitness at the trace level can
be defined as |Ls; |/ |L|. The fraction is 1 if all traces are fitting and 0 if none of
the traces is fitting.

There are many measures for fitness. For example, the above fraction does
not take into account to what degree a trace is fitting or not. Trace o4 = (bo, bo,
bo, at, at, at, at, at) € L is obviously more deviating than o5 and o3. Moreover,
it is not enough to produce a number. In practice, good diagnostics are much
more important than a single quality measure.

There are many techniques for conformance checking. The two most fre-
quently used approaches are token-based replay [32] and alignments [6,14]. For
token-based replay, the process model is represented as a Petri net and traces
in the event log are replayed on the model. If the trace indicates that an activ-
ity needs to take place, the corresponding transition is executed. If this is not
possible because an input place is empty, a so-called missing token is added.
Tokens that are never consumed are called remaining tokens. The numbers of
missing and remaining tokens relative to the numbers of consumed and produced
tokens indicate the severity of the conformance problem. Token-based replay can
be extended to Petri nets with silent and duplicate activities using heuristics.
For example, if there are two activities with the same label, pick the one that
is enabled. If both are enabled, pick one of them. Similarly, silent transitions
(i.e., transitions not corresponding to recorded activities) are executed when
they enable a transition corresponding to the next activity in the event log. This
requires an exploration of the states reachable from the current state and may
lead to inconclusive results.

Compared to computing alignments, token-based replay is fairly efficient, but
does not always produce valid paths through the process model. Alignments are
often seen as the gold standard for conformance checking because they provide
paths through the process model that are as close to the observed behavior
as possible. We would like to map observed behavior onto modeled behavior to

26 W. M. P. van der Aalst

provide better diagnostics and to relate also non-fitting cases to the model. Align-
ments were introduced to overcome the limitations of token-based replay. The
diagnostics are more detailed and more precise, because each observed trace is
mapped onto a model behavior that is as close to what was observed as possible.
The alignment shows common behavior, but also skipped and inserted events
signaling deviations. Such skipped and inserted events are easier to interpret
than missing and remaining tokens. However, for large event logs and processes,
alignment computations may be intractable. Moreover, there may be many opti-
mal alignments, making the diagnostics non-deterministic.

Several conformance checking techniques are explained in detail in [15]. When
comparing observed and modeled behavior, we typically consider four main qual-
ity dimensions [1,2,6]:

— Recall (also called replay fitness): the discovered model should allow for the
behavior seen in the event log. This can be quantified by the minimal number
of edit operations needed to make all traces in the event log fitting into the
model (or simply the fraction of perfectly fitting traces).

— Precision: the discovered model should not allow for behavior completely
unrelated to what was seen in the event log. This can be quantified by the
number of possible continuations in the model never observed in the event
log.

— Generalization: the discovered model should generalize the example behavior
seen in the event log. It is easy to create a process model that only allows
for the behavior observed and nothing more. However, such a model is likely
to overfit. To avoid overfitting, the model should generalize. This can only
be tested on “fresh unseen” event data. To evaluate a process discovery algo-
rithm, standard cross-validation can be used to detect overfitting problems.
This is less clear when evaluating a process model rather than a discovery
algorithm [6].

— Simplicity: the discovered model should be as simple as possible. This fourth
quality criterion is related to Occam’s Razor, which states that “one should
not increase, beyond what is necessary, the number of entities required to
explain anything”.

4.3 Performance Analysis

The goal of process mining is to improve processes by uncovering problems. These
may be the conformance problems just described, but (of course) also include
performance problems such as untimely completion of a case, limited production,
missed deadlines, tardiness, excessive rework, and recurring quality problems.
Using token-based replay [32] and alignments [6,14] it is possible to relate event
data to a process model. As a result, it is fairly straightforward to annotate the
process model with frequency and time information. Frequencies of undesired
activities and loops can be used to identify quality and efficiency problems. Since
events have timestamps, it is possible to measure times in-between activities,
including statistics such as mean, median, standard deviation, minimum, and

Process Mining: A 360 Degree Overview 27

maximum. This allows for analyzing performance indicators, e.g., waiting times,
response times, and service times.

A Service Level Agreement (SLA) is an agreement between a service provider
and a client. Process mining can be used to analyze SLAs, e.g., when is a partic-
ular SLA not met. Some well-known SLAs are churn/abandonment rate (num-
ber of cases lost), average speed to answer (response time seen by customer),
percentage of cases handled within a predefined timeframe, first-call resolution
(cases successfully handled without rerouting), percentage of duplicated cases
(e.g., multiple procurement documents corresponding to the same order), mean
time between failures, mean time to recovery, etc.

4.4 Comparative Process Mining

Comparative process mining uses as input multiple event logs, e.g., L1, Lo, ...,
L, € B(Uuet™). These event logs may refer to different locations, periods, or
categories of cases. For example, we may have the event logs L gqchen and L pyunich
referring to the same processes performed at two locations. We may have the
event logs L jun, Lrey, Lyviars - - - » Lpec Teferring to different periods or LG, and
Lgiiper referring to gold and silver customers.

Having multiple event logs allows for comparison and highly relevant ques-
tions. What are the striking differences and commonalities? What factors lead
to these differences? Root cause analysis can be used to explain the observed
differences. For example, in L g, waiting times may be much longer than in L j,4,
due to limited resource availability. Comparative process mining may focus on
frequently occurring problems, sometimes referred to as ezecution gaps. Such
execution gaps include lost customers, additional work due to price changes, the
merging of duplicate orders, and rework due to quality problems.

Comparative process mining is also a great tool for inter- or intra-
organizational benchmarking. For example, an insurance company may have dif-
ferent regional offices. Using comparative process mining, these offices can learn
from each other and increase the overall performance.

4.5 Predictive Process Mining

Process discovery, conformance checking, performance analysis, and compara-
tive process mining are backward-looking. Although the value of such techniques
is obvious, the actual goal is to continuously improve processes and respond
to changes. Operational processes are subject to many changes, e.g., a sud-
den increase in the number of orders or disruptions in the supply chain. More-
over, many compliance and performance problems can be foreseen and addressed
proactively. Fortunately, process models discovered and enriched using process
mining can be used in a forward-looking manner.

Process mining can be used to create a range of ML questions that can
be answered using standard software libraries. For example, when detecting a
recurring bottleneck or deviation, it is possible to extract features from the event
log and create a predictive model. This leads to a so-called situation-feature table

28 W. M. P. van der Aalst

with several descriptive features (e.g., people involved, path taken, and time of
day) and one target feature (e.g., waiting time or decision). Then standard ML
techniques ranging from regression and decision trees to neural networks can be
applied to explain the target feature in terms of descriptive features. This leads
to better diagnostics and explanations. Moreover, the models can be used in a
predictive manner.

Predictive process mining questions also create specific ML challenges. Most
ML techniques assume a fixed number of features as input (i.e., a fixed-length
feature vector) and assume inputs to be independent. Artificial recurrent neural
network architectures such as Long Short-Term Memory (LSTM) can be used
to handle traces of variable length. Contextual features can be added to include
information about the utilization of resources. However, this requires fine-tuning
and domain knowledge.

A discovered process model can be viewed as a description of the as-is situ-
ation. Using simulation and model adaptation, it is possible to explore possible
to-be situations. Simulation enables forward-looking forms of process mining.
Comparative process mining can be used to compare the different alternatives.

4.6 Action-Oriented Process Mining

Process mining can be used to show (1) what has happened, (2) what is happen-
ing now, and (3) what will happen next in the process. Hence, it covers the full
spectrum from backward-looking to forward-looking types of analysis. Backward-
looking forms of process mining can lead to process redesigns and organizational
changes. Forward-looking forms of process mining and diagnostics of the cur-
rent state of a process can trigger improvement actions. Action-oriented process
mining aims to turn diagnostics into actions. Assisted by low-code automation
platforms, process mining software can trigger workflows. Some examples:

— The moment the average waiting time exceeds 2h, additional resources are
added and no new orders are accepted.

— If a supplier changes prices repeatedly for a longer period, then the supplier
is blacklisted.

— If a check is repeatedly skipped by an employee, the manager is notified.

Next to triggering improvement actions, process mining can also detect repet-
itive work that may be automated using Robotic Process Automation (RPA).
RPA can be used to automate repetitive tasks done by humans without chang-
ing the underlying systems. Typical examples include copying information from
one system into another system. Process mining can be used to discover such
repetitive tasks. The term task mining is often used to refer to the discovery of
processes based on user-interface interactions (filling out a form, pushing a but-
ton, copying text, etc.). Task mining can be used to uncover repetitive processes
that can be automated. There is also a connection to online scheduling and other
Operations Research (OR) techniques. For example, based on historical infor-
mation, it is possible to create a robust schedule with events taking place in the
future. Differences between scheduled events and the actual events may trigger
improvement actions.

Process Mining: A 360 Degree Overview

5 Applications and Software

29

Process mining started as an exercise in the late 1990s trying to automatically
create a Petri net from example traces [2]. According to Gartner there are now
over 40 process mining vendors [26]. Some of them are listed in Table 3. Note
that the list is very dynamic with new vendors emerging and large I'T companies
acquiring smaller process mining vendors. For an up-to-date overview, see the
website www.processmining.org which lists all process mining tools.

Table 3. Some of the process mining tools available at the end of 2021. For each
tool the vendor and website are listed. The last column indicates whether an academic

version is available.

Vendor Tool Website Acad. ver.
Abbyy ABBYY Timeline www.abbyy.com No
Appian (Lana Labs) | LANA Process Mining lanalabs.com No
Apromore Apromore Enterprise Edition |apromore.org Yes
bupaR bupaR bupar.net Yes
businessOptix businessOptix businessoptix.com Yes
Celonis Celonis EMS celonis.com Yes
Datricks Datricks datricks.com Yes
DCR DCR Portal www.dcrsolutions.net Yes
Deloitte Process X-ray processxray.deloitte.com | No
EverFlow EverFlow everflow.al No
Fluxicon Disco fluxicon.com Yes
FortressIQ FortressIQ fortressiq.com No
Fraunhofer FIT PM4Py pmdpy.fit.fraunhofer.de | Yes
Hyland Onbase www.hyland.com No
IBM (myInvenio) mylInvenio my-invenio.com No
Integris Explora Process integris.it No
Kofax Kofax Insight www.kofax.com No
livejourney livejourney www.livejourney.com No
Logpickr Logpickr Process Explorer 360 | www.logpickr.com No
Mavim Mavim WWWw.mavim.co No
Mehrwerk GmbH MPM mpm-processmining.com | No
Mindzie mindzie mindzie.com Yes
Minit (Microsoft) Minit www.minit.io Yes
Nintex UK Itd Nintex www.nintex.com No
Oniq IQ/A Www.oniq.com No
PAFnow (Celonis) |PAFnow pafnow.com No
Process.science process.science WWW.process.science No
ProcessDiamond ProcessDiamond processdiamond.com Yes
ProcessM PmBI processm.com Yes
Puzzle Data ProDiscovery www.puzzledata.com No

(continued)

www.processmining.org
www.abbyy.com
http://lanalabs.com/
http://apromore.org/
http://bupar.net
http://businessoptix.com
http://celonis.com
http://datricks.com
www.dcrsolutions.net
http://processxray.deloitte.com
http://everflow.ai
http://fluxicon.com
http://fortressiq.com
http://pm4py.fit.fraunhofer.de
www.hyland.com
http://my-invenio.com
http://integris.it
www.kofax.com
www.livejourney.com
www.logpickr.com
www.mavim.co
http://mpm-processmining.com
http://mindzie.com
www.minit.io
www.nintex.com
www.oniq.com
http://pafnow.com
www.process.science
http://processdiamond.com
http://processm.com
www.puzzledata.com

30 W. M. P. van der Aalst
Table 3. (continued)
Vendor Tool Website Acad. ver.
QPR Software QPR ProcessAnalyzer WWW.qpr.com No
SAP (Signavio) SAP Signavio www.signavio.com Yes
Skan Al Skan www.skan.ai No
Software AG Aris aris-process-mining.com | Yes
Soroco Scout Platform soroco.com No
StereoLogic StereoLogic Process Mining www.stereologic.com No
TU/e ProM www.promtools.org Yes
TU/e RapidProM www.rapidprom.org Yes
UI Path UI Path Process Mining www.uipath.com Yes
UltimateSuite UltimateSuite TM/RPA www.ultimatesuite.com | No
Upflux Upflux upflux.net No
Worksoft Worksoft www.worksoft.com No

All of the tools in Table 3 support the discovery of Directly-Follows Graphs
(DFGs) with frequencies and times. Most of them (but not all) support some form
of conformance checking and BPMN visualization. Some of the tools target pro-
cess or data analysts rather than people managing or executing processes. These
tools are typically lightweight and can be deployed quickly. Enterprise-level pro-
cess mining tools are more difficult to deploy, but aim to be used by many stake-
holders within an organization. For example, within Siemens, over 6000 employ-
ees are using the Celonis software to improve a range of processes. Enterprise-level
process mining tools have automated connections to existing information systems
(e.g., SAP, Salesforce, Oracle, ServiceNow, and Workday) to allow for the contin-
uous ingestion of data. These tools also allow for customized dashboards to lower
the threshold to use process mining. In 2020, Gartner estimated the process min-
ing software market revenue to be $550 million, which was over 70% market size
growth from the previous year [26]. The process mining market is forecast to keep
growing 50% per year (Compound Annual Growth Rate) in the coming years. Note
that this does not include consultancy based on process mining. The Big Four (i.e.,
Deloitte, Ernst & Young, KPMG, and PwC) all have process mining competence
centers providing process mining services all over the globe.

The technology is generic and can be used in any domain. For example,
process mining is used in

— finance and insurance (Rabobank, Wells Fargo, Hypovereinsbank, Caixa Gen-
eral, ADAC, APG, Suncorp, VIB, etc.),

— logistics and transport (Uber, Deutsche Bahn, Lufthansa, Airbus, Schukat,
Vanderlande, etc.),

— production (ABB, Siemens, BMW, Fiat, Bosch, AkzoNobel, Bayer, Neste,
etc.),

— healthcare, biomedicine, and pharmacy (Uniklinkk RWTH Aachen, Charite
University Hospital, GE Healthcare, Philips, Medtronic, Pfizer, Bayer,
AstraZeneca, etc.),

www.qpr.com
www.signavio.com
www.skan.ai
http://aris-process-mining.com
http://soroco.com
www.stereologic.com
www.promtools.org
www.rapidprom.org
www.uipath.com
www.ultimatesuite.com
http://upflux.net
http://www.worksoft.com

Process Mining: A 360 Degree Overview 31

telecom (Deutsche Telekom, Vodafone, A1l Telekom Austria, Telekom Italia,
etc.),

— food and retail (Edeka, MediaMarkt, Globus, Zalando, AB InBev, etc.),

— energy (Uniper, Chevron, Shell, BP, E.ON, etc.), and

IT services (Dell, Xerox, IBM, Nokia, ServiceNow, etc.).

In [31], several use cases are described in detail. In [26,27], typical applica-
tions are described, and in [21] the results of a global process mining survey
are presented. These show that the adoption is increasing, e.g., according to
the global survey, 83% of companies already using process mining on a global
scale plan to expand their initiatives [21]. Process mining helps organizations to
improve processes, provide transparency, reduce costs, ensure compliance, avoid
risks, eliminate waste, and redesign problematic processes [21]. To get a glimpse
of the possible applications, the reader can take a look at the use cases col-
lected by the IEEE Task Force on Process Mining [25] and HSPI Management
Consulting [20]. Note that these cover just a fraction of the actual applications
of process mining. It has become fairly standard to apply process mining to
standard processes such as Purchase-to-Pay (P2P) and Order-to-Cash (02C).

6 Summary and Outlook

This chapter aimed to provide a 360° overview of the field of process mining. We
showed that process mining connects data science and process science leading to
data-driven process-centric techniques and approaches. Event data and process
models were introduced. Events can be grouped in event logs, but also stored in
databases. In the standard setting an event has a few mandatory attributes such
as case, activity, and timestamp. This can be further reduced to representing
an event log by a multiset of traces where each trace is a sequence of activities.
This format is often used for control-flow discovery. However, in real-life settings
it is not so easy to find a single case notion. Often events may refer to multiple
objects of different types. There may also be data quality problems and data may
be scattered over multiple source systems. Moreover, additional attributes such
as costs, time, and resources need to be incorporated in models. We introduced
Directly-Follows Graphs (DFG), Petri nets, BPMN models, and process trees as
basic control-flow representations. These will be used in the remainder.

We informally described six common types of process mining: (1) process dis-
covery, (2) conformance checking, (3) performance analysis, (4) comparative pro-
cess mining, (5) predictive process mining, and (6) action-oriented process mining.
These characterize the scope of process mining and challenges. The chapter also
provided pointers to the over 40 process mining tools and case studies.

Although process mining is already used by many of the larger organizations,
it is a relatively new technology and only a fraction of its potential is realized
today. Three important trends can be witnessed that together lead to a wider
adoption.

— Supporting data extraction and analysis through process-specific and domain-
specific adapters and applications (“process mining apps”). This reduces the

32 W. M. P. van der Aalst

effort to get started with process mining and leverages past experiences in
other organizations.

— Initially, process mining software aimed at experts involved in process
improvement projects. However, process mining should be done continuously
and at a large scale. It is a generic technology that should be accessible for
many users every day. By scaling (both in terms of processes and users) and
continuous use, the return on investment is the highest.

— Increasingly, process mining and automation are combined. Process mining
diagnostics trigger corrective actions through low-code automation platforms.
This is the only way to ensure that improvements are realized. Without some
form of automation, workers may slip back into the old ineffective ways of
working that were exposed using process mining.

Process mining can also play a role in realizing sustainability goals and help
to address environmental, social and economic challenges. Process mining can
help to quantify and steer sustainability efforts, e.g., by removing waste and
quantifying emissions. Process mining can easily handle multiple dimensions,
such as time, cash flow, resource usage, and CO, emissions, during analysis.
Sustainability is just one of many topics where process mining can play a role.
Moreover, these applications also pose interesting research questions leading to
new concepts and techniques.

Acknowledgment. Funded by the Alexander von Humboldt (AvH) Stiftung and the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy — EXC 2023 Internet of Production — 390621612.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19345-3

2. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

3. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the
directly-follows graph. Procedia Comput. Sci. 164, 321-328 (2019)

4. Aalst, W.M.P.: Object-centric process mining: dealing with divergence and con-
vergence in event data. In: Olveczky, P.C., Salaiin, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3-25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1_1

5. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx—yy.
Springer, Cham (2022)

6. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Min. Knowl. Discovery 2(2), 182-192 (2012)

7. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fund.
Inform. 175(1-4), 1-40 (2020)

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Process Mining: A 360 Degree Overview 33

van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128-1142 (2004)

Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251-284 (2019)

Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques.
In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP,
vol. 448, pp. xx—yy. Springer, Cham (2022)

Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375-383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75183-0_27

vom Brocke, J., et al.: Process Science: The Interdisciplinary Study of Continuous
Change. SSRN (2021). http://ssrn.com/abstract=3916817

Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358-373. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85758-7_26

Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process
Mining Handbook. LNBIP, vol. 448, pp. xx—yy. Springer, Cham (2022)

van Dongen, B.F.: Real-Life Event Logs: Hospital Log (4TU.ResearchData) (2011).
https://doi.org/10.4121 /uuid:d9769{3d-0ab0-4{b8-803b-0d1120fFfcf54

Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-56509-4

van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Guided interaction exploration
and performance analysis in artifact-centric process models. Bus. Inf. Syst. Eng.
61(6), 649-663 (2018). https://doi.org/10.1007/s12599-018-0546-0

Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3-24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_1

Cotroneo, G., Carbone, R., Boggini, S., Cerini, M.: Process Mining: A Database
of Applications (2021). HSPI Management Consulting 2021. http://www.hspi.it/
Galic, G., Wolf, M.: Global Process Mining Survey 2021: Delivering Value
with Process Analytics - Adoption and Success Factors of Process Mining.
Deloitte (2021). https://www2.deloitte.com/de/de/pages/finance/articles/global-
process-mining-survey-2021.html

Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL Standard
(2021). http://www.ocel-standard.org/

van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169-194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2_19

IEEE Task Force on Process Mining. XES Standard Definition (2016). http://
www.xes-standard.org/

IEEE Task Force on Process Mining. Case Studies (2022). http://www.tf-pm.org/

https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-75183-0_27
http://ssrn.com/abstract=3916817
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/s12599-018-0546-0
https://doi.org/10.1007/978-3-030-21571-2_1
http://www.hspi.it/
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
http://www.ocel-standard.org/
https://doi.org/10.1007/978-3-642-28108-2_19
http://www.xes-standard.org/
http://www.xes-standard.org/
http://www.tf-pm.org/

34

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

W. M. P. van der Aalst

Kerremans, M., Srivastava, T., Choudhary, F.: Gartner Market Guide for Process
Mining, Research Note G00737056 (2021). www.gartner.com

Koplowitz, R., Mines, C., Vizgaitis, A., Reese, A.: Process Mining: Your Compass
For Digital Transformation: The Customer Journey Is The Destination (2019).
www.forrester.com

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66-78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0_6

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.
(eds.) CAISE 2015. LNBIP, vol. 214, pp. 85-101. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19237-6_6

Mannhardt, F.: Road Traffic Fine Management Process (4TU.ResearchData)
(2016). https://doi.org/10.4121 /uuid:915d2bfb- 7e84-49ad-a286-dc35f063a460
Reinkemeyer, L.: Process Mining in Action: Principles, Use Cases and Outlook.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40172-6

Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64-95 (2008)

Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226-245. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7_14

Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining: towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132-150 (2017)

Taylor, F.W.: The Principles of Scientific Management. Harper and Brothers Pub-
lishers, New York (1919)

van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-
covering workflow nets using integer linear programming. Computing 100(5), 529—
556 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.gartner.com
www.forrester.com
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-642-13675-7_14
http://creativecommons.org/licenses/by/4.0/

	Process Mining: A 360 Degree Overview
	1 Introduction
	2 Process Models
	3 Event Data
	3.1 Notations
	3.2 Standard Event Log
	3.3 Simplified Event Log
	3.4 Object-Centric Event Logs
	3.5 XES Standard

	4 Different Types of Process Mining
	4.1 Process Discovery
	4.2 Conformance Checking
	4.3 Performance Analysis
	4.4 Comparative Process Mining
	4.5 Predictive Process Mining
	4.6 Action-Oriented Process Mining

	5 Applications and Software
	6 Summary and Outlook
	References

