
 123

LN
BI

P
44

8 Process Mining
Handbook

Wil M. P. van der Aalst
Josep Carmona (Eds.)

Tu
to

ria
l

Lecture Notes
in Business Information Processing 448

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Sudha Ram
University of Arizona, Tucson, AZ, USA

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896

More information about this series at https://link.springer.com/bookseries/7911

https://springerlink.bibliotecabuap.elogim.com/bookseries/7911

Wil M. P. van der Aalst · Josep Carmona (Eds.)

Process Mining
Handbook

Editors
Wil M. P. van der Aalst
RWTH Aachen
Aachen, Germany

Josep Carmona
Universitat Politècnica de Catalunya
Barcelona, Spain

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-031-08847-6 ISBN 978-3-031-08848-3 (eBook)
https://doi.org/10.1007/978-3-031-08848-3

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0001-9656-254X
https://doi.org/10.1007/978-3-031-08848-3
http://creativecommons.org/licenses/by/4.0/

Preface

Process mining emerged as a new discipline around the turn of the century. The combi-
nation of event data and process models poses interesting scientific problems. Initially,
the focus was on the discovery of process models (e.g., Petri nets) from example traces.
However, over time the scope of process mining broadened in several directions. Next to
process discovery, topics such as conformance checking and performance analysis were
added. Different perspectives were added (e.g., time, resources, roles, costs, and case
types) to move beyond control-flow models. Along with directly-follows graph (DFGs)
andPetri nets, awide range of processmodel notations has been explored in the context of
event data. Examples include declarative process models, process trees, artifact-centric
and object-centric process models, UML activity models, and BPMN models. In recent
years, the focus also shifted from backward-looking to forward-looking, connecting
process mining to neighboring disciplines such as simulation, machine learning, and
automation.

Over the past two decades, the discipline did not only expand in terms of scope but
also in terms of adoption and tool support. The first commercial process mining tools
emerged 15 years ago (Futura Process Intelligence, Disco, etc.). Now there are over 40
commercial products next to open-source process mining tools such as ProM, PM4Py,
and bupaR. The adoption in industry has accelerated in the last five years. In several
regions of the world, most of the larger companies are already using process mining,
and the process mining market is expected to double every 18 months in the coming
years.

Given the amazing developments in the last two decades, a comprehensive process
mining summer school is long overdue. This book contains the core material of the first
SummerSchool onProcessMiningorganizedby the IEEETaskForce onProcessMining.
The Task Force on Process Mining was established in October 2009 as part of the IEEE
Computational Intelligence Society. Its activities led to the International Process Mining
Conference (ICPM) series, a range of successful workshops (BPI, ATAED, PODS4H,
etc.), the Process Mining Manifesto (translated into 15+ languages), the XES standard,
publicly available datasets, online courses, and case studies. However, a dedicated sum-
mer school on process mining was missing. Therefore, we started the preparations for
this in 2020. Due to the COVID-19 pandemic, this was delayed by one year, but this
gave us more time to carefully prepare this handbook on process mining.

The summer school took place in Aachen, Germany, during July 4–8, 2022. The
location of the summer school was the scenic SuperC building with nice views of the
city center and close to the cathedral of Aachen, which was the first UNESCO World
Heritage site in Germany.

The local organization was undertaken by the Process and Data Science (PADS)
group at RWTH Aachen University. The event was financially supported by Wil M.
P. van der Aalst’s Alexander von Humboldt (AvH) professorship. The event was also
supported by the RWTH Center for Artificial Intelligence, the Center of Excellence
Internet of Production (IoP), Celonis, and Springer.

vi Preface

The book startswith a 360-degree overviewof the field of processmining (Chapter 1).
This first chapter introduces the basic concepts, the different types of process mining,
process modeling notations, and storage formats for events.

Chapter 2 presents the foundations of process discovery. It starts with discovering
directly-follows graphs from simple event logs and highlighting the challenges. Then
basic bottom-up and top-down process discovery techniques are presented that produce
Petri nets and BPMN models.

Chapter 3 presents four additional process discovery techniques: an approach based
on state-based regions, an approach based on language-based regions, the split mining
approach, and the log skeleton-based approach.

Techniques to discover declarative process models are presented in Chapter 4. The
chapter focuses on discovering declarative specifications from event logs, monitor-
ing declarative specifications against running process executions to promptly detect
violations, and reasoning on declarative process specifications.

Chapter 5 presents techniques for conformance checking. An overview of the appli-
cations of conformance checking and a general framework are presented. The goal is to
compare modeled and observed behavior.

Chapter 6 discusses event data in more detail, also describing the data-preprocessing
pipeline, standards like XES, and data quality problems.

Chapter 7 takes a more applied view and discusses how process mining is used in
different industries and the efforts involved in creating an event log. The chapter also
lists best practices, illustrated using the order-to-cash (O2C) process in an SAP system.

Chapter 8 introduces a number of techniques for process enhancement, including pro-
cess extension and process improvement. For example, it is shown how to add additional
perspectives to a process model.

Chapter 9 introduces event knowledge graphs as a means to model multiple entities
distributed over different perspectives. It is shown how to construct, query, and aggregate
event knowledge graphs to get insights into complex behaviors.

Predictive process monitoring techniques are introduced in Chapter 10. This is the
branch of process mining that aims at predicting the future of ongoing (uncompleted)
process executions.

Streaming process mining refers to the set of techniques and tools which have the
goal of processing a stream of data (as opposed to a fixed event log). Chapter 11 presents
such techniques.

The topic of responsible processmining is addressed inChapter 12. The chapter sum-
marizes and discusses current approaches that aim to make process mining responsible
by design, using the well-known FACT criteria (Fairness, Accuracy, Confidentiality, and
Transparency).

Chapter 13 discusses the evolution of the field of process mining, i.e., the transi-
tion from process discovery to process execution management. The focus is on driving
business value.

Chapter 14 makes the case that healthcare is a very promising application domain
for process mining with a great societal value. An overview of healthcare processes and
healthcare process data is given, followed by a discussion of common use cases.

Preface vii

Chapter 15 shows that process mining is a valuable tool for financial auditing. Both
internal and external audits are introduced, along with the connection between the two
audits and the application of process mining.

Chapter 16 introduces a family of techniques, called robotic process mining, that
discover repetitive routines that can be automated using robotic process automation
(RPA) technology.

Chapter 17 concludes the book with an analysis of the current state of the process
mining discipline and outlook on future developments and challenges. Pointers to the
lecture material will be made available via www.process-mining-summer-school.org,
www.processmining.org, and www.tf-pm.org. These complement this book.

Finally, we thank all the participants, authors, speakers, and the organizations sup-
porting this once-in-a-lifetime event. In particular,we thank theAlexander vonHumboldt
Foundation. Enjoy reading!

April 2022 Wil M. P. van der Aalst
Josep Carmona

https://www.process-mining-summer-school.org
http://www.processmining.org
http://www.tf-pm.org

Contents

Introduction

Process Mining: A 360 Degree Overview . 3
Wil M. P. van der Aalst

Process Discovery

Foundations of Process Discovery . 37
Wil M. P. van der Aalst

Advanced Process Discovery Techniques . 76
Adriano Augusto, Josep Carmona, and Eric Verbeek

Declarative Process Specifications: Reasoning, Discovery, Monitoring 108
Claudio Di Ciccio and Marco Montali

Conformance Checking

Conformance Checking: Foundations, Milestones and Challenges 155
Josep Carmona, Boudewijn van Dongen, and Matthias Weidlich

Data Preprocessing

Foundations of Process Event Data . 193
Jochen De Weerdt and Moe Thandar Wynn

APractitioner’s View on ProcessMining Adoption, Event Log Engineering
and Data Challenges . 212
Rafael Accorsi and Julian Lebherz

Process Enhancement and Monitoring

Foundations of Process Enhancement . 243
Massimiliano de Leoni

Process Mining over Multiple Behavioral Dimensions with Event
Knowledge Graphs . 274
Dirk Fahland

x Contents

Predictive Process Monitoring . 320
Chiara Di Francescomarino and Chiara Ghidini

Assorted Process Mining Topics

Streaming Process Mining . 349
Andrea Burattin

Responsible Process Mining . 373
Felix Mannhardt

Industrial Perspective and Applications

Status and Future of Process Mining: From Process Discovery to Process
Execution . 405
Lars Reinkemeyer

Using Process Mining in Healthcare . 416
Niels Martin, Nils Wittig, and Jorge Munoz-Gama

Process Mining for Financial Auditing . 445
Mieke Jans and Marc Eulerich

Robotic Process Mining . 468
Marlon Dumas, Marcello La Rosa, Volodymyr Leno, Artem Polyvyanyy,
and Fabrizio Maria Maggi

Closing

Scaling Process Mining to Turn Insights into Actions . 495
Wil M. P. van der Aalst and Josep Carmona

Author Index . 503

Introduction

Process Mining: A 360 Degree Overview

Wil M. P. van der Aalst(B)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

http://www.vdaalst.com/

Abstract. Process mining enables organizations to uncover their actual
processes, provide insights, diagnose problems, and automatically trig-
ger corrective actions. Process mining is an emerging scientific disci-
pline positioned at the intersection between process science and data
science. The combination of process modeling and analysis with the
event data present in today’s information systems provides new means to
tackle compliance and performance problems. This chapter provides an
overview of the field of process mining introducing the different types of
process mining (e.g., process discovery and conformance checking) and
the basic ingredients, i.e., process models and event data. To prepare
for later chapters, event logs are introduced in detail (including pointers
to standards for event data such as XES and OCEL). Moreover, a brief
overview of process mining applications and software is given.

Keywords: Process mining · Event data · Process modeling · Process
discovery

1 Introduction

Process mining can be defined as follows: process mining aims to improve opera-
tional processes through the systematic use of event data [1,2]. By using a com-
bination of event data and process models, process mining techniques provide
insights, identify bottlenecks and deviations, anticipate and diagnose perfor-
mance and compliance problems, and support the automation or removal of
repetitive work. Process mining techniques can be backward-looking (e.g., find-
ing the root causes of a bottleneck in a production process) or forward-looking
(e.g., predicting the remaining processing time of a running case or providing
recommendations to lower the failure rate). Both backward-looking and forward-
looking analyses can trigger actions (e.g., countermeasures to address a perfor-
mance or compliance problem). The focus of process mining is on operational
processes, i.e., processes requiring the repeated execution of activities to deliver
products or services. These can be found in all organizations and industries,
including production, logistics, finance, sales, procurement, education, consult-
ing, healthcare, maintenance, and government. This chapter provides a 360◦

overview of process mining, introducing basic concepts and positioning process
mining with respect to other technologies.
c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 3–34, 2022.

https://doi.org/10.1007/978-3-031-08848-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_1&domain=pdf
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-08848-3_1

4 W. M. P. van der Aalst

The idea of using detailed data about operational processes is not new. For
example, Frederick Winslow Taylor (1856–1915) collected data on specific tasks
to improve labor productivity [35]. With the increasing availability of computers,
spreadsheets and other business intelligence tools were used to monitor and ana-
lyze operational processes. However, in most cases, the focus was on a single task
in the process, or behavior was reduced to aggregated Key Performance Indicators
(KPIs) such as flow time, utilization, and costs. Process mining aims to analyze
end-to-end processes at the level of events, i.e., detailed behavior is considered in
order to explain and improve performance and compliance problems.

Process mining research started in the late 1990s [23]. In 2004 the first version
of the open-source platform ProM was released with 29 plug-ins. Over time the
ProM platform was extended and now includes over 1500 plug-ins. The first
commercial process mining tools appeared around 15 years ago. Today, there
are over 40 commercial process mining tools and process mining is used by
thousands of organizations all over the globe. However, only a small fraction of
its potential has been realized. Process mining is generic and can be applied in
any organization.

process
mining

process
science

data
science

process discovery

conformance checking

operations research

workflow management

statistics

operations management
machine learning

artificial intelligence

data mining

bus iness intelligence

supervised learning

unsupervised learning

concurrency theory

simulation

industrial engineering

planning and control

process modeling

bus iness process management

data management

data warehousing

Fig. 1. Process mining = data science ∩ process science.

Figure 1 shows that process mining can be seen as the intersection of data
science and process science. In [2], the following definition is proposed: “Data
science is an interdisciplinary field aiming to turn data into real value. Data may
be structured or unstructured, big or small, static or streaming. Value may be
provided in the form of predictions, automated decisions, models learned from
data, or any type of data visualization delivering insights. Data science includes
data extraction, data preparation, data exploration, data transformation, stor-
age and retrieval, computing infrastructures, various types of mining and learn-
ing, presentation of explanations and predictions, and the exploitation of results

Process Mining: A 360 Degree Overview 5

taking into account ethical, social, legal, and business aspects.” In [2], process
science is used as an umbrella term to refer to the broader discipline that com-
bines knowledge from information technology and knowledge from management
sciences to improve and run operational processes. In the more recent [12], the
following definition is proposed: “Process science is the interdisciplinary study of
continuous change. By process, we mean a coherent series of changes that unfold
over time and occur at multiple levels.” In [12], we emphasize the following key
characteristics of process science: (1) processes are in focus, (2) processes are
investigated using scientific methods, (3) an interdisciplinary lens is used, and
(4) the goal of process science is to influence and change processes to realize
measurable improvements. As stated in [2] and visualized in Fig. 1; process min-
ing can be viewed as the link between data science and process science. Process
mining seeks the confrontation between event data (i.e., observed behavior) and
process models (hand-made models or automatically discovered models), and
aims to exploit event data in a meaningful way, for example, to provide insights,
identify bottlenecks, anticipate problems, record policy violations, recommend
countermeasures, and streamline processes.

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret

drill down

ML

+ +
event
data

Fig. 2. 360◦ overview of process mining.

Figure 2 shows a high-level view of process mining. Event data need to be
extracted from information systems used to support the processes that need to
be analyzed. Customer Relationship Management (CRM), Enterprise Resource
Planning (ERP), and Supply Chain Management (SCM) systems store events.
Examples are SAP S/4HANA, Oracle E-Business Suite, Microsoft Dynamics
365, and Salesforce CRM. Next to these sector-agnostic software systems, there
are more specialized systems such as Health Information Systems (HIS). All of
these systems have in common that they are loaded with event data. However,
these are scattered over many database tables and need to be converted into a
format that can be used for process mining. As a consequence, data extraction

6 W. M. P. van der Aalst

is an integral part of any process mining effort, and may be time-consuming.
Events are often represented by a case identifier, an activity name, a timestamp,
and optional attributes such as resource, location, cost, etc. Object-centric event
data allow events to point to any number of objects rather than a single case
(see Sect. 3).

Once extracted, event data can be explored, selected, filtered, and cleaned (see
Fig. 2). Data visualization techniques such as dotted charts and sequence dia-
grams can be used to understand the data. Often, the data need to be scoped to
the process of interest. One can use generic query languages like SQL, SPARQL,
and XQuery or a dedicated Process Query Language (PQL). Data may be incom-
plete, duplicated, or inconsistent. For example, month and day may be swapped
during manual data entry. There is a variety of techniques and approaches to
address such data quality problems [34].

The resulting dataset is often referred to as an event log, i.e., a collection of
events corresponding to the selected process. Process discovery techniques are
used to automatically create process models. Commercial tools typically still
resort to learning the so-called Directly-Follows Graph (DFG) which typically
leads to underfitting process models [3]. If two activities do not occur in a fixed
order, then loops are created. This leads to Spaghetti-like diagrams suggesting
repetitions that are not supported by the data. However, there are numerous
approaches to learning higher-level models represented using Business Process
Model and Notation (BPMN), Petri nets, or Unified Modeling Language (UML)
activity diagrams. In contrast to DFGs, such models are able to express concur-
rency. Example techniques to discover such models are the Alpha algorithm [8],
region-based approaches [11,13,33,36], inductive mining techniques [28,29], and
the split miner [9]. The process model returned may aim to describe all behavior
observed or just the dominant behavior. Note that the event log only contains
example behavior, is likely to be incomplete, and at the same time may contain
infrequent behavior.

The combination of a process model and event data can be used to conduct
conformance checking and performance analysis (Fig. 2). The process model may
have been discovered or made by hand. Discovered process models are descrip-
tive and hand-crafted models are often normative. Conformance checking relates
events in the event log to activities in the process model and compares both. The
goal is to find commonalities and discrepancies between the modeled behavior
and the observed behavior. If the process model is normative, deviations cor-
respond to undesired behavior (e.g., fraud or inefficiencies). If the model was
discovered automatically with the goal of showing the dominant behavior, then
deviations correspond to exceptional behavior (i.e., outliers). Note that most
processes have a Pareto distribution, e.g., 80% of the cases can be described by
only 20% of the process variants. It is often easy and desirable to create a process
model describing these 80%. However, the remaining 20% cannot be discarded
since these cases cover the remaining 80% of the process variants and often also
the majority of performance and compliance problems. Sometimes event logs are
even more unbalanced, e.g., it is not uncommon to find logs where 95% of the
cases can be described by less than 5% of the process variants. In the latter case,

Process Mining: A 360 Degree Overview 7

it may be that the remaining 5% of cases (covering 95% of the process variants)
consume most of the resources due to rework and exception handling.

Since events have timestamps, it is easy to overlay the process model with
performance diagnostics (service times, waiting times, etc.). After discovering
the control-flow, the process model can be turned into a stochastic model that
includes probabilities and delay distributions.

After applying conformance checking and performance analysis techniques,
users can see performance and compliance problems. It is possible to perform
root-cause analysis for such problems. One may find out that critical deviations
are often caused by a particular machine or supplier, or that the main bottleneck
is caused by poor resource planning or excessive rework for some product types.
In a procurement process, price changes by a particular supplier may explain
an increase in rework. If “Receive Invoice” often occurs before “Create Pur-
chase Requisition”, then this signals a compliance problem in the same process.
These are just a few examples. In principle, any process-related problem can be
diagnosed as long as event data are available.

The right-hand side of Fig. 2 shows that process mining can be used to (1)
transform and improve the process and (2) automatically address observed and
predicted problems. The stochastic process models discovered from event data
can be used to conduct “what-if” analysis using simulation or other techniques
from operations research (e.g., planning). The combination of event data and
process models can be used to generate Machine Learning (ML) problems. ML
techniques can be used to predict outcomes without being explicitly programmed
to do so. The uptake of ML in recent years can be attributed to progress in
deep learning, where artificial neural networks having multiple layers progres-
sively extract higher-level features from the raw input. ML techniques cannot be
applied directly to event data. However, by replaying event data on discovered
process models, it is possible to create a range of supervised learning problems.
Examples include:

– What is the remaining processing time of a particular insurance claim?
– Are we able to handle 95% of the cases within one week?
– Is this application going to deviate from the normative process?
– Will this patient be moved to the intensive care unit?
– Will we have enough free beds in the intensive care unit tomorrow?

It is important to note that the right-hand side of Fig. 2 (i.e., extraction, dis-
covery, conformance checking, and performance analysis) cannot be supported
using mainstream Artificial Intelligence (AI) and Machine Learning (ML) tech-
nologies (e.g., neural networks). One first needs to discover an explicit process
model tightly connected to the event data, to pose the right questions. However,
process mining can be used to create AI/ML problems. The combination can
be used to trigger corrective actions or even complete workflows addressing the
problem observed. This way, event data can be turned into actions that actively
address performance and compliance problems.

8 W. M. P. van der Aalst

2 Process Models

There are many notations to describe processes, ranging from Directly-Follows
Graphs (DFGs) and transition systems, to BPMN and Petri nets. We will use
an example to gently introduce these notations. Consider a process involving the
following activities: buy ingredients (bi), create base (cb), add tomato (at), add
cheese (ac), add salami (as), bake in oven (bo), eat pizza (ep), and clean kitchen
(ck). We will call this fictive process the “pizza process” and use this to illustrate
the key concepts and notations.

buy
ingredients

(bi)start

create base
(cb)

add tomato
(at)

bake in oven
(bo)

eat pizza
(ep)

add salami
(as)

clean kitchen
(ck)

end

add cheese
(ac)

Fig. 3. BPMN model of the “pizza process”. The three toppings (tomato, cheese, and
salami) can be added in any order.

Figure 3 shows a process model using Business Process Model and Nota-
tion (BPMN) [17]. The process starts with activity buy ingredients (bi) followed
by activity create base (cb). Then three activities are executed in any order:
add tomato (at), add cheese (ac), and add salami (as). After all three toppings
(tomato, cheese, and salami) have been added, the activities bake in oven (bo),
eat pizza (ep), and clean kitchen (ck) are performed in sequence. Assuming that
the three concurrent activities are performed in some order (i.e., interleaved),
there are 3! = 6 ways to execute the “pizza process”. The two diamond-shaped
symbols with a + inside denote parallel gateways. The first one is a so-called
AND-split starting the three concurrent branches and the second one is a so-
called AND-join. The BPMN process starts with a start event (shown as a circle)
and ends with an end event (shown as a thick circle).

bi cb

ac

at

as

bo ep ck

Fig. 4. Petri net modeling the “pizza process” with activities buy ingredients (bi),
create base (cb), add cheese (ac), add tomato (at), add salami (as), bake in oven (bo),
eat pizza (ep), and clean kitchen (ck).

Figure 4 models the same process in terms of a Petri net. This model also
allows for 3! = 6 ways to execute the “pizza process”. The circles correspond

Process Mining: A 360 Degree Overview 9

to places (to model states) and the squares correspond to transitions (to model
activities). Places may hold tokens. A place is called marked if it contains a
token. A marking is a distribution of tokens over places. In Fig. 4, the source
place (i.e., the input place of transition bi) is marked, as is indicated by the
token (the black dot). A transition is enabled if all input places are marked. In
the initial marking shown in Fig. 4, transition bi (corresponding to activity buy
ingredients) is enabled. A transition that is enabled may fire (i.e., it may occur).
This means that a token is removed from each of the input places and a token
is produced for each of the output places. Note that transition cb consumes one
token and produces three tokens (one for each output place) and transition bo
consumes three tokens (one for each input place) and produces one token. The
process ends when a token is put on the sink place, i.e., the output place of ck .
In total there are 2 + 23 + 3 = 13 reachable markings. Although the behavior of
the Petri net in Fig. 4 is the same as the BPMN model in Fig. 3, it is easier to
refer to the states of the process model.

cb bobi ep ck

ac at as

Fig. 5. Process tree of the “pizza process”: →(bi , cb, ∧(ac, at , as), bo, ep, ck).

Figure 5 models the “pizza process” using a process tree. This representation
is rarely presented to end-users, but several mining algorithms use this internally.
Process trees are closer to programming constructs, process algebras, and regular
expressions. The graphical representation can be converted to a compact textual
format: →(bi , cb,∧(ac, at , as), bo, ep, ck). A sequence operator → executes its
children in sequential order. The root node in Fig. 5 denotes such a sequence,
i.e., the six child nodes are executed in sequence. The third child node models
the parallel execution of its three children. This subtree can be denoted by
∧(ac, at , as). Later we will see that there are four types of operators that can
be used in a process tree: → (sequential composition), × (exclusive choice), ∧
(parallel composition), and � (redo loop). The semantics of a process tree can
be expressed in terms of Petri nets, e.g., Fig. 5 and Fig. 4 represent the same
process.

10 W. M. P. van der Aalst

bi atcb

ac

as

bo ep ck

Fig. 6. DFG of the “pizza process”. Note that the behavior is different, e.g., one may
add 10 toppings to the pizza.

Most of the process mining tools directly show a Directly-FollowsGraph (DFG)
when loading an event log. This helps get a first impression of the behavior
recorded. Figure 6 shows a DFG for our running example. There are two special
nodes to model start (�) and end (�). The other nodes represent activities. The
arcs in a DFG denote the “directly-follows relation”, e.g., the arc connecting cb
to at shows that immediately after creating the pizza base cb one can add tomato
paste at . Activity cb has three outgoing arcs denoting a choice, i.e., cb is directly
followed by at , ac, or as. Activity at also has three outgoing arcs denoting that one
can add another topping (ac or as) or bake the pizza (bo). Note that the behav-
ior of the DFG in Fig. 6 is different from the three models shown before (i.e., the
BPMN model, the Petri net, and the process tree). The DFG allows for infinitely
many ways to execute the “pizza process” (instead of 3! = 6). For example, it is
possible to create a pizza where each of the toppings was added 10 times. The prob-
lem is that whenever two activities can occur in any order (e.g., at and ac), there
is immediately a loop in the DFG (even when both happen only once).

buy
ingredients

(bi)start

create base
(cb)

add tomato
(at)

bake in oven
(bo)

eat pizza
(ep)

add salami
(as)

clean kitchen
(ck)

end

add cheese
(ac)

add
mushrooms

(am)

Fig. 7. BPMN model of the extended “pizza process”.

To explain other process constructs such as choice, skipping, and looping we
extend the “pizza process”. First of all, we allow for adding multiple servings of
cheese, i.e., activity ac can be executed multiple times after creating the pizza
base and before putting the pizza in the oven. Second, instead of adding salami as
a topping one can add mushrooms, i.e., there is a choice between as (add salami)
and am (add mushrooms). Third, the eating of the pizza may be skipped (i.e.,
activity ep is optional).

Process Mining: A 360 Degree Overview 11

Figure 7 shows the BPMN model with these three extensions. In total six
exclusive gateways were added: three XOR-splits and three XOR-joins (see the
diamond-shaped symbols with a × inside). After adding cheese, one can loop
back. There is a choice between adding salami and adding mushrooms. Also the
eating of the pizza can be skipped.

bi cb

ac

at

as

bo ep ck

am

Fig. 8. Petri net modeling the extended “pizza process” with two silent transitions (to
skip eating the pizza and to add more cheese), and a transition am corresponding to
activity add mushrooms.

Figure 8 shows a Petri net modeling the extended process. A new transition
am (add mushrooms) has been added. Transitions as and am share an input
place. If the input place is marked, then both transitions are enabled, but only
one of them can occur. If as consumes the token from the shared input place, then
am gets disabled. If am consumes the token from the shared input place, then as
gets disabled. This way, we model the choice between two toppings: salami and
mushrooms. Figure 8 also has two new so-called silent transitions denoted by the
two black rectangles. Sometimes such silent transitions are denoted as a normal
transition with a τ label. Silent transitions do not correspond to activities and
are used for routing only, e.g., skipping activities. In Fig. 8, there is one silent
transition to repeatedly execute ac (to model adding multiple servings of cheese)
and one silent transition to skip ep.

cb bobi

ep

ck

ac

at

asτ am

τ

Fig. 9. Process tree of the extended “pizza process”: →(bi , cb, ∧(�(ac, τ), at ,
×(as, am)), bo, ×(ep, τ), ck).

12 W. M. P. van der Aalst

The process tree in Fig. 9 has the same behavior as the BPMN model and
Petri net just shown. The process tree uses all four operators: → (sequential
composition), × (exclusive choice), ∧ (parallel composition), and � (redo loop).
A silent activity is denoted by τ and cannot be observed. The process tree in
Fig. 9 can also be visualized in textual form: →(bi , cb,∧(�(ac, τ), at ,×(as, am)),
bo,×(ep, τ), ck).

To understand the notation, we first look at a few smaller examples. Process
tree ×(a, b) models a choice between activities a and b. Process tree ×(a, τ) can
be used to model an activity a that can be skipped. Process tree �(a, τ) can
be used to model the process that executes a at least once. The “redo” part is
silent, so the process can loop back without executing any activity. Process tree
�(τ, a) models a process that executes a any number of times. The “do” part
is now silent and activity a is in the “redo” part. This way it is also possible to
not execute a at all.

Now let us take a look at the three modifications of our extended “pizza pro-
cess”: �(ac, τ) models that multiple servings of cheese can be added, ×(as, am)
models the choice between salami and mushrooms, and ×(ep, τ) models the
ability to skip eating the pizza.

The DFG shown in Fig. 10 incorporates the three extensions. Again, the
behavior is different from Figs. 7, 8, and 9. Unlike the other models, the DFG
allows for adding multiple servings of salami, mushrooms, and tomato paste. It is
impossible to model concurrency properly, because loops are added the moment
the order is not fixed. Therefore, DFGs are suitable for a quick first view of the
process, but for more advanced process analytics, higher-level notations such as
BPMN, Petri nets, and process trees are needed.

bi atcb

ac

as

bo ep ck

am

Fig. 10. DFG of the extended “pizza process”. Note that the process becomes increas-
ingly Spaghetti-like, allowing for process executions different from the BPMN model,
the Petri net, and the process tree.

Note that, in this section, we focused on control-flow. However, process mod-
els can be extended with frequencies, probabilities, decision rules, roles, costs,
and time delays (e.g., mean waiting times). After discovering the control-flow
and replaying the event data on the model, it is easy to extend process models
with data, resource, cost, and time perspectives.

Process Mining: A 360 Degree Overview 13

3 Event Data

Using process mining, we would like to analyze and improve processes using
event data. Table 1 shows a fragment of an event log in tabular form. One can
think of this as a table in a relational database, a CSV (Comma Separated
Value) file, or Excel spreadsheet. Each row in the table corresponds to an event.
An event can have many different attributes. In this simple example, each event
has five attributes: case, activity, timestamp, resource, and customer. Most pro-
cess mining tools and approaches require at least three attributes: case (refers
to a process instance), activity (refers to the operation, action, or task), and
timestamp (when did the event happen). These three attributes are enough to
discover and check the control-flow perspective. A case may refer to an order,
a patient, an application, a student, a loan, a car, a suitcase, a speeding ticket,
etc. In Table 1, each case refers to a pizza being produced and consumed. In
Sect. 2 we showed process models describing this process. However, now we start
from the observed behavior recorded in the event log. We can witness the same
activities as before: buy ingredients (bi), create base (cb), add cheese (ac), add
tomato (at), add salami (as), add mushrooms (am), bake in oven (bo), eat pizza
(ep), and clean kitchen (ck). Table 1 uses a simple time format (e.g., 18:10) to
simplify the presentation (i.e., we skipped the date). Systems often use the ISO
8601 standard (or similar) to exchange date- and time-related data, e.g., 2021-
09-21T18:10:00+00:00. In the remainder, we formalize event data and provide
useful notions to reason about both observed and modeled behavior. We start
with some basic mathematical notations.

Table 1. Fragment of a larger event log with 6400 events, i.e., the whole table has
6400 rows. These events describe the production of 800 pizzas. Each row refers to an
event having five attributes, including the three mandatory ones: case, activity, and
timestamp.

Case Activity Timestamp Resource Customer

.

pizza-56 buy ingredients (bi) 18:10 Stefano Valentina

pizza-57 buy ingredients (bi) 18:12 Stefano Giulia

pizza-57 create base (cb) 18:16 Mario Giulia

pizza-56 create base (cb) 18:19 Mario Valentina

pizza-57 add tomato (at) 18:21 Mario Giulia

pizza-57 add cheese (ac) 18:27 Mario Giulia

pizza-56 add cheese (ac) 18:34 Mario Valentina

pizza-56 add tomato (at) 18:44 Mario Valentina

pizza-56 add salami (as) 18:45 Mario Valentina

pizza-56 bake in oven (bo) 18:48 Stefano Valentina

pizza-57 add salami (as) 18:50 Mario Giulia

(continued)

14 W. M. P. van der Aalst

Table 1. (continued)

Case Activity Timestamp Resource Customer

pizza-56 eat pizza (ep) 19:10 Valentina Valentina

pizza-58 buy ingredients (bi) 19:17 Stefano Laura

pizza-57 bake in oven (bo) 19:23 Stefano Giulia

pizza-57 eat pizza (ep) 19:27 Giulia Giulia

pizza-57 clean kitchen (ck) 19:44 Mario Giulia

pizza-58 create base (cb) 19:48 Mario Laura

pizza-58 add salami (as) 19:49 Mario Laura

pizza-58 add tomato (at) 19:55 Mario Laura

pizza-56 clean kitchen (ck) 20:08 Mario Valentina

pizza-58 add cheese (ac) 20:13 Mario Laura

pizza-58 bake in oven (bo) 20:29 Stefano Laura

pizza-58 eat pizza (ep) 20:48 Laura Laura

pizza-58 clean kitchen (ck) 20:51 Mario Laura

.

3.1 Notations

B(A) is the set of all multisets over some set A. For some multiset b ∈ B(A),
b(a) denotes the number of times element a ∈ A appears in b. Some examples:
b1 = [], b2 = [x, x, y], b3 = [x, y, z], b4 = [x, x, y, x, y, z], and b5 = [x3, y2, z] are
multisets over A = {x, y, z}. b1 is the empty multiset, b2 and b3 both consist
of three elements, and b4 = b5, i.e., the ordering of elements is irrelevant and a
more compact notation may be used for repeating elements. The standard set
operators can be extended to multisets, e.g., x ∈ b2, b2 � b3 = b4, b5 \ b2 = b3,
|b5| = 6, etc. {a ∈ b} denotes the set with all elements a for which b(a) ≥ 1.
b(X) =

∑
a∈X b(x) is the number of elements in b belonging to set X, e.g.,

b5({x, y}) = 3 + 2 = 5. b ≤ b′ if b(a) ≤ b′(a) for all a ∈ A. Hence, b3 ≤ b4 and
b2 �≤ b3 (because b2 has two x’s). b < b′ if b ≤ b′ and b �= b′. Hence, b3 < b4 and
b4 �< b5 (because b4 = b5).

σ = 〈a1, a2, . . . , an〉 ∈ X∗ denotes a sequence over X of length |σ| = n.
σi = ai for 1 ≤ i ≤ |σ|. 〈 〉 is the empty sequence. σ1 · σ2 is the concatenation of
two sequences, e.g., 〈x, x, y〉 · 〈x, y, z〉 = 〈x, x, y, x, y, z〉. The notation [a ∈ σ] can
be used to convert a sequence into a multiset. [a ∈ 〈x, x, y, x, y, z〉] = [x3, y2, z].

f ∈ X → Y is a total function, i.e., f(x) ∈ Y for any x ∈ X. f ∈ X �→ Y
is a partial function with domain dom(f) ⊆ X. If x �∈ dom(f), then we write
f(x) = ⊥, i.e., the function is not defined for x.

3.2 Standard Event Log

An event log is a collection of events. An event e can have any number of
attributes, and often we require the following three attributes to be present:

Process Mining: A 360 Degree Overview 15

case #case(e), activity #act(e), and timestamp #time(e). Table 1 shows example
events. If e is the first visible event, then #case(e) = pizza-56, #act(e) = bi (buy
ingredients), and #time(e) = 18:10. For simplicity, we write 18:10, but the full
timestamp includes a date and possibly also seconds and milliseconds.

To formalize event logs, we introduce some basic notations.

Definition 1 (Universes). Uev is the universe of events, Uact is the universe
of activities, Ucase is the universe of cases, Utime is the universe of timestamps,
Uatt = {act , case, time, . . .} is the universe of attributes, Uval is the universe of
values, and Umap = Uatt �→ Uval is the universe of attribute-value mappings.
We assume that Uact ∪ Ucase ∪ Utime ⊆ Uval , ⊥ �∈ Uval , and for any f ∈ Umap:
f(act) ∈ Uact ∪ {⊥}, f(case) ∈ Ucase ∪ {⊥}, and f(time) ∈ Utime ∪ {⊥}.

Note that standard attributes of an event (activity, case, timestamp, etc.)
are treated as any other attribute. f ∈ Umap is a function mapping any sub-
set of attributes onto values. For example, f could be such that dom(f) =
{case, act , time, resource, customer , cost , size}, f(case) = pizza-56, f(act) = bi ,
f(time) = 2021-09-21T18:10:00+00:00, f(resource) = Stefano, f(customer) =
Valentina, f(size) = 33cm, and f(cost) = e9.99. Note that the last two
attributes are not shown in Table 1. and that 2021-09-21T18:10:00+00:00 is
abbreviated to 18:10.

To be general, we assume that events are partially ordered. Recall that a
strict partial order is irreflexive (e �≺ e), transitive (e1 ≺ e2 and e2 ≺ e3 implies
e1 ≺ e3), and asymmetric (if e1 ≺ e2, then e2 �≺ e1).

Definition 2 (Event Log). An event log is a tuple L = (E,#,≺) consisting
of a set of events E ⊆ Uev , a mapping # ∈ E → Umap , and a strict partial
ordering ≺⊆ E × E on events.

For any e ∈ E and att ∈ dom(#(e)): #att(e) = #(e)(att) is the value of
attribute att for event e. For example, #act(e), #case(e), and #time(e) are the
activity, case, and timestamp of an event e.

The ordering of events respects time, i.e., if e1, e2 ∈ E, #time(e1) �= ⊥,
#time(e2) �= ⊥, and #time(e1) < #time(e2), then e2 �≺ e1.

To be general, events can have any number of attributes and no attribute is
mandatory. However, when using simplified event logs, we only consider events
having a case and activity (with an order derived using timestamps).

Assume L = (E,#,≺) is the event log in Table 1. The whole event log has
6400 events, i.e., the table has many more rows. Let E = {e1, e2, . . . , e6400} be the
whole set of events and assume the first event shown in Table 1 is e433. #(e433)
is a mapping with dom(#(e433)) = {case, act , time, resource, customer} (the
columns shown in the table). #case(e433) = pizza-56, #act(e433) = bi (buy ingre-
dients), #time(e433) = 18:10, #resource(e433) = Stefano, and #customer (e433) =
Valentina. Assuming that the event identifiers follow the order shown in
Table 1, the last event visible in the table is e456, and #case(e456) = pizza-58,
#act(e456) = ck (clean kitchen), #time(e456) = 20:51, #resource(e456) = Mario,

16 W. M. P. van der Aalst

and #customer (e456) = Laura. Assuming a total order as shown in the Table,
e433 ≺ e434, e434 ≺ e435, e455 ≺ e456, e433 ≺ e456, etc.

As stated in Definition 2, ≺ is a strict partial order and it is not allowed
that timestamps (when present) and the partial order disagree. Using Table 1
and the event identifiers e433 and e456. It cannot be that e456 ≺ e433, because
#time(e456) > #time(e433). For two arbitrary events e1 and e2 it cannot be
that both #time(e1) < #time(e2) and e2 ≺ e1. However, it can be that
#time(e1) < #time(e2) and e1 �≺ e2 (the time perspective is more fine grained) or
that #time(e1) = #time(e2) and e1 ≺ e2 (the partial order is more fine grained).
Optionally, the partial order can be derived from the timestamps (when present):
≺= {(e1, e2) ∈ E × E | #time(e1) < #time(e2)}. In this case, the event log is
fully defined by L = (E,#) (no explicit ordering relation is needed).

It should be noted that in the often used BPI Challenge 2011 log provided
by a Dutch academic hospital [16], 85% of the events have the same timestamp
as the previous one. This is because, for many events, only dates are available.
Many publicly available event logs have similar issues, for example, in the so-
called Sepsis log [30], 30% of the events have the same timestamp as the previous
one. In this event log, activities for the same case are sometimes batched, leading
to events with the same timestamp. These examples illustrate that one should
inspect timestamps and not take the order in the event log for granted. It may
be beneficial to use partially ordered event data in case of data quality problems
or when there is explicit causal information.

3.3 Simplified Event Log

For process mining techniques focusing on control-flow, it often suffices to focus
only on the activity attribute and the ordering within a case. This leads to a
much simpler event log notion.

Definition 3 (Simplified Event Log). A simplified event log L ∈ B(Uact
∗)

is a multiset of traces. A trace σ = 〈a1, a2, . . . an〉 ∈ Uact
∗ is a sequence of

activities. L(σ) is the number of times trace σ appears in event log L.

Consider case pizza-56 in Table 1. There are eight events having this case
attribute. By ordering these events based on their timestamps we get the trace
σpizza-56 = 〈bi , cb, ac, at , as, bo, ep, ck〉. We can do the same for the other two
cases shown in Table 1: σpizza-57 = 〈bi , cb, at , ac, as, bo, ep, ck〉 and σpizza-58 = 〈bi ,
cb, as, at , ac, bo, ep, ck〉. We are using the same shorthands as before, i.e., buy
ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add salami
(as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen
(ck).

The same trace may appear multiple times in a log. For example, L =
[〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉] is a simple event log with 10 + 5 + 1 = 16 cases
and 40 + 20 + 3 = 63 events.

An event log with events having any number of attributes (Definition 2) can
be transformed into a simplified event log by ignoring the additional attributes

Process Mining: A 360 Degree Overview 17

and sequentializing the events belonging to the same case. Events without a case
or activity attribute are ignored in the transformation process.

Definition 4 (Conversion). An event log L = (E,#,≺) defines a simplified
event log L̃ ∈ B(Uact

∗) that is constructed as follows:

– E′ = {e ∈ E | #case(e) �= ⊥ ∧ #act(e) �= ⊥} are all events having an activity
and a case attribute.

– C = {#case(e) | e ∈ E′} and A = {#act(e) | e ∈ E′} are the cases and
activities in L.

– For any case c ∈ C:
• Ec = {e ∈ E′ | #case(e) = c} are the events in c,
• σc = 〈e1, e2, . . . , en〉 is a (deterministically chosen) sequentialization of

the events in c, i.e., σc is such that {e1, e2, . . . , en} = Ec, |Ec| = |σc|, and
for any 1 ≤ i < j ≤ n: ej �≺ ei.

• σ̃c = 〈#act(e1),#act(e2), . . . ,#act(en)〉 ∈ A∗ is the trace corresponding
to c (i.e., the events in σc are replaced by the corresponding activities).

– L̃ = [σ̃c | c ∈ C] ∈ B(A∗) is the simplified event log derived from L.

Let L = (E,#,≺) be the event log corresponding to the events visible
in Table 1 (assuming the order in the table). Then: L̃ = [〈bi , cb, ac, at , as,
bo, ep, ck〉, 〈bi , cb, at , ac, as, bo, ep, ck〉, 〈bi , cb, as, at , ac, bo, ep, ck〉]. Table 1 only
shows a fragment of the whole event log. For the whole event log L =
(E,#,≺), we have L̃ = [〈bi , cb, ac, at , as, bo, ep, ck〉400, 〈bi , cb, at , ac, as, bo, ep,
ck〉200, 〈bi , cb, as, at , ac, bo, ep, ck〉100, 〈bi , cb, ac, as , at , bo, ep, ck〉50, 〈bi , cb, at ,
as, ac, bo, ep, ck〉25, 〈bi , cb, as, ac, at , bo, ep, ck〉25]. This event log has 800 cases
and 6400 events. Using process discovery techniques we can automatically dis-
cover the models in Figs. 3, 4, 5 and 6 from such an event log. If the event log
also has cases where cheese is added multiple times (e.g., 〈bi , cb, ac, at , ac, ac, as,
bo, ep, ck〉), mushrooms are added instead of salami (e.g., 〈bi , cb, ac, at , am, bo,
ep, ck〉), and the eating activity is skipped (e.g., 〈bi , cb, ac, at , as, bo, ck〉), then
we can automatically discover the models in Figs. 7, 8, 9 and 10 using suitable
process mining techniques.

3.4 Object-Centric Event Logs

Table 1 corresponds to a conventional “flat” event log where each event (i.e., row)
refers to a case, activity, and timestamp. It is very natural to assume that an
event has indeed a timestamp and refers to an activity. However, the assumption
that it refers to precisely one case may cause problems [4]. Object-Centric Event
Logs (OCEL) aim to overcome this limitation [22]. In OCEL, an event may refer
to any number of objects (of different types) rather than a single case. Object-
centric process mining techniques may produce Petri nets with different types
of objects [7] or artifact-centric process models [18,19].

18 W. M. P. van der Aalst

Table 2. Fragment of a larger Object-Centric Event Log (OCEL) with four types of
objects: pizza, resource, customer, and location. One event may refer to a set of objects,
e.g., three pizzas, three customer, and a location.

Activity Timestamp Pizza Resource Customer Location

.

buy ingredients (bi) 18:10 {pizza-56,
pizza-57,

pizza-58}

{Stefano} {Valentina,

Giulia,

Laura}

{supermarket}

create base (cb) 18.16 {pizza-57} {Mario, Stefano} {Giulia} {kitchen-1}
create base (cb) 18.19 {pizza-56} {Mario, Stefano} {Valentina} {kitchen-1}
add tomato (at) 18.21 {pizza-57} {Mario} {Giulia} {kitchen-1}
add cheese (ac) 18.27 {pizza-57} {Mario} {Giulia} {kitchen-1}
add cheese (ac) 18.34 {pizza-56} {Mario} {Valentina} {kitchen-1}
add tomato (at) 18.44 {pizza-56} {Mario} {Valentina} {kitchen-1}
add salami (as) 18.45 {pizza-56} {Mario} {Valentina} {kitchen-1}
bake in oven (bo) 18.48 {pizza-56} {Stefano} {Valentina} {kitchen-1}
add salami (as) 18.50 {pizza-57} {Mario} {Giulia} {kitchen-1}
eat pizza (ep) 19.10 {pizza-56} {Valentina} {Valentina} {restaurant}
bake in oven (bo) 19.23 {pizza-57} {Stefano} {Giulia} {kitchen-1}
eat pizza (ep) 19.27 {pizza-57} {Giulia} {Giulia} {restaurant}
create base (cb) 19.48 {pizza-58} {Mario, Stefano} {Laura} {kitchen-2}
add salami (as) 19.49 {pizza-58} {Mario} {Laura} {kitchen-2}
add tomato (at) 19.55 {pizza-58} {Mario} {Laura} {kitchen-2}
clean kitchen (ck) 20.08 ∅ {Mario} ∅ {kitchen-1}
add cheese (ac) 20.13 {pizza-58} {Mario} {Laura} {kitchen-2}
bake in oven (bo) 20.29 {pizza-58} {Stefano} {Laura} {kitchen-2}
eat pizza (ep) 20.48 {pizza-58} {Laura} {Laura} {restaurant}
clean kitchen (ck) 20.51 ∅ {Mario} ∅ {kitchen-2}
.

To understand the problem, we use Table 2, which shows OCEL data in tab-
ular form. Compared to Table 1, we do not assume a single case notion. Instead,
an event may refer to any number of objects. In this toy example, we assume
four types of objects: pizza, resource, customer, and location. Assume that e is
the first event listed in Table 2. #act(e) = bi (buy ingredients), #time(e) =
18:10, #pizza(e) = {pizza-56,pizza-57,pizza-58}, #resource(e) = {Stefano},
#customer (e) = {Valentina,Giulia,Laura}, and #location(e) = {supermarket}.
Note that in Table 1 there were three bi (buy ingredients) events, one for each
pizza. Hence, Table 2 is closer to reality if the ingredients were indeed bought
in the same visit to the supermarket. In a classical event log with a single case
identifier, we need to artificially replicate events (one bi event per pizza). This
may lead to misleading statistics, i.e., there was just one trip to the supermarket
and not three. The three pizzas were created on demand, so the bi event also
refers to the three customers. Table 2 also shows that creating the pizza base is
team work, i.e., all cb events are done by both Mario and Stefano. If we assume

Process Mining: A 360 Degree Overview 19

that e is the last event visible in Table 2, then #act(e) = ck (clean kitchen),
#time(e) = 20.51, #pizza(e) = ∅, #resource(e) = {Mario}, #customer (e) = ∅,
and #location(e) = {kitchen-2}. This expresses that, according to this event log,
cleaning the second kitchen is unrelated to the pizza prepared in it.

Definition 2 can be easily extended to allow for Object-Centric Event Logs
(OCEL). We just need to assume that event attributes include object types
and that attribute-value mappings may yield sets of values (e.g., objects) rather
than individual values. Without fully formalizing this, we simply assume that
Uobjtyp ⊆ Uatt is the universe of object types, Uobjs is the universe of objects, and
P(Uobjs) ⊆ Uval (i.e., values can be sets of objects). Moreover, for any f ∈ Umap

and ot ∈ Uobjtyp ∩ dom(f): f(ot) ⊆ Uobjs . Hence, attribute value mappings can
be used to also map object types onto sets of objects.

To apply classical process mining techniques, we need to convert the object-
centric event data to traditional event data. For example, we need to convert
Table 2 into Table 1 if we pick object type pizza as a case notion. This is called
“flattening the event log” and always requires picking an object type as a case
notion. This can be formalized in a rather straightforward manner.

Definition 5 (OCEL Conversion). Let L = (E,#,≺) be an event log having
an object type ot ∈ Uobjtyp such that for any e ∈ E: #ot(e) ⊆ Uobjs is the set of
objects of type ot involved in event e. Based on this assumption, we can create
a “flattened event log” L̃ot ∈ B(Uact

∗) that is constructed as follows:

– E′ = {e ∈ E | #ot(e) �= ∅ ∧ #act(e) �= ⊥} are all events having an activity
and referring to at least one object of type ot.

– O =
⋃

e∈E′ #ot(e) and A = {#act(e) | e ∈ E′} are the objects of type ot and
activities in L.

– For any object o ∈ O:
• Eo = {e ∈ E′ | o ∈ #ot(e)} are the events involving object o,
• σo = 〈e1, e2, . . . , en〉 is a (deterministically chosen) sequentialization of

the events involving o, i.e., σo is such that {e1, e2, . . . , en} = Eo, |Eo| =
|σo|, and for any 1 ≤ i < j ≤ n: ej �≺ ei.

• σ̃o = 〈#act(e1),#act(e2), . . . ,#act(en)〉 ∈ A∗ is the trace corresponding
to o (i.e., the events in σo are replaced by the corresponding activities).

– L̃ = [σ̃o | o ∈ O] ∈ B(A∗) is the simplified event log derived from L.

Definition 5 shows that any OCEL can be transformed into a simplified event
log. The simplified event log is a multiset of traces where each trace refers to
the “lifecycle” of an object. Consider for example σ̃pizza-56 = 〈bi , cb, ac, at , as,
bo, ep〉 showing the lifecycle of pizza-56 in Table 2. σ̃Stefano = 〈bi , cb, cb, bo, bo,
cb, bo〉 is the trace corresponding to resource Stefano. σ̃Valentina = 〈bi , cb, ac, at ,
as, bo, ep〉 is the trace corresponding to customer Valentina. This trace is now
the same as σpizza-56, but this would not be the case if Valentina eats multiple
pizzas (e.g., in subsequent visits to the restaurant). σ̃supermarket = 〈bi〉 is the trace
corresponding to the location “supermarket” (assuming there was just one visit
to the supermarket). σ̃restaurant = 〈ep, ep, ep〉 is the trace corresponding to the

20 W. M. P. van der Aalst

location “restaurant” (again considering only the events visible in Table 2). These
traces are rather short because we only consider the events shown in Table 2.

By converting an OCEL to a conventional event log, we can apply all existing
process mining techniques. For each object type, we can create a process model
showing the “flow of objects” of that type. However, flattening the event log
using ot as a case notion potentially leads to the following problems.

– Deficiency : Events in the original event log that have no corresponding events
in the flattened event log disappear from the data set (i.e., #ot(e) = ∅). For
example, when selecting object type pizza as a case notion, the clean kitchen
events disappear from the event log.

– Convergence: Events referring to multiple objects of the selected type are
replicated, possibly leading to unintentional duplication (i.e., |#ot(e))| ≥ 2).
For example, when selecting object type pizza as a case notion, the first event
in Table 2 will be mapped onto three events in the flattened event log. When
selecting object type resource as a case notion, all create pizza base events
are duplicated in the flattened event log. The replication of events can lead
to misleading diagnostics.

– Divergence: Events referring to different objects of a type not selected as the
case notion may still be considered causally related because a more coarse-
grained object is shared. For example, when selecting object type location as
a case notion, events corresponding to different pizzas are interleaved and one
can no longer see the causal dependencies.

The first two problems are easy to understand: events disappear com-
pletely (deficiency) or are replicated leading to potentially misleading manage-
ment information (convergence). The problem of divergence is more subtle. To
understand this better, consider σ̃kitchen-1 = 〈cb, cb, at , ac, ac, at , as, bo, as, bo,
ck〉 describing the “lifecycle” of the first kitchen. In this trace one can see cb
followed by cb (two subsequent create pizza base events) and ac followed by
ac (two subsequent add cheese events). However, these events refer to different
pizzas and are not causally related. The discovered process model is likely to
show loops involving cb and ac, although these events occur precisely once per
pizza.

In summary, one can create different views on the process by flattening the
event data for selected object types, but one should be careful to interpret these
correctly (e.g., be aware of data duplication and the blurring of causalities).

The running “pizza process” example is not very realistic, and is only used
to introduce the basic concepts in a clear manner. Earlier, we mentioned CRM
systems like Salesforce and ERP systems like SAP S/4HANA, Oracle E-Business
Suite, and Microsoft Dynamics 365. These systems are loaded with event data
scattered over many database tables. ERP and CRM systems are widely used,
broad in scope, and sector-agnostic. Also, more sector-specific systems used in
banking, insurance, and healthcare have event data distributed over numerous
tables. These tables refer to different types of objects that are often in a one-
to-many or many-to-many relation. This immediately leads to the challenges
described before.

Process Mining: A 360 Degree Overview 21

Let us consider two of the processes almost any organization has: Purchase-
to-Pay (P2P) and Order-to-Cash (O2C). The P2P process is concerned with
the buy-side of an organization. The O2C process is concerned with the sell-side
of a company. In the P2P process the organization is dealing with purchasing
documents, items, suppliers, purchase requisitions, contracts, receipts, etc. Note
that there may be many purchase orders per supplier and an order may consist
of multiple items. Hence, events may refer to different objects and also multiple
objects of the same time. In the O2C process, we can witness similar phenomena.
A customer may place three orders on the same day and each order may have
several items. Items from different orders may end up in the same delivery.
Moreover, items in the same order may end up in different deliveries.

P2P and O2C processes are considered simple and there is a lot of experience
with extracting such data from systems such as SAP. Still, these processes are
more complicated than what many people think. It is not uncommon to find
thousands of process variants. This offers great opportunities for process min-
ing, because unexpected variants provide hints on how to improve the process.
However, one should not underestimate the efforts needed for data extraction.
Therefore, we discussed OCEL as it sits in-between the real database tables
in systems such as SAP, Oracle, and Salesforce, and the flattened event logs
assumed by most systems.

3.5 XES Standard

The initial version of the XES (eXtensible Event Stream) format was defined
by the IEEE Task Force on Process Mining in September 2010. After several
iterations, XES became the official IEEE standard for storing event data in 2016
[24]. XES is supported by most of the open-source process mining tools and many
of the leading commercial tools. The goal is to facilitate the seamless exchange
of event data between different systems. Of course, it is also possible to do this
using relational databases or simple file formats. However, XES adds semantics
to the data exchanged. Therefore, we focus on the concepts and refer to [24] for
the syntax.

Figure 11 shows the XES meta model expressed in terms of a UML class
diagram. A XES document (e.g., an XML file) contains one log consisting of any
number of traces. Each trace describes a sequential list of events corresponding
to a particular case. The log, its traces, and its events may have any num-
ber of attributes. Attributes may be nested. There are five core types: String,
Date, Int, Float, and Boolean. XES does not prescribe a fixed set of mandatory
attributes for each element (log, trace, and event), e.g., an event can have any
number of attributes. However, to provide semantics for such attributes, the log
refers to so-called XES extensions. An extension gives semantics to particular
attributes. For example, the Time extension defines a timestamp attribute of
type xs:dateTime. This corresponds to the #time(e) attribute used before. The
Organizational extension defines a resource attribute of type xs:string, i.e., the

22 W. M. P. van der Aalst

Log

Trace

Event

Attribute

Extension

Key

String

Date

Int

Float

Boolean

Value

<contains>

<contains>

<contains>

<contains>

<trace-global>

<event-global>

<defines>

<declares>
name

prefix

URI

Classifier
<defines><defines>

Fig. 11. Meta model of XES [24]. A log contains traces and each trace contains events
[2,24]. Log, traces, and events have attributes. Extensions may define new attributes
and a log should declare the extensions used in it. Global attributes are attributes
that are declared to be mandatory. Such attributes reside at the trace or event level.
Attributes may be nested. Event classifiers are defined for the log and assign a “label”
(e.g., activity name) to each event. There may be multiple classifiers.

#resource(e) attribute. Users can define their own extensions. For example, it is
possible to develop domain-specific or even organization-specific extensions.

XES also supports three concepts that are of general interest and important
for process mining: classifiers, lifecycle information, and activity instances. These
concepts are interrelated as is discussed next.

Classifiers are used to attach labels to events. There is always at least one
classifier and by default; this is the activity name. When turning an event log L
into a simplified event log L̃ ∈ B(Uact

∗) in Definition 4, we are using this default
classifier: each event e is mapped onto #act(e). However, it is also possible to
project events onto resources, locations, departments, etc., or combinations of
attributes. An event classifier assigns to each event an identity, which makes
it comparable to other events (via their assigned identity). Event classifiers are
defined for the whole log, and there may be an arbitrary number of classifiers.

Thus far, we implicitly assumed that events are atomic. Therefore, an event
has a timestamp. To handle activities that take time, XES provides the possi-
bility to represent lifecycle information and to connect events through activity
instances. An activity instance is a collection of related events that together rep-
resent the execution of an activity for a case. For example, an activity instance

Process Mining: A 360 Degree Overview 23

may be composed of a start event and a complete event. This way, we can
derive information about the duration of an activity instance. The XES lifecy-
cle model distinguishes between the following types of events: schedule, assign,
withdraw, reassign, start, suspend, resume, abort, complete, autoskip, and man-
ualskip. Using this XES extension, an event e has an attribute #type(e). For
example, assume that e1 and e2 are two events that belong to the same activity
instance and #type(e1) = start and #type(e2) = complete. #time(e2)−#time(e1)
is the duration of the activity. Similarly, we can measure waiting times, etc. Note
that classifiers can also use lifecycle information, e.g., an event e is identified by
the pair (#act(e),#type(e)). This implies that when we discover process models,
there may be activities (a, start) and (a, complete).

Many XES logs contain lifecycle information, but few contain explicit activity
instances. This implies that heuristics are needed to link events. For example,
(a, start) is coupled to the first (a, complete) following it. However, in the trace
〈. . . , (a, start), . . . , (a, start), . . . , (a, complete), . . . , (a, complete), . . .〉, there are
two possible ways to match starts and ends. Fortunately, it is often possible to
extract activity instances from the original data source.

4 Different Types of Process Mining

After introducing multiple ways to represent process models (BPMN, Petri nets,
process trees, and DFGs) and different types of events logs (e.g., XES and
OCEL), we now briefly introduce some of the standard process mining tasks
(see Fig. 12). As a starting point, we assume that high-quality event data are
available. In practice, it is often time-consuming to extract event data from
existing systems. As mentioned before, events may be scattered over multiple
database tables or even multiple information systems using different identifiers.
When starting with process mining, data extraction and data cleaning may take
80% of the time. Of course, the exact percentage depends on the type of process
and information system. Also if the data pipeline is set up properly, this is a
one-time effort that can be reused continuously.

4.1 Process Discovery

Event logs contain example behavior. The challenge is to discover a process
model based on such example behavior. The model should not be “overfitting”
(i.e., simply enumerating the observed example traces) and not “underfitting”
(i.e., allow for behavior unrelated to what was observed). This is a difficult
task and numerous algorithms have been proposed in literature, including the
Alpha algorithm [8], region-based approaches [11,13,33,36], inductive mining
techniques [28,29], and the split miner [9]. A baseline approach is the creation
of a DFG, where the observed activities are added as nodes and two nodes a
and b are connected through a directed arc if activity a is directly followed by
activity b at least once. Obviously, such an approach is too simplistic and leads
to underfitting process models. If activity a is directly followed by activity b in

24 W. M. P. van der Aalst

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret

drill down

ML

+ +
event
data

6: Action-Oriented
Process Mining

5: Predictive Process
Mining

3: Performance
Analysis

2: Conformance
Checking

1: Process
Discovery

4: Comparative
Process Mining

Fig. 12. Six frequently used types of process mining.

one case and activity b is directly followed by activity a in another case, then a
loop is introduced. The techniques mentioned above address this problem and
are able to uncover concurrency. However, there are many other challenges. The
event log may contain infrequent behavior, i.e., traces or patterns which are less
frequent compared to the mainstream behavior. Should this infrequent behavior
be included or not? Hence, most approaches are parameterized to discard rare
behavior. On the one hand, we often want to leave out infrequent behavior
to simplify models. On the other hand, one cannot assume to have seen all
behavior. Concurrency leads to an exponential number of states and a factorial
number of possible traces. An unbounded loop leads to infinitely many possible
traces. Process discovery is further complicated by the fact that event logs do
not contain negative examples (i.e., traces that cannot happen) and are often
incomplete (i.e., only a small fraction of all possible behavior is observed).

It is important to focus on a particular process or problem, having a particular
goal in mind. One needs to select and filter the data based on a well-defined
goal. Randomly using sliders to simplify process models may be useful for a first
exploration, but will rarely lead to the desired insights.

To introduce process discovery, we focus on the control-flow, i.e., the ordering
of activities. However, process models may include other perspectives, including
time, data, resources, costs, etc. For example, a choice may be based on the
attributes of the case or preceding event, and we may attach resource allocation
rules to activities (e.g., role information and authorizations). Process discovery
may add such perspectives, but we typically try to get clarity on the control-flow
first. If no reasonable control-flow can be established, one should not try to add
additional perspectives. Several process discovery techniques are explained in
detail in [5,10].

Process Mining: A 360 Degree Overview 25

4.2 Conformance Checking

Conformance checking requires both an event log and a process model as
input. The goal is to indicate where log and model disagree. To illustrate
this consider Figs. 7, 8, and 9. These three models describe exactly the same
behavior of the extended “pizza process” that can be compactly described
as →(bi , cb,∧(�(ac, τ), at ,×(as, am)), bo,×(ep, τ), ck). Let M = {〈bi , cb, ac,
at , as , bo, ep, ck , 〉, . . . 〈bi , cb, am, at , ac, ac, ac, bo, ep, ck , 〉, . . . 〈bi , cb, at , ac, am,
bo, ck〉} be the infinite set of all traces allowed by the BPMN model, Petri net,
and process tree depicted in the three figures. Let L ∈ B(Uact

∗) be an event log
containing 800 traces. Assume σ1 = 〈bi , cb, ac, at , as, bo, ep, ck〉 ∈ L, σ2 = 〈bi ,
cb, ac, ac, at , am, ep, ck〉 ∈ L, and σ3 = 〈bi , cb, at , ac, at , as , bo, ck〉 ∈ L. Hence,
L = [σ1, σ2, σ3, . . .] and |L| = 800. σ1 ∈ M , i.e., this is a perfectly fitting trace.
σ2 �∈ M because activity bo (bake in oven) is missing, i.e., someone was eating
an uncooked pizza. σ3 �∈ M because activity at (add tomato) occurs twice. The
goal of conformance checking is to detect such deviations.

Lfit = [σ ∈ L | σ ∈ M] is the multiset of fitting traces and Ldev = [σ ∈ L |
σ �∈ M] is the multiset of deviating traces. Hence, fitness at the trace level can
be defined as |Lfit | / |L|. The fraction is 1 if all traces are fitting and 0 if none of
the traces is fitting.

There are many measures for fitness. For example, the above fraction does
not take into account to what degree a trace is fitting or not. Trace σ4 = 〈bo, bo,
bo, at , at , at , at , at〉 ∈ L is obviously more deviating than σ2 and σ3. Moreover,
it is not enough to produce a number. In practice, good diagnostics are much
more important than a single quality measure.

There are many techniques for conformance checking. The two most fre-
quently used approaches are token-based replay [32] and alignments [6,14]. For
token-based replay, the process model is represented as a Petri net and traces
in the event log are replayed on the model. If the trace indicates that an activ-
ity needs to take place, the corresponding transition is executed. If this is not
possible because an input place is empty, a so-called missing token is added.
Tokens that are never consumed are called remaining tokens. The numbers of
missing and remaining tokens relative to the numbers of consumed and produced
tokens indicate the severity of the conformance problem. Token-based replay can
be extended to Petri nets with silent and duplicate activities using heuristics.
For example, if there are two activities with the same label, pick the one that
is enabled. If both are enabled, pick one of them. Similarly, silent transitions
(i.e., transitions not corresponding to recorded activities) are executed when
they enable a transition corresponding to the next activity in the event log. This
requires an exploration of the states reachable from the current state and may
lead to inconclusive results.

Compared to computing alignments, token-based replay is fairly efficient, but
does not always produce valid paths through the process model. Alignments are
often seen as the gold standard for conformance checking because they provide
paths through the process model that are as close to the observed behavior
as possible. We would like to map observed behavior onto modeled behavior to

26 W. M. P. van der Aalst

provide better diagnostics and to relate also non-fitting cases to the model. Align-
ments were introduced to overcome the limitations of token-based replay. The
diagnostics are more detailed and more precise, because each observed trace is
mapped onto a model behavior that is as close to what was observed as possible.
The alignment shows common behavior, but also skipped and inserted events
signaling deviations. Such skipped and inserted events are easier to interpret
than missing and remaining tokens. However, for large event logs and processes,
alignment computations may be intractable. Moreover, there may be many opti-
mal alignments, making the diagnostics non-deterministic.

Several conformance checking techniques are explained in detail in [15]. When
comparing observed and modeled behavior, we typically consider four main qual-
ity dimensions [1,2,6]:

– Recall (also called replay fitness): the discovered model should allow for the
behavior seen in the event log. This can be quantified by the minimal number
of edit operations needed to make all traces in the event log fitting into the
model (or simply the fraction of perfectly fitting traces).

– Precision: the discovered model should not allow for behavior completely
unrelated to what was seen in the event log. This can be quantified by the
number of possible continuations in the model never observed in the event
log.

– Generalization: the discovered model should generalize the example behavior
seen in the event log. It is easy to create a process model that only allows
for the behavior observed and nothing more. However, such a model is likely
to overfit. To avoid overfitting, the model should generalize. This can only
be tested on “fresh unseen” event data. To evaluate a process discovery algo-
rithm, standard cross-validation can be used to detect overfitting problems.
This is less clear when evaluating a process model rather than a discovery
algorithm [6].

– Simplicity : the discovered model should be as simple as possible. This fourth
quality criterion is related to Occam’s Razor, which states that “one should
not increase, beyond what is necessary, the number of entities required to
explain anything”.

4.3 Performance Analysis

The goal of process mining is to improve processes by uncovering problems. These
may be the conformance problems just described, but (of course) also include
performance problems such as untimely completion of a case, limited production,
missed deadlines, tardiness, excessive rework, and recurring quality problems.
Using token-based replay [32] and alignments [6,14] it is possible to relate event
data to a process model. As a result, it is fairly straightforward to annotate the
process model with frequency and time information. Frequencies of undesired
activities and loops can be used to identify quality and efficiency problems. Since
events have timestamps, it is possible to measure times in-between activities,
including statistics such as mean, median, standard deviation, minimum, and

Process Mining: A 360 Degree Overview 27

maximum. This allows for analyzing performance indicators, e.g., waiting times,
response times, and service times.

A Service Level Agreement (SLA) is an agreement between a service provider
and a client. Process mining can be used to analyze SLAs, e.g., when is a partic-
ular SLA not met. Some well-known SLAs are churn/abandonment rate (num-
ber of cases lost), average speed to answer (response time seen by customer),
percentage of cases handled within a predefined timeframe, first-call resolution
(cases successfully handled without rerouting), percentage of duplicated cases
(e.g., multiple procurement documents corresponding to the same order), mean
time between failures, mean time to recovery, etc.

4.4 Comparative Process Mining

Comparative process mining uses as input multiple event logs, e.g., L1, L2, . . . ,
Ln ∈ B(Uact

∗). These event logs may refer to different locations, periods, or
categories of cases. For example, we may have the event logs LAachen and LMunich

referring to the same processes performed at two locations. We may have the
event logs LJan , LFeb , LMar , . . . , LDec referring to different periods or LGold and
LSilver referring to gold and silver customers.

Having multiple event logs allows for comparison and highly relevant ques-
tions. What are the striking differences and commonalities? What factors lead
to these differences? Root cause analysis can be used to explain the observed
differences. For example, in LFeb waiting times may be much longer than in LJan

due to limited resource availability. Comparative process mining may focus on
frequently occurring problems, sometimes referred to as execution gaps. Such
execution gaps include lost customers, additional work due to price changes, the
merging of duplicate orders, and rework due to quality problems.

Comparative process mining is also a great tool for inter- or intra-
organizational benchmarking. For example, an insurance company may have dif-
ferent regional offices. Using comparative process mining, these offices can learn
from each other and increase the overall performance.

4.5 Predictive Process Mining

Process discovery, conformance checking, performance analysis, and compara-
tive process mining are backward-looking. Although the value of such techniques
is obvious, the actual goal is to continuously improve processes and respond
to changes. Operational processes are subject to many changes, e.g., a sud-
den increase in the number of orders or disruptions in the supply chain. More-
over, many compliance and performance problems can be foreseen and addressed
proactively. Fortunately, process models discovered and enriched using process
mining can be used in a forward-looking manner.

Process mining can be used to create a range of ML questions that can
be answered using standard software libraries. For example, when detecting a
recurring bottleneck or deviation, it is possible to extract features from the event
log and create a predictive model. This leads to a so-called situation-feature table

28 W. M. P. van der Aalst

with several descriptive features (e.g., people involved, path taken, and time of
day) and one target feature (e.g., waiting time or decision). Then standard ML
techniques ranging from regression and decision trees to neural networks can be
applied to explain the target feature in terms of descriptive features. This leads
to better diagnostics and explanations. Moreover, the models can be used in a
predictive manner.

Predictive process mining questions also create specific ML challenges. Most
ML techniques assume a fixed number of features as input (i.e., a fixed-length
feature vector) and assume inputs to be independent. Artificial recurrent neural
network architectures such as Long Short-Term Memory (LSTM) can be used
to handle traces of variable length. Contextual features can be added to include
information about the utilization of resources. However, this requires fine-tuning
and domain knowledge.

A discovered process model can be viewed as a description of the as-is situ-
ation. Using simulation and model adaptation, it is possible to explore possible
to-be situations. Simulation enables forward-looking forms of process mining.
Comparative process mining can be used to compare the different alternatives.

4.6 Action-Oriented Process Mining

Process mining can be used to show (1) what has happened, (2) what is happen-
ing now, and (3) what will happen next in the process. Hence, it covers the full
spectrum from backward-looking to forward-looking types of analysis. Backward-
looking forms of process mining can lead to process redesigns and organizational
changes. Forward-looking forms of process mining and diagnostics of the cur-
rent state of a process can trigger improvement actions. Action-oriented process
mining aims to turn diagnostics into actions. Assisted by low-code automation
platforms, process mining software can trigger workflows. Some examples:
– The moment the average waiting time exceeds 2 h, additional resources are

added and no new orders are accepted.
– If a supplier changes prices repeatedly for a longer period, then the supplier

is blacklisted.
– If a check is repeatedly skipped by an employee, the manager is notified.

Next to triggering improvement actions, process mining can also detect repet-
itive work that may be automated using Robotic Process Automation (RPA).
RPA can be used to automate repetitive tasks done by humans without chang-
ing the underlying systems. Typical examples include copying information from
one system into another system. Process mining can be used to discover such
repetitive tasks. The term task mining is often used to refer to the discovery of
processes based on user-interface interactions (filling out a form, pushing a but-
ton, copying text, etc.). Task mining can be used to uncover repetitive processes
that can be automated. There is also a connection to online scheduling and other
Operations Research (OR) techniques. For example, based on historical infor-
mation, it is possible to create a robust schedule with events taking place in the
future. Differences between scheduled events and the actual events may trigger
improvement actions.

Process Mining: A 360 Degree Overview 29

5 Applications and Software

Process mining started as an exercise in the late 1990s trying to automatically
create a Petri net from example traces [2]. According to Gartner there are now
over 40 process mining vendors [26]. Some of them are listed in Table 3. Note
that the list is very dynamic with new vendors emerging and large IT companies
acquiring smaller process mining vendors. For an up-to-date overview, see the
website www.processmining.org which lists all process mining tools.

Table 3. Some of the process mining tools available at the end of 2021. For each
tool the vendor and website are listed. The last column indicates whether an academic
version is available.

Vendor Tool Website Acad. ver.

Abbyy ABBYY Timeline www.abbyy.com No

Appian (Lana Labs) LANA Process Mining lanalabs.com No

Apromore Apromore Enterprise Edition apromore.org Yes

bupaR bupaR bupar.net Yes

businessOptix businessOptix businessoptix.com Yes

Celonis Celonis EMS celonis.com Yes

Datricks Datricks datricks.com Yes

DCR DCR Portal www.dcrsolutions.net Yes

Deloitte Process X-ray processxray.deloitte.com No

EverFlow EverFlow everflow.ai No

Fluxicon Disco fluxicon.com Yes

FortressIQ FortressIQ fortressiq.com No

Fraunhofer FIT PM4Py pm4py.fit.fraunhofer.de Yes

Hyland Onbase www.hyland.com No

IBM (myInvenio) myInvenio my-invenio.com No

Integris Explora Process integris.it No

Kofax Kofax Insight www.kofax.com No

livejourney livejourney www.livejourney.com No

Logpickr Logpickr Process Explorer 360 www.logpickr.com No

Mavim Mavim www.mavim.co No

Mehrwerk GmbH MPM mpm-processmining.com No

Mindzie mindzie mindzie.com Yes

Minit (Microsoft) Minit www.minit.io Yes

Nintex UK ltd Nintex www.nintex.com No

Oniq IQ/A www.oniq.com No

PAFnow (Celonis) PAFnow pafnow.com No

Process.science process.science www.process.science No

ProcessDiamond ProcessDiamond processdiamond.com Yes

ProcessM PmBI processm.com Yes

Puzzle Data ProDiscovery www.puzzledata.com No

(continued)

www.processmining.org
www.abbyy.com
http://lanalabs.com/
http://apromore.org/
http://bupar.net
http://businessoptix.com
http://celonis.com
http://datricks.com
www.dcrsolutions.net
http://processxray.deloitte.com
http://everflow.ai
http://fluxicon.com
http://fortressiq.com
http://pm4py.fit.fraunhofer.de
www.hyland.com
http://my-invenio.com
http://integris.it
www.kofax.com
www.livejourney.com
www.logpickr.com
www.mavim.co
http://mpm-processmining.com
http://mindzie.com
www.minit.io
www.nintex.com
www.oniq.com
http://pafnow.com
www.process.science
http://processdiamond.com
http://processm.com
www.puzzledata.com

30 W. M. P. van der Aalst

Table 3. (continued)

Vendor Tool Website Acad. ver.

QPR Software QPR ProcessAnalyzer www.qpr.com No

SAP (Signavio) SAP Signavio www.signavio.com Yes

Skan AI Skan www.skan.ai No

Software AG Aris aris-process-mining.com Yes

Soroco Scout Platform soroco.com No

StereoLogic StereoLogic Process Mining www.stereologic.com No

TU/e ProM www.promtools.org Yes

TU/e RapidProM www.rapidprom.org Yes

UI Path UI Path Process Mining www.uipath.com Yes

UltimateSuite UltimateSuite TM/RPA www.ultimatesuite.com No

Upflux Upflux upflux.net No

Worksoft Worksoft www.worksoft.com No

All of the tools in Table 3 support the discovery of Directly-Follows Graphs
(DFGs) with frequencies and times. Most of them (but not all) support some form
of conformance checking and BPMN visualization. Some of the tools target pro-
cess or data analysts rather than people managing or executing processes. These
tools are typically lightweight and can be deployed quickly. Enterprise-level pro-
cess mining tools are more difficult to deploy, but aim to be used by many stake-
holders within an organization. For example, within Siemens, over 6000 employ-
ees are using the Celonis software to improve a range of processes. Enterprise-level
process mining tools have automated connections to existing information systems
(e.g., SAP, Salesforce, Oracle, ServiceNow, and Workday) to allow for the contin-
uous ingestion of data. These tools also allow for customized dashboards to lower
the threshold to use process mining. In 2020, Gartner estimated the process min-
ing software market revenue to be $550 million, which was over 70% market size
growth from the previous year [26]. The process mining market is forecast to keep
growing 50% per year (Compound Annual Growth Rate) in the coming years. Note
that this does not include consultancy based on process mining. The Big Four (i.e.,
Deloitte, Ernst & Young, KPMG, and PwC) all have process mining competence
centers providing process mining services all over the globe.

The technology is generic and can be used in any domain. For example,
process mining is used in

– finance and insurance (Rabobank, Wells Fargo, Hypovereinsbank, Caixa Gen-
eral, ADAC, APG, Suncorp, VTB, etc.),

– logistics and transport (Uber, Deutsche Bahn, Lufthansa, Airbus, Schukat,
Vanderlande, etc.),

– production (ABB, Siemens, BMW, Fiat, Bosch, AkzoNobel, Bayer, Neste,
etc.),

– healthcare, biomedicine, and pharmacy (Uniklinik RWTH Aachen, Charite
University Hospital, GE Healthcare, Philips, Medtronic, Pfizer, Bayer,
AstraZeneca, etc.),

www.qpr.com
www.signavio.com
www.skan.ai
http://aris-process-mining.com
http://soroco.com
www.stereologic.com
www.promtools.org
www.rapidprom.org
www.uipath.com
www.ultimatesuite.com
http://upflux.net
http://www.worksoft.com

Process Mining: A 360 Degree Overview 31

– telecom (Deutsche Telekom, Vodafone, A1 Telekom Austria, Telekom Italia,
etc.),

– food and retail (Edeka, MediaMarkt, Globus, Zalando, AB InBev, etc.),
– energy (Uniper, Chevron, Shell, BP, E.ON, etc.), and
– IT services (Dell, Xerox, IBM, Nokia, ServiceNow, etc.).

In [31], several use cases are described in detail. In [26,27], typical applica-
tions are described, and in [21] the results of a global process mining survey
are presented. These show that the adoption is increasing, e.g., according to
the global survey, 83% of companies already using process mining on a global
scale plan to expand their initiatives [21]. Process mining helps organizations to
improve processes, provide transparency, reduce costs, ensure compliance, avoid
risks, eliminate waste, and redesign problematic processes [21]. To get a glimpse
of the possible applications, the reader can take a look at the use cases col-
lected by the IEEE Task Force on Process Mining [25] and HSPI Management
Consulting [20]. Note that these cover just a fraction of the actual applications
of process mining. It has become fairly standard to apply process mining to
standard processes such as Purchase-to-Pay (P2P) and Order-to-Cash (O2C).

6 Summary and Outlook

This chapter aimed to provide a 360◦ overview of the field of process mining. We
showed that process mining connects data science and process science leading to
data-driven process-centric techniques and approaches. Event data and process
models were introduced. Events can be grouped in event logs, but also stored in
databases. In the standard setting an event has a few mandatory attributes such
as case, activity, and timestamp. This can be further reduced to representing
an event log by a multiset of traces where each trace is a sequence of activities.
This format is often used for control-flow discovery. However, in real-life settings
it is not so easy to find a single case notion. Often events may refer to multiple
objects of different types. There may also be data quality problems and data may
be scattered over multiple source systems. Moreover, additional attributes such
as costs, time, and resources need to be incorporated in models. We introduced
Directly-Follows Graphs (DFG), Petri nets, BPMN models, and process trees as
basic control-flow representations. These will be used in the remainder.

We informally described six common types of process mining: (1) process dis-
covery, (2) conformance checking, (3) performance analysis, (4) comparative pro-
cess mining, (5) predictive process mining, and (6) action-oriented process mining.
These characterize the scope of process mining and challenges. The chapter also
provided pointers to the over 40 process mining tools and case studies.

Although process mining is already used by many of the larger organizations,
it is a relatively new technology and only a fraction of its potential is realized
today. Three important trends can be witnessed that together lead to a wider
adoption.

– Supporting data extraction and analysis through process-specific and domain-
specific adapters and applications (“process mining apps”). This reduces the

32 W. M. P. van der Aalst

effort to get started with process mining and leverages past experiences in
other organizations.

– Initially, process mining software aimed at experts involved in process
improvement projects. However, process mining should be done continuously
and at a large scale. It is a generic technology that should be accessible for
many users every day. By scaling (both in terms of processes and users) and
continuous use, the return on investment is the highest.

– Increasingly, process mining and automation are combined. Process mining
diagnostics trigger corrective actions through low-code automation platforms.
This is the only way to ensure that improvements are realized. Without some
form of automation, workers may slip back into the old ineffective ways of
working that were exposed using process mining.

Process mining can also play a role in realizing sustainability goals and help
to address environmental, social and economic challenges. Process mining can
help to quantify and steer sustainability efforts, e.g., by removing waste and
quantifying emissions. Process mining can easily handle multiple dimensions,
such as time, cash flow, resource usage, and CO2 emissions, during analysis.
Sustainability is just one of many topics where process mining can play a role.
Moreover, these applications also pose interesting research questions leading to
new concepts and techniques.

Acknowledgment. Funded by the Alexander von Humboldt (AvH) Stiftung and the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC 2023 Internet of Production – 390621612.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19345-3

2. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

3. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the
directly-follows graph. Procedia Comput. Sci. 164, 321–328 (2019)

4. Aalst, W.M.P.: Object-centric process mining: dealing with divergence and con-
vergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1 1

5. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy.
Springer, Cham (2022)

6. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Min. Knowl. Discovery 2(2), 182–192 (2012)

7. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fund.
Inform. 175(1–4), 1–40 (2020)

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1

Process Mining: A 360 Degree Overview 33

8. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

9. Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

10. Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques.
In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP,
vol. 448, pp. xx–yy. Springer, Cham (2022)

11. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375–383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75183-0 27

12. vom Brocke, J., et al.: Process Science: The Interdisciplinary Study of Continuous
Change. SSRN (2021). http://ssrn.com/abstract=3916817

13. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85758-7 26

14. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

15. Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process
Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

16. van Dongen, B.F.: Real-Life Event Logs: Hospital Log (4TU.ResearchData) (2011).
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

17. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-56509-4

18. van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Guided interaction exploration
and performance analysis in artifact-centric process models. Bus. Inf. Syst. Eng.
61(6), 649–663 (2018). https://doi.org/10.1007/s12599-018-0546-0

19. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 1

20. Cotroneo, G., Carbone, R., Boggini, S., Cerini, M.: Process Mining: A Database
of Applications (2021). HSPI Management Consulting 2021. http://www.hspi.it/

21. Galic, G., Wolf, M.: Global Process Mining Survey 2021: Delivering Value
with Process Analytics - Adoption and Success Factors of Process Mining.
Deloitte (2021). https://www2.deloitte.com/de/de/pages/finance/articles/global-
process-mining-survey-2021.html

22. Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL Standard
(2021). http://www.ocel-standard.org/

23. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

24. IEEE Task Force on Process Mining. XES Standard Definition (2016). http://
www.xes-standard.org/

25. IEEE Task Force on Process Mining. Case Studies (2022). http://www.tf-pm.org/

https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-75183-0_27
http://ssrn.com/abstract=3916817
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/s12599-018-0546-0
https://doi.org/10.1007/978-3-030-21571-2_1
http://www.hspi.it/
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
http://www.ocel-standard.org/
https://doi.org/10.1007/978-3-642-28108-2_19
http://www.xes-standard.org/
http://www.xes-standard.org/
http://www.tf-pm.org/

34 W. M. P. van der Aalst

26. Kerremans, M., Srivastava, T., Choudhary, F.: Gartner Market Guide for Process
Mining, Research Note G00737056 (2021). www.gartner.com

27. Koplowitz, R., Mines, C., Vizgaitis, A., Reese, A.: Process Mining: Your Compass
For Digital Transformation: The Customer Journey Is The Destination (2019).
www.forrester.com

28. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

29. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.
(eds.) CAISE 2015. LNBIP, vol. 214, pp. 85–101. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19237-6 6

30. Mannhardt, F.: Road Traffic Fine Management Process (4TU.ResearchData)
(2016). https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

31. Reinkemeyer, L.: Process Mining in Action: Principles, Use Cases and Outlook.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40172-6

32. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

33. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7 14

34. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining: towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132–150 (2017)

35. Taylor, F.W.: The Principles of Scientific Management. Harper and Brothers Pub-
lishers, New York (1919)

36. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-
covering workflow nets using integer linear programming. Computing 100(5), 529–
556 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.gartner.com
www.forrester.com
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-642-13675-7_14
http://creativecommons.org/licenses/by/4.0/

Process Discovery

Foundations of Process Discovery

Wil M. P. van der Aalst(B)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

http://www.vdaalst.com/

Abstract. Process discovery is probably the most interesting, but also most chal-
lenging, process mining task. The goal is to take an event log containing example
behaviors and create a process model that adequately describes the underlying
process. This chapter introduces the baseline approach used in most commercial
process mining tools. A simplified event log is used to create a so-calledDirectly-
Follows Graph (DFG). This baseline is used to explain the challenges one faces
when trying to discover a process model. After introducing DFG discovery, we
focus on techniques that are able to discover models allowing for concurrency
(e.g., Petri nets, process trees, and BPMNmodels). The chapter distinguishes two
types of approaches able to discover such models: (1) bottom-up process discov-
ery and (2) top-down process discovery. The Alpha algorithm is presented as an
example of a bottom-up technique. The approach has many limitations, but nicely
introduces the idea of discovering local constraints. The basic inductive mining
algorithm is presented as an example of a top-down technique. This approach,
combined with frequency-based filtering, works well on most event logs. These
example algorithms are used to illustrate the foundations of process discovery.

Keywords: Process discovery · Process models · Petri nets · BPMN

1 Introduction

Process discovery is typically the first step after extracting event data from source sys-
tems. Based on the selected event data, process discovery algorithms automatically
construct a process model describing the observed behavior. This may be challeng-
ing because, in most cases, the event data cannot be assumed to be complete, i.e., we
only witnessed example behaviors. There may also be conflicting requirements (e.g.,
recall, precision, generalization, and simplicity) [1,3]. This makes process discovery
both interesting and challenging.

Figure 1 positions this chapter. The input for process discovery is a collection of
events and the output is a process model. Such a process model can be used to uncover
unexpected deviations and bottlenecks. In the later stages of the process mining pipeline
shown in Fig. 1, process models are used to check compliance, compare processes,
detect concept drift, and predict performance and compliance problems.

Events may have many attributes and refer to multiple objects of different types [3].
However, in this chapter, we start from very basic event data. We assume that each event

c© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 37–75, 2022.
https://doi.org/10.1007/978-3-031-08848-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_2&domain=pdf
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-08848-3_2

38 W. M. P. van der Aalst

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret

drill down

ML

+ +
event
data

Fig. 1. This chapter focuses on process discovery. This is the first step after extracting event data
from the source system(s). To set the scene, we consider only control-flow information, i.e., the
ordering of activities.

refers to a case, an activity, and has a timestamp. There may be many other attributes
(e.g., resource), but we ignore these. Initially, we assume that timestamps are only used
for the ordering of events corresponding to the same case. This implies that each case is
represented by a sequence of activities. We call this a trace. For example, σ = 〈a, b, c, e〉
represents a case for which the activities a, b, c, and e occurred. Note that there may
be many cases that have the same trace. Therefore, we represent an event log as a
multiset of traces. For example, L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉] is an event
log describing 16 cases and 10 × 4 + 5 × 4 + 1 × 3 = 63 events. Note that trace
σ = 〈a, b, c, e〉 appears 10 times. In [3], we use the term simplified event log. Here
we drop the adjective “simplified” since the representation will be used throughout the
chapter.

Definition 1 (Event Log). Uact is the universe of activity names. A trace σ = 〈a1, a2,
. . . , an〉 ∈ Uact

∗ is a sequence of activities. An event log L ∈ B(Uact
∗) is a multiset of

traces.

Note that L(σ) is the number of times trace σ appears in event log L. For example,
L1(〈a, b, c, e〉) = 10,L1(〈a, c, b, e〉) = 5,L1(〈a, d, e〉) = 1,L1(〈b, a〉) = 0,L1(〈c〉) =
0, L1(〈 〉) = 0, etc.

Given an event log L ∈ B(Uact
∗), we would like to learn a process model ade-

quately capturing the observed behavior. Figure 2 shows four process models discov-
ered for L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉]. The models also show frequencies.

Figure 2(b) shows a Directly-Follows Graph (DFG). The start, end, and five activi-
ties are the nodes of the graph. Activities a and e occurred 16 times, b and c occurred
15 times, and d only once. The arcs in Fig. 2(b) show how often an activity is directly
followed by another activity. For example, a is 10 times directly followed by b, a is 5
times directly followed by c, and a is once directly followed by d. To indicate the start

Foundations of Process Discovery 39

a

c

d

b

e

a

d

c

b

e

a

d

e

cb

(a) Event log L1

(c) Accepting Petri Net (APN): M2

(b) Directly-Follows Graph (DFG): M1

(d) Process Tree (PT): M3

16 5 10 16

551010

1

16

1

1

15 1616

15

15

1 1616

15

16

16 1 1

15 15

15 15

1 1

15 15

1

15

16
16 16

16

16

16

16

Fig. 2. Three process models learned from event log L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉].

and end of cases, we use a start node � and an end node �. One can view � and �
as “dummy” activities or states. Although they do not present real activities, they are
needed to describe the process adequately. Since all 16 cases start with a, the arc con-
necting � to a has a frequency of 16. Note that due to the cycles in the DFG, also traces
such as 〈a, b, c, b, c, b, c, b, e〉 are possible according to the DFG (but did not appear in
the event log).

Figure 2(c) shows a Petri net discovered using the same event logL1. The transitions
(i.e., squares) correspond to the five activities in the event log. The places (i.e., circles)
constrain the behavior. The Petri net allows for the three traces in the event log and
nothing more. Initially, only transition a is enabled. When a fires (i.e., occurs), a token
is consumed from the input place and a token is produced for each of the two output
places. As a result, transitions b, c, and d become enabled. If d fires, both tokens are
removed and two tokens are produced for the input places of e. If b fires, only one token
is consumed and one token is produced. After b fires, c is still enabled, and c will fire to
enable e. Transition c can also occur before b, i.e., b and c are concurrent and can happen
at the same time or in any order. There is a choice between d and the combination of b
and c. The start of the process is modeled by the token in the source place. The end of
the process is modeled by the double-bordered sink place.

Also, the process tree discovered for event log L1 shown in Fig. 2(d) allows for the
three traces in the event log and nothing more. The root node is a sequence (→) with
three “child nodes”: activity a, a choice, and activity e. These nodes are visited 16 times
(once for each case). The choice node (×) has two “child nodes”: a parallel node ∧ and
an activity node e. The parallel node (∧) has two “child nodes”: activity b and activity
c. The whole process tree can be represented by the expression →(a,×(∧(b, c), d), e).
Note that the d node is visited only once. The ∧, b, and c nodes are visited 15 times.

40 W. M. P. van der Aalst

In this example, each node has a unique label allowing us to refer easily. Often a tree
has multiple nodes with the same label, e.g., →(a,×(→(a, a), a), a) where a appears
five times and → two times.

In Fig. 2, we just show example results. In the remainder, we will see how such
process models can be learned from event data. The goal of this chapter is not to give
a complete survey (see also [10] for a recent survey). Instead, we would like to bring
forward the essence of process discovery from event data, and introduce the main prin-
ciples in an intuitive manner.

The remainder of this chapter is organized as follows. Section 2 presents a baseline
approach that computes a Directly-Follows Graph (DFG). This approach is simple and
highly scalable, but has many limitations (e.g., producing complex underfitting process
models) [2]. In Sect. 3, we elaborate on the challenges of process discovery. Section 4
discusses higher-level representations such as Petri nets (Subsect. 4.1), process trees
(Subsect. 4.2), and BPMN (Subsect. 4.3). Section 5 introduces “bottom-up” process dis-
covery using the Alpha algorithm [1,9] as an example. Section 6 introduces “top-down”
process discovery using the basic inductive mining algorithm [22–24] as an example.
Finally, Sect. 7 concludes the chapter with pointers to other discovery approaches (e.g.,
using state-based or language-based regions).

2 Directly-Follows Graphs: A Baseline Approach

In this chapter, we present a very simple discovery approach that is supported by
most (if not all) process mining tools: Constructing a so-called Directly-Follows Graph
(DFG) by simply counting how often one activity is followed by another activity (see
Fig. 2(b)). We use this to also introduce filtering techniques to remove infrequent activ-
ities, infrequent variants, and infrequent arcs. The more advanced techniques presented
later in this chapter build upon the simple notions introduced in this section.

Let us first try to describe the process discovery problem in abstract terms, inde-
pendent of the selected process modeling notation. Therefore, we describe a model’s
behavior as a set of traces.

Definition 2 (Process Model). UM is the universe of process models. A process model
M ∈ UM defines a set of traces lang(M) ⊆ Uact

∗.

Examples of process models defined later are DFGs UG ⊆ UM (Sect. 2.1),
accepting Petri nets UAN ⊆ UM (Sect. 4.1), process trees UQ ⊆ UM (Sect. 4.2),
and BPMN models UBPMN ⊆ UM (Sect. 4.3). Consider, for example, the process
models M1 (DFG), M2 (Petri net), and M3 (process tree) in Fig. 2. lang(M2) =
lang(M3) = {〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, d, e〉}. lang(M1) = {〈a, b, e〉, 〈a, c, e〉, 〈a, d,
e〉, . . . , 〈a, b, c, b, c, b, c, e〉, . . .} contains infinitely many traces due to the cycle involv-
ing b and c.

The goal of a process discovery algorithm is to produce a model that explains the
observed behavior.

Definition 3 (Process Discovery Algorithm). A process discovery algorithm is a
function disc ∈ B(Uact

∗) → UM , i.e., based on a multiset of traces, a model is
produced.

Foundations of Process Discovery 41

Given an event log L, a process discovery algorithm disc returns a model allowing
for the traces lang(disc(L)). A discovery algorithm disc guarantees perfect replay fit-
ness if for any L ∈ B(Uact

∗): {σ ∈ L} ⊆ lang(disc(L)). We write {σ ∈ L} to turn a
multiset of traces into a set of traces and make the model and the log comparable. All
three models in Fig. 2 have perfect replay fitness (also called perfect recall).

2.1 Directly-Follows Graphs: Basic Concepts

We already informally introduced DFGs, but now we formalize the concepts needed to
precisely describe the corresponding discovery algorithm.

Definition 4 (Directly-Follows Graph). A Directly-Follows Graph (DFG) is a pair
G = (A,F) where A ⊆ Uact is a set of activities and F ∈ B((A × A) ∪ ({�} × A) ∪
(A × {�}) ∪ ({�} × {�})) is a multiset of arcs. � is the start node and � is the end
node ({�, �} ∩ Uact = ∅). UG ⊆ UM is the set of all DFGs.

� and � can be viewed as artificially added activities to clearly indicate the start
and end of the process. The nodes of a DFG are � to denote the beginning, � to denote
the end, and the activities in set A. Note that � �∈ A and � �∈ A (this is also important
in later sections). There are four types of arcs: (�, a), (a1, a2), (a, �), and (�, �) (with
a, a1, a2 ∈ A). F ((�, a)) indicates how many cases start with a, F ((a1, a2)) indicates
how often activity a1 is directly followed by activity a2, F ((a, �)) indicates how many
cases end with a, and F ((�, �)) counts the number of empty cases. In the directly-
follows graph, we only consider directly-follows within the same case. For example,
F ((a, b)) = (10 × 0) + (10 × 0) + (10 × 1) + (10 × 2) + (10 × 3) = 60 given some
event log [〈a〉10, 〈b〉10, 〈a, b〉10, 〈a, b, a, b〉10, 〈a, b, a, b, a, b〉10].

The DFG in Fig. 2(b) can be described as follows: M1 = (A,F) with
A = {a, b, c, d, e} and F = [(�, a)16, (a, b)10, (a, c)5, (a, d)1, (b, c)10, (b, e)5, (c, b)5,
(c, e)10, (d, e)1, (e, �)16].

Figure 3 shows process models discovered for another event log L2 = [〈a, b, c, e〉50,
〈a, c, b, e〉40, 〈a, b, c, d, b, c, e〉30, 〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c,
b, d, b, c, e〉10]. The fact that b, c, and d occur a variable number of times per case
suggests that there is a loop. Figure 3(b) shows the corresponding DFG. This DFG
can be described as follows: M4 = (A,F) with A = {a, b, c, d, e} and F =
[(�, a)160, (a, b)90, (a, c)70, (b, c)150, (b, d)40, (b, e)50, (c, b)90, (c, d)40, (c, e)110,
(d, b)60, (d, c)20, (e, �)160].

Definition 5 (Traces of a DFG). Let G = (A,F) ∈ UG be a DFG. The set of possible
traces described by G is lang(G) = {〈a2, a3, . . . , an−1〉 | a1 = � ∧ an = � ∧
∀1≤i<n (ai, ai+1) ∈ F}.

Note that � and � have been added to the DFG to have a clear start and end. How-
ever, these “dummy activities” are not part of the language of the DFG.

Consider the DFG M1 shown in Fig. 2(b): lang(M1) = {〈a, b, e〉, 〈a, c, e〉, 〈a, d,
e〉, 〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, b, e〉, 〈a, c, b, c, e〉, 〈a, b, c, b, c, e〉, . . .}. Also the DFG
M4 in Fig. 3(b) has an infinite number of possible traces: lang(M4) = {〈a, b, e〉,
〈a, c, e〉, 〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, b, e〉, 〈a, c, b, c, e〉, 〈a, b, d, b, e〉, . . .}. Whenever
the DFG has a cycle, then the number of possible traces is unbounded.

42 W. M. P. van der Aalst

a

c

d

b

e

a

d

c

b

e

a

d

e

cb

(a) Event log L2

(c) Accep ng Petri Net (APN): M5

(b) Directly-Follows Graph (DFG): M4

(d) Process Tree (PT): M6

160 70 110 160

509015090

160

80

240 160160

240

240

80 160160

240

80 80

240 240

240 240

80 80

240 240

80

240

160
160 160

1602040

40

60

160

160

160160

160

Fig. 3. Three process models learned from event log L2 = [〈a, b, c, e〉50, 〈a, c, b, e〉40,
〈a, b, c, d, b, c, e〉30, 〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c, b, d, b, c, e〉10].

2.2 Baseline Discovery Algorithm

Since the event log only contains example traces, it is natural that the discovery algo-
rithm aims to generalize the observed behavior to avoid over-fitting. Therefore, we start
with a baseline discovery algorithm that ensures that all observed behavior is possible
according to the discovered process model. The algorithm used to discover the DFGs
in Fig. 2(b) and Fig. 3(b) is defined as follows.

Definition 6 (Baseline Discovery Algorithm). Let L ∈ B(Uact
∗) be an event log.

discDFG (L) = (A,F) is the DFG based on L with:

– A = {a ∈ σ | σ ∈ L} and
– F = [(σi, σi+1) | σ ∈ L′ ∧ 1 ≤ i < |σ|] with L′ = [〈�〉 · σ · 〈�〉 | σ ∈ L].

Note that L, L′, and F in Definition 6 are multisets. Each trace in the event log L is
extended with the artificially added activities. L′ adds � at the start and � at the end of
each trace in L. M1 = disc

DFG
(L1) is depicted in Fig. 2(b) and M4 = disc

DFG
(L2) is

depicted in Fig. 3(b).
A DFG can be viewed as a first-order Markov model (i.e., the state is determined

by the last activity executed). The baseline discovery algorithm (Definition 6) tends to
lead to underfitting process models. Whenever two activities are not executed in a fixed
order, a loop is introduced.

2.3 Footprints

A DFG can also be represented as a matrix, as shown in Table 1. This is simply a
tabular representation of the graph and the arc frequencies, e.g., F ((�,�)) = 0,

Foundations of Process Discovery 43

F ((�, a)) = 16, and F ((c, e)) = 10. To capture the relations between activities, we
can also create a so-called footprint matrix [1]. Table 2 shows the footprint matrix for
the DFG in Fig. 2(b). Between two activities a1 and a2, precisely one of four possible
relations holds:

– a1 → a2 (i.e., a1 is sometimes directly followed by a2, but a2 is never directly
followed by a1),

– a1 ← a2 (i.e., a2 is sometimes directly followed by a1, but a1 is never directly
followed by a2),

– a1‖a2 (i.e., a1 is sometimes directly followed by a2 and a2 is sometimes directly
followed by a1), and

– a1#a2 (i.e., a1 is never directly followed by a2 and a2 is never directly followed
by a1).

Table 1. Matrix representation of the DFG in Fig. 2(b).

� a b c d e �

� 0 16 0 0 0 0 0

a 0 0 10 5 1 0 0

b 0 0 0 10 0 5 0

c 0 0 5 0 0 10 0

d 0 0 0 0 0 1 0

e 0 0 0 0 0 0 16

� 0 0 0 0 0 0 0

Table 2. The footprint of the DFG in Fig. 2(b).

� a b c d e �

� # → # # # # #

a ← # → → → # #

b # ← # ‖ # → #

c # ← ‖ # # → #

d # ← # # # → #

e # # ← ← ← # →
� # # # # # ← #

Table 2 (based on Fig. 2(b)) shows, for example, that a → b, b ← a, b‖c, and c#d.
The creation of the footprint can be formalized as follows.

Definition 7 (Footprint). Let G = (A,F) ∈ UG be a DFG. G defines a footprint
fp(G) ∈ (A′ ×A′) → {→,←, ‖,#} such that A′ = A∪{�, �} and for any (a1, a2) ∈
A′ × A′:

44 W. M. P. van der Aalst

– fp(G)((a1, a2)) = → if (a1, a2) ∈ F and (a2, a1) �∈ F ,
– fp(G)((a1, a2)) = ← if (a1, a2) �∈ F and (a2, a1) ∈ F ,
– fp(G)((a1, a2)) = ‖ if (a1, a2) ∈ F and (a2, a1) ∈ F , and
– fp(G)((a1, a2)) = # if (a1, a2) �∈ F and (a2, a1) �∈ F .

We write a1 →
G

a2 if fp(G)((a1, a2)) = →, a1#G
a2 if fp(G)((a1, a2)) = #, etc.

We can also create the footprint of an event log by first applying the baseline
discovery algorithm: fp(L) = fp(discDFG (L)). Hence, Table 2 also shows fp(L1) =
fp(disc

DFG
(L1)) = fp(M1). This allows us to write b→L1e, b‖L1e, b#L1d, etc.

2.4 Filtering

Using the baseline discovery algorithm, an activity a appears in the discovered DFG
when it occurs at least once and two activities a1 and a2 are connected by a directed
arc if a1 is directly followed by a2 at least once in the log. Often, we do not want
to see the process model that captures all behavior. Instead, we would like to see the
dominant behavior. For example, we are interested in the most frequent activities and
paths. Therefore, we would like to filter the event log and model. Here, we consider the
three basic types of filtering:

– Activity-based filtering: project the event log on a subset of activities (e.g., remove
the least frequent activities).

– Variant-based filtering: remove selected traces (e.g., only keep the most frequent
variants).

– Arc-based filtering: remove selected arcs in the DFG (e.g., delete arcs with a fre-
quency lower than a given threshold).

To describe the different types of filtering, we introduce some notations for traces
and event logs.

Definition 8 (Frequency and Projection Functions). Let L ∈ B(Uact
∗) be an event

log.

– act(L) = {a ∈ σ | σ ∈ L} are the activities in event log L,
– var(L) = {σ ∈ L} are the trace variants in event log L,
– #act

L (a) =
∑

σ∈L |{i ∈ {1, . . . |σ|} | σi = a}| is the frequency of activity a ∈
act(L) in event log L,

– #var
L (σ) = L(σ) is the frequency of variant σ ∈ var(L) in event log L,

– for a subset of activities A ⊆ act(L) and trace σ ∈ L, we define σ↑A such that
〈〉↑A = 〈〉 and (σ · 〈a〉)↑A = σ↑A · 〈a〉 if a ∈ A, and (σ · 〈a〉)↑A = σ↑A if a �∈ A,

– L↑A = [σ↑A | σ ∈ L] is the projection of L on a subset of activities A ⊆ act(L),
– L⇑V = [σ ∈ L | σ ∈ V] is the projection of L on a subset of trace variants

V ⊆ var(L),

First, we define activity-based filtering using a threshold τact ∈ N = {1, 2, 3, . . .}.
All activities with a frequency lower than τact are removed from the event log, but all
cases are retained.

Foundations of Process Discovery 45

Definition 9 (Activity-Based Filtering). LetL ∈ B(Uact
∗) be an event log and τact ∈

N. filteract(L, τact) = L↑A with A = {a ∈ act(L) | #act
L (a) ≥ τact}.

Again we use L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉] and L2 = [〈a, b, c, e〉50,
〈a, c, b, e〉40, 〈a, b, c, d, b, c, e〉30, 〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c,
b, d, b, c, e〉10] to illustrate the definition. If τact = 10, then filteract(L1, τact) =
[〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, e〉] (only activity d is removed). If τact = 16, then
filteract(L1, τact) = [〈a, e〉16] (only activities a and e remain). If τact > 16,
then filteract(L1, τact) = [〈〉16]. Note that the number of traces is not affected
by activity-based filtering (even when all activities are removed). If τact = 200,
then filteract(L2, τact) = [〈b, c〉50, 〈c, b〉40, 〈b, c, b, c〉30, 〈c, b, b, c〉20, 〈b, c, c, b〉10,
〈c, b, c, b, b, c〉10] (only activities b and c remain).

Next, we define variant-based filtering using a threshold τvar ∈ N. All trace variants
with a frequency lower than τvar are removed from the event log.

Definition 10 (Variant-Based Filtering). Let L ∈ B(Uact
∗) be an event log and

τvar ∈ N. filtervar (L, τvar) = L⇑V with V = {σ ∈ var(L) | #var
L (σ) ≥ τvar}.

If τvar = 5, then filtervar (L1, τvar) = [〈a, b, c, e〉10, 〈a, c, b, e〉5]. If τvar = 10,
then filtervar (L1, τvar) = [〈a, b, c, e〉10]. If τvar > 10, then filtervar (L1, τvar) = [].
Note that (unlike activity-based filtering) the number of traces may decrease.

Finally, we define arc-based filtering using a threshold τarc ∈ N. Whereas activity-
based filtering and variant-based filtering operate on event logs, arc-based filtering mod-
ifies the DFG and not the event log used to generate it. All arcs with a frequency lower
than τarc are removed from the graph.

Definition 11 (Arc-Based Filtering). Let G = (A,F) ∈ UG be a DFG and τarc ∈ N.
filterarc(G, τarc) = (A,F ′) with F ′ = [(x, y) ∈ F | F ((x, y)) ≥ τarc].

In its basic form τarc retains all nodes even when they become fully disconnected
from the rest. Consider the DFG M1 = (A,F) in Fig. 2(b) with A = {a, b, c, d, e}
and F = [(�, a)16, (a, b)10, (a, c)5, (a, d)1, (b, c)10, (b, e)5, (c, b)5, (c, e)10, (d, e)1, (e,
�)16]. If τvar = 10, then filterarc(M1, τarc) = (A,F ′) with F ′ = [(�, a)16, (a, b)10,
(b, c)10, (c, e)10, (e, �)16]. If τvar = 15, then filterarc(M1, τarc) = (A,F ′′)with F ′′ =
[(�, a)16, (e, �)16]. Note that the DFG is no longer connected.

The three types of filtering can be combined. Because arc-based filtering oper-
ates on the DFG, it should be done last. It is also better to conduct activity-based
filtering before variant-based filtering. There are several reasons for this. The num-
ber of traces is affected by variant-based filtering. Moreover, activity-based filtering
may lead to variants with a higher frequency. Consider L1 with τact = 16 and
τvar = 10. If we first apply variant-based filtering, one variant remains after the
first step and none of the activities is frequent enough to be retained in the second
step: filteract(filtervar (L1, τvar), τact) = [〈〉10]. If we first apply activity-based fil-
tering, then the two most frequent activities are retained and all 16 traces are consid-
ered in the second step: filtervar (filteract(L1, τact), τvar) = [〈a, e〉16]. For L2 with
τact = 200 and τvar = 40, we find that filteract(filtervar (L2, τvar), τact) = [〈〉90] and
filtervar (filteract(L2, τact), τvar) = [〈b, c〉50, 〈c, b〉40].

46 W. M. P. van der Aalst

These examples show that the order of filtering matters. We propose a refined base-
line discovery algorithm using filtering. The algorithm first applies activity-based filter-
ing followed by variant-based filtering. Then the original baseline algorithm is applied
to the resulting event log to get a DFG (see Definition 6). Finally, arc-based filtering is
used to prune the DFG.

Definition 12 (Baseline Discovery Algorithm Using Filtering). Let L ∈ B(Uact
∗)

be an event log. Given the thresholds τact ∈ N, τvar ∈ N, and τarc ∈ N:
discτact ,τvar ,τarc

DFG
(L) = filterarc(disc

DFG
(filtervar (filteract(L, τact), τvar)), τarc).

discτact ,τvar ,τarc
DFG

(L) returns a DFG using the three filtering steps. Only the last filter-
ing step is specific for DFGs. Activity-based filtering and variant-based filtering can be
used in conjunction with any discovery technique, because they produce filtered event
logs. The footprint notion can also be extended to include these two types of filtering:
fpτact ,τvar (L) = fp(disc

DFG
(filtervar (filteract(L, τact), τvar))) is the footprint matrix

considering only frequent activities and variants.

a

d

c

b

e

(a) Event log L2
(b) Directly-Follows Graph (DFG) considering all activities

160 70 110 160

509015090

80

240 160160

240

2040

40

60

a

c

b
e

(c) Directly-Follows Graph (DFG) after simply removing activity d

160

70 110

160

50

90150

90

240

160160

240

(d) Directly-Follows Graph (DFG) based on the filtered event log

a

c

b
e160

70 110

160

50

120160

90

240

160160

240

10

30

Fig. 4. Three DFGs learned from event logL2 = [〈a, b, c, e〉50, 〈a, c, b, e〉40, 〈a, b, c, d, b, c, e〉30,
〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c, b, d, b, c, e〉10]: (b) the original DFG con-
sidering all activities, (c) the problematic DFG obtained by simply removing activity d from the
graph, and (d) the desired DFG obtained by removing activity d from the event log first.

Most process mining tools provide sliders to interactively set one or more thresh-
olds. This makes it easy to seamlessly simplify the discovered DFG. However, it is vital
that the user understands the different filtering approaches. Therefore, we highlight the
following risks.

Foundations of Process Discovery 47

– The ordering of filters may greatly impact the result. As shown before: filtervar (
filteract(L, τact), τvar) �= filteract(filtervar (L, τvar), τact). If a tool provides mul-
tiple sliders, it is important to understand how these interact and what was left out.

– Applying projections to event logs is computationally expensive. Therefore, process
mining tools may provide shortcuts that operate directly on the DFG without filter-
ing the event log. Consider, for example, Fig. 4 showing (a) the event log and (b) the
original DFG without filtering. Activity d has the lowest frequency. Simply remov-
ing node d from the graph leads to interpretation problems. Figure 4(c) shows the
problem, e.g., b occurs 240 times but the frequencies of the input arcs add up to
90 + 90 = 180 and the frequencies of output arcs add up to 50 + 150 = 200. If
we apply activity-based filtering using Definition 9, we obtain the DFG in Fig. 4(d).
Now we see the loops involving b and c. Moreover, the frequencies of the input arcs
of b add up to 90+120+30 = 240 and the frequencies of output arcs also add up to
50+160+30 = 240. Clearly, this is the DFG one would like to see after abstracting
from d.

– Using activity-based filtering and variant-based filtering as defined in this section
yields models where the frequency of a node matches the sum of the frequencies
of the input arcs and the sum of the frequencies of the output arcs. As long as the
resulting event log is not empty, the graph is connected and all activities are on a
path from start to end. This leads to models that are easy to interpret. Arc-based
filtering may lead to models that have disconnected parts and frequencies do not add
up as expected (similar to the problems in Fig. 4(c)). Therefore, arc-based filtering
should be applied with care.

– The above risks are not limited to control-flow (e.g., connectedness of the graph
and incorrect frequencies). When adding timing information (e.g., the average time
between two activities), the results are highly affected by filtering. Process mining
tools using shortcuts that operate directly on the DFG without filtering the event log,
quickly lead to misleading performance diagnostics [2].

2.5 A Larger Example

To further illustrate the concepts, we now consider a slightly larger event log L3 =
[〈ie, cu, lt , xr , fe〉285, 〈ie, cu, lt , ct , fe〉260, 〈ie, cu, ct , lt , fe〉139, 〈ie, lt , cu, xr , fe〉137,
〈ie, lt , cu, ct , fe〉124, 〈ie, cu, xr , lt , fe〉113, 〈ie, xr , cu, lt , fe〉72, 〈ie, ct , cu, xr , fe〉72,
〈ie, cu, om, am, cu, lt , xr , fe〉29, 〈ie, cu, om, am, cu, lt , ct , fe〉28, . . .]. We use the fol-
lowing abbreviations: ie = initial examination, xr = X-ray, ct = CT scan, cu = checkup,
om = order medicine, am = administer medicine, lt = lab tests, and fe = final exam-
ination. The event log contains 11761 events corresponding to 1856 cases. Each case
represents the treatment of a patient. There are 187 trace variants and 8 unique activi-
ties. For example, 〈ie, cu, lt , xr , fe〉 is the most frequent variant, i.e., 285 patients first
get an initial examination (ie), followed by a checkup (cu), lab tests (lt), X-ray (xr),
and a final examination (fe).

Figure 5 shows the DFG for L3 using the baseline discovery algorithm described in
Definition 6. The DFG was produced by ProM’s “Mine with Directly Follows visual
Miner”. Using a slider, it is possible to remove infrequent activities. Figure 6 shows
the DFG disc

DFG
(filteract(L3, τact)) with the activity threshold τact set to 1000, i.e.,

48 W. M. P. van der Aalst

Fig. 5. The discovered DFG discDFG (L3) generated by ProM.

Fig. 6. The DFG discDFG (filter
act(L3, τact)) generated by ProM using τact = 1000.

all activities with a frequency of less than 1000 are removed from the event log using
projection. In the resulting DFG, four of the eight activities remain.

The discovery of DFGs (as defined in this section) is supported by almost all process
mining tools. Figure 7 shows the DFGs discovered using the Celonis EMS using the
same settings as used in ProM. Although the layout is different, the Celonis-based DFG
in Fig. 7 (left) is identical to the ProM-based DFG in Fig. 5. The DFG in Fig. 7 (right)
is identical to the DFG in Fig. 6.

Figure 8 shows variant-based filtering using the Celonis “Variant Explorer”. The six
most frequent variants are selected. These are the variants that have a frequency above
100, i.e., the depicted DFG is disc

DFG
(filtervar (L3, τvar)) with τvar = 100. There are

1856 cases distributed over 197 variants. The top six variants (i.e., 3% of all variants)
cover 1058 cases (i.e., 57%). We also computed the DFG discDFG (filter

var (L3, τvar))
with τvar = 10. There are 22 variants meeting this lower threshold (i.e., 11% of all
variants) covering 1483 cases (i.e., 80%). Most event logs follow such a Pareto distri-
bution, i.e., a small fraction of variants explains most of the cases observed. This is also
referred to as the “80/20 rule”, although the numbers 80 and 20 are arbitrary. For our

Foundations of Process Discovery 49

activity-
based
filtering

Fig. 7. The discovered DFG in Celonis before and after activity-based filtering, i.e., discDFG (L3)
(left) and discDFG (filter

act(L3, τact)) with τact = 1000 (right).

Fig. 8. A discovered DFG in Celonis using variant-based filtering: discDFG (filter
var (L3, τvar))

with τvar = 100. There are six variants having a frequency above 100. These cover 57% of all
cases, but only 3% of all variants.

example event log L3, we could state that it satisfies the “80/11 rule” (but also the “57/3
rule”, “84/16 rule”, etc.).

If the distribution of cases over variants does not follow a Pareto distribution, then
it is best to first apply activity-based filtering. If we project L3 onto the top four
most frequent activities, only 20 variants remain. The most frequent variant explains

50 W. M. P. van der Aalst

already 51% of all cases. The DFG discDFG (filter
var (filteract(L, τact), τvar)) with

τact = 1000 and τvar = 100 combines the activity-based filter used in Fig. 7 and
the variant-based filter used in Fig. 8. The resulting DFG (not shown) explains 1672 of
the 1856 cases (90%) and 7065 of 11761 events (60%) using only five variants.

The above examples show that, using filtering, it is possible to separate the normal
(i.e., frequent) from the exceptional (i.e., infrequent) behavior. This is vital in the con-
text of process discovery and can be combined with the later bottom-up and top-down
discovery approaches.

3 Challenges

After introducing a baseline discovery algorithm and various filtering approaches, it is
possible to better explain why process discovery is so challenging. In Definition 3, we
stated that a process discovery algorithm is a function disc ∈ B(Uact

∗) → UM , i.e.,
based on a multiset of traces L, a process model M = disc(L) allowing for lang(M) ⊆
Uact

∗ is produced.
The first challenge is that the discovered process model may serve different goals.

Should the model summarize past behavior, or is the model used for predictions and
recommendations? Also, should the process model be easy to read and understand
by end-users? Answers to these questions are needed to address the trade-offs in pro-
cess discovery. We already mentioned that most event logs follow a Pareto distribution.
Hence, the process model can focus on the dominant behavior or also include excep-
tional behavior.

The second challenge is that different process model representations can be used.
These may or may not be able to capture certain behaviors. This is the so-called rep-
resentational bias of process discovery. Consider, for example, event log L = [〈a, b, c,
d〉1000, 〈a, c, b, d〉1000]. There is no DFG that is able to adequately describe this behav-
ior. The DFG will always need to introduce a loop involving b and c. Another example
is L = [〈a, b, c〉1000, 〈a, c〉1000]. It is easy to create a DFG describing this behavior.
However, when representing this as a Petri net or process tree, it is vital that one can
use so-called silent activities (to skip b) or duplicate activities (to have a c activity fol-
lowing a and another c activity following b).

Another challenge is that the event log contains just example behavior. Most event
logs have a Pareto distribution. Typically, a few trace variants are frequent and many
trace variants are infrequent. Actually, there are often trace variants that are unique
(i.e., occur only once). If one observes the process longer, new variants will appear.
Conversely, if one observes the process in a different period, some variants may no
longer appear. An event log is a sample and should be treated as such. Just like in statis-
tics, the goal is to use the sample to say something about the whole population (here,
the process). For example, when throwing a dice ten times, one may have the follow-
ing sequence observations σ = 〈4, 5, 2, 3, 6, 5, 4, 1, 2, 3〉. If we do not know that two
subsequent throws are independent, the expected value is 3.5, the minimum is 1, the
maximum is 6, and the probabilities of all six values are equal, then what can be con-
cluded from the sample σ? We could conclude that even numbers are always followed
by odd numbers. Real-life processes have many more behaviors, and the observed sam-
ple rarely covers all possibilities.

Foundations of Process Discovery 51

Although processes are stochastic, most process discovery techniques aim to dis-
cover process models that are “binary”, i.e., a trace is possible or not. This complicates
analysis. Another challenge is that event logs do not contain negative examples. Process
discovery can be seen as a classification problem: A trace σ is possible (σ ∈ lang(M))
or not (σ �∈ lang(M)). In real applications, we never witness traces that are impossible.
The event log only contains positive examples. If we also want to incorporate infrequent
behavior in the discovered model, we may require var(L) ⊆ lang(M). However, we
cannot assume the reverse lang(M) ⊆ var(L). For example, loops in models would be
impossible, and for concurrent processes we would need a factorial number of cases.

Related to the above are the challenges imposed by concept drift. The behavior
of the process that we are trying to discover may change over time in unforeseen
ways. Certain traces may increase or decrease in likelihood. New trace variants may
emerge while other variants no longer occur. Since process models already describe
dynamic behavior, concept drift introduces second-order dynamics. Various techniques
for concept-drift detection have been developed. However, this for sure complicates
process discovery. If we cannot assume that the process itself is in steady-state, then
what is the process we are trying to discover? Do we want to have a process model
describing the past week or the past year?

Next to concept drift, there are the usual data quality problems [1]. Events may
have been logged incorrectly and attributes may be missing or are imprecise. In some
applications it may be difficult to correlate events and group them into cases. There
may be different identifiers used for the same case and events may be shared by differ-
ent cases. Since process discovery depends on the ordering of events in the event log,
high-quality timestamps are important. However, the timestamp resolution may be too
low (e.g., just a date) and different source systems may use different timestamp granu-
larities or formats. Often the day and the month are swapped, e.g., 8/7/2022 is entered
as 7/8/2022.

It is important to distinguish the evaluation of a process discovery algorithm disc ∈
B(Uact

∗) → UM from the evaluation of a specific process model M in the context
of a specific event log L. To evaluate a process discovery algorithm disc, one can use
cross-validation, i.e., split an event log into a training part and an evaluation part. The
process model is trained using the training log and evaluated using the evaluation log.
Ideally, the evaluation log has both positive and negative examples. This is unrealistic
in real settings. However, it is possible to create synthetic event data with positive and
negative cases using, for example, simulation. If we assume that the evaluation log
is a multiset of positive traces L+

eval ∈ B(Uact
∗) and a multiset of negative traces

L−
eval ∈ B(Uact

∗), then evaluation is simple. Let M = disc(L+
train) be the discovered

process model using only positive training examples. Now, we can use standard notions

such as recall = |[σ∈L+
eval |σ∈lang(M)]|

|L+
eval | and precision = |[σ∈L−

eval |σ �∈lang(M)]|
|L−

eval | using the

evaluation log. Recall is high when most of the positive traces in the evaluation log
are indeed possible according to the process model. Precision is high when most of the
negative traces in the evaluation log are indeed not possible according to the process
model.

Unfortunately, the above view is very naı̈ve considering process discovery in practi-
cal settings. We cannot assume negative examples when evaluating a specific model M

52 W. M. P. van der Aalst

in the context of a specific event log L observed in reality. Splitting L into a training log
and an evaluation log does not make any sense since the model is given and we want to
use the whole event log.

In spite of these problems, there is consensus in the process mining community that
there are the following four quality dimensions to evaluate a process model M in the
context of an event log L with observed behavior [1].

– Recall, also called (replay) fitness, aims to quantify the fraction of observed behavior
that is allowed by the model.

– Precision aims to quantify the fraction of behavior allowed by the model that was
actually observed (i.e., avoids “underfitting” the event data).

– Generalization aims to quantify the probability that new unseen cases will fit the
model (i.e., avoids “overfitting” the event data).

– Simplicity refers to Occam’s Razor and can be made operational by quantifying the
complexity of the model (number of nodes, number of arcs, understandability, etc.).

There exist various measures for recall. The simplest one computes the fraction of
traces in event log L possible according to the process model M . It is also possible to
define such a notion at the level of events. There are many simplicity notions. These
do not depend on the behavior of the model, but measure its understandability and
complexity. Most challenging are the notions of precision and generalization. Also,
these notions can be quantified, but there is less consensus on what they should measure.
The goal is to strike a balance between precision (avoiding “underfitting” the sample
event data) and generalization (avoiding “overfitting” the sample event data). A detailed
discussion is outside the scope of this chapter. Therefore, we refer to [1,4,15,31] for
further information.

4 Process Modeling Notations

We have formalized the notion of an event log and the behavior represented by a DFG.
Now we focus on higher-level process models able to model sequences, choices, loops,
and concurrency. We formalize Petri nets and process trees and provide an informal
introduction to a relevant subset of BPMN.

4.1 Labeled Accepting Petri Nets

Figures 2(c) and 3(c) already showed example Petri nets. Since their inception in 1962
[28], Petri nets have been used in a wide variety of application domains. Petri nets
were the first formalism to capture concurrency in a systematic manner. See [17,18]
for a more extensive introduction. Other notations such as Business Process Model and
Notation (BPMN), Event-driven Process Chains (EPCs), and UML activity diagrams all
build on Petri nets and have semantics involving “playing the token game”. For process
mining, we need to use the so-called labeled accepting Petri nets. These are standard

Foundations of Process Discovery 53

Petri nets where transitions are labeled to refer to activities in the event log and, next to
an initial marking, these nets also have a final marking. The behavior described by such
nets are all the “paths” leading from the initial state to the final state. We explain these
concepts step-by-step.

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1
a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

(a) AN1 = (N1,[p1],[p6]) (b) AN2 = (N2,[p1],[p6])

b

c

a

d

p2 p3

p5

p1 p4

t2

t3

t1 t4
a

a

b

p1

p3 p5

p6

p2 p4

t3

t4

t2

t5
t1

(c) AN3 = (N3,[p1,p2],[p4,p5]) (d) AN4 = (N4,[p1],[p6])

Fig. 9. Four accepting Petri nets: (a) AN 1 = (N1, [p1], [p6]), (b) AN 2 = (N2, [p1], [p6]), (c)
AN 3 = (N3, [p1 , p2], [p4 , p5]), and (d)AN 4 = (N4, [p1], [p6]).AN 1 was discovered for L1

(see Fig. 2(c)) and AN 2 was discovered for L2 (see Fig. 3(c)).

States in Petri nets are called markings that mark certain places (represented by cir-
cles) with tokens (represented by black dots). Transitions (represented by squares) are
the active components able to move the Petri net from one marking to another marking.
Transitions may have a label referring to the corresponding activity. There may be mul-
tiple transitions that refer to the same activity and there may be transitions without an
activity label. The former is needed if the same activity can occur at multiple stages in
the process. The latter is needed if activities can be skipped. Later we will give examples
illustrating the importance of the labeling function in the context of process mining.

Definition 13 (Labeled Petri Net). A labeled Petri net is a tuple N = (P, T, F, l) with
P the set of places, T the set of transitions, P ∩T = ∅, F ⊆ (P ×T)∪(T ×P) the flow
relation, and l ∈ T �→ Uact a labeling function. We write l(t) = τ if t ∈ T\dom(l)
(i.e., t is a silent transition that cannot be observed).

Figure 9 shows four accepting Petri nets. The first two were discovered for the event
logs L1 and L2 used to introduce DFGs. Figure 9(a) shows the labeled Petri net
N1 = (P1, T1, F1, l1) with P1 = {p1 , p2 , p3 , p4 , p5 , p6} (six places),

54 W. M. P. van der Aalst

T1 = {t1 , t2 , t3 , t4 , t5} (five transitions), F1 = {(p1 , t1), (t1 , p2), (t1 , p3), . . . ,
(t5 , p6)} (fourteen arcs), and l1 = {(t1 , a), (t2 , b), (t3 , c), (t4 , d), (t5 , e)} (labeling
function).

As mentioned, there may be multiple transitions with the same label and there may
be transitions that have no label (called “silent transitions”). This is illustrated by N4 =
(P4, T4, F4, l4) in Fig. 9(d) with l4 = {(t1 , a), (t2 , b), (t3 , a)}. Note that dom(l4) =
{t1 , t2 , t3} does not include t4 and t5 which are silent. This is denoted by the two
black rectangles in Fig. 9(d). Also note that l4(t1) = l4(t3) = a, i.e., t1 and t3 refer
to the same activity.

Since a place may have multiple tokens, markings are represented by multisets.
Transitions may have input and output places. For example, t1 in Fig. 9(a) has one
input place and two output places. A transition is called enabled if each of the input
places has a token. An enabled transition may fire (i.e., occur), thereby consuming a
token from each input place and producing a token for each output place.

An accepting Petri net has an initial marking Minit ∈ B(P) and a final marking
Mfinal ∈ B(P). The accepting Petri nets AN 1 = (N1, [p1], [p6]), AN 2 = (N2, [p1],
[p6]), and AN 4 = (N4, [p1], [p6]) in Fig. 9 have the same initial and final marking.
AN 3 = (N3, [p1 , p2], [p4 , p5]) in Fig. 9(c) has an initial marking Minit = [p1 , p2]
(denoted by the black tokens) and a final marking Mfinal = [p4 , p5] (denoted by the
double-bordered places).

Definition 14 (Accepting Petri Net). An accepting Petri net is a triplet AN = (N,
Minit ,Mfinal)whereN = (P, T, F, l) is a labeled Petri net,Minit ∈ B(P) is the initial
marking, and Mfinal ∈ B(P) is the final marking. UAN ⊆ UM is the set of accepting
Petri nets.

An accepting Petri net starts in the initial marking and may move from one marking
to the next by firing enabled transitions. Consider, for example, AN 3 = (N3, [p1 , p2],
[p4 , p5]) in Fig. 9(c). Initially, three transitions are enabled in [p1 , p2]: t1 , t2 , and t3 .
Firing t1 results in marking [p2 , p4], firing t2 results in marking [p1 , p3], and firing
t3 results in marking [p3 , p4]. If t1 fires (i.e., activity a occurs), then t1 and t3 are
no longer enabled and only t2 remains enabled. If t2 fires in [p2 , p4], we reach the
marking [p3 , p4]. In this marking, only t4 is enabled. Firing t4 results in the marking
[p4 , p5]. This is also the final marking ofAN 3. A firing sequence is a sequence of tran-
sition occurrences obtained by firing enabled transitions and moving from one marking
to the next. A complete firing sequence starts in the initial marking and ends in the final
marking. AN 3 has four possible complete firing sequences: 〈t1 , t2 , t4 〉, 〈t2 , t1 , t4 〉,
〈t2 , t4 , t1 〉, and 〈t3 , t4 〉.
Definition 15 (Complete Firing Sequences). Let AN = (N,Minit ,Mfinal) ∈ UAN

be an accepting Petri net with N = (P, T, F, l). cfs(AN) ⊆ T ∗ is the set of complete
firing sequences of AN , i.e., all firing sequences starting in the initial marking Minit

and ending in the final marking Mfinal .

cfs(AN1) = {〈t1 , t2 , t3 , t5 〉, 〈t1 , t3 , t2 , t5 〉, 〈t1 , t4 , t5 〉} and cfs(AN3) =
{〈t1 , t2 , t4 〉, 〈t2 , t1 , t4 〉, 〈t2 , t4 , t1 〉, 〈t3 , t4 〉}. Note that cfs(AN2) and cfs(AN4)
contain an infinite number of complete firing sequences due to the loop involving t4 .

Foundations of Process Discovery 55

As stated in Definition 2, a process model defines a set of traces. Earlier, we defined
lang(G) ⊆ Uact

∗ for a DFG G = (A,F). Now we need to define lang(AN) ⊆ Uact
∗

for an accepting Petri net AN = (N,Minit ,Mfinal). For this purpose, we need to
be able to apply the labeling function l to firing sequences. Let σ ∈ T ∗ be a fir-
ing sequence and l ∈ T �→ Uact a labeling function. Function l is generalized to
sequences, i.e., transitions are replaced by their labels and are dropped if they do not
have a label. Formally, l(〈〉) = 〈〉, l(σ · 〈t〉) = l(σ) · 〈l(t)〉 if t ∈ dom(l), and
l(σ · 〈t〉) = l(σ) if t �∈ dom(l). Consider, for example, the complete firing sequence
σ = 〈t1 , t2 , t3 , t4 , t3 , t2 , t5 〉 ∈ cfs(AN4) of the accepting Petri net in Fig. 9(d).
l(σ) = 〈a, b, a, a, b〉, i.e., t1 , t2 , and t3 are mapped to the corresponding labels, and t4
and t5 are dropped.

Definition 16 (Traces of an Accepting Petri Net). Let AN = (N,Minit ,Mfinal) ∈
UAN be an accepting Petri net. lang(AN) = {l(σ) | σ ∈ cfs(AN)} are the traces
possible according to AN .

Now we can reason about the traces of the four accepting in Fig. 9. lang(AN 1) =
{〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, d, e〉}. lang(AN 2) = {〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, d, b,
c, e〉, 〈a, c, b, d, b, c, e〉, . . . , 〈a, c, b, d, b, c, d, c, b, d, c, b, e〉, . . .}. lang(AN 3) = {〈a, b,
d〉, 〈b, a, d〉, 〈b, d, a〉, 〈c, d〉}. lang(AN 4) = {〈a, b, a〉, 〈a, a, b〉, 〈a, b, a, b, a〉, 〈a, a, b,
b, a〉, . . . , 〈a, a, b, b, a, a, b, a, b〉, . . .}.

It is important to note the consequences of restricting lang(AN) to the behavior of
complete firing sequences. If AN has livelocks of deadlocks, then these are not con-
sidered to be part of the language. If we remove the arc from p4 to t4 in AN 2, then
lang(AN 2) = {〈a, b, c, e〉, 〈a, c, b, e〉}, because there are no complete firing sequences
involving t4.

In literature, Petri nets are normally not equipped with a labeling function and a
final marking. However, both the labeling function l and a defined final marking Mfinal

are vital in the context of process mining. The final marking allows us to reason about
complete firing sequences, just like traces in an event log have a clear ending. If we
would consider ordinary Petri nets rather than accepting Petri nets, the language would
also include all prefixes. This would make it impossible to describe the behavior found
in an event log such as L = [〈a, b, c〉1000], because the corresponding Petri net would
also allow for traces 〈a, b〉, 〈a〉, and 〈〉.

The labeling function l ∈ T �→ Uact also greatly improves expressiveness. The
alternative would be that transitions are uniquely identified by activities, i.e., T ⊆ Uact .
However, this would make it impossible to describe many behaviors seen in event logs.
Consider, for example, an event log such as L = [〈a, b, c〉1000, 〈a, c〉1000] where b can
be skipped. It is easy to model this behavior using a silent transition to skip b or by
using two transitions with a c label. Although it is trivial to create a DFG G such that
lang(G) = {〈a, b, c〉, 〈a, c〉} (simply apply the baseline algorithm described in Def-
inition 6), it is impossible to create an accepting Petri net AN with lang(AN) =
{〈a, b, c〉, 〈a, c〉} without using a labeling function allowing for silent or duplicate
transitions.

56 W. M. P. van der Aalst

4.2 Process Trees

The two process trees discovered for event logs L1 and L2 (see Fig. 2(c) and Fig. 3(c))
are depicted as Q1 = →(a,×(∧(b, c), d), e) and Q2 = →(a,�(∧(b, c), d), e) in
Fig. 10. Their language is the same as AN 1 and AN 2 in Fig. 9.

Process trees are not commonly used as a modeling language. However, state-of-
the-art process discovery techniques use process trees as an internal representation.
The behavior of process trees can be visualized using Petri nets, BPMN, UML activity
diagrams, EPCs, etc. However, they also have their own graphical representation, as
shown in Fig. 10.

The main reason for using process trees is that they have a hierarchical structure
and are sound by construction. This does not hold for other notations such as Petri nets
and BPMN. For example, if we remove the arc (t4 , p2) inAN 2 shown in Fig. 9(b), then
the process may deadlock. The process gets stuck in marking [p5]making it impossible
to reach the final marking. If we remove the arc (p4 , t4) in AN 2, then the process may
livelock. It is possible to put an arbitrary number of tokens in p2 and p4 , but after the
occurrence of d it is impossible to reach the final marking. If both arcs are removed,
the accepting Petri net is again sound (i.e., free of anomalies such as deadlocks and
livelocks). When discovering process model constructs locally, these potential sound-
ness problems are difficult to handle (see [6] for more details on analyzing soundness of
process models). Therefore, a range of inductive mining techniques has been developed
using process trees that are sound by construction [22–24].

a

d

e

cb

a

d

e

cb

a

τ

ab
(a) Q1 (b) Q2 (c) Q3

Fig. 10. Three process trees: (a) Q1 = →(a, ×(∧(b, c), d), e), (b) Q2 = →(a, �(∧(b, c),
d), e), and (c) Q3 = →(a, �(∧(b, a), τ)).

A process tree is a tree-like structure with one root node. The leaf nodes correspond
to activities (including the silent activity τ , which is similar to a silent transition in Petri
nets). Four types of operators can be used in a process tree: → (sequential composi-
tion), × (exclusive choice), ∧ (parallel composition), and � (redo loop). This way it is
possible to construct process trees such as the ones shown in Fig. 10.

Foundations of Process Discovery 57

Definition 17 (Process Tree). Let PTO = {→,×,∧,�} be the set of process tree
operators and let τ �∈ Uact be the so-called silent activity. Process trees are defined as
follows.

– if a ∈ Uact ∪ {τ}, then Q = a is a process tree,
– if n ≥ 1, Q1, Q2, . . . , Qn are process trees, and ⊕ ∈ {→,×,∧},

then Q = ⊕(Q1, Q2, . . . Qn) is a process tree, and
– if n ≥ 2 and Q1, Q2, . . . , Qn are process trees,
then Q = �(Q1, Q2, . . . Qn) is a process tree.

UQ ⊆ UM is the set of all process trees.

Consider the process tree Q1 = →(a,×(∧(b, c), d), e) shown in Fig. 10(a). The
leaf nodes correspond to the activities a, b, c, d, and e. The root node is a sequence
operator (→) having three children: a, ×(∧(b, c), d), and e. The root node of the subtree
×(∧(b, c), d) is a choice operator (×) having two children: ∧(b, c) and d. The root node
of the subtree ∧(b, c) is a parallel operator (∧) having two children: b and c.

sequential
composition

exclusive
choice

a

τ

parallel
composition

redo
loop

normal
activity

silent
activity

a b z...
a b z...

a b z...

start end

a b z...
start end

a b z...

a
start end

start end

a

start

z

...
b

end

a b z...

a

start

z

...
b

end

Fig. 11. The semantics of the four process tree operators, i.e., → (sequential composition), ×
(exclusive choice), ∧ (parallel composition), and � (redo loop), expressed in terms of Petri nets.

Although it is fairly straightforward to define the semantics of process trees directly
in terms of traces, we can also use the mapping onto accepting labeled Petri nets shown
in Fig. 11. A silent activity, i.e., a leaf node labeled τ , is mapped onto a silent transition.
A normal activity a is mapped onto a transition twith label l(t) = a. Sequential compo-
sition →(a, b, c, . . . , z) corresponds to the Petri net structure shown in Fig. 11, i.e., first

58 W. M. P. van der Aalst

a occurs and only if a has finished, b may start, after b completes, c can start, etc. The
sequential composition ends when the last element completes. Note that a, b, c, . . . , z do
not need to be atomic activities. These elements may correspond to large subprocesses,
each represented by a subtree of arbitrary complexity. Exclusive choice×(a, b, c, . . . , z)
and parallel composition ∧(a, b, c, . . . , z) can be mapped onto Petri nets as shown in
Fig. 11. Also here the elements do not need to be atomic and may correspond to subtrees
of arbitrary complexity. Figure 11 also shows the semantics of the redo loop operator
�. In �(a, b, c, . . . , z), first a is executed. This is called the “do” part (again a may be
a subprocess). Then there is the option to stop (fire the silent transition to go to the end
place) or one of the “redo elements” is executed. For example, b is executed. After the
completion of b, we again execute the “do” part a after which there is again the choice
to stop or pick one of the “redo elements”, etc. Note that semantically �(a, b, c, . . . , z)
and �(a,×(b, c, . . . , z)) are the same.

Definition 18 (Traces of a Process Tree). Let Q ∈ UQ be a process tree and ANQ ∈
UAN the corresponding accepting Petri net constructed by recursively applying the
patterns depicted in Fig. 11. lang(Q) = lang(ANQ) are the traces possible according
to Q.

Using the above definition, we can compute the set of traces for the three pro-
cess trees in Fig. 10: Q1 = →(a,×(∧(b, c), d), e), Q2 = →(a,�(∧(b, c), d), e),
and Q3 = →(a,�(∧(b, a), τ)). lang(Q1) = {〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, d, e〉},
lang(Q2) = {〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, d, b, c, e〉, 〈a, c, b, d, b, c, e〉, . . . , 〈a, c, b, d,
b, c, d, c, b, d, c, b, e〉, . . .}, and lang(Q3) = {〈a, b, a〉, 〈a, a, b〉, 〈a, b, a, b, a〉, 〈a, a, b, b,
a〉, . . . , 〈a, a, b, b, a, a, b, a, b〉, . . .}.

Some additional examples to illustrate the expressiveness of process trees:

– lang(→(a,×(b, τ), c)) = {〈a, b, c〉, 〈a, c〉} (ability to skip b).
– lang(→(a, a)) = {〈a, a〉} (ability to specify that a should occur twice).
– lang(�(a, τ)) = {〈a〉, 〈a, a〉, 〈a, a, a〉, . . .} (at least one a).
– lang(�(τ, b)) = {〈〉, 〈b〉, 〈b, b〉, . . .} (any number of b’s)
– lang(�(a, b)) = {〈a〉, 〈a, b, a〉, 〈a, b, a, b, a〉, . . .} (alternate a and b).
– lang(�(τ, a, b, c, . . . , z)) = {a, b, c, . . . , z}∗ (all traces over given set of activities).

There are also behaviors that are difficult to express in terms of a process tree.
For example, it is difficult to synchronize between subtrees. Consider, for example,
the process tree Q = ∧(→(a, b, c), →(d, e, f)) with the additional requirement that b
should be executed before e. This can only be handled by duplicating activities, e.g.,
Q = ×(→(∧(→(a, b), d),∧(c,→(e, f))),→(a, b, c, d, e, f)). Trying to capture arbi-
trary synchronizations between subprocesses leads to incomprehensible process trees
whose behavior is still easy to express in terms of a BPMNmodel or a labeled accepting
Petri net. Figure 12(a) shows how this can be expressed in terms of a labeled accepting
Petri net. Similarly, process trees cannot capture long-term dependencies (e.g., a choice
at the beginning of the process influences a choice later in the process). Figure 12(b)
shows an example where the first choice depends on the second choice. This simple
example can be modeled using the process tree Q = ×(→(a, c, d, e),→(b, c, d, f)),
which enumerates the two traces and duplicates activities c and d. In general, process-
tree based discovery techniques are unable to create such models. Nevertheless, process

Foundations of Process Discovery 59

(a) A labeled accep ng Petri net synchronizing two parallel flows using place p6.

a

p1 p3 p5

p6

p2 p4
b c

d e f

p7

p8

p9

p10 p11

(b) A labeled accep ng Petri net with long-term dependencies (p4 and p5).

p1 p3 p7

a

b

p6

e

f

c d
p2

p4

p5

Fig. 12. Two labeled accepting Petri nets with behaviors that are difficult to discover in terms of
a process tree. The top model (a) corresponds to the process tree Q = ∧(→(a, b, c), →(d, e, f))
with the additional requirement that b should be executed before e. The bottom model (b) corre-
sponds to the process tree Q = →(×(a, b), c, d, ×(e, f)) with the additional requirement that a
should be followed by e and b should be followed by f .

trees provide a powerful representational bias that can be exploited by process discovery
techniques.

4.3 Business Process Model and Notation (BPMN)

Business Process Model and Notation (BPMN) is the de facto representation for busi-
ness process modeling in industry [19,36]. The BPMN standard is maintained by the
Object Management Group (OMG) [27], is supported by a wide range of vendors, and
is used by numerous organizations. The OMG specification is 532 pages [27]. Given
our focus on process discovery, the constructs for control-flow are most relevant. More-
over, most tools only support a small subset of the BPMN standard and an even smaller
subset is actually used on a larger scale. When using the more advanced constructs
like inclusive/complex gateways and multiple instance activities, the execution seman-
tics are also not so clear (see Chapter 13 of [27]). Therefore, we only cover start and
end events, activities, exclusive gateways, parallel gateways, and sequence flows. Con-
structs such as pools, lanes, data objects, messages, subprocesses, and inclusive gate-
ways are relevant for more advanced forms of process mining, but outside the scope of
this chapter.

Figure 13 shows three BPMN models (B1, B2, and B3) and a limited set of
BPMN notations. We (informally) refer to the class of BPMN models constructed
using these building blocks as UBPMN . The behavior represented by the BPMN model

60 W. M. P. van der Aalst

a
start end

b

c

d

e

(a) BPMN model B1

a
start end

b

c

d

e

(b) BPMN model B2

a
start end

b

a

(c) BPMN model B3

aactivity

sequence
flow

start
event

end
event

exclusive
gateway

parallel
gateway

(d) core BPMN notations

Fig. 13. Three BPMN models corresponding to the accepting Petri nets AN 1, AN 2, and AN 4,
and the process trees Q1, Q2, and Q3 used before.

B1 ∈ UBPMN is the same as the accepting Petri netAN 1 = (N1, [p1], [p6]) in Fig. 9(a)
and the process tree Q1 = →(a,×(∧(b, c), d), e) in Fig. 10(a). Hence, lang(B1) =
{〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, d, e〉}. BPMN model B2 ∈ UBPMN corresponds to AN 2 in
Fig. 9(b) and the process tree Q2 in Fig. 10(b). BPMN model B3 ∈ UBPMN corre-
sponds to AN 4 in Fig. 9(d) and the process tree Q3 in Fig. 10(c). We do not provide
formal semantics for these BPMN constructs. However, the examples should be self-
explaining and demonstrate that a BPMN model B ∈ UBPMN defines indeed a set of
traces lang(B).

In this chapter, we have introduced four types of models: DFGs UG ⊆ UM , accept-
ing Petri nets UAN ⊆ UM , process trees UQ ⊆ UM , and BPMNmodels UBPMN ⊆ UM .
There exist discovery approaches for all of them. Since they all specify sets of possible
complete traces, automated translations are often possible. For example, a discovery
technique may use process trees internally, but use Petri nets or BPMN models to visu-
alize the result.

5 Bottom-Up Process Discovery

In Sect. 2, we presented a baseline discovery approach to learn a DFG from an event
log. As stated in Definition 3, a process discovery algorithm is a function disc ∈
B(Uact

∗) → UM that, given an event log L, produces a model M = disc(L) that
allows for the traces in lang(M). The DFG-based baseline approach has many limita-
tions. One of the main limitations is the inability to represent concurrency. The DFG
produced tends to have an excessive number of cycles leading to Spaghetti-like under-
fitting models. Therefore, we introduced higher-level process model notations such as

Foundations of Process Discovery 61

accepting Petri nets (Sect. 4.1), process trees (Sect. 4.2), and a subset of the BPMN
notation (Sect. 4.3).

In this chapter, we group the more advanced approaches into two groups: “bottom-
up” process discovery and “top-down” process discovery. The first group aims to
uncover local patterns involving a few activities. The second group aims to find a global
structure that can be used to decompose the discovery problem into smaller problems.
In this section, we introduce “bottom-up” process discovery using the Alpha algorithm
[1,9] as an example. In Sect. 6, we introduce “top-down” process discovery using the
basic inductive mining algorithm [22–24] as an example.

Both “bottom-up” and “top-down” process discovery can be combined with the fil-
tering approaches presented in Sect. 2.4, in particular activity-based and variant-based
filtering. Without filtering, the basic Alpha algorithm and basic inductive mining algo-
rithm will not be very usable in real-life settings. Therefore, we assume that the event
logs have been preprocessed before applying “bottom-up” or “top-down” discovery
algorithms.

Definition 19 (Basic Log Preprocessing). Let L ∈ B(Uact
∗) be an event log. Given

the thresholds τact ∈ N and τvar ∈ N: Lτact ,τvar = filtervar (filteract(L, τact), τvar).

In the remainder, we assume that the event log was preprocessed and that we want
to discover a process model describing the filtered event log.

5.1 The Essence of Bottom-Up Process Discovery: Admissible Places

To explain “bottom-up” process discovery, we first introduce the notion of a “flower
model” for an event log. This is the accepting Petri net without places. We use this as a
basis and then add places one-by-one.

Definition 20 (Flower Model). Let L ∈ B(Uact
∗) be an event log with activities

A = act(L). The flower model of L is the accepting Petri net disc
flower

(L) = (N, [], [])
with N = (∅, A, ∅, {(a, a) | a ∈ A}).

Note that disc
flower

(L) contains no places and one transition per activity. The flower
model of L1 is shown in Fig. 14(a). In a Petri net, a transition is enabled if all of its input
places contain a token. Hence, a transition without an input place is always enabled.
Moreover, the Petri net is always in the final marking []. Therefore, lang(disc

flower
(L))

= A∗, i.e., all traces over activities seen in the event log. Such a flower model can
also be represented as a process tree. If A = {a1, a2, . . . , an} = act(L), then
Q = �(τ, a1, a2, . . . , an) is the process tree that allows for any behavior over A, i.e.,
lang(Q) = A∗. Although it is easy to create such a process tree, it is not so clear how
to add constraints to it. As mentioned earlier, it is impossible to synchronize activities
in different subtrees. However, when looking at the flower Petri net disc

flower
(L), it is

obvious that places can be added to constrain the behavior. Therefore, we use Petri nets
to illustrate “bottom-up” process discovery.

Next, we consider a Petri net having a single place constraining the behavior of the
flower model. The place p = (A1, A2) is characterized by a set of input activities A1

and a set of output activities A2. We would like to add places that allow for the behavior
seen in the event log. Such a place is called an admissible place.

62 W. M. P. van der Aalst

a

c

d

b

e a

c

d

b

e

p2

(a) flower model (no places, just transitions)
(b) single-place net with place ({a},{b,d})

a

c

d

b

e
p1

p3 p5

p6

p2 p4

(c) model with three redundant places

a

c

d

b

e
p1

p3 p5

p6

p2 p4

(d) AN1 = (N1,[p1],[p6]) seen before

p7
p8

p9

Fig. 14. Four accepting Petri nets: (a) a flower model, (b) AN p2 with just one place p2 =
({a}, {b, d}), (c) an accepting Petri net with three additional redundant places p7 = (∅, {e}),
p8 = ({a}, {e}), and p9 = ({a}, ∅), and (d) the accepting Petri net AN 1 already shown in
Fig. 9(a) (discovered by applying the original Alpha algorithm [1,9] to event log L1).

Definition 21 (Admissible Place). Let L ∈ B(Uact
∗) be an event log with activi-

ties A = act(L). p = (A1, A2) is a candidate place if A1 ⊆ A and A2 ⊆ A.
The corresponding single place accepting Petri net is AN p = (N,Minit ,Mfinal) with
N = (P, T, F, l), P = {p}, T = A, F = {(a, p) | a ∈ A1} ∪ {(p, a) | a ∈ A2},
l = {(a, a) | a ∈ A}), Minit = [p | A1 = ∅], and Mfinal = [p | A2 = ∅]. Candidate
place p = (A1, A2) is admissible if var(L) ⊆ lang(AN p). P

adm

(L) is the set of all
admissible places, given an event log L.

Given a candidate place p = (A1, A2), AN p is the accepting Petri net consisting of
one transition per activity and a single place p. The transitions in A1 produce tokens for
p and the transitions in A2 consume tokens from p. If p is a source place (i.e., A1 = ∅),
then it has to be initially marked to be meaningful (otherwise, it would remain empty
by definition). If p is a sink place (i.e., A2 = ∅), then it has to be marked in the final
marking to be meaningful (otherwise, it could never be marked on a path to the final
marking). We also assume that all other places are empty both at the beginning and at
the end. Hence, only source places are initially marked and only sink places are marked
in the final marking. This explains the reason that Minit = [p | A1 = ∅] (p is initially
marked if it is a source place) and Mfinal = [p | A2 = ∅] (p is marked in the final
marking if it is a sink place).

A candidate place p = (A1, A2) is admissible if the corresponding AN p allows
for all the traces seen in the event log, i.e., event log L and single-place net AN p

are perfectly fitting. Consider, for example, L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉].

Foundations of Process Discovery 63

Examples of admissible candidate places are p1 = (∅, {a}), p2 = ({a}, {b, d}), p3 =
({a}, {c, d}), p4 = ({b, d}, {e}), p5 = ({c, d}, {e}), p6 = ({e}, ∅). These are the
places shown earlier in Fig. 9(a) (for convenience the accepting Petri net AN 1 is again
shown in Fig. 14(d)). However, we now consider an accepting Petri net per place, i.e.,
AN p1 ,AN p2 ,AN p3 , . . . ,AN p6 . Figure 14(b) shows AN p2 with p2 = ({a}, {b, d}).
Other admissible places (not shown in Fig. 9(a)) are p7 = (∅, {e}), p8 = ({a}, {e}),
p9 = ({a}, ∅). Examples of candidate places that are not admissible are p10 = (∅, {b})
(the initial token in p10 is not consumed when replaying 〈a, d, e〉), p11 = ({a}, {b})
(the token produced for p11 by a is not consumed when replaying 〈a, d, e〉), p12 =
({b}, {e}) (it is impossible to replay 〈a, d, e〉 because of a missing token in p12), and
p13 = ({b}, ∅) (the sink place is not marked when replaying 〈a, d, e〉).

Note that places correspond to constraints. Place p4 = ({b, d}, {e}) allows for all
the traces in L1 but does not allow for traces such as 〈a, e〉, 〈a, b, d, e〉, 〈a, b, e, e〉, etc.

Assuming that we want to ensure perfect replay fitness (i.e., 100% recall), we only
add admissible places. This is a reasonable premise if filtered the event log (cf. Defini-
tion 19) before conducting discovery. This means that process discovery is reduced to
finding a subset of P

adm

(L) (i.e., a selection of admissible places given event log L).
Why not simply add all places in P

adm

(L) to the discovered process model? There
are two reasons not to do this: redundancy and overfitting. A place is redundant if
its removal does not change the behavior. Consider, for example, Fig. 14(c) with two
source places, two sink places, and an additional place connecting a and e. The places
p7 = (∅, {e}), p8 = ({a}, {e}), and p9 = ({a}, ∅) are redundant, i.e., we can remove
them without allowing for more behavior. Moreover, adding all possible places in
P

adm

(L)may lead to overfitting. As explained in Sect. 3, the event log contains example
behavior and it would be odd to assume that behaviors that have not been observed are
not possible. Note that there are 2n × 2n = 22n candidate places with n = |act(L)|.
Hence, for a log with just ten activities there are over one million candidate places
(22×10 = 1048576)). Many of these will be admissible by accident. This problem is
comparable to “multiple hypothesis testing” in statistics. If one tests enough hypotheses,
then one will find seemingly significant results by accident (cf. Bonferroni correction).

There are many approaches to select a suitable subset of P
adm

(L). For example, it
is easy to remove redundant places and only consider places with a limited number of
input and output arcs [7,26]. However, there is the additional problem that the above
procedure requires evaluating each candidate place with respect to the whole event log.
This means that a naı̈ve approach quickly becomes intractable for larger event logs and
processes.

5.2 The Alpha Algorithm

In the remainder of this section, we present the first process discovery technique able
to discover concurrent models (e.g., Petri nets) from event logs: the Alpha algorithm
[9]. The Alpha algorithm is completely based on the footprint of the (filtered) event log
L. This implies that one pass through the event log is sufficient. Hence, the algorithm
is linear in the size of the log (a naı̈ve implementation is exponential in the number
of unique activities, but this number is typically low). One can implement the Alpha

64 W. M. P. van der Aalst

algorithm efficiently by combining → relations that meet certain constraints. These
constrains are monotonic, allowing for an apriori-style algorithm [1].

We have adapted the original presentation used in [9] to leverage the notations and
insights already provided in this chapter. We use as input a DFG and as a result also
add a dummy start (�) and end (�) activity. However, in essence, the algorithm did not
change. We elaborate on the differences with [9] later. The Alpha algorithm discovers
an accepting Petri net for any event log L.

Definition 22 (Alpha Algorithm). The alpha algorithm discalpha ∈ B(Uact
∗) →

UAN returns an accepting Petri net discalpha(L) for any event log L ∈ B(Uact
∗). Let

A = act(L) and fp(L) = fp(disc
DFG

(L)) the footprint of event log L. This allows us
to write a1 →L a2 if fp(L)((a1, a2)) = → and a1#La2 if fp(L)((a1, a2)) = # for
any a1, a2 ∈ A′ = A ∪ {�, �}.

1. Cnd = {(A1, A2) | A1 ⊆ A′ ∧ A1 �= ∅ ∧ A2 ⊆ A′ ∧ A2 �=
∅ ∧ ∀a1∈A1∀a2∈A2 a1 →L a2 ∧ ∀a1,a2∈A1 a1#La2 ∧ ∀a1,a2∈A2 a1#La2}
are the candidate places,

2. Sel = {(A1, A2) ∈ Cnd | ∀(A′
1,A′

2)∈Cnd A1 ⊆ A′
1 ∧ A2 ⊆ A′

2 =⇒ (A1, A2) =
(A′

1, A
′
2)} are the selected maximal places,

3. P = {p(A1,A2) | (A1, A2) ∈ Sel} ∪ {p�, p�} is the set of all places,
4. T = {ta | a ∈ A′} is the set of transitions,
5. F = {(ta, p(A1,A2)) | (A1, A2) ∈ Sel ∧ a ∈ A1} ∪ {(p(A1,A2), ta) | (A1, A2) ∈

Sel ∧ a ∈ A2} ∪ {(p�, t�), (t� , p�)} is the set of arcs,
6. l = {(ta, a) | a ∈ A} is the labeling function,
7. Minit = [p�] is the initial marking, Mfinal = [p�] is the final marking, and
8. discalpha(L) = ((P, T, F, l),Minit ,Mfinal) is the discovered accepting Petri net.

The complexity of the algorithm is in the first two steps building the sets Cnd and
Sel that are used to create the places in Step 3. The rest builds on the ideas and notions
introduced before. The Alpha algorithm creates a transition ta for each activity a in the
event log and also adds a start transition t� and an end transition t� (Step 4). Transitions
are labeled with the corresponding activity (Step 6). Transitions t� and t� are silent, t�
has a source place p� as input and t� has a sink place p� as output. The initial marking
only marks the source place p� and the final marking only marks the sink place p�
(Step 7). Steps 3–8 can be seen as “bookkeeping”. The essence of the algorithm is in
the first two steps.

Step 1 of the algorithm creates candidate places similar to the construction of can-
didate places used in Definition 21. (A1, A2) corresponds to a candidate place p such
that activities in A1 produce tokens for p and activities in A2 consume tokens from p.
Note that technically (A1, A2) is a pair of non-empty sets of activities (including start
and end). The requirement ∀a1∈A1∀a2∈A2 a1 →L a2 states that any activity in A1 can
be directly followed by any activity in A2, but no activity in A2 can be directly followed
by an activity in A1. The requirements ∀a1,a2∈A1 a1#La2 and ∀a1,a2∈A2 a1#La2 state
that activities in the setsA1 andA2 cannot directly follow any other member of the same
activity set. As a consequence, an activity that can follow itself directly (i.e., a‖La) can-
not be in A1 or A2. This also implies that A1 and A2 are disjoint. Cnd is the set of all

Foundations of Process Discovery 65

pairs of activity sets meeting these requirements. Sel ⊆ Cnd retains the “maximal ele-
ments”. Candidate (A1, A2) ∈ Cnd is maximal if there is no other (A′

1, A
′
2) ∈ Cnd that

is strictly larger, i.e., it cannot be that A1 ⊆ A′
1, A2 ⊆ A′

2, and (A′
1, A

′
2) �= (A1, A2).

Each selected maximal element, i.e., (A1, A2) ∈ Sel , corresponds to a place p(A1,A2)

connecting the transitions corresponding to A1 (i.e., {ta | a ∈ A1}) to the transitions
corresponding to A2 (i.e., {ta | a ∈ A2}).

a

c

d

b

e

p({a},{b,d})

(a) process model discovered for L1

p({a},{c,d})

tat tp pp({ },{a}) p({e},{ })

p({c,d},{e})

p({b,d},{e})

tb

td

tc

te

a

c

d

b

e

p({a,d},{b})

(b) process model discovered for L2

p({a,d},{c})

tat tp pp({ },{a}) p({e},{ })

p({c},{d,e})

p({b},{d,e})

tb

td

tc

te

b

ap({ },{a})

(c) process model discovered for L4

t t
p p

p({a},{ })

ta

tb

p({ },{b}) p({b},{ })

b

ap({ },{a})

(d) process model discovered for L5

t tp p

p({a},{ })

ta

tb

p({b},{ })c
tc

p({a},{b})

Fig. 15. Four accepting Petri nets created using the Alpha algorithm from Definition 22.
The place and transition names are as specified in Definition 22. The four event logs
used are: L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉], L2 = [〈a, b, c, e〉50, 〈a, c, b, e〉40,
〈a, b, c, d, b, c, e〉30, 〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c, b, d, b, c, e〉10], L4 =
[〈a, b〉35, 〈b, a〉15], and L5 = [〈a〉10, 〈a, b〉8, 〈a, c, b〉6, 〈a, c, c, b〉3, 〈a, c, c, c, b〉]. Note that
unlike in [9] invisible start and end transitions are added to be more general.

Figure 15 shows some examples where the Alpha algorithm is applied to a smaller
event log. The place names reflect the elements of the set Sel created in Step 2 of the
algorithm. For L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉], Sel = {({�}, {a}), ({a},
{b, d}), ({a}, {c, d}), ({b, d}, {e}), ({c, d}, {e}), ({e}, {�})}. Note that Cnd\Sel =
{({a}, {b}), ({a}, {c}), ({a}, {d}), ({b}, {e}), ({c}, {e}), ({d}, {e})}. These candi-
dates were removed because they are not maximal. Figure 15(a) shows the resulting
accepting Petri net discalpha(L1). Figure 15(b) shows discalpha(L2). Note that the
Alpha algorithm is able to discover concurrency, choices, and loops. Comparing the
process models for L1 and L2 with the accepting Petri nets in Fig. 2 (for L1) and Fig. 3
(for L2), we can see that p�, t�, t� , and p� have been added. These can be removed
if start and end activities happen only at the beginning or end. In L1 and L2, the only
start activity is a and a can only happen in the first position. Also, the only end activity
is e and e can only happen in the last position. If this is the case, we do not need to add
an artificial start � or end �.

Figure 15(c) shows why it is sometimes necessary to add an artificial start or end.
In L4 = [〈a, b〉35, 〈b, a〉15], a is a start activity in trace 〈a, b〉, but can also happen at

66 W. M. P. van der Aalst

the second position (cf. 〈b, a〉). The same holds for activity b. Therefore, we need to
add an artificial start �. a and b are also end activities, but do not appear just at the
end, e.g., b may also happen in the first position. Therefore, we need to add an artificial
end �. Note that Definition 22 is slightly different from the original algorithm in [9]
due to the addition of the dummy start and end activities. For logs where the traditional
algorithm already produces the correct result, one can simply remove p�, t�, t� , and
p� . However, the algorithm in Definition 22 is able to handle start and end activities
that can also appear in the middle of a trace. Hence, it is more general.

Figure 16 shows the model discovered for the larger event log L3 =
[〈ie, cu, lt , xr , fe〉285, 〈ie, cu, lt , ct , fe〉260, 〈ie, cu, ct , lt , fe〉139, 〈ie, lt , cu, xr , fe〉137,
〈ie, lt , cu, ct , fe〉124, 〈ie, cu, xr , lt , fe〉113, 〈ie, xr , cu, lt , fe〉72, 〈ie, ct , cu, xr , fe〉72,
〈ie, cu, om, am, cu, lt , xr , fe〉29, 〈ie, cu, om, am, cu, lt , ct , fe〉28, . . .] using the full
activity names, i.e., ie = initial examination, xr = X-ray, ct = CT scan, cu = checkup,
om = order medicine, am = administer medicine, lt = lab tests, and fe = final examina-
tion. The model was generated using the Alpha algorithm implemented in ProM. Note
that there was no need to add artificial start or end activities because ie happens only at
the beginning and fe happens only at the end.

Fig. 16. The accepting Petri net that was discovered by the Alpha algorithm implemented in
ProM, based on the larger event log L3 introduced in Sect. 2.5. Note that the artificial start and
end activities have not been added, and the full activity names are used.

The Alpha algorithm should be seen as a baseline algorithm to discover concur-
rency. It has many limitations, as pointed out in the original paper presenting the
algorithm [9]. Event log L5 = [〈a〉10, 〈a, b〉8, 〈a, c, b〉6, 〈a, c, c, b〉3, 〈a, c, c, c, b〉] is
used to illustrate two of these problems: skipping and self-loops. Figure 15(d) shows
the discovered process model discalpha(L5). The selected maximal elements are
Sel = {({�}, {a}), ({a}, {b}), ({a}, {�}), ({b}, {�})}. Note that ({a}, {b, �}) �∈
Sel , because b →L5 � and not b#L5�. Because c‖L5c (c can be directly followed
by c) and not c#L5c, activity c does not appear in Sel , implying that tc remains discon-
nected from the rest of the model. Activity b can be seen as a “skippable” activity and
the Alpha algorithm cannot handle such activities, because these require silent transi-
tions. The basic Alpha algorithm can also not discover the self-loop involving c. The
Alpha algorithm has been extended to address these problems, and there exist variants
to deal with self-loops, skipping, long-term dependencies, etc. See [1] for more infor-
mation on the limitations of the basic algorithm and pointers to extensions addressing
these problems.

Foundations of Process Discovery 67

6 Top-Down Process Discovery

The Alpha algorithm is an example of a bottom-up discovery approach that tries to add
places to the Petri net to locally constrain behavior. Top-down discovery approaches try
to recursively decompose the event log into smaller event logs until the problem gets
trivial. The whole event log L is decomposed into smaller event logs L1, L2, . . . , Ln

that have a clear relationship, e.g., Li may contain events that occur before Lj if i < j,
or Li and Lj are fully disjoint for all i �= j. Each event in L ends up in precisely
one of the sublogs. However, cases may be distributed over multiple sublogs. Each
of the smaller event logs is analyzed and (if needed) decomposed into smaller event
logs, e.g., Li is in turn decomposed into Li,1, Li,2, . . . , Li,m, etc. Again the events in
Li are partitioned over Li,1, Li,2, . . . , Li,m. This is repeated until we encounter a so-
called base case, i.e., a sublog containing just one activity, e.g., [〈a〉160], [〈a〉80, 〈〉80],
or [〈a〉80, 〈a, a〉60, 〈a, a, a〉20].

Due to the recursive decomposition of logs into smaller event logs, we automatically
get a tree-like structure where the root corresponds to the original event log and the
leaves correspond to trivial event logs (the so-called base cases). This fits well with the
process tree formalism introduced in Sect. 4.2.

Before introducing a particular approach, let’s use a few simple event logs to illus-
trate the idea of splitting an event log.

– Event log L = [〈a, b, c〉100] is decomposed into base cases L1 = [〈a〉100], L2 =
[〈b〉100], and L3 = [〈c〉100] leading to the discovery of Q = →(a, b, c).

– Event log L = [〈a〉50, 〈b〉25, 〈c〉25] is decomposed into base cases L1 = [〈a〉50],
L2 = [〈b〉25], and L3 = [〈c〉25] leading to the discovery of Q = ×(a, b, c).

– Event log L = [〈a, b, c〉30, 〈a, c, b〉20, 〈b, a, c〉20, 〈b, c, a〉10, 〈c, a, b〉10, 〈c, b, a〉10] is
decomposed into base casesL1 = [〈a〉100],L2 = [〈b〉100], andL3 = [〈c〉100] leading
to the discovery of Q = ∧(a, b, c).

– Event log L = [〈a〉50, 〈a, b, a〉25, 〈a, b, a, b, a〉25] is decomposed into base cases
L1 = [〈a〉175] and L2 = [〈b〉75] leading to the discovery of Q = �(a, b).

– Event log L = [〈a, c〉50, 〈a, b, c〉50] is decomposed into base cases L1 = [〈a〉100],
L2 = [〈〉50, 〈b〉50], andL3 = [〈c〉100] leading to the discovery ofQ = →(a,×(b, τ),
c).

– Event log L = [〈a, c〉50, 〈a, b, c〉20, 〈a, b, b, c〉20, 〈a, b, b, b, c〉10] is decomposed into
base cases L1 = [〈a〉100], L2 = [〈〉50, 〈b〉20, 〈b, b〉20, 〈b, b, b〉10], and L3 = [〈c〉100]
leading to the discovery of Q = →(a,�(τ, b), c).

In this section, we use the basic inductive mining algorithm to illustrate top-down
discovery [22–24]. This algorithm uses DFGs to find so-called cuts partitioning the set
of observed activities into subsets of activities. Set A = act(L) is partitioned into pair-
wise disjoint sets of activities A1, A2, . . . , An. These activity sets are used to distribute
the events in L over L1, L2, . . . , Ln such that A1 = act(L1), A2 = act(L2), etc.
There are cuts for all four process tree operators, i.e., → (sequential composition), ×
(exclusive choice), ∧ (parallel composition), and � (redo loop).

68 W. M. P. van der Aalst

Definition 23 (Sequence, Exclusive-Choice, Parallel, and Redo-Loop Cuts). Let
L ∈ B(Uact

∗) be an event log having a DFG disc
DFG

(L) = (A,F) based on L (note
that A = act(L)) with start activities Astart = {a ∈ A | (�, a) ∈ F} and end activi-
ties Aend = {a ∈ A | (a, �) ∈ F}. An n-ary ⊕-cut of L is a partition of A into n ≥ 2
pairwise disjoint subsets A1, A2, . . . , An (i.e., A =

⋃
i∈{1,...,n} Ai and Ai ∩ Aj = ∅

for i �= j) with ⊕ ∈ {→,×,∧,�}. Such a ⊕-cut is denoted (⊕, A1, A2, . . . An). For
each type of operator ⊕ ∈ {→,×,∧,�} specific conditions apply:

– An exclusive-choice cut of L is a cut (×, A1, A2, . . . An) such that
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i �= j ⇒ (a, b) �∈ F .

– A sequence cut of L is a cut (→, A1, A2, . . . An) such that
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i < j ⇒ ((a, b) ∈ F+ ∧ (b, a) �∈ F+).

(Note that F+ is the non-reflexive transitive closure of F , i.e., (a, b) ∈ F+

means that there is a path from a to b in the DFG.)
– A parallel cut of L is a cut (∧, A1, A2, . . . An) such that

• ∀i∈{1,...n} Ai ∩ Astart �= ∅ ∧ Ai ∩ Aend �= ∅ and
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i �= j ⇒ (a, b) ∈ F .

– A redo-loop cut of L is a cut (�, A1, A2, . . . An) such that
• Astart ∪ Aend ⊆ A1,
• ∀i,j∈{2,...n}∀a∈Ai

∀b∈Aj
i �= j ⇒ (a, b) �∈ F ,

• {a ∈ A1 | (a, b) ∈ F ∧ b �∈ A1} = Aend ,
• {a ∈ A1 | (b, a) ∈ F ∧ b �∈ A1} = Astart ,
• ∀(a,b)∈F a ∈ A1 ∧ b �∈ A1 ⇒ ∀a′∈Aend (a′, b) ∈ F , and
• ∀(b,a)∈F a ∈ A1 ∧ b �∈ A1 ⇒ ∀a′∈Astart (b, a′) ∈ F .

...

(a) exclusive-choice cut (b) sequence cut (c) parallel cut (d) redo-loop cut

...

A1

A2

An

Fig. 17. Four types of cuts: (⊕, A1, A2, . . . An) with ⊕ ∈ {×, →, ∧, �} (based on [1]).

Figure 17 illustrates the four types of cuts. There is an exclusive-choice cut when
the DFG can be split into disconnected parts after leaving out the artificial start � and
end �. (Recall that � �∈ A and � �∈ A.) There is a sequence cut when the DFG can be

Foundations of Process Discovery 69

split into sequential parts where only “forward connections” are possible. Note that we
need to use the non-reflexive transitive closure of F . There is a parallel cut when the
DFG can be split into concurrent parts where any activity in one part can be followed
by any activity in another part. The redo-loop cut has the most complex definition. All
start and end activities should be in A1 (the “do part”) and none of the “redo parts”
can have start or end activities. Moreover, the “redo parts” (A2, A3, . . . , An) are only
connected through the “do part” (A1). Bstart = {b | (a, b) ∈ F ∧ a ∈ A1 ∧ b �∈ A1}
are the start activities of the “redo parts” connected to end activities in the “do part” and
Bend = {b | (b, a) ∈ F ∧ a ∈ A1 ∧ b �∈ A1} are the end activities of the “redo
parts” connected to start activities in the “do part”. The requirements in Definition 23
imply that Aend × Bstart ⊆ F and Bend × Astart ⊆ F . This implies that all end
activities of the “do part” are connected to all start activities of the “redo parts” and all
end activities of the “redo parts” are connected to all start activities of the “do part”. For
more explanations, see [1].

How the event log L is decomposed into L1, L2, . . . , Ln based on ⊕-cut
(⊕, A1, A2, . . . An) depends on the type of cut ⊕ ∈ {→,×,∧,�}. In all log decompo-
sitions, each event ends up in precisely one event log, i.e., the number of events remains
invariant through decomposition. We use the previously introduced event logs to illus-
trate this.

First, we consider L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉] and construct the cor-
responding DFG to find one of the four cuts. We check the presence of a cut using the
order in Definition 23, i.e., (1) ×, (2) →, (3) ∧, (4) �. There is no exclusive-choice
cut for L1, but there is a sequence cut (→, {a}, {b, c, d}, {e}). Using this cut, L1 is
split into La = [〈a〉16], Lb,c,d = [〈b, c〉10, 〈c, b〉5, 〈d〉], and Le = [〈e〉16]. La and Le

correspond to base cases since there is just one activity left: La is modeled by a single
occurrence of activity a, and Le is modeled by a single occurrence of activity e. Hence,
the process tree starts with →(a, ?, e), where ? corresponds to the subtree describing
Lb,c,d. Next, we create a DFG for Lb,c,d and see that we can apply an exclusive-choice
cut (×, {b, c}, {d}). Using this cut, Lb,c,d is split into Lb,c = [〈b, c〉10, 〈c, b〉5] and
Ld = [〈d〉]. Ld corresponds to a base case since there is just one activity left. Hence,
the subtree for Lb,c,d has the following structure ×(?, d), where ? corresponds to the
subtree describing Lb,c. The overall tree created thus far is →(a,×(?, d), e). Next, we
create a DFG for Lb,c and see that we can apply a parallel cut (∧, {b}, {c}). It is not
possible to apply an exclusive-choice cut or a sequence cut. Using cut (∧, {b}, {c})
sublog Lb,c is split into Lb = [〈b〉15] and Lc = [〈c〉15]. Both correspond to base cases.
Hence, the subtree for Lb,c is ∧(b, c). The overall tree is →(a,×(∧(b, c), d), e). This is
process tree Q1 in Fig. 10(a) shown before.

Next, we consider L2 = [〈a, b, c, e〉50, 〈a, c, b, e〉40, 〈a, b, c, d, b, c, e〉30, 〈a, c, b, d,
b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c, b, d, b, c, e〉10]. Again, we construct the cor-
responding DFG to find one of the four cuts. The first cut we find is a sequence cut (→
, {a}, {b, c, d}, {e}). Using this cut, L2 is split into La = [〈a〉160], Lb,c,d = [〈b, c〉50,
〈c, b〉40, 〈b, c, d, b, c〉30, 〈c, b, d, b, c〉20, 〈b, c, d, c, b〉10, 〈c, b, d, c, b, d, b, c〉10], and Le =
[〈e〉160]. La and Le correspond to base cases suggesting that the process has the follow-
ing structure →(a, ?, e), with ? corresponding to the subtree describing Lb,c,d. Again
we check the presence of a cut. The first cut we find is the redo loop cut (�, {b, c}, {d}).

70 W. M. P. van der Aalst

Using this cut, Lb,c,d is split into Lb,c = [〈b, c〉150, 〈c, b〉90] and Ld = [〈d〉80]. Note that
Lb,c has 240 cases because the “do part” happened 50+40+(2×30)+(2×20)+(2×
10)+(3×10) = 240 times. The “redo part” happened 30+20+10+(2×10) = 80 times.
The redo part is trivial since d is always executed once. Hence, the subtree for Lb,c,d has
the following structure �(?, d), where ? corresponds to the subtree describing Lb,c. For
Lb,c, we find the subtree ∧(b, c). The overall tree is, therefore, →(a,�(∧(b, c), d), e).
This is process tree Q2 in Fig. 10(b) shown before.

To explain the Alpha algorithm, we also used L4 and L5 in Fig. 15. Applying the
basic inductive mining algorithm to L4 = [〈a, b〉35, 〈b, a〉15] yields the process tree
∧(a, b). For L5 = [〈a〉10, 〈a, b〉8, 〈a, c, b〉6, 〈a, c, c, b〉3, 〈a, c, c, c, b〉], we find the pro-
cess tree →(a,�(τ, c),×(b, τ)). Note that the subtree �(τ, c) is created for the sublog
involving just c, because c happens 0, 1, 2, or 3 times. The subtree ×(b, τ) is created
for the sublog involving just b, because b happens at most once.

It is possible that none of the cuts in Definition 23 can be applied while the sublog
still has multiple activities. In this case, one can always apply so-called fallthroughs,
e.g., use �(τ, a1, a2, . . . , an) that allows for any behavior. Note that such fallthroughs
are not needed when the original process was expressible in terms of a process tree
(for the exact conditions, see [1,22]). Moreover, it is also possible to use smarter
fallthroughs that separate the problematic activities or behavior from the rest. Suppose
that there is a cut (⊕, A1, A2, . . . Ak) possible considering only activities Agood =
A1 ∪ A2 ∪ . . . ∪ Ak and leaving out Abad = A\Agood = {a1, a2, . . . , an}. Then one
can first apply the parallel cut (∧, Agood , Abad) followed by cut (⊕, A1, A2, . . . Ak) and
cut �(τ, a1, a2, . . . , an) applied to the two sublogs. There are many other fallthroughs,
e.g., separating the empty traces from the rest.

Definition 24 (Inductive Mining Algorithm). The basic inductive mining algorithm
discIM ∈ B(Uact

∗) → UQ returns a process tree discIM (L) for any event log L ∈
B(Uact

∗) using the four types of cuts, log decomposition, and fallthroughs described
before.

Fig. 18. Process tree discIM (L3) = →(ie, ∧(×(xr , ct), �(cu, →(om, am)), lt), fe) discov-
ered and visualized using ProM’s Inductive Visual Miner.

Earlier, we introduced event log L3, containing 11761 events corresponding to
1856 cases. Using the following abbreviations ie = initial examination, xr = X-ray,
ct = CT scan, cu = checkup, om = order medicine, am = administer medicine, lt
= lab tests, and fe = final examination, we find discIM (L3) = →(ie,∧(×(xr , ct),
�(cu,→(om, am)), lt), fe). Figure 18 shows a screenshot of ProM’s Inductive Visual

Foundations of Process Discovery 71

Miner while analyzing discIM (L3) using a BPMN-like notation. No fallthroughs were
needed. Note that also the frequencies are shown. It is also possible to show timing
information, e.g., average waiting times.

Fig. 19. Process tree discIM (L3) = →(ie, ∧(×(xr , ct), �(cu, →(om, am)), lt), fe) discov-
ered and visualized as a BPMN model using the Celonis EMS.

Figure 19 shows discIM (L3) discovered using Celonis. Celonis also uses a BPMN-
like visualization of the process tree. The translation of process trees to BPMN or Petri
nets is rather straightforward, and the resulting models are easier to interpret by most
users.

In this section, we only introduced the basic inductive mining algorithm. We assume
that the event log was filtered in advance to remove infrequent behavior. However, there
are also extended versions of the inductive mining algorithm dealing with infrequent
behavior [23]. The basic inductive mining algorithm may become intractable for huge
event logs, because repeatedly sublogs need to be created. There are also more scalable
variants that make a single pass through the event log and use a single overall DFG
[24]. These provide fewer formal guarantees. The basic inductive mining algorithm
has strong guarantees. For example, discIM (L) guarantees perfect replay fitness (i.e.,
100% recall). Formally, var(L) ⊆ lang(discIM (L)). See [22–24] for additional formal
guarantees provided by these top-down approaches.

Next two the process discovery techniques presented this chapter, there are dozens
of other techniques. In [12] additional techniques are presented.

7 Conclusion

The goal of this chapter is to introduce the foundations of process discovery without
aiming to provide a complete survey or details on specific algorithms (see also [10]).
After reading this chapter, it should be clear that process discovery is a challenging topic
with many competing requirements. We started by introducing a baseline approach that

72 W. M. P. van der Aalst

produces a Directly-Follows Graph (DFG) for an event log converted into a multiset of
traces. For real-life event logs, the DFG may have an excessive number of arcs making
the model incomprehensible. Therefore, we discussed three filtering approaches that
can also be combined to create simpler DFGs. We also showed that the interpretation
of such process models highly depends on the log preprocessing [2].

After presenting the baseline DFG discovery approach, we focused on process rep-
resentations able to capture concurrency: Petri nets, process trees, and BPMN models.
This is needed because, if activities do not occur in a fixed order due to concurrency,
then the discovered DFGs are underfitting and contain many loops. This allowed us
to introduce more advanced process discovery approaches. We characterized these as
(1) bottom-up approaches and (2) top-down approaches. Bottom-up approaches try to
find local process patterns constraining the process model to better fit the event log.
Top-down approaches tackle the problem differently and try to partition larger event
logs into smaller ones that can be analyzed more easily. Two representative approaches
we described in more detail: the Alpha algorithm and the inductive mining algorithm.
These should be seen as representative examples of both categories. However, there are
dozens of process discovery techniques, and it is impossible to name them all.

For example, there exist many extensions of the Alpha algorithm, e.g., variants
that can discover silent transitions (e.g., skipping) [34] and non-free choice constructs
(e.g., long-term dependencies) [33]. The heuristic mining approach [32] can be seen
as another bottom-up approach that incorporates frequency information. The approach
can discover complex process structures, but often leads to models that are not sound.
Region-based process-discovery approaches provide formal guarantees, but are often
not very applicable (e.g., they may produce huge and overfitting process models or take
too long to compute). There are two types of regions: state-based regions (which require
the construction of a transition system) and language-based regions (that work on sets
of traces). State-based regions were introduced by Ehrenfeucht and Rozenberg [20] in
1989 and generalized by Cortadella et al. [16]. In [8], it is shown how these state-based
regions can be applied to process mining by first creating a log-based transition system
using different abstractions. In [14,30], refinements are proposed to tailor state-based
regions towards process discovery. In parallel, several authors applied language-based
regions to process mining [13,35,37]. There are also numerous bottom-up approaches
combining different ideas. An example is the so-called split-miner [11] which aims to
balance recall and precision. This approach also starts from a filtered DFG, but iden-
tifies combinations of splits that capture the concurrency, conflict and causal relations
between neighbors in the DFG. As mentioned, there also exist different variants of the
inductive mining approach presented in this chapter [22–24].

In this chapter, we only considered a simple event log L ∈ B(Uact
∗), ignoring addi-

tional event and case attributes (e.g., resources, data, transactional information). How-
ever, other logging formats may be considered. There are process discovery approaches
that exploit timing information, data attributes, object references, partial order infor-
mation (e.g., events happening on the same day), explicit uncertainty (e.g., imprecise
timestamps or missing case identifiers), etc. We also only focused on mainstream rep-
resentations such as DFGs, Petri nets, and BPMN. However, there are also discov-
ery techniques that aim to discover stochastic process models [29], declarative process

Foundations of Process Discovery 73

models (using Declare or DCR graphs) [25], or object/artifact-centric models (e.g.,
object-centric Petri nets) [5,21].

The above illustrates that the topic of process discovery has many facets, pro-
viding interesting scientific challenges. Moreover, there are several open-source tools
(e.g., ProM, bupaR, PM4Py, and RapidProM) and over 40 commercial process mining
tools (e.g., Celonis, Disco/Fluxicon, Lana/Appian, Minit, Apromore, myInvenio/IBM,
PAFnow, Signavio/SAP, Timeline/Abby and ProcessGold/UiPath) that already provide
solid discovery approaches, and are sometimes applied to processes with billions of
events. However, as applications of process mining become more demanding, new dis-
covery approaches are needed that are better scalable and can deal with more complex
processes and data structures. Therefore, process discovery is not just a great research
topic, but also of great practical relevance.

Acknowledgment. Funded by the Alexander von Humboldt (AvH) Stiftung and the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC 2023 Internet of Production – 390621612.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016).
https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the directly-
follows graph. In: International Conference on Enterprise Information Systems (Centeris
2019), Volume 164 of Procedia Computer Science, pp. 321–328. Elsevier (2019)

3. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 3–34. Springer, Cham (2022)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models
for conformance checking and performance analysis. WIREs Data Min. Knowl. Discov. 2(2),
182–192 (2012)

5. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fund. Inform. 175(1–
4), 1–40 (2020)

6. van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects Comput. 23(3), 333–363 (2011). https://doi.org/10.1007/s00165-
010-0161-4

7. van der Aalst, W.M.P., DeMasellis, R., Di Francescomarino, C., Ghidini, C.: Learning hybrid
process models from events. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS,
vol. 10445, pp. 59–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-
5 4

8. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,
C.W.: Process mining: a two-step approach to balance between underfitting and overfitting.
Softw. Syst. Model. 9(1), 87–111 (2010). https://doi.org/10.1007/s10270-008-0106-z

9. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering pro-
cess models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

10. Augusto, A., et al.: Automated discovery of process models from event logs: review and
benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

11. Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated
discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst.
59(2), 251–284 (2019). https://doi.org/10.1007/s10115-018-1214-x

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/978-3-319-65000-5_4
https://doi.org/10.1007/978-3-319-65000-5_4
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1007/s10115-018-1214-x

74 W. M. P. van der Aalst

12. Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques. In: van der
Aalst, W.M.P., Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 76–107. Springer, Cham
(2022)

13. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of lan-
guages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
375–383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0 27

14. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering Petri
nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol.
5240, pp. 358–373. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-
7 26

15. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating
Processes and Models. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99414-7

16. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite
transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)

17. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer
Science, vol. 40. Cambridge University Press, Cambridge (1995)

18. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN
1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-65306-6 15

19. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Man-
agement. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-56509-4

20. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures - part 1 and part 2. Acta Informatica
27(4), 315–368 (1989)

21. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 1

22. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI
NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38697-8 17

23. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed,
P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06257-0 6

24. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and con-
formance checking. Softw. Syst. Model. 17(2), 599–631 (2018). https://doi.org/10.1007/
s10270-016-0545-x

25. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31095-9 18

26. Mannel, L.L., van der Aalst, W.M.P.: Finding complex process-structures by exploiting the
token-game. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp.
258–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 15

27. OMG: Business Process Model and Notation (BPMN), Version 2.0.2. Object Management
Group (2014). http://www.omg.org/spec/BPMN/

28. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Institut für instrumentelle Mathe-
matik, Bonn (1962)

29. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with
arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.)

https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-030-21571-2_15
http://www.omg.org/spec/BPMN/

Foundations of Process Discovery 75

BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06257-0 2

30. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13675-7 14

31. Syring, A.F., Tax, N., van der Aalst, W.M.P.: Evaluating conformance measures in process
mining using conformance propositions. In: Koutny, M., Pomello, L., Kristensen, L.M. (eds.)
Transactions on Petri Nets and Other Models of Concurrency XIV. LNCS, vol. 11790, pp.
192–221. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60651-3 8

32. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-
based data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162 (2003)

33. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-
choice constructs. Data Min. Knowl. Disc. 15(2), 145–180 (2007). https://doi.org/10.1007/
s10618-007-0065-y

34. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process models with
prime invisible tasks. Data Knowl. Eng. 69(10), 999–1021 (2010)

35. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discov-
ery using integer linear programming. Fundam. Informaticae 94, 387–412 (2010)

36. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 3rd edn.
Springer, Berlin (2019). https://doi.org/10.1007/978-3-642-28616-2

37. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Discover-
ing workflow nets using integer linear programming. Computing 100(5), 529–556 (2018).
https://doi.org/10.1007/s00607-017-0582-5

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1007/978-3-642-13675-7_14
https://doi.org/10.1007/978-3-662-60651-3_8
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/s00607-017-0582-5
http://creativecommons.org/licenses/by/4.0/

Advanced Process Discovery Techniques

Adriano Augusto1, Josep Carmona2, and Eric Verbeek3(B)

1 The University of Melbourne, Melbourne, Australia
2 Universitat Politècnica de Catalunya, Barcelona, Spain

3 Eindhoven University of Technology, Eindhoven, The Netherlands
h.m.w.verbeek@tue.nl

Abstract. Given the challenges associated to the process discovery task, more
than a hundred research studies addressed the problem over the past two decades.
Despite the richness of proposals, many state-of-the-art automated process dis-
covery techniques, especially the oldest ones, struggle to systematically discover
accurate and simple process models. In general, when the behavior recorded in
the input event log is simple (e.g., exhibiting little parallelism, repetitions, or
inclusive choices) or noise free, some basic algorithms such as the alpha miner
can output accurate and simple process models. However, as the complexity
of the input data increases, the quality of the discovered process models can
worsen quickly. Given that oftentimes real-life event logs record very complex
and unstructured process behavior containing many repetitions, infrequent traces,
and incomplete data, some state-of-the-art techniques turn unreliable and not pur-
poseful. Specifically, they tend to discover process models that either have limited
accuracy (i.e., low fitness and/or precision) or are syntactically incorrect. While
currently there exists no perfect automated process discovery technique, some are
better than others when discovering a process model from event logs recording
complex process behavior. In this chapter, we introduce four of such techniques,
discussing their underlying approach and algorithmic ideas, reporting their ben-
efits and limitation, and comparing their performance with the algorithms intro-
duced in the previous chapter.

1 Introduction

The previous chapter has introduced the alpha algorithm and the inductive mining algo-
rithm as basic algorithms that discover an accepting Petri net from a (simplified) event
log. It has also shown a number of example event logs for which these two basic algo-
rithms work excellently. However, these two basic algorithms do not always perform
well, often depending on the characteristics of the given event log.

In this chapter, we first introduce an example event log where the recorded process
behavior features intertwined parallel compositions and exclusive choices. Second, we
discuss the results of the alpha algorithm and the inductive mining algorithm on this
example event log, showing that there is room for improvement. Third, we introduce
four advanced process mining algorithms, discussing the results of using these algo-
rithms on the example event log – highlighting their benefits and limitations. The first
two advanced algorithms use region-based techniques to discover accepting Petri nets,

c© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 76–107, 2022.
https://doi.org/10.1007/978-3-031-08848-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_3

Advanced Process Discovery 77

a

d

b

c

g100 60

10

2030

30

80

20

50

100 100100

50

20

40

20
20

e
70

f
30

20

20

20

10

20

20

10

10

20

h
100 100

Fig. 1. The directly-follows graph of the event log L6.

where the first algorithm uses state-based regions and the second uses language-based
regions. The third algorithm relies on sophisticated approaches to pre-process the DFG
prior the identification of splits and joins behavioral semantics, and it natively outputs
BPMNmodels. Whereas these three algorithms produce imperative process models, the
fourth algorithm generates declarative process models (like Declare) called log skele-
tons. As we shall see in this chapter, thanks to their advanced approaches, these mining
algorithms are capable of handling event logs recording very complex process behav-
ior better than the basic mining algorithms do. At the same time, also these algorithms
should not be considered bullet-proof solutions for addressing exercises of automated
process discovery as, in general, their results vary depending on the input event log.

2 Motivation

For motivating the need for advanced process discovery algorithm, we introduce
the event log L6 = [〈a, b, c, g, e, h〉10, 〈a, b, c, f, g, h〉10, 〈a, b, d, g, e, h〉10, 〈a, b, d, e,
g, h〉10, 〈a, b, e, c, g, h〉10, 〈a, b, e, d, g, h〉10, 〈a, c, b, e, g, h〉10, 〈a, c, b, f, g, h〉10, 〈a, d,
b, e, g, h〉10, 〈a, d, b, f, g, h〉10]. At first sight, there seems to be a choice between c and
d, followed by a choice between e and f . However, it is more complicated than that, as
traces like 〈a, c, b, g, e, h〉 and 〈a, b, d, f, g, h〉 are not included in L6.

Figure 1 shows the DFG that results from the event log L6. Clearly, this DFG is not
as symmetric as we would have thought after a first glance at L6. For example, e can be
directly followed by c or d, but f is always directly followed by g.

Figure 2 shows the accepting Petri net that results from running the alpha algorithm
on event log L6. The places with the > sign are places with a larger inflow than outflow,
whereas the places with the < symbol are places with a smaller inflow than outflow.
This is a clear indication that this net has quality problems, which is also confirmed by
the fact that in this net the final marking is not reachable from the initial marking. It is
possible to put a token in the final place, but then there would be other tokens in the net
as well. Precisely, there would be tokens in the place that is the output of a and e and
the input of c.

Figure 3 shows the process tree that results from running the inductive mining algo-
rithm on event log L6. Although the process tree guarantees that the final marking is
always reachable from the initial marking, this process tree allows for too much behav-
ior. As an example it is possible to do both e and f , or neither, even though in L6 always
exactly one of these two activities is observed per trace. Also the fact that f is always
directly followed by g is not captured by this process tree.

78 A. Augusto et al.

a

b

d

c

e

>
100

100

50

70

100

50

30

70

100
50

>

f
30

g
100

<

h
100

100

100

100 100

70

70

50

50

50

50
50

30 30

50

50

100 100

100
100

100

100

<

Fig. 2. The accepting Petri net discovered by the alpha algorithm from the event log L6.

a

g

h

c b
10050

100

100

100
100 100

100

d
50

e
70

τ
30

τ
70

f
30

100100

100 100

100

Fig. 3. The process tree discovered by the Inductive Mining Algorithm for event log L6.

This shows that, for more complex event logs, we need more advanced algorithms
than the alpha algorithm and the inductive mining algorithm. This chapter, introduces
four of such advanced algorithms each having more success in discovering a process
model from the event log L6 than the basic algorithms from the previous chapter, they
are:

1. The State-based Region Miner, which produces accepting Petri nets like the basic
algorithms do;

2. The Language-based Region Miner, which also produces accepting Petri nets;
3. The Split Miner, which produces BPMN models;

Advanced Process Discovery 79

a

b

d

c

e

100

100

50

70

100

50

30

70

100

f
30

g
100

h
100

100

100 100

70

50

50

50

50

30
30

100

100

100 100

100

100

100

30

Fig. 4. The accepting Petri net discovered by the State-based Region Algorithm for event log L6.

4. The Log Skeleton Miner, which produces declarative process models (like
Declare [45]) called log skeletons.

These four advanced algorithms are discussed in the next sections, as the first two algo-
rithms both use the theory of regions, they are discussed in a single section. Then, we
continue with split miner, and lastly we conclude with the log skeleton miner.

3 The Theory of Regions

The theory of regions [30] was proposed in the early nineties to define a formal cor-
respondence between behavior and structure. In particular, several region-based algo-
rithms have been proposed in the last decades to synthesize specifications into Petri nets
using this powerful theory.

As mining is a form of synthesis, several approaches have appeared to mine pro-
cess models from event logs. Regardless of the region based technique applied, the
approaches that rely on the notion of region theory search for a process model that
is both fitting and precise [17]. This section shows two branches of region-based
approaches for process discovery: state and language-based approaches.

3.1 State-Based Region Approach for Process Discovery

Figure 4 shows the accepting Petri net that results from running the State-based Region
Algorithm on event log L6. Note that for all places the inflow equals the outflow. In
the remainder of this section we will provide an overview of the main ingredients of
state-based region discovery.

State-based region approaches for process discovery need to convert the event log
into a state-based representation, that will be used to discover the Petri net. This repre-
sentation, is formalized in the following definition.

80 A. Augusto et al.

Definition 1 (Transition System). A transition system (TS) is a tuple (S,Σ,A, sin),
where S is a set of states, Σ is an alphabet of activities, A ⊆ S × Σ × S is a set of
(labeled) arcs, and sin ∈ S is the initial state. We will use s

e→ s′ as a shortcut for
(s, e, s′) ∈ A, and the transitive closure of this relation will be denoted by

∗→.

Figure 5(a) presents an example of a transition system.

Definition 2 (Multiset representation of traces). We denote by #(σ, e) the number
of times that event e occurs in σ, that is #(〈e1 . . . en〉, e) = |{ei | ei = e}|. Given an
alphabet Σ, the Parikh vector of a sequence σ with respect to Σ is a vector pσ ∈ N

|Σ|

such that pσ(e) = #(σ, e).

The techniques described in [62] present different variants for generating a transi-
tion system from an event log. For the most common variant, the basic idea to incorpo-
rate state information is to look at the set of multiset of events included in a subtrace in
the event log:

Definition 3 (Multiset State Representation of an Event Log). Given an event
log L ∈ B(Uact

∗), the TS corresponding to the multiset conversion of L, denoted
as TSmset(L), is 〈S,Σ, T, spε

〉, such that: S contains one state spw
for each Parikh

vector pw of a prefix w in L, with ε denoting the empty prefix, and T =
{spw

e−→spwe | we is a prefix of L}.
In the sequence conversion, two traces lead to the same state if they fire the same

events in exactly the same order.

Example 1. Let us use along this section an example extracted from [61]. The event
log contains the following activities: r=register, s=ship, sb=send bill, p=payment,
ac=accounting, ap=approved, c=close, em=express mail, rj=rejected, and rs=resolve.
Given the event log L7 = [〈r, s, sb, p, ac, ap, c〉10, 〈r, sb, em, p, ac, ap, c〉10, 〈r, sb, p,
em, ac, rj, rs, c〉10, 〈r, em, sb, p, ac, ap, c〉10, 〈r, sb, s, p, ac, rj, rs, c〉10, 〈r, sb, p, s,
ac, ap, c〉10, 〈r, sb, p, em, ac, ap, c〉10], Fig. 5(a) show an example of TS constructed
according to Definition 3.

A region1 in a transition system is a set of states that satisfy an homogeneous rela-
tion with respect to the set of arcs. In the simplest case, this relation can be described
by a predicate on the set of states considered. Formally:

Definition 4 (Region). Let S′ be a subset of the states of a TS, S′ ⊆ S. If s �∈ S′

and s′ ∈ S′, then we say that transition s
a→ s′ enters S′. If s ∈ S′ and s′ �∈ S′,

then transition s
a→ s′ exits S′. Otherwise, transition s

a→ s′ does not cross S′: it is
completely inside (s ∈ S′ and s′ ∈ S′) or completely outside (s /∈ S′ and s′ �∈ S′). A
set of states r ⊆ S is a region if for each event e ∈ E, exactly one of the three predicates
(enters, exits or does not cross) holds for each of its arcs.

1 In this paper we will use region to denote a 1-bounded region. However, when needed we will
use k-bounded region to extend the notion, necessary to account for k-bounded Petri nets.

Advanced Process Discovery 81

(a)

s

p
rj rs

sb

em ac

ap

c
r

(b)

Fig. 5. State-based region discovery: (a) transition system corresponding to L7, (b) derived
Petri net.

An example of region is presented in Fig. 6 on the TS of our running example. In the
highlighted region, event r enters the region, s and em exit the region, and the rest of
labels do not cross the region.

A region corresponds to a place in the Petri net, and the role of the arcs determine
the Petri net flow relation: when an event e enters the region, there is an arc from the
corresponding transition for e to the place, and when e exits the region, there is an arc
from the region to the transition for e. Events satisfying the do not cross relation are
not connected to the corresponding place. For instance, the region shown in Fig. 6(a)
corresponds to the shadowed place in Fig. 6(b), where event r belongs to the set of input
transitions of the place whereas events em and s belong to the set of output transitions.
Hence, the algorithm for Petri net derivation from a transition system consists in finding
regions and constructing the Petri net as illustrated with the previous example. In [26]
it was shown that only a minimal set of regions was necessary, whereas further relax-
ations to this restriction can be found in [17]. The Petri net obtained by this method
is guaranteed to accept the language of the transition system, and satisfy the minimal
language containment property, which implies that if all the minimal regions are used,
the Petri net derived is the one whose language difference with respect to the log is
minimal, hence being the most precise Petri net for the set of transitions considered.

In any case, the algorithm that searches for regions in a transition system must
explore the lattice of sets (or multisets, in the case for k-bounded regions), thus hav-
ing a high complexity: for a transition system with n states, the lattice for k-bounded
regions is of size O(kn). For instance, the lattice of sets of states for the toy TS used
in this article (which has 22 states) has 222 possibles sets to check for the region condi-
tions. Although many simplification properties, efficient data structures and algorithms,
and heuristics are used to prune this search space [17], they only help to alleviate
the problem. Decomposition alternatives, which for instance use partitions of the state

82 A. Augusto et al.

r
s s s

sb

sb

sb

p

p

pem em em

ac

ac

rj

rj

ap

ap c

c

c

c

rs

rs

(a)

s

p
rj rs

sb

em ac

ap

c
r

(b)

Fig. 6. (a) Example of region (three shadowed states). The predicates are r enters, s and em exits,
and the rest of events do not cross, (b) Corresponding place shadowed in the Petri net.

space to guide the search for regions, significantly alleviate the complexity of the state-
based region algorithm, at the expense of not guaranteeing the derivation of precise
models [15]. Other state-based region approaches for discovery have been proposed,
which complement the approach described in this section [54–56].

3.2 Language-Based Region Approach for Process Discovery

In language-based region theory [6,8,9,22,37,38] the goal is to construct the smallest
Petri net such that the behaviour of the net is equal to the given input language (or min-
imally larger). [41] provides an overview for language-based region theory for different
classes of languages: step languages, regular languages, and (infinite) partial languages.

Figure 7 shows the accepting Petri net that results from running the Language-based
Region Algorithm on event log L6. As it happened with state-base regions, again for all
places the inflow equals the outflow.

More formally, let L ∈ B(Uact
∗) be an event log, then language based region theory

constructs a Petri net with the set of transitions equals to Σ and in which all traces of
L are a firing sequence. The Petri net should have only minimal firing sequences not in
the language L (and all prefixes in L). This is achieved by adding places to the Petri net
that restrict unobserved behavior, while allowing for observed behavior. The theory of
regions provides a method to identify these places, using language regions.

Definition 5 (Prefix Closure). Let L ∈ B(Uact
∗) be an event log. The prefix closed

language L ⊆ Σ∗ of L is defined as: L = {σ ∈ Σ∗ | ∃σ′∈Σ∗σ ◦ σ′ ∈ L}.
The prefix closure of a log is simply the set of all prefixes in the log (including the

empty prefix).

Advanced Process Discovery 83

a

b

d

c

e

100

100

50

70

100

50

30

70

100

f
30

g
100

h
100

100

100 100

70

50

50

50

50

30

30

100 100

100

100

100

30

100
100

5050

70

30

50

50 100

Fig. 7. The accepting Petri net discovered by the Language-based Region Algorithm for event
log L6.

t1 t2

t4t3

x1

x2

x3

x4

y1

y2

y3

y2

c

Fig. 8. Region for a language over four activities [63].

Definition 6 (Language Region). Let Σ be a set of activities. A region of a prefix-
closed language L ∈ Σ∗ is a triple (�x, �y, c) with �x, �y ∈ {0, 1}Σ and c ∈ {0, 1}, such
that for each non-empty sequence w = w′ ◦ a ∈ L, w′ ∈ L, a ∈ Σ:

c +
∑

t∈Σ

(
�w′(t) · �x(t) − �w(t) · �y(t)

)
≥ 0

This can be rewritten into the inequation system:

c ·�1 + M ′ · �x − M · �y ≥ �0

where M and M ′ are two |L| × |Σ| matrices with M(w, t) = �w(t), and M ′(w, t) =
�w′(t), with w = w′ ◦ a. The set of all regions of a language is denoted by �(L) and the
region (�0,�0, 0) is called the trivial region.

Intuitively, vectors �x, �y denote the set of incoming and outgoing arcs of the place
corresponding to the region, respectively, and c sets if it is initially marked. Figure 8
shows a region for a language over four activities, i.e. each solution (�x, �y, c) of the
inequation system can be regarded in the context of a Petri net, where the region corre-
sponds to a feasible place with preset {t|t ∈ T, �x(t) = 1} and postset {t|t ∈ T, �y(t) =
1}, and initially marked with c tokens. Note that we do not assume arc-weights here,
while the authors of [6,7,22,38] do.

84 A. Augusto et al.

Since the place represented by a region is a place which can be added to a Petri net,
without disturbing the fact that the net can reproduce the language under consideration,
such a place is called a feasible place.

Definition 7 (Feasible place). Let L be a prefix-closed language over Σ and let N =
((P,Σ, F),m) be a marked Petri net. A place p ∈ P is called feasible if and only if
there exists a corresponding region (�x, �y, c) ∈ �(L) such that m(p) = c, and �x(t) = 1
if and only if t ∈ •p, and �y(t) = 1 if and only if t ∈ p•.

In general, there are many feasible places for any given event log (when considering
arc-weights in the discovered Petri net, there are even infinitely many). Several methods
exist for selecting an appropriate subset of these places. The authors of [7,38] present
two ways of finitely representing these places, namely a basis representation and a
separating representation. Both representations maximize precision, i.e. they select a
set of places such that the behavior of the model outside of the log is minimal.

In contrast, the authors of [63,65,66,68] focus on those feasible places that express
some causal dependency observed in the event log, and/or ensure that the entire model
is a connected workflow net. They do so by introducing various cost functions favouring
one solution of the equation system over another and then selecting the top candidates.

3.3 Strengths and Limitations of Region Theory

The goal of region theory is to find a Petri net that perfectly describes the observed
behavior (where this behavior is specified in terms of a language or a statespace). As
a result the Petri nets are perfectly fitting and maximally precise. Consequently, the
assumption on the input event log is that it records a full behavioral specification, i.e.,
that the input is complete and noise free. While the assumption on the output is that it is
a compact and exact representation of the behavior recorded in the input event log. To
this end, we note that, although in this section we have focused on safe nets, the theory
of regions can represent general k-bounded Petri nets – a feature that is not yet provided
by any other automated process discovery technique.

When applying region theory in the context of process mining, it is therefore very
important to perform any required generalization of the behavior recorded in the input
event log before calling region theory algorithms. For state-based regions, the chal-
lenges are in the construction of the statespace from the event log, while in language-
based regions it is in the selection of the appropriate prefixes to include in the final
prefix-closed language in order to ensure some level of generalization.

In the next section, we will see that split miner relaxes the requirement of having the
full behavioral specification recorded in the input event log, striving to discover BPMN
process models that only maximizes the balance between its fitness and precision.

4 Split Miner

In the following, we describe how Split Miner (hereinafter, SM) discovers a BPMN
model starting from an event log. SM operates in six steps (cf. Fig. 9). In the first step,
it constructs the DFG and analyses it to detect self-loops and short-loops. In the second

Advanced Process Discovery 85

step, it discovers concurrency relations between pairs of activities in the DFG. In the
third step, the DFG is filtered by applying a filtering algorithm designed to strike bal-
anced fitness and precision of the final BPMN model while maintaining a low control-
flow complexity. The fourth and fifth steps focus (respectively) on the discovery of split
and join gateways, activities having multiple outgoing edges are turned into a hierarchy
of split gateways, while activities have multiple incoming edges are turned into a hier-
archy of join gateways. Lastly, if any OR-joins were discovered, they are analyzed and
turned (whenever possible) into either XOR-gateways or AND gateways.

Although some of the steps executed by SM are typical of basic automated pro-
cess discovery techniques such as alpha miner and inductive miner (e.g., the filtering
of the DFG), the steps of SM were designed to overcome the limitations of such tech-
niques. Most notably, to increase precision without compromising fitness and/or struc-
tural complexity. Furthermore, in SM, each step can operate as a black-box, allowing
for additional future improvements by redesign or enhancing a step at a time [5].

We now provide a brief overview of each step of SM in a tutorial-like fashion,
by leveraging the example log L6 = [〈a, b, c, g, e, h〉10, 〈a, b, c, f, g, h〉10, 〈a, b, d, g, e,
h〉10, 〈a, b, d, e, g, h〉10, 〈a, b, e, c, g, h〉10, 〈a, b, e, d, g, h〉10, 〈a, c, b, e, g, h〉10, 〈a, c, b,
f, g, h〉10, 〈a, d, b, e, g, h〉10, 〈a, d, b, f, g, h〉10] (introduced in Sect. 2). Given that an
in-depth analysis of the algorithms behind SM would be out of the scope of this chapter
and book, we refer the interested reader to the original work [3].

Event
Log

DFG and
Loops Discovery

Concurrency
Discovery

Filtering
Splits

Discovery
Joins

Discovery
OR-joins

Minimization
BPMN
Model

Fig. 9. Overview of the Split Miner algorithm.

4.1 Step 1: DFG and Loops Discovery

Given the input event log L6, SM immediately builds its DFG, as shown in Fig. 10a. In
this example, all the traces have the same start and end activity, however, SM automat-
ically adds artificial start and end activities (represented by the nodes � and �).

Then, SM detects self-loops and short-loops, i.e., loops involving only one and two
activities (respectively). Loops are known to cause problems when detecting concur-
rency [60], hence, we want to detect loops before detecting concurrency.

The simplest of the loops is the self-loop, a self-loop exists if a node is both source
and target of one arc of the DFG, i.e., a → a. Short-loops and their frequencies are
detected in the log as follows. Given two activities a and b, for SM, a short-loop (a � b)
exists if and only if (iff) the following two conditions hold:

i. both a and b are not self-loops;
ii. there exists at least one log trace containing the subtrace 〈a, b, a〉 or 〈b, a, b〉.
Condition (i) is necessary because otherwise the short-loop evaluation may not be reli-
able. In fact, if we consider a process that allows a concurrency between a self-loop
activity a and a normal activity b, we could observe log traces containing the subtrace

86 A. Augusto et al.

a

d

b

c

g100 60

10

2030

30

80

20

50

100 100100

50

20

40

20
20

e
70

f
30

20

20

20

10

20

20

10

10

20

h
100 100

(a) Initial DFG. (b) After the Pruning (Step 2).

Fig. 10. Processing of the directly-follows graph.

〈a, b, a〉, which can also characterize a � b. Condition (ii) guarantees that we have
observed (in at least one trace of the log) a short-loop between the two activities. In
fact, short-loops are characterized by subtraces of the type 〈a, b, a〉 or 〈b, a, b〉.

The detected self-loops are trivially removed from the DFG and restored only in
the output BPMN model. While the detected short-loops are saved and used in the next
step. In our example (Fig. 10a), there are no self-loops or short-loops.

4.2 Step 2: Concurrency Discovery

Given a DFG and any two activities a and b, such that neither a nor b is a self-loop, for
SM, a and b are considered concurrent (noted as a‖b) iff three conditions hold:

iii. there exist two arcs in the DFG: (a, b) and (b, a);
iv. both a and b are not in a short-loop;
v. the arcs (a, b) and (b, a) have similar frequency: ||a→b|−|b→a||

|a→b|+|b→a| < ε (ε ∈ [0, 1]).

These three conditions define the heuristic-based concurrency oracle of SM. The
rationale behind the conditions is the following. Condition (iii) captures the basic
requirement for a‖b: the existence of the arcs (a, b) and (b, a) entails that a and b can
occur in any order. However, Condition (iii) is not sufficient to postulate concurrency
because it may hold in three cases: a and b form a short-loop; (a, b) or (b, a) is an infre-
quent observation (e.g., noise in the data); a and b are concurrent. We are interested in
identifying when the third case holds. To this end, we check Conditions (iv) and (v).
When Condition (iv) holds, we can exclude the first case because a and b do not form
a short-loop. When Condition (v) holds, we can exclude the second case because (a, b)
and (b, a) are both observed frequently and have similar frequencies. At this point, we
are left with the third case and we assume a‖b. The variable ε becomes a user input
parameter, the smaller is its value the more similar have to be the number of observa-
tions of (a, b) and (b, a). Instead, setting ε = 1, Condition (v) would always hold.

Whenever we find a‖b, we remove the arcs (a, b) and (b, a) from the DFG, since
we assume there is no causality but instead there is concurrency. On the other hand,
if we find that either (a, b) or (b, a) represents an infrequent directly-follows relation,

Advanced Process Discovery 87

we remove the least frequent of the two edges. We call the output of this step a Pruned
DFG (PDFG).

In the example in Fig. 10a, we identify four possible cases of concurrency: (b, c),
(b, d), (d, e), (e, g). Setting ε = 0.25, we capture the following concurrency relations:
b‖c, b‖d, d‖e, e‖g. The resulting PDFG is shown in Fig. 10b.

4.3 Step 3: Filtering

(a) After the Pruning (Step 2). (b) After the Filtering (Step 3).

Fig. 11. Processing of the directly-follows graph.

The filtering algorithm applied by SM on the PDFG is based on three criteria. First,
each node of the PDFG must be on a path from the single start node (source) to the
single end node (sink). Second, for each node, (at least one of) its path(s) from source
to sink must be the one having maximum capacity. In our context, the capacity of a path
is the frequency of the least frequent arc of the path. Third, the number of edges of the
PDFG must be minimal. The three criteria aim to guarantee that the discovered BPMN
process model is accurate and simple at the same time.

The filtering algorithm performs a double breadth-first exploration: forward (source
to sink) and backward (sink to source). During the forward exploration, for each node
of the PDFG, we discover its maximum source-to-node capacity, and its incoming edge
granting such capacity (best incoming edge). During the backward exploration, for each
node of the PDFG, we discover its maximum node-to-sink capacities, and the best out-
going edges. Then, we remove from the PDFG all the edges that are not best incoming
edges or best outgoing edges. In doing so, we may reduce the amount of behavior that
the final model can replay, and consequently its fitness. Therefore, we introduce a fre-
quency threshold that allows the user to strike a balance fitness and precision. Precisely,
we compute the η percentile over the frequencies of the best incoming and outgoing
edges of each node, and we add to the PDFG the edges with a frequency exceeding the
threshold. It is important to note that the percentile is not taken over the frequencies of
all the edges, otherwise we would simply retain η percentage of all the edges. Also, this
means that even by setting η = 0, SM will still apply a certain amount of filtering.

Figure 11b shows the output of the filtering algorithm when applied to the PDFG of
our working example (Fig. 11a). As a consequence of retaining the best incoming and

88 A. Augusto et al.

outgoing edges for each node, we would drop the arcs: (e, c) and (c, f); and they would
not be retained regardless of the value assigned to η.

4.4 Step 4: Splits Discovery

Before discovering the split gateways, the filtered PDFG is converted into a BPMN pro-
cess model by turning the start (�) and end (�) nodes of the graph into the start and end
events of the BPMN model, and each other node of the graph into a BPMN activity.
Figure 12a shows the BPMN model2 generated from the filtered PDFG of our working
example (Fig. 11b). Now, let us focus on the discovery of the split gateways by con-
sidering the example in Fig. 13a. Given an activity with multiple outgoing edges (e.g.,
activity z), the splits discovery is based on the idea that all the activities directly fol-
lowing (successors of) the same split gateway must have the same concurrency and/or
mutually exclusive relations with the activities that do not directly follow their preced-
ing split gateway. With hindsight and reference to Fig. 13b, we see that since activities
c and d are successors of gateway and1, both c and d are concurrent to e, f , g, due to
gateway and3 (i.e., c‖e, c‖f , c‖g, and d‖e, d‖f , d‖g). At the same time, both c and
d are mutually exclusive with a and b, due to gateway xor3. Considering activities by
pairs, and analyzing which concurrency or mutually exclusive relations they have in
common, we can generate the appropriate splits hierarchy.

(a) Initial state. (b) Intermediate splits discovery.

(c) After splits discovery. (d) After joins discovery.

Fig. 12. Processing of the BPMN model.

With this in mind, we continue our working example. Let us consider activity A
(Fig. 12a), it has three successors: B, C, and D. From the outcome of Step 2, we know
that both C and D are concurrent to B, while C and D are not concurrent (hence,
mutually exclusive with each other). Since C and D share the same relations to other

2 Labels are capitalised to distinguish them from the DFG nodes.

Advanced Process Discovery 89

(a) Before (b) After

Fig. 13. Splits discovery example.

activities (both are concurrent to B), they can be selected as successors of the same
gateway, which in this case would be an XOR-gateway because C and D are mutually
exclusive. After we add the XOR-gateway, the successors of activity A will be two: B
and the newly added XOR-gateway (see Fig. 12b). The algorithm becomes trivial when
an activity with multiple outgoing edges has only two successors, indeed, it is enough
to add a split gateway matching the relation between the two successors. Continuing
the example of activity A, the successor B is in parallel with the newly added XOR-
gateway or, more precisely, with all the activities following the XOR-gateway (activities
C an D). Therefore, we can add an AND gateway preceding B and the XOR-gateway.
Similarly, if we consider activity B and its two successors, activities E and F , given
that they are not concurrent, they must be mutually exclusive and therefore an XOR-
gateway is placed before them. The result of the splits discovery is shown in Fig. 12c.

4.5 Step 5: Joins Discovery

Once all the split gateways have been placed, we can discover the join gateways. To do
so, we rely on the Refined Process Structure Tree (RPST) [46] of the current BPMN
model. The RPST of a process model is a tree data structure where the tree nodes rep-
resent the single-entry single-exit (SESE) fragments of the process model, and the tree
edges denote a containment relation between SESE fragments. Precisely, the children of
a SESE fragment are its directly contained SESE fragments, whilst SESE fragments on
different branches of the tree are disjoint. Each SESE fragment represents a subgraph of
the process model, and the partition of the process model into SESE fragments is made
in terms of edges. A SESE fragment can be of one of the following four types: a triv-
ial fragment, which consists of a single edge; a polygon, which consists of a sequence
of fragments; a bond, which is a fragment where all the children fragments share two
common nodes, one being the entry and the other being the exit of the bond; and a
rigid, which represents any other fragment. Each SESE fragment is classified as homo-
geneous, if the gateways it contains (and are not contained in any of its SESE children)

90 A. Augusto et al.

are all of the same type (e.g., only XOR-gateways), or heterogeneous if its gateways
have different types. Figure 14a and Fig. 14b show two examples of homogeneous
SESE fragments: a bond and a rigid.

We note that, at this stage, in the BPMN model (Fig. 12c) all the SESE fragment’s
exits correspond to activities with multiple incoming edges, which we aim to turn into
join gateways. Starting from the leaves of the RPST, i.e., the innermost SESE frag-
ments of the process model, we explore the RPST bottom-up. For each SESE fragment
we encounter in this exploration, we select the activities it contains that have multi-
ple incoming edges (there is always at least one, the SESE fragment exit). For each of
the selected activities, we add a join gateway preceding it. The join gateway type will
depend on whether the SESE fragment is homogeneous or heterogeneous. In the for-
mer case, the join gateway will have the same type of the other gateways in the SESE
fragment, in the latter case, the join gateway will be an OR-gateway. Figure 14 shows
in brief how our approach works for SESE bonds (Fig. 14a), for homogeneous SESE
rigids (Fig. 14b), and for all other cases, i.e. heterogeneous SESE rigids (Fig. 14c).

Returning to our working example (Fig. 12c), we can discover three joins. The first
one is the XOR-join in the SESE bond containing activities C, D and G, with G as the
exit of the bond and the XOR-split as the entry. The bond is XOR-homogeneous, so
that the type of the join is set to XOR. The remaining two joins are in the parent SESE
fragment of the bond, which is a heterogeneous rigid, hence, we place two OR-joins.
The resulting model is shown in Fig. 12d.

Fig. 14. Joins discovery examples.

4.6 Step 6: OR-joins Minimization

The previous step may leave several OR-join gateways in the discovered BPMN model.
Since OR-gateways can be difficult to interpret [42], SM tries to remove them by ana-
lyzing the process behavior and turning OR-gateways into AND- or XOR-gateways
whenever the behavior is interchangeable.

Advanced Process Discovery 91

4.7 Strengths and Limitations of Split Miner

SM was designed to bring together the strengths of older and basic automated pro-
cess discovery algorithms while addressing their limitations. An example of this design
strategy is the filtering algorithm. Past filtering algorithms were either based on heuris-
tics [73,79] that risk to compromise the correctness of the output model, or driven by
structural requirements [35]. While SM retains the idea of an integrated filtering algo-
rithm, it focuses on balancing fitness, precision, and simplicity of the output process
model.

Past automated discovery algorithms favored either accuracy [73,79] or simplic-
ity [11,35], SM aims to strike a trade-off between the two. The splits and joins dis-
covery steps do not impose any structural constraint on the output process model, as
opposed to inductive miner [35] and evolutionary tree miner [11], which enforce block-
structuredness, allowing SM to pursue accuracy. Yet, the discovery of the split gateways
is designed to produce hierarchies of gateway which foster simplicity and structured-
ness, while the join discovery and the use of OR-gateways allow for simplicity without
compromising accuracy.

However, also SM has its own limitations. First, SM was designed for real-life con-
texts, and it operates under the assumption that there is always some infrequent behavior
to filter out. Second, SM may discover unsound processes, indeed, hitherto soundness
has been guaranteed only by enforcing block-structuredness, a trend that SM does not
adhere to. While SM guarantees to discover deadlock-free process models [3], it does
not guarantee that such process models respect the soundness property of proper com-
pletion, so that when a token reaches the end event of the process model, more tokens
may be left behind. Nonetheless, the chances of SM discovering an unsound process
model are very low [2] and in most cases it can discover accurate yet simple and sound
process models.

5 Log Skeletons

The previous sections introduced three advanced mining algorithms that tackle the
example event log L6 with more success than the basic algorithms as introduced in
Sect. 2. Like these basic algorithms, these advanced algorithms all result in an impera-
tive process model, that is, a process model that indicates what the next possible steps
are. However, next to these imperative models, we also have declarative models, like
Declare [45]. Unlike an imperative model, a declarative model does not specify what
the next possible steps are, instead it provides a collection of constraints that any process
instance in the end should adhere to.

This Section introduces an advanced mining algorithm that results in a declarative
process model, called a log skeleton. [75]. This algorithm has been implemented as the
“Visualize Log as Log Skeleton” visualizer plugin in ProM 6 [76]. Provided an event
log L, the algorithm first extends the provided event log with the artificial start activity
� and the artificial end activity �. In accordance with Sect. 2, we use L′ to denote the
event log L extended with these artificial activities. Second, the algorithm discovers

92 A. Augusto et al.

from this extended event log L′ the collection of initial specific constraints it adheres
to. Third, it reduces some of these constraints, keeping only those constraints that are
considered to be relevant. Fourth, it shows the most-relevant constraints to the user as a
graph. These last three steps are detailed in the next sections.

5.1 Discovering the Log Skeleton

The specific constraints in a log skeleton are the following three activity frequencies
and six binary activity relations.

Definition 8 (Log Skeleton Frequencies and Relations). Let L′ ∈ B(Uact
∗) be an

extended event log and let a, b ∈ act(L′) be two different activities.

cL′(a) = #act
L′ (a)

is the frequency of activity a in event log L′.

lL′(a) = min{|σ ↑ {a}| | σ ∈ L′}
is the lowest frequency of activity a in any trace in event log L′.

hL′(a) = max{|σ ↑ {a}| | σ ∈ L′}
is the highest frequency of activity a in any trace in event log L′.

(a, b) ∈ EL′ ⇔ ∀σ∈L′ |σ ↑ {a}| = |σ ↑ {b}|
denotes that for every trace in event log L′ the frequencies of activities a and b are the
same. Note that the relation EL′ induces an equivalence relation over the activities. We
use rL′(a) to denote the representative activity for the equivalence class of activity a
(by definition, (rL′(a), a) ∈ EL′).

(a, b) ∈ RL′ ⇔ ∀σ∈L′∀i∈{1,...,|σ|}(σi = a ⇒ ∃j∈{i+1,...,|σ|}σj = b)

denotes that for every trace in event log L′ an occurrence of activity a is always fol-
lowed by an occurrence of activity b. This corresponds to the response relation in
Declare.

(a, b) ∈ PL′ ⇔ ∀σ∈L′∀i∈{1,...,|σ|}(σi = a ⇒ ∃j∈{1,...,i−1}σj = b)

denotes that for every trace in event log L′ an occurrence of activity a is always pre-
ceded by an occurrence of activity b. This corresponds to the precedence relation in
Declare.

(a, b) ∈ RL′ ⇔ ∀σ∈L′∀i∈{1,...,|σ|}(σi = a ⇒�∃ j∈{i+1,...,|σ|}σj = b)

denotes that for every trace in event log L′ an occurrence of activity a is never followed
by an occurrence of activity b.

(a, b) ∈ PL′ ⇔ ∀σ∈L′∀i∈{1,...,|σ|}(σi = a ⇒�∃ j∈{1,...,i−1}σj = b)

Advanced Process Discovery 93

Fig. 15. The nodes of the log skeleton discovered from the event log L6.

denotes that for every trace in event log L′ an occurrence of activity a is never preceded
by an occurrence of activity b.

(a, b) ∈ CL′ ⇔ ∀σ∈L′∀i∈{1,...,|σ|}(σi = a ⇒�∃ j∈{1,...,|σ|}σj = b)

denotes that for every trace in event log L′ an occurrence of activity a never co-occurs
with an occurrence of activity b.

Figure 15 shows that we can easily visualize the frequencies and the equivalence
relation in the nodes of the log skeleton. The activity, the representative of the equiv-
alence class and the frequencies are simply shown at the bottom of the node, whereas
equivalent nodes also have the same background color. For example, Fig. 15 immedi-
ately shows that the activities a, b, g, h, �, and � are equivalent.

The remaining five activity relations will be visualized by edges between these
nodes. However, there could be many such relations, which could very well result in
a model that is often called a spaghetti model: A model that contains way too many
edges to make any sense of it. Consider, for example, Table 1, which shows that for
event log L6 there are relations between 80 out of 90 possible pairs of different activ-
ities, like (f, b) ∈ PL6 ∩ RL6 . For this reason, the algorithm reduces the collection of
these remaining five relations to a collection of relevant relations.

Table 1. An overview of the initial non-Equivalence relations for event log L6.

L6 � a b c d e f g h �

� R ∩ P R ∩ P P P P P R ∩ P R ∩ P R ∩ P

a P ∩ R R ∩ P P P P P R ∩ P R ∩ P R ∩ P

b P ∩ R P ∩ R P P R ∩ P R ∩ P R ∩ P

c P ∩ R P ∩ R R ∩ P ∩ C P R ∩ P R ∩ P R ∩ P

d P ∩ R P ∩ R R ∩ P ∩ C P R ∩ P R ∩ P R ∩ P

e P ∩ R P ∩ R P ∩ R R ∩ P ∩ C R ∩ P R ∩ P

f P ∩ R P ∩ R P ∩ R R R R ∩ P ∩ C R ∩ P R ∩ P R ∩ P

g P ∩ R P ∩ R P ∩ R R R R R ∩ P R ∩ P

h P ∩ R P ∩ R P ∩ R R R R R P ∩ R R ∩ P

� P ∩ R P ∩ R P ∩ R R R R R P ∩ R P ∩ R

94 A. Augusto et al.

Definition 9 (Relevant Log Skeleton Relations). Let L′ ∈ B(Uact
∗) be an extended

event log and let a, b ∈ act(L′) be two different activities.

(a, b) ∈ RL′ ⇔ ((a, b) ∈ RL′

∧ �∃ c∈act(L′)((a, c) ∈ RL′ ∧ (c, b) ∈ RL′)
)

that is, RL′ is the transitively reduced version of RL′ . Clearly, if a is always followed
by c and c is always followed by b, then a must be always followed by b.

(a, b) ∈ PL′ ⇔ ((a, b) ∈ PL′

∧ �∃ c∈act(L′)((a, c) ∈ PL′ ∧ (c, b) ∈ PL′)
)

that is, PL′ is the transitively reduced version of PL′ . Clearly, if a is always preceded
by c and c is always preceded by b, then a must be always preceded by b.

(a, b) ∈ RL′ ⇔ ((a, b) ∈ RL′

∧(a, b) �∈ CL′

∧ �∃ c∈act(L′)((a, c) ∈ RL′ ∧ (c, b) ∈ RL′)
)

that is, RL′ is the transitively reduced version of RL′ , on top of which the fact that a is
never followed by b is also considered irrelevant if a and b do not co-occur. It is not true
that if a is never followed by c and c is never followed by b, that then a is never followed
by b. Consider, for example the event log containing the traces 〈a, b〉, 〈b, c〉, and 〈c, a〉.
We are aware of this, but believe the benefits of doing the transitive reduction outweighs
the fact that we may remove relevant relations.

(a, b) ∈ PL′ ⇔ ((a, b) ∈ PL′

∧(a, b) �∈ CL′

∧ �∃ c∈act(L′)((a, c) ∈ PL′ ∧ (c, b) ∈ PL′)
)

that is, PL′ is the transitively reduced version of PL′ , on top of which the fact that a is
never preceded by b is also considered irrelevant if a and b do not co-occur. Like with
RL′ , it is not true that if a is never preceded by c and c is never preceded by b, that then
a is never preceded by b.

(a, b) ∈ CL′ ⇔ ((a, b) ∈ CL′

∧ �∃ c∈act(L′)((a, c) ∈ PL′ ∧ (c, b) ∈ CL′)

∧ �∃ c∈act(L′)((b, c) ∈ PL′ ∧ (c, a) ∈ CL′)
)

Advanced Process Discovery 95

Table 2. An overview of the relevant non-Equivalence relations for event log L6.

L6 � a b c d e f g h �

� R ∩ P
a P ∩ R R ∩ P P P
b P ∩ R P P R
c P ∩ R C P R
d P ∩ R C P R
e P ∩ R C R ∩ P
f P ∩ R R R C R ∩ P
g P R R ∩ P
h R P ∩ R R ∩ P
� P ∩ R

Clearly, if b is always preceded by c and c does not co-occur with a, then b cannot co-
occur with a. Note that we could also have used the always-follows relation RL′ here
instead of the always-precedes relation PL′ , but using the latter relation results in the
relevant never-co-occurs relations being more at the beginning of the process, that is,
towards the point where the actual decision was made to choose one or the other.

Table 2 shows the results for the event log L6: Of the 80 initial relations, only 32
are considered to be relevant. Finally, the algorithm shows the log skeleton as a graph
to the user, where this graph contains only edges for the relevant relations.

5.2 Visualizing the Log Skeleton

The discovered log skeleton is visualized using a log skeleton graph, which is a graph
showing the relevant relations, the equivalence classes, and the frequencies as discov-
ered from the event log.

Definition 10 (Log Skeleton Graph). Let L′ ∈ B(Uact
∗) be an extended event log and

let a, b ∈ act(L′). The log skeleton graph for L′ is the graph G = (V,E, t) where:

V = {(a, rL′(a), cL′(a), lL′(a), hL′(a))|a ∈ act(L′)}
is the set of nodes, where every node contains the activity, the representative of the
activity within its equivalence class, the frequency of the activity in the log, and the
minimal and maximal frequencies of the activity in any trace. If l(a) = h(a) then only
l(a) is shown, otherwise l(a)..h(a) is shown.

E =(RL′ ∪ PL′ ∪ RL′ ∪ PL′ ∪ CL′)

∪(RL′ ∪ PL′ ∪ RL′ ∪ PL′ ∪ CL′)−1 (1)

is the set of edges, where we have an edge from one activity to another activity if we
have a relevant relation between these activities (either way).

d ∈ E → {�,�, �, 	, |,⊥}

96 A. Augusto et al.

Fig. 16. The full log skeleton discovered from the event log L6 (shown using a left-right orienta-
tion).

denotes the decorator to be used to show the relation from the activity at the tail to the
activity at the head:

– if (a, b) ∈ RL′ then d((a, b)) =�, indicating that a is always followed by b,
– else if (a, b) ∈ PL′ then d((a, b)) =�, indicating that a is always preceded by b,
– else if (a, b) ∈ CL′ then d((a, b)) = |, indicating that a does not co-occur with b,
– else if (a, b) ∈ RL′ then d((a, b)) = 	, indicating that a is never followed by b,
– else if (a, b) ∈ PL′ then d((a, b)) = �, indicating that a is never preceded by b, and
– otherwise d((a, b)) = ⊥, indicating that no relation was discovered from a to b.

These decorations are shown on the tail of the corresponding edge.

Table 3 shows which decorators will be shown for the event log L6, and Fig. 16
shows the resulting log skeleton3. Note that the edges (a, b) and (b, a) are visualized
by a single edge, with the decorator for (a, b) near a and the decorator for (b, a) near b.

Table 3. An overview of the decorators used for the non-Equivalence relations for event log L6.

L6 � a b c d e f g h �

� �
a � � � �

b � � � �
c � | � �
d � | � �
e � | �
f � � � | �
g � � � � �
h � � �
� �

3 For sake of completeness, we mention that we are using version 6.12.5 of the LogSkeleton
package, which is available in the Nightly Build of ProM, see https://www.promtools.org/
doku.php?id=nightly.

https://www.promtools.org/doku.php?id=nightly
https://www.promtools.org/doku.php?id=nightly

Advanced Process Discovery 97

As example relations, activity b is never preceded by e (that is, if both b and e occur,
then e occurs after b), e is is always preceded by b, and e and f do not co-occur. Also
note that although 32 relations were considered to be relevant, 34 are now shown: The
relations (g, c) ∈ R and (g, d) ∈ R were not considered relevant as these relations can
be induced using f . However, as (c, g) ∈ R and (d, g) ∈ R are considered relevant, the
relations for (g, c) and (g, d) are shown as well.

Using the log skeleton shown in Fig. 16, we can deduce the following facts on the
example event log:

– The activities a, b, g, and h are always executed exactly once, and always in the
given order.

– In parallel with b, there is a 50/50 choice between c and d.
– There is a 70/30 choice between e and f , but the position of this choice in the

process is less clear. If e is chosen, it is executed after b but in parallel with c, d, and
g. However, if f is chosen it is executed after b, c, and d, and before g.

5.3 Handling Noise

So far, we have assumed that the event log does not contain any noise. As a result, a
constraint like (a, b) ∈ RL′ may be invalid because a single instance of a in the entire
event log is not followed by a b. To be able to handle noisy logs, the log skeletons allow
the user to set a percentage for which the constraint should hold. We recall here the
definition of the Response constraint as provided earlier:

(a, b) ∈ RL′ ⇔ ∀σ∈L′∀i∈{1,...,|σ|}(σi = a ⇒ ∃j∈{i+1,...,|σ|}σj = b)

When dealing with noise, we are interested in the percentage of cases for which the
left-hand side of the implication (σi = a) holds, for which then also the right-hand side
(∃j∈{i+1,...,|σ|}σj = b) holds. As such, we can divide the instances of the left-hand side
into positive instances (for which the right-hand side holds) and negative instances (for
which the right-hand side does not hold). If the user allows for a noise level of l (where
0 ≤ l ≤ 1), then the number of negative instances should be at most l times the number
of total instances:

(
∑

σ∈L′

∣∣{i ∈ {1, . . . , |σ|} | σi = a∧ �∃ j∈{i+1,...,|σ|}σj = b}∣∣
)

≤ l × #act
L′ (a)

This way of handling noise can also be used for the relations PL′ , RL′ , PL′ , and
CL′ , because these constraint are structured in a similar way. However, this way will
not work for the equivalence relation EL′ . To decide whether two different activities
a1 and an (where n ≥ 2) are considered to be equivalent given a certain noise level l
(where again 0 ≤ l ≤ 1), we use the following condition for equivalence:

∀i∈{1,...,n−1}

((
∑

σ∈L′
||σ ↑ {ai}| − |σ ↑ {ai+1}||

)
≤ l × |L′|

)

98 A. Augusto et al.

Fig. 17. The full log skeleton discovered from the event log L6 allowing for 20% noise.

That is, there is a series of activities a1, a2, . . ., an such that for every subsequent pair
(ai, ai+1) the distance between both activity counts over all traces should at most be l
times the number of traces in the event log. Clearly, setting a noise level of l = 0 results
in a condition that the activity counts should match perfectly, which is exactly what we
want.

Figure 17 shows the log skeleton that results from event log L6 when setting the
noise level to 0.2. For example, this shows that 80% of the instances of activity c are
never preceded by e, that 85% of the instances of e are never followed by c, and that
80% of the instances of activity d do not co-occur with f .

5.4 Strengths and Limitations

Clearly, a log skeleton is not an imperative process model like a Petri net or a BPMN
diagram. Instead, it is a declarative process model like Declare [45]. Some of the rela-
tions in the log skeletons exist in Declare as well like RL′ (Response) and PL′ (Prece-
dence). But Declare contains many relations that are unknown in a log skeleton, while
the Equivalence relation EL′ does not have a counterpart in Declare. As a result, a log
skeleton can be considered as a Declare model restricted to only some relations but with
an additional equivalence relation.

Of course, limitations also exists for log skeletons. Known process constructs that
are hard for log skeletons are loops and duplicate tasks. Furthermore, noise in an event
log may be a problem, as a single misplaced activity may prevent discovery of some
relations. As attempts to alleviate the problems with these constructs and noise, The
visualizer plugin allows the user to specify boundary activities (to tackle loops), to split
activities over activities (to tackle duplicates), and various noise levels (to tackle noise).
Although our experience with the noise levels is very positive, our experience with the
boundary activities and splitting of activities shows that they only can solve some of the
problems related to the hard process constructs. As a result, more research is needed in
this direction to improve on this.

Advanced Process Discovery 99

6 Related Work

Discovering accurate and simple process models is extremely important to reduce the
time spent to enhance them and avoid mistakes during process analysis [28].

While extensive research effort was spent in designing the perfect automated pro-
cess discovery algorithm, in parallel, researchers have investigated the problem of
improving the quality of the input data, proposing techniques for data filtering and
data repairing [19,21,32,50–52,57,59,69,70,78]; as well as the problem of predicting
what would be the process discovery algorithm yielding the best process model from
a given event log [47–49]. A few research studies also explored divide-and-conquer
strategies, designing approaches to divide the input data into smaller chunks and sep-
arately feed each chunk to a discovery algorithm – in order to facilitate the discovery
task. The set of process models discovered from the data chunks would then be re-
assembled into a unique process model. Among these techniques we find Genet [15,16],
C-net miner [55], Stage Miner [43], BPMNMiner [20], and Decomposed Process Min-
ing [77].

It is also worth mentioning techniques that have the ability to deal with negative
examples [23,24,33], i.e., to accept also traces that are known to not be part of the
underlying process. Of course, this is an information that is not often available, unless
domain knowledge can be used, or some automated techniques can be applied for gen-
erating it [71,72]. These techniques seem to be better positioned to also consider gen-
eralization when searching for the best process model.

Optimization metaheuristics have also been extensively applied in the context of
automated process discovery, aiming to incrementally discover and refine the pro-
cess model to reach a trade-off between accuracy and simplicity. The most notori-
ous, among this type of approaches, are those based on evolutionary (genetic) algo-
rithms [11,25]. However, several other metaheuristics have been explored, such as the
imperialist competitive algorithm [1], the swarm particles optimization [18,29,44], and
simulated annealing [31,58].

Nonetheless, the latest literature review and benchmark in automated process dis-
covery [2] highlighted that many of the state-of-the-art automated process discovery
algorithms [4,13,34,36,67,73,79] were affected by one (or more) of the following three
limitations when discovering process models from real-life event logs: i) they achieve
limited accuracy; ii) they are computationally inefficient to be used in practice; iii) they
discover syntactically incorrect process models. In practice, when the behavior of the
process recorded in the input event log varies little, most of the state-of-the-art auto-
mated process discovery algorithms can output accurate and simple process models.
However, as the behavioral complexity of the process increases, the quality of the dis-
covered process models can worsen quickly. Given that oftentimes real-life event logs
are highly complex (i.e., containing complex process behavior, noise, and incomplete
data), discovering highly accurate and simple process models with traditional state-of-
the-art algorithms can be challenging.

On the other hand, achieving in a robust and scalable manner the best trade-off
between accuracy and simplicity, while ensuring behavioral correctness (i.e., process
soundness), has proved elusive. In particular, it is possible to group automated pro-
cess discovery algorithms in two categories: those focusing more on the simplicity, the

100 A. Augusto et al.

soundness and either the precision [13] or the fitness [36] of the discovered process
model, and those focusing more on its fitness and its precision at the cost of simplicity
and/or soundness [4,73,79]. The first kind of algorithms strive for simplicity and sound-
ness by enforcing block-structured behavior on the discovered process model. However,
since real-life processes are not always block-structured, a direct consequence of doing
that is an approximation of the behavior which leads to a loss of accuracy (either fit-
ness of precision). The second kind of algorithms do not adopt any strategy to deal with
process simplicity and soundness, focusing only on capturing its behavior in a process
model, but in doing so they can produce unsound process models.

Alongside techniques that discover imperative process models, it is important to
mention that there exists many discovery algorithm that produce declarative mod-
els [10,27,39,40,53,74]. Declare models capture the processes’ behavior through a
set of rules, also known as declarative constraints. Even though each declarative con-
straint is precise, capturing the whole process behavior in a declarative model can be
very difficult, especially because declarative models do not give any information about
“undeclared” behavior, e.g., any behavior that does not break the declarative constraint
is technically allowed behavior. Hence, imperative process models are usually preferred
in practice.

7 Challenges Ahead

Process Mining started about 20 years ago with the development of control-flow miners
like the Alpha Miner [64] and the Little Thumb Miner [80]. Although the field has
advanced in these 20 years with many others control-flow miners, this does not mean
that control-flow mining is already a done deal.

Consider, for example, the results of the latest Process Discovery Contest (PDC
2020) [14], which are shown by Fig. 18. The PDC 2020 was a contest for fully-
automated control-flow miners, and shows the then-current state of the field on these
miners. In this contest, every miner was used to discover a control-flow model from a
training event log, after which this model was used to classify every trace from a test
event log. As the ground truth for this classification is known, we can compute both the
average positive accuracy and the average negative accuracy for all of the algorithms on
this data set. The results show that there is still some ground to cover for the imperative
miners, as none of these miners was able to achieve both an average positive accuracy
and an average negative accuracy exceeding 80.0%.

Table 4 shows the weaknesses of several algorithms submitted to the PDC 2020
contest. As an example, the weaknesses of the Inductive IMfa Miner included loops:
It scored 59.2%4 on the event logs in the PDC 2020 data set that do not contain loops,
and only 19.3% on the event logs that do contain loops. This table indicates that noise
and loops but also optional tasks and duplicate tasks can be considered as challenges
for control-flow miners in the near future.

4 This score is computed as the average over 2·PL·NL
PL+NL

, where PL is the positive accuracy and
NL is the negative accuracy for (1) the model discovered from a training log L and (2) the
corresponding test log.

Advanced Process Discovery 101

Alpha
2.6%

Directly Follows
65.9%

Directly Follows
Model
76.2%

DisCoveR CW
49.6%

DisCoveR Light CW
49.3%

Flower
0.0%

Fodina
40.8%

Hybrid ILP
68.4%

Inductive IMfa
32.6%

Kokos 2 T5
44.4%

Log Skeleton
73.4%

Log Skeleton N3
85.2%

Log Skeleton N5
79.6%

Split
16.6%

Trace
33.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

NE
GA

TI
VE

 A
CC

UR
AC

Y

POSITIVE ACCURACY

Average accuracies on PDC 2020 data set

Fig. 18. The results of the PDC 2020. The squares correspond to base miners, the circles to
imperative miners (that result in an imperative model, like a Petri net or a BPMN diagram), and
the triangles to declarative miners (that result in a declarative model, like a DCR graph or a log
skeleton). The percentage mentioned with a miner is the score (see footnote 4) of that miner.

Table 4. Weaknesses and scores of miners submitted to PDC 2020 and their scores on the event
logs that do not contain the weakness (No) or that do contain it (Yes). Only weaknesses where
the No and Yes scores differ at least 10.0% are listed.

Algorithm Score Weakness No Yes

DisCoveR CW 49.6% Noise 78.0% 21.3%

DisCoveR Light CW 49.3% Noise 79.9% 18.7%

Inductive IMfa 32.6% Loops 59.2% 19.3%

Duplicate tasks 39.4% 25.7%

Kokos 2 T5 44.4% Loops 61.8% 35.6%

Noise 50.4% 38.3%

Optional tasks 66.5% 22.2%

In these 20 years, algorithms have been developed that discover perspectives other
than the control-flow perspective. However, many of these other perspectives are added
on top of the discovered control-flow model, and hence depend on the discovery of
a control-flow model of high-enough quality. Nevertheless, even if assuming that the
quality of the control-flow model is indeed high enough, challenges remain for these
other perspectives as well.

102 A. Augusto et al.

As a first example, consider the data perspective, which would add expressions
(guards) to the control-flow model that would guide the execution of the model: Cer-
tain parts of the control-flow model may be only valid if a certain guard evaluates true.
Challenges here include the discovery of sensible guards with sensible values. As an
example, if based on some value the control-flow ’goes either left or right’, then the
data in the event log may not contain this precise value. As a result, this value needs to
be guessed based on the data that is in the event log.

A second example is the organizational perspective, which would add organiza-
tional entities (like users, groups, or roles) to certain parts of the control-flow model:
Only resources (like users and automated services) that qualify for these entities can be
involved in these parts. Challenges here include the discovery of the correct organiza-
tional entities at the correct level. As an example, if some activity was performed by
some user according to the event log, then what is the correct organizational level (like
user, role, group) for this activity?

8 Conclusion

In this chapter, we have introduced four advanced process discovery techniques: the
state-based region miner; the language-based region miner; the split miner; the log
skeleton miner. Each of the four techniques aims to alleviate shortcomings of the more
basic process discovery techniques as introduced in the previous chapter.

First, the region-based miners can lift the shortcoming of having to assume that
activities only occur once in the model. When using regions, different contexts of an
activity can be found, and the activity can then be divided over these contexts, leading
to a model with an activity for every different context. This is a feature that is not shared
by any of the other miners, and this feature can be very important in case we have an
event log of a system where these “duplicate activities” occur. Where other miners
need to assume there is only one activity, which may lead to discovered models that
are incomprehensible, these region-based miners do not need to make this assumption,
which may result in more precise models.

Second, the split miner aims to discover process models that simultaneously maxi-
mize and balance fitness and precision, while at the same time minimizing the control-
flow complexity of the resulting model. This approach brings precision and complex-
ity into the equation, something that previously could be done only by using genetic
miners like the evolutionary tree miner [12]. However, differently than genetic miners,
split miner typically takes seconds to discover a process model from the event log, as
opposed to the hour-long execution times required by genetic miners [2].

Third, the log skeleton miner is not limited to using only the directly-follows rela-
tions, which are heavily leveraged by many existing discovery algorithm. This miner
discovers a declarative model from the event log that contains facts like “95% of the
instances of activity a is always followed by activity b”, or “90% of the instances of
activity a do not co-occur with an instance of activity b”. As such, it is not limited to
just the directly-follows relations, and it can discover relations between activities that
cannot be discovered if only considering the directly-follows relations.

It is clear that each of these advanced techniques can be used effectively on certain
event logs, and may produce better models than those produced by basic techniques.

Advanced Process Discovery 103

However, ultimately, there is no technique yet that is effective on all (or even almost
all) event logs regardless of the process behavior features. Such an ideal process dis-
covery technique should be able to maximize accuracy and simplicity of the discovered
process model while at the same time guaranteeing its simplicity and soundness. While,
hitherto, the design of such a technique has proved to be challenging and elusive, it has
become clear that each process discovery technique can be useful on some event logs.
Hence, while we hope that future research endeavors will lead to the ideal process dis-
covery technique, until it materializes, we just have to rely on educated choices based on
the process data at hand (i.e., in the form of event log), and select the most appropriate
technique for discovering the best process model.

Acknowledgements. This work has been supported by MCIN/AEI funds under grant PID2020-
112581GB-C21.

References

1. Alizadeh, S., Norani, A.: ICMA: a new efficient algorithm for process model discovery. Appl.
Intell. 48(11) (2018)

2. Augusto, A., et al.: Automated discovery of process models from event logs: Rev. Bench-
mark. IEEE TKDE 31(4) (2019)

3. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated
discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst.
59(2), 251–284 (2018). https://doi.org/10.1007/s10115-018-1214-x

4. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Bruno, G.: Automated discovery
of structured process models: discover structured vs. discover and structure. In: Comyn-
Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol.
9974, pp. 313–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1 25

5. Augusto,A., Dumas, M., La Rosa, M.:Automated discovery of process models with true
concurrency and inclusive choices. In: International Conference on Process Mining, pp. 43–
56. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-98581-3 1

6. Badouel, E., Bernardinello, L., Darondeau. Ph.: Polynomial algorithms for the synthesis of
bounded nets. In: TAPSOFT, pp. 364–378 (1995)

7. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of lan-
guages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
375–383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0 27

8. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from infinite partial
languages. In: Billington, J., Duan, J., Koutny, M. (eds.) ACSD, pp. 170–179. IEEE (2008)

9. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of petri nets from term based
representations of infinite partial languages. Fundam. Inform. 95(1), 187–217 (2009)

10. Bernardi, M.L., Cimitile, M., Di Francescomarino, C., Maggi, F.M.: Do activity lifecycles
affect the validity of a business rule in a business process? Inf. Syst. 62 (2016)

11. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012.
LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33606-5 19

12. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discov-
ering process trees. In: IEEE Congress on Evolutionary Computation (CEC), 2012, pp. 1–8.
IEEE (2012)

https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/978-3-319-46397-1_25
https://doi.org/10.1007/978-3-030-98581-3_1
https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1007/978-3-642-33606-5_19

104 A. Augusto et al.

13. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process
discovery: the importance of fitness, precision, generalization and simplicity. Int. J. Cooperat.
Inf. Syst. 23(01),1440001 (2014)

14. Carmona, J., Depaire, B., Verbeek, H.M.W.: Process discovery contest 2020 (2019). https://
icpmconference.org/2020/process-discovery-contest/. Accessed 23 Apr 2021

15. Carmona, J.: Projection approaches to process mining using region-based techniques. Data
Min. Knowl. Discov. 24(1), 218–246 (2012)

16. Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-conquer strategies for process min-
ing. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 327–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8 22

17. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving
bounded Petri nets. IEEE Trans. Comput. 59(3), 371–384 (2009)

18. Chifu, V.R., Pop, C.B., Salomie, I., Balla, I., Paven, R.: Hybrid particle swarm optimization
method for process mining. In: ICCP, IEEE (2012)

19. Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering out infrequent behavior from
business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314 (2016)

20. Conforti, R., Dumas, M., Garcı́a-Bañuelos, L., La Rosa, M.: BPMN miner: automated dis-
covery of BPMN process models with hierarchical structure. Inf. Syst. 56, 284–303 (2016)

21. Conforti, R., La Rosa, M., ter Hofstede, A.H.M., Augusto, A.: Automatic repair of same-
timestamp errors in business process event logs. In: Fahland, D., Ghidini, C., Becker, J.,
Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 327–345. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58666-9 19

22. Darondeau, P.: Deriving unbounded Petri nets from formal languages. In: Sangiorgi, D., de
Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055646

23. Ponce de León, H., Nardelli, L., Carmona, J., vanden Broucke, S.K.L.M.: Incorporating neg-
ative information to process discovery of complex systems. Inf. Sci. 422, 480–496 (2018)

24. Ponce-de-León, H., Rodrı́guez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-based
process discovery. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 31–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 4

25. Alves de Medeiros, A.K.: Genetic process mining. Ph.D. thesis, Eindhoven University of
Technology (2006)

26. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315 (1996)
27. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declar-

ative workflows. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), pp. 135–142. IEEE (2013)

28. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Berlin (2013). https://doi.org/10.1007/978-3-662-56509-4

29. Effendi, Y.A., Sarno, P.: Discovering optimized process model using rule discovery hybrid
particle swarm optimization. In: 2017 3rd International Conference on Science in Informa-
tion Technology (ICSI Tech), pp. 97–103. IEEE (2017)

30. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-structures. Part I, II. Acta Inform. 27, 315–
368 (1990)

31. Gao, D., Liu, Q.: An improved simulated annealing algorithm for process mining. In:
CSCWD, IEEE (2009)

32. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier detection techniques for process
mining applications. In: An, A., Matwin, S., Ras, Z.W., Slezak, D. (eds.) ISMIS 2008. LNCS
(LNAI), vol. 4994, pp. 150–159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68123-6 17

33. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with arti-
ficial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

https://icpmconference.org/2020/process-discovery-contest/
https://icpmconference.org/2020/process-discovery-contest/
https://doi.org/10.1007/978-3-642-03848-8_22
https://doi.org/10.1007/978-3-030-58666-9_19
https://doi.org/10.1007/BFb0055646
https://doi.org/10.1007/978-3-319-24953-7_4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-540-68123-6_17
https://doi.org/10.1007/978-3-540-68123-6_17

Advanced Process Discovery 105

34. Guo, Q., Wen, L., Wang, J., Yan, Z., Yu, P.S.: Mining invisible tasks in non-free-choice
constructs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS,
vol. 9253, pp. 109–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-
4 7

35. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed,
P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06257-0 6

36. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014.
LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07734-5 6

37. Lorenz, R.: Towards synthesis of petri nets from general partial languages. In: Lohmann, N.,
Wolf, K. (eds.) AWPN, vol. 380 of CEURWorkshop Proceedings, pp. 55–62. CEUR-WS.org
(2008)

38. Lorenz, R., Juhás, R.: How to synthesize nets from languages - a survey. In: Proceedings of
the Wintersimulation Conference (WSC) 2007 (2007)

39. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31095-9 18

40. Maggi, F.M., Dumas, M., Garcı́a-Bañuelos, L., Montali, M.: Discovering data-aware declar-
ative process models from event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40176-3 8

41. Mauser, S., Lorenz, S.: Variants of the language based synthesis problem for petri nets. In:
ACSD, pp. 89–98 (2009)

42. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines
(7PMG). Inform. Softw. Technol. 52(2), 127–136 (2010)

43. Nguyen, H., Dumas, M., ter Hofstede, A.H.M., La Rosa, M., Maggi, F.M.: Mining business
process stages from event logs. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol.
10253, pp. 577–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 36

44. Nurlaili, A.L., Sarno, R.: A combination of the evolutionary tree miner and simulated anneal-
ing. In: 2017 4th International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), pp. 1–5. IEEE (2017)

45. Pesic, M., Schonenberg, H., van der Aalst, W.I.P.: DECLARE: full support for loosely-
structured processes. In: 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007), 15–19 October 2007, Annapolis, Maryland, USA, pp. 287–300
(2007)

46. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the
refined process structure tree. In: WS-FM, pp. 25–41 (2010)

47. Ribeiro, J., Carmona, J.: RS4PD: a tool for recommending control-flow algorithms. In: BPM
(Demos), pp. 66. Citeseer (2014)

48. Ribeiro, J., Carmona, J., Mısır, M., Sebag, M.: A recommender system for process discovery.
In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 67–83. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10172-9 5

49. Ribeiro, J., Carmona Vargas, J.: A method for assessing parameter impact on control-flow
discovery algorithms. In: Proceedings of the International Workshop on Algorithms & Theo-
ries for the Analysis of Event Data: Brussels, Belgium, 22–23 June 2015, pp. 83–96. CEUR-
WS. org (2015)

https://doi.org/10.1007/978-3-319-23063-4_7
https://doi.org/10.1007/978-3-319-23063-4_7
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-40176-3_8
https://doi.org/10.1007/978-3-642-40176-3_8
https://doi.org/10.1007/978-3-319-59536-8_36
https://doi.org/10.1007/978-3-319-10172-9_5

106 A. Augusto et al.

50. Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Improving Documentation
by repairing event logs. In: Grabis, J., Kirikova, M., Zdravkovic, J., Stirna, J. (eds.) PoEM
2013. LNBIP, vol. 165, pp. 129–144. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-41641-5 10

51. Sani, M.F., van Zelst, S.J., van der Aalst, W.M.P.: Improving process discovery results by
filtering outliers using conditional behavioural probabilities. In: International Workshop on
Business Process Intelligence (BPI 2017) (2017)

52. Sani, M.F., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour in event logs
using contextual behaviour. EMISAJ 14, 1–24 (2019)

53. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and cus-
tomisable declarative process mining with SQL. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J.
(eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-39696-5 18

54. Solé, M., Carmona, J.: Light region-based techniques for process discovery. Fundam. Inform.
113(3–4), 343–376 (2011)

55. Solé, M., Carmona, J.: Incremental process discovery. Trans. Petri Nets Other Models of
Concurr. 5, 221–242 (2012)

56. Solé, M., Carmona, J.: Region-based foldings in process discovery. IEEE Trans. Knowl. Data
Eng. 25(1), 192–205 (2013)

57. Song, S., Cao, Y., Wang, J.: Cleaning timestamps with temporal constraints. VLDB Endow.
9(10), 708–719 (2016)

58. Song, W., Liu, S., Liu, Q.: Business process mining based on simulated annealing. In:
ICYCS, IEEE (2008)

59. Tax, N., Sidorova, N., van der Aalst, W.M.P.: Discovering more precise process models from
event logs by filtering out chaotic activities. J. Intell. Inf. Syst., 52(1), 107–139 (2019)

60. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models
from event logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004)

61. van der Aalst, W.M.P., Günther, C.W.: Finding structure in unstructured processes: the case
for process mining. In: ACSD, pp. 3–12 (2007)

62. van der Aalst, W.M.P., Rubin, V., (Eric) Verbeek, H.M.W., van Dongen, B.F., Kindler, E.,
Günther, C.W.: Process mining: a two-step approach to balance between underfitting and
overfitting. Softw. Syst. Model. 9, 87–111 (2009)

63. van der Aalst, W.M.P., van Dongen, B.F.: Discovering petri nets from event logs. Trans. Petri
Nets Other Models Concurr. 7, 372–422 (2013)

64. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

65. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discov-
ery using integer linear programming. Fundam. Inform. 94(3–4), 387–412 (2009)

66. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: ILP-based process discovery using
hybrid regions. In van der Aalst, W.M.P., Bergenthum, R., Carmona, J. (eds.) Proceedings
of the International Workshop on Algorithms & Theories for the Analysis of Event Data,
ATAED 2015, Satellite Event of the Conferences: 36th International Conference on Appli-
cation and Theory of Petri Nets and Concurrency Petri Nets 2015 and 15th International Con-
ference on Application of Concurrency to System Design ACSD 2015, Brussels, Belgium,
22–23 June 2015, vol. 1371 of CEUR Workshop Proceedings, pp. 47–61. CEUR-WS.org
(2015)

67. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: ILP-based process discovery using
hybrid regions. In: International Workshop on Algorithms & Theories for the Analysis of
Event Data, ATAED 2015, vol. 1371 of CEUR Workshop Proceedings, pp. 47–61. CEUR-
WS.org (2015)

https://doi.org/10.1007/978-3-642-41641-5_10
https://doi.org/10.1007/978-3-642-41641-5_10
https://doi.org/10.1007/978-3-319-39696-5_18
https://doi.org/10.1007/978-3-319-39696-5_18

Advanced Process Discovery 107

68. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Discover-
ing workflow nets using integer linear programming. Computing 100(5), 529–556 (2017).
https://doi.org/10.1007/s00607-017-0582-5

69. van Zelst, S.J., Fani Sani, M., Ostovar, A., Conforti, R., La Rosa, M.: Filtering spurious
events from event streams of business processes. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE
2018. LNCS, vol. 10816, pp. 35–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-91563-0 3

70. van Zelst, S.J., Fani Sani, M., Ostovar, A., Conforti, R., La Rosa, M.: Detection and removal
of infrequent behaviour from event streams of business processes. Inf. Syst. 90 (2019)

71. vanden Broucke, S.K.L.M., De Weerdt, J., Baesens, B., Vanthienen, J.: Improved artificial
negative event generation to enhance process event logs. In: Ralyté, J., Franch, X., Brinkkem-
per, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 254–269. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31095-9 17

72. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determining process
model precision and generalization with weighted artificial negative events. IEEE Trans.
Knowl. Data Eng, 26(8), 1877–1889 (2014)

73. vanden Broucke, S.K.L.M., De Weerdt, J.: Fodina: a robust and flexible heuristic process
discovery technique. Decis. Supp. Syst. 100, 109–118 (2017)

74. vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Declarative process discovery with
evolutionary computing. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp.
2412–2419. IEEE (2014)

75. Verbeek, H.M.W.: The Log Skeleton Visualizer in ProM 6.9: the winning contribution to the
process discovery contest 2019. Int. J. Softw. Tools Technol. Trans. 339 (2021). https://doi.
org/10.1007/s10009-021-00618-y

76. Verbeek, H.M.W. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: ProM 6: the
process mining toolkit. In: Proceedings of BPM Demonstration Track 2010, vol. 615, pp.
34–39. CEUR-WS.org (2010)

77. Verbeek, H.M.W., van der Aalst, W.M.P.: Decomposed process mining: the ILP case. In:
Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 264–276. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15895-2 23

78. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: a graph repair
approach. In: Proceedings of IEEE ICDE, pp. 30–41. IEEE (2015)

79. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: 2011 IEEE Sym-
posium on Computational Intelligence and Data Mining (CIDM), pp. 310–317. IEEE (2011)

80. Weijters, A.J.M.M., van der Aalst, W.: Rediscovering workflow models from event-based
data using little thumb. Integr. Comput.-Aid. Eng. 10(2) (2003)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/s00607-017-0582-5
https://doi.org/10.1007/978-3-319-91563-0_3
https://doi.org/10.1007/978-3-319-91563-0_3
https://doi.org/10.1007/978-3-642-31095-9_17
https://doi.org/10.1007/s10009-021-00618-y
https://doi.org/10.1007/s10009-021-00618-y
https://doi.org/10.1007/978-3-319-15895-2_23
http://creativecommons.org/licenses/by/4.0/

Declarative Process Specifications:
Reasoning, Discovery, Monitoring

Claudio Di Ciccio1(B) and Marco Montali2

1 Sapienza University of Rome, Rome, Italy
claudio.diciccio@uniroma1.it

2 Free University of Bozen-Bolzano, Bolzano, Italy
montali@inf.unibz.it

Abstract. The declarative specification of business processes is based
upon the elicitation of behavioural rules that constrain the legal execu-
tions of the process. The carry-out of the process is up to the actors,
who can vary the execution dynamics as long as they do not violate the
constraints imposed by the declarative model. The constraints specify
the conditions that require, permit or forbid the execution of activities,
possibly depending on the occurrence (or absence) of other ones. In this
chapter, we review the main techniques for process mining using declar-
ative process specifications, which we call declarative process mining.
In particular, we focus on three fundamental tasks of (1) reasoning on
declarative process specifications, which is in turn instrumental to their
(2) discovery from event logs and their (3) monitoring against running
process executions to promptly detect violations. We ground our review
on Declare, one of the most widely studied declarative process specifica-
tion languages. Thanks to the fact that Declare can be formalized using
temporal logics over finite traces, we exploit the automata-theoretic char-
acterization of such logics as the core, unified algorithmic basis to tackle
reasoning, discovery, and monitoring. We conclude the chapter with a
discussion on recent advancements in declarative process mining, consid-
ering in particular multi-perspective extensions of the original approach.

1 Introduction

Finding a suitable balance between flexibility and control is a long-standing prob-
lem in the management of work processes [83]. Among the different approaches
striving to achieve this balance, flexibility by design suggests to infuse flexibility
in the process modeling language at hand. Declarative process modeling lan-
guages take this to the extreme: they support the specification of what are the
relevant constraints on the temporal evolution of the process, without explicitly
indicating how process instances should be routed to satisfy such constraints.
In comparison with imperative approaches that produce “closed” representations
(i.e., only those process executions explicitly foreseen in the model are allowed),
declarative approaches yield “open” representations (i.e., every process execu-
tion is implicitly allowed, as long as it does not incur in the violation of some
constraint).
c© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 108–152, 2022.
https://doi.org/10.1007/978-3-031-08848-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_4&domain=pdf
http://orcid.org/0000-0002-0955-6940
http://orcid.org/0000-0002-8021-3430
https://doi.org/10.1007/978-3-031-08848-3_4

Declarative Process Specifications 109

(a) A process (b) Imperative model (c) Declarative specification

Fig. 1. Intuitive representation of the difference between imperative process models
and declarative process specifications in the space of all execution traces. Diagram (a)
represents a real process, which isolates the allowed (green, solid fill) behaviors from the
forbidden (red, dotted fill) ones. Diagram (b) shows an imperative process model that
stays within the boundaries of the process, but misses many allowed behaviors. Diagram
(c) shows a declarative process specification that well approximates the boundaries of
the process: it accepts only traces that are allowed by the process, and includes all the
traces accepted by the imperative model in (b). (Color figure online)

Figure 1 depicts an intuitive representation of the difference between classi-
cal imperative process models and declarative process specifications, considering
execution traces that are forbidden by the real process, allowed by the real pro-
cess, and captured by the designed process specification. Imperative models (such
as those based on Petri nets and related formalisms) are suited to explicitly cap-
ture control-flow patterns like sequences, choices, concurrent sections, and loops.
Those patterns, in turn, lend themselves to characterize a subset of the allowed
traces, but struggle in covering the whole space of execution paths in the case
of loosely structured, flexible processes. In other words, they favor control over
flexibility. Contrariwise, declarative specifications strive to balance flexibility and
control by attempting to characterize constraints that well-separate the allowed
behaviors from the forbidden ones. In other words, declarative process specifi-
cations allow us to capture not only what is expected to occur, but also what
should not happen. This helps in better approximating the boundaries of the
real process, containing (and extending) those captured via imperative process
models.

The idea of adopting a constraint-based, declarative approach to regulate
dynamic systems has been originally brought forward in different communities:
in data management, to express cascaded transactional updates [26]; in multia-
gent systems, to regulate agent interaction protocols [88]; and in business process
management, to capture subprocesses that foresee loosely-coupled control-flow
conditions on their activities [85]. This idea was further developed within BPM
in consequent years, leading to a series of declarative, constraint-based process
modeling languages, with two prominent exponents: Declare [76] and Dynamic
Condition-Response Graphs [49]. Common to all such approaches is the usage of
linear temporal/dynamic logics (i.e., temporal/dynamic logics for sequences of
events) to formally describe specifications, and the exploitation of correspond-
ing reasoning mechanisms to tackle a variety of concrete tasks along the entire

110 C. Di Ciccio and M. Montali

process lifecycle, from design and model analysis to runtime execution and data
analysis.

In this chapter, we focus on declarative process mining, that is, process mining
where the input or output models are specified using declarative, constraint-
based languages. Concretely, we employ the Declare language, but all the
presented ideas seamlessly apply any language that can be formalized using
logics over finite traces [30], which are indeed at the core of Declare. Focusing
on finite traces reflects the intuition that every process instance is expected
to complete in a finite number of steps. This aspect has a significant impact
on the corresponding operational techniques, as these logics admit an automata-
theoretic characterization that is based on standard finite-state automata [27,30],
instead of automata on infinite structures, which are needed when such logics
are interpreted over infinite traces.

Leveraging automata-based techniques paired with suitable measures relat-
ing traces, events and constraints, we review three interconnected fundamental
declarative process mining tasks:

Reasoning – to uncover relationships among different constraints, and check
key properties of Declare specifications;

Discovery – to extract a Declare specification that suitably characterizes the
traces contain in an event log;

Monitoring – to provide operational decision support [63] by checking at run-
time whether a running process execution satisfies a Declare specification,
promptly detecting and reporting violations.

All the presented techniques are integrated in the MINERful process discovery
technique1 [40] and the RuM toolkit2 [4].

The chapter is organized as follows. Section 2 introduces the declarative pro-
cess specification language Declare alongside a running example to which we
will refer throughout the remainder of the chapter. Section 3 provides the funda-
mental notions upon which the core techniques for reasoning, discovery and mon-
itoring on declarative specifications are based. We define the formal semantics
of Declare and discuss the core reasoning tasks for declarative specifications
in Sect. 4. Section 5 explains the core notions of declarative process discovery
and monitoring. Section 6 discusses the latest advances in the field of declarative
process specification mining. Finally, Sect. 7 concludes this chapter with final
remarks and a summary of the core concepts illustrated herein.

1 https://github.com/cdc08x/MINERful.
2 https://rulemining.org.

https://github.com/cdc08x/MINERful
https://rulemining.org

Declarative Process Specifications 111

Table 1. A set of Declare constraints among those that are typically used for process
mining, with their textual description, graphical notation, and examples fulfilling or
violating them.

Constraint Explanation Examples Notation

Existence constraints

Init(a) a is the first to
occur

�〈a, c, c〉 �〈a, b, a, c〉 ×〈c, c〉 ×〈b, a, c〉
a

Init

AtLeastOne(a) a occurs at least
once

�〈b, c, a, c〉 �〈b, c, a, a, c〉 ×〈b, c, c〉 ×〈c〉
a

1..∗

AtMostOne(a) a occurs at most
once

�〈b, c, c〉 �〈b, c, a, c〉 ×〈b, c, a, a, c〉 ×〈b, c, a, c, a, a〉
a

0..1

End(a) a is the last to occur �〈b, c, a〉 �〈b, a, c, a〉 ×〈b, c〉 ×〈b, a, c〉
a

End

Relation constraints

RespondedExistence(a, b) If a occurs in the
trace, then b occurs
as well

�〈b, c, a, a, c〉 �〈b, c, c〉 ×〈c, a, a, c〉 ×〈a, c, c〉 a b

Response(a, b) If a occurs, then b
occurs after a

�〈c, a, a, c, b〉 �〈b, c, c〉 ×〈c, a, a, c〉 ×〈b, a, c, c〉 a b

AlternateResponse(a, b) Each time a occurs,
then b occurs after-
wards, and no other
a recurs in between

�〈c, a, c, b〉 �〈a, b, c, a, c, b〉 ×〈c, a, a, c, b〉 ×〈b, a, c, a, c, b〉 a b

ChainResponse(a, b) Each time a occurs,
then b occurs imme-
diately afterwards

�〈c, a, b, b〉 �〈a, b, c, a, b〉 ×〈c, a, c, b〉 ×〈b, c, a〉 a b

Precedence(a, b) b occurs only if pre-
ceded by a

�〈c, a, c, b, b〉 �〈a, c, c〉 ×〈c, c, b, b〉 ×〈b, a, c, c〉 a b

AlternatePrecedence(a, b) Each time b occurs,
it is preceded by a
and no other b can
recur in between

�〈c, a, c, b, a〉 �〈a, b, c, a, a, c, b〉 ×〈c, a, c, b, b, a〉 ×〈a, b, b, a, b, c, b〉 a b

ChainPrecedence(a, b) Each time b occurs,
then a occurs imme-
diately beforehand

�〈a, b, c, a〉 �〈a, b, a, a, b, c〉 ×〈b, c, a〉 ×〈b, a, a, c, b〉 a b

Mutual relation constraints

CoExistence(a, b) If b occurs, then
a occurs, and vice
versa

�〈c, a, c, b, b〉 �〈b, c, c, a〉 ×〈c, a, c〉 ×〈b, c, c〉 a b

Succession(a, b) a occurs if and only
if it is followed by b

�〈c, a, c, b, b〉 �〈a, c, c, b〉 ×〈b, a, c〉 ×〈b, c, c, a〉 a b

AlternateSuccession(a, b) a and b if and
only if the latter
follows the former,
and they alternate
each other in the
trace

�〈c, a, c, b, a, b〉 �〈a, b, c, a, b, c〉 ×〈c, a, a, c, b, b〉 ×〈b, a, c〉 a b

ChainSuccession(a, b) a and b occur if and
only if the latter
immediately follows
the former

�〈c, a, b, a, b〉 �〈c, c, c〉 ×〈c, a, c, b〉 ×〈c, b, a, c〉 a b

Negative relation constraints

NotCoExistence(a, b) a and b never occur
together

�〈c, c, c, b, b, b〉 �〈c, c, a, c〉 ×〈a, c, c, b, b〉 ×〈b, c, a, c〉 a b

NotSuccession(a, b) b cannot occur after
a

�〈b, b, c, a, a〉 �〈c, b, b, c, a〉 ×〈a, a, c, b, b〉 ×〈a, b, b〉 a b

NotChainSuccession(a, b) a and b cannot
occur contiguously

�〈a, c, b, a, c, b〉 �〈b, b, a, a〉 ×〈a, b, c, a, b〉 ×〈c, a, b, c〉 a b

112 C. Di Ciccio and M. Montali

2 DECLARE: A Gentle Introduction

Declare is a language and graphical notation providing an extendible repertoire
of templates to formulate constraints. The origin of the approach traces back to
the PhD work by Pesic [75], and the parallel and consequent study in the PhD
work by Montali [67]. Notably, Declare actually stems from three initial lines
of research, respectively focused on the declarative specification of business pro-
cesses (cf. the ConDec language [78]), service choreographies (cf. the DecSerFlow
language [70,94]), and clinical guidelines (cf. the CigDec language [72]). These
lines were then unified into a single research thread. The term Declare was
used for the first time in [76].

Table 1 shows a set of Declare constraints we use throughout this chapter.
The whole, core set of Declare templates has been inspired by a catalogue of
temporal logic patterns used in model checking for a variety of dynamic systems
from different application domains [41].

Formally, we define a declarative process specification as follows.

Definition 1 (Declarative process specification). A declarative process
specification is a tuple DS = (Rep,Act,K) where

• Rep is a finite non-empty set of templates, where each template is a predicate
k(x1, . . . , xm) ∈ Rep on variables x1, . . . , xm (with m ∈ N the arity of k),

• Act is a finite non-empty set of activities,
• K is a finite set of constraints, namely pairs (k(x1, . . . , xm), κ) where
k(x1, . . . , xm) is a template from Rep, and κ is a mapping that, for every
i ∈ {1, . . . , m} assigns variable xi with an activity κ(xi) = ai ∈ Act; we
compactly denote such a constraint with k(a1, . . . , am). �

Example 1 (A Declare process specification). Figure 2 portrays an exam-
ple of declarative specification for the admission process of an international
Bachelor’s program. This example considers the Declare repertoire of tem-
plates. The process begins with the creation of an account in the university
portal (henceforth, c). To specify that c is the initial task, we write Init(c),
graphically depicted with the Init label in the tag on top of the activity box.
Init is a unary template and Init(c) assigns its variable with activity c. Unary
templates in Declare are also known as existence templates. We indicate that
not more than one account can be created per process run with AtMostOne(c).
In the diagram, it is indicated with the 0..1 label in the tag.

To register for a selection round (r), an account must have been created before
(Precedence(c, r)). Precedence is a binary template and Precedence(c, r),
graphically depicted as c r , assigns c and r to its first and second
variable, respectively. Binary templates in Declare are commonly named as
relation templates.

Every registration to a selection round (r) gives access to a uniquely corre-
sponding evaluation phase (v). After r, v eventually follows and no other reg-
istrations are allowed until v completes. We write AlternateResponse(r, v),
graphically depicted as r v . The evaluation requires r to

Declarative Process Specifications 113

Create
candidate account

(c)

0..1
Init

Register for
selection round

(r)

Upload
admission test score

(t)

Enter
evaluation phase

(v)

Receive
rejection notification

(n)

Receive
admission notification

(y)

Pay
subscription fee

($)

Pre-enrol
in the program

(p)

0..1

Upload
certificates

(u)

Enrol
in the program

(e)

0..1

Fig. 2. The Declare map of the admission process at a university.

be completed before and v will not recur unless a new registration is
issued: AlternatePrecedence(r, v), r v . Typically, if both
AlternateResponse(r, v) and AlternatePrecedence(r, v) hold true, we
compactly represent them jointly with the mutual relation constraint
AlternateSuccession(r, v) r v . An admission test score has to
be uploaded in the platform to access the evaluation phase: Precedence(t, v).
Evaluation phases are necessary for the committee to return rejections (n)
and notifications of admission (y), thus AlternatePrecedence(v, y) and
AlternatePrecedence(v, n) hold.

After the admission has been notified, the candidate will not receive a rejec-
tion any longer – NotResponse(y, n), drawn in Fig. 2 as y n .
NotResponse(y, n) falls under the category of the negative relation constraints,
as the occurrence of y disables n in the remainder of the process execution.

Only if candidates receive a notification of admission, they will be enti-
tled to pre-enrol in the program (Precedence(y, p)). The candidates are
considered as pre-enrolled immediately after they pay the subscription fee
(ChainResponse($, p), shown as follows in the diagram: $ p).
Also, candidates cannot be considered as pre-enrolled if they have not paid the
subscription fee: Precedence($, p). Not more than one pre-enrolment is allowed
per candidate: AtMostOne(p). To enrol in the program (e), the candidate must
have pre-enrolled – Precedence(p, e) – and uploaded the necessary school and
language certificates – Precedence(u, e).

So far, we have been attaching an informal semantics to Declare and its
templates. In the next section, we provide a more systematic and formal char-
acterization.

3 Formal Background

Considering that Declare templates have been originally defined starting from
a catalogue of Linear Temporal Logic (LTL) patterns [41], it is not surprising
that temporal logics have been used to characterize the semantics of Declare
since the very beginning. However, the fact that Declare specifications are
interpreted over finite-length executions calls for the use of Linear Temporal
Logic on Finite Traces (LTLf) [30]. This indeed leads to a setting that is radically

114 C. Di Ciccio and M. Montali

different, both semantically and algorithmically, from the traditional one where
formulae are interpreted using LTL over infinite, recurring behaviors [29].

A complete formalization of Declare templates, also including an alterna-
tive formalization using a logic programming-based approach, can be found in
[68]. It was later refined in [29]. In his PhD thesis, Di Ciccio was the first to
provide a semantics based on regular expressions [36]. These two themes were
later unified in [28], leading to a richer framework that is able to declaratively
capture constraints and metaconstraints, that is, constraints predicating over
the possible/certain satisfaction and violation of other constraints.

In this section, we provide some necessary background on LTLf and its exten-
sion with past-tense temporal operators, as well as on the automata-theoretic
characterization for this logic. We then use this framework to formalize Declare
and reason automatically on Declare specifications. Thereupon, we reflect
upon the most recent advances of research in attempting at capturing not only
the formal semantics of constraints, but also how they pragmatically interact
with relevant events.

3.1 Linear Temporal Logic on Finite Traces

LTLf has the same syntax of LTL [80], but is interpreted on finite traces. In this
chapter, in particular, we consider the LTL dialect including past modalities [56]
for declarative process specifications as in [18].

From now on, we fix a finite set Σ representing an alphabet of propositional
symbols describing (names of) activities available in the domain under study.
A (finite) trace t = 〈a1, . . . , an〉 ∈ Σ of length |t| = n is a finite sequence of
activities, where the presence of activity ai at instant i of the trace represents
an event that witnesses the occurrence of ai at instant i – which we also write
t(i) = ai. Notice that at each instant we assume that one and only one activity
occurs. Using standard notation from regular expressions, the set Σ∗ denotes
the overall set of traces whose constitutive events refer to activities in Σ.

Definition 2 (Syntax of LTLf). Well-formed formulae are built from Σ, the
unary temporal operators © (next) and � (yesterday), and the binary temporal
operators U (until) and S (since) as follows:

ϕ ::= a | (¬ϕ) | (ϕ1 ∧ ϕ2) | (© ϕ) | (ϕ1 U ϕ2) | (� ϕ) | (ϕ1 S ϕ2)

where a ∈ Σ. �

Definition 3 (Semantics of LTLf , satisfaction, validity, entailment).
An LTLf formula ϕ is inductively satisfied in some instant i (1 ≤ i ≤ n) of a
trace t of length n ∈ N, written t, i � ϕ, if the following holds:

• t, i � a iff t(i) is assigned with a;
• t, i � ¬ϕ iff t, i � ϕ;
• t, i � ϕ1 ∧ ϕ2 iff t, i � ϕ1 and t, i � ϕ2;
• t, i � © ϕ iff i < n and t, i + 1 � ϕ;

Declarative Process Specifications 115

• t, i � � ϕ iff i > 1 and t, i − 1 � ϕ;
• t, i � ϕ1 U ϕ2 iff t, j � ϕ2 with i ≤ j ≤ n, and t, k � ϕ1 for all k s.t.

i ≤ k < j;
• t, i � ϕ1 S ϕ2 iff t, j � ϕ2 with 1 ≤ j ≤ i, and t, k � ϕ1 for all k s.t.

j < k ≤ i.

A formula ϕ is satisfied by a trace t (equivalently, t satisfies ϕ), written t � ϕ, iff
t, 1 � ϕ. A formula ϕ is: (i) satisfiable if it has a satisfying trace from Σ∗; (ii)
valid if every trace in Σ∗ satisfies it. A formula ϕ1 entails formula ϕ2, written
ϕ1 |= ϕ2, if, for every trace t of length n ∈ N and every i s.t. 1 ≤ i ≤ n, if
t, i |= ϕ then t, i |= ψ. �

Since LTLf is closed under negation, it is easy to see that a formula ϕ is valid
if and only if ¬ϕ is unsatisfiable.

It is worth noting that, in LTLf , the next operator is interpreted as the so-
called strong next: © ϕ requires that the next instant exists within the trace, and
that at such next instant ϕ holds. This has an important consequence: differently
from LTL, in LTLf formula ¬© ϕ is not equivalent to © ¬ϕ. This is because
¬© ϕ is true in an instant of a finite trace either when that instant has no
successor, or the next instant exists and in such a next instant ϕ does not hold.
More on this can be found in [29].

From the basic operators above, the following can be derived:

• Classical boolean abbreviations true, false,∨,→;
• Constant end ≡ ¬© true, denoting the last instant of a trace;
• Constant start ≡ ¬� true, denoting the first instant of a trace;
• ♦ϕ ≡ true U ϕ indicating that ϕ eventually holds true in the trace (hence,

before or at end);
• ϕ1 W ϕ2 ≡ (ϕ1 U ϕ2)∨�ϕ1, which relaxes U as ϕ2 may never hold true;
• ♦ ϕ ≡ true S ϕ indicating that ϕ holds true at some instant before the

current one (i.e., after start in the trace);
• �ϕ ≡ ¬♦ ¬ϕ indicating that ϕ holds true from the current instant till end;
• �ϕ ≡ ¬ ♦ ¬ϕ indicating that ϕ holds true from start to the current instant.

Example 2. Let t = 〈a, b, b, c, d, e〉 be a trace and ϕ1, ϕ2 and ϕ3 three LTLf

formulae defined as follows: ϕ1
.= d; ϕ2

.= ♦ b; ϕ3
.= �(b → ♦ d). We have that

t, 1 � ϕ1 whereas t, 5 � ϕ1; t, 1 � ϕ2 whereas t, 5 � ϕ2; t, 1 � ϕ3 and t, 5 � ϕ3 (in
fact, t, i � ϕ3 for any instant 1 ≤ i ≤ n). �

3.2 Finite-State Automata

One of the central features of LTLf is that a finite state automaton (FSA)
[22] A (ϕ) can be computed such that for every trace t we have that t � ϕ
iff t is in the language recognized by A (ϕ), as illustrated in [18,28,30,38]. We
include the main notions next, recalling that focusing on deterministic FSAs is
without loss of generality, as over finite traces every non-deterministic FSAs can
be determinized [50].

116 C. Di Ciccio and M. Montali

s0 s1

s2

σ ∈ Σ \{σ1}

σ1

σ2

σ ∈ Σ \{σ1, σ2}

σ1

σ ∈ Σ

(a)

s0 s1

s2

σ ∈ Σ \{σ1}

σ1

σ2

σ ∈ Σ \{σ2}

σ ∈ Σ

(b)

s0 s1

s2

σ ∈ Σ \{σ1, σ2}

σ2

σ ∈ Σ

σ1

σ ∈ Σ

(c)

s0 s1

s2

σ ∈ Σ \{σ1}

σ1

σ ∈ Σ

σ1

σ ∈ Σ \{σ1}

(d)

Fig. 3. Examples of constraint FSAs.

Definition 4 (Finite state automaton (FSA)). A (deterministic) finite
state automaton (FSA) is a tuple A = (Σ,S, δ, s0, SF), where:

• Σ is a finite set of symbols;
• S is a finite non-empty set of states;
• δ : S × Σ → S is the transition function, i.e., a partial function that, given a

starting state and a (labeled) transition, returns the target state;
• s0 is the initial state;
• SF ⊆ S is the set of final (accepting) states sF ∈ SF

�
In the remainder of the chapter, we assume that δ is left-total and surjective on
S \ {s0}, that is, the transition function is defined for every state and symbol,
and every state is on a path from the initial one – with the possible exception
of the initial state itself. An FSAs that is left-total is called untrimmed. Notice
that these two requirements are without loss of generality: every FSA can be
converted into an equivalent FSA that is left-total and surjective. In particular,
to make an FSAs untrimmed, it is sufficient to: (i) introduce a non-final trap state
s⊥; (ii) for every state s and symbol a′ such that δ(s, a′) is not defined, enforce
δ(s, a′) = s⊥; (iii) connect s⊥ to itself for every symbol, setting δ(s⊥, a) = s⊥
for every a ∈ Σ.

Example 3. Figure 3 depicts four FSAs. States are represented as circles and
transitions as arrows. Accepting states are decorated with a double line. The
initial state is indicated with a single, unlabeled incoming arc. For instance,
Fig. 3(a) is such that Σ ⊇ {σ1, σ2}, S = {s0, s1, s2}, SF = {s0}, δ(s0, σ1) = s1
and δ(s1, σ1) = s2. �

Definition 5 (Runs and traces of an FSA). Let A = (Σ,S, δ, s0, SF) be an
FSA as per Definition 4. A computation π of A is a finite sequence alternating
states and activities s0

σ0−→ . . .
σn−1−−−→ sn that starts from the initial state s0 is

such that for every 0 ≤ i < n, we have δ(si, σi) = si+1. If π terminates in a
final state, that is, sn ∈ SF, then it is a run, and induces a corresponding trace
σ0, . . . , σn−1 over Σ∗ obtained from π by only keeping the symbols that label the
transitions. �

Declarative Process Specifications 117

Example 4. In Fig. 3(a), π1 = s0
σ1−→ s1, π2 = s0

σ2−→ s0
σ1−→ s1

σ1−→ s2, and
π3 = s0

σ1−→ s1
σ2−→ s2

σ1−→ s0 are three examples of computations. However,
only π3 is a run because s0 ∈ SF whereas s1, s2 /∈ SF. Notice that, in Fig. 3, we
additionally highlight with a grey background colour those states that cannot
be in a step of a run – that is, from which accepting states cannot be reached
(e.g., s2 in Fig. 3(a)). �

Definition 6 (Accepted trace, language of an FSA). A trace t ∈ Σ∗ is
accepted by FSA A = (Σ,S, δ, s0, sF) if there is a run of A inducing t. The
language L (A) of A is the set of traces accepted by A. �

Example 5. For the FSA in Fig. 3(a), the language contains the trace t1 =
〈σ1, σ2, σ1〉, since a run exists over this sequence of labels (i.e., π3 above), whereas
t2 = 〈σ2, σ1〉 is not part of the language. �

Automata Product. FSAs are closed under the (synchronous) product operation
× [81]. The (cross-)product A × A′ of two FSAs A and A′ is an FSA that
accepts the intersection of languages (sets of accepted traces) of each operand:
L (A × A′) = L (A)

⋂
L (A′). It is defined as follows.

Definition 7 (Automata product). The product FSA of two FSAs A =
(Σ,S, δ, s0, SF) and A′ = (Σ,S′, δ′, s′

0, S
′
F) over the same alphabet Σ is the FSA

A×A′ = (Σ,S×, δ×, s×
0 , S×

F), where the set S× ⊆ S×S′ of states (obtained from
the cartesian product of the states in A and A′), its initial state s×

0 , its final
states S×

F , and the transition function δ×, are defined by simultaneous induction
as follows:
• s×

0 = 〈s0, s′
0〉 ∈ S×;

• For every state 〈s1, s′
1〉 ∈ S×, state s2 ∈ S, state s′

2 ∈ S′, and label
 ∈ Σ, if
δ(s1,
) = s2 and δ′(s′

1,
) = s′
2 then: (i) 〈s2, s′

2〉 ∈ S×, (ii) δ×(〈s1, s′
1〉,
) =

〈s2, s′
2〉, (iii) if s2 ∈ SF and s′

2 ∈ S′
F, then 〈s2, s′

2〉 ∈ S×
F .

• Nothing else is in S×
F , S×, and δ×.

�
Notice that the FSA constructed with Definition 7 can be manipulated using
language-preserving automata operations, such as in particular minimiza-
tion [50].

The product operation × is commutative and associative. The identity
element for × over alphabet Σ is AI = (Σ, {s0}, s0, {s0} × Σ × {s0}, {s0}) –
depicted in Fig. 4(a). It accepts all traces over Σ: L

(
AI

)
= P (Σ∗) as any

sequence of transitions labeled by symbols in Σ corresponds to a run for AI. The
absorbing element is A∅ = (Σ, {s0}, s0, {s0} × Σ × {s0}, ∅) and is illustrated in
Fig. 4(b). It does not accept any trace at all: L

(
A∅) = ∅ as any sequence of

transitions labeled by symbols in Σ corresponds to a computation ending in a
non-accepting state.

4 Reasoning

Equipped with the notions acquired thus far, we can now discuss the core reason-
ing tasks that are associated to declarative process specifications. To this end,
we begin this section by describing the semantics of Declare in detail.

118 C. Di Ciccio and M. Montali

s0

σ ∈ Σ

(a) Identity element

s0

σ ∈ Σ

(b) Absorbing element

Fig. 4. Finite state automata acting as identity element and absorbing element for the
automata cross-product operation.

4.1 Semantics of DECLARE

The semantics of a Declare template k(x1, . . . , xm) is given as an LTLf for-
mula ϕk(x1,...,xm) defined over variables x1, . . . , xm instead of activities. Given
the free variables x and y, e.g., Response(x, y) corresponds to �(x → ♦ y),
witnessing that whenever x occurs, then y is expected to occur at some later
instant. Table 2 shows the LTLf formulae of some templates of the Declare
repertoire. The formalization of a constraint is then obtained by grounding the
LTLf formula of its template.

Definition 8 (Constraint formula, satisfying trace). The formula of con-
straint k(a1, . . . , am), written ϕk(a1,...,am), is the LTLf formula obtained from
ϕk(x1,...,xm) by replacing xi with ai for each 1 ≤ i ≤ m. A trace t satis-
fies k(a1, . . . , am) if t |= ϕk(a1,...,am); otherwise, we say that t violates k(a1,
. . . , am). �

Example 6. Considering Table 2, we have ϕResponse(a,b) = �(a → ♦ b), and
ϕResponse(b,c) = �(b → ♦ c). Traces 〈b〉 and 〈a, b, a, a, c, b〉 satisfy Response(a, b),
while 〈a〉 and 〈a, b, a, a, c〉 do not. �

A Declare specification is then formalized by conjoining all its constraint for-
mulae, thus obtaining a direct, declarative notion of model trace, that is, a trace
that is accepted by the specification.

Definition 9 (Specification formula, model trace). The formula of
Declare specification DS = (Rep,Act,K), written ϕDS, is the LTLf formula∧

k∈K ϕk. A trace t ∈ Act∗ is a model trace of DS if t |= ϕDS; in this case, we
say that t is accepted by DS, otherwise that t is rejected by DS. �

Constructing constraint and specification formulae is, however, not enough.
When one reads �(a → ♦ b) following the textual description given above, the
formula gets intepreted as “whenever a occurs, then b is expected to occur at some
later instant”. This formulation intuitively hints at the fact that the occurrence of
a activates the Response(a, b) constraint, requiring the target b to occur. In turn,
we get that a trace not containing any occurrence of a is less interesting than a
trace containing occurrences of a, each followed by one or more occurrences of b:
even though both traces satisfy Response(a, b), the first trace never “interacts”

Declarative Process Specifications 119

Table 2. Semantics of some Declare constraints.

Template LTLfexpression [18,30] Activation Target

Existence constraints

AtLeastOne(x) � (start → ♦ x) start ♦ x

AtMostOne(x) �(x → ¬ © ♦ x) x ¬ © ♦ x

Init(x) � (start → x) start x

End(x) � (end → x) end x

Relation constraints

RespondedExistence(x, y) � (x → ♦ y ∨ ♦ y) x ♦ y ∨ ♦ y

Response(x, y) � (x → ♦ y) x ♦ y

AlternateResponse(x, y) � (x → ©(¬x U y)) x ©(¬x U y)

ChainResponse(x, y) � (x → © y) x © y

Precedence(x, y) � (y → ♦ x) y ♦ x

AlternatePrecedence(x, y) � (y →
(¬y S x)) y
(¬y S x)

ChainPrecedence(x, y) � (y →
 x) y
 x

Negative relation constraints

NotRespondedExistence(x, y) �(x → (� ¬y ∧ � ¬y)) x � ¬y ∧ � ¬y

NotResponse(x, y) �(x → � ¬y) x � ¬y

NotChainResponse(x, y) �(x → ¬ © y) x ¬ © y

NotPrecedence(x, y) �(y → � ¬x) y � ¬x

NotChainPrecedence(y, x) �(y → ¬
 x) y ¬
 x

with Response(a, b), while the second does. This relates to the notion of vacuous
satisfaction in LTL [51] and that of interestingness of satisfaction in LTLf [39].

The point is, all such considerations are not captured by the formula �(a →
♦ b), but are related to pragmatic interpretation of how it relates to traces. To see
this aspect, let us consider that we can equivalently express the formula above
as � ¬a∨♦(b∧� ¬a), which now reads as follows: “Either a never happens at all,
or there is some occurrence of b after which a never happens”. This equivalent
reformulation does not put into evidence the activation or the target.

This problem can be tackled in two possible ways. One option is to attempt
at an automated approach where activation, target, and interesting satisfaction
are semantically, implicitly characterized once and for all at the logical level;
this is the route followed in [39]. The main drawback of this approach is that
the user cannot intervene at all in deciding how to fine-tune the activation and
target conditions. An alternative possibility is instead to ask the user to explicitly
indicate, together with the LTLf formula ϕ of the template, also two related
LTLf formulae expressing activation and target conditions for ϕ. This latter
approach, implicitly adopted in [69] and then explicitly formalized in [18], gives
more control to the user on how to pragmatically interpret constraints. We follow
this latter approach.

Intuitively, the activation of a constraint is a triggering condition that, once
made true, expects that the target condition is satisfied by the process execution.

120 C. Di Ciccio and M. Montali

Contrariwise, if the constraint is not activated, the satisfaction of the target is
not enforced. All in all, to properly constitute an activation-target pair for an
LTLf formula ϕ, we need them to satisfy the condition that whenever the current
instant is such that the activation is satisfied, ϕ must behave equivalently to the
target (thus requiring its satisfaction). This is formally captured as follows.

Definition 10 (Activation and target of a constraint). The activation
and target of a constraint k over activities Act are two LTLf formulae k and
k such that for every trace t ∈ Act∗ we have that:

t � ϕk iff t � � (k → (k))

Table 2 shows activations and targets for each constraint, inspired by the
work of Cecconi et al. [18]. In the next example, we explain the rationale behind
some of the constraint formulations in the table.

Example 7. Consider ChainResponse($, p), dictating that whenever $ occurs,
then p is the activity occurring next. We have ϕChainResponse($,p) = �($ →
© p). Then, by Definition 10, we can directly fix ChainResponse($, p) = $,
and ChainResponse($, p) = © p, respectively witnessing that every occur-
rence of $ triggers the constraint, with a target requiring the consequent
execution of p in the next instant. Similarly, for Precedence($, p) we have
ϕPrecedence($,p) = � (p → ♦ $), and in turn, by Definition 10, ϕPrecedence($,p) =
p and ϕPrecedence($,p) = ♦ $. The case of AtMostOne(p) is also similar.
In this case, ϕAtMostOne(p) formalizes that p cannot occur twice, which in
LTLf can be directly captured by ¬♦(p ∧ ©♦ p). This is logically equiv-
alent to �(p → ¬© ♦ p), which directly yields AtMostOne(p) = p and
AtMostOne(p) = ¬© ♦ p.

A quite different situation holds instead for the other existence constraints.
Take, for example, AtLeastOne(a), requiring that a occurs at least once in the
execution. This can be directly encoded in LTLf as ♦ a. This formulation, how-
ever, does not help to individuate the activation and target of the constraint.
Intuitively, we may disambiguate this by capturing that since the constraint
requires the presence of a from the very beginning of the execution, the con-
straint is indeed activated at the beginning, i.e., when start holds, imposing the
satisfaction of the target ♦ a. This intuition is backed up by Definition 10, using
the semantics of start and noticing the following logical equivalences:

♦ a = start → ♦ a = � (start → ♦ a)

This explains why the latter formulation is employed in Table 2. �

Declarative Constraints as FSAs. Crucial for our techniques is that every LTLf

formula ϕ can be encoded into a corresponding FSA (in the sense of Defini-
tion 4) Aϕ that recognizes all and only those traces that satisfy the formula.
This can be done through different algorithmic techniques. A direct approach

Declarative Process Specifications 121

s0 s1

s2

σ ∈ Σ \{r}

r

v

σ ∈ Σ \{r, v}

r

(a) Alt.Resp.(r, v)

s0 s1

s2

σ ∈ Σ \{$}

$

p

σ ∈ Σ \{p}

σ ∈ Σ

(b) Chn.Resp.($, p)

s0 s1

s2

σ ∈ Σ \{u, e}

e

σ ∈ Σ

u

σ ∈ Σ

(c) Prec.(u, e)

s0 s1

s2

σ ∈ Σ \{p}

p

σ ∈ Σ

p

σ ∈ Σ \{p}

(d) AtMostOne(p)

Fig. 5. Example FSAs of Declare constraints.

that transforms an input formula into a non-deterministic FSAs is presented in
[28,29]; notice that the so-obtained FSAs can then be determinized and mini-
mized using standard techniques [50,99]. A fortiori, given a Declare specifica-
tion DS = (Rep,Act,K), we proceed as follows:

• We pair each constraint k ∈ K to a corresponding, so-called local automaton
Ak. This automaton is the FSA Aϕk of the constraint formula ϕk, and is used
to characterize all and only those traces that satisfy k;

• We pair the whole specification to a so-called global automaton ADS, that is,
the FSA AϕDS of the constraint formula ϕDS. It thus recognizes all and only
the model traces of DS. Recall that, as introduced in Definition 9, ϕDS is the
conjunction of the formulae of the constraints in K, and thus the language
L (ADS) corresponds to

⋂
k∈K L (Ak). By definition of automata product,

this means that L (ADS) can be obtained by computing the product of the
local automata of the constraints in K.

Figure 5 shows four local automata for constraints taken from our running exam-
ple: AlternateResponse(r, v), ChainResponse($, p), Precedence(u, e) and
AtMostOne(p). Examples of global automata are instead given in Fig. 6.

In the remainder of this chapter, we will extensively use local and global
automata for reasoning, discovery, and monitoring. Though out of scope for
this chapter, it is also worth mentioning that the automata-based approach has
also been used for simulation of Declare models and thereby the production
of event logs from declarative specifications [37], and also to define enactment
engines for Declare specifications [76,97].

4.2 Reasoning on DECLARE Specifications

Reasoning on a Declare specification is necessary to understand which model
traces are supported and, in turn, to ascertain its correctness. Reasoning is
also key to unveil how constraints interact with each other, and check whether
activations and targets are properly defined. As we will see, this is instrumental
not only to analyze specifications, but it is also an integral part of declarative
process mining.

In general, reasoning on declarative specifications is of particular importance:
while they enjoy flexibility, they typically do not explicitly indicate how execu-

122 C. Di Ciccio and M. Montali

s0

s1

s2 s3

s4

σ ∈ Σ̄ ∪ {p, v} $
p

r

v

σ ∈ Σ̄ ∪ {p}

$

p

σ ∈ Σ \ {p}

r σ ∈ Σ \ {p}

σ ∈ Σ

(a) Alt.Resp.(r, v) and
Chn.Resp.($, p), where Σ̄ is
Σ \ {r, v, $, p}

s0

s1

s2s3 s4

s5 s6

s7 s8

to s8 to s8

σ ∈ Σ̄ ∪ {p, v} r

e

v u

$
σ ∈ Σ̄ ∪ {p}

e, r

p

σ ∈ Σ \ {p}

u

σ ∈ Σ̄ ∪ {u, v, e, p}

$

r

v

$

σ ∈ Σ̄ ∪ {u, e, p}

r

p

σ ∈ Σ \ {p}

$ p

σ ∈ Σ \ {p}
p

σ ∈ Σ \ {p}

σ ∈ Σ

(b) Alt.Resp.(r, v), Chn.Resp.($, p) and
Prec.(u, e), where Σ̄ is Σ \ {r, v, $, p, u, e}

s0

s2

s5

s6

s7 s8

s4

s9

s10

s11s3

s1

to s12

to s12

to s12

to s12
to s12

to s12

s12

σ∈Σ̄ ∪ {v}

$

r

e

u

p

σ∈Σ\{p} p

v

σ∈Σ̄

$

u

p

r, e

ppσ∈Σ\{p}
σ∈Σ̄ ∪ {v}

u

r

e, p, $

σ∈Σ̄ ∪ {e, u, v}

r

$

p

σ∈Σ̄ ∪ {e, u}

v

r $

p

p
σ∈Σ \{p}

σ∈Σ̄ ∪ {e, u, v}

r

p, $

p

σ∈Σ\{p}

v

σ∈Σ̄ ∪ {e, u}

p, r, $

v

u

σ∈Σ̄

e, p, r, $

(c) Alt.Resp.(r, v), Chn.Resp.($, p), Prec.(u, e) and AtMostOne(p), where Σ̄ is
Σ \ {r, v, $, p, u, e} (for the sake of readability, a few transitions to s12 are omitted)-

Fig. 6. Global automata for the interplay of Declare constraints.

tion has to be controlled. We have seen how this phenomenon concretely man-
ifests itself in the context of Declare: traces conforming to the specification
(that is, model traces) are only implicitly described as those that satisfy all
the given constraints. Constraints, in turn, may be quite diverse from each other
(e.g., indicating what is expected to occur, but also what should not happen) and,
even more importantly, may affect each other in subtle, difficult to detect ways.
This phenomenon is known, in the literature that studies the cognitive impact
of languages and notations, under the name of hidden dependencies [47]. Hid-
den dependencies in Declare have been studied in [32,70], and their impact on
understandability and interpretability of declarative process models has spawned
a dedicated line of research, started in [48].

We detail next key reasoning tasks in the context of Declare, substantiating
how hidden dependencies enter into the picture. We show that all such reasoning
tasks can be homogeneously tackled by a single check on the global automaton
of the specification under study.

Declarative Process Specifications 123

a

1..∗

b

d

0..1

c

(a) Inconsistent

a

b

d

c

(b) Dead activity: b

a b

(c) All activities dead

Fig. 7. Examples of incorrect Declare specifications.

Specification Consistency. This is the most fundamental task, defined as follows.

Definition 11 (Consistent specification). A Declare specification DS is
consistent if there exists at least one model trace for DS. �

Example 8. Consider the Declare specification in Fig. 7(a). The specifica-
tion is inconsistent. This is not due to conflicting constraints insisting on
the same activity, but due to hidden dependencies arising from the inter-
play of multiple constraints. To see why the specification is inconsistent, we
can try to construct a trace that satisfies some of the constraints in the
model, until we reach a contradiction (i.e., the “trace pattern” constructed so
far violates a constraint of the specification). This is graphically shown next:

a b c dd

AtLeastOne(a)

Precedence(d, a) Response(a, b)
Response(b, c)

Response(c, d)

AtMostOne(d)

The picture clearly depicts that AtLeastOne(a) triggers:

• on the one hand Precedence(d, a), calling for a preceding occurrence of d;
• on the other hand, in cascade, Response(a, b), Response(b, c), and

Response(c, d), calling for a later occurrence of d.

Considering the interplay of the involved constraints, d is required to occur in
different instants, hence twice, in turn violating AtMostOne(d). �

By definition of model trace, it is immediate to see that DS is consistent if
and only if the LTLf specification formula ϕDS is satisfiable. This, in turn, can
be algorithmically verified by first constructing the global automaton ADS, and
then checking whether such an automaton is empty (i.e., it does not recognize
any trace). Specifically, ϕDS is satisfiable if and only if ADS is non-empty.

124 C. Di Ciccio and M. Montali

Detection of Dead Activities. This task amounts to check whether a Declare
specification is over-constrained, in the sense that it contains an activity that
can never be executed (in that case, such an activity is called dead).

Definition 12 (Dead activity). Let DS = (Rep,Act,K) be a Declare
specification. An activity a ∈ Act is dead in DS if there is no model trace of DS
where a occurs. �

Example 9. Consider the Declare specification in Fig. 7(b). The specification
is consistent; as an example, trace 〈c, d〉 is a model trace. However, none of its
model traces can foresee the execution of b. This can be seen if one tries to
construct a trace containing an occurrence of b. The result is the following:

b c da

Assumption

Precedence(a, b) Response(b, c)
Response(c, d)

NotResponse(a, d)

It is apparent that the presence of b requires a previous occurrence of a and,
indirectly, a future occurrence of d, violating NotResponse(a, d). This shows
that b is a dead activity.

Consider now the specification in Fig. 7(c). The situation here is trickier.
The specification is consistent, as it accepts the empty trace (where no activ-
ity is executed, and hence none of the two response constraints present in the
specification gets activated). However, none of the two activities a and b present
therein can occur. As soon as this happens, the combination of the two response
constraints cannot be finitely satisfied. In fact, an occurrence of a requires a later
occurrence of b, which in turn requires a later occurrence of a, and so on and so
forth, indefinitely. In other words, in every instant, one between Response(a, b)
and Response(b, a) must be active and waiting for a later occurrence of its tar-
get, in a future instant. Since every instant must have a next instant, it is not
possible to construct a satisfying (finite) trace. �

Dead activity detection can be directly reduced to (in)consistency of a spec-
ification. Specifically, activity a is dead in a Declare specification DS =
(Rep,Act,K) if and only if the specification (Rep,Act,K∪{AtLeastOne(a)}),
obtained from DS by forcing the existence of a is inconsistent (i.e., its specifica-
tion formula is not satisfiable).

Valid Activation and Target. To ensure that a Declare constraint k comes
with a valid activation k and target k for its formula ϕk, we can directly apply
Definition 10 and check whether the LTLf formula ϕk ↔ �(k → k) is valid,
that is, whether its negation is not satisfiable.

Declarative Process Specifications 125

Checking Relations Between Constraints/Specifications. We establish two key
relations between constraints/specifications. The first is that of subsumption
between templates, leveraging the entailment relation between LTLf formulae
to constraints. We formally define it as follows.

Definition 13 (Subsumption). Let k(x1, . . . , xm),k′(x1, . . . , xm) ∈ Rep two
templates. k(x1, . . . , xm) subsumes k′(x1, . . . , xm) (in symbols, k(x1, . . . , xm) �
k′(x1, . . . , xm)) if, given any mapping κ assigning x1, . . . , xm with activities
a1, . . . , am ∈ Act, ϕk(a1,...,am) |= ϕk′(a1,...,am). �

This relation can be checked by verifying that ϕk(a1,...,am) → ϕk′(a1,...,am) is valid,
that is, the negated formula ϕk(a1,...,am) ∧¬ϕk′(a1,...,am) is not satisfiable for any
a1, . . . , am ∈ Act. For example, Alt.Prec.(x, y) � Precedence(x, y) as the
former requires that y can occur only if preceded by x (just as the latter) and y
does not recur in between. Therefore, every event that satisfies the former must
satisfy the latter too. In the following, we shall lift this notion to constraints too
(e.g., we say that AlternatePrecedence(y, p) subsumes Precedence(y, p)).

By Definition 8 and Definition 9, since both Declare constraints and spec-
ifications correspond to LTLf formulae, we can use subsumption for a twofold
purpose:

• Consider two candidate constraints k1 and k2. If k1 � k2, then we know that
adding k1 to a Declare specification will make the addition of k2 irrelevant,
and that adding k1 or k2 will determine whether the specification is more or
less constraining.

• Consider a candidate constraint k and a target specification DS. If the former
logically entails the latter, ϕDS |= ϕk, then k is redundant in DS, and it makes
no sense to include it in DS.

The second relation characterizes constraints that are the negated version of
each other. Let k1 and k2 be two Declare constraints, coming with activation
formulae k1 and k2 and target formulae k1 and k2 , respectively. We say
that k1 and k2 are the negated versions of one another if their activations are
logically equivalent, that is k1 ↔ k2, and their targets are incompatible, that
is, k1 ∧ k2 is false. An example is that of Response vs NotResponse.

Consider now the situation where a decision must be taken concerning which
of two candidate constraints k1 and k2 can be added to a Declare specification.
Knowing that k1 and k2 are the negated versions of one another indicates that
they should not both be added to the specification, as including them both would
make the specification inconsistent as soon as the two constraints are activated.

As we will see in the next section, these notions become key when dealing with
declarative process mining, and in particular the discovery of Declare speci-
fications from event logs. Figure 8 graphically depicts how the main Declare
constraint templates relate to each other in terms of subsumption and negated
versions.

126 C. Di Ciccio and M. Montali

Cardinality templates

Position templates

AtLeastOne(x) AtMostOne(x)

Init(x) End(x)

(a) Existence templates
Relation templates Negative relation templates Relation templates Negative relation templates

RespondedExistence(x, y)RespondedExistence(y, x) NotRespondedExistence(y, x) NotRespondedExistence(x, y)

Response(x, y)

AlternateResponse(x, y)

ChainResponse(x, y)

Precedence(x, y)

AlternatePrecedence(x, y)

ChainPrecedence(x, y)

NotPrecedence(x, y)

NotChainPrecedence(x, y)

NotResponse(x, y)

NotChainResponse(x, y)

negates negates

(b) Relation templates

Fig. 8. The subsumption map of Declare templates. Templates are indicated with
solid boxes. The subsumption relation is depicted as a line starting from the subsumed
template and ending in the subsuming one, with an empty triangular arrow recalling
the UML IS-A graphical notation. The negative templates are graphically linked to the
corresponding relation templates by means of wavy grey arcs.

5 Declarative Process Mining

Declarative process constraints depict the interplay of every activity in the pro-
cess with the rest of the activities. As a consequence, the behavioural relation-
ships that hold among activities can be analysed with a local focus on each
one [9], as a projection of the whole process behaviour on a single element thereof.
The constraints pertaining to a single activity thus be seen as its footprint in
the global behaviour of the process. We shall interchangeably interpret Declare
constraints as (i) behavioural relations between activities in a process specifica-
tion or (ii) rules exerted on the occurrence of events in traces. Notice that the
latter is a different approach than the former, typically used for process mod-
elling as originally conceived by the seminal work of Pesic et al. [77]. The former
is instead the basis for declarative process mining. In the following, we describe
how process specifications can be discovered and monitored.

5.1 Declarative Process Discovery

Declarative process discovery refers to the inference of those constraints that
significantly rule the behaviour of a process, based upon an input event log. The
problem can be framed in two distinct ways:

• A discriminative discovery problem, reminiscent of a classification task. This
requires to split the input event log in two partitions, one containing “pos-
itive” examples and the second containing “negative” examples. Discovery

Declarative Process Specifications 127

Algorithm 1: Overview of the discovery algorithm
Input: L ∈ B(U∗

act), the event log to be analyzed;
Rep, a finite set of Declare templates to be considered to express the discovered specification;
Act ⊆ Uact , a finite set of activities to be included in the discovered specification;
confmin

t , suppmin
t , confmin

e , suppmin
e , the minimum thresholds for trace-based confidence and

support, and event-based confidence and support, respectively (default for all four parameters: 0.0);
Output: DS, a declarative process specification

1 K ←
{
k(a1, . . . , am) : k ∈ Rep, a1; . . . , am ∈ Act, ai �= aj with 1 ≤ i, j ≤ m

}

/* candidate constraints: templates assigned with any pair of distinct activities */

2 foreach k ∈ K /* compute measures */
3 do

4 ct ← conft(k, L); se ← suppt(k, L); ce ← confe(k, L); se ← suppe(k, L)

5 if ct ≤ confmin
t or st ≤ suppmin

t or ce ≤ confmin
e or se ≤ suppmin

e then

6 K ← K \ {k} /* remove constraints with a measure below the threshold */

7 foreach k ∈ K /* remove constraints as per subsumption hierarchy and negated v. */
8 do

9 foreach k′ ∈ K s.t. k′ 	 k /* for every k′ that subsumes k in K */
10 do

11 if allm
(
k′, L

)
≤ allm(k, L) /* if the measures of k′ are ≤ those of k */

12 then

13 K ← K \ {k}
14 else K ← K \ {k′}
15 foreach k′ ∈ DS s.t. k′ is the negated version of k do

16 if allm
(
k′, L

)
< allm(k, L) then K ← K \ {k}

17 else K ← K \ {k′}

18 return DS = (Rep,Act, K)

amounts to find a suitable Declare specification that correctly reconstructs
the classification, that is, accepts all positive examples and reject all negative
ones.

• A standard discovery problem – also known as specification mining in the
software engineering literature [53]. This calls for the individuation of which
Declare constraints best describe the traces in the log, considering all of
them as “positive” examples.

The first discovery algorithm for Declare treated discovery as a discriminative
problem, exploiting inductive logic programming to tackle it [20,52]. In parallel,
Goedertier et al. [46] brought forward techniques to generate negative examples
from positive ones. Interestingly, this line of investigation recently received again
the attention of the community [19,89].

Declarative process discovery framed as a standard discovery problem finds
its two main exponents in Declare Miner [58] and MINERful [40], which have
been then extended with an arsenal of techniques to improve the quality and
correctness of the discovered specifications. We follow the second thread, sum-
marizing the main ideas exploited therein, though reshaping the core concepts
in an attempt to embrace the wider plethora of declarative process discovery
techniques and the advancements they brought [8,18,59].

Process discovery in a declarative setting typically consists of the following
phases:

1) The initial setup, i.e., the selection of (i) the templates to be sought for, (ii)
the activities to be considered for the candidate constraints instantiating those
templates, and (iii) the minimum thresholds for constraint interestingness
measures to retain a candidate constraint;

128 C. Di Ciccio and M. Montali

2) The computation of interestingness measures for all the constraints that
instantiate the given templates;

3) The simplification of the returned specification, through (i) the removal of
constraints whose measures do not reach the user-specified thresholds, (ii)
the pruning of the redundant constraints from the set, and (iii) the removal
of one constraint for every pair of constraints that are the negated version of
one another.

Algorithm 1 gives a bird-eye view of the approach in pseudocode. As we
can observe, interestingness measures are crucial to determine the degree to
which constraints are satisfied in the log. They have been introduced to indicate
the level of reliability and relevance of constraints discovered from event logs,
originally devised in the field of association rule mining [3] and adapted to the
declarative process discovery context [17,65]. Among them, we recall support and
confidence. Intuitively, support is a normalized measure quantifying how often
the constraint is satisfied in the event log. Confidence considers the number of
satisfactions with respect to the occurrences of the activations. We define them
formally as follows.

Definition 14 (Trace-based measures). Let L be a non-empty simplified
event log with at least a non-empty trace, and k a declarative constraint as
per Definition 1. We define the trace-based support suppt and the trace-based
confidence conft as follows:

suppt(k, L) =

∑

t∈L:t |=♦(k)∧k
L(t)

∑

t∈L

L(t)
; (1)

conft(k, L) =

∑

t∈L:t |=♦(k)∧k
L(t)

max

{

1,
∑

t∈L:t |=♦(k)
L(t)

} . (2)

�

We remark that the condition at the numerator that the trace has to satisfy
not only the constraint k but also eventually its activation, i.e., t |= ♦(k) ∧
k, serves the purpose of avoiding to count “vacuous satisfactions” discussed in
Sect. 4.1. For example, while trace 〈b, c〉 satisfies ChainResponse(a, b), it does
so vacuously, in the sense that it never activates the constraint. This intuitively
means that ChainResponse(a, b), albeit satisfied, it cannot be interestingly
used to describe the behaviour encoded in the trace. We recall that with L(t)
denotes the multiplicity of occurrences of t in the log L (see [1], Sect 3.1). The
max term at the denominator of the formulation of confidence serves the purpose
of avoiding a division by zero in case no trace satisfies ♦(k).

Declare Miner first introduced the trace-based measures to discover specifi-
cations from logs, counting traces that (non-vacuously) satisfy constraints as a

Declarative Process Specifications 129

whole. MINERful, instead, advocated also the adoption of measures that lie at
the level of granularity of events. The similarities and differences between the two
measuring schemes and the role of explicit activations and targets to tackle vacu-
ity has been later systematized in [18]. The motivation behind the use of event-
based measures is the ability to give a differently weight to traces violating the
constraints in more than one instant: with trace-based measures, e.g., both traces
〈a, b, c, a, b, c, c, a, b, a, b, a, b, a, b, c, a, b, c, a, b, a, b, a, c〉 and 〈b, a, c, a, c, a, a, a, a, a, a, c〉
would count as single violations for ChainResponse(a, b). However, only the
last occurrence of a out of ten leads to violation in the first trace, whereas all
eight occurrences of a lead to violation in the second trace. Next, we formally
capture the notion of event-based measures.

Definition 15 (Event-based measures). Let L be a non-empty simplified
event log with at least a non-empty trace, and k a declarative constraint as per
Definition 1. We define the event-based support suppe and the event-based con-
fidence confe as follows:

suppe(k, L) =

∑

t∈L

|{ai ∈ t : a, i |= (k ∧ k)}| × L(t)
∑

t∈L

|t| × L(t)
; (3)

confe(k, L) =

∑

t∈L

|{ai ∈ t : a, i |= (k ∧ k)}| × L(t)

max
{

1,
∑

t∈L

|{ai ∈ t : a, i |= k}| × L(t)
} . (4)

�

Again, the condition at the numerator that events satisfy both activation and
target of the constraint is intended to avoid including vacuous satisfactions in
the sum. The max term at the denominator of confidence is intended to avoid
a division by zero in case no event satisfies k.

For the sake of readability, we shall denote with allm(k, L) the tuple contain-
ing all computed measures for a constraint k on the event log L: allm(k, L) =
(suppt(k, L) , conft(k, L) , suppe(k, L) , confe(k, L)). Given two constraints k1

and k2, we write allm(k1, L) ≤ allm(k2, L) if suppt(k1, L) ≤ suppt(k2, L),
conft(k1, L) ≤ conft(k2, L), suppe(k1, L) ≤ conft(k2, L), and confe(k1, L) ≤
conft(k2, L). We write allm(k1, L) ≤ allm(k2, L) if allm(k1, L) ≤ allm(k2, L)
and allm(k2, L) ≤ allm(k1, L).

Example 10 (An event log for the specification in Example 1). Let
Uact

.= {c, r, v, t, n, y, $, p, e, u} ∪ {@} be an alphabet of activities. We inter-
pret @ as an email exchange, which can occur at any stage during the pro-
cess. The other activities in Uact are those that were considered in the pro-
cess specification in Example 1. Let the following event log be built on Uact :

130 C. Di Ciccio and M. Montali

Table 3. Measures computed for the relation constraints of Example 1 from the event
log of Example 10.

Constraint Event-based Trace-based
Confidence Support Confidence Support

Precedence(c, r) 1 0.129 1 1
AlternatePrecedence(r, v) 1 0.129 1 1
AlternateResponse(r, v) 0.997 0.129 0.996 0.996
Precedence(t, v) 0.997 0.129 0.996 0.996
AlternatePrecedence(v, n) 1 0.059 1 0.461
AlternatePrecedence(v, y) 1 0.084 1 0.856
NotResponse(y, n) 1 0.084 1 0.856
Precedence(y, p) 1 0.07 1 0.715
Precedence($, p) 1 0.07 1 0.715
ChainResponse($, p) 1 0.07 1 0.715
AtMostOne(p) 1 1 1 1
Precedence(p, e) 1 0.07 1 0.715
AtMostOne(e) 1 1 1 1
Precedence(u, e) 0.985 0.069 0.985 0.704

L = [t2001 , t1002 , t1003 , t804 , t805 , t46, t
2
7, t

2
8] where

t1 = 〈c, t, r, v, y, $, p, u, e〉 t2 = 〈c, t, t, r, v, n, t, r, v, y, $, p, u, e〉
t3 = 〈c, t, r, t, v, y, u, $, p, e〉 t4 = 〈c, t,@, t, r, v, n,@, r, v, n〉
t5 = 〈c, r, t, t, v, n, y,@〉 t6 = 〈c, t, r, t, v,@,@, y, $, p,@, e〉
t7 = 〈c,@, r, v, y, $, p,@, e〉 t8 = 〈c, t, r, r, v,@, n〉

We observe that the log above does not fully comply with the specifica-
tion. Indeed, (i) trace t8 violates AlternateResponse(r, v), as the candidate
managed to register twice before evaluation (notice the occurrence of two consec-
utive r’s before v); (ii) t7 violates Precedence(t, v) and Precedence(u, e), as
the candidate must have sent the admission test score and the necessary enrol-
ment documents via email rather than via the system (see the occurrence of @
in place of t in the second instant and in place of u later in the trace); finally,
(iii) trace t6 violates Precedence(u, e), as the candidate must have submitted
the enrolment documents via email in that case too (notice the absence of task
u and the presence of @ in its stance). �

Example 11. With the example above, we have that both the trace-based
support and trace-based confidence of Alt.Prec.(r, v), e.g., equate to 1.0:
suppt(Precedence(c, r), L) = conft(Precedence(c, r), L) = 1.0. This is
because in all traces the activator (i.e., r) occurs and the constraint is not vio-
lated in any trace. Instead, suppt(Alt.Prec.(v, n), L) = 100+80+80+2

568 � 0.461

Declarative Process Specifications 131

and conft(Alt.Prec.(v, n), L) = 1.0. The trace-based support is lower than
the trace-based confidence because the activator (n) occurs in 262 traces out
of 568 (i.e., in the 100 instances of t2, the 80 instances of t4, the 80 instances
of t5, and the 2 instances of t8). Similarly, confe(Precedence(c, r), L) = 1.0
and confe(Alt.Prec.(v, n), L) = 1.0. The measures do not change for event-
based and trace-based confidence because every activation of the two con-
straints above leads to a satisfaction. In contrast, suppe(Precedence(c, r), L) =

1×200+2×100+1×100+2×80+1×80+1×4+1×2+2×2
9×200+14×100+10×100+11×80+8×80+12×4+9×2+7×2 = 750

5800 � 0.129. �

It is worth noting that discovery approaches such as Declare Miner [58] and
Janus [18] adopt (variations of) local constraint automata to count the satis-
factions of constraints. MINERful [40] and DisCoveR [8] resort to occurrence
statistics of activities gathered from the event log, more closely to the procedu-
ral discovery algorithms discussed in [2].

By definition of confidence and support (trace- or event-based), and as exem-
plified above, we observe that trace-based confidence is an upper bound for
trace-based support and event-based confidence is an upper bound for event-
based support. Next, we illustrate how the discovery algorithm operates with
our running example.

Example 12. Table 3 shows the event-based and trace-based measures com-
puted on the basis of our running example for every constraint in the
original specification – phase (2) of the discovery procedure described
above. They belong to the output of the discovery algorithm running
on the event log of Example 10 set at phase (1) to seek for (i) all
templates from the Declare repertoire in Table 2 (ii) over activities
{c, r, v, t, n, y, $, p, e, u}, with (iii) minimum event-based confidence of 0.95.
We remark that also AlternatePrecedence(y, p), ChainPrecedence($, p),
AlternatePrecedence(p, e) and AlternatePrecedence(c, p),
NotChainPrecedence(y, p) and NotChainResponse(y, p), among others,
fulfil those criteria and thus are part of the returned set. �

To increase the information brought by a discovered model, not only we prune
the constraints whose measures lie below the given threshold values. Also, we
take into account the subsumption hierarchy illustrated in Fig. 8. In addition,
we retain in the constraint set only one among pairs that are a negated version
of one another. If we kept both, the model would turn the activation in common
into a dead activity (see Sect. 4.2).

Example 13. Figure 9 illustrates the result of the pruning phase (3) based
on subsumption and choice of constraints that are the negated version
of one another, based on the event log of Example 10. We observe that
AlternatePrecedence(y, p) has the same measures as Precedence(y, p), and
we know that Precedence(y, p) is subsumed by AlternatePrecedence(y, p)
(see Sect. 4.2); as we are interested in more restrictive constraints that reduce
the space of possible process runs to more closely define its behaviour, we retain
the former and discard the latter. Keeping both would introduce a redundancy,

132 C. Di Ciccio and M. Montali

Relation templates Negative relation templates Relation templates Negative relation templates

RespondedExistence(y, p)
(0.715, 0.835, 0.07, 0.835)

RespondedExistence(p, y)
(0.715, 1, 0.07, 1)

NotRespondedExistence(p, y)
(0, 0, 0, 0)

NotRespondedExistence(y, p)
(0.141, 0.165, 0.014, 0.165)

Response(y, p)
(0.715, 0.835, 0.07, 0.835)

AlternateResponse(y, p)
(0.715, 0.835, 0.07, 0.835)

ChainResponse(y, p)
(0, 0, 0, 0)

Precedence(y, p)
(0.715, 1, 0.07, 1)

AlternatePrecedence(y, p)
(0.715, 1, 0.07, 1)

ChainPrecedence(y, p)
(0, 0, 0, 0)

NotPrecedence(y, p)
(0, 0, 0, 0)

NotChainPrecedence(y, p)
(0.715, 1, 0.07, 1)

NotResponse(y, p)
(0.141, 0.165, 0.014, 0.165)

NotChainResponse(y, p)
(0.856, 1, 0.084, 1)

negates negates

Fig. 9. The subsumption map of relation Declare constraints in a discovery context.
The graphical notation follows Fig. 8. Gray boxes denote constraints that have mea-
sures below the minimum thresholds. Light-gray boxes indicate constraints that are
subsumed by others with equivalent measures.

and retaining only the latter would omit detailed information as not only p
must be preceded by y, but also p cannot recur unless y occurs again. By the
same line of reasoning, we prefer retaining Init(c) to AtMostOne(c) in the
result specification. The same concepts apply with ChainPrecedence($, p),
to be preferred over Precedence($, p) and AlternatePrecedence(p, e) in
place of Precedence(p, e), among others. Notice that Precedence(y, p),
Precedence($, p) and Precedence(p, e) were in the given specification of our
running example but, we conclude, are not the most restrictive constraints that
could be used in the specification, as the discovery algorithm evidences. �

To conclude, we remark that not all redundancies can be found with
the sole subsumption-hierarchy based pruning. The subsumption hierarchy,
indeed, checks constraints that are exerted on the same activities – e.g.,
AlternatePrecedence(y, p) and Precedence(y, p). Therefore, we need a
more powerful redundancy checking mechanism, seeking for constraints that are
entailed by the remainder of the specification’s constraint set (see Sect. 4.2).

Example 14. The confidence of AlternatePrecedence(v, p) is 1.0 in the
event log of our running example. Yet, it does not add information to the discov-
ered specification as it is redundant, logically entailed by the other constraints
– in particular, AlternatePrecedence(r, v), AlternatePrecedence(v, y),
Precedence(y, p) and AtMostOne(p). �

To verify this, we can resort to language inclusion via automata product
as in [38]: the language of the product of the four constraint automata is not
smaller than the language accepted by the intersection of the second, third and
fourth constraint automata. Here, we do not enter the details of the algorithms
that detect redundancies at such a deeper level but provide an example of its
rationale. The interested reader can find further details in [24,38].

Declarative Process Specifications 133

s0
c

s1
c⊥

s2
p⊥

σ ∈ Σ \{r}

r

v

σ ∈ Σ \{r, v}

r

(a) Alt.Resp.(r, v)

s0
c

s1
c⊥

s2
p⊥

σ ∈ Σ \{$}

$

p

σ ∈ Σ \{p}

σ ∈ Σ

(b) Chn.Resp.($, p)

s0
c

s1
p

s2
p⊥

σ ∈ Σ \{u, e}

e

σ ∈ Σ

u

σ ∈ Σ

(c) Prec.(u, e)

s0
c

s1
c

s2
p⊥

σ ∈ Σ \{p}

p

σ ∈ Σ

p

σ ∈ Σ \{p}

(d) AtMostOne(p)

Fig. 10. Example FSAs adapted for the monitoring of constraints. Non-final states
indicating current violation (c⊥) are dashed and filled in orange; non-final states indi-
cating permanent violation (p⊥) are dotted and filled in red; final states indicating
current satisfaction (c�) are thin-solid and filled in blue; final states indicating perma-
nent satisfaction (p�) are thick-solid and filled in green. (Color figure online)

5.2 Declarative Process Monitoring

(Compliance) process monitoring aims at tracking running process executions
to check their conformance to a reference process model, with the purpose of
detecting and reporting deviations as soon as possible [57]. It constitutes one of
the main tasks of operational decision support [92, Ch. 10], which characterizes
process mining applied at runtime to running process executions.

Declarative process monitoring employs a declarative specification (in our
case, described using Declare) as reference model for monitoring. The central
fact in monitoring that process instances are running, that is, their generated
traces evolve over time, calls for a finer-grained understanding of the state of
constraints and of the whole specification. We illustrate this intuitively in the
next example.

Example 15. Consider the excerpt in Fig. 11 of our admission process running
example, and an evolving trace that, once completed, corresponds to the follow-
ing sequence: 〈$, p, u, $, p〉. Let us replay the trace from the beginning.

1. At the beginning, all constraints are satisfied, but they are so for sure
only currently, as events may occur making them violated. For exam-
ple, a registration without a consequent evaluation would lead to violating
AlternateResponse(r, v), whereas an enrolment without a prior upload of
certificates would lead to a violation of Precedence(u, e).

2. Upon the occurrence of $, constraint ChainResponse($, p) becomes pending
or, to be more precise, currently violated, as paying demands a pre-enrolment
occurring immediately after.

3. The execution of p brings ChainResponse($, p) back to currently satisfied,
as it does not require the occurrence of further events, but may do so in the
future in case of another payment.

4. Upon the occurrence of u, constraint Precedence(u, e) becomes permanently
satisfied, as enrolment is now enabled, and there is no way to continue the
execution leading to a violation of the constraint.

134 C. Di Ciccio and M. Montali

Register for
selection round

(r)

Enter
evaluation phase

(v)

Pay
subscription fee

($)

Pre-enrol
in the program

(p)

0..1

Upload
certificates

(u)

Enrol
in the program

(e)

Fig. 11. Excerpt of the Declare specification in Fig. 2.

5. This is indeed what happens with the next occurrence of $, which makes
ChainResponse($, p) currently violated.

6. The second pre-enrolment has the effect of bringing ChainResponse($, p)
once again back to currently satisfied. However, it has also the effect of per-
manently violating AtMostOne(p), as the number of occurrences of p has
exceeded the upper bound allowed by AtMostOne(p), and there is no way
of fixing the violation.

�

As witnessed by the example, the state of each constraint can be described in
a fine-grained way by considering on the one hand the trace accumulated so far
(i.e., the prefix of the whole, still unknown, execution), and by pondering on the
other hand about the possible, future continuations. To do so in a formal way, we
appeal to the literature on runtime-verification for linear temporal logics, and in
particular to the RV-LTL semantics, originally introduced in [11] over infinite
traces. This semantics was adopted for the first time in the context of LTLf over
finite traces in [64,66], in order to define an operational technique for Declare
monitoring. This led to deeper investigations on the usage of RV-LTLto char-
acterize the relevance of a trace to a declarative specification [39], and to finally
obtain a formally grounded, comprehensive framework for monitoring [27,28].

We now define the RV-LTL semantics for LTLf . In the definition, we denote
the concatenation of trace t1 with t2 as t1 · t2.

Definition 16 (RV-LTL states). Consider an LTLf formula ϕ over Σ, and
a trace t over Σ∗. We say that ϕ is in (RV-LTL) state s after t, written [t |=
ϕ]RV = v, if:

(Permanent satisfaction) (i) v = p�, (ii) the current trace satisfies ϕ (t |= ϕ),
and (iii) every possible suffix keeps ϕ satisfied (for every trace t′ ∈ Σ∗, we
have t · t′ |= ϕ).

(Permanent violation) (i) v = p⊥, (ii) the current trace violates ϕ (t �|= ϕ),
and (iii) every possible suffix keeps ϕ violated (for every trace t′ ∈ Σ∗, we
have t · t′ �|= ϕ).

(Current satisfaction) (i) v = c�, (ii) the current trace satisfies ϕ (t |= ϕ),
and (iii) there exists a suffix that leads to violate ϕ (for some trace t′ ∈ Σ∗,
we have t · t′ �|= ϕ).

Declarative Process Specifications 135

(Current violation) (i) v = c⊥, (ii) the current trace violates ϕ (t �|= ϕ), and
(iii) there exists a suffix that leads to satisfy ϕ (for some trace t′ ∈ Σ∗, we
have t · t′ |= ϕ).

We also say that t conforms to ϕ if [t |= ϕ]RV = p� or [t |= ϕ]RV = c� (i.e.,
stopping the execution in t satisfies the formula). �

By inspecting the definition, we can directly see that monitoring is at least
as hard as LTLf satisfiability/validity checking. To see this, consider what hap-
pens at the beginning of an execution, where the current trace is empty. By
applying Definition 16 to this special case, and by recalling the notion of satis-
fiability/validity of an LTLf formula, we in fact get that an LTLf formula ϕ
is:

• permanently satisfied if ϕ is valid;
• permanently violated if ϕ is unsatisfiable;
• currently satisfied if the two formulae ϕ ∧ end and ¬ϕ are both satisfiable;
• currently violated if the two formulae ¬ϕ ∧ end and ϕ are both satisfiable.

To perform monitoring according to the RV-LTL states from Definition 16,
we can once again exploit the automata-theoretic characterization of LTLf . In
particular, given an LTLf formula ϕ, we construct its FSA Aϕ, and color the
automaton states according to the RV-LTL semantics. As introduced in [64]
and then formally verified in [28], this can be simply done as follows. Consider
a state s in of Aϕ. We label it by:

• p�, if s is final and all the states reachable from s in Aϕ are final as well; if
Aϕ is minimized, this means that s only reaches itself.

• p⊥, if s is non-final and all the states reachable from s in Aϕ are non-final as
well; if Aϕ is minimized, this means that s only reaches itself.

• c�, if s is final and can reach a non-final state in Aϕ.
• c⊥, if s is non-final and can reach a final state in Aϕ.

Figure 10 shows some examples of colored constraint automata, obtained by
considering the constraint formulae of some Declare constraints from our run-
ning example. To monitor the state evolution of a constraint, one has simply to
dynamically play the evolving trace on its colored local automaton, returning
the updated RV-LTL label as soon as a new event is processed. Doing so on
the local automata in Fig. 10 for trace 〈$, p, u, $, p〉 formally reconstructs what
discussed in Example 15.

However, this is not enough to promptly detect violations as soon as they
manifest in the traces. This has been extensively discussed in [28,66], and is at
the very core of the power of temporal logic-based techniques for monitoring.
We use again Example 15 to illustrate the problem.

Example 16. Consider Example 15 and the following question: is step 6 the
earliest at which a violation can be detected? Clearly, if we focus on each con-
straint in isolation, the answer is affirmative. To see this formally, we play trace
〈$, p, u, $, p〉 on the four colored local automata of Fig. 10, obtaining the following
runs:

136 C. Di Ciccio and M. Montali

• For AlternateResponse(r, v), we have s0
$−→ s0

p−→ s0
u−→ s0

$−→ s0
p−→ s0; no

violation is encountered.
• For ChainResponse($, p), we have s0

$−→ s1
p−→ s0

u−→ s0
$−→ s1

p−→ s0; no
violation is encountered.

• For Precedence(u, e), we have s0
$−→ s0

p−→ s0
u−→ s1

$−→ s1
p−→ s1; no violation

is encountered.
• For AtMostOne(p), we have s0

$−→ s0
p−→ s1

u−→ s1
$−→ s1

p−→ s2; a violation is
encountered in the last reached state.

The answer changes if we consider the whole Declare specification that con-
tains all such constraints at once. In fact, by taking into account the interplay
of constraints, we can detect a violation already at step 5, i.e., after the sec-
ond occurrence of payment. This is because, after that step, the two constraints
ChainResponse($, p) and AtMostOne(p) enter into a conflict, that is, no con-
tinuation of the current trace can lead to satisfy them both. In fact, after trace
〈$, p, u, $〉, constraintChainResponse($, p) is currently violated,waiting for a con-
sequent occurrence of p; however, constraint AtMostOne(p), which is currently
satisfied, becomes permanently violated upon a further occurrence of p. �

As we have seen, the early detection of violations cannot always be caught by
considering the colored local automata of constraints in isolation. However, it can
be systematically detected by taking into account the colored global automaton
of the whole specification.

Example 17. Figure 12 shows the colored global automaton of the Declare
specification in Fig. 11. By playing the trace 〈$, p, u, $, p〉 therein, we obtain the

following run: s0
$−→ s1

p−→ s4
u−→ s8

$−→ s12
p−→ s12. Clearly, the violation state s12

is already reached in step 5, i.e., just after the second payment. �

All in all, we can then monitor an evolving trace against a Declare speci-
fication as follows:

• Each constraint is encoded into the corresponding colored local automaton,
used to track the state evolution of the constraint itself.

• The whole specification is encoded into the corresponding colored global
automaon, used to track the evolution of the whole specification, and in par-
ticular to early-detect violations.

• At runtime, every new event occurrence is delivered in parallel to all the
automata, updating each of them by executing the corresponding transition
and entering into the next state, at the same time returning the associated
RV-LTL label.

Figure 13 shows the result of applying this technique to our running example.
An alternative approach, which is exploited in [64], is to compute, as done

before, the global automaton as the cross-product of local automata, remember-
ing, in each global state, the RV-LTL labels of all local states from which such

Declarative Process Specifications 137

s0
c

s2
c⊥

s5
c

s6
c⊥

s7
c⊥

s8
c

s4
c

s10
c⊥

s9
c⊥

s11
c⊥

s3
c⊥

s1
c⊥

to s12

to s12

to s12

to s12
to s12

to s12

s12
p⊥

σ∈Σ̄ ∪ {v}

$
r

e

u

p

σ∈Σ\{p} p

v

σ∈Σ̄

$

u

p

r, e

pp
σ∈Σ\{p} σ∈Σ̄ ∪ {v}

u

r

e, p, $

σ∈Σ̄ ∪ {e, u, v}

r

$

p

σ∈Σ̄ ∪ {e, u}

v

r $

p

p
σ∈Σ \{p}

σ∈Σ̄ ∪ {e, u, v}

r

p, $

p

σ∈Σ\{p}

v

σ∈Σ̄ ∪ {e, u}

p, r, $

v

u

σ∈Σ̄

e, p, r, $

Fig. 12. The colored global automaton automaton obtained as the (colored) cross-
product of constraints in Fig. 10 as shown in Fig. 6(c), the states of which are decorated
with the four RV-LTL truth values.

a global state has been produced. In addition, no minimization step is applied
on the resulting automaton. Once colored, this non-minimized, global colored
automaton combines in a single device the contribution of all local monitors and
that of the global monitor.

5.3 A Note on Conformance Checking

In this section, we have focused on monitoring evolving traces against Declare
specifications. This can be seen as a form of online conformance checking, aim-
ing at detecting deviations at execution time. This technique can be seamlessly
lifted to handle the standard conformance checking task, where conformance
is evaluated on an event log containing full traces of already completed pro-
cess executions (cf. [16]). In this setting, the global automaton is not needed
anymore, as a-posteriori it is not relevant to compute the earliest moment of a
violation, but only to properly detect it at the trace level. The usage of local
automata, one per constraint, is enough, and also has the advantage of producing
an informative feedback that indicates, trace by trace, how many (and which)
constraints are satisfied or violated. Finer-grained feedbacks like those based on
the computation of trace alignments have been extensively applied for procedu-
ral models (cf. [16]), and can be also recasted in the declarative setting, aligning
the log traces with the (closest) model traces accepted by the global automaton

138 C. Di Ciccio and M. Montali

AlternateResponse(r, v)

ChainResponse($, p)

Precedence(u, e)

AtMostOne(p)

Global automaton

$ p u $ p

c

c c⊥ c c⊥ c

c p

c p⊥

c c⊥ c p⊥

Fig. 13. Monitoring with local and global colored automata, showing a case where the
global automaton detects a violation before it actually manifests on a single constraint.

of the Declare specification of interest. This is an active line of research, which
started from the seminal approach in [31].

6 Recent Advances and Outlook

We close this chapter by reporting about the most recent advances in the field
of declarative process mining revolving around Declare, describing the current
frontier of research, and highlighting open challenges.

6.1 Beyond DECLARE Patterns

As we have seen in Sect. 3, a Declare specification consists of a repertoire
of constraint templates grounded on specific activities. At the same time, such
templates come with a logic-based semantics given in terms of LTLf . A natural
question is then: can the techniques described in this chapter be used for the
entire LTLf logic? This means, more precisely, considering the situation where
each constraint corresponds to an arbitrary LTLf formula while, as usual, the
specification formula is constructed by putting in conjunction the LTLf formulae
of all its constituting constraints.

To answer this question, one has to separate the logical and pragmatic aspects
involved in the different tasks we have been introducing. We do so focusing on
reasoning, discovery, and monitoring.

Reasoning. As discussed in Sect. 4.2, all the reasoning tasks we have considered
in this chapter can be lifted to the whole LTLf logic. Indeed, they are reduced to
LTLf satisfiability/validity checking, which in turn can be tackled by checking
(non-)emptiness of FSAs. The situation may change if one wants to provide more
advanced debugging or diagnosis functionalities – for example, to return the most

Declarative Process Specifications 139

relevant conflicting set(s) of constraints that are causing inconsistencies or dead
activities. While these types of problem can also be attacked at the level of the
entire logic [25,79], focusing only on pre-defined patterns becomes necessary if
one wants to involve humans in the loop or define preferences over constraints
in the case where multiple explanations exist [25]. Considering specific patterns
is also relevant when studying the computational complexity of reasoning on
pattern combinations [44,45,91], or the scalability and effectiveness of reasoning
tools [44,45,71,97].

Discovery. As pointed out in Sect. 5.1, two distinct process discovery problems
are typically tackled in a declarative setting: discriminative discovery and spec-
ification mining.

The case of discriminative discovery is tightly related to classification and
machine learning, allowing one to rely on general learning algorithms for declar-
ative process mining. Such algorithms tackle general logical frameworks, such
as Horn clauses in inductive logic programming or full temporal logics in model
learning, and can thus go far beyond a pre-defined set of templates, either tar-
geting full LTLf [15,82] or enriching the discoverable Declare templates with
further key dimensions, such as metric temporal constraints, event attributes,
and data conditions [21,23].

As shown in Sect. 5.1, standard discovery stands as a radically different prob-
lem, since the input event log provides a uniform set of (positive) examples, while
no negative example is given. This calls for suitable metrics to measure how well
a set of constraints characterizes the behaviour contained in the log. In the app-
roach described in this chapter, such metrics are defined starting from the notions
of constraint activation and target, which are template-specific. Attempts have
been conducted to lift some of these notions (in particular that of activation and
“relevant” satisfaction [39]) to full LTLf , but further research is needed to tar-
get the discovery of arbitrary LTLf formulae from event logs. Notice that while
full LTLf discovery would enrich the expressiveness of the discovered specifica-
tions, it would on the other hand pose the issue of understandability : end users
may struggle when confronted with arbitrary temporal formulae, while they are
facilitated when pre-defined templates are used.

Monitoring. As we have discussed in Sect. 5.2, Declare monitoring is tackled
using automata, and consequently seamlessly work for arbitrary LTLf formu-
lae. As for advanced debugging techniques, the same considerations done for
reasoning also hold for monitoring. For example, the detection of minimal con-
flicting sets of constraints in the case of early detection of violations caused by
the interplay of multiple constraints can be tamed at the level of the full logic
[66], but would require to focus on patterns if one wants to formulate preferences
or incorporate human feedback [25].

Remarkably, working with FSAs allows us to define monitors for temporal
formulae that go even beyond LTLf . In fact, LTLf is as expressive as star-free
regular expressions, while automata are able to capture full regular expressions
and, in turn, finite-trace temporal logics incorporating in a single formalism

140 C. Di Ciccio and M. Montali

LTLf and regular expressions, such as Linear Dynamic Logic over finite traces
(LDLf) [30]. Working with LDLf in our setting has the specific advantage that
we can express and monitor metaconstraints, that is, constraints that predicate
on the RV-LTL truth values of other constraints [27,28].

6.2 Dealing with Uncertainty

In the conventional definition of a Declare specification, constraints are inter-
preted as being certain: every model trace is expected to satisfy all constraints
contained in the specification. Such an interpretation is too restrictive in scenar-
ios where the specification should accommodate:

• constraints describing common behaviours, expected to hold in the majority,
but not all cases;

• constraints describing exceptional, outlier behaviours that rarely occurs but
should be not judged as violating the specification.

To deal with this form of uncertainty, Declare has been recently extended
with probabilistic constraints [62]. In this framework, every probabilistic con-
straint comes with:

• a constraint formula ϕ (specified, as in the standard case, using LTLf);
• a comparison operator � ∈ {=, �=, <,≤, >,≥};
• a number p ∈ [0, 1].

The interpretation of this constraint is that ϕ holds in a random trace generated
by the process with a probability that is �p. In frequentist terms, this can be
in turn interpreted as follows: given a log of the process, the ratio of traces
satisfying ϕ must be �p.

Since a Declare specification contains multiple constraints, one has to con-
sider how different probabilistic constraints interact with each other. In par-
ticular, n probabilistic constraints yield up to 2n possible so-called scenarios,
each highlighting which probabilistic constraints hold and which are violated.
Reasoning over such scenarios has to be conducted by suitably mixing their
temporal and probabilistic dimensions. The former handles which combinations
of constraints and their violations (i.e., which scenarios) are consistent, while the
latter lifts the probability conditions attached of single constraints to discrete
probability distributions over the possible scenarios.

To carry out this form of combined reasoning, probabilistic constraints are
formalized in a well-behaved fragment of the logic introduced in [61]. As it turns
out, logical and probabilistic reasoning are loosely coupled in this fragment, and
can be carried out resorting to standard finite-state automata and systems of
linear inequalities. This approach has been used as the basis for defining a new
family of probabilistic declarative process mining techniques [6].

Declarative Process Specifications 141

6.3 Mixed-Paradigm Models

In Fig. 1, we have intuitively contrasted declarative specifications and impera-
tive models. The distinction of these two approaches is in reality not so crisp.
In fact, a single process may contain parts that are more suitably captured
using imperative languages, and parts that can be better described as declara-
tive specifications. Take, for instance, a clinical guideline mixing administrative
and therapeutic subprocesses [73].

To capture such hybrid processes, one needs a multi-paradigm approach that
can combine imperative and declarative constructs in a single process model.
One of the first proposals doing so is [85], where an imperative process can con-
tain activities that are internally structured using so-called pockets of flexibility
specified using declarative temporal constraints over a given set of tasks.

This layered approach has been further developed in [90], which brings for-
ward a hierarchical model where each sub-process can be specified either as an
imperative or declarative component. Discovery of hierarchical hybrid process
models has been subsequently tackled in [87].

Multi-paradigm approaches providing a tighter integration between impera-
tive and declarative components have also been studied. In [33], process models
combining Petri nets and Declare constraints at the same modelling level are
introduced and studied, singling out methodologies and techniques to handle
the intertwined state space emerging from their interaction. Conformance check-
ing for these mixed-paradigm models is extensively assessed in [95]. A different
approach is brought forward in [5], where a Declare specification is used to
express global constraints that “glue together” multiple imperative processes con-
currently executed over the same instances. Automata-based techniques extend-
ing those illustrated in Sect. 5.2 are introduced to provide integrated monitoring
functionalities dealing at once with the local processes and the global constraints.

At the current stage, further research is needed along the illustrated lines
towards a solid theory and corresponding algorithmic techniques for hybrid,
mixed-paradigm process mining.

6.4 Multi-perspective DECLARE Specifications

Throughout the chapter, we have considered pure control-flow specifications,
where a process is captured solely in terms of its constitutive activities and
of behavioural constraints separating legal from undesired executions. While
the control-flow provides the main process backbone, other equally important
perspectives should also be taken into account as suggested already in [1]:

• The resource perspective deals with the actors that are responsible for exe-
cuting tasks within the process.

• The time perspective focusses on quantitative temporal conditions on when
tasks can/must be scheduled and executed, and on their expected durations.

• The data perspective captures how data objects and their attributes influence
and are manipulated during the process execution.

142 C. Di Ciccio and M. Montali

Several works have investigated the extension of Declare with additional
perspectives. From the formal point of view, this requires to extend the logic-
based formalization of Declare with features that can capture resources, metric
time, data, and conditions thereof, in turn resorting to variants of metric and/or
first-order formalisms over finite traces [10,14,69,74]. It is important to stress
that such features may be blurred, considering that data support (if equipped
with suitable datatypes and conditions) may be used to predicate over resources
and time as well.

Such multi-perspective features have been extensively embedded into
Declare or related approaches (see, for example, [13,69,98] for constraints
with metric time and [42] for constraints with metric time and resources). Next,
we focus in more detail on the data dimension.

When it comes to data, two main lines of research can be identified. The
first one deals with standard “case-centric” processes extended with event and
case data. The second one focuses instead on “multi-case” processes, wherein
constraints are expressed over multiple objects and their mutual relations. We
briefly discuss each line separately.

Declarative Process Specifications with Event/Case Data. Within a process,
activities may be equipped with data attributes that, at execution time, are
grounded to actual data values by the involved resources. This means that
events witnessing the occurrence of task instances come with a data payload.
In addition, each process instance may evolve its own case data in response to
the execution of activities.3 Such case data may be stored in different ways,
e.g., as key-value pairs or a full-fledged relational database. In this setting, it
becomes crucial to extend Declare with so-called data-aware constraints, that
is, constraints enriched with data-aware conditions over activities. The simple
but illustrative example described next motivates why this is needed.

Example 18. We focus on a process where payments are issued by customers
through a pay activity, which comes with an attribute indicating the paid amount,
in Euros. Two consequent activities check and emit are executed to respectively
inspect a payment and emit a receipt.

Let a log for this process contain multiple repetitions of the following traces:

t1 = 〈pay(amount=50), emit〉 t2 = 〈pay(amount=300), check, emit〉
t3 = 〈pay(amount=20)〉 t4 = 〈pay(amount=100), emit, check〉
t5 = 〈pay(amount=90), emit〉 t6 = 〈pay(amount=800), check〉

One may wonder whether Response(pay, check) is a suitable constraint to explain
(part of) the behaviour contained in the log. If considered unrestrictedly, this

3 For conciseness of presentation, we will not distinguish between event and case data
in our discussion, but technically they pose different, albeit tightly related, require-
ments.

Declarative Process Specifications 143

sign

close

open

(a) Conventional Declare specification

sign

close

open

Order

Customer

owned by
*

1

(b) Object-centric Declare specification

Fig. 14. Comparison of conventional vs object-centric Declare.

is not the case, as there are many traces where payment is not followed by any
inspection. The situation changes completely if one restricts the scope of the
constraint activation only to those payments that involve an amount of 100 or
more. �

A number of works has brought forward combined techniques to discover
Declare constraints equipped with various forms of data conditions [54,60,86],
to check conformance for data-aware constraints [12,13], and to handle their
monitoring [5,69]. This passage has to be carried out with extreme care, as
combining event data and time quickly leads to undecidability of reasoning [14,
34,35]. Therefore, such techniques have to operate in a limited fashion or suitably
controlling the expressiveness of data conditions and the way they interact with
time.

Object-Centric Declarative Process Specifications. So far, we have discussed the
extension of Declare with event or case data. In a more general setting, data
may refer to more complex networks of objects and their mutual relations, simul-
taneously co-evolved by one or multiple processes. In this type of processes,
known under the umbrella term of object-centric processes, there is no single,
pre-defined notion of case, and process executions cannot consequently be rep-
resented as flat traces, but call for richer representations (cf. [43]). The following
example illustrates why Declare, in its conventional version, cannot be used
to capture object-centric processes.

Example 19. Consider the fragment of an order-to-cash process, containing
three activities: sign (indicating the signature of a GDPR form by the customer),
open (the opening of an order), and close (the closing of an order). Two constraints
apply to close, defining under which conditions it becomes executable:

• An order can be closed only if that order has been opened before.
• An order can be closed only if its owner has signed the consent before.

144 C. Di Ciccio and M. Montali

Figure 14(a) shows how these two constraints can be captured in conventional
Declare. This specification is satisfactory only in the case where each trace
refers to a single customer and a single order by that customer. For example,
consider the following two traces, respectively referring to an order o1 by Anne,
and an order o2 by Bob:

t1 = 〈sign, open, close〉 t2 = 〈open, close, sign〉

Clearly, t1 is a model trace, while t2 is not, as the latter violates
Precedence(sign, close).

However, one may need to consider multiple orders owned by the same or
distinct customers, in the common situation where distinct orders may be later
bundled together to handle their shipment. In our example, assuming that o1
and o2 are later bundled together in a shipment, this would require to combine
t1 and t2 in a single object-centric trace, suitably extending each event with a
reference to the object(s) it operates on. Suppose this would result into:

t =
〈

sign(customer=Anne), open(order=o2), open(order=o1),
close(order=o1), close(order=o2), sign(customer=Bob)

〉

The Declare specification of Fig. 14(a) becomes now inadequate. In fact, it
cannot distinguish which events actually co-refer to one another and which do
not, so it cannot identify that the first signature by Anne refers to the first
occurrence of close, but not to the second one. Hence, it wrongly uses the first
occurrence of sign to satisfy Precedence(sign, close) for both orders. �

Fixing the issue described in Example 19 requires the explicitly extension
of Declare with the ability of expressing how events relate to objects, how
objects relate to each other, and in turn to scope the application of constraints,
expressing that they must be enforced over events that suitably co-refer to each
other – either because they operate on the same object, or because they operate
on related objects. In our running example, this would call for the following
actions:

• introduce the classes of Order and Customer;
• capture that there is a many-to-one owned by association linking orders to

customers;
• indicate that sign refers to a customer, and that open and close refer to an order;
• scope Precedence(open, close) by enforcing that the two involved activities

must co-refer to the same order (i.e., that an event of activity close for order
o can only occur if an event of activity open has previously occurred for the
same order);

• scope Precedence(sign, close) by enforcing that the two involved activities
must respectively operate with a customer and an order that co-refer through
the owned by association (i.e., that an event of activity close for order o can
only occur if an event of activity sign has previously occurred for the customer
who owns o).

Declarative Process Specifications 145

Object-centric behavioral constraints (OCBC) [93] have been brought forward
to handle this type of scoping through the integration of Declare specifications
and UML class diagrams. Figure 14(b) shows the OCBC specification correctly
capturing the constraints of Example 19. The approach is still at its infancy:
some first seminal works have been conducted to handle discovery of OCBC
specifications from object-centric event logs recording full database transactions
[55], and to formalize and reason upon OCBC specifications through temporal
description logics [7]. Further research is being carried out to improve the per-
formance of discovery and frame it in the context of object-centric event logs
of the form of [1], and to tackle conformance checking and monitoring. This is
particularly challenging, as integrating temporal constraints with data models
quickly leads to undecidability [7].

7 Conclusion

Throughout this chapter, we have thoroughly reviewed the declarative approach
to process specification and mining. The declarative approach aims at limiting
the process behavior by defining the boundaries within which its executions can
unfold, yet leaving process executors free to explore at runtime which specific
executions are generated. This is in contrast with the imperative approach, where
process models compactly depict all and only those traces that are admissible.
In fact, notice that different (imperative) process models can comply with the
same declarative specification, just like different dynamic systems can model
(|=) a set of temporal rules. In the chapter, we have grounded our discussion
on the Declare language, but the introduced concepts are broad enough to be
seamlessly applicable to other related approaches.

Specifically, we have first discussed how declarative process specifications
can be formalized using Linear Temporal Logic on Finite Traces (LTLf), and in
turn operationally characterized in terms finite state automata (FSAs) for their
execution semantics. On this solid formal ground, we have examined the core rea-
soning tasks that relate to declarative specifications and then delved deeper into
the discovery and monitoring of processes according to the declarative paradigm.
Interestingly, we have observed that the reasoning tasks are pervasive in all stages
of declarative process mining, such as within discovery to avoid producing redun-
dant or inconsistent outputs, and within monitoring to speculatively consider the
possible future continuations of the monitored execution. In the last part of the
chapter, we have provided a summary of the most recent advances in declara-
tive process mining, focusing in particular on: (i) the applicability of declarative
process mining techniques and concepts to full temporal logics, going beyond pre-
defined patterns; (ii) the incorporation of uncertainty within constraints; (iii)
the analysis of hybrid models integrating imperative and declarative fragments;
(iv) multi-perspective constraints incorporating additional dimensions beyond
the control-flow, and supporting the declarative specification of object-centric
(multi-case) processes. This bird-eye view provides a fair account of the open
research challenges in declarative process mining.

146 C. Di Ciccio and M. Montali

Acknowledgments. The authors want to thank Fabrizio Maria Maggi, Wil van der
Aalst, Alessio Cecconi, Federico Chesani, Giuseppe De Giacomo, Riccardo De Masellis,
Johannes De Smedt, Massimo Mecella, Paola Mello, Jan Mendling, Maja Pesic,
Johannes Prescher for the long-standing cooperation and years of joint work that led
to this chapter. The work of the authors has received funding by the Italian Min-
istry of University and Research under the PRIN programme, grant B87G22000450001
(PINPOINT). The work of C. Di Ciccio was partly funded by the Italian Ministry
of University and Research under grant “Dipartimenti di eccellenza 2018–2022” of the
Department of Computer Science at the Sapienza University of Rome and the Sapienza
research project SPECTRA. The work of M. Montali was partly funded by the UNIBZ
projects WineID, SMART-APP, QUEST, and VERBA.

References

1. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy.
Springer, Cham (2022)

2. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy.
Springer, Cham (2022)

3. Adamo, J.-M.: Data Mining for Association Rules and Sequential Patterns -
Sequential and Parallel Algorithms. Springer, New York (2001). https://doi.org/
10.1007/978-1-4613-0085-4

4. Alman, A., Di Ciccio, C., Maggi, F.M., Montali, M., van der Aa, H.: RuM: declar-
ative process mining, distilled. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A.,
Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 23–29. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-85469-0_3

5. Alman, A., Maggi, F.M., Montali, M., Patrizi, F., Rivkin, A.: Multi-model moni-
toring framework for hybrid process specifications. In: Franch, X., Poels, G. (eds.)
Proceedings of the 34th International Conference on Advanced Information Sys-
tems Engineering (CAiSE 2022). Lecture Notes in Computer Science (2022, to
appear)

6. Alman, A., Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic declarative pro-
cess mining. Inf. Syst. (2012, to appear)

7. Artale, A., Kovtunova, A., Montali, M., van der Aalst, W.M.P.: Modeling and rea-
soning over declarative data-aware processes with object-centric behavioral con-
straints. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.)
BPM 2019. LNCS, vol. 11675, pp. 139–156. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26619-6_11

8. Back, C.O., Slaats, T., Hildebrandt, T.T., Marquard, M.: Discover: Accurate &
efficient discovery of declarative process models. CoRR, abs/2005.10085 (2020)

9. Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities
by integrating behavioral aspects and label analysis. Softw. Syst. Model. 17(2),
573–598 (2018)

10. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

11. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

https://doi.org/10.1007/978-1-4613-0085-4
https://doi.org/10.1007/978-1-4613-0085-4
https://doi.org/10.1007/978-3-030-85469-0_3
https://doi.org/10.1007/978-3-030-26619-6_11
https://doi.org/10.1007/978-3-030-26619-6_11

Declarative Process Specifications 147

12. Bergami, G., Maggi, F.M., Marrella, A., Montali, M.: Aligning data-aware declar-
ative process models and event logs. In: Polyvyanyy, A., Wynn, M.T., Van Looy,
A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 235–251. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-85469-0_16

13. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)

14. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and moni-
toring for first-order LTL with persistence-preserving quantification over finite and
infinite traces. In: De Raedt, L. (ed.) Proceedings of the 31st International Joint
Conference on Artificial Intelligence (IJCAI 2022). ijcai.org (2022, to appear)

15. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: Benton, J., Lipovetzky, N., Onaindia, E., Smith, D.E., Sri-
vastava, S. (eds.) Proceedings of the Twenty-Ninth International Conference on
Automated Planning and Scheduling (ICAPS 2018), pp. 621–630. AAAI Press
(2019)

16. Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process
Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

17. Cecconi, A., De Giacomo, G., Di Ciccio, C., Mendling, J.: A temporal logic-based
measurement framework for process mining. In: van Dongen et al. [92]

18. Cecconi, A., Di Ciccio, C., De Giacomo, G., Mendling, J.: Interestingness of traces
in declarative process mining: the janus LTLpf approach. In: Weske, M., Montali,
M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 121–138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_8

19. Chesani, F., et al.: Process discovery on deviant traces and other stranger things.
CoRR, abs/2109.14883 (2021)

20. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. In: Jensen,
K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models
of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00899-3_16

21. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. Trans. Petri
Nets Other Model. Concurr. 2, 278–295 (2009)

22. Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control 1(2), 91–112 (1958)
23. Corea, C., Deisen, M., Delfmann, P.: Resolving inconsistencies in declarative pro-

cess models based on culpability measurement. In: Ludwig, T., Pipek, V. (eds.)
WI, pp. 139–153. University of Siegen, Germany/AISeL (2019)

24. Corea, C., Delfmann, P.: Quasi-inconsistency in declarative process models. In:
Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019.
LNBIP, vol. 360, pp. 20–35. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26643-1_2

25. Corea, C., Nagel, S., Mendling, J., Delfmann, P.: Interactive and minimal repair
of declarative process models. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A.,
Reichert, M. (eds.) BPM 2021. LNBIP, vol. 427, pp. 3–19. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85440-9_1

26. Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based
modeling and analysis of workflows. In: PODS, pp. 25–33. ACM (1998)

27. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S.,

https://doi.org/10.1007/978-3-030-85469-0_16
https://doi.org/10.1007/978-3-319-98648-7_8
https://doi.org/10.1007/978-3-642-00899-3_16
https://doi.org/10.1007/978-3-030-26643-1_2
https://doi.org/10.1007/978-3-030-26643-1_2
https://doi.org/10.1007/978-3-030-85440-9_1

148 C. Di Ciccio and M. Montali

Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 1–17. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10172-9_1

28. De Giacomo, G., De Masellis, R., Maggi, F.M., Montali, M.: Monitoring constraints
and metaconstraints with temporal logics on finite traces. ACM Trans. Softw. Eng.
Methodol. (2022, to appear)

29. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: Brodley, C.E., Stone, P. (eds.) AAAI, pp. 1027–
1033. AAAI Press (2014)

30. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Rossi, F. (ed.) IJCAI, pp. 854–860. IJCAI/AAAI (2013)

31. De Leoni, M., Maggi, F.M., van der Aalst, W.M.: An alignment-based framework
to check the conformance of declarative process models and to preprocess event-log
data. Inf. Syst. 47, 258–277 (2015)

32. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Discovering hidden depen-
dencies in constraint-based declarative process models for improving understand-
ability. Inf. Syst. 74(Part 1), 40–52 (2018)

33. De Smedt, J., De Weerdt, J., Vanthienen, J., Poels, G.: Mixed-paradigm process
modeling with intertwined state spaces. Bus. Inf. Syst. Eng. 58(1), 19–29 (2016)

34. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3), 16:1–16:30 (2009)

35. Demri, S., Lazic, R., Nowak, D.: On the freeze quantifier in constraint LTL: decid-
ability and complexity. Inf. Comput. 205(1), 2–24 (2007)

36. Di Ciccio, C.: On the mining of artful processes. Ph.D. thesis, SAPIENZA, Uni-
versity of Rome, October 2013

37. Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs
through the simulation of declare models. In: Barjis, J., Pergl, R., Babkin, E.
(eds.) EOMAS 2015. LNBIP, vol. 231, pp. 20–36. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24626-0_2

38. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies
and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)

39. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: On the relevance of a
business constraint to an event log. Inf. Syst. 78, 144–161 (2018)

40. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1–24:37 (2015)

41. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) ICSE, pp.
411–420. ACM (1999)

42. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: Formaliz-
ing and appling compliance patterns for business process compliance. Softw. Syst.
Model. 15(1), 119–146 (2014). https://doi.org/10.1007/s10270-014-0395-3

43. Fahland, D.: Process mining over multiple behavioral dimensions with event knowl-
edge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Hand-
book. LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

44. Fionda, V., Greco, V.: LTL on finite and process traces: complexity results and a
practical reasoner. J. Artif. Intell. Res. 63, 557–623 (2018)

45. Fionda, V., Guzzo, A.: Control-flow modeling with declare: behavioral properties,
computational complexity, and tools. IEEE Trans. Knowl. Data Eng. 32(5), 98–911
(2020)

46. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

https://doi.org/10.1007/978-3-319-10172-9_1
https://doi.org/10.1007/978-3-319-24626-0_2
https://doi.org/10.1007/978-3-319-24626-0_2
https://doi.org/10.1007/s10270-014-0395-3

Declarative Process Specifications 149

47. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Vis. Comp. and Lang. 7(2), 131–74 (1996)

48. Haisjackl, C., et al.: Understanding declare models: strategies, pitfalls, empirical
results. Softw. Syst. Model. 15(2), 325–352 (2016)

49. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. EPTCS, vol. 69, pp.
59–73 (2010)

50. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.
Inc., Boston (2006)

51. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int.
J. Softw. Tools Technol. Transfer 4(2), 224–233 (2003)

52. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0_25

53. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T).
In: Cohen, M.B., Grunske, L., Whalen, M. (eds.) 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA,
9–13 November 2015, pp. 81–92. IEEE Computer Society (2015)

54. Leno, V., Dumas, M., Maggi, F.M., La Rosa, M., Polyvyanyy, A.: Automated
discovery of declarative process models with correlated data conditions. Inf. Syst.
89, 101482 (2020)

55. Li, G., de Carvalho, R.M., van der Aalst, W.M.P.: Automatic discovery of object-
centric behavioral constraint models. In: Abramowicz, W. (ed.) BIS 2017. LNBIP,
vol. 288, pp. 43–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59336-4_4

56. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15648-8_16

57. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.:
Compliance monitoring in business processes: functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015)

58. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_18

59. Maggi, F.M., Di Ciccio, C., Di Francescomarino, C., Kala, T.: Parallel algorithms
for the automated discovery of declarative process models. Inf. Syst. 74, 136–152
(2018)

60. Maggi, F.M., Dumas, M., García-Bañuelos, L., Montali, M.: Discovering data-
aware declarative process models from event logs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40176-3_8

61. Maggi, F.M., Montali, M., Peñaloza, R.: Temporal logics over finite traces with
uncertainty. In: Proceedings of the 34 AAAI Conference on Artificial Intelligence
(AAAI 2020), pp. 10218–10225. AAAI Press (2020)

62. Maggi, F.M., Montali, M., Peñaloza, R., Alman, A.: Extending temporal business
constraints with uncertainty. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M.
(eds.) BPM 2020. LNCS, vol. 12168, pp. 35–54. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58666-9_3

https://doi.org/10.1007/978-3-540-75183-0_25
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-40176-3_8
https://doi.org/10.1007/978-3-030-58666-9_3
https://doi.org/10.1007/978-3-030-58666-9_3

150 C. Di Ciccio and M. Montali

63. Maggi, F.M., Montali, M., van der Aalst, W.M.P.: An operational decision support
framework for monitoring business constraints. In: de Lara, J., Zisman, A. (eds.)
FASE 2012. LNCS, vol. 7212, pp. 146–162. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28872-2_11

64. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma et al. [81], pp. 132–147

65. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: CIDM, pp. 192–199. IEEE (2011)

66. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime ver-
ification of LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29860-8_11

67. Montali, M.: Specification and verification of declarative open interaction models
- a logic-based framework. Ph.D. thesis, University of Bologna, Italy (2009)

68. Montali, M.: Specification and Verification of Declarative Open Interaction Models:
a Logic-Based Approach. Lecture Notes in Business Information Processing, vol.
56. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14538-4

69. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring business constraints with the event calculus. ACM TIST 5(1), 17:1–17:30
(2013)

70. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. TWEB 4(1),
1–62 (2010)

71. Montali, M., et al.: Verification from declarative specifications using logic pro-
gramming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 440–454. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89982-2_39

72. Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M.: Declarative and procedu-
ral approaches for modelling clinical guidelines: addressing flexibility issues. In: ter
Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp.
335–346. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78238-
4_35

73. Munoz-Gama, J., Martin, N., et al.: Process mining for healthcare: characteristics
and challenges. J. Biomed. Inform. 127, 103994 (2022)

74. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Log. Methods Comput. Sci. 3(1) (2007)

75. Pesic, M.: Constraint-based workflow management systems: shifting control to
users. Ph.D. thesis, Technische Universiteit Eindhoven (2008)

76. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: EDOC, pp. 287–300 (2007)

77. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: EDOC, pp. 287–300. IEEE Computer Society
(2007)

78. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_18

79. Pill, I., Quaritsch, T.: Behavioral diagnosis of LTL specifications at operator level.
In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Arti-
ficial Intelligence (IJCAI 2013), pp. 1053–1059. IJCAI/AAAI (2013)

https://doi.org/10.1007/978-3-642-28872-2_11
https://doi.org/10.1007/978-3-642-28872-2_11
https://doi.org/10.1007/978-3-642-29860-8_11
https://doi.org/10.1007/978-3-642-29860-8_11
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/978-3-540-89982-2_39
https://doi.org/10.1007/978-3-540-89982-2_39
https://doi.org/10.1007/978-3-540-78238-4_35
https://doi.org/10.1007/978-3-540-78238-4_35
https://doi.org/10.1007/11837862_18

Declarative Process Specifications 151

80. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
81. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.

Res. Dev. 3(2), 114–125 (1959)
82. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-

ing fragments of linear temporal logic. In: Fisman, D., Rosu, G. (eds.) TACAS
2022. LNCS, vol. 13243, pp. 263–280. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_14

83. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30409-5

84. Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.): Business Process Management.
LNCS, vol. 6896. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
23059-2

85. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specification.
In: S.Kunii, H., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp.
513–526. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45581-7_38

86. Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-
perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S.,
Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87–103. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46295-0_6

87. Schunselaar, D.M.M., Slaats, T., Maggi, F.M., Reijers, H.A., van der Aalst,
W.M.P.: Mining hybrid business process models: a quest for better precision. In:
Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 320, pp. 190–205.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93931-5_14

88. Singh, M.P.: Distributed enactment of multiagent workflows: temporal logic for
web service composition. In: AAMAS, pp. 907–914. ACM (2003)

89. Slaats, T., Debois, S., Back, C.O.: Weighing the pros and cons: process discovery
with negative examples. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert,
M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 47–64. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-85469-0_6

90. Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of
hybrid process models. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol.
10033, pp. 531–551. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48472-3_32

91. Sun, Y., Su, J.: Conformance for DecSerFlow constraints. In: Franch, X., Ghose,
A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 139–153.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45391-9_10

92. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

93. van der Aalst, W.M.P., Artale, A., Montali, M., Tritini, S.: Object-centric behav-
ioral constraints: integrating data and declarative process modelling. In: Artale, A.,
Glimm, B., Kontchakov, R. (eds.) DL. CEUR Workshop Proceedings, vol. 1879.
CEUR-WS.org (2017)

94. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006). https://doi.org/10.1007/
11841197_1

95. van Dongen, B.F., De Smedt, J., Di Ciccio, C., Mendling, J.: Conformance checking
of mixed-paradigm process models. Inf. Syst. 102, 101685 (2021)

96. van Dongen, B.F., Montali, M., Wynn, M.T. (eds.) 2nd International Conference
on Process Mining, ICPM 2020, Padua, Italy, 4–9 October 2020. IEEE (2020)

https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/978-3-642-23059-2
https://doi.org/10.1007/978-3-642-23059-2
https://doi.org/10.1007/3-540-45581-7_38
https://doi.org/10.1007/978-3-319-46295-0_6
https://doi.org/10.1007/978-3-319-93931-5_14
https://doi.org/10.1007/978-3-030-85469-0_6
https://doi.org/10.1007/978-3-030-85469-0_6
https://doi.org/10.1007/978-3-319-48472-3_32
https://doi.org/10.1007/978-3-319-48472-3_32
https://doi.org/10.1007/978-3-662-45391-9_10
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/11841197_1

152 C. Di Ciccio and M. Montali

97. Westergaard, M.: Better algorithms for analyzing and enacting declarative work-
flow languages using LTL. In: Rinderle-Ma et al. [81], pp. 83–98

98. Westergaard, M., Maggi, F.M.: Looking into the future. In: Meersman, R., et al.
(eds.) OTM 2012. LNCS, vol. 7565, pp. 250–267. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5_16

99. Zhu, S., Tabajara, L.M., Pu, G., Vardi, M.Y.: On the power of automata mini-
mization in temporal synthesis. In: Proceedings 12th International Symposium on
Games, Automata, Logics, and Formal Verification (GandALF 2021). EPTCS, vol.
346, pp. 117–134 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-33606-5_16
http://creativecommons.org/licenses/by/4.0/

Conformance Checking

Conformance Checking: Foundations,
Milestones and Challenges

Josep Carmona1, Boudewijn van Dongen2(B), and Matthias Weidlich3

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Eindhoven University of Technology, Eindhoven, The Netherlands

B.F.v.Dongen@tue.nl
3 Humboldt-Universität zu Berlin, Berlin, Germany

Abstract. By relating observed and modelled behaviour, conformance
checking unleashes the full power of process mining. Techniques from
this discipline enable the analysis of the quality of a process model dis-
covered from event data, the identification of potential deviations, and
the projection of real traces onto process models. This way, the insights
gained from the available event data can be transferred to a richer con-
ceptual level, amenable for a human interpretation. The aforementioned
functionalities are grounded on the use of conformance checking artefacts
that explicit the relation between observed and modelled behaviour. This
chapter describes these artefacts, and builds upon them to gain evidence-
based insights on the processes of an organization. Moreover, we overview
the applications of conformance checking and propose a general frame-
work that incorporates these applications. Finally, milestones and chal-
lenges of the field are outlined.

1 Introduction

Organisations tend to define, by means of conceptual models, complex business
processes that must be followed to achieve their objectives [22]. Sometimes the
corresponding processes are distributed in different systems, and most of the
cases include human tasks, enabling the occurrence of unexpected deviations
with respect to the (normative) process model. This is aggravated by the appear-
ance of more and more complex processes, where the observations are provided
by heterogeneous sources, such as Internet-of-Things (IoT) devices involved in
Cyber-physical Systems [46].

Conformance checking techniques provide mechanisms to relate modelled and
observed behaviour, so the frictions between the footprints left by process exe-
cutions, and the process models that formalise the expected behaviour, can be
revealed [14]. As it has been already commented in the first chapters of this
book, process executions are often materialized and stored by means of event
logs. Table 1 shows an example of an event log for a loan application process.

c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 155–190, 2022.

https://doi.org/10.1007/978-3-031-08848-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_5

156 J. Carmona et al.

Conformance checking is expected to be the fastest growing segment in pro-
cess mining for the next years1. The main reason for this forthcoming industrial
interest is the promise of having event data and process models aligned, thus
increasing the value of process models within organizations.

Given an event log and a process model, conformance checking techniques
yield some explicit description of their consistent and deviating parts, here
referred to as a conformance artefact. In the first part of this chapter, we focus
on three main conformance artefacts that are covering most of the spectrum of
conformance checking:

– Behavioural rules such as ordering constraints for activities imposed by the
model that are violated by some traces of the event log;

– Events of traces that could correctly be replayed by task executions in the
process model, or for which the replay failed;

– An alignment between the events of a trace of the event log and the task
executions of an execution sequence of the model.

Fig. 1. Example of conformance checking in Celonis.

Remarkably, a conformance artefact enables conclusions on the relation
between the event log and the process model. By interpreting the conformance
artefact, for instance, the fitness and precision of the model regarding the given
log is quantified. Such an interpretation may further involve decisions on how to
weight and how to attribute any encountered deviation (see the end of this chapter

1 https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-2
54139591.html.

https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-254139591.html
https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-254139591.html

Conformance Checking: Foundations, Milestones and Challenges 157

for a discussion on this topic). Since the log and the model are solely representa-
tions of the process, both of them may differ in how they abstract the process.

Differences in the representations of a process may, of course, be due to
inaccuracies. For example, an event log may be recorded by an erroneous logging
mechanism (see next chapter of this handbook for understanding this in depth),
whereas a process model may be outdated. Yet, differences may also be due
to different purposes and constraints that guide how the process is abstracted
and therefore originate from the pragmatics of the respective representation of
the process. Think of a logging mechanism that does not track the execution of
a specific activity due to privacy considerations, or a model that outlines only
the main flow of the process to clarify its high-level phases. Either way, the
respective representations are not wrong, but differ because of their purpose and
the constraints under which they have been derived.

By linking an event log and a process model through a conformance artefact,
the understanding of the underlying process can be improved. That includes tech-
niques for process enhancement (see [18]). For instance, traces of an event log can
be replayed in the process model, while taking into account the deviations between
the log and model as materialised in the conformance artefact. Commercial tools
that include conformance checking nicely display these deviations on their dash-
boards, as can be seen in Fig. 1. Another example includes the inspection of the
conditions that govern the decision points in a process. The conformance artefact
can be used to derive a classification problem per decision point, which enables dis-
covery of the respective branching conditions. Assuming that the model represents
the desired behaviour of the process, the conformance artefact further enables con-
clusions on how the current realisation of the process needs to be adapted.

There exist different algorithmic perspectives to relate modelled and observed
behaviour: rule checking, token-replay and alignments.

A process model defines a set of tasks along with causal dependencies for their
execution. As such, a process model constrains the possible behaviour of a pro-
cess in terms of its execution sequences. Instead of considering the set of possible
execution sequences of a process model, however, the basic idea of rule-based con-
formance checking is to exploit rules that are satisfied by all these sequences as
the basis for analysis. Such rules define a set of constraints that are imposed by
the process model. Verification of these constraints with respect to the traces of
an event log, therefore, enables the identification of conformance issues.

Unlike rule checking that is grounded in information derived from the process
model, token replay takes the event log as the starting point for conformance
analysis. As indicated already by its name, this technique replays each trace of
the event log in the process model by executing tasks according to the order
of the respective events. By observing the states of the process model during
the replay, it can be determined whether, and to what extent, the trace indeed
corresponds to a valid execution sequence of the model.

In spite of the two aforementioned class of techniques to relate modelled and
observed behaviour, most conformance checking techniques rely on the notion
of alignment [1]: given an observed trace σ, query the model to obtain the exe-
cution sequence γ that is most similar to σ. The computation of alignments is

158 J. Carmona et al.

a computational challenge, since it encompasses the exploration of the model
state space, an object that is worst-case exponential with respect to the size of
the model or the trace.

Table 1. Example of a log of the loan application process.

Event Application Offer Activity Amount Signed Timestamp

. .

e13 A5634 Application submitted e2,000 Jan 01, 12:31

e14 A5634 Accept application e2,000 Jan 01, 12:32

e15 A5635 Application submitted e5,000 Jan 02, 04:31

e16 A5635 Accept application e5,000 Jan 02, 04:32

e17 A5636 Application submitted e200 Jan 03, 06:59

e18 A5636 Accept application e200 Jan 03, 07:00

. .

e22 A5634 Finalise application Jan 03, 09:00

e23 A5636 Finalise application Jan 03, 09:01

e24 A5635 Decline application Jan 03, 09:02

e25 A5635 Decline application Jan 03, 09:03

. .

e30 A5636 O3521 Select and send offer e500 Jan 04, 16:32

. .

e37 A5634 O3541 Select and send offer e1,500 Jan 05, 12:32

e38 A5636 O3521 Receive offer NO Jan 05, 12:33

e38 A5636 O3521 Cancel offer Jan 05, 12:34

e39 A5636 O3542 Select and send offer e500 Jan 05, 13:29

e40 A5636 O3542 Receive offer YES Jan 08, 08:33

e41 A5636 O3542 Accept offer Jan 08, 16:34

e42 A5634 O3541 Receive offer NO Jan 10, 10:00

. .

e54 A5634 O3541 Decline offer Jan 10, 10:04

. .

e64 A5634 Decline application Jan 10, 10:05

e65 A5634 Application finished Jan 10, 10:06

e66 A5636 Approve and activate application Jan 10, 10:07

e67 A5636 Application finished Jan 10, 10:08

. .

Once conformance artefacts are computed, the next natural step is to use
them. The main applications arising from these artefacts are listed in this chapter
as well, as a gentle introduction to some of the chapters devoted to this in this
book. We highlight performance analysis and decision point analysis as natural
examples of the application of conformance checking.

Furthermore, depending on the trust we put on the two main elements (trust
on the log, trust on the model), conformance checking can be generalized as a
framework that unifies diverse analysis techniques in the field of process min-
ing [48]. As such, this framework includes several instantiations already known
to the reader.

Conformance Checking: Foundations, Milestones and Challenges 159

We finish the chapter by listing important milestones and challenges, some
of them being already under consideration by the research community, like the
computational feasibility of the underlying techniques.

2 Relating Observed and Modelled Behaviour:
The Basics

In this section, we discuss the basic notions and techniques to relate observed
and modelled behaviour. To this end, we first review generic quality dimensions
on this relation (Sect. 2.1). Subsequently, we turn to three different types of con-
formance checking artefacts that capture the relation between a trace observed
in the event log and a process model, namely artefacts grounded in rule checking
(Sect. 2.2), token replay (Sect. 2.3), and alignments (Sect. 2.4), see also Fig. 2.
A detailed explanation of the contents of this section can be found in [14].

Fig. 2. General approaches to conformance checking and resulting conformance arte-
facts (from [14]): rule checking, token replay, and alignments. All techniques take a
trace of an event log and a process model as input. However, conceptually, rule check-
ing starts from the behaviour of the process model, extracting constraints to check for a
trace. Token replay, in turn, starts from the behaviour of a single trace, trying to replay
the trace in a process model. Alignments, in turn, adopt an inherently symmetric view.

160 J. Carmona et al.

2.1 Quality Dimensions to Relate Process Models and Event Logs

Fig. 3. Example process model of a loan application process in BPMN.

By relating observed and modelled behaviour, an organization can get insights
on the execution of their processes with respect to the expectations as described
in the models. If both process model M and event log L are considered as
languages, their relation can be used to measure how good is a process model in
describing the behaviour recorded in an event log.

Hence, confronting M and L can help into understanding the complicate
relation between modelled and recorded behaviour. We now provide two views
on this relation that represent two alternative perspectives: fitness and precision.
To illustrate this, in this chapter we will be using a process for a loan application.
A process model illustrating this process is described in Fig. 3. According to this
model, a submitted application is either accepted or rejected, depending on the
applicant’s data. An accepted application is finalised by a worker, in parallel
with the offer process. For each application, an offer is selected and sent to
the customer. The customer reviews the offer and sends it back. If the offer is
accepted, the process continues with the approval of the application and the
activation of the loan. If the customer declines the offer, the application is also
declined and the process ends. However, the customer can also request a new
offer, in which case the offer is cancelled and a new offer is sent to the customer.

Fitness measures the ability of a model to explain the recorded execution of
a process as recorded in an event log (see the example of Fig. 4 for an example
of fitting behaviour). It is the main measure to assess whether a model is well-
suited to explain the recorded behaviour. To explain a certain trace, the process
model is queried to assess its ability in replaying the trace, taking into account
the control flow logic expressed in the model.

In general, fitness is the fraction of the behaviour of the log that is also
allowed by the model. It can be expressed as follows.

fitness =
|L ∩ M |

|L| (1)

Conformance Checking: Foundations, Milestones and Challenges 161

Let us have a look at this fraction in more detail by examining the extreme
cases. Fitness is 1, if the entire behaviour that we see in the log L is covered by
the model M . Conversely, fitness is 0, if no behaviour in the log L is captured by
the model M . In the remainder of this section, we will describe three different
algorithms deriving artefacts that can be used to evaluate fitness.

We define a trace to be either fitting (it corresponds to an execution sequence
of the model) or non-fitting (there is some deviation with respect to all execution
sequences of the model). For instance, the trace corresponding case A5634 in
our running example is fitting, since there is an execution sequence of the model
that perfectly reproduces this case, as shown in Fig. 4. In contrast, Fig. 5 shows
the information for a trace that does not contain the event to signal that the
application has been finalised (Fa).

Fig. 4. Loan application process model with highlighted path corresponding to the
fitting trace 〈As,Aa,Fa,Sso,Ro,Do,Da,Af〉 of case A5634 from the event log of Table 1.

Fig. 5. Loan application process model with highlighted path corresponding to a trace
〈As,Aa,Sso,Ro,Do,Da,Af〉 , which does not include an event to signal that the appli-
cation has been finalised (Fa). In magenta, we show that the task (Fa) has not been
observed, but it is required to reach the final state of the process model.

162 J. Carmona et al.

Precision is the counterpart of fitness. It can be calculated by looking at the
fraction of the model behaviour that is covered in the log.

precision =
|L ∩ M |

|M | (2)

We see that precision shares the numerator in the fraction with fitness from (1).
This implies that if we have a log and a model with no shared behaviour, fitness
is zero, and by definition also precision is zero. However, the denominator is
replaced with the amount of modelled behaviour.

In summary, for the two main metrics reported above, algorithms that can
assess the relation between log and model need to be considered. In the next
section, we describe the three main algorithmic perspectives to accomplish this
task. For an extensive analysis of metrics to assess the relation between observed
and modelled behaviour, including metrics like generalization or simplicity, the
reader is referred to [14]. Intuitively, generalization complements precision by
quantifying the amount of behaviour that is modelled in a process model, but
not observed in an event log. In practice, an event log cannot be expected to be
complete, i.e., to contain all possible process behaviour (e.g., all possible inter-
leavings of concurrent activities or all possible numbers of iterations of repetitive
behaviour). Hence, a process model is typically assumed to generalize to some
extent, i.e., not to show perfect precision, and generalization measure aim to
quantify this amount of imprecision. Simplicity, in turn, refers to the structure
and complexity of the model. Intuitively, simplicity measures induce some pref-
erence for process models that behave similarly in terms of the other dimensions,
with the argument being that simple models are generally to be preferred.

2.2 Rule Checking

The basic idea of rule-based conformance checking is to exploit rules that are
satisfied by all the execution sequences of a process model as the basis for analy-
sis. Such rules define a set of constraints that are imposed by the process model.
The verification of these constraints with respect to the traces of an event log,
therefore, enables the identification of conformance issues.

Considering the running example of our loan application process as depicted
in Fig. 3, rules derived from the process model include:

R1: An application can be accepted (Aa) at most once.
R2: An accepted application (Aa), that must have been submitted (As) earlier,

and eventually an offer needs to be selected and sent (Sso) for it.
R3: An application must never be finalised (Fa), if the respective offer has been

declined (Do) already.
R4: An offer is either accepted (Ao) or declined (Do), but cannot be both

accepted and declined.

A careful inspection of each one of the rules above would reveal that they
are different in nature: rule R1 is an example of cardinality rule, which defines

Conformance Checking: Foundations, Milestones and Challenges 163

an upper and lower bound for the number of executions of an activity. Rule
R2 contains a precedence rule, which establishes that the execution of a certain
activity is preceded by at least on execution of another activity. Rule R3 estab-
lishes an ordering rule, whereas rule R4 represents an exclusiveness rule. Tables 2
and 3 show examples of cardinality and exclusiveness rules, respectively, for the
running example and two log traces.

Table 2. Precedence rules derived for the process model of the running exam-
ple and their satisfaction (✓) and violation (✗) by the exemplary log trace
〈As,Sso,Fa,Ro,Co,Ro,Aaa,Af〉. Each non-empty cell refers to a precedence rule. For
instance, the activity to finalize the application (Fa) is preceded by the submission of
the application (As) and the acceptance of the application (Aa). Yet, only the former
rule is satisfied, whereas the latter one is violated in the given trace.

As Da Aa Fa Sso Ro Co Ao Aaa Do Af

As

Da ✓

Aa ✓

Fa ✓ ✗

Sso ✓ ✗

Ro ✓ ✗ ✓

Co ✓ ✗ ✓ ✓

Ao ✓ ✓ ✓ ✓ ✓

Aaa ✓ ✗ ✓ ✓ ✓ ✗

Do ✓ ✓ ✓ ✓ ✓

Af ✓

By assessing to what extent the traces of a log satisfy the rules derived
from a process model, rule-based conformance checking focuses on the fitness
dimension, i.e., the ability of the model to explain the recorded behaviour. Traces
are fitting, if they satisfy the rules, or non-fitting if that is not the case. Let RM

be a predefined set of rules. Fitness can be defined according2 to RM :

fitness(L,M) =
|{r ∈ RM | r is satisfied by all t ∈ L}|

|RM | (3)

As the reader may already have grasped, the dimension of precision is not
targeted by rule-checking.

2 Notice that this makes fitness to depend on a particular set of rules, which is a
limitation of the rule-based fitness checking.

164 J. Carmona et al.

Table 3. Exclusiveness rules derived for the process model of the running exam-
ple and their satisfaction (✓) and violation (✗) by the exemplary log trace
〈As,Aa,Sso,Ro,Fa,Ao,Do,Da,Af 〉. Again, each non-empty cell denotes a rule, i.e.,
the absence of the execution of two activities for the same case. For instance, the
acceptance of an offer (Ao) must not be executed for cases for which the application
is declined (Da). Yet, in the given trace, respective events for both activities can be
found, so that the rule is marked as being violated.

As Da Aa Fa Sso Ro Co Ao Aaa Do Af

As ✓

Da ✓ ✗ ✓

Aa ✓

Fa ✓

Sso

Ro

Co

Ao ✗ ✓ ✗

Aaa ✓ ✓ ✓

Do ✗ ✓ ✓

Af ✓

2.3 Token Replay

Intuitively, this technique replays each trace of the event log in the process model
by executing tasks according to the order of the respective events. By observing
the states3 of the process model during the replay, one can determine whether,
and to what extent, the trace indeed corresponds to a valid execution sequence
of the process model.

In essence, token replay postulates that each trace in the event log corre-
sponds to a valid execution sequence of the process model. This is verified by
step-wise executing tasks of the process model, according to the order of the
respective events in the trace. During this replay, we may observe two cases that
hint at non-conformance (see Fig. 6):

(i) the execution of a task requires the consumption of a token on the incoming
arc, but the arc is not assigned any token in the current state, i.e., a token
is missing during replay;

(ii) the execution of a task produces a token at an outgoing arc, but this token
is not consumed eventually, i.e., a token is remaining after replay.

3 A state of a BPMN model is a distribution of tokens over the control flow arcs. A
task is enabled in a state if its incoming control flow arc is assigned a token by the
respective distribution. If it executes, this token is consumed, i.e., no longer assigned
to the arc. Moreover, a token is produced on the outgoing control flow arc of the
task.

Conformance Checking: Foundations, Milestones and Challenges 165

Fig. 6. State reached after replaying the full trace 〈As,Aa,Sso,Ro,Ao,Aaa,Aaa〉. One
can see that there are three remaining tokens (denoted by yellow background), and
two missing tokens (denoted by dashed red lines). (Color figure online)

By exploring whether the replay of a trace yields missing or remaining tokens,
replay-based conformance checking mainly focuses on the fitness dimension. That
is, the ability of the model to explain the recorded behaviour is the primary
concern. Traces are fitting if their replay does not yield any missing or remaining
tokens, and non-fitting otherwise:

fitness(L, M) =
1

2

(
1 −

∑
t∈L missing(t, M)∑

t∈L consumed(t, M)

)
+

1

2

(
1 −

∑
t∈L remaining(t, M)∑
t∈L produced(t, M)

)
(4)

In contrast to rule checking, precision can be estimated using token
replay [34], but unfortunately, the corresponding technique strongly relies on
the assumption that traces are fitting; if they are not, then the estimation of
precision through token replay can be significantly degraded [2].

2.4 Alignments

Alignments take a symmetric view on the relation between modelled and
recorded behaviour. Specifically, they can be seen as an evolution of token replay.
Instead of establishing a link between a trace and sequences of task executions in
the model through replay, alignments directly connect a trace with an execution
sequence of the model.

An alignment connects a trace of the event log with an execution sequence
of the process model. It is represented by a two-row matrix, where the first row
consists of activities as their execution is signalled by the events of the trace and
a special symbol � (jointly denoted by ei below), and the second row consists
of the activities that are captured by task executions of an execution sequence
of the process model and a special symbol � (jointly denoted by ai):

log trace e1 e2 . . . en

execution sequence a1 a2 . . . am

166 J. Carmona et al.

Each column in this matrix, a pair (ei, ai), is a move of the alignment, mean-
ing that an alignment can also be understood as a sequence of moves. There
are different types of such moves, each encoding a different situation that can
be encountered when comparing modelled and recorded behaviour. We consider
three types of moves:

– Synchronous move: A step in which the event of the trace and the task in the
execution sequence correspond to each other. Synchronous moves denote the
expected situation that the recorded events in the trace are in line with the
tasks of an execution sequence of the process model. In the above model, a
synchronous move means that it holds ei = ai and ei �=� (and thus ai �=�).

– Model move: When a task should have been executed according to the model,
but there is no related event in the trace, we refer to this situation as a model
move. As such, the move represents a deviation between the trace and the
execution sequence of the process model in the sense that the execution of an
activity has been skipped. In the above model, a model move is denoted by
a pair (ei, ai) with ei =� and ai �=�.

– Log move: When an event in the trace indicates that an activity has been
executed, even though it should not have been executed according to the
model, the alignment contains a log move . Being the counterpart of a model
move, a log move also represents a deviation in the sense of a superfluous
execution of an activity. A log move is denoted by a pair (ei, ai) with ei �=�
and ai =�.

Alignments are constructed only from these three types of moves (see an in-
depth explanation on this in [14]). For instance, let us use the running example
(see Fig. 3) and the trace 〈As, Aa, Sso, Ro, Ao, Aaa, Aaa〉. A possible alignment
with this trace is:

log trace As Aa Sso Ro � Ao Aaa Aaa �
execution sequence As Aa Sso Ro Fa Ao Aaa � Af

This alignment comprises six synchronous moves, one log move, (Aaa,�),
and two model moves, (�,Fa) and (�,Af). The log move (Aaa,�) indicates
that the application had been approved and activated, even though this was
not expected in the current state of processing (as this had just been done).
The model move (�,Fa) is the situation of the process model requiring that
the application be finalised, which has not been done according to the trace.
Furthermore, one can easily extract the original trace by projecting away the
special symbol for skipping from the top row. Applying the projection to the
bottom row yields the execution sequence of the model (〈As, Aa, Sso, Ro, Fa,
Ao, Aaa, Af 〉).

In general, optimal alignments, i.e., alignments with a minimal number of
model or log moves, are preferred. The alignment shown above is optimal since
there is no other alignment with least number of deviations. Computing (opti-
mal) alignments is a hot research topic, which has been addressed in many papers
in the last years [1,9,19,31,39,44,45,56–58,60,66,68]. In this paper, however, we

Conformance Checking: Foundations, Milestones and Challenges 167

will refrain from describing the state-of-the-art methods for alignment compu-
tation, and refer the interested reader to the aforementioned papers, or to [14].

Moreover, the optimality of alignments may also be generalized in terms of a
cost function that assigns costs to particular model moves or log moves, thereby
enabling the categorization of deviations in terms of their severity. Then, an
alignment is optimal, if the sum of costs assigned to all its moves is minimal.
Setting the cost for all model moves and log moves to one, and for synchronous
moves to zero, yields the aforementioned notion of optimality, i.e., alignments
with a minimal number of model or log moves.

Remarkably, alignments provide a simple means to quantify fitness. Again,
this may be done based on the level of an individual trace or the event log as
a whole. However, the aggregated cost of log moves and model moves may be
a misleading measure, though, as it is not normalised. A common approach,
therefore, is to normalise this cost by dividing it by the worst-case cost of a
aligning the trace with the given model. Under a uniform assignment of costs
to log and model moves, such a worst-case cost originates from an alignment in
which each event of the trace Ti relates to a log move, whereas all task executions
of a sequence σ of the model relate to a model move and σ is as short as possible.
Since the cost induced by the model moves of an execution sequence depends on
its length, the shortest possible execution sequence leading from the initial state
to a final state in the model is considered for this purpose.

Realising the above idea, we obtain two ratios that denote the relative share
of non-fitness in the alignments of a trace or an event log, respectively. Let M
be a model and L an event log. Then, we denote by cost(t,M) the cost of an
optimal alignment of a trace t ∈ L with respect to the model. Furthermore,
let cost(t, 〈〉) and cost(〈〉, x) be the costs of aligning a trace t with an empty
execution sequence, or some execution sequence x ∈ M of the model with an
empty trace, respectively. Then, fitness based on alignments is quantified for a
trace or an event log:

fitness(L,M) = 1 −
(∑

t∈L cost(t,M)∑
t∈L (cost(t, 〈〉)) + |L| × minx∈M cost(〈〉, x)

)
(5)

A simple precision metric based on alignments is grounded in the general idea
of escaping edges [34]. To give the intuition, we assume that (i) the event log fits
the process model; and (ii) that the process model is deterministic. The former
means that we simply exclude non-fitting traces, for which the optimal alignment
contains log moves or model moves, from the assessment of the precision of the
model. The latter refers to a process model not being able to reach a state, in
which two tasks that capture the same activity of the process are enabled. The
model of our running example (see Fig. 3) is deterministic.

For the activity of each event of a trace of the event log, we can determine
a state of the process model right before the respective task would be executed.
Under the above assumptions, this state is uniquely characterised. What is rel-
evant when assessing precision, is the number of tasks enabled in this state of

168 J. Carmona et al.

the process model. Let M be a process model and L an event log, with t ∈ L as
a trace and, overloading notation, e ∈ t as one of the events of the trace. Then,
by enabledM (e), we denote the number of tasks and, due to determinism of the
process model also the number of activities that can be executed in the state
right before executing the task corresponding to e.

Similarly, we consider all traces of the log that also contain events related to
the activity of event e, say a, and have the same prefix, i.e., events that indicate
that the same sequence of activities has been executed before an event signalling
the execution of activity a. Then, we determine the number of activities for which
events signal the execution directly after this prefix, i.e., the set of activities that
have been executed in the same context as the activity a as indicated by event
e. Let this number of activities be denoted by enabledL(e), which, under the
above assumptions, is necessarily less than or equal to enabledM (e). Then, the
ratio of both numbers captures the amount of ‘escaping edges’ that represent
modelled behaviour that has not been recorded. As such, precision of log L and
M is quantified as follows:

precision(L,M) =

∑
t∈L,e∈t enabledL(e)∑
t∈L,e∈t enabledM (e)

(6)

In summary, alignments are crucial to have accurate insights on the fitness
and precision. However, as already acknowledged, they are hard to compute
in general. In the remaining of this section, we briefly revise the challenge of
computing alignments, together with some alternatives that have been proposed
in recent years.

Computing Alignments. Computing an optimal alignment for an arbitrary
combination of a process model and an event log is a far from trivial task. In
terms of complexity, the task is as complex as reachability in Petri nets which,
for general Petri nets, is undecidable. Nonetheless, several techniques exist to
compute alignments. The best-known technique uses the A� algorithm to find
the shortest part in the reachability graph of the so-called synchronous product
net [64]. This synchronous product is a combination of the process model and a
Petri-net representation of the trace. Figure 7 shows an example of a synchronous
product net for the running example. The algorithm associates costs to every
transition in the synchronous product and uses these costs to find the shortest
path from the initial marking to the final marking by expanding a minimal
portion of the search space [67,68].

When synchronous products become too large to handle for a monolithic algo-
rithm decomposition approaches can be used [29] to decompose the construction
of an alignment into smaller problems which can be combined into a full optimal
alignment. If optimality is not a requirement, sub-optimal alignments can be
identified with a variety of techniques [51,52,60,62].

Another approach is the use of so-called satisfiability solvers [10]. The align-
ment problem is encoded as a SAT problem by translating the synchronous
product to a set of boolean formulas. Because of this, the solution is limited

Conformance Checking: Foundations, Milestones and Challenges 169

Fig. 7. The synchronous product model for the running example and trace T1 = 〈As,
Aa, Sso, Ro, Ao, Aaa, Aaa〉.

to safe Petri nets. While strictly a limitation, this is hardly a problem as most
process modelling languages found in industry belong to this class of models. A
third approach for computing alignments, which is bound by the same limitation,
uses job-shop schedulers to find the optimal set of moves [19].

Finally, symbolic techniques exist to compute alignments [43]. These tech-
niques have the upside that they can compute alignments for large sets of traces
at once, rather than trace by trace as all techniques above do. However, the
downside is that they rely on the state space of the process model to be known.
In models with many parallel constructs, this state space may be prohibitively
large. An approach using an implicit representation of the state space by means
of a Binary Decision Diagram was presented recently which alleviates the afore-
mentioned explosion [9].

3 Relating Observed and Modelled Behaviour: Advanced
Techniques

In the previous sections, the focus of conformance checking was very much on
control flow, i.e. the ordering of activities in the event log in relation to the speci-
fied order in which activities should be executed according to the process model.
However, real-life processes are not only about activities. Instead, processes are
executed by people within an organization to reach a certain business goal. This
goal is expressed by data in the process and the process model serves as a guide
to reach the goal as efficiently or as precisely as possible.

Consider, for example, the event log in Table 1. Next to the case identifier
and the activity, we also see other data such as the amount of the application,
the corresponding offer id sent to the customer and whether or not this offer is

170 J. Carmona et al.

signed. Not shown in this log is the identity of the employee who executed each
activity, but it is not hard to imagine that companies have many employees of
different roles and with different authorisation levels.

When doing conformance checking, it is important to consider all these ele-
ments and for this, more advanced conformance checking techniques, based on
alignments, exist.

Data-Aware Alignments. Data plays a pivotal role in processes. Decisions
are typically based on data that is provided at the start of a process or generated
by any of the activities in the process. In our example of Table 1, the amount
columns shows both types. Event e13 refers to an application being submitted by
a customer, requesting a loan of 2000 euro. Event e37 subsequently shows that
the bank offers the customer a loan for 1500 euro. In this process, the activity
“Select and send offer” should not be executed with an amount higher than the
requested amount. For application A5634 this is correct, but application A5636
shows a violation of this rule as the requested amount is only 200 euro, while
the offered amount is 500.

To identify such data issues, several approaches exist. In [20,21] the authors
first align the control flow using any of the techniques described above and
then they check for deviations on the data level. This work is extended in [32]
providing more control over the result and, especially, adopting a balanced view
of control-flow and rules referring to the data perspective. Recently an approach
that uses SMT solvers brings a fresh air to compute data-aware alignments [25].

Resource-Aware Alignments. Consider, for sake of argument, that the
offered amount in our example can be higher than the requested amount, but
only if the activity “select and send offer” is executed by a manager. In that
case, the resource has a higher authorization level to actually deviate from the
customer’s request. However, if this happens, the final activity “Approve and
activate application” also needs to be executed by a manager and this should
not be the same person (four-eyes principle).

The relation between the roles and resource identities across different activi-
ties makes checking this more complex than data-aware alignments. The authors
of [3] consider the resource perspective by looking at the various data operations
in an event log and checking if these operations are performed by authorized
resources.

Integrated Approaches. The techniques presented above share a common fea-
ture that they first align the control flow and then use the control-flow alignment
to check data and resource rules. An important downside of this approach is that
certain deviations may not be detected. Consider, for example, a manager who
decides to login to the bank’s system and read the application of his neighbour.
As no activity is performed, the event log would not show any events and, when
a data-access log is checked in isolation, the manager has the authority to read

Conformance Checking: Foundations, Milestones and Challenges 171

application data, hence no data-access violation is found. However, the manager
read data outside of the context of a process, i.e. there was no business-goal
associated to the read action.

To comprehensively check the conformance of an event log from the view-
point of the control flow, the data-access and resource authorization, a more
recent approach has been developed by Mozafari et al. [5]. In their paper, the
combination of an event log, a data access log and a resource model is used
to construct a large synchronous product. This synchronous product is subse-
quently used to find optimal alignments with respect to deviations in all three
perspectives combined without favouring one over the other. These deviations
include, for example, spurious data access and authorization problems where
otherwise authorized users access data outside of the context of the case they
are working on.

Compliance Checking. The focus of conformance checking so far has been
on the situation where end-to-end process models are available. However, in
many companies, such process models do not exist. Instead, each process is
only governed by a set of compliance rules, i.e. all activities can be performed,
as long as these rules are not broken. Rule engines, as discussed earlier in the
introduction, can typically raise flags when as soon as business rules are violated.
However, a rule engine typically only recognizes the moment when a rule is
violated. Conformance checking using alignments can also be used to identify
that specific business rules are not yet fulfilled, but no violation occurred yet.

The work of Ramezani et al. [54] shows how typical compliance rules from the
accountancy and control domain can be translated into small Petri nets which
in turn can be aligned with event logs to identify violations against these rules
as log- or model-moves.

Realtime (or Righttime) Conformance Checking. So far, conformance
checking was discussed as a technique to identify deviations after processes have
been concluded. However, in some cases, it may be interesting to detect devi-
ations during the execution of a process [12,13,70]. Such techniques are often
referred to as streaming techniques, i.e., data is being processed as it comes in
and a realtime dashboard provides insights into the current conformance level of
an entire process. This is particularly useful in environments where employees
have a great deal of flexibility in executing activities within a process but where
specific conditions have to be met at the end.

Conformance Checking Without Process Models. Finally, a specific type
of conformance checking exists which does not rely on a traditional notion of a
process model. Instead, the event log itself is used as a representative of both
the correct and incorrect behaviour and deviations are detected between the
mainstream behaviour prevalent in the event log and the ‘outlier’ cases [36,37].
Specifically, this approach employs recurrent neural networks (RNNs) that are

172 J. Carmona et al.

trained for next activity prediction moving through a trace forward or backward.
These predictions can be seen as an approximation of a process model against
which the alignments of traces are computed.

4 Applications of Conformance Checking

So far, we discussed essential techniques for conformance checking along with
their generalization and extension to scenarios beyond the traditional, retro-
spective analysis of control-flow information. Next, we turn the focus to the
broader field of applications of conformance checking.

We first note that an understanding of the link between the recorded and
modelled behaviour of a process serves as a foundation for various model-based
techniques for the analysis of qualitative and quantitative process properties. The
importance of conformance checking for such analysis is detailed in Sect. 4.1,
taking techniques for the analysis of performance characteristics and decision
points as examples.

A second important observation relates to the fact that deviations between
recorded and modelled behaviour, as revealed by conformance checking, can
potentially be attributed to quality issues in the event log or the process model.
Both, a log and a model, denote representations of the process at hand, which
may be incomplete, outdated, imprecise, or simply wrong. This gives rise to
a generalized notion of conformance checking, which aims at a separation of
deviations that are due to quality issues in the event log or the process model. As
discussed in Sect. 4.2, this generalized view on conformance checking enables us
to describe common techniques for process mining as part of a unified framework.

4.1 The Case of Model-Based Process Analysis

Process models serve as the starting point for a plethora of process analysis
techniques. Such analysis may be classified along various dimensions. That is,
the point in time addressed by the analysis distinguishes retrospective, predic-
tive, or even prescriptive analysis of a business process. The granularity of the
analysis may be defined to be on individual instances of a process or a set
thereof, thereby integrating potential interactions between different instances of
a process. Moreover, analysis based on a process model may incorporate diverse
process perspective, starting with the traditional view only on the control-flow
of the process, through the data produced and consumed during its execution,
the impact of such data on the control-flow, the integration of events produced
by the environment in which the process is executed, the utilization of resources,
and the definition of organizational responsibilities, to name just a few examples.

Regardless of the specific type of model-based process analysis, conformance
checking provides a means to ensure that the models provide reasonable repre-
sentation of the actual behaviour. Considering the behaviour as recorded in an
event log as a representation of actual process execution, despite all potential
issues related to data quality, such as accuracy and completeness of an event

Conformance Checking: Foundations, Milestones and Challenges 173

log, conformance checking establishes trust into the analysis results obtained
from the models. In the following paragraphs, we reflect on this application of
conformance checking for three types of model-based analysis techniques.

Performance Analysis. Performance properties are an important aspect of
process analysis in various domains. Here, specific measures include information
on the time needed by a process instance from start to end, also known as cycle
time or sojourn time, which is captured in terms of simple statistics, such as the
average or maximal sojourn time, or complete distributions. Moreover, under-
standing how much time is needed to reach a certain milestone in the execution
of a process is valuable information for operational process management, e.g.,
related to the scheduling of resources.

To enable the respective analysis, a process model is enriched with perfor-
mance information. Common notions include simple annotations such as the
average execution time per task. Yet, one may also consider more elaborated
annotations, such as the distributions of not only the execution time per task,
but also the wait time between the execution of subsequent tasks. Based on
these annotations, analytical techniques or simulation are used to compute per-
formance measures.

Given an event log, conformance checking that links the events of traces to
the tasks in a process model helps to extract such performance annotations.
For instance, once an alignment is computed, the synchronous steps indicate
for which temporal information attached to events needs to be incorporated for
the annotations for specific tasks. Note that this is particularly beneficial, once
a model contains several tasks with the same label, i.e., representing the same
activity of the process. In that case, an alignment separates the events that shall
serve as the basis for the performance annotation of the different tasks based on
the behavioural context in which they are executed. For instance, the model for a
loan application process in Fig. 3 contains two tasks for declining an application
(Da). This way, the respective activity may be executed in different contexts,
once directly after the submission of the application and once towards the end
of the process, after an offer has been declined. Consequence, both tasks may be
have different performance characteristics. Alignments help to incorporate these
differences by separating the events that are linked to either task.

However, conformance checking may not only employed to extract perfor-
mance annotations from an event log, but also enables their validation. For
instance, performance annotations may have been defined manually, based on
expectations. Then, temporal information of the event log may be utilized to
validate these annotations, where, again, conformance checking indicates which
events shall be considered for which of the tasks in the process model.

Decision Point Analysis. Decision point analysis aims at insights on the con-
ditions that govern decision points in a process. In process modelling, it is a
common abstraction to neglect such conditions and simply assume that a non-
deterministic choice is taken, as the conditions may not be relevant for some

174 J. Carmona et al.

control-flow-oriented analysis. However, this abstraction may also be problem-
atic, as it hides how the context of process execution influences the control-
flow, e.g., that certain activities are executed solely for certain types of cases.
Such insights are particularly relevant also for performance analysis as discussed
above, since the conditions at a decision point may induce highly skewed distri-
butions. In our running example, Fig. 3, there is a first decision point directly
after the submission of an application, which may lead to an immediate rejec-
tion and, hence, completion of process execution. Understanding the properties
of cases that govern this decision will, therefore, be very beneficial for any anal-
ysis of performance characteristics.

To understand the conditions at decision points of a process, decision min-
ing may employed. It takes traces of an event log, including the data attached
to the events or the trace as a whole, as observations for particular decision
outcomes. Then, a classification problem is derived, with the different outcomes
being the classes, and common techniques for supervised classification enable the
construction of a classifier. Assuming that the obtained classifier can be inter-
preted, e.g., is represented as a decision tree, the conditions for a decision point
can be extracted and added to a process model.

In this context, conformance checking, again, helps to prepare a process
model for analysis, as well as to validate existing annotations. In the former case,
alignments that link events to tasks help to prepare the data needed for decision
mining. Through an alignment, the data available at a specific decision point is
characterised and may be used as input to the classification algorithm. The later
case, the decision points in a process model have already been annotated with
the respective conditions. Then, conformance checking reveals if these conditions
are matched with the behaviour recorded in the event log, either by constructing
an alignment solely based on control-flow information and checking the condi-
tions at decision points separately, or by integrating the conditions directly in
the computation of multi-perspective alignments as discussed in Sect. 3.

4.2 A General View on Conformance Checking

An event log and a process model both denote representations of an abstract
entity, the actual process as it is implemented in an organization. From this
view point, illustrated in Fig. 8, it becomes clear that any deviation detected
between these representations may potentially be attributed to the way that the
representations capture the actual process, i.e., the log and the model may show
quality issues. For instance, logging mechanisms may be faulty and the integra-
tion of event data from different systems may be imprecise. Similarly, models
may have been created based on an incomplete understanding of the process and
may be biased towards the expected rather than the actual behaviour. More-
over, in many application contexts, processes are subject to change and evolve
over time. Hence, process models created at some time point become outdated.
Event logs that span a large time period, in turn, may contain information about

Conformance Checking: Foundations, Milestones and Challenges 175

Fig. 8. Both, an event log and a process model, are representations of a process.

different versions of a process, so that the log in its entirety appears to describe
a process that was actually never implemented as such at any specific point in
time.

From the above observation, it follows that a deviation between an event
log and a process model may be interpreted as an issue to fix in either of the
representations. That is, one of the representations is assumed to be correct,
i.e., it is assumed to truthfully denote the actual process, whereas the other
representation is updated with the goal to resolve the deviation. Specifically,
techniques to repair a process model based on the event log and techniques
to repair an event log based on the process model have been proposed in the
literature, as discussed next.

Model Repair. Assuming that an event log constitutes a correct representation
of a process’ behaviour, deviations detected between the log and a process model
are a starting point for model repair. To this end, existing techniques are mostly
based on alignments computed between a trace of an event log and the process
model. The reason being that alignments clearly separate behaviour that is only
observed in the process model (i.e., a move in model) and behaviour that is
present only in the trace (i.e., a move in log).

Intuitively, a move in model captures the situation that the execution of an
activity is defined to be mandatory, while this execution is optional according to
the supposedly correct event log. Therefore, a simple repair strategy is to relax
the control-flow defined by the model and explicitly enable the continuation
of a process instance without executing the respective activity. Note though
that different syntactical changes may be considered to realize this change. For
instance, in a BPMN process model, one may insert a decision point before
the task to determine whether it is executed, whereas a similar effect may also
be achieved by changing the semantics of existing routing constructs, such as
transforming a parallel split into an inclusive choice.

A move in log, on the other hand, hints at a supposedly correct activity
execution that is without counterpart in the model. A repair strategy, therefore,
is to insert a corresponding task into the process model. The location for this
insertion is also determined based on the conformance checking result. That is,
the alignment up to the respective move in log induces a state in the process

176 J. Carmona et al.

model. The task needs to be inserted, such that it is activated in this state and
such that before and after its execution, all tasks that have been activated in
the original state are still activated. In practice, such a repair operation may not
only be conducted on the level of individual model in log steps, but for sequences
thereof. In this case, a model fragment to capture the behaviour of this sequence
is discovered and inserted into the original model.

As an example, consider the following alignment for the process model intro-
duced earlier (Fig. 3).

log trace As Aa Sso Ro � Ao Aaa Aaa �
execution sequence As Aa Sso Ro Fa Ao Aaa � Af

From the move in model (�,Fa), one may derive a change in the process
model that enables skipping of the respective task Fa in the process model. The
move in log (Aaa,�), in turn, suggests a change in the model that supports
an additional execution of the activity to approve and activate an application.
Yet, we note that this activity execution directly succeeds a synchronous move
for a task referring to same activity. Hence, instead of adding a new task in the
process model, it may be more desirable to generalise the process model and
insert a loop around the existing task Aaa, so that it may be executed multiple
times in an execution sequence of the model.

Log Repair. The idea of repairing a process representation based on the results
of conformance checking may also be applied to event logs. Given an alignment
of a trace and a process model, the actual changes to apply to the trace are
derived from the types of the respective alignment steps. Under the assumption
that the model is a correct representation of the process, a move in model would
lead to the insertion of an event into the trace at the position of the alignment
step. An event that is part of a move in log, in turn, would be deleted from the
trace.

In practice, the insertion or deletion of events of a trace may be problematic.
For instance, the creation of artificial events raises the question of how to define
the values of an events’ attributes, from generic ones such as an events’ times-
tamp to domain-specific attributes (e.g., the state of a business object). Against
this background, log repair may not focus on alignment steps in isolation, but
aim at identifying high-level changes. An example would be the presence of two
alignment steps, a move in model and a move in log, both related to the execu-
tion of the same activity. Instead of deleting and inserting an event, moving the
event from the position of the move in log step to the position of the move in
model step would enable repair without the need to generate an artificial event.

Taking up the aforementioned example, based on the alignment, log repair
may suggest that the second event linked to the approval and activation of the
application (Aaa) is erroneous (e.g., the activity execution was recorded twice
due to a faulty logging mechanism) and, thus, shall be removed from the trace.

Conformance Checking: Foundations, Milestones and Challenges 177

At the same time, it may suggest to insert events for the activities to finalise
the application (Fa) and finish the application (Af), for instance, assuming that
these steps are manually recorded, so that some incompleteness of the trace is
to be expected.

Generalized Conformance Checking. Both, model repair and log repair
consider one process representation to be correct, which may therefore serve as
a ground truth. In the general case, however, quality issue may be present in
both representations. As a consequence, some of the conformance issues detected
between a model and a log may stem from the model not adequately capturing
the process, some of them may originate from low quality of the event log, while
some are also inherent deviations that need to be analysed.

To balance the different reasons of conformance issues, it was suggested to
incorporate a notion of trust in the process model, denoted by τM ∈ [0, 1], as
well as the event log, denoted by τL ∈ [0, 1] [48]. These trust values capture
the assumed correctness of either representation and may reflect how the rep-
resentation has been derived. For instance, a process model created as part of
a first brainstorming session may be less trustworthy in terms of correctness
and completeness compared to a model created as a part of a rigorous pro-
cess management initiative. Similarly, an event log created by a process-oriented
information systems can, in general, be expected to be more trustworthy than
a manual documentation of activity executions by a diverse group of process
stakeholders.

Once a trust level has been specified for both, the model and the log, confor-
mance checking may be phrased as an optimization problem that incorporates
model and log repair. To this end, the following notions need to be defined: A
function δL2 to measure the distance of two event logs; a function δM2 to measure
the distance of two models; and a function δL,M to measure the distance of an
event log and a process model, such as alignment-based fitness or a combination
of fitness and precision. Given an event log L and a process model M , generalized
conformance checking [48] is then defined as the identification of some adapted
log L∗ and adapted model M∗, such that:

L∗,M∗ = argminL′,M ′ (δL2(L,L′), δM2(M,M ′), δL,M (L′,M ′))

subject to δL2(L,L′) ≤ 1 − τL and δM2(M,M ′) ≤ 1 − τM .

Intuitively, the above problem formulation considers that the given model M
and log L may require to be adapted, if they are not fully trustworthy. However,
the trust values induce a bound for the distance between any adapted model
and log, and the original model and log, respectively, as illustrated in Fig. 9.
Within the space set by these bounds, the distances between the adapted and
original model, between the adapted and original logs, and between the adapted
model and the adapted log shall be minimised. Here, a specific instantiation may
require the minimisation of a linear combination of the three distances.

Generalized conformance checking unifies various tasks in the field of process
mining [14,48]. Table 4 highlights how specific tasks can be seen as instances

178 J. Carmona et al.

Fig. 9. The problem of generalized conformance checking (from [14]).

Table 4. Overview of process mining tasks listed as instances of the generalised con-
formance checking problem according to [14,48].

Process mining task Log Trust Model Trust

Classical Process Discovery finds a model that best fits
to the entire event log, e.g., the alpha algorithm [65]

τL = 1 τM = 0

Heuristic Process Discovery algorithms apply
preprocessing to the event log by discarding infrequent
patterns [26,79]

0 < τL < 1 τM = 0

Model Repair fixes deficient models due to, e.g., a change
in the system that is reflected in the log. For example [24]

τL = 1 0 < τM < 1

Conformance Checking tries to find misalignments
between event log and model. Example works
include [50,53,64]

τL = 1 τM = 1

Log Repair modifies the log such that it better conforms to
the given trusted model [47,74]

0 < τL < 1 τM = 1

“Happy Path” Simulation is complementary to heuristic
process discovery. It is a theoretical use case where we do not
trust infrequent parts of the model [33]

τL = 0 0 < τM < 1

Process Simulation is complementary to process discovery,
where we are given an untrustworthy empty log and a fully
trustworthy model

τL = 0 τM = 1

Garbage In, Garbage Out. When both the model and the
log are untrustworthy, the best log and model tuple that fits
them is any pair of model and log that fits each other,
including an empty log and an empty model

τL = 0 τM = 0

Generalised Conformance Checking answers the
question where the model would best be adopted, and where
the log would best be adopted for a better overall fit. This
goes beyond alignments, as the latter only detect the
misalignments without specifying which side is to “blame”

0 < τL < 1 0 < τM < 1

of the generalized conformance checking problem, depending on the trust into
an event log or a process model. Specifically, tasks such as classical process
discovery or process simulation fit into this picture when assuming that there is
no trust into the model or the log, which can be interpreted as the setting that
the respective artifacts are not available.

Conformance Checking: Foundations, Milestones and Challenges 179

5 Further Reading

Conformance checking has evolved significantly in the last decade, enabling the
industrial adoption and commercial software offerings. As it has been shown in
Sect. 3, techniques beyond control flow are already been proposed in the last
years, since considering other perspectives brings significant value and triggers
adoption.

Still, the core of the techniques developed are still focusing on the algorith-
mic aspects of the computation of conformance artefacts for the control flow
perspective. We now review further work on the three dimensions considered in
this chapter, thereby providing pointers for further reading.

Rule Checking. The idea of rule-based conformance checking is to rely on
constraints which are then checked for the traces of an event log. The idea of
rule-based conformance checking has been brought forward in [76]. It employs
constraints derived from the (causal) behavioural profile of a process model [75,
77], which are sets of binary relations over activities derived from the order of
potential occurrences of tasks in the execution sequences of the model.

This general idea, however, is not limited to a specific set of rules. Rather,
other notions of constraints can be used in the very same manner, including tran-
sition adjacency relations [80] and the rules of the 4C spectrum [42]. Such sets of
binary rules to capture behaviour are inherently limited in their expressiveness,
though, as already for relatively simple classes of models, an exponentially grow-
ing number of rules would be needed to capture the complete behaviour [40].
Rule-based conformance checking, therefore, lends itself to scenarios, where only
certain constraints need to be checked rather than the complete behaviour as
specified by a process model.

While the results of rule checking enable insights on deviant traces, they may
also be used for aggregated conformance measures. For instance, fitness measures
may be derived based on the numbers of satisfied and violated rules [76]. Also, fil-
tering of rule violations and discovery of associations between them may provide
further insights into context of non-conformance [76,78].

Finally, conformance checking based on rules has the advantage that it can
be lifted to online scenarios in a straight-forward manner. To this end, rules can
be translated to queries over streams of events, see [17,78], which enables the
use of algorithms and systems developed for complex event processing [16].

Token Replay. Techniques for token replay were first introduced in [49]. Alter-
native techniques were presented in [72], and later adapted to an online scenario
in [71]. Recently new heuristics have been recently proposed that make token
replay a fast alternative to alignments [7,8].

Alignments. The seminal work in [1] proposed the notion of alignment and
developed a technique based on A∗ to compute optimal alignments for a partic-
ular class of process models. Improvements of this approach have been presented

180 J. Carmona et al.

recently in different papers [66,68]. The approach represents the state-of-the-
art technique for computing alignments, and can be adapted (at the expense of
increasing significantly the memory footprint) to provide all optimal alignments.
Alternatives to A∗ have appeared in the last years: in the approach presented
in [19], the alignment problem is mapped as an automated planning instance.
Automata-based techniques have also appeared [31,44]. The techniques in [44]
(recently extended in [45]) rely on state-space exploration and determination
of the automata corresponding to both the event log and the process model,
whilst the technique in [31] is based on computing several subsets of activities
and projecting the alignment instances accordingly. We also highlight the recent
approach that is grounded on the use of relaxation labelling combined with A∗,
to provide a light alternative to compute alignments [39].

The work in [57] presented the notion of approximate alignment to alleviate
the computational demands by proposing a recursive paradigm on the basis of
the structural theory of Petri nets. In spite of resource efficiency, the solution
is not guaranteed to be executable. Alternatively, the technique in [59] presents
a framework to reduce a process model and the event log accordingly, with the
goal of alleviating the computation of alignments. The obtained alignment, called
macro-alignment since some of the positions are high-level elements, is expanded
based on the information gathered during the initial reduction. Techniques using
local search have recently been also proposed very recently [61].

Against this background, the process mining community has focused on
divide-and-conquering the problem of computing alignments, as a valid alterna-
tive to this problem with the aim of alleviating its complexity without degrading
the quality of the solutions found. We turn now our focus to decompositional
approaches to compute alignments, which are more related to the research of
this paper.

Decompositional techniques have been presented [35,63,73] that, instead of
computing optimal alignments, they focus on the crucial problem of whether a
given trace fits or not a process model. These techniques vertically decompose
the process model into pieces satisfying certain conditions (so only valid decom-
positions [63], which satisfy restrictive conditions on the labels and connections
forming a decomposition, guarantee the derivation of a real alignment). Later
on, the notion of recomposition has been proposed on top of decompositional
techniques, in order to obtain optimal alignments whenever possible by iterating
the decompositional methods when the required conditions do not hold [29]. In
contrast to the aforementioned vertical decomposition techniques, this approach
does not require this last consolidation step of partial solutions, and therefore
can be a fast alternative to these methods at the expense of loosing the guarantee
of optimality.

There has been related work also on the use of partial order representations
of process models for computing alignments. In [13], unfoldings were used to
capture all possible transition relations of a model so that they can be used
for online conformance checking. In contrast, unfoldings were used recently in a
series of papers [38,60] to speed-up significantly the computation of alignments.

Conformance Checking: Foundations, Milestones and Challenges 181

We believe these approaches, specially the last two, can be easily integrated in
our framework.

Also, the work of [45] can also be considered a decompositional approach,
since it proposes decomposing the model into sequential elements (S-components)
so that the state-space explosion of having concurrent activities is significantly
alleviated. We believe that this work is quite compatible with the framework
suggested in this paper, since the model restrictions assumed in [45] are satisfied
by the partial models arising from our horizontal decomposition.

Finally, the MapReduce distributed programming model has already been
considered for process mining. For instance, Evermann applies it to process dis-
covery [23], whilst [15] applies it for monitoring declarative business processes.
Recently, MapReduce techniques has been proposed to offer a horizontal decom-
positonal alternative to computing alignments [62].

6 Milestones and Challenges

Conformance checking is nowadays a mature field, demonstrated by its presence
in some of the process mining commercial tools and process mining use cases.
In spite of this, the available support for its adoption is far from complete.
One example is the metrics available: whilst fitness or precision are considered
well evaluated through current techniques, accurate generalization metrics that
additionally can be evaluated efficiently are yet to come [41,69,72].

Alignments are a central pillar of current techniques for conformance check-
ing. However, the complexity requirements of the state-of-the-art techniques
hamper their application for large instances (see Sect. 2.4). Actually, process
mining is facing the following paradox: whilst there exist techniques to discover
process models arbitrarily large [4,30], most of the existing alignment computa-
tion techniques will not be able to handle such models. Alternative approaches,
like the decomposition or structural techniques only alleviate the problem, at the
expense of losing the guarantee of important properties like optimality. Also,
when incorporating other dimensions like data or resources, so that a multi-
perspective for conformance checking is enabled, the complexity of the problem
increases significantly, making it difficult to be applied for real-life problems; we
envision new contributions also for multi-perspective conformance checking in
the near future that can overcome this limitation.

Beyond computational or algorithmic challenges, there are other equally
important challenges, more oriented towards considering the understanding of
conformance checking results. One of them is the visualization of deviations. In
industrial scenarios, thousand of deviations can easily pop up when assessing
conformance, and it is not so easy to rank the importance of each one with a
criteria that really impacts the business of the organization. For instance, look-
ing at Fig. 1, one can see the list of violations at the bottom of the figure,
ordered by the percentage of the cases where these deviations occur. This may
not necessarily be the most interesting ranking from a business perspective.

We now provide a list of particular challenges with the aim of triggering
future research in the field. The list is by no means complete.

182 J. Carmona et al.

Representing Uncertainty and Preventing Bias. As mentioned above,
conformance checking deals with the comparison of recorded behaviour against
specified behaviour, typically represented as an event log and process model.
Based on this comparison, conclusions can be drawn with respect to the recorded
behaviour as well as the underlying process which produced the recorded
behaviour.

This distinction becomes only irrelevant when the recorded behaviour con-
tains all the process behaviour of interest. In all other situations, where the
observed behaviour is only a sample of the complete process behaviour, a source
of variation is introduced by the sample. Sampling variation will cause the out-
come of the conformance checking activity, which is only an estimate of the true
value, to vary over different samples. Initial work on this direction has been
recently proposed [6,28].

Information on the accuracy of a specific conformance estimate is impor-
tant for a practitioner to make informed decisions. Unfortunately, representing
uncertainty is typically ignored by existing conformance checking techniques and
remains an important open challenge.

A second related challenge is that practitioners not only want an idea about
the estimate’s accuracy, but also want some guarantee that the estimate is unbi-
ased. Various sources of errors exist which could lead to biased results, which
receive too little attention in the existing work on conformance checking.

Some of the most relevant sources of errors are coverage error and construct
validity. Coverage error occurs when the recorded behaviour is not a representa-
tive sample of the underlying process under analysis. This could be caused e.g.
by non-random sampling or an incorrect definition of the underlying process.
Construct validity refers to the question whether the conformance technique
actually measures what it claims to be measuring.

This issue of estimate bias raises at least three important challenges. Firstly,
there is a need for further development of conformance techniques which pro-
duce unbiased estimates, as recent research empirically challenged the claim that
existing estimators are unbiased [27]. Secondly, with respect to construct validity,
more attention should be given to making explicit what a measure actually repre-
sents. In particular the concept of generalisation suffers from an ambiguous and
unclear definition, while other conformance measures are so complex that it is
no longer clear what is measured and how it behaves. Thirdly, illustrating that a
conformance estimator is unbiased should become a fundamental methodological
part of any paper introducing and reviewing conformance checking techniques.

Computational Feasibility. As with many data analysis tasks, computation
feasibility is a challenge. In the context of conformance checking, different ele-
ments contribute to this. One element lies in the current approach itself. As
we highlighted before, alignment-based approaches are the state-of-the-art tech-
niques to conformance checking due to its robustness and detailed diagnosis on
deviations at the event level. However, it is also a computationally intensive

Conformance Checking: Foundations, Milestones and Challenges 183

operation that can take a long time to execute and can even be unfeasible for
industrial-sized processes.

Further, computational feasibility is challenged by the persistently growing
size of event logs. In the industry, huge quantities of events are recorded. For
example, Boeing jet engines can produce ten terabytes of operational informa-
tion every thirty minutes and Walmart is logging one million customer transac-
tions per hour. In these contexts, operational efficiency is typically of paramount
importance and is ensured by having predefined operational protocols and guide-
lines. Consequently, aside from being capable of dealing with complex and large
underlying processes, conformance checking techniques should also support large
amounts of data.

Responding to these computational challenges, techniques that are tailored
for the emergence of large event logs and processes are created. For example, it
is often not possible to store all the event data produced by large processes due
to the limitation of storage capacity. This has motivated techniques that allow
conformance checking to be performed in an online setting to data streams that
are continuously producing event data related to ongoing cases. While a solution
for one challenge, this response in itself holds additional challenges.

Online Conformance Checking. Online conformance checking analyzes event
streams to assess their conformance with respect to a given reference model (the
reader is referred to [11] The key aspect of this problem is that events must
be analyzed immediately after they are generated (without storing them). The
key benefit of this technique is to be able to detect deviations immediately,
thus giving time to the process manager to shift the trace back to the reference
behaviour. More generally, the main benefit is the reduction in latency among
the BPM lifecycle phases.

Event streams represent a specific type of data streams, where each data
point is an event (as in standard event logs). General data stream mining tech-
niques have been studied in the past and several stream operations models have
been defined, including: insert-only streams; insert-delete streams; and additive
streams. Respectively, events are only inserted; deleted; or “incremented” (this
holds typically for numerical variables). Typically, event streams are assumed to
be insert-only streams, where events are just added to the stream.

Since event streams are generally assumed to be unbounded and events are
supposed to arrive at unpredictable pace, several constraints are imposed on the
analysis. Specifically, once an element is received, it should be processed imme-
diately: either it is analyzed or it is discarded. In case it is analyzed, it cannot
be explicitly inspected again at a later stage: since the stream is unbounded, it
is impossible to store it and its events have to be stored in an aggregated (or
summarized) fashion. Additionally, the time scale plays a fundamental role in
online conformance checking: a recent deviation is more important than older
ones, as the process manager can immediately enact proper countermeasures.

Several problems are still open, for example how to find good conformance
measures, which operate in efficient (i.e., constant) time. Other relevant and

184 J. Carmona et al.

unsolved problems are handling streams where the arrival time of events does
not coincide with the execution time (thus, events need to be “sorted” after-
wards), or understanding when a process instance is really terminated (even if
the termination state of the model has been reached).

Desired Properties of Conformance Measures. The objective of confor-
mance checking is to provide insights on how well a model describes given event
data or how well given event data describes the model. This is represented both
quantitatively - for measuring conformance - and qualitatively - for providing
diagnostic information. We discuss properties and challenges of measures and
diagnostics information in conformance checking.

Similar to machine learning, conformance measures are used to assess how
well a model describes the event data: A model should have a high fitness or
recall to the log (be able to replay all observed traces) and a high precision to
the log (show little additional behaviour). Models with high fitness and precision
distinguish themselves further in terms of generalization (their ability to replay
likely, but so far not observed traces of the process that generates the log) and
simplicity (being structurally simple). In this sense, we use conformance mea-
sures to compare two different models M1 and M2 with each other in their
ability to describe a given log L (in terms of fitness and precision), describe the
unknown process P behind the log (in terms of generalization), and be easily
understandable (through a simple model structure). A model M1 scoring higher
than a model M2 in a measure is considered to be the “better” model. For most
event logs, the quality measures define a pareto front: a model scoring better on
one measure scores worse on another measure leading to a set of “best” mod-
els for which no model can be found scoring better on any measure without
scoring worse on other measures. With these properties, conformance measures
have two main applications: helping a user decide which among a set of possible
models is a preferred description of the event data, evaluating and benchmarking
algorithms in process mining.

As it has been recently suggested [55], establishing certain axioms is a safe
way to be able to determine the boundaries of a certain technique for determining
a particular quality dimension. These axioms are expected to clarify important
aspects such as logical consistency, robustness, confidence, to name a few.

7 Conclusions

This chapter provided an overview on conformance checking, aiming at covering
the basic techniques, pinpointing what are the natural applications of the field
and looking into the future by listing challenges that we believe will be crucial
to overcome in the years to come. The chapter may be seen as a gentle introduc-
tion to the reference book in the field, where most of the topics are extensively
developed [14].

Conformance Checking: Foundations, Milestones and Challenges 185

Acknowledgements. This work has been supported by MCIN/AEI funds under
grant PID2020-112581GB-C21.

References

1. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische
Universiteit Eindhoven (2014)

2. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Bus. Manag. 13(1),
37–67 (2015)

3. Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.M.P.: Linking
data and process perspectives for conformance analysis. Comput. Secur. 73, 172–
193 (2018)

4. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2018). https://doi.org/10.1007/s10115-018-
1214-x

5. Mozafari Mehr, A.S., de Carvalho, R.M., van Dongen, B.: Detecting privacy, data
and control-flow deviations in business processes. In: Nurcan, S., Korthaus, A.
(eds.) CAiSE 2021. LNBIP, vol. 424, pp. 82–91. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-79108-7 10

6. Bauer, M., van der Aa, H., Weidlich, M.: Sampling and approximation techniques
for efficient process conformance checking. Inf. Syst. 104, 101666 (2022)

7. Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: Increasing speed
while improving diagnostics. In: van der Aalst, W.M.P., Bergenthum, R., Carmona,
J. (eds.) Proceedings of the International Workshop on Algorithms & Theories for
the Analysis of Event Data 2019 Satellite Event of the Conferences: 40th Interna-
tional Conference on Application and Theory of Petri Nets and Concurrency Petri
Nets 2019 and 19th International Conference on Application of Concurrency to Sys-
tem Design ACSD 2019, ATAED@Petri Nets/ACSD 2019, Aachen, Germany, 25
June 2019, vol. 2371 of CEUR Workshop Proceedings, pp. 87–103. CEUR-WS.org
(2019)

8. Berti, A., van der Aalst, W.M.P.: A novel token-based replay technique to speed up
conformance checking and process enhancement. Trans. Petri Nets Other Model.
Concurr. 15, 1–26 (2021)

9. Bloemen, V., van de Pol, J., van der Aalst, W.M.P.: Symbolically aligning observed
and modelled behaviour. In: 18th International Conference on Application of Con-
currency to System Design, ACSD 2018, Bratislava, Slovakia, 25–29 June 2018,
pp. 50–59 (2018)

10. Boltenhagen, M., Chatain, T., Carmona, J.: Optimized SAT encoding of confor-
mance checking artefacts. Computing 103(1), 29–50 (2020). https://doi.org/10.
1007/s00607-020-00831-8

11. Burattin, A.: Streaming process mining. In: van der Aalst, W.M.P., Carmona, J.
(eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham
(2022)

12. Burattin, A., Carmona, J.: A framework for online conformance checking. In:
Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165–177.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 12

https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/978-3-030-79108-7_10
https://doi.org/10.1007/978-3-030-79108-7_10
https://doi.org/10.1007/s00607-020-00831-8
https://doi.org/10.1007/s00607-020-00831-8
https://doi.org/10.1007/978-3-319-74030-0_12

186 J. Carmona et al.

13. Burattin, A., van Zelst, S.J., Armas-Cervantes, A., van Dongen, B.F., Carmona, J.:
Online conformance checking using behavioural patterns. In: Weske, M., Montali,
M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 250–267.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 15

14. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

15. Chesani, F., Ciampolini, A., Loreti, D., Mello, P.: Map reduce autoscaling over
the cloud with process mining monitoring. In: Helfert, M., Ferguson, D., Méndez
Muñoz, V., Cardoso, J. (eds.) CLOSER 2016. CCIS, vol. 740, pp. 109–130.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62594-2 6

16. Cugola, G., Margara, A.: Processing flows of information: from data stream to
complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)

17. Daum, M., Götz, M., Domaschka, J.: Integrating CEP and BPM: how CEP real-
izes functional requirements of BPM applications (industry article). In: Bry, F.,
Paschke, A., Eugster, P.Th., Fetzer, C., Behrend, A. (eds.) Proceedings of the
Sixth ACM International Conference on Distributed Event-Based Systems, DEBS
2012, Berlin, Germany, 16–20 July 2012, pp. 157–166. ACM (2012)

18. de Leoni, M.: Foundations of process enhancement. In: van der Aalst, W.M.P., Car-
mona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer,
Cham (2022)

19. de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive process
models through automated planning. Expert Syst. Appl. 82, 162–183 (2017)

20. de Leoni, M., van der Aalst, W.M.P.: Aligning Event logs and process models
for multi-perspective conformance checking: an approach based on integer linear
programming. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol.
8094, pp. 113–129. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40176-3 10

21. de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and resource-aware
conformance checking of business processes. In: Abramowicz, W., Kriksciuniene,
D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 48–59. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-30359-3 5

22. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley,
Hoboken (2005)

23. Evermann, J.: Scalable process discovery using map-reduce. IEEE Trans. Serv.
Comput. 9(3), 469–481 (2016)

24. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47, 220–243 (2015)

25. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: CoCoMoT: conformance
checking of multi-perspective processes via SMT. In: Polyvyanyy, A., Wynn, M.T.,
Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 217–234.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0 15

26. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 24

27. Janssenswillen, G., Depaire, B.: Towards confirmatory process discovery: making
assertions about the underlying system. Bus. Inf. Syst. Eng. 61, 1–16 (2019)

https://doi.org/10.1007/978-3-319-98648-7_15
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-62594-2_6
https://doi.org/10.1007/978-3-642-40176-3_10
https://doi.org/10.1007/978-3-642-40176-3_10
https://doi.org/10.1007/978-3-642-30359-3_5
https://doi.org/10.1007/978-3-030-85469-0_15
https://doi.org/10.1007/978-3-540-75183-0_24

Conformance Checking: Foundations, Milestones and Challenges 187

28. Kabierski, M., Lam Nguyen, H., Grunske, L., Weidlich, M.: Sampling what matters:
relevance-guided sampling of event logs. In: Di Ciccio, C., Di Francescomarino,
C., Soffer, P. (eds.) 3rd International Conference on Process Mining, ICPM 2021,
Eindhoven, Netherlands, 31 - November 4, 2021, pp. 64–71. IEEE (2021)

29. Lee, W.L.J., Verbeek, H.M.W., Munoz-Gama, J., van der Aalst, W.M.P.,
Sepúlveda, M.: Recomposing conformance: closing the circle on decomposed
alignment-based conformance checking in process mining. Inf. Sci. 466, 55–91
(2018)

30. Leemans, S.: Robust process mining with guarantees. Ph.D. thesis, Eindhoven
University of Technology (2017)

31. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

32. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing, 98(4), 407–437 (2016)

33. Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collaborative
simulation of declarative processes. In: Motahari-Nezhad, H.R., Recker, J., Wei-
dlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 209–225. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23063-4 15

34. Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2 16

35. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

36. Nolle. T.: Process learning for autonomous process anomaly correction. Ph.D. the-
sis, Technical University of Darmstadt, Germany (2020)

37. Nolle, T., Seeliger, A., Thoma, N., Mühlhäuser, M.: DeepAlign: alignment-based
process anomaly correction using recurrent neural networks. In: Dustdar, S., Yu,
E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp.
319–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3 20

38. Padró, L., Carmona, J.: Approximate computation of alignments of business
processes through relaxation labelling. In: Hildebrandt, T., van Dongen, B.F.,
Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 250–267.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6 17

39. Padró, L., Carmona, J.: Computation of alignments of business processes through
relaxation labeling and local optimal search. Inf. Syst. 104, 101703 (2022)

40. Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., Garcia-Banuelos, L.: On the
expressive power of behavioral profiles. Formal Aspects Comput. 28(4), 597–613
(2016). https://doi.org/10.1007/s00165-016-0372-4

41. Polyvyanyy, A., Moffat, A., Garcia-Banuelos. L.: Bootstrapping generalization of
process models discovered from event data (2021)

42. Polyvyanyy, A., Weidlich, M., Conforti, R., La Rosa, M., ter Hofstede, A.H.M.:
The 4C spectrum of fundamental behavioral relations for concurrent systems. In:
Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 210–232.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5 12

43. Reißner, D., Armas-Cervantes, A., Conforti, R., Dumas, M., Fahland, D., La Rosa,
M.: Scalable alignment of process models and event logs: an approach based on
automata and s-components. Inf. Syst. 94, 101561 (2020)

44. Reißner, D., Conforti, R., Dumas, M., La Rosa, M., Armas-Cervantes, A.: Scalable
conformance checking of business processes. In: OTM CoopIS, Rhodes, pp. 607–627
(2017)

https://doi.org/10.1007/978-3-319-23063-4_15
https://doi.org/10.1007/978-3-642-15618-2_16
https://doi.org/10.1007/978-3-030-49435-3_20
https://doi.org/10.1007/978-3-030-26619-6_17
https://doi.org/10.1007/s00165-016-0372-4
https://doi.org/10.1007/978-3-319-07734-5_12

188 J. Carmona et al.

45. Reißner, D., Armas-Cervantes, A., Conforti, R., Dumas, M., Fahland, D., La Rosa,
M.: Scalable alignment of process models and event logs: an approach based on
automata and s-components. Inf. Syst. 94, 101561 (2020)

46. Roehm, H., Oehlerking, J., Woehrle, M., Althoff, M.: Model conformance for cyber-
physical systems: a survey. Trans. Cyber Phys. Syst. 3(3), 30:1–30:26 (2019)

47. Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Improving doc-
umentation by repairing event logs. In: Grabis, J., Kirikova, M., Zdravkovic, J.,
Stirna, J. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 129–144. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41641-5 10

48. Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal, A.: In log and
model we trust? A generalized conformance checking framework. In: La Rosa, M.,
Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 179–196. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 11

49. Rozinat, A.: Process mining conformance and extension. Ph.D. thesis, Technische
Universiteit Eindhoven (2010)

50. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

51. Fani Sani, M., Garza Gonzalez, J.J., van Zelst, S.J., van der Aalst, W.M.P.: Confor-
mance checking approximation using simulation. In: van Dongen, B.F., Montali,
M., Wynn, M.T. (eds.) 2nd International Conference on Process Mining, ICPM
2020, Padua, Italy, 4–9 October 2020, pp. 105–112. IEEE (2020)

52. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Conformance checking
approximation using subset selection and edit distance. In: Dustdar, S., Yu, E.,
Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 234–251.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3 15

53. Senderovich, A., Weidlich, M., Yedidsion, L., Gal, A., Mandelbaum, A., Kadish, S.,
Bunnell, C.A.: Conformance checking and performance improvement in scheduled
processes: a queueing-network perspective. Inf. Syst. 62, 185–206 (2016)

54. Taghiabadi, E.R., Gromov, V., Fahland, D., van der Aalst, W.M.P.: Compliance
checking of data-aware and resource-aware compliance requirements. In: Meers-
man, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A.,
Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 237–257. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45563-0 14

55. Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The imprecisions
of precision measures in process mining. Inf. Process. Lett. 135, 1–8 (2018)

56. Taymouri, F., Carmona, J.: Model and event log reductions to boost the compu-
tation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA
2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74161-1 1

57. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior
of large structured process models. In: 14th International Conference of Business
Process Management (BPM), Rio de Janeiro, Brazil, 18–22 September 2016

58. Taymouri, F., Carmona, J.: An evolutionary technique to approximate multiple
optimal alignments. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.)
BPM 2018. LNCS, vol. 11080, pp. 215–232. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98648-7 13

59. Taymouri, F., Carmona, J.: Model and event log reductions to boost the compu-
tation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA
2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74161-1 1

https://doi.org/10.1007/978-3-642-41641-5_10
https://doi.org/10.1007/978-3-319-45348-4_11
https://doi.org/10.1007/978-3-030-49435-3_15
https://doi.org/10.1007/978-3-662-45563-0_14
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/978-3-319-98648-7_13
https://doi.org/10.1007/978-3-319-98648-7_13
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/978-3-319-74161-1_1

Conformance Checking: Foundations, Milestones and Challenges 189

60. Taymouri, F., Carmona, J.: Structural computation of alignments of business pro-
cesses over partial orders. In: 19th International Conference on Application of
Concurrency to System Design, ACSD 2019, Aachen, Germany, 23–28 June 2019,
pp. 73–81 (2019)

61. Taymouri, F., Carmona, J.: Computing alignments of well-formed process models
using local search. ACM Trans. Softw. Eng. Methodol. 29(3), 15:1–15:41 (2020)

62. Valencia-Parra, Á., Varela-Vaca, Á, J., Teresa Gómez López, M., Carmona, J.,
Bergenthum, R.: Empowering conformance checking using big data through hori-
zontal decomposition. Inf. Syst. 99, 101731 (2021)

63. van der Aalst, W.M.P.: Decomposing petri nets for process mining: a generic app-
roach. Distrib. Parallel Databases 31(4), 471–507 (2013)

64. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Min. Knowl. Discov. 2(2), 182–192 (2012)

65. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

66. van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and
observed behavior: a compromise between computation complexity and quality. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 94–109. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 7

67. van Dongen, B.F.: Efficiently computing alignments. In: Daniel, F., Sheng, Q.,
Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 44–55. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11641-5 4

68. Dongen, B.F.: Efficiently computing alignments. In: Weske, M., Montali, M.,
Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 197–214.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 12

69. van Dongen, B.F., Carmona, J., Chatain, T.: A unified approach for measuring
precision and generalization based on anti-alignments. In: La Rosa, M., Loos, P.,
Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 39–56. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45348-4 3

70. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.:
Online conformance checking: relating event streams to process models using
prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269–284 (2019)

71. vanden Broucke, S.K.L.M., Munoz-Gama, J., Carmona, J., Baesens, B., Van-
thienen, J.: Event-based real-time decomposed conformance analysis. In: Proceed-
ings on the Move to Meaningful Internet Systems: OTM 2014 Conferences - Con-
federated International Conferences: CoopIS, and ODBASE 2014, Amantea, Italy,
27–31 October 2014, pp. 345–363 (2014)

72. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determin-
ing process model precision and generalization with weighted artificial negative
events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)

73. Verbeek, H.M.W., van der Aalst, W.M.P.: Merging alignments for decomposed
replay. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp.
219–239. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4 14

74. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: a
graph repair approach. In: Gehrke, J., Lehner, W., Shim, K., Cha, S.K., Lohman,
G.M. (eds.) 31st IEEE International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, 13–17 April 2015, pp. 30–41. IEEE Computer Society (2015)

https://doi.org/10.1007/978-3-319-59536-8_7
https://doi.org/10.1007/978-3-030-11641-5_4
https://doi.org/10.1007/978-3-319-98648-7_12
https://doi.org/10.1007/978-3-319-45348-4_3
https://doi.org/10.1007/978-3-319-39086-4_14

190 J. Carmona et al.

75. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429
(2011)

76. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compli-
ance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)

77. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles
- efficient computation, applications, and evaluation. Fundam. Informaticae 113(3–
4), 399–435 (2011)

78. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-
based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23059-2 16

79. (Ton) Weijters, A.J.M.M., van der Aalst, W.M.P., Alves De Medeiros, A.K.: Pro-
cess mining with the heuristics miner-algorithm. Technical Report 166, Technische
Universiteit Eindhoven (2006)

80. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure
based on transition adjacency relations. Comput. Ind. 61(5), 463–471 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-23059-2_16
http://creativecommons.org/licenses/by/4.0/

Data Preprocessing

Foundations of Process Event Data

Jochen De Weerdt1(B) and Moe Thandar Wynn2

1 KU Leuven, Leuven, Belgium
jochen.deweerdt@kuleuven.be

2 Queensland University of Technology, Brisbane, Australia

Abstract. Process event data is a fundamental building block for pro-
cess mining as event logs portray the execution trails of business pro-
cesses from which knowledge and insights can be extracted. In this
Chapter, we discuss the core structure of event logs, in particular the
three main requirements in the form of the presence of case IDs, activity
labels, and timestamps. Moreover, we introduce fundamental concepts
of event log processing and preparation, including data sources, extrac-
tion, correlation and abstraction techniques. The chapter is concluded
with an imperative section on data quality, arguably the most important
determinant of process mining project success.

1 Introduction

This chapter is devoted to a core building block of process mining, namely event
data or event logs. The particularities of event logs in comparison to traditional
attribute-value data sets used for non-process mining data science and analytics
applications, make that dedicated analysis techniques become worthwhile. To
put it more concretely, classical data science analyses, e.g. learning a decision
tree or running a clustering algorithm, when straightforwardly applied to an
event log, will not give you workable results. This is because events in an event
log, which can be considered as the observations (rows) in our dataset, are related
to each other in terms of time and by means of an overarching case dimension,
which, when not taken into account via dedicated analysis techniques, results
in useless or biased results. In this chapter, we will first explain and exemplify
the fundamental structure of event logs. In addition, we will discuss the most
common sources from which event logs can be obtained. Furthermore, we will
dive into the data preprocessing pipeline, bringing in the perspectives of event
extraction, correlation and abstraction. Finally, given the uphill battle in many
organizations in terms of data availability and especially data quality, we close
the chapter with a discussion of this theme.

2 The Fundamental Structure of Event Logs

We refer to [3] for the conceptual definition of an event log. Here, we will com-
plement the definition with a more practical view on the essential event log data
requirements, an exploration on additional data attributes, an analysis of event
types, as well as the link to the XES storage standard.
c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 193–211, 2022.

https://doi.org/10.1007/978-3-031-08848-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_6

194 J. De Weerdt and M. T. Wynn

2.1 Essential Event Log Data Requirements

Figure 1 illustrates an excerpt of an example event log related to a fictitious
Purchase-to-Pay (P2P) process. This small excerpt can help to understand the
three essential data requirements for event logs to be analysis-ready for process
mining technique application. First, each event should be linked to a case or
process instance, typically by using a Case ID. This is “Requirement 1”. In
the simple example of Fig. 1, each case or process instance will refer to one
procurement of a product or service by an organization with one of its suppliers.
Events will be collected for every process instance and will pertain to activities or
steps executed within the different stages of the P2P process (e.g. requisitioning,
invoicing, reception of goods, etc.).

We thus argue that the presence of a Case ID is an essential requirement for
an event log. However, it should be pointed out that Case IDs are not always
straightforwardly available. This problem has been addressed in both process
mining literature, as well as in practice, and is often referred to as event correla-
tion. This topic is addressed in Sect. 3. There also exists research on the direct
application of process mining techniques on event data without Case IDs (e.g.
[27]), however, this is a rather niche application. Nevertheless, it is important to
point out that, in contrast to static event logs, an increasing number of process
mining techniques are developed for streams of events. In such event streams,
the notion of a CaseID is often even more complicated.

Fig. 1. Example event log from a fictitious P2P process, illustrating the three essential
requirements: presence of a case ID, activity label, and timestamp per event.

The second key requirement (“Requirement 2”) for event log data is the fact
that each event should correspond to an activity executed within the process.
More specifically, an assumption is made that there exists a restricted set of

Foundations of Process Event Data 195

labels, reflecting the activities in the business process, to which each event is
mapped. In Fig. 1, this is shown in the second column. Given that activity
labels are simple strings, there is a lot of freedom to tailor the activity label
for the right analysis viewpoint. However, oftentimes, natural log data is stored
at lower levels of granularity than desired for analysis purposes. Typically, one
would prefer that the granularity level of activities is such that they can be
understood and interpreted by business experts. Nonetheless, a lot of event data
exists for which the granularity level is much lower. In Sect. 3, we discuss the
task of bringing lower level events to a better granularity level, which is referred
to as event abstraction.

Finally, the last requirement (“Requirement 3”) entails that there exists an
ordering of the events pertaining to a case. As such, each case logically consists of
a sequence of events. Most often, this ordering will be derived from a timestamp
attribute. However, this is not strictly mandatory, given that the order could also
be derived from the order in which events are recorded in a database or table,
insofar this order in which events occurred matched with their factual execution
order within a process.

It should be pointed out that, while a Case ID, Activity and Timestamp
column are essential requirements in order to be able to conduct process mining
analyses, their definition might not always be as clear cut as is the case for the
illustrative example. For instance, for many real-life datasets, different choices
can be made in terms of using one single or multiple columns to create the activ-
ity label, and as such provide a different perspective on the process. A similar
effect can also occur for Case IDs, where for instance, with an example from a
clinical pathway perspective, the use of a patient ID instead of an admission ID
as case identifier, can yield a very different analysis.

2.2 Additional Data Attributes

In addition to the mandatory elements of a Case ID, Activity, and Times-
tamp, event logs will usually contain several or often many additional attributes
(columns). In Fig. 1, the event log contains additional attributes including Ven-
dor, Plan, Country, City, Value and Order Quantity. In our example, the values
for these attributes remain constant within a single case, and accordingly can be
considered as process instance-level attributes. However, this is not mandatory,
as attributes can pertain to events or activities, and might be updated through-
out the execution of a process instance. For instance, an item number or item
type that is recorded when a purchase order item is created is an example of
such an event-level attribute.

Additional data attributes can have many purposes, but typically the follow-
ing three uses are most important. Foremost, these additional data attributes
can help to filter cases and events in order to obtain a more focused analysis
viewpoint or perform comparative analysis between subsets of process instances.
Secondly, these additional data attributes might contain valuable context infor-
mation, and can therefore be exploited to gain better insights into the process.
For instance, a textual comment field in an incident management process could

196 J. De Weerdt and M. T. Wynn

contain essential information regarding the problem at hand, which in turn might
impact routing choices, timing, resource allocation, etc. Finally, the availability of
additional data attributes, especially information on resources, costs, etc. opens
up possibilities for the application of process mining techniques that go beyond
process discovery and conformance checking. For instance, organizational min-
ing techniques were developed to focus on resources employed within the pro-
cess [53]. Moreover, these additional data attributes also play a fundamental
role in decision mining [18,47] (see [17]) and predictive process monitoring [19]
(see [20]).

2.3 Storing Event Data

Event data is intrinsically simple attribute value data, easily visualized in a two-
dimensional table. Nonetheless, unstructured data formats including Excel-files
or plain text files, without any form of underlying schema, fail to serve as a
proper storage format. This is mainly due to the complex interactions between
events, cases, and their attributes. This observation drove the development of the
eXtensible Event Stream (XES) standard [1], an IEEE Standards Association-
approved language to transport, store, and exchange event data. Its metadata
structure is represented in Fig. 2. XES uses the W3C XML Schema definition
language, guaranteeing interoperability between various systems. An IEEE XES
instance corresponds to a file-based event log or formatted event stream that
can be used to transfer event data in a unified manner. In IEEE XES, events are
considered as an observed atomic granule of activity. Next to events, IEEE XES
specifies the concept of a log, a trace, and an attribute component. Event and/or
trace classifiers are used to assign an identity to traces and events. The standard
does not define a specific set of attributes for events, traces or logs. However, it
does allow for extensions. An extension can be used to define a set of attributes
for events, traces and/or logs. For instance, a common set of attributes can be
defined for event logs within a particular application domain. An overview of
currently available standard extensions is available on the XES website1.

2.4 Event Types

To conclude the section on the fundamental structure of event logs, it is impor-
tant to point to the concept of event types or lifecycle transitions of activities.
When sourcing events from many process-aware information systems, events
oftentimes relate to the transactional lifecycle that activities undergo. One exam-
ple of such a transactional lifecycle model is shown in Fig. 3a. This is the tran-
sition lifecycle model of the BPMN 2.0 standard2. Such a transactional lifecycle
model describes the states and state transitions which an activity might take in
its execution. Also in IEEE XES, a lifecycle extension has been approved, which
specifies a default activity lifecycle3. This state machine is shown in Fig. 3b.
1 http://www.xes-standard.org/.
2 https://www.omg.org/spec/BPMN/2.0/.
3 http://www.xes-standard.org/.

http://www.xes-standard.org/
https://www.omg.org/spec/BPMN/2.0/
http://www.xes-standard.org/

Foundations of Process Event Data 197

Fig. 2. The IEEE XES metadata structure

(a) The lifecycle of an activity as defined
in BPMN 2.0

(b) State machine illustrating the most
typical transitions in an activity’s lifecy-
cle, according to XES

Fig. 3. Two different activity life cycle models

198 J. De Weerdt and M. T. Wynn

When retrieving data from process-aware information system, especially from
Business Process Management Systems (BPMS) [43], a large collection of event
types might be readily available. This is oftentimes not the case in other environ-
ments, for instance for web data. In case there are no defined event types, one typ-
ically assumes that an event pertaining to the execution of an activity reflects the
completion of the activity. In this case, every activity execution is represented by
a single event. However, having only a single event per activity execution does not
allow to make a distinction between waiting time and execution time of activities.
As such, for more fine-grained performance analysis, one would typically prefer
two events per activity execution, indicating its start and completion time.

3 Event Log Preprocessing

Data preprocessing is a fundamental part of any data science project. While not
as attractive compared to model building or deployment, the preprocessing stage
of a project is often most time and effort consuming. Estimates indicate that 80%
of resources in typical data science projects is devoted to data preprocessing. One
model illustrating the typical data analytics process is depicted in Fig. 4. This
model, originally introduced in [25] as the Knowledge Discovery in Databases
(KDD) process, reflects the main stages in the execution of a data analytics
process. It should be pointed out that this model is an oversimplification of
reality, given the frequent and unpredictable iterations that most often occur,
rendering the management and completion of a typical data science project
usually much more difficult. One notable complexity is the preprocessing of data,
usually consisting of data selection, data cleaning, and data transformation.

Fig. 4. A representation of the typical stages in a data analytics project [25]

In this part, we want to zoom in on a couple of aspects related to the different
stages of a process mining-based analytics project. Most importantly, we want
to elaborate on event log data sources, as well as the differences in terms of
pipelines between classical data analytics projects and process mining projects.

Foundations of Process Event Data 199

3.1 Event Log Data Sources

Event data is rapidly becoming an almost untameable beast, given the widespread
and drastic increase in availability of such kind of data. In application domains
ranging from typical service sector companies including banks and insurers, over
manufacturing, to healthcare and education. At system level, we identify the fol-
lowing categorization of most common and important sources for event data:

– BPMS: On a scale of most to least process-aware systems, BPMSs most
likely rank on top. As such, without exception, event data obtained from
these systems is readily available for process mining analysis. Very little or
even no data integration is required, and logging is usually executed at the
ideal level of granularity.

– Case management and ticketing sytems: In line with BPMSs, also case
management and ticketing systems natively log timestamped data that is
directly useful for process mining. Oftentimes, logs from case management and
ticketing systems relate to status changes, so some additional preprocessing
might be required to disentangle the true units of work or activity labels.

– ERP/CRM: Given their widespread adoption, these enterprise information
systems are probably the most important source of event data for modern
businesses and organizations. An ERP (Enterprise Resource Planning) sys-
tem can be seen as a suite of integrated applications for supporting and
managing the core business processes. CRM (Customer Relationship Man-
agement) systems on the other hand have a dedicated focus on managing
all interactions and relationships with customers. By design, ERP systems
use shared databases to store relevant business data. As such, and although
sometimes a bit more arduous than expected, event log data can be sourced
from ERP and CRM systems.

– Operational databases: Next to ERP and CRM systems, companies might
employ other operational databases supporting their business processes. If
these databases have some functionality to store historical data, they can
often also serve as a valuable event data source.

– Project management software: Applications including popular Hive,
Trello, ZOHO, and JIRA support many organizations with managing projects
according to a scrum, agile, lean or other fancy project management method-
ology. When you take an interest into process mining analysis of project
management and execution, these systems can provide valuable event data.

– Data warehouses and data lakes: Next to operational systems including
ERP and CRM, many organizations have a dedicated stack of Business Intel-
ligence (BI) systems and technologies in place. Classical data warehouses are
oftentimes a goldmine for process miners. Their hype alternative, allowing for
more flexible and unstructured data storage by shifting from schema-on-write
to a schema-on-read data management, are referred to as data lakes.

– Web data: Website and apps data are another unmistakably important
source of event data. From online shopping, gaming, investing, trading, media
consumption, to social interaction, online platforms are the main driver of
modern B2C business models. With the strong uptake in customer centricity

200 J. De Weerdt and M. T. Wynn

for business value and competitive advantage creation, customer-centric pro-
cess mining analysis has strong potential. As such, in addition to CRM data,
process mining has a strong interest into event data produced on these online
platforms. Please note that, in many cases, including for instance learning
environments such as MOOCs, a default standard for web-based platforms to
store data is JSON (JavaScript Object Notation).

– Internet of Things (IoT): Finally, IoT systems also contain a high potential
as source for event data. Sensors and actuators have been deployed widely for
all kinds of purposes. Although the granularity gap between typical IoT data
(sensor readings) and event data is sometimes challenging to bridge, IoT is
becoming a hugely important source of even data in areas such as security,
manufacturing, healthcare, and transportation.

It is pointed out that this is not a comprehensive list of all possible event
log data sources. In an online survey with 289 participants spanning the roles
of practitioners, researchers, software vendors, and end-users, SAP ECC (R/3),
SAP S/4 HANA, and Salesforce are selected as the top three most analyzed
source systems for process mining analysis [57].

3.2 A Comparison with Classical Analytics Data Preprocessing

While sourcing appropriate data is always the first step in any data preprocessing
exercise, it seems reasonable to state that in many situations, analysts could rely
on a vast amount of event data sources. This is in line with classical analytics
tasks, for which a growth in available data has been observed as well. However,
in comparison to classical data preprocessing stages within an analytics process,
starker differences exist at the level of cleaning and transforming data.

With respect to data cleaning, where in classical setups, problems including
missing values and outliers are a main focus, data cleaning of event logs has
received much less scientific and practical attention. A more detailed discussion
on data quality for process mining can be found below in Sect. 5. Other differ-
ences between a process mining project process and a classical data analytics
process are even more notable.

First, at the selection stage, a typical procedure within classical data analytics
is to, early-on in the process, divide obtained data into training and test data.
Especially when considering predictive analytics, it is of crucial importance to
evaluate the true predictive power of learned models by means of independent
test data that was not used for training the model. This procedure is rarely
seen in process mining, with the exception of some works on predictive process
monitoring. One could claim that this is due to the more unsupervised nature
of process discovery algorithm, nonetheless, the difference remains striking.

Another essential data preprocessing step for classical data analytics projects
relates to transforming the features space such that more valuable features are
provided to algorithms for training models. Feature transformation includes tech-
niques such as normalization, grouping and binning. Moreover, advanced feature
engineering is also an important but often neglected step to improve model

Foundations of Process Event Data 201

performance. Feature engineering aims at crafting new features based on the
original data. The typical data format of event logs, consisting of events pertain-
ing to cases, make that the “rows” in event log are intrinsically correlated. This
invalidates the assumption of data being independent and identically distributed
(IID). This is a central assumption underpinning about every machine learning
technique. However, for process mining, when considering events as the observa-
tion level, they are by definition not IID. As such, a large majority of techniques
addressing data cleaning and feature transformation including advanced feature
engineering, remain purposeless when applied to event data.

When making an assessment of one of the most recently introduced process
mining methodologies, i.e. PM2 [56], four event data preprocessing tasks are
defined: (1) creating views, (2) filtering logs, (3) enriching logs, and (4) aggregat-
ing events. All these tasks are tailored to the process mining context, and have no
immediate corresponding task in a classical data analytics pipeline. For instance, in
CRISP-DM [52], data preparation includes selection, cleaning, construction, inte-
gration and formatting of data. Several process mining case studies such as the one
presented in [6] adapted CRISP-DM to work with healthcare datasets.

In the next Section, we will dive deeper into the problem of event log prepa-
ration, which is often extensive and demanding, especially when data for process
mining cannot be sourced from process-aware information systems.

4 Event Log Preparation

While possibly not perfectly disjoint, event log preparation often includes three
types of techniques: extraction, correlation and abstraction [21]. Figure 5 illus-
trates the relationship between these types of techniques and fundamental pro-
cess mining concepts.

Fig. 5. Event log preparation techniques (extraction, correlation, and abstraction) and
their relationship to key process mining concepts [21].

202 J. De Weerdt and M. T. Wynn

In what follows, we will provide a summary overview of reported tools and
techniques for abstraction, correlation and abstraction of event data.

4.1 Extraction of Event Data

Extraction refers to obtaining event data from source systems, most often
databases underlying a variety of information systems. Generally, data stored
in such databases is not recorded with a process perspective in mind, and there-
fore will not automatically reflect essential concepts such as events and traces.
Accordingly, identification of relevant event data is a primordial challenge. It
often requires strong domain knowledge, and despite standardization efforts,
often remains prone to ad-hoc solutions.

Two perspectives should be separated when investigating solutions for event
data extraction. On the one hand, there is commercial process mining software,
where vendors have adopted a clear strategic focus to address the challenges
that come with extraction of event logs. Accordingly, a majority of commercial
process mining tools comes with software solutions (connectors) that have been
developed to allow tapping into all kinds of source systems and databases. Such
connectors define how to extract relevant event data from particular source sys-
tems and which additional transformations should be applied. As such, these
tools promise the holy grail of automating data extraction, a problem addressed
in the academic community for over a decade.

One of the first tools stemming from scientific research was the ProM Import
Framework [31]. Already in these early days, the idea of an extensible plug-in
architecture allowing to develop adapters to hook into a large variety of systems
was proposed and partially implemented. With the uptake of XES, XESame was
developed as a more flexible successor to the ProM Import Framework. Other
researchers have focused on extraction from ERP systems, e.g. the EVS Model
Builder [33] and XTract [41], or other operational systems, e.g. Eventifier [46].

Another important stream of research within the realm of event extraction
addresses object or artifact centricity. Many source systems, including popular
ERP systems, store data at the logical level of objects instead of providing a true
process perspective. Oftentimes, assumptions in terms of a desired perspective
(definition of case id and activity) are required in order to flatten an object-
centered database into a “flat” event log. One noteworthy scientific initiative in
this context is ontology-based data access (ODBA) for event log extraction [13,
14]. The approach is based on an ontological view of the domain of interest and
linking it as such to a database schema and has been implemented in the Onprom
tool. Finally, the recently introduced OCEL standard4 is another relevant piece
of work, putting forward a general standard to interchange object-centric event
data with multiple case notions.

The XES survey also uncovered the top tools that are currently being used by
the process mining community for the preparing of event logs [57]. There is also
ongoing work by the IEEE Task force on reinventing the IEEE XES standard

4 http://ocel-standard.org/.

http://ocel-standard.org/

Foundations of Process Event Data 203

to address several identified data related challenges in the XES survey [57], in
particular, to capture the semantics of event data and to support complex data
structures.

4.2 Correlation of Event Data

Mapping event data extracted from source systems and databases to cases
(instances of the business process under investigation) is denoted as correlation.
In cases where event data is obtained but Case IDs are missing, a non-trivial
process can be started to automatically or semi-automatically generate Case IDs.
In a scientific context, several solutions have been proposed, most of them being
focused on using additional event data attributes [12,15,42,44,48], sometimes
aided by a conceptual model [9,40] or even a process model [8,37].

In practical situations, the problem of correlating event data is probably more
related to a variety of non-integrated data sources, which all capture or support
part of a business process. As such, an integration of these different sources
should be achieved. Hereto, especially when an organizational data warehousing
architecture is present, Extract-Transform-Load (ETL) processing would be a
default technology to resort to. ETL tools are perfectly equipped to derive and
deploy matching schemes to integrate data from non-integrated data sources.
Nevertheless, an ETL-approach leading to a data consolidation integration pat-
tern is not the sole option. Increasingly, companies start to focus on the introduc-
tion of data virtualization layers in order to realize a more federation-oriented
data integration. Data federation can prevent the creation of yet another dupli-
cated database or data store, but instead provides flexible querying and analysis
tools for information from multiple source systems as if all data resides within
a single integrated database.

4.3 Abstraction of Event Data

Next to extraction and correlation, abstraction is considered as the third prong of
the process mining event data preparation trident. In many real-world scenarios,
event data is stored at much more fine-grained granularity levels compared to a
business-understandable process activity level. As such, abstraction techniques
can be considered as mapping techniques that can translate one or more lower-
level events into higher-level events pertaining to business process activities. For
a detailed taxonomy of event abstraction, we refer the interested reader to [59].

IoT. One particular field of application in which event abstraction is becoming
a crucial factor for success is IoT business processes [34]. In IoT, a wide variety of
sensors and actuators record contextual observations of a physical environment.
These sensor readings or measurements give rise to low-level events, which are
intrinsically useful to derive activity-level events from. For instance, in [51],
a technique for mapping location-based sensor data to process activities was
proposed using so-called interactions. Another prominent work in this area is

204 J. De Weerdt and M. T. Wynn

[23], which relies on clustering of segmented continuous sensor data to derive
higher-level activities.

Clustering. Given that event abstraction is a largely unsupervised learning
problem in most cases (i.e. unless domain knowledge is used, there is no natural
target available), a pretty intuitive way to map lower-level events to coarse-
grained events is using clustering. The earliest proposed event abstraction tech-
niques took this perspective, i.e. by clustering sets or sequences of lower-level
events, abstraction into higher-level events can be obtained. For instance, in
[32], coherent subsequences of events are learned via trace segmentation to cre-
ate coarse-granular events. Also in [29,45], clustering techniques have been put
forward for event abstraction.

Pattern-Based Approaches. Another frequently used paradigm to perform
abstraction is pattern matching. The work by Bose and van der Aalst [11] can
be considered as origination of pattern-based abstraction. Repeated local subse-
quence patterns, e.g. maximal repeats or tandem arrays are discovered and used
as a basis for the creation of coarse-granular activities. In [38], a more advanced
technique is proposed based on mining local process models.

Supervised Learning. Despite the unsupervised nature of the problem,
abstraction techniques will often leverage additional domain knowledge, a pro-
cess model, or other information to turn the problem into a more supervised
approach. The technique in [7] relies on a predefined process model, an app-
roach also followed by [26]. Other approaches expect supervision in the form
of a set of annotated traces in which fine-granular event sets are matched with
a higher-level activity [55], or in the form of timing information, e.g. for ses-
sionization as in [36]. Another example of event abstraction from the healthcare
domains was presented in [35], in which they rely on multi-level semantic abstrac-
tion using a combination of ontologies and dynamic programming. Also active
learning is a promising pathway, bringing the expert in the learning loop to solve
the supervision problem.

5 Process Mining Data Quality Considerations

“Garbage in, garbage out.” It is by far the most mentioned quote in data science
and far beyond. But it appears that the more the quote is used, the more relevant
it becomes. In process mining, while the problem has been acknowledged in both
scientific literature and in practice [57], there is still a need for further research
into the development of a comprehensive framework to address the problem of
bad quality data leading to incorrect analysis results [58]. We also need to have
a better understanding of the root-causes of such data quality issues [5,24].

Foundations of Process Event Data 205

5.1 Data Quality Dimensions

Some typical data quality dimensions are shown in Fig. 6 [39]. Although there
are some similarities between the data quality challenges encountered for event
data and traditional data sets for data mining, a key distinguishing factor is our
need for detailed correlated event data in their raw form, to capture the true
behavior of processes.

In [10], four broad data quality dimensions are identified for event logs: miss-
ing data, incorrect data, imprecise data and irrelevant data. Among these four
dimensions, incorrect data (where a data item is not recorded correctly) and
imprecise data (where a recorded value is too coarse to be useful) for key event
attributes such as activity labels and timestamps could have significant conse-
quences for all forms of process mining techniques.

Fig. 6. An overview of some of the most common data quality dimensions, taken
from [39].

5.2 Detection and Repair

The process mining manifesto [2] categorizes the quality of event data from one
star to five stars; while most real-life event logs are found to be in-between
these two extremes of the scale with many quality issues [58]. Some advocate for
repairing or fixing the erroneous data, while others argue that the data should
be left alone as it is meant to reflect reality. Regardless of your personal view,
it is unavoidable that these data quality issues are dealt with in one way or
another. As a process mining professional, it is imperative that we measure the
quality of an event log respective to the type of process mining analysis being
considered [58]. The data pre-processing task is recognized to be one of the most

206 J. De Weerdt and M. T. Wynn

time-consuming aspects of a process mining study with many spending 60–80%
of their efforts while some spending up to 90% of their total efforts on this
step [57].

Suriadi et al. [54] identified eleven event log imperfection patterns based on
their experience with over 20 Australian industry data sets. The eleven patterns
include form-based event capture, inadvertent time travel, unanchored event,
scattered event, elusive case, scattered case, collateral event, polluted label, dis-
torted label, synonymous labels and homonymous labels. These event log pat-
terns have been used as a starting point for detection and repair of quality issues
in event logs.

There is a growing body of work focusing on the detection and repair of data
quality issues associated with activity labels, timestamps, and event orderings.
In [49], crowdsourcing and gamification approaches are being proposed to solicit
domain expert knowledge for the detection and repair of activity labels while [50]
proposes an automated context-aware approach to detecting synonymous and
polluted activity labels in an event log. In [28], the authors described a framework
to detect timestamp quality issues in an event log and proposed measures to
quantify the extent of these data quality issues as a way to measure the quality
of an overall event log. In [16], an approach to automatically repairing same-
timestamp errors in an event log is presented. In [22], an interactive approach
to detect and repair event order imperfections in an event log is presented.

5.3 Quality-Informed Process Mining

Although data quality issues are well-acknowledged in the process mining com-
munity by now, most of the existing process mining algorithms do not explic-
itly take the potential presence of data quality issues. A notable exception is
the removal of infrequent behaviors or noises from discovered process models.
The algorithms also typically treat an event log as the “whole truth” with-
out considering the potential effects of data-preprocessing on the reliability of
the results [58]. This could lead to misleading or inaccurate conclusions about
the process under investigation. In [30], the authors proposed a range of qual-
ity annotations at event, trace and log levels to keep track of the data quality
issues founded in an event log and also to record the extent of repairs are made
to the event log as a result. Such metadata about data quality can assist in
undertaking quality-informed process mining. One such algorithm is presented
as the ‘Quality-Informed visual Miner’plug-in’ which demonstrates the use of
these data quality annotations for conformance checking and performance anal-
ysis purposes.

Alternatively, it is possible to determine whether certain data attributes are
of high-quality (i.e., fit-for-purpose) before incorporating them into an event
log and then into the process mining analysis. In the Process Mining in Practice
book5, checklists are provided to detect a range of data quality issues and sugges-
tions are provided on how to potentially correct them. The quality issues covered

5 https://fluxicon.com/book/.

https://fluxicon.com/book/

Foundations of Process Event Data 207

include formatting errors, missing data (event, attribute values, case IDs, activ-
ities, timestamps, attribute history, timestamps for activity repetition) as well
as zero timestamps, wrong timestamps, same timestamps for multiple activities
and different timestamp granularity. In [4], a data-quality informed approach is
proposed where data attributes from a relational database are evaluated on their
quality across a range of data quality measures before generating an event log.

References

1. IEEE Standard for eXtensible Event Stream (XES) for achieving interoperability
in event logs and event streams. IEEE Std 1849–2016, pp. 1–50 (2016). https://
doi.org/10.1109/IEEESTD.2016.7740858

2. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

3. Aalst, W.: Process mining: a 360 degrees overview. In: van der Aalst,W.M.P.,
Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3–34. Springer,
Cham (2022)

4. Andrews, R., van Dun, C.G.J., Wynn, M.T., Kratsch, W., Röglinger, M., ter Hof-
stede, A.H.M.: Quality-informed semi-automated event log generation for process
mining. Decis. Support Syst. 132, 113265 (2020). https://doi.org/10.1016/j.dss.
2020.113265

5. Andrews, R., Emamjome, F., ter Hofstede, A.H.M., Reijers, H.A.: An expert lens
on data quality in process mining. In: van Dongen, B.F., Montali, M., Wynn, M.T.
(eds.) 2nd International Conference on Process Mining, ICPM 2020, Padua, Italy,
4–9 October 2020, pp. 49–56. IEEE (2020). https://doi.org/10.1109/ICPM49681.
2020.00018

6. Andrews, R., Wynn, M.T., Vallmuur, K., Ter Hofstede, A.H., Bosley, E., Elcock,
M., Rashford, S.: Leveraging data quality to better prepare for process mining:
an approach illustrated through analysing road trauma pre-hospital retrieval and
transport processes in Queensland. Int. J. Environ. Res. Public Health 16(7), 1138
(2019)

7. Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining.
Inf. Syst. 46, 123–139 (2014)

8. Bayomie, D., Helal, I.M.A., Awad, A., Ezat, E., ElBastawissi, A.: Deducing case ids
for unlabeled event logs. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP,
vol. 256, pp. 242–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42887-1 20

9. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Sakr, S.: A query lan-
guage for analyzing business processes execution. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 281–297. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23059-2 22

10. Bose, J.C., Mans, R., van der Aalst, W.M.P.: Wanna improve process mining results
- it’s high time we consider data quality issues seriously. In: IEEE Symposium on
Computational Intelligence and Data Mining. pp. 127–134. IEEE (2013). https://
doi.org/10.1109/CIDM.2013.6597227

11. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process
mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03848-8 12

https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1016/j.dss.2020.113265
https://doi.org/10.1016/j.dss.2020.113265
https://doi.org/10.1109/ICPM49681.2020.00018
https://doi.org/10.1109/ICPM49681.2020.00018
https://doi.org/10.1007/978-3-319-42887-1_20
https://doi.org/10.1007/978-3-319-42887-1_20
https://doi.org/10.1007/978-3-642-23059-2_22
https://doi.org/10.1109/CIDM.2013.6597227
https://doi.org/10.1109/CIDM.2013.6597227
https://doi.org/10.1007/978-3-642-03848-8_12

208 J. De Weerdt and M. T. Wynn

12. Burattin, A., Vigo, R.: A framework for semi-automated process instance discovery
from decorative attributes. In: 2011 IEEE Symposium on Computational Intelli-
gence and Data Mining (CIDM), pp. 176–183. IEEE (2011)

13. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access
for extracting event logs from legacy data: the onprom tool and methodology. In:
Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59336-4 16

14. Calvanese, D., Montali, M., Syamsiyah, A., van der Aalst, W.M.P.: Ontology-driven
extraction of event logs from relational databases. In: Reichert, M., Reijers, H.A.
(eds.) BPM 2015. LNBIP, vol. 256, pp. 140–153. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42887-1 12

15. Cheng, L., Van Dongen, B.F., Van Der Aalst, W.M.: Efficient event correlation
over distributed systems. In: 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), pp. 1–10. IEEE (2017)

16. Conforti, R., Rosa, M.L., ter Hofstede, A.H.M., Augusto, A.: Automatic repair of
same-timestamp errors in business process event logs. In: Fahland, D., Ghidini, C.,
Becker, J., Dumas, M. (eds.) Business Process Management - 18th International
Conference, BPM 2020, Seville, Spain, September 13–18, 2020, Proceedings. Lec-
ture Notes in Computer Science, vol. 12168, pp. 327–345. Springer (2020). https://
doi.org/10.1007/978-3-030-58666-9 19

17. de Leoni, M.: Foundations of Process Enhancement. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 243–273.
Springer, Cham (2022)

18. De Smedt, J., Hasić, F., vanden Broucke, S.K., Vanthienen, J.: Holistic discovery
of decision models from process execution data. Knowl.-Based Syst. 183, 104866
(2019)

19. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. IEEE Trans. Serv. Comput. 12(6), 896–909 (2016)

20. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: van der
Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448,
pp. 320–346. Springer, Cham (2022)

21. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and
abstraction of event data for process mining. WIREs Data Mining Knowl. Dis-
cov. 10(3), e1346 (2020). https://doi.org/10.1002/widm.1346

22. Dixit, P.M., et al.: Detection and interactive repair of event ordering imperfection
in process logs. In: Krogstie, J., Reijers, H.A. (eds.) Advanced Information Systems
Engineering - 30th International Conference, CAiSE 2018, Tallinn, Estonia, 11–15
June 2018, LNCS, vol. 10816, pp. 274–290. Springer, Berlin (2018). https://doi.
org/10.1007/978-3-319-91563-0 17

23. van Eck, M.L., Sidorova, N., van der Aalst, W.M.: Enabling process mining on
sensor data from smart products. In: 2016 IEEE Tenth International Conference
on Research Challenges in Information Science (RCIS), pp. 1–12. IEEE (2016)

24. Emamjome, F., Andrews, R., ter Hofstede, A.H.M., Reijers, H.A.: Signpost - a
semiotics-based process mining methodology. In: Rowe, F., et al. (eds.) 28th Euro-
pean Conference on Information Systems - Liberty, Equality, and Fraternity in
a Digitizing World, ECIS 2020, Marrakech, Morocco, 15–17 June 2020 (2020),
https://aisel.aisnet.org/ecis2020 rip/50

25. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Mag. 17(3), 37 (1996)

26. Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: Efficiently interpret-
ing traces of low level events in business process logs. Inf. Syst. 73, 1–24 (2018)

https://doi.org/10.1007/978-3-319-59336-4_16
https://doi.org/10.1007/978-3-319-42887-1_12
https://doi.org/10.1007/978-3-319-42887-1_12
https://doi.org/10.1007/978-3-030-58666-9_19
https://doi.org/10.1007/978-3-030-58666-9_19
https://doi.org/10.1002/widm.1346
https://doi.org/10.1007/978-3-319-91563-0_17
https://doi.org/10.1007/978-3-319-91563-0_17
https://aisel.aisnet.org/ecis2020_rip/50

Foundations of Process Event Data 209

27. Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol.
5701, pp. 143–158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03848-8 11

28. Fischer, D.A., Goel, K., Andrews, R., van Dun, C.G.J., Wynn, M.T., Röglinger, M.:
Enhancing event log quality: detecting and quantifying timestamp imperfections.
In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol.
12168, pp. 309–326. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58666-9 18

29. Folino, F., Guarascio, M., Pontieri, L.: Mining multi-variant process models from
low-level logs. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 165–177.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19027-3 14

30. Goel, K., Leemans, S.J., Martin, N., Wynn, M.T.: Quality-informed process min-
ing: a case for standardised data quality annotations. ACM Trans. Knowl. Discov.
Data 16, 1–47 (2022)

31. Günther, C.W., van der Aalst, W.M.: Mining activity clusters from low-level event
logs. Beta, Research School for Operations Management and Logistics (2006)

32. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global
trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12186-9 13

33. Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining
of SAP transactions. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM
2007. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78238-4 5

34. Janiesch, C., et al.: The internet of things meets business process management: a
manifesto. IEEE Syst. Man Cybern. Mag. 6(4), 34–44 (2020). https://doi.org/10.
1109/MSMC.2020.3003135

35. Leonardi, G., Striani, M., Quaglini, S., Cavallini, A., Montani, S.: Leveraging
semantic labels for multi-level abstraction in medical process mining and trace
comparison. J. Biomed. Inform. 83, 10–24 (2018)

36. de Leoni, M., Dündar, S.: Event-log abstraction using batch session identification
and clustering. In: Proceedings of the 35th Annual ACM Symposium on Applied
Computing, pp. 36–44 (2020)

37. Mannhardt, F., de Leoni, M., Reijers, H.A.: Extending process logs with events
from supplementary sources. In: Fournier, F., Mendling, J. (eds.) BPM 2014.
LNBIP, vol. 202, pp. 235–247. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15895-2 21

38. Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction
and local process models. arXiv preprint arXiv:1704.03520 (2017)

39. Moges, H.T., Dejaeger, K., Lemahieu, W., Baesens, B.: A multidimensional analysis
of data quality for credit risk management: new insights and challenges. Inf. Manag.
50(1), 43–58 (2013)

40. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event corre-
lation for process discovery from web service interaction logs. VLDB J. 20(3),
417–444 (2011)

41. Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-
centric and artifact-centric processes. In: La Rosa, M., Soffer, P. (eds.) BPM 2012.
LNBIP, vol. 132, pp. 316–327. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36285-9 36

https://doi.org/10.1007/978-3-642-03848-8_11
https://doi.org/10.1007/978-3-642-03848-8_11
https://doi.org/10.1007/978-3-030-58666-9_18
https://doi.org/10.1007/978-3-030-58666-9_18
https://doi.org/10.1007/978-3-319-19027-3_14
https://doi.org/10.1007/978-3-642-12186-9_13
https://doi.org/10.1007/978-3-642-12186-9_13
https://doi.org/10.1007/978-3-540-78238-4_5
https://doi.org/10.1007/978-3-540-78238-4_5
https://doi.org/10.1109/MSMC.2020.3003135
https://doi.org/10.1109/MSMC.2020.3003135
https://doi.org/10.1007/978-3-319-15895-2_21
https://doi.org/10.1007/978-3-319-15895-2_21
http://arxiv.org/abs/1704.03520
https://doi.org/10.1007/978-3-642-36285-9_36
https://doi.org/10.1007/978-3-642-36285-9_36

210 J. De Weerdt and M. T. Wynn

42. Pérez-Castillo, R., Weber, B., de Guzmán, I.G.-R., Piattini, M., Pinggera, J.:
Assessing event correlation in non-process-aware information systems. Softw. Syst.
Model. 13(3), 1117–1139 (2012). https://doi.org/10.1007/s10270-012-0285-5

43. Pourmirza, S., Peters, S., Dijkman, R., Grefen, P.: BPMS-RA: a novel reference
architecture for business process management systems. ACM Trans. Internet Tech-
nol. 19(1), 1–23 (2019)

44. Reguieg, H., Benatallah, B., Nezhad, H.R.M., Toumani, F.: Event correlation ana-
lytics: scaling process mining using Mapreduce-aware event correlation discovery
techniques. IEEE Trans. Serv. Comput. 8(6), 847–860 (2015)

45. Rehse, J.-R., Fettke, P.: Clustering business process activities for identifying ref-
erence model components. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM
2018. LNBIP, vol. 342, pp. 5–17. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-11641-5 1

46. Rodrıguez, C., Engel, R., Kostoska, G., Daniel, F., Casati, F., Aimar, M.: Eventi-
fier: extracting process execution logs from operational databases. Proc. Demonstr.
Track BPM 940, 17–22 (2012)

47. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S.,
Fiadeiro, J., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer,
Heidelberg (2006). https://doi.org/10.1007/11841760 33

48. Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering event correlation rules
for semi-structured business processes. In: Proceedings of the 5th ACM Interna-
tional Conference on Distributed Event-Based System, pp. 75–86 (2011)

49. Sadeghianasl, S., ter Hofstede, A.H.M., Suriadi, S., Turkay, S.: Collaborative and
interactive detection and repair of activity labels in process event logs. In: van
Dongen, B.F., Montali, M., Wynn, M.T. (eds.) 2nd International Conference on
Process Mining, ICPM 2020, Padua, Italy, 4–9 October 2020, pp. 41–48. IEEE
(2020). https://doi.org/10.1109/ICPM49681.2020.00017

50. Sadeghianasl, S., ter Hofstede, A.H.M., Wynn, M.T., Suriadi, S.: A contextual app-
roach to detecting synonymous and polluted activity labels in process event logs.
In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman,
R. (eds.) On the Move to Meaningful Internet Systems: OTM 2019 Conferences -
Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes,
Greece, 21–25 October 2019, LNCS, vol. 11877, pp. 76–94. Springer, Berlin (2019).
https://doi.org/10.1007/978-3-030-33246-4 5

51. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The
ROAD from sensor data to process instances via interaction mining. In: Nurcan,
S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 257–273.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 16

52. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data
Warehousing 5(4), 13–22 (2000)

53. Song, M., Van der Aalst, W.M.: Towards comprehensive support for organizational
mining. Decisi. Support Syst. 46(1), 300–317 (2008)

54. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining: towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132–150 (2017). https://doi.org/10.1016/j.is.2016.07.011

55. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.: Mining process model
descriptions of daily life through event abstraction. In: Bi, Y., Kapoor, S., Bhatia,
R. (eds.) IntelliSys 2016. SCI, vol. 751, pp. 83–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-69266-1 5

https://doi.org/10.1007/s10270-012-0285-5
https://doi.org/10.1007/978-3-030-11641-5_1
https://doi.org/10.1007/978-3-030-11641-5_1
https://doi.org/10.1007/11841760_33
https://doi.org/10.1109/ICPM49681.2020.00017
https://doi.org/10.1007/978-3-030-33246-4_5
https://doi.org/10.1007/978-3-319-39696-5_16
https://doi.org/10.1016/j.is.2016.07.011
https://doi.org/10.1007/978-3-319-69266-1_5
https://doi.org/10.1007/978-3-319-69266-1_5

Foundations of Process Event Data 211

56. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process
mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19069-3 19

57. Wynn, M.T., et al.: Rethinking the input for process mining: Insights from the XES
survey and workshop. In: International Conference on Process Mining: Workshop
Proceedings. LNBIP, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
98581-3 1

58. Wynn, M.T., Sadiq, S.: Responsible process mining - a data quality perspective.
In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM
2019. LNCS, vol. 11675, pp. 10–15. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26619-6 2

59. van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction
in process mining: literature review and taxonomy. Granular Comput. 6, 719–736
(2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-030-98581-3_1
https://doi.org/10.1007/978-3-030-98581-3_1
https://doi.org/10.1007/978-3-030-26619-6_2
https://doi.org/10.1007/978-3-030-26619-6_2
http://creativecommons.org/licenses/by/4.0/

A Practitioner’s View on Process Mining
Adoption, Event Log Engineering and Data

Challenges

Rafael Accorsi1(B) and Julian Lebherz2

1 Accenture Switzerland, Zurich, Switzerland
rafael.accorsi@accenture.com

2 A.P. Møller-Mærsk, Copenhagen, Denmark
julian.lebherz@maersk.com

Abstract. Process mining is, today, an essential analytical instrument for data-
driven process improvement and steering. While practical literature on how to
derive value from process mining exists, less attention haas been paid to how it is
being used in different industries, the effort involved in creating an event log and
what are the best practices in doing so. Taking a practitioner’s view on process
mining, we report on process mining adoption and illustrate the challenges of log
contruction by means of the order to cash (i.e. sales) process in an SAP system.
By doing so, we collect a set of best practices regarding the data selection, extrac-
tion, transformation and data model engineering, which proved themselves handy
in large-scale process mining projects.

Keywords: Process mining adoption · Event log engineering · SAP · Order to
cash

1 Introduction

Process mining is, today, an essential analytical instrument for data-driven process
improvement and steering [8,10,21]. It helps to understand how a specific process con-
tributes to the whole value chain, to identify different types of operational debts and to
quantify improvement opportunities and, eventually, to measure the impact of transfor-
mation projects. Put another way, it is the instrument by means of which the business
process management (BPM) lifecycle, as in [11, p. 21], can be effectively brought to
life.

However, it was not always this way. Considering the state of the Process Mining
discipline as of 2013 [2], the majority of work was still very academia-focused. Use-
cases and pilots ran within research projects or by pioneering process mining technology
providers, which at that time were spin-offs founded by PhD researchers in the area,
substantiated the power of process mining. The practical evidence for the suitability
of process mining as a scalable instrument for process improvement identification was
missing though.

c© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 212–240, 2022.
https://doi.org/10.1007/978-3-031-08848-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_7&domain=pdf
http://orcid.org/0000-0001-5620-561X
https://doi.org/10.1007/978-3-031-08848-3_7

A Practitioner’s View on Process Mining 213

There were two main reasons for this. The first reason was the lack of market (and
methodology) maturity. In fact, stakeholders could not clearly distinguish between pro-
cess mining and business intelligence, and providers/consultants could not clearly artic-
ulate (and/or substantiate) its advantages. The second reason was the fact that process
mining, as well as any other data analytical instrument, requires a specific data model.
This is, for process mining, an event log, of which the assembly requires a wide range
of skills beyond pure data staging and aggregation. Experience in pulling together an
event log for complex processes and hetorogeneous systems was lacking.

Put another way, while “academic” process mining work mostly starts with a given
log L, “practical” process mining work starts with a set of systems (or tables) and aims
at creating the log file L for subsequent analysis. Admittedly, the latter is easier said
than done. Depending on the complexity of the source data model and process to be
discovered, up to 80% of a project timespan is used for data preprocessing and log cre-
ation, leaving 20% for the real process analytical work [9]. While reviewing the existing
literature, we have seen a focus on use-cases [14,23,25], on general approaches to (and
techniques for) process analytics [5] and strategies and frameworks for creating event
logs for process mining [4,17]. Recently, also data quality is receiving more atten-
tion [3]. However, we could not find previous work addressing all these elements and a
hands-on data preprocessing example and corresponding best-practices.

Given this scenario and our practioner’s view, the goal of this chapter is threefold:

1. Report on the process mining adoption in different industries, as well as on the
drivers for process mining usage. We will illustrate different application scenarios
and drivers with practical cases.

2. Elaborate on a real-world example focusing on the event log construction for the
Order to Cash process (OTC) as seen on an SAP system.

3. Summarize the best-practices and the experience we have acquired by conducting
process mining projects.

Below, we will explicitly take up a practical view of process mining. We thus refrain
from formalizations and will introduce the necessary technical concepts – especially in
the context of SAP – in an on-demand basis including only the necessary aspects. While
focusing on SAP for the hands-on example, the methodology we elaborate on can be
equally applied to other processes within SAP, or other ERP systems, such as Oracle,
Navision and Salesforce. It is also agnostic to any data transformation approach and
platform, and process mining technology, thereby decoupling data transformation from
the specific analytical tool one intends to employ.

By focusing on data preprocessing, we deliberately leave out various other – equally
relevant – phases of a process mining project. See [27] for a process mining project
methodology. For example, although we explain the different angles that make out a
process mining project scope in Sect. 4.1, we will not cover the scoping phase in detail
(e.g. deciding which process or legal entities to be analyzed). We also skip the data
maturity assessment phase, whose goal is to ensure that the system’s data provides a
basis for process mining. This is typically required for less known, highly customized
or legacy systems, not as much for standard ERP systems and their common satellite
applications. We also do not cover analytical and improvement phases with methods

214 R. Accorsi and J. Lebherz

and methodologies, e.g. to derive insights from process mining and calculate a business
case for change. The improvement perspective is extensively covered in [26].

The reminder of this paper is laid out as follows. Section 2 reports on the process
mining adoption in different industries and drivers for process mining. Section 3 intro-
duces the SAP O2C process and corresponding data foundation. Section 4 elaborates
on how to construct a simple log file for SAP O2C. It does so by cutting through the
complexities of data extraction, transformation and data model engineering in a gen-
eral manner, and on the specific context of SAP O2C. Section 5 summarizes the best-
practices in creating an event log. Section 6 takes stock and provides an outlook on the
upcoming challenges for data preprocessing.

2 Process Mining Adoption

Process Mining is widely used in a multitude of industries and businesses to create
transparency on the key processes. This section firstly provides an overview on where
process mining is being used and, subsequently, elaborates on the drivers for firms to
deploy process mining as a basis for process understanding, monitoring and improve-
ment. Although we illustrate, by means of real-world cases, how process mining has
contributed to processes improvements in those industries, this section will not deep-
dive into the specific case studies. For this, we refer to [14], a database with example
process mining applications, and to [23], a book compiling a series of industry use-cases
for process mining.

2.1 Business Usage

We have seen Process Mining being used in several industries and processes. Still, their
adoption focus differs depending on the underlying industry type and its characteris-
tics. To better differentiate industry adoption in the different industry segments and
map the corresponding processes to the industries, we split businesses in three types,
namely (a) “Financial Products” (e.g. banks and insurance companies); (b) “Industrial
Products” (e.g. pharmaceuticals and manufacturing); and (c) “Services” (e.g. telecom-
munication, healthcare, retail and government).

Overall, Financial and Industrial Products are, to-date, the segments with the high-
est process mining penetration [10]. That is not to say that process mining is not being
successfully adopted in Services: healthcare [19,24], telecommunication providers [23,
Chap. 13 and 20] and municipalities [15] already today highly profit from process min-
ing. However, according to technology providers and market research reports [12], they
make around 15% of the installed process mining base. Below we provide examples of
how process mining is being adopted in the main industry segments, focusing on the
driving factors in Sect. 2.2.

Financial Products. These are predominantly banks, e.g. retail, corporate and invest-
ment banking, and different types of insurance companies, e.g. health, life, com-
posite and reinsurance. In banking, we have observed the focus on two processes:
(a) loan and mortage services and (b) account opening, in particular the KYC process

A Practitioner’s View on Process Mining 215

(know-your-client), closely related to the anti-money laundry prevention mechanisms.
Focusing on the former, the main focus is on unleashing operational efficiency by means
of identifying automation potentials or redesigning the process completely. For exam-
ple, we have applied Process Mining to assess the loan process of a large bank based
out of the Benelux region. In doing so, we have understood that around 70% of the
applications were rejected (by the bank) or canceled (by the applicant), which is well-
above the industry benchmark for this type of process and region. More importantly,
rejections and cancellation happened at the activity “Final Application Check”, which
was the penultimate process step before completion. Put another way, the applications
ran (at least) ten process steps, including an “Initial Application Check” (second pro-
cess step), to be rejected or withdrawn at nearly the end of the process. This insight has
paved the way to reengineer the process by creating a more thorough initial application
check and eventually reducing effort by 19 full-time equivalents (FTEs) per year.

Moving on to insurance – irrespective of its kind –, the focus is on two areas: first,
claim management and processing, and second, back and front office functions, such as
master data changes and lead management. Because of its sheer volume1 and business
relevance, the primary focus is on claim management’s efficiency and effectiveness,
specifically the level of fully automated claim processing and adherence to service level
agreements (SLA), that is, the time elapsed between the submission and settlement of
a claim. In a Swiss-based health insurance company with around 15 million claims
per year, process mining first helped measuring the full automation rate over the year,
namely 74% (target being 80%). Second, it shed transparency on the root-cause for
manual work: a large bulk of claims were detoured to manual inspection just to set a
final approval sign. While this activity took less than 10 s processing time, it delayed the
process by a median 1.8 days (waiting time in work baskets) and reduced the automation
level by 8.2%. By refining the rule-set for claims that really required the approval step,
the automation immediately raised to 82.2%. As a side-effect, this has improved the
SLA adherence by 8%.

Industrial Products. This type of industry is predominantly characterized by the man-
ufacture of different types of products, such as cars, electronics, power plants or chem-
icals. Producing businesses, when transforming their operation towards bottom-line
savings or top-line improvement, mainly focus on the so-called operational support
functions including procurement, sales and general accounting, and supply-chain and
production.

Because the operation of such industries is usually based upon a traditional, in terms
of data structure widely-understood ERP system, such as SAP or Oracle, this industry
can be seen as the forerunner for the deployment of process mining “in the large”. The
main targets for process mining are procurement – “procure to pay” (P2P) or “source
to pay” (S2P) – or sales – “order to cash” (O2C) or “lead to cash” (L2C). We address
the sales process in the context of SAP in detail in Sect. 3. In fact, these two core pro-
cesses – procurement and sales – often deliver a number of quick-wins for rapid process
improvements, both in terms of cost-savings and increased revenue.

1 In Switzerland, for example, the largest health insurance companies receive on average around
1.5 million claims per month. In Germany, this can be up to 17 million claims per month.

216 R. Accorsi and J. Lebherz

As an example, we have analyzed the procurement process of a mid-sized company
manufacturing laser-cutting machines, focusing the analysis on three main European
legal entities. With process mining we identified cyclic payment runs for invoices (each
fourth working day). By overlaying the payment cycles with the payment terms associ-
ated to those invoices, we have identified a negative offset. That is, discounts associated
with paying an invoice within a specific period were not taken into account whilst prior-
itizing the payment runs. Over one year and considering only the three entities in scope,
this amounted to EUR .83 million unrealised discounts.

Turning to production, a very popular analysis regards the interplay between the
front-office (in charge of taking leads and orders) and the production plants. In other
words, the interplay between the sales and the production process. In this setting, we
have used process mining to analyze the impact of late change order requests (coming
from the front-office executives) to four production plants for a global fragrance and
flavor producer. Late requests led to changes in the production planning, requiring,
depending on the situation, a reschedule of production or stock transfers for products
to ensure production. The former created idle production times worth 40.7 FTE per
year. By preventing order changes in the so-called “frozen zone,” i.e. orders already
scheduled for production, the company was able to reduce the idle time by 47% and
ensure a more reliable customer service.

2.2 Drivers for Process Mining Deployment

The adoption of process mining as a technique for process understanding, monitoring
and improvement is fueled by some characteristics of the leading industry segments. In
this section we revisit some of these drivers and how they contribute to process mining
adoption.2

System Homogeneity. Firms in the Industrial Products space are usually based upon one
core ERP system, most predominantly Dynamics, Oracle, Navision and SAP, covering
the main processes, with satellite systems for specific tasks, e.g. invoice processing with
Basware or customs processing with SAP GTS. Because the underlying tables, data
structures and operations for “standard” ERP systems are well-known by experts, the
preparation of data towards proces mining becomes easier. Generally, the more homo-
geneous the system landscape, the easier it is to implement and use process mining, be
it by collecting and transforming the data, or by connecting directly to a process mining
tool which performs the data transformation. The downside of system homogeneity is
that, because of system’s maturity, one oftentimes finds less low-hanging fruits in terms
of process improvements.

Transaction Volume. Some processes are executed once a month (e.g. the consolidation
of financial statements in general accounting), others millions of times a day (e.g. cab

2 Note that these drivers are independent from each other. For example, while insurance com-
panies’s technical ecosystems are highly heterogeneous (thereby making the application of
process mining more intricate), they profit from scale, i.e. number of claims, and existing solid
data foundation necessary to run the business in the actuarial space.

A Practitioner’s View on Process Mining 217

hailing rides at Uber). Both processes can undoubtedly lead to enterprise performance
improvements when analyzed with process mining. However, the higher the number
of transactions one has at hand, the higher the (at least potential) impact that can be
achieved, and consequently the higher the return on investment (ROI) for process min-
ing and improvement exercises. Just imagine one can identify, on average, USD .5 cost-
savings per claim with 15 million claims processes a year. In practice, this inevitably
turns into a scoping question when analyzing processes: what is the “minimal” trans-
action volume to qualify for process mining? There is no magic formula for this, as
processes are subject to different cycles and seasonality. So even the same process (e.g.
procurement) in the same industry (e.g. manufacturing) might considerably differ from
company to company depending on what is produced (e.g. power plants vs. chips).
Our recommendation is to start with the end in mind and delineate the scope based
on the business questions to be answered, operational debts to be bridged and process
improvement ambition. See Sect. 4.1 for the different scoping elements.

Process Drivenness. Some industries – andmore specifically, companies in those indus-
tries, or even functions in specific companies – exhibit a high maturity level in terms
of “process-drivenness” and, correspondingly, digitalization of processes. That is, pro-
cesses are captured in a structured manner (e.g. by means of BPMN) and the underly-
ing system landscape and data models responsible for the process execution exist (e.g.
ER diagrams to capture the relationship of entity sets stored in a database or ADL spec-
ifications for architecture description). Other companies (or some of their functions), be
it because of their business model or niche of operation, are less “process-driven.” For
example, in banks the Loan and Credit functions in banks are highly process-driven,
while the lead management in Asset and Wealth Management is less so. In fact, for
the latter, technically speaking each process execution is a legitimate variant. Clearly,
the higher the process-drivenness and volume of transactions, the better the chances for
being able to run process mining. The downside is that, because plenty of thinking has
been spent on process design and implementation, the quick-wins in terms of improve-
ment potential could already have been harvested by previous initiatives, irrespective of
data-driven or not.

Existing Data Foundation. Irrespective of all the aforementioned drivers, some compa-
nies have largely invested in building a cross-functional data foundation as part of their
data strategy [21], either in the sense of a data mart (department-wide for the provision
of some form of business intelligence) or a data warehouse/data lake (enterprise-wide
for large data analytics), the latter being the focus of current projects tackling the trans-
formation towards data-driven decision making. Process mining profits substantially
from an existing data foundation outside of (and combining the different) core sys-
tems. The reasons are threefold: first it avoids dedicated bulk data extractions, which
are usually time consuming and require additional effort from IT or base teams; sec-
ond, because the platforms on which they are deployed (e.g. SnowFlake or Teradata)
offer a transformation layer allowing the (automatable, periodic) data transformation,
thereby avoiding the setup of an additional transformation platform/layer; and third,
they enforce some data homogeneity when standardizing data staging, for example, by
making sure that timestamps are recorded to the precision of miliseconds.

218 R. Accorsi and J. Lebherz

Overall, these four key drivers put together factors favoring the use of process min-
ing. Of course, transparency and analytics on their own do not lead to bottom-line savings
or outperforming top-line. That is, process mining should be embedded in a broader con-
text aiming at continuous improvement, and the identification and elimination of oper-
ational debts, measuring the impact of changes and recalibrating the performance goals
according to a well-understood and well-established KPI framework [26]. The business
processmanagement lifecycle [11] provides a basis for data-driven process improvement
based on process mining, in particular, and process analytics, in general [5].

3 Real-World Example: Order-to-Cash on SAP Systems

In order to make the approach and considerations presented hereafter tangible and easily
related to actual use cases relevant for both industry and academia, we introduce an
exemplary Order-to-Cash (O2C) process run on an SAP ERP system. O2C is not only
prevalent across all three industry types as laid out in Sect. 2.1, but also very much
relatable to anyone running a business or even just buying goods online. The twist is
to simply look at this buying process through the vendor’s eyes, i.e. the firm selling for
example electronics through a web shop. Irrespective of the firm’s business type, region
or size, the main process steps of any O2C process are fairly similar. Hence, it makes a
perfect running example to showcase event data preprocessing in a real-world scenario.

Many large organizations run their core business processes on ERP software solu-
tions from Oracle or SAP, imposing a minimum level of standardization on process
steps and their sequential flow. Since they are, however, designed to fit many different
industries and business models, the predefined guardrails are not very strict, allowing
for significant variation even in otherwise well-defined business processes like O2C.
And while some of the companies even go to the length of modifying the underlying
data structures in order to tailor the systems to their very needs, most modifications do
not interfere with the core O2C process flow, but rather add complementary informa-
tion. Paired with the fact that the adoption of SAP-based O2C process mining is far
ahead of their Oracle-based counterparts, an SAP ERP has been chosen to exemplify
event data preprocessing for O2C.

An end-to-end O2C process encompasses steps from the initial entry of a sales
order and its items, all the way to the actual receipt of payment or another financial
record clearing the open balance (e.g. a credit note). In practice we have encountered
O2C process analyses with well over 100 different process steps, however, in favor of
reducing this complexity to a manageable, but representative set of events, the process
flow is exemplarily represented by nine individual steps (or events).

The events as depicted in the first swim lane of Fig. 1 have been selected in order to
(a) capture at least one instance of each event archetype3, while both (b) reducing the
number of events substantially, but also (c) retain major milestones of a typical O2C
process. We correlate the Business Flow, the underlying Document Flow as well as the
corresponding Data Flow as follows.

3 Technical event archetypes (immutable vs. mutable direct timestamp vs. log entry timestamp)
further defined in Sect. 4.

A Practitioner’s View on Process Mining 219

Fig. 1. SAP O2C process description across the different flow types

Business Flow. The process starts with the creation of a sales order (SO) with at least
one item (SO Item created), after which a confirmation can be sent to the cus-
tomer (Order Conf. sent). As a next step the corresponding delivery document is
created including details for all items (Delivery Item created), after which the
warehouse operations (Picking completed, then Packing completed) fol-
low, illustrating the application of O2C for sales of physical goods in store. The goods
are eventually sent to the customer (Delivery Item dispatched) and a corre-
sponding billing document including respective items gets created (Billing Item
created), which typically interfaces with the financial accounting part of the pro-
cess. In favor of simplicity, this part is omitted (i.e. all financial postings, such as the
settlement of billing documents).

In this given example, we include changes to the quantity ordered (Quantity
changed) which can be triggered at any stage before the creation of the delivery note.
This change event can be seen as a template and hence applied to a variety of other change
attributes (e.g. price or requested delivery date). After each change, the corresponding
marker on the sales order gets updated as well (SO Item last changed.).

Document Flow. The second perspective focuses on the business documents and
their flow, as if actual paper documents would be processed. It starts with the sales
order (SO and SO Item), after which the customer is sent a confirmation (Order
Confirmation). A delivery document (DD and DD Item) is created and dispatched
before the billing document (BD and BD Item) opens a balance for the respective
customer.

Data Flow. Next, we focus on the main corresponding data structures holding infor-
mation about the events and/or documents. For SAP-based O2C processes, sales orders
and their items are stored in a pair of tables distinguishing sales order header infor-
mation (table VBAK) from their item level information (VBAP). The data recorded
in these tables include their creation date, as well as the date it was last changed.

220 R. Accorsi and J. Lebherz

Order confirmations are persisted in a log table (NAST) comprising nearly all outgo-
ing messages, while delivery document information, including creation and dispatch,
can be found in another table pair (headers: LIKP; items: LIPS). Picking and packing
is traced through changelogs (headers: CDHDR; items: CDPOS) on sales document sta-
tus (headers: VBUK; items: VBUP) and billing documents are stored in a separate table
pair (headers: VBRK; items: VBRP). Similar to picking and packing, all change events –
including quantity changes – are tracked in a change audit log (headers: CDHDR; items:
CDPOS).4

Limitations. Finally, it is important to point out that the presented O2C process consti-
tutes a radical oversimplification. While the individual events are indeed representative,
the process flow and set of events should be treated solely as an excerpt for demon-
stration purposes. Not only will real-life O2C processes be significantly more complex,
system customizations and other modifications to the SAP O2C standard configuration
are likely to require additional attention.

4 Event Log Engineering in Practice

Data preparation for process mining in the form of event log engineering encompasses
three main steps, namely:

1. Data selection and extraction
2. Data transformation
3. Data-model engineering and fine-tuning

This section addresses these three steps from two perspectives: first from a broad per-
spective by touching upon key aspects to be considered; and second, in a zoom into
the specific setting introduced in Sect. 3. The following is not meant to be a complete
cookbook for process mining preprocessing. Instead, it focuses on the predominant,
recurring aspects and challenges – some specific to process mining, some applicable to
a wider spectrum of data analysis initiatives.

4.1 Data Selection and Extraction

From a general standpoint, this step focuses on answering the following questions:

1. Which data is to be extracted and when?
2. Which attributes are necessary for the analysis?
3. Is data sensitive?
4. Is data readily available or archived?
5. Will the data size to be extracted be overwhelming?

4 Table names in the SAP ECC data model are typically four to six character abbreviations of
the context or document they capture. Because of the geographical origin of SAP, namely Ger-
many, the abbreviations often stem from German. For example, VBAK and VBAP stand for,
respectively, “Verkaufsbeleg: Kopfdaten” and “Verkaufsbeleg: Positionen,” where “Verkaufs-
beleg” means “sales order”.

A Practitioner’s View on Process Mining 221

The answers to these questions can be clustered under the labels “scoping” and “sourc-
ing.” The scoping phase defines four analytical angles: processual angle (i.e. the subject
of analysis), its regional angle (i.e. a specific country or set of legal entities), the time
angle (i.e. time span of transactions to analyse), and the analytical angle (i.e. the “why”
behind the analysis).

Once the scope is set, the sourcing phase establishes a mapping between the process
steps and their attributes in a transaction and the events in the source systems, tables
and objects. The overarching goal is to identify where – if at all – the necessary events
are digitally represented and which attributes are natively available. In some situations,
both events and attributes need to be derived by combining different characteristics. For
example, the definition of an “automated event” in an SAP system depends on various
factors, including user type and reference transaction. Hence capturing and interpreting
them correctly is essential for the credibility of process mining (see Sect. 4.2 for details).

The final step in the sourcing phase is the “physical” data extraction from the rele-
vant system and corresponding data objects to a destination outside the system. Assum-
ing that all the data is based on a single ERP landscape, this usually happens by query-
ing the corresponding tables and applying selection criteria to filter out, e.g., the trans-
actions falling in the current time and regional angles. This could be either done by
means of an ETL tool connecting to the system, by creating a dedicated extraction
script (e.g. specialized ABAP code for SAP, or DART, SAP’s embedded extraction
tool), or by backing up the relevant tables and fields from the system (see Sect. 5 for
best practices on data extraction). In companies with large data volumes or analyses
considering a wide time angle (say, 10+ years), data extraction might need to consider
so-called “archived transactional data”. Whilst archived data can be seamlessly brought
back to life, in practical settings, not the entire transaction is archived bur rather its
main attributes, for storage capacity reasons. This might restrict the analytical angle for
archived transactions.

When extracting transactional and associated master and change data, two aspects
are important: first, data size; and second, data protection. For the former, to estimate
the final size of extraction and, simultaneously test the extraction method, one usu-
ally extracts, say, one month of data. By extrapolating this to the final time angle, one
approximates the final number of cases and events to be dealt with, and consequently
the size of final extraction. For the latter, the advent of the General Data Protection Reg-
ulation (GDPR) specifically, and increased awareness for data protection generally, puts
additional requirements to data extraction and processing. Here, two strategies comes
handy. First, data minimization, that is extracting only the information strictly needed
to cover the analytical angle. For example, if an analysis aims to measure the level of
automation in a particular process, one can solely extract the user type, not necessarily
the user name or ID. Second, for the necessary but sensitive fields, data obfuscation
techniques generate – during the extraction – an irreversible value for a particular field.
In practice, the most common method is by hashing the values for the sensitive fields.
This is typically applied to personally identifiable information, such as user IDs and
customer names. Security and privacy have been an important topic in business process
management and process mining [1,20], the widespread adoption of process analytics
and mining paired with stricter legislation created a sense of urgency which is translat-
ing in cutting-edge, scalable data-protection approaches, such as [18,22].

222 R. Accorsi and J. Lebherz

Data Selection and Extraction in the SAP O2C Scenario. In the following, we apply
the general considerations discussed before to our SAP O2C running example. As a
reminder, the scoping phase defines the rationale (“why”) and derives the object of study
(“what”) using business terminology, while the sourcing phase translates this scope
into technical delimitations and specifications, guiding the actual extraction of data.
The exemplary scenario presented hereafter is fictitious, though resembling essential
experiences and learnings from real process mining initiatives.

Scoping Phase. While the initial trigger for starting scoping discussions for process
mining can originate from IT/analytics departments or solution vendors during pre-
sales, we choose to exemplify an arguably more value-driven context. The Global Head
of Order Management aims to optimize the firmwide order management process and
has been introduced to the general concept of process mining, which seems to be a
perfect fit. She initiates a pilot project to evaluate the suitability of the approach, drive
process transparency and distill tangible process improvement levers. During scoping
discussions with process mining experts, three hypotheses are agreed to become the
predominant analysis directions for moving ahead in an orchestrated manner:

1. Quantity changes. The number, magnitude and time-wise distribution of quantity
changes in sales order items is, while being a driver for additional manual effort and
downstream ripple effects, concentrated around recurring patterns (e.g. customers,
regions, product groups).

2. SLA adherence. Transparency on Service Level Agreement (SLA) performance with
regards to sending order confirmations a minimum number of days before their dis-
patch can greatly improve both the adherence to and eventually the perceived value
from such agreements (e.g. with key customers).

3. Process conformance. Data driven sensing of process flows violating the designed
and desired process model informs process owners, operational staff running the
process, as well as governance bodies (e.g. internal audit), about needs for additional
training, additional guardrails or even process re-engineering.

While the first hypothesis looks at options to streamline the process, the second one
bears potential to create additional value for customers. Lastly, hypothesis number three
looks at more medium to long term objectives around process robustness and clarity of
flow, which many times is a precursor for automation.

After rallying around the rationale for employing process mining, the scope (i.e.
object of study) is being defined. As a largely business-driven exercise, process mining
experts typically need to act in a (technical) counterbalance role, since the larger the
business scope is set, the more complex all steps of the resulting process mining exercise
will be. Hence, it must be the joint goal to aim at the smallest possible scope, while still
retaining enough to be representative with regards to all shortlisted hypotheses.

The first delimitation is made with regards to the underlying business process. In
the context of our SAP O2C example, all three hypotheses are related to the O2C pro-
cess, more notably even, the non-financial part of O2C (sometimes referred to as order
management). As the next level of detail, a minimum set of process steps or events is
selected in line with the hypotheses (as described in the ‘Business Flow’ swim lane in
Fig. 1). The second scoping task identifies corresponding business objects to be traced.

A Practitioner’s View on Process Mining 223

Please refer to the ‘Document Flow’ swim lane in Fig. 1. The third delimitation chal-
lenges whether all organizational units (e.g. legal entities, regions or segments) and
transaction types (e.g. consignment vs. standard sales) need to be included to retain
validity and significance of analytical results. Oftentimes, the project participants are
highly acquainted with one specific part of the business, making it a natural choice
to ensure the right expertise is available when validating results later. With regards to
transaction types, high volume types are typically scoped in when looking at efficiency
hypotheses. In our example we focus on ‘standard sales from stock’ only, while the
fictitious firm operates as one legal entity with one sales organization and one ware-
house. The fourth delimitation looks at the timeframe to be analyzed. Depending on
the underlying data volume, it might become necessary to further restrict the timeframe
in scope later during the sourcing phase. In order to capture seasonality, it is generally
recommendable to cover one full calendar or fiscal year. In our example we restrict
the analysis to data from 2020. The fifth and last business-driven scoping discussion
typically presents the biggest challenge. Here, one aims to delimit the number of dif-
ferent data points associated with each business object. For example, each SO item
has more than 400 individual attributes in any given SAP system. Some of them are
collocated, others require multiple data linkages, but most importantly, many do not
naturally indicate whether they might become useful context around process execution
during the downstream analysis. While the default reaction of business favors retaining
everything, the resulting spike in technical effort and complexity renders this extreme as
inadvisable, sometimes even infeasible. In our simplified example we assume the pro-
cess mining experts are seasoned enough to guide the team toward a narrow selection
with necessary attributes only. Such a selection does typically not exceed 40 attributes
in case of the SO item example.

Sourcing Phase. With the scope being clearly defined from a business perspective, the
first step in the sourcing phase is to translate all delimitations into technical terms, i.e. a
selection of source systems, data sources (e.g. tables or log files) within these systems,
corresponding parameters to filter data records and last but not least the selection of
required attributes within the data sources.

In our SAP O2C scenario, we focus on one source system only (exemplarily ‘P42’,
an SAP R/3 ERP, even though the characteristics described largely apply to SAP S/4
instances as well). Since SAP ERP systems are capable of multi-tenancy, it is important
to select the correct tenant in addition, which in case of the running example falls on
the only active tenant configured in the productive ERP instance (i.e. ‘P42/010’).

Next, the process steps and traced documents (please refer to the ‘Business Flow’
and ‘Document Flow’ swims lane in Fig. 1) are translated into their respective data
sources. Often, this exercise with its required deep expertise is indicative to whether
multiple data scope refinements and, hence, data extractions will become necessary,
thereby prolonging the project timeline. These translations applied to the running exam-
ple are shown in the tables in Fig. 2.

In order to restrict the extraction data volume for each data source, the delimita-
tions on organizational scope and transaction type, as well as timeframe are translated
into row filter criteria. Figure 3 shows exemplary filtering criteria. While the tenant fil-
ter represents an example for restricting the organizational scope, a timeframe filter

224 R. Accorsi and J. Lebherz

Fig. 2. Data sources for the SAP O2C process

Fig. 3. Filtering criteria when extracting data for SAP O2C process

is also applied to each data source. As shown for the data source CDPOS, timeframe
restrictions sometimes require linkage to another data source, like in this case its header
information in CDHRD. Setting fixed timeframe boundaries will, however, lead to cut-
off artifacts in the resulting analysis. If a sales order is registered on December 31
2020, the corresponding order confirmation will likely be created outside the selection
window and thereby cut from the extraction. Preventing such artifacts would require
substantial pre-extraction analysis and sophisticated extraction mechanisms catering to
dependencies between data sources. This is typically deemed impractical, and analysts
would rather deal with the resulting artifacts during analysis. Lastly, transaction type
filters are exemplified through the document category for sales orders, the configured
message type for order confirmations, which needs to be looked up in the system itself,
and the list of tables affected by logged changes.

Equipped with a clear selection of data sources and filter criteria (i.e. restricting
data records), selection criteria (i.e. restricting attributes/columns) are next. While data
sources like sales order item or delivery item tables have over 350 columns, only a small
number of them is required to evaluate specific hypotheses. Typically, practitioners hone
in on (a) the identifying primary key, (b) temporal, quantity, price, cost, volume, and
weight information, (c) markers indicating a state of the object, (d) links to other rele-
vant objects, and (e) links to supplementary information. Figure 4 showcases attribute

A Practitioner’s View on Process Mining 225

Fig. 4. Attribute selection for delivery items in SAP

selection for delivery items (system table LIPS). During this screening process it is nat-
ural to come across additional supplementary information not yet covered in the data
source selection. In such cases, and if their usefulness gets validated, they need to go
through the same delimitation procedure as other data sources.

The final step of the technical translation is the screening of a complete, resulting
attribute selection for sensitive data. Some data types are prohibited to be transferred
across country borders (even if it is solely for analysis), others fall into categories requir-
ing additional safeguarding, pseudonymization or even anonymization. While the pro-
cess act of obfuscation is part of the extraction itself, it is recommended to identify
all attributes requiring special attention upfront. In the SAP O2C scenario, these could
entail usernames and details from customer master data.

Lastly, the actual extraction is configured and run accordingly. As all major con-
siderations regarding the extraction of large volumes of data from ERP systems have
already been presented in the general section of this chapter, our running example
assumes a proven one-time extraction mechanism is used. Such setups have been uti-
lized extensively by external auditors, however, are usually limited to selective one-time
extracts, storing the payload in individual files locally on the SAP application server.
Since no sensitive data has been identified in the data scope of our SAP O2C example,
no obfuscation mechanisms need to be configured.

4.2 Data Transformation

After the extraction, data is typically loaded onto a preprocessing platform to generate
the target data model, i.e. the log file and ancillary tables (see Sect. 4.3 for details). This
platform can be a database management system (such as a Microsoft SQL Database
Server) or part of the ETL tool applied during the extraction. Depending on the process
mining technology applied, transformation might also happen inside the tool, such as
in UiPath Process Mining and Celonis.

Data transformation is the most important preprocessing step in the journey towards
process analytics. This is in particular relevant because an error in reconstructing the

226 R. Accorsi and J. Lebherz

end-to-end process may cascade to a completely flawed process mining exercise, deliv-
ering misleading results, creating negative experience and, in the worst case, discredit-
ing the whole approach. Consequently, a lot of attention needs to be put into mapping
the correct process.

Specifically, we want to call out the following key aspects, namely:

1. Case Identifier consistency,
2. Timestamp quality, and
3. Amount handling.

Serving as unique transaction identifier, the Case Identifier (CaseID for short) is
a primary point of concern when transforming data in order to achieve an end-to-end
representation of the process. When considering one single system, such as SAP, the
transaction identifier is typically given by the key document number being tracked (e.g.
sales order number), to which other related documents refer. When the transaction spans
different systems, the CaseID might – or might as well not – be consistent across them.

Assuming that CaseIDs are not consistent, two situations might occur: (1) there
exists a mapping between the systems, that is, one can precisely link the transactions,
even though the CaseID used in the systems for the same transaction differ; or (2) there
is no link between the systems, or this link is not persistent (e.g. being deleted after
24 h). In (2), transactions can only be approximated by relating timestamps and trans-
actional attributes on both systems, the so-called linkage criteria. That is, assume that
transactions are passed on from an Application A to an Application B. The linkage
criteria will initially define a time range (e.g. from 1 to 10 s) within which a transac-
tion ending on the Application A is connected with the transaction that commences on
Application B. Ideally, the matching of timestamps on both ends will create an one-to-
one linking of the transactions. The resultant CaseID could be the concatenation of the
CaseIDs on Systems A and B, e.g. CaseIDA–CaseIDB . However, in practice a linkage
criteria based solely on time ranges can lead to one-to-many relationships between the
transactions on both systems, for instance when the cadence of transactions is high.
By refining the linkage criteria with non-temporal matching attributes (e.g. the vendor
and/or material), one gains precision and reduces uncertainty. Still, in some settings it
is impossible to achieve a perfect mapping across systems. In these situations we rec-
ommend adding a case attribute that flags those transactions which perfectly match and
those which do not.

Timestamps are essencial in process mining, as they mainly charaterize the par-
tial ordering ≺ in which the events are sequenced by the underlying process mining
algorithms. A typical problem happening in particular when analyzing automated pro-
cess steps in sequence, but also in other contexts, is the precision of timestamps. Auto-
mated process steps happen in range of miliseconds, and this is the precision with which
timestamps need to be captured, otherwise process steps will have the same timestamp.
In practical settings, this leads to an extreme high number of process variants, as the
process mining engines will pick events with the same timestamp in a random order
and artificially create variants. When precise timestamps are not available, hardwiring
the process ordering by means of a dedicated field in the final log might come handy.

A Practitioner’s View on Process Mining 227

Tools will use this field to enforce the ordering, avoiding unnecessary variants. Another
solution is to subsume all the sequenced steps into one, assuming that their ordering is
not relevant for the analytical angle.

Another aspect commonly overlooked in analysis is the fact that the timestamps
might be captured in a different timezones, especially when the regional angle spans
various continents. (Summer and winter time shifts shall not be forgotten, too.) As an
example, suppose one is looking for outlier transactions in which invoices were settled
outside of the standard European working hours for a particular company, e.g. between
7PM and 6AM. Completely legitimate settlements happening the US might be then
considered illegitimate if one does not normalize the timezones. This can be either done
by adding a supplementary timestamp field to the log (denoting the time according to
the reference point, e.g. CET, defined in the analytical angle), or by adding an attribute
field for the timezone offset according to the reference point (e.g. +2).

A final consideration regarding the timestamps is the fact that typical ERP systems,
as well as most of the legacy systems, do not capture the begin and end timestamps of
events. As events are therefore “atomic”, it is impossible to measure the actual duration
of an process step and, correspondly, to quantify the working time per step. In fact, the
lead times between events in a discovered process maps encompass both processing and
waiting times. To address this, approaches for so-called “effort mining” are being devel-
oped and tested in practical settings [28]. They using statistical methods to estimate the
duration of tasks, thereby allowing the quantification of working time and productivity,
as well as benchmarking.

Considering amounts, two frequent issues are: (1) amount duplication, and
(2) unharmonized currencies. The duplication happens when loops exist in the pro-
cess. For example, suppose the event “Issue Invoice” happens, with an associated event
attribute “Invoice Amount.” Furthermore, suppose that, because of a loop, this event
happens twice in some cases. Naively adding up the amounts associated with the event
“Issue Invoice” will include duplications because of the multiple occurrences of the
event within a case. Similarly, amount corrections happening in a case must be taken
into account when assessing the final amount related to a case. Ideally, to avoid dupli-
ations and other errors associated with amounts one should parse, the execution traces
create an ancillary case attribute table recording the amounts per case (see Sect. 4.3 for
details on the data model), thereby avoiding calculations on the specific process mining
tool.

Unharmonized currencies typically happen when the analytical angle spans
different countries, e.g. Denmark and Brazil. As above, naively adding up amounts
without taking into account the different local currencies will lead to a wrong financial
assessment of the process. Therefore, as a preprocessing step, currencies shall be har-
monized to a reference currency set during the analytical angle, such as USD or EUR.
This will be the reporting currency. The basis for such a harmonization might be system
tables capturing the currency conversion rates history (e.g. TCURR on SAP), or dedi-
cated APIs from which the historical foreign exchange can be retrieved (e.g. Fixer.io).
For flexibility, the resulting data model stores both the amounts in local and reporting
currencies, optionally also the conversion rate.

228 R. Accorsi and J. Lebherz

Data Transformation in the SAP O2C Scenario. In the following, we apply the
general considerations discussed before to our SAP O2C running example. While
first focusing on unit harmonization (i.e. timestamps and prices), the second part will
describe different archetypes of events and exemplarily discuss data transformation
steps to generate event log entries.

Unit Harmonization. As characterized above, there are several types of attributes that
can occur in different base units across the data sources, sometimes even within one
source system. Starting with the timestamps, SAP typically stores date (DATS) and
time (TIMS) data in the configured time zone in the SAP installation. Some timestamps
are, however, persisted in the time zone of the individual user interacting with the sys-
tem (e.g. in SAP Warehouse Management, short WM). Luckily, all attributes relevant
to our example are based on the same time zone and therefore, no adjustment for dif-
ferent time zones needs to be made. Since we analyze a full year of data, the switch
between summer and winter time can – depending on the SAP system configuration –
still require adjustments and a decision to treat one of them as dominant.

Before applying adjustments, we prepare our data sources by combining sepa-
rated date and time information into timestamps (e.g. in VBAP: ERDAT & ERZET >
tsCreation). If any data source contains multiple separated timestamps, each pair
will result in an additional attribute. Moving to the actual adjustment and taking CET as
our dominant base time zone, we adjust all timestamps in summertime by subtracting
one hour. For traceability and testing purposes the adjusted timestamp shall be added as
an additional column (tsCreationCET). Once a project matures into an operational
monitoring solution, such steps are typically collapsed to reduce overall data volume.

Another major category for unit harmonization is currency denominated attributes.
Within SAP, some data sources provide figures in multiple currencies (often document,
local and reporting currency), other hold the transaction or document currency only.
In these cases, and especially when firms engage in international business relations,
respective metrics need to be harmonized before being compared or aggregated.

There is a substantial level of semantics captured in the way SAP ERP systems con-
vert currencies.5 However, in the context of our SAP O2C process at hand, we assume
a currency conversion mechanism is available in the data transformation environment.
Some of the currency attributes which need to be harmonized are static in terms of
source and target currency (e.g. all records converted from USD to EUR), others need
to dynamically capture the source currency per each individual record (e.g. sales order
item price from document currency to EUR). Exemplarily, Fig. 5 shows the input to
such a dynamic currency conversion function, whose output is then stored in an addi-
tional attribute.

Event Data Transformation. When transforming data into an event log capturing all
relevant events as defined in Sect. 4.1, different event data archetypes should be distin-
guished. These types inform corresponding transformation recipes and while they need
to be tailored to individual events, their core structure remains largely intact. Figure 6

5 It goes beyond the scope of this running example to explain the inner workings of currency
conversion in SAP which is based on the tables TCURF, TCURN, TCURR, TCURV, and TCURX.

A Practitioner’s View on Process Mining 229

Fig. 5. Exemplary currency conversion.

Fig. 6. Types of data archetypes.

delimits these three archetypes and Fig. 7 maps them to the events which are part of our
SAP O2C running example.

Below, we detail the event Sales Order Item created to exemplify the
immutable timestamp transformation archetype, the event Sales Order Item
last changed to exemplify the mutable timestamp transformation archetype, and
both events Order Confirmation sent as well as Picking completed to
exemplify the log entry transformation archetype. For simplicity reasons we limit the
transformations to the three basic elements for process mining: (a) the object ID/case
ID candidate, (b) the event name, and (c) the timestamp.

Timestamp – immutable. In order to extract event records for the event type Sales
Order Item created an object ID (caseID candidate) is crafted by concatenating
VBAP.MANDT, VBAP.VBELN and VBAP.POSNR, the primary key of the respective
data source table. In a preparation step we have already generated the corresponding
timestamp VBAP.tsCreated from VBAP.ERDAT and VBAP.ERZET. Many event
types can be extracted in this manner.

Timestamp – mutable. To extract event records for the event type Sales
Order Item last changed we use the same object ID as for the immutable
event. In a preparation step, we have also generated a corresponding timestamp
VBAP.tsLastChanged from VBAP.AEDAT and 23:59:59, a dummy time to fill
the missing precision in this timestamp. It is very important to clearly document usage

230 R. Accorsi and J. Lebherz

Fig. 7. Mapping archetypes to the events.

of such dummy times, since they can lead to undesired analysis results due to misin-
terpretation of the event sequence. In general, such mutable event types are more valu-
able for operational process mining analyses, with shortened refresh cycles, and thus a
greater chance of the data still being current at the time of analysis. We included it in
the SAP O2C running example for completeness only.

Log entry. As the first example of the log entry archetype, the event records for
Order Confirmation sent are retrieved. Assuming the data source NAST has
already been filtered to solely include order confirmation message types, it is linked
to VBAP based on the client (MANDT) and its object key (OBJKY) referencing to the
header primary key of VBAP (MANDT, VBELN). The same concatenated object ID is
used as for the immutable event. And since the two sources are linked already, tsPro-
cessed as derived from NAST.DATVR and NAST.UHRVR is used as the event times-
tamp.

The second example derives the event Picking completed from SAP’s change
documentation. Assuming the data source VBUP has already been filtered to solely
include the item status information of standard sales order items, we also restrict the
change logs based on the affected table (CDPOS.TABNAME = VBUP), on the affected
field (CDPOS.FNAME = PKSTA), and on the change type (CDPOS.CHNGIND = U)
to retain value updates only. Thereafter, VBUP is linked to CDPOS based on MANDT
and CDPOS.TABKEY referencing the primary key of VBUP. Next, change log header
information (CDHDR) is linked based on MANDT and CHANGENR. Lastly, we can extract
the object ID from VBUP analogously to the immutable timestamp example, and the
prepared timestamp tsUpdated, derived from CDHDR.UDATE and CDHRD.UTIME.
Many changelog structures for other event types work similar, even outside the SAP
ecosystem.

The exemplarily described recipes can be applied beyond the events listed as part
of our simplified SAP O2C process analysis. It is rarely a blind application, however,

A Practitioner’s View on Process Mining 231

rather a tailoring exercise. Sometimes the name of the resulting events – mostly in
the log entry archetype – is even meant to be dynamically derived from attributes on
a record-by-record basis. This becomes particularly useful when analyzing workflow
systems with potentially hundreds of different events, since all of them can be extracted
with one transformation recipe.

4.3 Data Model Engineering

Generally speaking, the transformation creates an event log for the process in scope, as
defined in the processual and regional angles. It further contains the necessary events
and attributes needed to respond to the analytical angle happening in the time span
prescribed by the time angle. This section focuses on considerations at building a data
model fit for scalable process mining analytics.

The simplest target data model for an event log file is a table in which the columns
capture the attributes and the rows capture the events. Although some tools still build
upon a single event log table as their input format and although this format might be
handy for small exercises, producing a single event log has several adverse practical
implications, namely:

1. Log file generation. Even in narrow-scoped analysis, an event log may quickly have
.5 million transactions (cases) with around 100 associated attributes. Changes in the
transformation logic – a frequent step to appropriately capture the business logic or
fine-tune for system customizations – lead to a full reprocessing of the whole event
log. This procedure can, depending on the transformation platform, take hours (or
even days) to complete.

2. Lower analytical performance. When analyzing a process, e.g. by applying a filter
for a drill-down or computing a KPI, a large event log packed on a single table might
have an adverse impact on the user experience in the tool. Specifically, the response
time can be very high, making it hard to interactively produce insights.

3. Unnecessary reduncancy. A single event log does not distinguish between case (or
transaction) attributes, such as legal entity or material, and event attributes, such as
user name. Therefore, depending on how the transformation handles case attributes,
they might be replicated throughout all the events within a case, or have empty
values, which is a suboptimal use of the data model.

4. Scalability and size. While an event log might have a stable size during a proof-of-
value, in process mining implementations tackling continuous process monitoring
and improvement, the event log steadily grows as new cases are appendend to the
existing model. Depending on the cadence of transactions (and number of events in
those transaction), this can easily result in an average monthly increase well over
100 million lines. This has an implication on the disk space necessary for storage,
as well as how the tools might be able to load and process this log.

Practical process mining thus calls out the need for more efficient and scalable logs.
There are two complementary strategies for engineering event logs. The more general
strategy focuses on splitting the log into at least two tables: the so called event table
containing the events and their attributes, and the transaction table containing the case

232 R. Accorsi and J. Lebherz

attributes. The key linking these two tables is the CaseID. This strategy can be fur-
ther refined, depending on the needs of the analysis. For example, another usual struc-
tures seen in practice is the change table capturing updates in the main documents (e.g.
Quantity changed in Sect. 3) and the property table capturing derived precom-
puted transaction attributes easing the analysis (e.g. the number of events in a particular
transaction or precision of the linkage criteria, as of Sect. 4.2).

The more specific strategy takes the scope and its different angles into account, as
well as who is eventually consuming the analysis. Specifically, when the regional angle
comprises multiple geographies (e.g. five hubs of a Global Business Services (GBS)
topology), it is wise to create one data model – irrespective of its layout – for each hub.
While this does not prevent having a global analysis, benchmarks and knowledge trans-
fer of best-practices, it by default ensures controllability and need-to-know policies, i.e.
that hubs focus on their area of concern. The analytical angle is also a strong driver for
event log engineering. For example, an SAP O2C analysis might focus on improving
client servicing and lead management. In this case, the focus is on transactions against
external customers, and not on intercompany or intracompany transactions6. Therefore,
the data model for this analysis can be built to comprise only the relevant transactions.

Generally, narrowing the event log according to the scope reduces the risk of adding
noise to the analysis, and the risk of misinterpretation. This is because it requires the
clear-cut specification (and transparent communication) of the filtering criteria used
during log engineering and data transformation. It also reinforces that there is no “one
size fits all”, standard target log file and set of events and attributes to be reconstructed.

Data Model Engineering in the SAP O2C Scenario. In the following, we apply the
general considerations discussed before to our SAP O2C running example. Starting
with the selection of a common process instance identifier or case ID suitable for the
analytical angle at hand, we define a dedicated data table for information on each pro-
cess instance (i.e. the case table). Lastly, contextual data is added in a scalable way and
linked to the core data model.

Case Identifier. When transforming source data into event records as described in
Sect. 4.2 the resulting object identifier (object ID) is typically referencing the under-
lying business object or document. Exemplarily, the events derived from sales order
items (VBAP), e.g. Sales Order Item created, will have a concatenation of
the table’s primary key fields as its unique object ID reference. However, events derived
from other data sources, like Deliver Item created will correspondingly have
an object ID composed of the primary key fields of LIPS assigned. This results in a
need to relate these objects and documents involved in our O2C process, in order to
retrieve original process flow end-to-end.

We look at the document flow in Fig. 1 and use the link attributes we preserved
in Sect. 4.1 to derive an object graph in accordance with the relationships between the

6 Intercompany transactions are between two or more related internal legal entities in the same
enterprise; intracompany transactions are between two or more entities within the same legal
entity.

A Practitioner’s View on Process Mining 233

Fig. 8. Relationship model relating to the case identifier.

corresponding data sources. The only exception is the data source NAST, whose corre-
sponding events have already been linked to the respective sales order item object ID
during event data transformation as described in Sect. 4.2. Such direct links are typi-
cally used when the business object or document has very few additional attributes of
relevance – link in the exemplary case – the order confirmation. Please refer to Fig. 8
for the resulting relationship model and exemplary graph.

As some of the relationships between the business object data sources are one-to-
many (in some scenarios even many to many), the resulting graph/forest can become
quite complex. Considering the example in Fig. 8, the part of the graph in which two
sales order items exist (X and Y), with both belonging to the same sales order (R). While
X has no link to any delivery item yet, Y references two distinct delivery items (U and
W) with two different headers (T and Z). This means the sales order item was likely
split into two deliveries. Now, one of the deliveries (W) is already billed with a billing
document item (A) and header (B).

For most process analyses it is advisable to define one of the object ID types as the
case identifier (caseID). Based on the underlying analytical angle and hypotheses, we
select the sales order item as the identifying document type and create a mapping table,
which lists all reachable objects within the forest as a function of the caseID (see Fig. 9).
As a rule of thumb, when traversing the forest, the very same relationship shall not be
traversed in both ways, i.e. after connecting X to R, we do not proceed to connect Y to
the same set of reachable objects since it would take the same relation (VBAP� VBAK)
that connects X to R in a backward direction. This approach prevents linking objects and
thereby their associated events erroneously. The combination of our mapping table with
the event record table from Sect. 4.2 results in a final event log table, which can already
be used for process mining.

Case Table. Most process mining analysis are moving beyond the pure event traces
quite quickly, resulting in the need to add contextual information. The most straightfor-
ward option is to create an additional table with exactly one record per process instance
(i.e. per active caseID) and adding so-called case-level information to it. Since we have

234 R. Accorsi and J. Lebherz

Fig. 9.Mapping table listing reachable objects.

Fig. 10. Connecting additional contextual data sources to the case table.

defined the sales order item as our case ID type, we can simply add the attributes pre-
served in Sect. 4.1 as case attributes (e.g. net price, material number).

Contextual Data. When using process mining in real business scenarios, the thirst for
contextual information does not stop at the case table. Applied to our running example,
we can assume that just because we selected the sales order item as caseID type does
not mean additional information on the delivery document items and billing items is
irrelevant. One approach can be to add such information in the event log with the trade-
off being an extremely detrimental impact on data volume. In practice, we rather opt to
introduce additional tables, often one per objectID type (except the one selected as case
ID type). Illustrated in Fig. 10, we connect two additional contextual data sources to the
cases table. In order to establish the link from these object tables to the case table, the
previously generated mapping table (caseID � objectID) can be re-used.

In practice even more advanced data models, such as the one described above do not
support the testing of every hypothesis project stakeholders come up with. Sometimes,
hypothesis-specific “helper” tables are created and linked into the process mining data
model. In such cases, it is advisable to challenge the business value from such modifi-
cations before triggering substantial data model modifications.

A Practitioner’s View on Process Mining 235

5 Best Practices

In this section we take stock on the above sections and distill best practices from our
experience of rolling out process mining “in the large”. Clearly this is a non-exhaustive
list; its intent is to elude on the most relevant and recurring topics.

Data Selection and Extraction. This is the basis for process mining, and if not struc-
tured well, hiccups here can undermine the entire analytical effort. Four best-practices
in this area:

BP1 Explicitly formulate the four analytical angles and confirm it with all stakeholders.
BP2 Find a sweet-spot between data minimization and extraction efficiency.
BP3 Estimate the final size (and time) of extraction.
BP4 Extract data from a QA environment or existing staging platform.

By following (BP1) one ensures common knowledge as to the analytical objec-
tives and avoid getting lost in details. Turning to (BP2), as mentioned in Sect. 4.1, data
extraction technically boils down to some form of select-statement on terabyte-sized
tables. Data minimization criteria (formulated as where-constraints) add constraints to
such a statement, slowing down the extraction. Therefore it is important find the sweet
spot between minimization and efficiency. One way to do so is to follow (BP3) and
carry out a probe extraction with a drastically reduced scope and extrapolate the values
to the full scope range. Finally, because a data extraction might have an impact on the
performance of the system, (BP4) recommends the extraction of data from a QA (test)
environment or staging platform, as opposed to a productive environment. Of course,
for this, the extraction environment must fully cover the scope.

Data Transformation. When transforming data towards an event log, events are discov-
ered according to the business logic and system specific configurations. In doing so, the
precision is essential for the analytical correctness. Five best-practices to emphasize in
this area:

BP5 Modularize event discovery.
BP6 Harmonize timestamp format, currencies and other units.
BP7 Take system customizations into account.
BP8 Do not ignore the business logic and context.
BP9 Meaningful event naming convention

With (BP5) one creates modules to discover the different types of events (e.g. SO
Item created). In doing so, adjustments in those events (e.g. naming convention
or discovery logic) can be done locally without requiring the generation of a whole
event log. With (BP6) one avoids misinterpretation of results and a sound basis for
analysis. Besides those harmonization efforts, ERP systems are highly customized to
a particular business and operational mode. This can be at the level of fields in a table
(e.g. a field capturing a specific company flag for a completed delivery) or the way
attributes add up for an attribute (e.g. what is an automated vs. a manual step). There-
fore, (BP7) recommends to take those customizations into account when transforming

236 R. Accorsi and J. Lebherz

data. One approach is to carefully resuse and validate existing transformation scripts.7

Building on that, different attributes carry aspects on the business logic, e.g. document
types associated to sales orders indicating external or internal sales. In (BP8) we rec-
ommend to take this into account when generating the event log by creating different
events or transaction identifiers. Finally, by (BP9) one facilitates the understanding of
process maps. For example, instead of naming an event SO Item qty chg., use
SO Item qty incr., already indicating how the change impacted the sales order
quantity field. This creates more meaningful logs and a more effective basis for analy-
sis. However, if used exaggeratedly, this leads to an inflation of distinct events, making
any analysis a complex undertaking.

Data Model Engineering. The best-practices regarding the target data model have an
impact on the scalability and ease of analysis. We emphasize the following:

BP10 Add sanity checks.
BP11 Modularize logs according to the analytical scope.
BP12 Split the attributes according to attribute types.
BP13 Consider ancillary analytics, e.g. machine learning, prediction and simulation.

In (BP10) we recommend the use of sanity check tests indicating, for example,
the overall number of cases reconstructed or a summary of fields including NULL or
empty values. This helps in the quality assurance phase, e.g. by matching the number
of expected transactions with the number of cases or by detecting and tracing trans-
formation bugs. By (BP11), one ensures that event logs fit their analytical angle but,
at the same time, separate business concerns. Regardless of modularization, by (BP12)
one separates the characteristics of events and those of transactions. This eliminates
redundant data and is less error-prone during analysis. Finally, process data has been
increasingly used as a subject of more advanced analytics. The data model required for
such analytics differs substantially from a plain event log. In (BP13) we recommend to
take this into account when deciding on the necessary attributes and their aggregation
level. In some situations, it is worth creating a separate table allowing, e.g., regression
or time series analytics.

6 Outlook

During the past ten years, with process mining finally finding its way from academia
into market leading organizations, a lot of progress has been made in both simplify-
ing the approach, including data preparation, for business use, as well as extending
associated functionalities and proving to generate tangible value in a growing number
of industries. With spreading awareness and substantial increases in capital allocation
from venture firms, this development has only accelerated in the more recent past. From
our perspective as practitioners, we expect the following to be some of the most sub-
stantial improvements:

7 Also ready-to-use connectors provided in some process mining technologies offer an “aid” but
not a “replacement” for tailored scripts.

A Practitioner’s View on Process Mining 237

1. Architected for Analytics. With many large-scale tech modernization programs under
way, corporations replace more and more legacy systems with modern architectures.
Most of these solutions are already designed with modularity and an analysis angle
in mind (e.g. with data provisioning APIs), leading to a substantial reduction of
effort for data extraction and transformation.

2. Maturing Connector Landscape. Two factors will contribute to a maturing land-
scape of data extraction and transformation connectors. Firstly, and focused on the
data intake, the growing adoption of process mining across industries and therefore
across a wide variety of (partially) standardized source systems will produce proven,
configurable and scalable connector modules. Corresponding know-how will be
gradually commoditized, easing access to and usage of these modules. Secondly,
and more focused on the data transformation output, vendor agnostic bodies in the
field are working on standardizing event log data formats beyond academia. Once
adopted by enough players in the field, such standardized formats greatly improve
compatibility of approaches across process mining vendors and will eventually even
lead to data source systems offering “native” data outputs conforming to the process
mining data standard.

3. Data Model Advancements. As broached in Sect. 4.3, substantial complexity stems
from the requirement to select a caseID type during data transformation. End users,
however, desire to have the flexibility of switching between such case perspectives
interactively during analysis. With solution vendors reacting to these requirements,
data transformation steps related to linking all events to one single case type will
become redundant. This field of object-centric and ontology-based process min-
ing [6] not only constitutes an active academic field, but the exciting opportunity
for researchers to work very close to tangibly impact businesses across the globe.

Besides the overall maturing industry and the improvements listed above in particu-
lar, we anticipate some of the already prevalent challenges to intensify, while new ones
emerge from macrotrends:

1. Ubiquitous Data. As more and more processes get digitized and data storage capac-
ity is easily and economically scalable, it is no surprise to expect data volumes to
continue to increase significantly. However, with the growing adoption of Internet
of Things (IoT) and usage sensor data in general, an arguably new data category is
added to the mix. Not only can such IoT data volumes exceed transactional data vol-
umes manyfold, they usually come in less structured formats (e.g. simple text files)
and are subject to less scrutiny with regards to data quality (i.e. the occasional out-
lier and malfunction of single sensors is expected). Also, the frequency in which the
sensor state is persisted is normally independent of process transactions, but rather
driven by the sensor’s configuration. Correlating such IoT data to individual process
flows presents a major challenge ahead [16].

2. Simulation. After embracing the end-to-end transparency added with process min-
ing, organizations demand putting this insight to use beyond educational purposes
and the occasional process improvement. The first step – for obvious automation
candidates – was and still is to interface or integrate automation solutions. But as
soon as more sophisticated questions are asked in the context of process mining

238 R. Accorsi and J. Lebherz

based process analytics (e.g. “What if we change A? Would there be another bot-
tleneck?”), the lack of simulation capabilities becomes apparent. In isolation from
process mining, there has been plenty of research [7] and tool support for simula-
tion engines [13]. The challenge will be to seamlessly integrate simulation engines
with process mining engines, without turning the corresponding configuration into
a Customer Experience (CX) nightmare. It is expected that, as part of this conver-
gence, additional requirements towards event log engineering emerge (e.g. statistical
distribution information).

3. Data Exchange Restrictions. With regulations and restrictions around data sensitiv-
ity and data exchange tightening around the world, it becomes increasingly difficult
to manage the compliance angle of holistic and often global analytics initiatives.
This shift also leads to additional precaution whenever data is shared with third
parties and especially when these are within the open domain. It will accordingly
become more and more difficult for academia to work on relevant business scenar-
ios with representative underlying data sets, which in turn results in slower and less
targeted innovation in the field, including event log engineering.

In summary, the discipline of process mining and corresponding event log engineer-
ing is expected to thrive under the increased attention of academia, solution vendors,
professional service firms and financiers. The most substantial impact, however, will
continue to emanate from firms of all sizes adopting process mining to streamline oper-
ations and – at times – turn process excellence into their competitive advantage.

Acknowledgment. Rafael Accorsi would like to thank Nadja Walti, Peter Blank and Wolf-
Dietrich Zabka for their valuable comments, suggestions and proof-reading.

References

1. Accorsi, R., Crampton, J., Huth, M., Rinderle-Ma, S.: Verifiably secure process-aware infor-
mation systems. Dagstuhl Rep. 3(8), 73–86 (2013)

2. Accorsi, R., Damiani, E., van der Aalst, W.: Unleashing operational process mining
(Dagstuhl seminar 13481). Dagstuhl Rep. 3(11), 154–192 (2014)

3. Andrews, R., Emamjome, F., ter Hofstede, A., Reijers, H.: Root-cause analysis of process-
data quality problems. J. Bus. Anal. (2021)

4. Augusto, A., Mendling, J., Vidgof, M., Wurm, B.: The connection between process com-
plexity of event sequences and models discovered by process mining. Inf. Sci. 598, 196–215
(2021)

5. Beheshti, S.-M.-R., et al.: Process Analytics: Concepts and Techniques for Querying
and Analyzing Process Data. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
25037-3

6. Bistarelli, S., Di Noia, T., Mongiello, M., Nocera, F.: Pronto: an ontology driven business
process mining tool. Procedia Comput. Sci. 112, 306–315 (2017). Knowledge-Based and
Intelligent Information & Engineering Systems: Proceedings of the 21st International Con-
ference, KES-20176-8, Marseille, France, September 2017

7. Camargo, M., Dumas, M., González-Rojas, O.: Automated discovery of business process
simulation models from event logs. Decis. Support Syst. 134, 113284 (2020)

8. Davenport, T.H., Spanyi, A.: What process mining is, and why companies should do it. HBR
Digital Article, April 2019

https://doi.org/10.1007/978-3-319-25037-3
https://doi.org/10.1007/978-3-319-25037-3

A Practitioner’s View on Process Mining 239

9. De Weerdt, J., Wynn, M.T.: Foundations of process event data. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham
(2022)

10. Deloitte. Global process mining survey 2021 (2021). https://www2.deloitte.com/de/de/
pages/finance/articles/global-process-mining-survey-2021.html

11. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5

12. Everest Group. Process mining state of the market report 2020, June 2020
13. Hammann, J.E., Markovitch, N.A.: Introduction to arena [simulation software]. In: Winter

Simulation Conference Proceedings, pp. 519–523 (1995)
14. HSPI Process Mining Applications Database. https://www.hspi.it/2020/01/database-delle-

applicazioni-di-process-mining-2020/. Accessed June 2021
15. Zuiver ICT. Process mining use-case. http://www.zuiverict.nl/Media/Default/Cases/Case

GemeenteHengelo(EN).pdf
16. Janiesch, C., et al.: The internet of things meets business process management: a manifesto.

IEEE Syst. Man Cybern. Mag. 6(4), 34–44 (2020)
17. Lu, X.: Using behavioral context in process mining: exploration, preprocessing and analysis

of event data. Ph.D. thesis, Mathematics and Computer Science. Proefschrift (2018)
18. Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-preserving

process mining. Bus. Inf. Syst. Eng. 61, 595–614 (2019)
19. Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare - Eval-

uating and Exploiting Operational Healthcare Processes. SBPM, Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16071-9

20. Müller, G., Accorsi, R.: Why are business processes not secure? In: Fischlin, M., Katzen-
beisser, S. (eds.) Number Theory and Cryptography. LNCS, vol. 8260, pp. 240–254.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42001-6 17

21. PricewaterhouseCoopers. Are your business processes a black box? (2020). https://www.
pwc.at/en/are-your-business-processes-a-black-box.html

22. Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining. In: Lee-
mans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 385–397. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72693-5 29

23. Reinkemeyer, L.: Process Mining in Action. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40172-6

24. Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a
literature review. J. Biomed. Inform. 61, 224–236 (2016)

25. Stocker, T., Accorsi, R., Rother, T.: Computergestützte prozessauditierung mit process min-
ing. HMD - Praxis Wirtschaftsinform. 292 (2013)

26. van der Linden, E.-J.: Successful Process Improvement. Tilia Cordata (2021)
27. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process mining project

methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS,
vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-
3 19

28. Zabka, W.-D., Blank, P., Accorsi, R.: Has the pandemic impacted my workforce’s produc-
tivity? Applying effort mining to identify productivity shifts during COVID-19 lockdown.
Accepted for publication at the Business Process Management Forum (2021)

https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
https://doi.org/10.1007/978-3-642-33143-5
https://www.hspi.it/2020/01/database-delle-applicazioni-di-process-mining-2020/
https://www.hspi.it/2020/01/database-delle-applicazioni-di-process-mining-2020/
http://www.zuiverict.nl/Media/Default/Cases/Case_Gemeente Hengelo (EN).pdf
http://www.zuiverict.nl/Media/Default/Cases/Case_Gemeente Hengelo (EN).pdf
https://doi.org/10.1007/978-3-319-16071-9
https://doi.org/10.1007/978-3-642-42001-6_17
https://www.pwc.at/en/are-your-business-processes-a-black-box.html
https://www.pwc.at/en/are-your-business-processes-a-black-box.html
https://doi.org/10.1007/978-3-030-72693-5_29
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-319-19069-3_19

240 R. Accorsi and J. Lebherz

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Process Enhancement and Monitoring

Foundations of Process Enhancement

Massimiliano de Leoni(B)

Department of Mathematics, University of Padua, Padua, Italy
massimiliano.deleoni@unipd.it

Abstract. Process models are among the milestones for Business Process Man-
agement and Mining, and used to describe a business process or to prescribe
how its instances should be carried out. It follows that they need to fulfill certain
properties to be useful. If they aim to represent how the process is currently being
executed, they need to be precise and recall the behavior observed in reality. If the
goal is to ensure that the process is executed according to laws and regulations,
its model should only allow the behavior that is valid from a domain viewpoint
and provides some guarantee to ensure good performance level. Process enhance-
ment is the type of Process Mining that aims at models that fulfill these proper-
ties, and the literature further splits it into two subfields: process extension and
process improvement. Process extension aims to incorporate the process perspec-
tives on data, decision, resources and time into the model: their inclusion in pro-
cess models enable designers to fine-tune the model specifications, thus obtaining
models with higher levels of precision. Process improvement passes through an
“improved” process model. If the model contains portions of behavior that lead
to unsatisfactory outcomes (high costs, low customer satisfactions, etc.) or that
violate norms and regulations, one would like those portions to be disallowed by
the model. In case some executions are observed in reality and are not allowed
by the model, they should be incorporated into the model if they are observed
to generally yield good performances. This chapter discusses these two types of
process enhancement, and illustrates some basic and some advanced techniques
to tackle it, highlighting the pros and cons, and the underlaying assumptions.

Keywords: Process improvement · Process extension · Decision discovery ·
Role discovery · Bottleneck analyses · Model repair

A process model is one of the main milestones for Business Process Management and
Mining, and may be of two natures. A first nature of process models is descriptive: they
are used by process analysts to engage process stakeholders (e.g., actors, managers,
chief officers) into discussions on how the instances of the process have typically been
executed, or how they should be. A second nature is prescriptive, and that is the case
when the models are used as input for Process-aware Information System to automate
processes and enforce how they must be carried out [10]. In both of scenarios, desirable
models need to fulfill certain properties to be of fruitful use:

1. Models need to be precise and only allow legitimate behavior (high precision). This
is especially relevant for models with a prescriptive nature: one wants to ensure that
the information systems enforce how process instances must be executed, and also
how they must not be.

c© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 243–273, 2022.
https://doi.org/10.1007/978-3-031-08848-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_8

244 M. de Leoni

2. Models should enable the executions that have been observed (high fitness), and are
valid from a business viewpoint.

3. If certain executions are proven to lead to poor performance levels, they should be
disallowed even if observed. Similarly, if certain executions have proven to reach
good performance levels, they should be allowed.

This chapter introduces a number of techniques for process enhancement, which is the
type of process mining that aims to create models that fulfill one or more of the proper-
ties mentioned above. Process enhancement starts with the provision of a process model
for which these properties are relevant. This model can be mined from data, or designed
by hand on the basis of process documentations, and/or stakeholder input. The litera-
ture proposes two types of process enhancement [25]: process extension and process
improvement.

Process extension focuses on the first property (high precision) and aims to incorpo-
rate different perspectives. The model often only defines the control-flow perspective,
which is certainly the process-model backbone, but it is insufficient to precisely encode
the behavior that a model must explicitly allow or disallow. Processes manipulate, read
and produce data (objects), their activities are performed by resources within due dead-
lines, and they take time to be carried out. In literature, these aspects are named perspec-
tives: data, resource and time perspectives. Their inclusion in process models enable
designers to fine-tune the model specifications, thus obtaining models with higher lev-
els of precision.

Process improvement focuses on the other properties, and starts from the belief that,
if a model has a prescriptive nature, process improvement passes through an “improved”
process model. Improvement can be regarded as ensuring process models (i) to better
reflect reality, and/or (ii) to only allow executions that are valid from a domain view-
point and/or are correlated to better performances.

1 Process Extension: Basic Techniques

The extension of process models to incorporate multiple perspectives relies on the pres-
ence of attributes associated with the events. The definition of simplified event log intro-
duced in [1] can be extended accordingly:

Definition 1 (Simplified Multi-Perspective Event Log). Let Uev be the universe of
events. A simplified event log L ⊂ 2U∗

ev is a set of traces, sequences of events, with the
constraint that an event can only belong to one trace: ∀σ′, σ′′ ∈ L. e ∈ σ′, e ∈ σ′′ ⇒
σ′ = σ′′.

Sections 1.2, 1.3 and 1.4 illustrates basic techniques to extend the models to incorporate
the data, resource and time perspective, respectively.

1.1 Model-Aligned Event Logs

Several techniques for process enhancement requires that the event-log traces can be
replayed on the process model (cf. [5]). This requires events to be univocally mapped

Foundations of Process Enhancement 245

a
start Enter

Loan
Application

b
Retrieve
Applicant
Data

c
Compute

Installments

Notify
Rejection

d

end

c1

c2

c3

c4

c5
e

f

Approve
Simple

Approve
Complex

c6

Fig. 1. The Petri net of the working example used in this chapter. The letters inside the transitions
identify the transition names, while the script underneath indicates the transition label, namely the
activity name. The thicker, red-coloured place and arcs identify a decision point, namely places
with outgoing arcs to multiple transitions. (Color figure online)

onto process activities; in case of Petri-net models, events must be mapped onto tran-
sitions. However, multiple process activities (e.g., Petri-net transitions) can have the
same label, and the choice of the activity to which to map each event is not necessarily
local, but it depends on the entire sequence of activities that are executed. Furthermore,
when processes are modelled via Petri nets, the model may include invisible transi-
tions, namely transitions with no associated labels that, by definition, leave no trail in
event logs. To further complicate the matter, log traces might not be compliant with the
process model: certain activities might have been executed when not expected, or not
executed when expected.

The situations above can be tackled by solving the following problem: given a log
trace σL = 〈e1, . . . , em〉 and an accepting Petri net AN = (N,Minit ,Mfinal) where
N = (P, T, F, l), we need to find the model-aligned trace σP = 〈f1, . . . , fn〉 such
that

1. the activity attribute of the events in σP is defined over the domain of transition
names, namely for each 1 ≤ i ≤ n, act(fi) ∈ T ;

2. σP is allowed by AN , namely Minit
〈#act (f1),...,#act (fm)〉→ Mfinal ;

3. an event fi ∈ σP can be mapped to an event ej ∈ σL if the activity attribute of fi

takes on a value equal to the transition of the activity of ej , namely l(#act(fi)) =
#act(ej).

4. σP is the best match to σL, namely that minimizes the number of events in σL and
in σP that cannot be mapped.

The computation of a closest model-aligned trace can be achieved through align-
ments (cf. [5]), as explained through an following example: let us consider the log trace
〈ea, eb, ee〉 where ea, eb, and ee are respectively the events for activities Enter Loan
Application, Retrieve Applicant Data, and Approve Simple the subscript indicates the
event activity (e.g. #act(ea) = a). The model is depicted in Fig. 1, where transitions
τ1 and τ2 are invisible, and the label of each transition is shown under the respective
transition. The alignment between the model and the trace is as follows

246 M. de Leoni

γ =
ea eb

 ee

a b c τ1 τ2 e

The top row and bottom row respectively identify the log component of the alignments
(namely the events), and the process/model component (the Petri-net transitions). To
create a model-aligned trace, we need to synthesize the sequence of events. For each
synchronous move between an event e and a transition t, we create an event e′ such that
#act(e′) = t, and for any other event attribute a, #a(e′) = #a(e). For each model
move for a transition t, we create an event et such that only the activity attribute is
populated #act(e′) = t. These events are then ordered according to the order of the
moves in the alignments. This means that, for the trace in question, the model-aligned
trace is 〈e′

a, e′
b, e

′
c, e

′
τ1 , e

′
τ2 , e

′
e〉where the subscript indicates the activity associated with

the event, i.e.#act(e′
x) = x. Events e′

a, e′
b and e′

e are also populated with the additional
attributes and values that are present for ea, eb, and ee, respectively: for instance, for
each attribute v of ea different from act ,#v (e′

a) = #v (ea).
Hereafter, the event log that originates from the information systems (i.e. with activ-

ity labels) is referred to as event log, while the event log defined over model transitions
is named model-aligned event log. The events of model-aligned traces that stem from
synchronous moves take on the attributes and their values from the mapped events of
the real event log, including resource and timestamp. The events that come from model
moves do not have any attribute but the activity. Note that, strictly speaking, a model-
aligned trace is not a repaired trace as discussed in [5]: the activities of model-aligned
traces are transitions names, where log traces refer to transition labels.

1.2 Data-Perspective Discovery

The data perspective focuses on how data objects are manipulated by the activities dur-
ing the execution of process instances. The study of this perspective is of high relevance
because the process-instance execution routing is affected by the characteristics of the
specific process instance, such as the amount requested for a loan or the profile of the
loan requestor, and also by the outcomes of previous steps in the process, such as the
results of a verification activity. As an example, let us consider golden and silver profiles
of potential loan requestors: a financial institute might decide to treat golden customers
via a different procedure than that for other customers. Since the data perspective affects
how decisions are made in the process, this perspective is also often referred to as deci-
sion perspective.

It is nowadays gaining momentum to represent this perspective in an integrated
model, e.g., extending a BPMN model, or as a set of separate tables, also known as
decision tables. This is also testified by the continous refinement of the Decision Model
and Notation (DMN), a standard by the Object Management Group to describe and
model decision tables [21].

Historically, the discovery of the data perspective is called Decision Mining, a name
that was introduced by the seminal work by Rozinat et al. [23]. However, this work
could not be applied on Petri nets containing invisible transitions or multiple transitions
associated to the same label. This limitation has been lifted in [8] through the use of
alignments and the construction of model-aligned tables.

Foundations of Process Enhancement 247

Table 1. A fragment of a model-complaint event log for the model in Fig. 1. The gray events have
been introduced as result of alignment model move for invisible transitions. Their case identifier
is inherited from the other trace events.

CaseId Activity Loan Loan Age Income Verification Instalment Instalment Resource

Amount Length Amount DivIncome

1 a 400000 30 30 2500 Sue

1 b TRUE Max

1 c 1225 0.49 John

1 τ1

1 τ2

1 f Jennifer

2 a 450000 30 30 3000 Mark

2 c 1380 0.46 Max

2 b FALSE John

2 τ1

2 d Sue

3 a 10000 30 71 2500 Mark

3 c 25 0.01 Max

3 b TRUE John

3 τ1

3 d Mark

4 a 400000 25 30 2700 Mark

4 b TRUE Max

4 c 1458 0.54 John

4 τ1

4 d Sue

5 a 30000 3 30 2500 Sue

5 c 925 0.37 John

5 b TRUE Max

5 τ1

5 τ2

5 e Anne

The simplest representation of the data perspective is to attach decision rules to
decision points. When processes are modelled via Petri nets, decision points are places
with arcs to multiple transitions (see, e.g., the red place with thick border and the out-
going arcs in Fig. 1). The rules explaining the choices are driven by additional process
data, which are generated by activities/transitions preceding the split. In the remainder,
this additional data is abstracted as a set of process attributes, where each attribute can
take on a value within the respective attribute domain. For these Petri nets extended
with data, a guard over these process attributes is attached to each transition, which can
possibly be identically true. A transition is enabled if every incoming place has a token
as for classical Petri nets, but also the associated guard needs to evaluatr true wrt. the
current value assignment to process attributes. As for classical Petri net, a transition is
enabled if every input place has a token; however, in this case, that is only a necessary

248 M. de Leoni

Table 2. The observation instances for the model in Fig. 1 and the event log in Table 1 to discover
the guards at decision point for place c5. The last column indicates the class feature.

Loan Loan Age Income Verification Instalment Instalment Transition

Amount Length Amount DivIncome

400000 30 30 2500 TRUE 1225 0.49 τ2

450000 30 30 3000 FALSE 1380 0.46 d

10000 30 71 2500 TRUE 25 0.01 d

400000 25 30 2700 TRUE 1458 0.54 d

400000 25 30 2700 TRUE 925 0.37 τ2

condition: the guard also needs to evaluate true. Other process-modelling notations have
equivalent constructs to represent this: for instance, BPMN models use XOR-split gate-
ways, depicted as a diamond with a X symbol inside, and conditions are represented on
the arcs going out the gateway.

The basic algorithm for guard discovery assumes that the decisions are mutually
exclusive: when a process instance reaches a decision point, one and exactly one branch
is enabled for any assignment of values to attributes.

In [8,23], the decision-mining problem is transformed into a classification problem:
which transition is expected to fire (namely is enabled) for each valid assignment of
values to process attributes. This problem can be tackled through decision-tree learning:
decision trees have the remarkable advantage to explicitly indicate the classification
criteria, namely which transition is enabled for each assignments of values to attributes.

The intuition can be given through an example related to a process modelled via
the Petri net in Fig. 1. A corresponding model-aligned event log is represented conve-
niently in tabular form in Table 1. Loan lengths are measured in years, attribute Income
is the monthly salary, InstallmentAmount is the amount of each monthly installment,
and InstalmentDivIncome is the ratio between InstallmentAmount and Income. Last,
Verification is a boolean process attribute to which a value is assigned as result of exe-
cuting the activity Retrieve Applicant Data (Petri-net transition b): if the retrieval of
applicant data confirms the information provided by applicants through the first activ-
ity, attribute Verification takes on a false value, and the loan request is going to be
rejected. Let us focus on decision point c5, which is input place of transitions d or
τ2. It follows that d and τ2 are mutually exclusive. We need to train a decision tree
that define the conditions that discriminate when d or τ2 is expected to occur, which
are going to become the guards of d and τ2. Table 2 shows the instances to be used
to train the decision-tree model. The last column holds the class values of the learn-
ing instances, whereas the others columns refer to the independent variables. Since the
model does not contain loops, exactly one token is produced in place c5, for each pro-
cess instance. The first row refers to the case with identifier 1: in this case, the transition
τ2 is observed when the following values were assigned to the process variable through
the execution of given activities (i.e. model transitions): LoanAmount = 400000,
LoanLength = 30, Age = 30, Income = 2500, InstalmentAmount = 1225,
V erification = TRUE and InstalmentDivIncome = 0.49. The second row refers

Foundations of Process Enhancement 249

Verification

InstalmentDivIncome

dAge

d
LoanLength

dτ2

≤ 10 > 10

τ2

(0,60)

(61,70)

(71,+∞)

≤ 0.5
> 0.5

d

FALSE TRUE

Fig. 2. A possible decision tree that is learned from the observation instances in Table 2.

to the second trace (id 2): in this case, d was observed with LoanAmount = 450000,
LoanLength = 30, Age = 30, InstalmentAmount = 1380, Income = 3000,
V erification = FALSE and InstalmentDivIncome = 0.46. In case values
are assigned to process attributes by different transitions, the latest observed value is
considered. Figure 2 shows a possible tree that can be learned from the observation
instances in Table 2. The guards can be extracted from the decision tree, traversing
the paths from the room to leaves. The guard for any transition t is in the form of
expr1 ∨ . . . ∨ exprn where expri refers to the i-th path that leads to a leaf labeled
as t, and is a conjunction of atoms variable operator constant (e.g., age ≤ 60 or
V erification = FALSE) of the nodes and arcs part of the path.

As an example, the guard of transition d (activity Notify Rejection)is an expression
with four subexpression: exprd

1 ∨ . . . ∨ exprd
4 . Sub-expression exprd

1 refers to the path
for the left-most node, which includes the root node V erification and the edge asso-
ciated with label FALSE, lead to expression V erification = FALSE; exprd

2 refers
to the second left-most node with label d:

V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ 61 ≤ Age ≤ 70 ∧ LoanLength > 10

and etc. Considering the four paths in the decision tree, the guard for d is as follows:

V erification = FALSE
∨(V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ 61 ≤ Age ≤ 70 ∧ LoanLength > 10)
∨(V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ Age ≥ 70)
∨(V erification = TRUE ∧ InstalmentDivIncome > 0.5)

That is a disjunction of conjunction of terms related to paths from the root to the leaves
labeled with d. One can similarly obtain the guard of τ2, which is the disjunction of two
expressions:

(V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ Age ≤ 60)
∨(V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ 61 ≤ Age ≤ 70 ∧ LoanLength ≤ 10)

250 M. de Leoni

Missing Values
Let us consider again the model-aligned event log in Fig. 1, and suppose that the event
for transition b in the trace with case identifier 1 comes from a model move. This means
that, in the real event log before computing alignment, an event for b in the first trace
was not observed. In such a case, the fact that transition b assigns a TRUE value to
Verification is lacking. As a consequence, the first decision-tree training instance has a
missing value for attribute Verification. Several techniques exist for the management of
missing values of a given variable f , such as:

1. assigning the most common (if categorical) or the average value (if numerical)
among those observed for f in the other training instances,

2. similarly as above but restricting to the instances with the same class value (i.e. the
same transition in our setting),

3. creating one training instance for each of the n observed values - say value v - and
assigning value v to the corresponding instance, with a weight that is equal to the
number of instance with value v for f divided by the number of instance with some
value for feature f .

Several implementations of decision-tree learning algorithms (e.g., of C4.5 [22]) are
already equipped with the missing-value managements. However, it is important to
think carefully about the meaning of missing values. It might be - as many schemes
implicitly assume - that the value was produced but, for quality issues, was not recorded
in the dataset. However, it could also mean that the transition did not produce that value,
due to, e.g., some concept drift or impossibility to find a suitable value for the specific
instance in question. When this is true, the missing value conveys important informa-
tion, and the learning instance should carry the information that the value was missing
via an additional boolean feature, instead of injecting random values. This additional
feature can increase the discriminative power of the guards, differentiating the situa-
tions in which the information was provided from those in which the information was
missing.

1.3 Organizational Mining

Organizational Mining focuses on the resources, which refer to anyone or anything
involved in performing activities, such as a human process participant, a software sys-
tem (e.g., a server) or an equipment (e.g., a production machine). The organization
perspective, also referred to as resource perspective, aims to model how resources are
grouped, ad how they interact to each other.

Among different goals, organizational mining aims at how resources collaborated
to carry on individual process instances. Typically, the resource collaborations can
be represented as social networks, which are graphs where nodes are the resources
and arcs, direct or indirect, indicate some form of collaboration between pairs of
resources [25,26]. Arcs can be also given weights, which is proportional to the fre-
quency/intensity of the collaborations. One of the most studied social networks in Busi-
ness Process Management relates to the hand-over of work between resources. A work
hand-over between two resources a and b exists in a process instance p, if a has executed

Foundations of Process Enhancement 251

a b c d e f
Anne 1

Jennifer 1

John 0.4 0.6

Mark 0.6 0.2

Max 0.6 0.4

Sue 0.4 0.4

(a)

Role Resources Activities
R1 Anne, Jennifer e, f

R2 John, Max b, c

R3 Mark, Sue a, d

(b)

Fig. 3. An example of application of role discovery for the process referring to the log in Fig. 1.
Table (a) is the resource-activity matrix, where colors are used to define a reasonable grouping of
rows, i.e. resources. When no value is depicted for a cell, it should be intended as zero. Table (b)
details the discovered roles. Note that the role name cannot be automatically derived.

an activity for p, which is directly followed by a second activity that is executed by b.
This implies that a has handed over the progression of the execution of p to b, which,
in turn, can later hand it over to another resource. Among the different goals, organiza-
tional mining aims to discover these social networks, and later to analyze them. Social
network analysis is very interesting in Organizational Mining because it can unveil rel-
evant information about resources. Notably, it can discover cliques of resources that
tend to work together, or critical resources that are less “replaceable”. Less replaceable
resources are characterized by a large degree of incoming and outgoing arcs, and the
removal of the corresponding nodes in the graph may create longer paths between pairs
of resources, or even yield disconnected components.

Space consideration prevents us from further discussing social-network analysis,
and forces us to rather focus on analyzing the event logs to discover roles, groups of
resources that work on the same activities. Clustering techniques are simple techniques
to discover roles within organizations, especially under the assumption that a resource
plays one single role. The starting point is to build a resource-activity matrix, such as
that in Fig. 3(a). Rows refer to different resources and columns to different activities.
The value for the row r and column a indicates the average number of times that r
executes a in a process execution. For instance, Mark executes activity a 0.6 times per
case, on average. Note that, if an activity is executed exactly once per process instance,
the sum of the values of the cells of the corresponding column is one. A sum lower or
higher than one indicates an activity to be optional or be involved in a loop.

In a resource-activity matrix, each row is a different resource and can be regarded as
a vector with as many dimensions as the number of process activities: the value of the
dimension for a given activity is equal to that of the corresponding cell in the matrix.
Rows are thus vectors, points of a cartesian space, that can be clustered, e.g., via well-
known clustering algorithms, such as K-Means or DBScan [19]). The row colors in
Fig. 3(a) illustrates a reasonable clustering for the matrix in question. As an example,
Mark and Sue belong to the same cluster and, hence, play the same role: their role allows
them to perform activities a and d. The same is for John and Max, who can perform b
and c. Anne and Jennifer form the third role that enables them to perform e and f. Note

252 M. de Leoni

that it would be equally reasonable to split the cluster with Anne and Jennifer into two,
although a simpler solution with fewer role is possibly preferable when equivalent.

1.4 Time Perspective

A process-instance execution can takes a considerable amount of time to be carried out.
Depending on the domain, it might even take months or years to conclude: consider,
e.g., a health-care process to follow up cancer diagnoses, or that to give monthly unem-
ployment benefits, or even a process to reintegrate workers who have suffered physical
issues that prevent them from going back to their original employment. It follows that
process activities are not instantaneous as we have so far considered, but they take some
time to be executed. In fact, certain activities require external inputs (e.g., the produc-
tion of documents, the arrival of materials and other goods), and the availability of
necessary machines and suitable human resources. If these requirements are not met
at the moment when the activities are ready to be started, their execution is forcibly
delayed. These delays can have a cascading effect on other activities that follow in the
process.

Within the realm of Process Mining, the time perspective focuses on the timing
of events that carry timestamp information. The time-perspective analysis can notably
be used to discover process bottlenecks, and monitor the service levels: their analysis
enables verifying whether executions are carried on within a reasonable amount of time
(e.g., a complaint is addressed within the same day in which it is filed), or whether the
temporal process constraint are fulfilled (e.g., the second shot of the COVID-19’s Pzifer
vaccine is given within 21 days from the first). The analysis of the perspectives on time
and resource is also partly overlapping: thanks to the time information, process analysts
can assess, for instance, whether resources are fairly, overly, or scantily utilized.

The verification of the satisfaction of time-related constraints is related to confor-
mance checking (see [5]) As an example, Mannhardt and Blinde illustrates an inter-
esting case study to check the conformance of the treatment of patients who suffered
from Sepsis [18]. The conformance checking of time perspective is not covered in
this chapter, which conversely focuses on extending and annotating a process model
to unveil potential time-related issues, especially process’ bottlenecks.

The presence or absence of bottlenecks can be related to (i) waiting time, namely
the difference between the timestamp of the actual start of an activity instance and the
earliest moment in which the instance could have started (cf. above discussion of delays
caused by lack of resources), or (ii) service time, i.e. the duration of an activity-instance
execution.

Several ways exists to analyse the service and waiting times of the activities of a
process model, e.g. modelled via Petri nets. The performances at the different points
of the model can be analyzed through queue mining [24]. For instance, queue min-
ing can be employed to estimate how long a token typically remains unconsumed in a
Petri-net place. This estimation is far from being easy because it requires to consider
several factors: the average length of the token queues in places, the policy of con-
sumptions of tokens (FIFO or according to some priorities), the relationships between
places (e.g., connected to the same transition), etc. Queue mining considers the process
model as a queuing network, whose characteristics are determined after analysing the

Foundations of Process Enhancement 253

information stored in event logs. A queuing network is used to determine the activity
execution policies. When a queue network is created, several off-the-shelf techniques
can be employed for its analysis.

Space limitation forces this chapter to only focus on a simple technique based on the
Petri-net token-replay game: real-log traces are transformed in model-aligned traces that
are replayed on the Petri-net model to collect waiting and service times. The transfor-
mation to model-aligned traces ensures that they are replayable on the model. However,
the firings of Petri-net transitions are atomic by definition, and hence their execution
take no time. This is clearly not realistic, and requires to explicitly model the starting
and completion of activity instances are two separate Petri-net transitions. This explicit
modelling can be simply explained through our working example of the process mod-
elled as in Fig. 1.

Each visible transition is split into the sequence of two transitions that model the
starting and completion of activity instances, yielding the Petri net in Fig. 4(a). For
instance, activity Enter Loan Application is now represented through two transitions,
named a s and a c, which respectively fire when instances of that activity starts or com-
pletes. We aim to play the token game: this means that transition a s fires upon a start
event for activity Enter Loan Application, and a c upon a complete event for the same
activity. This means that, when a token is present in the places named a r, . . . , f r, it
indicates that the activity associated with transitions a s, . . . , f s are being executed,
respectively. Note that there is no need to split invisible transitions: they are necessary
for modelling purposes, and do not represent an actual activity, and hence can be con-
sidered as instantaneous. As mentioned earlier, the real event log need to be translated
into a model-aligned event log that can be directly replayed on the Petri net of the pro-
cess model, and alignment techniques are used for this purpose. In the scenario in which
events refer to either the starting or the completion of the activities, the two transitions
that indicates the starting or completion of any activity x need both to be mapped to
events for x, but the first to events related to the starting of x and the second to events
related to the completion of x. For the model in Fig. 4(a), transition a s is mapped to
events related to the starting of Enter Loan Application, and a c to events related to the
completion of Enter Loan Application.

After computing the alignments with this mapping, it is possible to synthesize the
model-aligned event log in Fig. 4(b). Gray rows refer to the firing of invisible transi-
tions: in that case, the timestamp of the associated events is assigned to be equal to the
earliest moment in which the transition could fired. Consider transition τ1 and the first
trace: τ1 can fire when both transitions b c and c c have fired, b c fires at time 11 and
c c at time 10 for the first trace, and consequently the earliest moment in which τ1 can
fire is at time 11.

Each trace of the model-aligned event log can be replayed on the Petri net. This
allows computing the amount of time in which a token resides in a given place, i.e. the
difference between the timestamp in which the token was consumed and the timestamp
when it was produced. For example, consider the place a r: tokens are produced in that
place when transition a s fires and are consumed when transition a c fires. For trace

254 M. de Leoni

Fig. 4. An example of extending the process model with the time perspective. The left-hand side
picture shows how the process model in Fig. 1 can be annotated with temporal information wrt.
the model-aligned log shown in the right-hand side table. The gray lines in the table are the events
related to invisible transitions.

Foundations of Process Enhancement 255

with case identifier 1, a c and a s respectively fired at time 4 and 1, thus the difference
is 3. The residence of each token in each place can be computed by replaying the model-
aligned event logs: these timestamp differences are shown within the clouds associated
to the different places in Fig. 4(a). The average per place can subsequently be computed,
which is shown next to the respective cloud. One can red color each place with a color
intensity that is proportional to the mean value of time: white is associated to an average
of zero, and the color becomes closer and closer to dark red as the average is closer and
closer to the largest observed value.

Considering place a r again, the average time is 3.4 for the event log in Fig. 4(b).
This indicates that the average duration of instances of activity Enter Loan Application
is 3.4 time units (e.g., hours). Consider place c1: tokens are produced in the place after
the completion of the same activity and consumed when transition b s fires, namely
when activity Retrieve Applicant Data starts. For the first trace, the amount of time a
token is c1 is 3 time units, namely the timestamp of the event for b s, which is seven
for first trace, minus the timestamp of the event for a c, i.e. 4. After collecting the
times for each token in c1 for all traces (see the cloud connected to the place) and
computing the average, one can conclude that the average time between the starting of
activity instances of Retrieve Application Data and the completion of the corresponding
instance of the preceding activity Enter Loan Application.

Dealing with Non-compliant Traces and Missing Timestamps
So far, we have assumed that (i) activity executions leave trails in log through both
start and completion events, and (ii) every trace is compliant with the model. In partic-
ular, assumption (ii)means that the model-aligned traces only include additional events
related to firing of invisible transitions. These assumptions do not always hold in reality:
event logs often only contain the events related to the completions of activity instances,
and some traces are not fully compliant with the model (cf. the Conformance Checking
field discussed in [5]).

Assumption (i) is not met. In this case, one can employ a naı̈ve approach that assumes
that the next activity in the process starts as soon as the previous completes: in this
case, the timestamp of the starting event is the same as the timestamp of the completion
event of the activity that precedes. This is often unrealistic, as pictorially depicted in
Fig. 5. In the timeline, Completion of a indicates the moment in which activity instance
a completes and Real start of a is the actual moment in which a started, which has
left no trail in the event log. Moment Completion of the activity instance preceding a
is when the previous activity concluded. The time difference between Completion of
the activity instance preceding a and Real Start of a corresponds to the waiting time
of a. If this time difference is set to 0, no waiting time is assumed. A better estimation
can be obtained if the event log contains information about the resource perspective:
one can look at the completion event of a given activity instance a and consider the
resource r that performed the instance: the starting timestamp of the activity instance
is equal to the earliest moment after the completion of the activity instance that pre-
cedes a in which r has completed any activity instance and has become available [20].

256 M. de Leoni

Fig. 5. Representation of the scenario when the timestamp of the start event of an activity instance
a is not present in the event log and needs to be estimated. This timestamp is located between
the timestamp when a completes and the earliest timestamp when the resource r that is going to
perform a is available to start a. This time interval is represented through a green area, and the
real start of a, which is unknown, is located within the area. In case the resource information is
missing, we do not even have the earliest timestamp of availability of r: this introduces further
uncertainty, because we can only rely on the timestamp of completion of the activity instance that
precedes a in the trace.

This corresponds to the moment in figure labelled as Availability of the resource that
performed a: this introduces some waiting time, namely the time difference between
Completion of the activity instance preceding a and Availability of the resource that
performed a, thus being more realistic. The latter case is still often unrealistic in prac-
tice [11]: (a) resources work on multiple processes and continuously switch from one to
the other while event logs refer to one process, (b) take breaks during the working days
(e.g., when tired), (c) carry on additional duties that lead no trail in the event logs (e.g.,
when answering the phone). Let us consider Fig. 5 again: the actual start is in a moment
between when the resource has become available and when the activity instance has
been completed. The choice of estimating different start moments leads to estimating
different activity-instance durations. In [14], Fracca et al. proposes a technique to esti-
mate the starting event where different activity-duration configurations are simulated,
and the resulting simulated event log is compared with the real event logs to assess
the similarity with respect to time-related aspects (activity-instance waiting times and
process-instance durations): the more similar are the real and simulated event log is, the
more realistic are the estimation of activity instance durations. The simulation of dif-
ferent activity-duration configurations requires a simulation model, which consists of
a process model that is extended with additional information related to the simulation
aspects, such as the inter-arrival time, the routing probabilities at the XOR gateways,
the roles and the resource-activity allocation, potential work calendar, and more. The
simulation model can be constructed by combining different process mining techniques,
as also discussed in [14].

Assumption (ii) is not met. This can be clearly caused by not meeting the assumption
(i): the starting events are missing, yielding model moves for every Petri-net transition
linked to the starting of activity instances. We consider the situation hereafter in which
assumption (i) is met. In this case, the deviations are related to the activities that have
not been performed in accordance to the process model. In this case, both the starting
and completion events are missing. If the number of non-compliant traces is limited,

Foundations of Process Enhancement 257

these can be excluded from the analysis. Otherwise, the log traces are aligned to cre-
ate model-aligned traces, without adding the timestamps to the events that come from
model moves for visible transitions: in this case, statistics are computed for reliability
by only considering pairs of subsequent events that have a timestamp associated.

2 Process Extension: Advanced Techniques

This section introduces some advanced techniques to overtake the limitations of the
basic algorithms for decision mining and for role discovery: In particular, the basic
algorithm for decision mining introduced in Sect. 1.2 is only able to discover with atoms
of form var-op-const where var is a variable, op is a comparison operator and const is
a constant (e.g. Age ≤ 60 or V erification = FALSE), while the basic algorithm for
role discovery in Sect. 1.3 assumes a resource to be able to play one single role, only.
Sections 2.1 and 2.2 discussed some advanced techniques that aim to overcome these
limitations.

2.1 Data-Perspective Discovery of Guards with Variable Comparison

Let us consider a variant of the event log in Table 1 where InstalmentAmount is
present but attribute InstalmentDivIncome is missing. As mentioned above, the basic
guard-discovery algorithm will be unable to discover guards that include an atom
InstalmentAmount/Income > 0.5, or its negation. The work by de Leoni et al. [7] reports
on an extension to the basic algorithm that can discover atoms of form var-op-var, such
as InstalmentAmount > 0.5 · Income.

The algorithm builds on some oracle that discovers invariants in a set of observa-
tion instances, such as the Daikon system [6]. Analogously to the basic algorithm, the
algorithm is applied for each place p of the Petri Net modelling a process, and consists
of five steps:

1. The basic algorithm in Sect. 1.2 observation instances Ψ for p (e.g., those in Table 2).
2. For each transition ti with outgoing arcs to p, we extract the observation instances

Ψti ⊂ Ψ with class ti (e.g., those in Table 2 with transition\class τ2). In fact,
Ψt1 , . . . , Ψtn is a clustering of Ψ where t1, . . . , tn are the transitions with outgoing
arcs to p.

3. A set Vti of invariants that hold in Ψti is computed (for instance,
InstalmentAmount/Income > 0.5).

4. For each invariant v ∈ Vt1 ∪ . . . ∪ Vtn , one boolean feature fv is added to every
observation instance ψ ∈ Ψ , and it takes on a true or false value depending whether
invariant v holds with the variable-to-value assignment defined in ψ. For instance,
invariant InstalmentAmount/Income > 0.5 holds in the fourth instance in Table 1, and
does not for the others (recall that attribute InstalmentDivIncome is assumed to not
be present).

258 M. de Leoni

Verification

InstalmentAmount/Income > 0.5

dAge

d
LoanLength

dτ2

≤ 10 > 10

τ2

(0,60)

(61,70)

(70,+∞)

FALSE
TRUE

d

FALSE TRUE

Fig. 6. The possible decision tree that is learned from the observation instances in
Table 2 augmented with boolean features related to discovered invariants, such as
InstalmentAmount/Income > 0.5.

5. A decision tree is trained using the set of augmented observation instances.

For the working example, such a decision tree as in Fig. 6 is learnt: the invariant is
now able to discriminate between the instances of d and of τ2.

2.2 Discovery Roles with Overlapping Resources

The basic organization-mining technique discussed in Sect. 1.3 relies on clustering, and
thus assumes each resource to play exactly one role. In many settings, this assumption
does not hold: resources can associated with multiple roles. Burattin et al. [4] lift this
assumption, by clustering activities instead of resources: the clustering puts together the
activities that require to be executed by resources playing the same role.1 The starting
point is a process model and its dependencies of form a → b, i.e. activity b can follow
a but a cannot follow b. Clustering is obtained by removing all the dependencies a → b
for which the handover is larger than a given threshold τw:2

Definition 2 (Resource Handover for a Model Dependency). Let a → b be the
dependency between two activities a and b. Let L be an event log and Ra→b =
σ∈L 〈ei,ej〉∈σ.#act (ei)=a∧#act (ej)=b (#res(ei),#res(ej)) be the multiset of pairs of
resources in L where the first resource executes a and is immediately followed by the
second resource executing b. Let Ra

a→b and Rb
a→b be the projection over the first and

1 The terminology and formalization used hereafter slightly different those in [4], to harmonize
with the rest of the chapter.

2 Given two multisets X and Y , the interection X ∩ Y returns a multiset that contains every
element z present in X and Y with the lowest cardinality for z between that of X and of Y .
Symbol � indicates the union of multisets: the cardinality of each element in the union of two
multisets X and Y is equal to the sum of the cardinalities of the element in X and in Y . Given
a sequence σ, a second sequence σ′ ∈ σ if σ′ is a sub-sequence of σ.

Foundations of Process Enhancement 259

second component ofRa
a→b, respectively. Let R=

a→b be the pairs with the same resource
value on both components. The resource handover for dependency a → b for L is
defined as follows:

wab(L) = 1 − |Ra
a→b ∩ Rb

a→b| + |R=
a→b|

|Ra
a→b| + |Rb

a→b|

The definition states that wab(L) is closer and closer to zero if it is more and more
frequent that two activities a and b are performed by the same resources. If activities
belong to the same cluster, the resources that perform them can play the same role.

As an example, let us consider the dependency a → c for the model in Fig. 1
and the log in Table 1. It follows Ra→c = [(Mark,Max)2, (Sue,Anne)1] where
the superscript indicates the cardinality; hence, Ra

a→c = [Mark2, Sue1] and Rc
a→c =

[Max2, Anne1]. Therefore, the resource handover for the dependency is wac(L) = 1.
Value 1 is obtained when the set of resources are totally disjoint, as the case is for a
and c: the dependency is hence removed, making a and c belong to different clusters.
Repeating the reasoning on dependency a →, we obtain wab = 1, thus causing a and b
to belong to different clusters.

Ultimately, this means that activity a is a cluster with only itself. However, Fig. 3(b)
shows that activities a and d should belong to the same cluster, so as to add the per-
forming resources to the same role. However, this cannot happen if we only look at the
dependencies because there is no dependency a → d, or vice versa. Therefore, after
partitioning the activities, some clusters can be merged. This occurs if the so-called
merging degree is larger than a given threshold τρ:

Definition 3 (Merging Degree). Let A1 = {a1,1, . . . , a1,n} and A2 =
{a2,1, . . . , a2,n} be two activity clusters. Let L be an event log. For any set A of
activities, let us denote the multiset of resource executing activities in A with RA =
σ∈L e∈σ:#act (e)∈A #res(ei). The merging degree of A1 and A2 is defined as:

ρA1,A2(L) = 2
|RA1 ∩ RA2 |

|RA1 | + |RA2 |
Similarly to Definition 2, this measures the amount of shared resources between those
that execute two setsA1 andA2 of activities. If ρA1,A2(L) > τρ,A1 andA2 are merged.

In conclusion, the algorithm to discover roles where resources belong to multiple is
as follows:

1. Select the resource-handover threshold τw and the merging threshold τρ.
2. For each model dependency x → y, compute the handover wxy .
3. Remove every dependency x → y, such as wxy < τw.
4. Cluster the activities according to the retained dependencies.
5. Merge two activity clusters A1 and A2, if the merging degree ρA1,A2 > τρ. Note

this step can be applied recursively to merged clusters until no further merging.
6. For each final cluster A, a role is created that contains every resource that has per-

formed an instance of any activity in A. A further threshold can be defined to discard
resources that seldom perform activities in A.

260 M. de Leoni

It is worthwhile reflecting that the actual relevant values for the resource-handover
threshold τw are limited to the set of handover values wxy computed for each depen-
dency x → y. Given that the number of dependencies is finite and usually small, it
is possible to extensively apply the role discovery setting τw iteratively to every value
wxy where x → y. This enables process analysts to evaluate the different configuration
and determine the most realistic role set, using business knowledge. Also, once a value
is set for τw and the clusters are created, one can similarly reason for τρ: the number
of values to test is finite, i.e. the values ρA′,A′′(L) for each pairs (A′, A′′) of clusters at
step 4.

3 Process Improvement

Process analysts and certain stakeholders (e.g., CEOs) may oftentimes have partial or
helicopter-like view on the organizations in which such process are executed. As a con-
sequence, the process models that they have in mind (also known as “to-be” models)
may not summarize how processes are really executed by resources. In these cases, such
“to-be” models are of limited use. Improvement can be regarded as altering the model
so that it reflects reality (i.e., improvement on fitness) while ensuring the other qual-
ity criteria remain within a certain reasonable range (i.e., precision, generalization and
simplicity). The result is an “as-is” model that show how the process is really executed.
Section 3.1 details how models can be improved on fitness.

However, if models are used to prescribe how processes ought to be executed, they
should only represent the behavior with which the organization is satisfied. If the model
contains portions of behavior that lead to unsatisfactory outcomes (high costs, low cus-
tomer satisfactions, etc.) or that violate norms and regulations, one would like those
portions to be disallowed by the model. Section 3.2 details how models can be improved
to ensure no regulation violations and to incorporate behavior that has proven to yield
good performance levels.

The classical problem of process discovery discussed in [2,3] and that of process
improvement share some commonalities in that they both aim to come up with “as-
is” models. The difference lays on the fact that the problem of process discovery is
largely unsupervised (little or no knowledge is fed in), while process improvement is
supervised: an original model is provided, which constitutes the initial “backbone” that
is later altered to obtain a “as-is” model. It follows naturally that process improvement
is generally able to produce better models because the original model encodes behavior
that is deemed appropriate from a business viewpoint. This reasoning is especially valid
when the original model is hand-designed by or in concert with process owners.

The remainder of this section will use the same working example that was used
in Sects. 1 and 2, namely the process modelled in Fig. 1. However, hereafter we will
differently assume that the activity names in the real event log coincides with the tran-
sition names a, . . . , f , to keep the discussion simple. Also, since we discuss techniques
for process improvement that only consider the control flow, traces will be considered
as sequences of activities, which coincide with transition names for the considerations
above (i.e., a simple formulation)

Foundations of Process Enhancement 261

3.1 Model Repair to Reflect Reality

The problem of repairing a process model M to reflect the reality recorded in a log L
can be formulated as finding a process model M ′ that is able to replay each trace in L
and is the closest possible to M (i.e. with the minimum number of changes). Note that,
if M can replay L, M ′ = M . This section focuses on the case in which M and M ′ are
accepting Petri nets, and the goal is to repair models wrt. the control-flow perspective,
thereby ignoring the other perspectives. This formulation suggests that model repair
primarily aims at perfect fitness, generating a set of models with optimal fitness. Within
this set, the final choice refers to any model that best balances simplicity, precision and
generalization (cf. the conformance-checking problem discussed in [5]).

The assumption here is that the repaired model must be able to replay every trace
in event log L. However, event logs may record executions that are outliers or refer to
process instances that were still running at the moment of the extraction of the event log.
Those traces should not be allowed by the repaired model M ′. Hereafter, we however
assume that every trace that should not be replayed by M ′ is already filtered out from
L before applying the model-repair algorithm on L.

This section reports on the repair technique discussed in [13], whose basic intuition
can be given via the following example. Let us consider again the model in Fig. 1 and
the following event log L = [〈a, g, w, b, c, d〉, 〈a,w, g, b, c, e〉] where g and w are the
shortcut names of two new activities: e.g. fix application and add witnesses respectively.
These two activities are not part of the model, and thus cannot be replayed on the model.
It follows that the model needs to be executed to add some transitions labelled g and w
to make the model compliant with L. The model-repair algorithm needs to determine
the point in which the two transitions should be included, namely which places are in
the presets and postsets of these transitions. The technique discussed in [13] aims to
address this question by aligning the original model M and each of the traces in L.
Optimal alignments for the traces in L wrt. the model in Fig. 1 are:

γ1 =
a g w b c
 d
a

 b c τ1 d

[c1, c2] [c3, c2] [c3, c4] [c5] [end]

γ2 =
a w g b c

 e
a

 b c τ1 τ2 e

[c1, c2] [c3, c2] [c3, c4] [c5] [c6] [end]

Here, the third alignment rows indicate the marking of the Petri net after each syn-
chronous or model move. As usual, the model moves for τ1 and τ2 are not considered
deviations, and hence do not need to be taken into account when repairing the model.
In both of alignments, the actual deviations consist in a sequence of two log moves for
activities g and w, namely related to log sub-traces 〈g, w〉 and 〈w, g〉. These sequences
of two log moves (and the corresponding sub-traces) both occurred when the Petri-net
model was at marking [c1, c2]. The model needs to be repaired so that the log-move
sequences would be replaced in the respective alignments by sequences of synchronous
moves.

262 M. de Leoni

Fig. 7. The model in Fig. 1 repaired by adding the parts in red and green to allow for executions
〈a, g, w, b, c, d〉 and 〈a, w, g, b, c, e〉.

The two sub-traces 〈g, w〉 and 〈w, g〉 can in fact be regarded as an event log, which
can be given as input to some process-discovery techniques to mine a model. If we
employed the Inductive Miner, the model would be similar to the Petri net marked
through a red border in Fig. 7: transitions w and g are modelled in a parallelism. Mark-
ings [p0] and [p6] are respectively the initial and final marking. Since 〈g, w〉 and 〈w, g〉
were observed at marking [c1, c2], marking [p0] needs to be reachable from [c1, c2]
without firing any transition: this is modelled via the invisible transition τ5. Further-
more, when reaching marking p6, the execution should be able to reach back marking
[c1, c2], motivating the introduction of invisible transition τ6.

The example above helps introduce the algorithm to repair an accepting Petri net
AN with respect to a log L:

1. The traces in L are aligned, thus discovering sequences of log moves.
2. For each maximal sequence γ of log moves (e.g., the sequence of log moves for g

and w in the above example), we determine the marking mγ of AN when γ was
observed (e.g., [c1, c2] in the above example), and we synthesize the sequence σγ of
activities involved in γ (e.g., 〈g, w, 〉). The pair (mγ , σγ) is added to a multiset P of
pairs that consist of markings, and sequences of events observed in the log but not
allowed by AN at those markings.

3. The pairs P discovered at previous point are grouped by marking so as to obtain
a set PL of pairs where each pair consists of (i) a markings m and a log L =
((m′,σ)∈P : m′=m) σ that contains the sequences of events observed at m.

4. For each (m,Lm) ∈ PL, an accepting Petri net AN is discovered using Lm as
input event log. Petri net AN is merged with AN at marking m as discussed in the
example above (cf. the green part in Fig. 7).

Foundations of Process Enhancement 263

The algorithm above only considers the log moves, which are linked to sequences of
activities that need to be allowed by the repaired model. Of course, the alignment may
also point out sequences of model moves, namely sequences of activities that were
expected in an observed process instance but not observed. The repaired model should
make these expected, but unobserved sequences as optional. As an example, let us con-
sider the model in Fig. 7, which has already been repaired wrt. the sequences of log
moves in the alignments. Let us suppose the event log to contain traces related to appli-
cations that are desk-rejected because of their clear incorrectness: these correspond to
traces consisting of two events 〈a, d〉. The corresponding alignment would then be as
follows:

γ1 =
a

 d
a b c τ1 d

[c1, c2] [c3, c2] [c3, c4] [c5] [end]

It contains a sequence of three model moves. The repaired model should be such that
those three model moves are no more necessary. This can be easily tackled, and one can
insert an invisible transition that consumes one token in c1 and one in c2, i.e. the places
containing tokens before the first model move (i.e., before b), and produces a token in
c5, the place containing one token after the last model move (i.e. after τ1).

Advanced Repair for Higher Precision and Simplicity
The repairing algorithm discussed above is largely focusing on fitness, thereby over-
looking the other dimensions. In fact, the procedure above can have a negative influence
on precision and simplicity, because it may allow additional behavior, and increase the
size of the model.

Higher model precision can be obtained by removing transitions that seldom
appear. In a nutshell, the event-log traces are aligned with the model. For each transition
t in the model, we count the number of occurrence of synchronous or model move for t
in all the alignments. If this is smaller than a user-defined threshold, t is removed, along
with every arc that goes in or comes out from t. The procedure can cause some places
to have no more incoming or outgoing arcs: these places are removed, as well.

Model simplification can be achieved as an a-posteriori step, e.g., using the tech-
nique proposed by Fahland et al. [12], which aims to simply the model, while pre-
serving the same behavior and well balancing generalization and precision [12]. How-
ever, simplification can partly be achieved during the repair, e.g. in case of structured
loops [13]. Let us consider the model in Fig. 1 and an event log consisting of two traces
σ1 = 〈a, b, c, r, b, c, d〉 and σ2 = 〈a, b, c, r, c, b, e〉 where r is the shortcut for a new
activity Ask for Additional Documents to, e.g., enable a more thorough assessment. The
alignments of the two traces are as follows:

264 M. de Leoni

Fig. 8. Repair of the model in Fig. 1 to allow for 〈a, b, c, r, b, c, d〉 and 〈a, b, c, r, c, b, e〉, using
the basic model-repair technique.

γ1 =
a b c r c b
 d
a b c

 τ1 d

[c1, c2] [c3, c2] [c3, c4] [c5] [end]

γ2 =
a b c r c b

 e
a b c

 τ1 τ2 e

[c1, c2] [c3, c2] [c3, c4] [c5] [c6] [end]

Using the repair technique discussed so far, we would obtain the model in Fig. 8, where
the newly included part is shown in green. The model has multiple transitions of the
same label (see b and c), which would be actually unnecessary if the technique could
discover that the green part aims to model a structured loops of repeating b and c.

The basic repair algorithm can be extended to implement such structured loops as in
the example above. We give an intuition on how the algorithm is extended via the above
example: let us take σ1 = 〈a, b, c, r, b, c, d〉), with the alignment γ1 shown at page 22.
The marking before the first log move is [c3, c4], and the sequence of events that are
associated with the maximal sequence of log moves is σγ1 = 〈r, c, b〉.

We search in the model to be repaired, namely the model in Fig. 1, for the smallest
connected subnet that (i) ends with places c3 and c4, namely the places with a token
at the marking before the first log move, and (ii) contains each transition t in σγ1 =
〈r, c, b〉, excluding r, which is not in the model to be repaired. This subnet corresponds
to the gray area in Fig. 9.The trace fragment σγ1 is then projected on this subnet: the
events related to transition of the fragment are the only retained, yielding a subtrace
σ1 = 〈c, b〉. We create an accepting Petri net AN from the fragment, using the marking

Foundations of Process Enhancement 265

Fig. 9. Repair of the model in Fig. 1 to allow for 〈a, b, c, r, b, c, d〉 and 〈a, b, c, r, c, b, e〉, using
the advanced model-repair algorithm that increases simplicity (cf. result of the basic algorithm in
Fig. 8).

[c3, c4] before the first log move as final marking, and the marking with one token in
each place with no incoming arcs as initial marking. Since σ1 is replayable on AN , the
transition τ3 can be introduced, which constructs a structured loop where transitions b
and c can be repeated. Note that the algorithm above is applied on single log sequences
of individual traces, and transition r in Fig. 9 has not been introduced yet. The algorithm
needs to be iteratively applied to each sequence of events that come from the projection
of the log component of each alignment.

In our example, after repairing the model by adding transition τ3, the algorithm is
applied on σ2 = 〈a, b, c, r, c, b, e〉, but yields no changes. Indeed, after the first repair,
the alignment of the model in Fig. 9 with σ2 is now as follows:

γ2 =
a b c r
 c b

 e
a b c
 τ3 c b τ1 τ2 e

[c1, c2] [c3, c2] [c3, c4] [c1, c2] [c3, c2] [c3, c4] [c5] [c6] [end]

Recall that transition r is not yet part of the model. This will be added as final
step, which consists in reapplying the basic repair algorithm on the same traces
σ1 = 〈a, b, c, r, b, c, d〉 and σ2 = 〈a, b, c, r, c, b, e〉 and on the model in which invis-
ible transition τ3 is included.

This section has focused on repairing the model to reflect the reality observed in
the event log. However, repairing the model can also be regarded as to ensure that
the model is sound. In the domain of process model, model soundness implies several
properties of which the most important is the absence of deadlocks or livelocks that
prevent executions from being completed. Interesting approaches that focus on model
repair for soundness are provided by Gambini et al. [15] and by Lohmann et al. [16,17],
which are not discussed here due to space limitations.

266 M. de Leoni

Fig. 10. The basic idea of KPI-driven Model Improvement: the observed behavior (i.e., in the
event log) that is satisfactory and compliant with rules should be incorporated in the model,
while the observed behavior that is not satisfactory or not compliant, should be not incorporated
or disallowed in the model.

3.2 KPI-Driven Model Improvement

If the model is used to prescribe how the corresponding process should be carried on,
one does not want to incorporate the whole behavior observed in the event log, but only
that portion that has shown to usually lead to satisfactory values of a certain Key Per-
formance Indicator (KPI) of interest. Furthermore, behavior can only be incorporated
if it does not violate the protocols, regulations, and norms. The definition KPI of inter-
est varies depending on the domain, needs to be customized, and may be numerical
or defined over an enumeration of values, including boolean. Examples are execution
costs, customer satisfaction, execution time, or whether or not the corresponding loan
was eventually approved. Similarly, one wants to disallow the behavior allowed by the
model that, unfortunately, typically yield unsatisfactory KPI values. Figure 10 graphi-
cally illustrates the idea. The rectangle shows the amount of behavior allowed by the
model, while the pie shows the amount observed in the event log. The green pie slide
is the portion of observed behavior that is associated with unsatisfactory KPI values or
with violations of norms or protocols: the part in light green that intersects the mod-
elled behavior should be disallowed from the model after repair. The red and the orange
pie portions show the portion with satisfactory KPI values: the part in dark red is not
allowed by the model but that should be incorporated because of being associated with
executions characterized by satisfactory KPI values.

The remainder of this section focuses on a methodology to extend the model to
allow the portion in dark red, which has been introduced by Dees et al. [9]. The starting
point is an existing process model, here represented as an accepting Petri net, an event
log, and the definition of a Key Performance Indicator (KPI). A KPI is a pair consisting
of (i) a function that, given a trace, returns the KPI value, and (ii) the set of satisfactory
KPI values:

Foundations of Process Enhancement 267

Fig. 11. The main steps of the methodology for KPI-driven Model Improvement (adapter
from [9])

Definition 4 (Key Performance Indicator). Let L be a simplified multi-perspective
event log. Let V be the set of possible values for a key performance indicator. A key
performance indicator is a pair (κ,K) consisting of a function κ : L → V that assigns
a KPI value κ(σ) to each trace σ and of a set K ⊂ V that contains the KPI values that
are satisfactory from a business viewpoint.

Typically, the function κ in a KPI definition depends on the attributes present in the
event log. However, this section remains general on how the KPI values of process
executions (i.e., traces) are computed.

Partially Model-Aligned Traces
The technique described hereafter also relies on the concept of model-aligned event
logs that has been introduced in Sect. 1.1. However, we extend the concept to allow for
traces that are partially model-aligned. It is indeed possible to ignore individual moves:
ignoring a model move means that the corresponding event is not added to the trace,
and ignoring a log move means that the corresponding event is not removed. To clarify,
let us consider a trace 〈a, b, b, d〉 and the model in Fig. 1. The alignment is as follows:

γ =
a b b

 d
a b
 c τ1 d

A full model-alignment trace is 〈a, b, c, τ1, d〉. Ignoring log moves for b would gener-
ate 〈a, b, b, c, τ1, d〉, namely the new alignment would still generate the log move for b;
ignoring model moves for c would generate 〈a, b, τ1, d〉, i.e. the model move for c is still
present. It is possible to ignore multiple moves at the same time: in our example, repair-
ing neither the model move for c nor the log move for b would produce 〈a, b, b, τ1, d〉.
Note that, hereafter, we always to ignore all model moves for invisible transitions when
model-aligning a trace, and we consider to fully model-align a trace even when we
ignore model moves for invisible transitions.

The Methodology in a Nutshell
The methodology takes an event log and the original process model as input and returns
an improved process model. It is composed by three main steps (cf. Fig. 11):

268 M. de Leoni

Step 1. Deviation Analysis. Deviations are detected and a set of rules is discovered that
correlate deviations to a selected KPI. Rules are mutually exclusive, which enables to
split the event-log traces into groups of traces, such that a trace belongs to at most one
cluster (in fact, outlier traces are filtered out).

Step 2. Align and Merge Log Clusters. Traces in the different sublogs are partially
model-aligned to only keep the deviations in the original trace that have a positive
impact on the value of the KPI. All sublogs are then merged to obtain a single par-
tially aligned-model event log.

Step 3. Repair Model. Finally the partially aligned-model event log is used as input
to repair the model: the process model is modified in such a way that it can replay all
the behavior of the partially aligned-model event log. In the partially aligned-model
event log we have repaired all deviations corresponding to behavior that should not be
incorporated in the model. In this way the repair-model technique will only modify the
model to make the desired deviating behavior possible.

The remainder will elaborate on the sub-sets within steps 1 and 2, using the same
case study as in Fig. 1. Step 3 does not require further details since it consists in applying
any technique for model repair to reflect reality, such as the technique by Fahland et
al. [13] discussed in Sect. 3.1.

Step 1. Deviation Analysis
The deviation-analysis step takes an event log L, an accepting Petri net AN , and a KPI
definition (κ,K). The result is a decision tree that allows splitting L in so many sub-
logs as the tree leaves. Each sub-log is associated with a different KPI value. Note that
certain traces are considered outliers and filtered out, namely the union of the sub-logs
does not necessarily coincide with L. To achieve this, the following sub-steps can be
identified:

Step 1.1: Conformance Checking. The first step is checking conformance of the event
log and the process model. This is done to determine all deviations that are observed
between the log and the model. The result of conformance checking is an alignment for
each log trace.

Example: let us consider the model in Fig. 1 and three non-compliant traces: σ1 =
〈a, b, c, w1, f〉, σ2 = 〈a, b, c, w2, f〉 and σ3 = 〈a, b, c, w3, f〉 where w1, w2 and w3
is a shortcut for the activities to ask for one, two or three witnesses, respectively. The
alignments are of the following form where wX respectively stands for w1, w2 and w3:

γ2 =
a b c wX � � f

a b c � τ1 τ2 f

The KPI is here boolean: true and false respectively indicate whether the approval
process has finally led to a loan that is eventually repaid in full or only in part. The latter
case is undesired because it requires the involvement of a credit-collection agency. For
the three executions in the example, σ1 refers to a loan paid back in full whereas σ2 and
σ3 to loans paid back in part.

Foundations of Process Enhancement 269

Step 1.2: Moves’ Correlation to KPI Values. The number of model moves and log
moves of activities is correlated with the chosen KPI. To model that the improved model
should comply rules and regulations, the concepts of disallowed activities and manda-
tory activities has been introduced. The set GD of disallowed activities include those
that should never become part of the process model, whereas the set GM of mandatory
activities are those that cannot become optional or be removed from the model. In this
step, we build a set of so-called observation instances, which are used to train a classifi-
cation tree. Let T and l be the set of transitions and the labelling function of the labelled
Petri net of AN . Let A be the activities of N , i.e. the Petri-net labels: A = ∪t∈T l(t) .
To keep it simple, we assume without losing generality that the log activities coincide
with A, too. We build one observation instance for each trace σ ∈ L with the following
features:

– The number of model moves in the optimal alignment of σ for each allowed activity
a ∈ A \ GD.

– The number of log moves in the optimal alignment of σ for each non-mandatory
activity a ∈ A \ GM .

– The KPI value for σ, namely κ(σ).

From the set of observation instance, we learn a decision tree, using the KPI value as
target feature, and the number of log and model moves as independent features. If the
domain of the KPI values is finite (e.g., satisfactory vs unsatisfactory), a classification
tree is used; otherwise, we employ a regression tree.

Example (cont.): log moves for w2 and w3 are correlated with full repay, where log
moves for w1 are correlated with part repay. However, let us assume w3 be within the
set of disallowed activities (e.g., three witnesses require too much additional work).
Thus, log moves for w3 are not allowed as independent feature. The result could be
such a decision tree as in Fig. 12: when there are log moves for w2, the KPI is fulfilled:
the loan is eventually repaid in full.

Step 1.3: Splitting of the Event Log into Groups and Outlier Filtering. The classification
tree can be seen as a clustering of the traces of an event log. Each leaf is a different
cluster and the path from the root to the leaf provides a rule that characterizes the traces
that belong to a certain group. For reliability, the wrongly-classified traces are removed
from the groups, namely the traces classified to have KPI values that differ from the
actual values. The wrongly-classified traces might potentially affect the repair-model
phase, and allow behavior in the model that would not be linked to actual, satisfactory
KPI values.

Example (cont.): The trace cluster associated with leaf Part Repay (left leaf) is L1 =
[〈a, b, c, w1, f〉], whereas the cluster for leaf Full Repay isL2 = [〈a, b, c, w2, f〉]. Note
that trace σ3 = 〈a, b, c, w1, f〉 would also be in L2, but would be wrongly classified
and consequently filtered out. In fact, σ3 is associated with a loan that is repaid in full
but the decision tree in Fig. 12 would classify it as partly repaid: it does not indeed
contain log moves for w2.

270 M. de Leoni

Step 2. Model-Align and Merge Log Clusters
Step 1 concluded with splitting L in n sublogs and filtering out those traces that are
wrongly classified. Let {L1, . . . , Ln} be the sublogs obtained via splitting. Each Li

refers to a different decision-tree leaf vi, associated with a KPI value C(vi).

Step 2.1: Conformance Checking of the Sublogs. Conformance Checking is done with
the original process model and each log cluster. Note that Step 2.1 is a conceptual step:
in practice, one does not need to recompute the alignments for the cluster logs as one
can simply reuse the alignments obtained as result of Step 1.1.

Step 2.2: Model-Align of the Sublogs. This step is repeated for each cluster Li, associ-
ated with a leaf vi. If Li is associated with an unsatisfactory KPI value (i.e. C(vi) �∈ K),
every deviation is repaired. Note that, even if the traces are fully model-aligned, they
are kept in the log that is used for repairing the model at step 3. Those traces provide
support to not remove behavior that is not observed: see discussion on achieving higher
model precision in subsection Advanced Repair for Higher Precision and Simplicity
within Sect. 3.1.

If Li is associated with a satisfactory KPI value, every deviation is repaired, except
those in the conditions in the path from the decision-tree root to the leaf vi.

Example (cont.): Trace σ1 is model-aligned in full because related to an unsatisfactory
KPI value, yielding a partial model-aligned trace σr

1 = 〈a, b, c, f〉. Trace σ2 is related
to satisfactory KPI values (see leaf Full Repay in the decision tree in Fig. 12), and
associated to a tree path that indicates that the number of log moves for w2 is larger

Log move for w2

Full RepayPart Repay

= 0 > 0

Fig. 12. A decision tree that correlates alignment moves to KPI values.

Fig. 13. The model repaired to increase the changes for loan to be repaid in full (the KPI). The
change consists in introducing the activity Ask for two witnesses, which are shown to be beneficial
for a better risk assessment.

Foundations of Process Enhancement 271

than zero. This means that the log move for w2 is ignored when model-aligning σ2:
thus, the partial model-aligned trace σr

2 coincides with the original trace σ2.

Step 2.3: Merge the Sublogs. We merge all model-aligned sublogs into a single event
log. This is a requirement to apply the next step, namely repairing the process model.

Example (cont.): This step generates the event log L = [〈a, b, c, f〉, 〈a, b, c, w2, f〉],
which is used for model repair.

When the log is used with a model-repair technique (e.g., that in Sect. 3.1), the model
in Fig. 2 is repaired as shown in Fig. 13: the transition w2 is introduced.

Acknowledgement. Some of the ideas and techniques reported in this chapter is the result of
author’s collaborations with various researchers. While it is not possible to name them all, the
author would like to give a special mention to Wil van der Aalst, Marcus Dees, Marlon Dumas,
Felix Mannhardt, and Hajo Reijers (in strict alphabetical order).

References

1. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham
(2022)

2. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst, W.M.P., Car-
mona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham
(2022)

3. Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques. In: van der
Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy.
Springer, Cham (2022)

4. Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery of
roles. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM),
pp. 103–110 (2013)

5. Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations, milestones
and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook.
LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

6. Ernst, M.D., et al.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1), 35–45 (2007). Special issue on Experimental Software and Toolkits

7. de Leoni, M., Dumas, M., Garcı́a-Bañuelos, L.: Discovering branching conditions from busi-
ness process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol.
7793, pp. 114–129. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-
1 9

8. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering decisions in
processes using alignments. In: SAC 2013, pp. 1454–1461. ACM (2013)

9. Dees, M., de Leoni, M., Mannhardt, F.: Enhancing process models to improve business per-
formance: a methodology and case studies. In: Panetto, H., et al. (eds.) OTM 2017. LNCS,
vol. 10573, pp. 232–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-
7 15

10. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer (2018). https://doi.org/10.1007/978-3-662-56509-4

https://doi.org/10.1007/978-3-642-37057-1_9
https://doi.org/10.1007/978-3-642-37057-1_9
https://doi.org/10.1007/978-3-319-69462-7_15
https://doi.org/10.1007/978-3-319-69462-7_15
https://doi.org/10.1007/978-3-662-56509-4

272 M. de Leoni

11. Estrada-Torres, B., Camargo, M., Dumas, M., Garcı́a-Bañuelos, L., Mahdy, I., Yerokhin,
M.: Discovering business process simulation models in the presence of multitasking and
availability constraints. Data Knowl. Eng. 134, 101897 (2021)

12. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled
manner. Inf. Syst. 38(4), 585–605 (2013)

13. Fahland, D., van der Aalst, W.M.P.: Model repair—aligning process models to reality. Inf.
Syst. 47, 220–243 (2015)

14. Fracca, C., de Leoni, M., Asnicar, F., Turco, A.: Estimating activity start timestamps in the
presence of waiting times via process simulation. In: Proceedings of the 34th International
Conference on Advanced Information Systems Engineering (CAiSE 2022), LNCS. Springer
(2022)

15. Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error correction
of business process models. In: Proceedings of the 9th International Conference on Business
Process Management, BPM 2011, pp. 148–165, Springer, Heidelberg (2011)

16. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-based
graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol.
5240, pp. 132–147. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-
7 12

17. Lohmann, N., Fahland, D.: Where did i go wrong? In: Sadiq, S., Soffer, P., Völzer, H. (eds.)
BPM 2014. LNCS, vol. 8659, pp. 283–300. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10172-9 18

18. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process
mining. In: RADAR+EMISA 2017, volume 1859 of CEUR Workshop Proceedings, pp. 72–
80. CEUR-WS.org (2017)

19. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
20. Nakatumba, J.: Resource-aware business process management: Analysis and Support. PhD

thesis, Technische Universiteit Eindhoven (2013)
21. Object Management Group (OMG): Decision model and notation (DMN) v1.1 (2016)
22. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
23. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L.,

Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006).
https://doi.org/10.1007/11841760 33

24. Senderovich, A.: Queue mining. In: Sakr, S., Zomaya, A.Y. (eds.) Encyclopedia of Big Data
Technologies. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77525-8

25. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd Ed. Springer (2016).
https://doi.org/10.1007/978-3-662-49851-4

26. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs.
Comput. Supp. Coop. Wor. 14(6), 549–593 (2005)

https://doi.org/10.1007/978-3-540-85758-7_12
https://doi.org/10.1007/978-3-540-85758-7_12
https://doi.org/10.1007/978-3-319-10172-9_18
https://doi.org/10.1007/978-3-319-10172-9_18
https://doi.org/10.1007/11841760_33
https://doi.org/10.1007/978-3-319-77525-8
https://doi.org/10.1007/978-3-662-49851-4

Foundations of Process Enhancement 273

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Process Mining over Multiple Behavioral
Dimensions with Event Knowledge Graphs

Dirk Fahland(B)

Eindhoven University of Technology, Eindhoven, The Netherlands

d.fahland@tue.nl

Abstract. Classical process mining relies on the notion of a unique
case identifier, which is used to partition event data into independent
sequences of events. In this chapter, we study the shortcomings of this
approach for event data over multiple entities. We introduce event knowl-
edge graphs as data structure that allows to naturally model behavior
over multiple entities as a network of events. We explore how to con-
struct, query, and aggregate event knowledge graphs to get insights into
complex behaviors. We will ultimately show that event knowledge graphs
are a very versatile tool that opens the door to process mining analyses
in multiple behavioral dimensions at once.

Keywords: Event knowledge graph · Process mining

1 Introduction—A Second Look at Processes

Process mining aims at analyzing processes from recorded event data. Thereby,
the actual processes are rather complex and emerge from the interplay of multiple
inter-related entities: the various objects handled by the process as well as the
organizational entities that execute the process. We best explain this kind of
interplay by an example.

1. Consider a retailer who took two Orders for multiple Items from the same
customer: the customer first places Order O1 for 2 items X and 1 item Y ,
and shortly afterwards Order O2 for 1 item X and 1 item Y . The retailer
promises to ship every order within 6 days.

The retailer handles both orders as explained next and illustrated in Fig. 1.

2. Items X are provided by supplier A while items Y are provided by supplier
B. To save costs, workers of the retailer bundle the orders for the items and
place two Supplier Orders, one at A for 3 items X and one at B for 1 item Y .
Suppliers ensure to deliver their products within 3 days of placing the order.

3. Invoice I2 for Order O2 is created right after placing the supplier order at B.
4. When the retailer receives the Supplier Order from A, workers unpack three

Items X one by one and store them in an automated warehouse until needed
for shipment. At this point, workers also create Invoice I1 for O1.

c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 274–319, 2022.

https://doi.org/10.1007/978-3-031-08848-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_9&domain=pdf
http://orcid.org/0000-0002-1993-9363
https://doi.org/10.1007/978-3-031-08848-3_9

Event Knowledge Graphs 275

Fig. 1. Illustration of a multi-entity process: a retailer handles two orders for multiple
items by placing and receiving supplier orders for specific items.

5. Around the time of receiving the supplier order from A, a worker notices
they made a mistake: they ordered only one item Y from B while O1 and
O2 both require one item Y each. The worker updates the Supplier Order O2
and invoice I2 accordingly.

6. When finally the supplier order from B is received, the items Y are unpacked.
One item Y is stored in the warehouse while the other item Y is packed
together with two items X taken from the warehouse into the shipment for
O1. Packed shipments are picked up for delivery every day at 15:00.

7. The retailer has the policy that they only ship to a customer if there is at
most one unpaid invoice. Thus, packing and shipment of O2 (another item
X and the second Y) are delayed until Payment P1 is received which covers
the amount for both invoices I1 and I2.

This process relies on 7 different types of entities. Actors (human workers) and
machines (an automated warehouse) together handle 5 types of objects: Orders,
Supplier Orders, Items, Invoices, Payments.

Challenges Due to Event Data over Multiple Entities. A process mining
analysis of the above process execution relies on recorded event data. Each event
has to record in its attributes at least (1) which action (or activity) has been
executed (2) at which time. To construct an event log, classical process mining
also expects each event to record (3) in which process execution, typically called

276 D. Fahland

Table 1. Event table of events underlying the event log of Table 2.
EEv

en
tID

Ac
tiv

ity

Ti
m

e

Ac
to

r

O
rd

e r

Su
pp

lie
r

O
rd

er

O
rd

er
D

e t
ai

ls

It e
m

I n
vo

ic
e

Pa
ym

en
t

e1 Create Order 01-05 09:05 R1 O1 2·X, 1·Y
e2 Create Order 01-05 09:30 R1 O2 1·X, 1·Y
e3 Place SO 01-05 11:25 R1 A 3·X
e4 Place SO 02-05 11:55 R3 B 1·Y
e5 Create Invoice 03-05 16:15 R3 O2 I2
e6 Receive SO 00-01 10:00 R2 A X1,X2,X3
e7 Update SO 04-05 10:25 R1 O2 B 2·Y
e8 Unpack 00-01 10:30 R2 A X3
e9 Update Invoice 04-05 10:50 R2 I2
e10 Unpack 04-05 11:00 R2 A X1
e11 Unpack 04-05 11:15 R2 A X2
e18 Create Invoice 06-05 14:35 R3 O1 I1
e19 Receive SO 07-05 10:10 R2 B Y1,Y2
e20 Unpack 07-05 10:45 R2 B Y1
e21 Unpack 07-05 11:00 R2 B Y2
e27 Pack Shipment 07-05 17:00 R4 O1 X1,X2,Y1
e28 Ship 08-05 15:00 R4 O1
e29 Receive Payment 09-05 08:30 R5 P1
e30 Clear Invoice 09-05 08:45 R5 I1,I2 P1
e33 Pack Shipment 09-05 11:45 R4 O2 X3,Y2
e34 Ship 09-05 15:00 R4 O2

case, the event occurred (see [13], Sect. 2). Table 1 shows the events related to
the above example.

1. create Orders in e1, e2;
2. create Supplier Orders in e3, e4;
3. create Invoice I2 in e5;
4. receive Supplier Order from A in e6 and unpack Items X in e8, e10, e11, and

create Invoice I1 in e18;
5. update Supplier Order for B in e7 and Invoice I2 in e9;
6. receive Supplier Order for B in e19 and unpack Items Y in e20, e21, and pack

and ship Order O1 in e27, e28;
7. receive Payment P1 and clear Invoices I1, I2 in e29, e30 and finally pack and

ship Order O2 in e33, e34.

In contrast to classical event logs, Table 1 contains no typical case identifier
attribute by which each event is related to one specific process execution.
Instead, we see multiple sparsely filled attributes identifying multiple entities of

Event Knowledge Graphs 277

various types: Order (O1, O2), Supplier Order (A,B), Item (X1,X2,X3,
Y 1, Y 2), Invoice (I1, I2), and Payment (P1).

This makes it difficult to construct an event log which is the basis for process
mining analysis. Recall that to obtain a classical event log we select one case
identifier attribute. Then all events referring to the same case id and ordered by
time form the trace of this case, that is, one process execution. In this way, clas-
sical event logs partition the recorded behavior into multiple process executions.
Process mining techniques then identify frequent patterns shared by all process
executions, or identify outliers and deviations of specific process executions.

However, what exactly is a process execution in our example? It is not just all
events related the one particular entity. For instance, if we chose Order as case
identifier, we would obtain traces 〈e1, e18, e27, e29〉 for O1 and 〈e2, e5, e7, e33, e34〉
for O2. These traces do reveal that both orders were not shipped within 6 days
as intended by the supplier. However, they do not allow us to understand the
cause for this as they clearly do not describe the entire behavior shown in Fig. 1.
We could try to group all events into traces using multiple related case identi-
fiers. However, we will see in Sect. 3 that doing so introduces false behavioral
information called convergence and divergence [41,45] in the resulting event log
leading to false analysis results (see [1], Sect. 3)

False behavioral information arises when flatting Table 1 into sequential
traces because we cannot partition the entities O1, O2, A,B,X, Y, I1, I2, P1 into
disjoint sets, each belonging to one process execution that is independent of all
others. Rather, the behavior itself is a larger “fabric” of multiple entities that
are inter-related and inter-twined over time as shown in Fig. 1. This “fabric” is
even more complex as individual Actors (R1, . . . , R5) are specialized in specific
activities across multiple different entities, e.g., R2 specializes receiving, updat-
ing, and unpacking Supplier Orders and handling Items. In the following, we
explain how to analyze this very “fabric” of multiple inter-related entities as a
whole from a simple event table over multiple entity identifiers such as Table 1.

A Graph-Based Approach. Our trick will be to slightly adapt the existing
definitions for obtaining an event log from an event table: instead of constructing
entire traces related to a single case identifier, we discuss in Sect. 3 a local directly-
follows relation for each individual entity in the data. Each event can be part of
multiple such directly-follows relations, depending on to how many entities it is
correlated. We then use the model of labeled property graphs in Sect. 4 to create
an event knowledge graph having events as nodes and the local directly-follows
relations as edges between events. We obtain a graph similar to what is shown
in Fig. 1, but with precise semantics for events and behavioral information.

A path of directly-follows edges over events related to the same entity is sim-
ilar to a classical trace. However in an event knowledge graph, such paths meet
whenever an event is related to more than one entity, where in an event log each
trace is disjoint from all others. We explain in Sect. 5 how to interpret and ana-
lyze behavioral information in event knowledge graphs. We show how basic query-
ing on event knowledge graphs gives insights into complex behavioral properties.

278 D. Fahland

We show how aggregation on event knowledge graphs allows to construct multi-
entity process models that better describe such processes.

We finally explore the versatility of event knowledge graphs beyond the
control-flow perspective in Sect. 6. We show how event knowledge graphs natu-
rally integrate the control-flow perspective and the actor perspective. Querying
for specific structures in the event knowledge graph reveals complex patterns of
task instances not visible in either perspective alone. Further, we show how event
knowledge graphs allow us to take a system-perspective (or queueing perspec-
tive) to analyze emergent behavior and performance problems across multiple
entities. We conclude in Sect. 7 with an outlook on the various applications areas
of event knowledge graphs in process mining, and on open research challenges.

All concepts for constructing and analyzing event knowledge graphs pre-
sented in this chapter are implemented as Cypher queries on the graph database
system Neo4j1 at https://github.com/multi-dimensional-process-mining/event
graph tutorial [28].

2 Multi-entity Event Data

Before we discuss problems and solutions for analyzing event data over multiple
entities, we first define what “event data over multiple entities” actually is.

2.1 Events

We assume all data to be given in a single event table. Data is recorded from a
universe of values Val ; timestamps Val time ⊆ Val are totally ordered by ≤.

Definition 1 (Event Table). An event table T = (E,Attr ,#) is a set E of
events, a set Attr of attribute names with act , time ∈ Attr. Partial function
: E × Attr � Val assigns an event e ∈ E and an attribute name a ∈ Attr to
a value #a(e) = v; #a(e) =⊥ if a is undefined for e.

Each event e ∈ E records an activity and a timestamp, i.e., #act(e) �=⊥ and
#time(e) ∈ Val time.

We write e.a = v for #a(e) = v as a shorthand. An event table specifically
allows multi-valued attributes, e.g., sets of values #a(e) = {v1, v2, v3} or a list of
values #a(e) = 〈v1, v2, v3, v1〉.2 Simplifying notation, we also may write v ∈ e.a
if e.a = v or if e.a = 〈. . . , v, . . .〉.

An event table only defines e.activity and e.time attributes for each event.
The special characteristic of event data over multiple entities is that it does not
record a unique case identifier attribute, but identifiers of multiple entity types.

Definition 2 (Event table with entity types). An event table with entities
types T = (E,Attr ,#,ENT) additionally designates one or more attributes ∅ �=
ENT ⊆ Attr as names of entity types.
1 neo4j.com.
2 We assume the values in an event table to be consistent with some data model that

is specified elsewhere. Our subsequent discussion does not rely on it.

https://github.com/multi-dimensional-process-mining/eventgraph_tutorial
https://github.com/multi-dimensional-process-mining/eventgraph_tutorial
http://neo4j.com/

Event Knowledge Graphs 279

A classical event log corresponds to an event table with a single entity type
ENT = {case}. We can consider Table 1 is an event table with entity types
ENT = {Resource,Order,Supplier Order, Item, Invoice,Payment}.

Event tables (Definition 1) are also called raw event logs and are – besides
relational data – the most common form of input to process mining. The entity
types of Definition 2 can be retrieved from an event table through schema recov-
ery techniques [46]. Note that Definition 2 formalizes the object-centric event
logs (OCEL) described in Sect. 3.4 of [1]; we here use the more general term
“entity” instead of “object” as we will later study behavior over entities which
are not tangible objects.

Event tables do not model the ordering of events with respect to a case or
an entity which is needed for process mining. Before we study the ordering of
events, we explain how events relate to entities.

2.2 Entities and Correlated Events

Each entity type ent ∈ ENT is a column in the event table T . Each value in
that column refers to a specific entity.

Definition 3 (Entities). Let T = (E,Attr ,#,ENT) be an event table with
entities. Let ent ∈ ENT be an entity type. The set of entities in T of type ent
is Entities(ent , T) = {n | ∃e ∈ E : n ∈ e.ent}.
From Table 1 we identify 6 entity types with corresponding entities: (1) Order:
{O1, O2} = Entities(Order , T), (2) Supplier Order: A,B, (3) Item: X1,X2,X3
and Y 1, Y 2, (4) Invoice: I1, I2, (5) Payment: P1, (6) Resource: R1 − R5 (see
Definition 3).

An event e ∈ E which has a value n = e.ent or n ∈ e.ent is correlated to
entity n.

Definition 4 (Correlation). Let T = (E,Attr ,#,ENT) be an event table
with entities. Let n ∈ Entities(ent , T) be an entity of type ent ∈ ENT.

Event e is correlated to entity n, written (e, n) ∈ corrent,T iff n = e.ent ∨n ∈
e.ent. We write corr(n, ent , T) = {e ∈ E | (e, n) ∈ corrent,T } for the set of
events correlated to entity n ∈ Entities(ent , T).

For example, for Table 1, event e30 is correlated to I1, I2, and P1, i.e.,
(e30, I1), (e30, I2) ∈ corr Invoice,T and (e30, P1) ∈ corrPayment,T . The events cor-
related to I2 are corr(I2, Invoice, T) = {e5, e9, e30}. In case the entity identifiers
used by different entity types are disjoint, e.g., there are not an Order O3 and an
Item O3, we can omit entity types and just write (e30, I1), (e30, I2), (e30, P1) ∈
corrT and corr(I2, T) = {e5, e9, e30}.

Correlation lifts to a set N of entities by union: corr(N,T) =⋃
n∈N corr(n, T). We will later use this to collect events of (transitively) related

entities, which we discuss next.

280 D. Fahland

Fig. 2. Relations between entities derived from Table 1

2.3 Relations Between Entities

We now make a first important observation. Although our data only defines
entity types explicitly, it implicity defines relations between entity types. A
record e in Table 1 containing two identifiers n1, n2 of two different types implic-
itly relates n1 and n2. For example, event e5 defines that e5.Order = O2
is related to e5.Invoice = I2 and event e18 defines that e18.Order = O1 is
related to e18.Invoice = I1. We can write this as a relation R(Invoice,Order) =
{(O1, I1), (O2, I2)}.

Definition 5 (Relation). Let T = (E,Attr ,#,ENT) be an event table with
entities. Let ent1, ent2 ∈ ENT be two entity types. The relation between ent1
and ent2 in T is R(ent1,ent2) = {(e.ent1, ent2) | e.ent1 �=⊥, e.ent2 �=⊥}.
Note that Definition 5 does not impose the direction of a relation. Figure 2
visualizes the relations we can derive from Table 1.

Recall that in relational data modeling, each relation R(ent1,ent2) has a car-
dinality describing how many entities of type ent1 are related to each entity
of type ent2, and vice versa. We can infer this cardinality from the tuples in
R(ent1,ent2) if we assume that the data in the input event table is sufficiently
complete. For example, for the relations in Fig. 2,

– R(Invoice,Order) is a 1-to-1 relation as each invoice is related to one order, and
vice versa;

– R(Invoice,Payment) is an n-to-1 relation as both I1 and I2 are related to P1;
– R(Item,Order) is an n-to-1 relation as each order has multiple items but each

item relates to exactly one order;
– R(Item,Supplier Order) is an n-to-1 relation.

Entities are also transitively related by concatenating or joining the rela-
tions on a shared entity typed (and then omitting this shared entity type).
For example, R(Order,Payment) = R(Invoice,Order) �� R(Invoice,Payment) =
{(O1, P1), (O2, P1)} is an n-to-1 relation, and R(Order,Supplier Order) =
R(Item,Order) �� R(Item,Supplier Order) = {(O1, A), (O1, B), (O2, A), (O2, B)} is an
n-to-m relation.

Entities, relations, and correlation of events can be automatically retrieved
from event tables [46] and relational databases [41,43] through schema recovery
techniques. However, we have to be aware that relations and their cardinalities

Event Knowledge Graphs 281

recovered according to Definition 5 are a static view of the relations obtained by
aggregating all observations over time while a process updates relations dynam-
ically. For instance, Order O1 was not related to any Item until event e27.
Modeling such dynamics requires additional concepts as defined in XOC event
logs [39,40]. We have to ignore this aspect in the remainder.

3 Shortcomings of Event Logs over Multi-entity Event
Data

Having defined event data over multiple entities, we can now discuss ways of
ordering events correlated to a case or an entity, which is the basis for process
mining analysis. We first explain how transforming multi-entity data into a clas-
sical event log with a single case identifier (Sect. 3.1) introduces false behavioral
information leading to false analysis results (Sect. 3.2). We then propose a dif-
ferent approach to ordering events with respect to individual entities (Sect. 3.3).

3.1 Classical Event Log Extraction

We cannot directly turn the event data in Table 1 into a classical event log,
because we lack a clear case identifier column that is defined for all events. While
Actor is an entity identifier defined for all events, it does not group events into
the process executions described in Sect. 1. The standard procedure to extract
a classical event log from such data is the following (see also Def. 5 of [1] and
[13]).

Step 1. Determine relevant entities in the data. An event table with
entity identifiers already defines the set of entities in the process (see Definition 3).
For extracting an event log for a process execution, we only consider entities that
are also handled “along” or “within” a process execution. Thus, we now focus on
Order, Supplier Order, Item, Invoice, and Payment and exclude Actor.3

Step 2. Pick one entity as case identifier. As the process goal is to com-
plete an order, entity Order is our best candidate for a case identifier. This iden-
tifier defines two cases: O1 and O2. However, as most events in Table 1 are not
directly correlated to an Order, we cannot simply group events by attribute Order.

Step 3. Define the set of all entities related to a case. The classical
idea is to “enlarge” the scope of the case. We include all entities which are
(transitively) related to the case entities O1 and O2 via the relations we can
identify in the event table (see Definition 5 and Fig. 2).

– Order O1 is related to Invoice I1, Payment P1, Items X1,X2, Y 1, and Sup-
plier Orders A,B, i.e., caseEntities(O1) = {O1, I1, P1,X1,X2, Y 1, A,B}.

– Order O2 is related to Invoice I2, Payment P1, Items X3, Y 2, Supplier Orders
A,B, i.e., caseEntities(O2) = {O2, I2, P1,X3, Y 2, A,B}.

3 In later sections we will not have to make such a distinction and can consider behavior
along any kind of entity.

282 D. Fahland

Step 4. Construct a trace from events of all entities in a case. Each
event e correlated to an entity n ∈ caseEntities(O1) is now also considered as
correlated to case O1: corr∗(O1, T) = corr(caseEntities(O1), T). For example,
for O1 we extract from Table 1:

– corr(O1, T) = {e1, e2, e18}
– corr(I1, T) = {e18, e30}
– corr(P1, T) = {e29, e30}
– corr(X1, T) = {e6, e10, e27}
– corr(X2, T) = {e6, e11, e27}
– corr(Y 1, T) = {e19, e20, e27}
– corr(A, T) = {e3, e6, e8, e10, e11}
– corr(B, T) = {e4, e7, e19, e20, e21}
Taking their union yields corr∗(O1, T) = {e1, e3, e4, e6, e10, e11, e18, e19, e20, e27,
e28, e29, e30}. We store all events extracted for O1 in a new event table where
we explicitly set the attribute Case to O1. In this way, we materialize that each
ei ∈ corr∗(O1, T) is correlated to O1. We repeat this procedure for each case.
Table 2 shows the extracted events for O1 and O2.

Note that this extraction approach can extract the same event multiple times
for different cases but with a different value for the newly set Case attribute.
For instance, e3 and e30 are extracted both for O1 and for O2. This is due to
the n-to-m relation between Order and Supplier Order and the n-to-1 relation
between Payment and Order.

Ordering the extracted events by time in each case results in the traces from
the viewpoint of O1 and from the viewpoint of O2 respectively as shown in Tab 2.

Event logs can be automatically extracted in this way from event tables with
multiple entity identifiers [46]. Extraction from relational databases succeeds
through SQL queries that extract and group events from different tables into
traces [35]. These queries can be generated automatically using a variety of
techniques [6,7,12,29,35,41]; see [2,13] for a detailed discussion.

3.2 False Behavioral Information in Classical Event Logs

Note that the event log in Table 2 contains numerous false behavioral
information. Some events were duplicated and occur in both traces, e.g.,
e3, e4, e6, e19, e29, suggesting that in total four Supplier Orders were placed and
received (while there were only two) and that two Payments were received (while
there was only one). This is also known as divergence [41,41,45,52].

Further, the order of events in both traces gives false behavior information.
For instance, in the trace for O2, Update SO (e7) occurs after Receive SO (e6)
suggesting a supplier order was updated after it had been received (while this
never happened for any Supplier Order). This is also known as convergence [41,
45,52].

Where divergence falsifies frequencies of events, convergence falsifies the
behavioral information in the directly-follows relation, which is the basis for

Event Knowledge Graphs 283

Table 2. Classical event log of order process with events extracted for case identifier
Order.

EEv
en

tID

Ca
se

Ac
tiv

ity

Ti
m

e

Ac
to

r

O
rd

er

Su
pp

l ie
r

O
r d

er

O
r d

e r
D

et
ai

ls

Ite
m

In
vo

ic
e

Pa
ym

en
t

e1 O1 Create Order 01-05 09:05 R1 O1 2·X, 1·Y
e3 O1 Place SO 01-05 11:25 R1 A 3·X
e4 O1 Place SO 02-05 11:55 R1 B 1·Y
e6 O1 Receive SO 04-05 10:00 R2 A X1,X2,X3
e10 O1 Unpack 04-05 11:00 R2 A X1
e11 O1 Unpack 04-05 11:15 R2 A X2
e18 O1 Create Invoice 06-05 14:35 R3 O1 I1
e19 O1 Receive SO 07-05 10:10 R2 B Y1,Y2
e20 O1 Unpack 07-05 10:45 R2 B Y1
e27 O1 Pack Shipment 07-05 17:00 R4 O1 X1,X2,Y1
e28 O1 Ship 08-05 15:00 R4 O1
e29 O1 Receive Payment 09-05 08:30 R5 P1
e30 O1 Clear Invoice 09-05 08:45 R5 I1,I2 P1
e2 O2 Create Order 01-05 09:30 R1 O2 1·X, 1·Y
e3 O2 Place SO 01-05 11:25 R1 A 3·X
e4 O2 Place SO 02-05 11:55 R3 B 1·Y
e5 O2 Create Invoice 03-05 16:15 R3 O2 I2
e6 O2 Receive SO 04-05 10:00 R2 A X1,X2,X3
e7 O2 Update SO 04-05 10:25 R1 O2 B 2·Y
e8 O2 Unpack 04-05 10:30 R2 A X3
e9 O2 Update Invoice 04-05 10:50 R2 I2
e19 O2 Receive SO 07-05 10:10 R2 B Y1,Y2
e21 O2 Unpack 07-05 11:00 R2 B Y2
e29 O2 Receive Payment 09-05 08:30 R5 P1
e30 O2 Clear Invoice 09-05 08:45 R5 I1,I2 P1
e33 O2 Pack Shipment 09-05 11:45 R4 O2 X3,Y2
e34 O2 Ship 09-05 15:00 R4 O2

most process discovery techniques. As a result, also discovered process mod-
els are wrong. Figure 3 (left) shows the directly-follows graph (DFG) of the log
in Table 2 and the corresponding process model discovered with the Inductive
Miner (IM) annotated with the mean waiting times. Both models show false
information suggesting that

– a Supplier Order was Updated after it was Received while this never happened;
– rework happened around receiving a Supplier Order and unpacking Items

while each Supplier Order and each Item was touched only once;
– an Invoice can be created and updated in an arbitrary order while only one

order was observed;

284 D. Fahland

Fig. 3. Directly-follows graph of event log of Table 2 (left) and Inductive Miner model
(right) show false dependencies.

The performance information in the IM model suggests that

– the mean time for receiving a Supplier Order after placement is 2.2d while A
was received within 3d after placement (e3-e6) and B was received within 5d
after placement (e4-e19) and within 3d after the last update (e7-e19).

This false behavioral information makes it impossible to properly locate devi-
ating behaviors and causes for delays, e.g., the reasons why both orders were not
shipped within 6 days.

3.3 Correct Behavioral Information: Local Directly-Follows

The reason why the event log in Table 2 contains false behavioral information is
the following:

Event Knowledge Graphs 285

– Events that are (transitively) correlated to the global case identifier Order
via a 1-to-m relationship are visible to multiple cases, and thus extracted
multiple times, e.g. e3.

– Extracting events from multiple different entities and ordering them by time
from the perspective of the global case identifier Order constructs a temporal
order between events that are actually unrelated, e.g., e6 and e7.

We can avoid both problems by simply not extracting all events towards a sin-
gle case identifier, but keeping all events local to the entities they are directly
correlated to. To analyze behavior, we only construct a temporal order between
events that are related, e.g., correlated to the same entity.

In other words, instead of defining one global directly-follows relation for all
events based on a global case identifier, we define a local directly-follows relation
per entity [30, Def. 4.6].

Definition 6 (Directly-Follows (per Entity)). Let T = (E,Attr ,#,ENT)
be an event table with entities. Let n ∈ Entities(ent , T) be an entity of type
ent ∈ ENT.

Let e1, e2 ∈ E be two events; e2 directly follows e1 from the perspective of
n, written e1 �n,T e2 iff

1. (e1, n), (e2, n) ∈ corrent,T (both are correlated to n),
2. e1.time < e2.time (e1 occurred before e2),
3. and there is no other event (e′, n) ∈ corrent,T with e1.time < e′.time <

e2.time

For example, while e7 directly follows e6 globally for O2, they do not follow each
other locally from the perspective of O2. Instead, from the perspective of O2, e7
directly follows e4, i.e., e4 �B,T e7. Interestingly, also e2 �O2,T e7 and e6 �R2,T e7
hold. That means e7 directly follows three different events as seen from three
different perspectives: the Supplier Order B, the Order O2 and resource R2.

We cannot represent this information in a single table or a sequential event
log. Extracting a collection of related sequential event logs from event tables [46]
and relational databases [41] results in collection of directly-follows relations per
entity-type. However, the behavioral information remains separated per entity
type, hindering reasoning about the process as a whole [25]. We therefore turn
to a graph-based data model.

4 Event Knowledge Graphs

Our primary aim is to model multiple local directly-follows relations (see Defini-
tion 6) over events correlated to multiple entities. To construct these relations,
we also have to model entities, relations between entities, and correlations of
entities to events (see Sect. 2). A typed graph data model such as labeled prop-
erty graphs [48] allows to distinguish different types of nodes (events, entities)
and relationships (directly-follows, correlated-to). We adopt labeled property

286 D. Fahland

graphs to construct a knowledge graph [33] of a process from event data, to aug-
ment this graph with further knowledge, and to even perform process mining
analysis within a graph. Section 4.1 defines the generic data model of labeled
property graphs which we use in Sect. 4.2 to define event knowledge graphs and
“directly-follows” paths in an event knowledge graph. In Sect. 4.3 we discuss how
to algorithmically construct an event knowledge graph from an event table.

4.1 Labeled Property Graphs

A labeled property graph is a graph where each node and each directed edge
(called relationship) has a type, called label. Further, each node and each rela-
tionship can carry attribute-value pairs as properties. For the remainder, we fix
a set λN of node labels, a set λR of relationship labels, and a set Attr of property
names over a value domain Val .

Definition 7 (Labeled Property Graph). A labeled property graph (LPG)
G = (N,R, λ,#) is a graph with nodes N , and relationships R with the following
properties:

1. Each node n ∈ N carries a label λ(n) ∈ ΛN .
2. Each relationship r ∈ R carries a label λ(r) ∈ ΛR and defines a directed edge−→r = (nsource, ntarget) ∈ N × N between two nodes.
3. Any node n and relationship r can carry properties as attribute-value pairs

via function # : (N ∪ R) × Attr � Val

We write x.a = v for #(x, a) = v and x.a =⊥ if a is undefined for x. We
write N � = {n ∈ N | λ(n) = �} and R� = {r ∈ R | λ(r) = �} for the nodes
and relationships with label �, respectively. We also write (n1, n2) ∈ R� if there
exists r ∈ R� with −→r = (n1, n2).

Figure 4 shows an example of a labeled property graph, defining 5 nodes
with label Event, 3 nodes with label Entity, 7 relationships with label corr, and
4 relationships with label df.

We here also provide some notation for standard operations on LPGs. Let
G1 = (N1, R1, λ1,#1) and G2 = (N2, R2, λ2,#2) be two LPGs.

G2 is a sub-graph of G1, written G2 ⊆ G1, iff N2 ⊆ N1, R2 ⊆ R1, λ2 =
λ1|N2∪R2 ,#2 = #1|N2∪R2 . The union of G1 and G2 is G1 ∪G2 = (N1 ∪N2, R1 ∪
R2, λ1 ∪ λ2,#1 ∪ #2) under the assumption that λ1(x) = λ2(x) and #1

a(x) =
#2

a(x) for all a ∈ Attr for any x ∈ (N1 ∪ R1) ∩ (N2 ∪ R2). For a set G =
{G1, . . . , Gn} of graphs, we write

⋃
G∈G G = G1 ∪ . . . ∪ Gn.

Labeled property graphs are a native data structure for knowledge graphs [33]
and for a variety of graph database systems [48] that provide data management
and query languages for reading and manipulating graphs [5].

4.2 Formal Definition of an Event Knowledge Graph

To precisely model event data in an LPG, we have to restrict ourselves to specific
node labels for events and entities, and to specific relationship labels for corre-
lation and directly-follows. Thereby, directly-follows relationships can only be

Event Knowledge Graphs 287

Fig. 4. Event knowledge graph of events e5, e9, e18, e29, e30 of Table 2.

defined between events that are correlated to the same entity and directly follow
each other from the viewpoint of that entity (Definition 6). This is formalized
in the model proposed by Esser [25] which we here call event knowledge graph4

Definition 8 (Event Knowledge Graph). An event knowledge graph (or
just graph) is an LPG G = (N,R, λ,#) with node labels {Event ,Entity} ⊆
ΛN and relationship labels {df , corr} ⊆ ΛR indicating “directly-follows” and
“correlation” with the following properties.

1. Every event node e ∈ NEvent records an activity name e.act �=⊥ and a times-
tamp e.time �=⊥.

2. Every entity node n ∈ NEntity has an entity type n.type �=⊥.
3. Every correlation relationship r ∈ Rcorr ,−→r = (e, n) is defined from an event

node to an entity node , e ∈ NEvent , n ∈ NEntity ; we write n ∈ corr(e) and
e ∈ corr(n) as shorthand.

4. Any directly-follows relationship df ∈ Rdf ,
−→
df = (e1, e2) is defined between

event nodes e1, e2 ∈ NEvent and refers to a specific entity df .ent = n ∈
NEntity such that
(a) e1 and e2 are correlated to entity n: (e1, n), (e2, n) ∈ Rcorr ;
(b) e1 occurs before e2: e1.time < e2.time; and
(c) there is no other event e′ ∈ NEvent correlated to n, (e′, n) ∈ Rcorr that

occurs in between e1.time < e′.time < e2.time
4 The initially chosen term “event graph” [25,38] which seems natural and shorter has

previously been coined for a model for discrete event simulation [49]. At the same
time, we will see that the proposed event knowledge graph model allows to capture
more than just events.

288 D. Fahland

We write df .type = df .ent .type and (e1, e2) ∈ Rdf
n .

Figure 4 shows an event knowledge graph for entities I1, I2, P1 of Table 2 and
their correlated events. Each df relationship is defined between any two subse-
quent events correlated to the same entity. In the following, we omit the labels
and use dashed edges for corr relationships, square nodes for Event nodes, and
ellipses for Entity nodes.

A path along df -relationships corresponds to a trace in a classical event log. A
path in a graph G is a sequence r = 〈r1, . . . , rk〉 ∈ R∗ of consecutive relationships,
i.e., the target node of −→ri = (ni−1, ni) is the start node of −−→ri+1 = (ni, ni+1),
1 ≤ i < k.

Definition 9 (df-path). Let G = (N,R, λ,#) be an graph.
A path r = 〈r1, . . . , rk〉 ∈ (Rdf)∗ of df-relationships is a directly-follows

path (df-path) iff all relationships are defined for the same entity, i.e., for all
1 ≤ i < k, ri.ent = ri+1.ent = n; we also say r is a df-path for entity n.

r is maximal iff there is no other df-relationship r ∈ Rdf so that 〈r, r1, . . . , rk〉
or 〈r1, . . . , rk, r〉 is also a df-path.

For a path r = 〈r1, . . . , rk〉 ∈ (Rdf)∗,−→ri = (ei−1, ei) we write just the sequence
of its nodes 〈e0, . . . , ek〉 in case the correlated entity is clear. The graph in
Fig. 4 defines three DF-paths: for I1: 〈e18, e30〉, for I2: 〈e5, e9, e30〉, and for P1:
〈e29, e30〉.

Event knowledge graphs can be efficiently stored and queried using graph
database systems [25]. This enables retrieving df-paths from graph databases
using query languages, such as Cypher [25,33]. While the nodes and relationships
of Definition 8 can also be encoded in RDF [11], the df-paths rely on attributes
of relationships (Definition 9) which are not supported by RDF but by LPGs.

Alternative formalizations of Definition 8 define just a partial order over
events [4,30,55,56] describing the local directly-follows relation wrt. various enti-
ties 6. Such a partial order view is equivalent to a family of df-paths [30, Cor. 4.9].
This equivalence allows to switch perspectives depending on the analysis task at
hand.

4.3 Obtaining an Event Knowledge Graph from an Event Table

Event data is (currently) not recorded in the form of a graph, but for example
in the form of an event table T with multiple entities (Definition 2). We obtain
an event knowledge graph from an event table T in three steps.

1. Create an event node e ∈ NEvent for each event record in the event table T .
2. Infer entities and correlation relationships from the event attributes: For each

unique entity identifier found at some event e, create an entity node n and a
corr relationship from e to n.

3. Infer directly-follows relationships between all events e1, . . . , ek with a corr
relationship to the same entity node n.

Event Knowledge Graphs 289

We now explain and define each step along the running example of Table 1. We
assume as input an event table T = (E,Attr ,#T ,ENT) with multiple entities
as stated in Definition 2. The central requirement is that each unique entity type
ent ∈ ENT ⊆ Attr is explicitly recorded as a dedicated attribute (column) of
T , and that each value in column ent is an entity identifier.

Step 1: Create Event Nodes. We start by translating each event record in
event table T into an event node in graph G.

Definition 10 (Event nodes from an event table). Let T = (E,Attr ,
#T ,ENT) be an event table with entities. The event nodes of T are the graph
GEvent

T = (NEvent , ∅, λ,#G) with

1. NEvent = E, i.e., each event of T becomes an event node, and
2. #G

a (e) = #T
a (e) for all a ∈ Attr, i.e., each event keeps all attributes from T

as properties in G.

The resulting graph G is a set of disconnected Event nodes only.

Step 2: Create Entity Nodes and Correlation Relationships. Each
attribute of an event e in T that refers to an entity, e.g., e.ent = {n}, is now a
property of the event node e in G. The basic idea is to “push out” this property:
we make each unique value n an Entity node n and link e to n by a corr rela-
tionship. The following definition constructs a small graph Gcorr (n) that does
exactly this. We then use graph union G ∪ ⋃

n Gcorr (n) to add them to G. The
reason for doing so is that we can later calculate with various subgraphs.

Definition 11 (Entity and correlation inference). Let G = (N,R, λ,#G)
be a graph and ENT be known entity types.

Given a property name ent ∈ ENT, each property value e.ent we find on an
event node e ∈ NEvent is an entity identifier of ent in G: Entities(ent , G) = {n |
∃e ∈ NEvent : n ∈ e.ent}, see Definition 3.

Let n ∈ Entities(ent , G) be an identifier of type ent ∈ ENT. The entity and
correlation inferred for n in G is the graph Gcorr (n) = (N ′, R′, λ′#′) with:

1. entity node N ′Entity = {n} with #′
type(n) = ent;

2. event nodes N ′Event = {e ∈ NEvent | n ∈ e.ent} with #′(e) = #(e) for each
e ∈ N ′Event , i.e., each e is correlated to n, see Definition 4; and

3. correlation relationships re,n ∈ R′corr ,−→r e,n = (e, n) iff n ∈ e.ent.

We can infer entities and correlation on any event knowledge graph, not just
the graph produced by Definition 10. This allows us to apply Definition 11
multiple times in any order. We can infer entities and correlation for an entity
type ent by Gcorr (ent) =

⋃
n∈Entities(ent,G) Gcorr (n). We can add the inferred

entities and correlation to graph G for all entity types ENT by graph union
G∪⋃

ent∈ENT Gcorr (ent). In the result, each value n ∈ Entities(ent , T) becomes
a new node n with n.type = ent . Correspondingly, each pair (e, n) ∈ corrent,T

becomes a new relationship of type corr from e to n.

290 D. Fahland

Fig. 5. Event graph of events of Table 2 without directly-follows relationships.

For example, applying Definition 10 on the event table of Table 2 results
in the event nodes e1, . . . , e11, e18, . . . , e21, e27, . . . , e32 shown in Fig. 5. Inferring
entities and correlation for entity types Order, Supplier Order, Item, Invoice,
and Payment adds the entity nodes and correlation edges shown in Fig. 5. In
this graph we see that events e1, e18, e27, e28 are the events correlated to entity
O1 of type Order. Moreover, event e18 is correlated to two entities Order O1
and Invoice I1; event e27 is correlated to four entities Order O1, Item X1, Item
X2, and Item Y 1.

Step 3: Infer Local Directly-Follows Relations. We now can infer the
local directly-follows relation (Definition 6) and materialize it as df -relationships
between event nodes. Again, the basic idea is simple: for each entity node n
we retrieve all events e1, . . . , en with a corr -relationship from ei to n. We order

Event Knowledge Graphs 291

e1, . . . , en by time and define a new df -relationship r from ei to ei+1; to remember
for which entity r holds, we set r.ent = n.

As before, we do not add the df -relationships directly to G but construct a
separate graph Gdf (n). We then add to G by graph union G ∪ ⋃

n Gdf (n) which
later allows us to calculate with graphs.

Definition 12 (df inference). Let G = (N,R, λ,#) be a graph. Let n ∈
NEntity . Let 〈e0, . . . , ek〉 be the sequence of events {e0, . . . , ek} = corr(n) corre-
lated to n and sorted by time: ei−1.time < ei.time, 1 ≤ i ≤ k.

The df-relationships inferred for n in G is the graph Gdf (n) =
(N ′Event , R′df , λ′,#′) with

1. event nodes N ′Event = {e0, . . . , ek}, and
2. for each 1 ≤ i ≤ k one df-relationship ri ∈ R′df with −→ri =

(ei−1, ei),#′
ent(ri) = n,#′

type(ri) = #type(n).

We can only infer a df-relationship for entity n if |corr(n)| > 1. Thus, for df-
inference to have any effect, we have to have inferred the entity n and correlation
using Definition 11 and there are at least two events correlated to n. As for entity
and correlation inference, we can add the inferred df-relationships to G by graph
union G ∪ ⋃

n∈NEntity Gdf (n).
For example, if we infer the df-relationships for each entity in the graph of

Fig. 5 and add them to that graph, we obtain the graph shown in Fig. 6. Note
that we only show the corr relationships to the first event of each entity for
readability. This graph explicitly models the events, entities, correlation, and
local directly-follows relations of all events in Table 2.

Complete Procedure. The following definition summarizes how to apply the
above three definitions to obtain an event knowledge graph of an event table T .

Definition 13 (Event knowledge graph of an event table). Let T =
(E,Attr ,#T ,ENT) be an event table with entities. The event table T defines
the graph G = (N,R, λ,#G) of T as follows:

1. Obtain the graph of event nodes GEvent of T (Definition 10).
2. Infer the entities and correlation for each entity type ent ∈ ENT from GEvent

(Definition 11), i.e., Gcorr =
⋃

ent∈ENT Gcorr(ent) which results in the inter-
mediate graph GEvent ∪ Gcorr = (NEvent ∪ NEntity , Rcorr , λ,#G).

3. Infer the df-relationships Gdf =
⋃

n∈NEntity Gdf (n) from GEvent ∪ Gcorr (Def-
inition 12) and return G = GEvent ∪ Gcorr ∪ Gdf .

From Definition 10–13 follows that the df-relationships in graph G materialize
the local directly-follows relation of event table T (Definition 6).

Lemma 1. Let G = (N,R, λ,#G) be the event knowledge graph of event table
T = (E,Attr ,#T ,ENT) with entities. For any entity n ∈ Entities(ent , T), ent ∈
ENT holds e1 �n,T e2 (e2 directly follows e1 from the perspective of n) iff
(e1, e2) ∈ Rdf

n .

292 D. Fahland

Fig. 6. Event graph of events of Table 2 after inferring directly-follows relationships.

4.4 Inferring Entity Interactions

The procedure of Definition 13 infers the local directly-follows relation for each
entity in the graph. However, there are also important behavioral dependencies
in the process between related entities, such as Orders and Payments, that are
not visible in the graph of Fig. 6.

We know from Fig. 1 that shipping O2 has to wait until the invoice of O1
has been cleared by the related payment P1, but the graph of Fig. 6 suggests
that e31 of O2 does not depend on e30 of P1 or any event of O1. This is because
there is no entity correlated to both e31 and e30 or any event of O1.

Our analysis in Sect. 2.3 found that Orders are related to Payments. We
can materialize this information in an event knowledge graph. We apply Def-
inition 5 on all Event nodes to obtain relation R(ent1,ent2) between any two
(interesting) entity types ent1, ent2. For each pair, (n1, n2) ∈ R(ent1,ent2)

we add a new relationship with label related from entity node n1 to entity
node n2. Figure 7 illustrates the result of this step for (Order, Invoice) and
(Invoice,Payment). We can infer transitive relationships by materializing paths
of related -relationships (ignoring their directions) as new related -relationships.

Event Knowledge Graphs 293

Fig. 7. Inferring relations between Orders, Invoices, and Payments.

For example, we materialize 〈O1, I1, P1〉 ∈ (Rrelated)∗ and 〈O2, I2, P1〉 ∈
(Rrelated)∗ as (O1, P1), (O2, P1) ∈ Rrelated in Fig. 7. These steps obviously
require domain knowledge to decide which potential relations to materialize,
esp. when considering paths over n-to-1 and 1-to-n relationships [41].

We then can infer the behavior between two related entities by adapting
entity and correlation inference (Definition 11) as follows [25]:

1. We reify the relation between two entity types ent1 and ent2 into a new
derived entity type (ent1, ent2). That is, we make each pair (n1, n2) ∈ Rrelated

an entity node (n1, n2) ∈ NEntity with (n1, n2).type = (ent1, ent2). For exam-
ple, we create two entity nodes (O1 ,P1), (O2 ,P1) of type (Order,Payment).
For traceability, we add a new relationship d ∈ Rderived with label derived
from entity (n1, n2) to n1 and to n2.

2. An event e is then correlated to a derived entity (n1, n2) iff e is correlated to
n1 or n2 (or both). Formally, we add a new correlation relationship from e
to (n1, n2) iff there is a correlation relationship r ∈ Rcorr from e to n1 or n2,
i.e., −→r = (e, n1) or −→r = (e, n2).

3. Then we can treat any derived entity (n1, n2) just like any other entity and
infer the df-relationships for (n1, n2), which results in a new path describing
the interactions between n1 and n2.

Figure 8 shows the result of reifying the relation between Order and Pay-
ment entities of Fig. 7 into derived entities (O1, P1) and (O2, P1) of type
(Order ,Payment) and inferring the df-relationships for this entity type. We now
inferred df-paths from Create Invoice in O1 (e18) via Clear Invoice in P1 (e30)
to Pack Shipment in O2 (e31).5

Not all df-relationships for (O1, P1) and for (O2, P2) provide new infor-
mation. For example in Fig. 8, (e2, e5) ∈ Rdf

O2 and (e2, e5) ∈ Rdf
(O2 ,P1) run in

parallel.
We say that a df-relationship (e1, e2) ∈ Rdf

(n1,n2)
of a derived entity (n1, n2)

provides new information if there is not already an existing df-relationship

5 Our example here exploits that both orders of the same customer have invoices
cleared by the same payment. For the more general case, we would have to include
the customer in the data and infer the dependency via the customer entity.

294 D. Fahland

Fig. 8. Result of reifying the relation between Order and Invoice entities of Fig. 6 into a
derived entity of type (Order , Invoice) and inferring the df-relationships for this entity
type.

(e1, e2) ∈ Rdf
n1

or (e1, e2) ∈ Rdf
n2

for one of the original entities n1 or n2. Thus, a
df-relationship (e1, e2) provides new information if it actually describes an inter-
action from n1 to n2 or vice versa. In Fig. 8, (e7, e29), (e28, e29), and (e30, e31)
provide new information.

In principle we should keep only those df -relationships of a derived entity
(n1, n2) that provide new information. However, we can best study the interac-
tion between n1 and n2 when all df -relationships between n1 and n2 are part
of a path related to (n1, n2). We therefore keep all df -relationships of (n1, n2)
that either provide new information or are between two df -relationships of the
df -path for (n1, n2) that do provide new information. In Fig. 8, for (O2 ,P1),
we keep (e7, e29) and (e30, e31) (provide new information) and also (e29, e30)
(between df-relationships that provide new information); for (O1 ,P1), we only
keep (e28, e29).

The complete graph for Table 1 after inferring the df -relationships between
Order and Payment entities is shown in Fig. 9.

Event Knowledge Graphs 295

4.5 Creating Event Knowledge Graphs from Real-Life Data

This method for constructing event knowledge graphs uses basic principles of
information inference: (1) construct entities and correlation based on the pres-
ence of an entity identifier or a relation; and (2) derive a local directly-follows
relation from the viewpoint of each entity. Our definitions assume the data to
be accurate wrt. the real process, for instance, that entity identifiers and time
stamps are recorded correctly and precise; otherwise further preprocessing is
required [30,44,47].

All steps of the method can be implemented as a series of Cypher queries6

to construct event knowledge graphs in a graph database for our running exam-
ple [28] as well as for various real-life datasets comprising single and multiple
event tables [24]; several event knowledge graphs of real-life processes are avail-
able [19–24]. A variant of event knowledge graphs, called causal event graph
that only models events but not the entities, can be extracted automatically
from relational databases [56].

In the following, we exploit the flexibility of LPGs that underly event
knowledge graphs to infer and materialize further behavioral information, going
beyond what event tables or event logs can describe.

5 Understanding Behavior over Multiple Entities

The event knowledge graph of Fig. 9 we obtain with the method of Sect. 4 explic-
itly models what we observed earlier in Sect. 1: the behavior of the different enti-
ties forms a complex network of synchronizing df -paths. This section first dis-
cusses how to interpret df-paths (Sect. 5.1) and how they synchronize (Sect. 5.2).
We then discuss querying graphs through selection of entities and projection onto
events in Sect. 5.3; we apply these operations to understand why the retailer of
our example in Sect. 1 could not ship orders within the promised 6 days. We
finally introduce aggregation in Sect. 5.4 which we use to discover basic process
models directly within event knowledge graphs in Sect. 5.5.

5.1 How to Read Df-Paths in an Event Knowledge Graph

We discuss how to read df -paths over events based on running example of Fig. 6.
In a classical event log, each trace has a unique initial event and a unique

final event indicating the start and completion of a process execution. A graph
has multiple initial and final events – one per entity. Event e is starting or ending
event if it has no incoming or outgoing df -relationship at all, e.g., e1, . . . , e4, and
e32. Event e is starting or ending event for entity n if it has no incoming or
outgoing df -relationship for n. For example, e11 is the ending event of the df -
path for A but it still has an outgoing df -relationship for X2. Some events are
starting/ending events for multiple df -paths or entities. For example, e6 is the

6 https://github.com/multi-dimensional-process-mining/eventgraph tutorial.

https://github.com/multi-dimensional-process-mining/eventgraph_tutorial

296 D. Fahland

Fig. 9. Complete event knowledge graph of event table Table 1.

starting event for X1,X2,X3 and e7 is the starting event for Y 1, Y 2 while e27
is the ending event for X1,X2, Y 1 and e31 is the ending event for X3, Y 2.

We call an event intermediate in a df-path of an entity n if it is not a start-
ing or ending event in the df-path of n. For example, e6 is an intermediate
event of A.

In graph in Fig. 9 we see that the df-paths of entities of the same type are
rather similar to each other.

– O1 and O2 both start with Create Order and end with Ship events with
Create Invoice followed by Pack Shipment in between.

– A and B both start with Place SO (eventually) followed by Receive SO,
ending with multiple Unpack events. Specifically

– Items X1, . . . , Y 2 start with Receive SO followed by Unpack and end with
Pack Shipment

– I1 and I2 start with Create Invoice and end with Clear Invoice

Note that the graph no longer shows any directly-follows relation from Receive
SO to Update SO that was falsely observed in Sect. 3. We can also analyze time

Event Knowledge Graphs 297

differences between events on the df-path. For example, in Sect. 1 we stated that
each Supplier Order is to be received within 3 days of placing the order.

– On the df-path of A, event e6 (Receive SO for A, 4-5 10:15) is directly preceded
by e4 (Place SO for A, 1-5 11:25) which is within 3 days as required.

– On the df-path of B, event e19 (Receive SO for B, 7-5 10:15) is directly
preceded by e7 (Update SO for B, 4-5 10:25) which is within 3 days, but 6
days since e4 (Place SO for B, 1-5 11:25). Thus, while the supplier delivered
within the required 3 days since Update SO, the update itself introduced a
3-day delay.

Thus, the graph now shows temporal information and delays for individual enti-
ties correctly, in contrast to the classical event log of Sect. 3.

5.2 How to Read Synchronization in a Graph

Analyzing the df-paths for O1 and O2 also shows that none of the orders were
shipped within 6 days: e20.time−e1.time > 7days and e32.time−e2.time > 8days.
As completing the orders depends on other entities, i.e., the items, we now
analyze entity interactions through synchronization of df-paths.

A df-path r = 〈e0, . . . , ek〉 goes through an event e iff e = ei, 0 ≤ i ≤ k.
An event e is local to an entity n if there is only one df-path of entity n that
goes through e, e.g., e1, e2, e32. Two or more entities n1, . . . , nk synchronize in
a shared event e if two or more df-paths of n1, . . . , nk go through e, e.g., e7
synchronizes Supplier Order B and Order O2 whereas e19 synchronizes Supplier
Order B and Items Y 1 and Y 2.

Reading Entity Creation and Updates. We now discuss different interpre-
tations of entities n1, . . . , nk synchronizing in a shared event.

Event e intermediately synchronizes entities n1, . . . , nk when e is an interme-
diate event for n1, . . . , nk. We can interpret an intermediate synchronization as
an update or state change of one or more entities that requires the involvement
of the other entities. For example, event e7 intermediately synchronizes Order
O2 and Supplier Order B to update B based on the information in O2; event e8
updates both Supplier Order A and Item X3. Which entity changes state in e8
is not visible in the graph of Fig. 9.

An event e that is intermediate for one entity n but a starting event for enti-
ties n1, . . . , nk can be interpreted as entity n “created” or “initiated” entities
n1, . . . , nk. For example, Supplier Order A created Items X1,X2,X3 in e6, and
Supplier Order B created I2 in e5. Correspondingly, an event e that is interme-
diate for entity n and ending event for n1, . . . , nk is “closing” or “completing”
entities n1, . . . , nk. For example, Order O1 “completes” items X1,X2, Y 1 in e27.

An event e where multiple entities n1, . . . , nk of the same type synchronize is
a batching event for n1, . . . , nk [36,42,55]. For example, e27 batches X1,X2, Y 1,
e30 batches I1, I2, and e31 batches X3, Y 2.

298 D. Fahland

However, we have to be careful with those interpretations as, both, the graph
and the data from which it was created may be incomplete. Entities that are “cre-
ated” or “closed” may continue to exist both prior and after the data recorded,
e.g., all Items X1, . . . , Y 2 certainly exist prior to this process and after it, thus e6
and e27 only show when these items entered the visibility or scope of our obser-
vations. Likewise, a starting event e for an entity n that is not an intermediate
event for another entity n2 does not describe how n was created. For example,
e1, . . . , e4 do not explain how O1, O2, A,B were created. This is because our
graph of Fig. 9 is incomplete as we did not (a) infer the Resource entity and
the corresponding df -relationships from Table 1 and (b) we only recorded data
in a limited time window. A helpful principle to check for incompleteness in
distributed behavior is due to C.A. Petri [27]: most events happens due to a
synchronous interaction of two or more entities, and most physical entities are
never created from nothing and never disappear into nothing.

Reading Entity Interactions. Events and df-paths describe different modes
of interaction. An event e where the df-paths of n1 and n2 synchronize is a
synchronous interaction. A df-path for entity n describes an asynchronous inter-
action between n1 and n2 if n synchronizes both with n1 and n2 in different
events. If the df-path for n has only 2 events 〈e1, e2〉 then we can interpret entity
n as message from n1 to n2. We can interpret an event e that is the ending event
of entity n1 and the starting event of entity n2 as a handover from n1 to n2. In
Fig. 9, e7 is a synchronous interaction of O2 and B, the df-path of Y 1 describes
an asynchronous interaction from B to O2, and e28 is a handover from O1 to
(O1, P1).

If two entities n1 and n2 never synchronize in a shared event but there is at
least one asynchronous interaction between n1 and n2, then n1 and n2 interact
asynchronously. If all asynchronous interactions, i.e., df-paths, only go from n1

to n2, then the interaction is one-directional, and it is bi-directional otherwise.
In Fig. 9, A and O1 interact asynchronously and one-directional (from A to O1
via X1), O2 and P1 interact asynchronously and bi-directional (via (O2, P1)).

n1 and n2 interact indirectly if for any two events e1 of n1 and e2 of n2

the shortest df-path from e1 to e2 involves df-relationships from multiple other
entities. For example, O1 interacts indirectly with O2 via (O1, P1) and (O2, P2)
(df-path 〈e28, e29, e30, e31〉).

Finally, n1 and n2 do not interact if there is no df-path from n1 to n2, or
vice versa. For example, A and B do not interact. Note, however, that (indirect)
interactions via other entities as well as non-interaction are subject to which
entities have been included in the construction of the graph and which relations
have been reified into derived entities.

Reading Event Dependencies and Delays. We observed in Sect. 5.1 that
neither O1 nor O2 was shipped within 6 days as required in Sect. 1. We now
want to analyze which entities, that synchronized with O1 and O2, delayed
either order to be shipped on time.

Event Knowledge Graphs 299

Consider an event e that synchronizes the df-paths of multiple entities
n1, . . . , nk. Event e directly depends on any event ei that directly precedes e
via an incoming df-relationship (ei, e) ∈ Rdf

ni
, 1 ≤ i ≤ k along entity ni. We call

e.time − ei.time the delay between ei and e.
Suppose e1, . . . , ek are sorted on their delay to e. Event e1 was the first event

that directly preceded e, i.e., e could not have occurred earlier than e1. The
entity n1, for which (e1, e) ∈ Rdf

n1
was observed, was the first entity ready to

synchronize in e. We can interpret that each later event ei, i > 1 delayed the
synchronization in e as entity ni became ready to synchronize later than n1 did,
with ek and nk delaying e the most.

For example in Fig, 9, e31 (Pack Shipment for O2) depends on e7, e8, e21, e30
along entities O2, X3, Y 2, and (O2, P1) with delays of 3 days, 3 days, 2 days,
and 3 h, respectively. While O2 was first ready to synchronize in e31 after e7
(Update Order); e31 was delayed most by e30 (Clear Invoice for I1, I2) along
(O2, P1).

For a given event e, we can build the set delay∗(e) of transitive predecessors
that delayed e the most, by first adding event e′ that delayed e most, then
adding event e′′ that delayed e′ most, etc. For example in Fig. 9, delay∗(e32) =
{e31, e30, e29, e28, e27, e20, e19, e7, e5, e2}.

Comprehending such subsets of events (and the dynamics they describe) is
rather difficult. We use graph querying to reduce a graph to a subgraph of
interesting events.

5.3 Basic Querying Operations

Similarly to classical event logs, we can also subset (or filter) event knowledge
graphs for a more focused analysis. Recall that we have two basic operations to
sub-setting classical event logs: selection (include only a subset of the cases with
specific properties but keep all events in a case) and projection (keep all cases
but keep only a subset of events with specific properties). The same operations
can be applied on event knowledge graphs.

We select a subset of entities, but keep all event nodes correlated to the
entities and all directly-follows relations between the events of these entities.
Formally, given a graph G, we select entity nodes NEntity

sel ⊆ NEntity from G by
(1) removing all entity nodes NEntity\NEntity

sel and all adjacent corr relationships,
then (2) removing all event nodes e ∈ NEvent which no longer have any corr
relationships (because none of their entities was selected) and the adjacent df
relationships.

We project on a subset of events by keeping all entity nodes but only the
selected event nodes; as this may interrupt df-paths (if an intermediate event
gets removed) we have to recompute all df-relationships. Formally, given a graph
G, we project onto event nodes NEvent

proj ⊆ NEvent from G by (1) removing all
df -relationships from G, (2) removing all event nodes NEvent \NEvent

proj , and then
(3) doing df-inference on the resulting graph (Definition 12).

The criteria by which we select events and entities can consider properties of
events and entities but also relations to other event and entity nodes, and even

300 D. Fahland

Fig. 10. Projection of Fig. 9 onto events that delayed most e28 and e32 and are not
Unpack events. Bold df-relationships indicate which preceding event delayed an event
the most.

more complex paths or sub-graphs. For example, to understand what caused
delays in shipping order O1 (e28) and O2 (e32) while also removing unnecessary
events, we can project the graph of Fig. 9 onto the events the (1) delayed either
shipment the most (2) but without Unpack events. Formally, we project onto
(delay∗(e32)∪ delay∗(e28)) \ {e ∈ NEvent | e.act = Unpack}. Figure 10 shows the
resulting graph. Note the new df-relationships (e5, e30) ∈ Rdf

I2, (e19, e27) ∈ Rdf
Y 1,

(e19, e31) ∈ Rdf
Y 2, obtained after doing df-inference over the remaining events.

In Fig. 10, we observe the following: Pack Shipment for O1 (e27) was delayed
by Item Y 1 which was only ready for e27 after Receive SO (e19). In turn, e19 was
delayed by Supplier Order B with Update SO (e7), which we already identified
as cause for not receiving all items within 3 days in Sect. 5.1. Pack Shipment for
O2 (e31) was delayed by entity (O2, P1), that means, by Clear Invoice (e30) for
the Payment P1 related to O2. Receive Payment for P1 (e29) was delayed by
(O1, P1), that means, by Ship (e28) for the related order O1.

Altogether, this allows us to pinpoint the bottlenecks in the process: Update
SO delayed delivery of items Y 1, Y 2 needed for both O1 and O2, causing a
delay in shipment for O1. The fact that the customer only paid and cleared
both invoice I1, I2 after O1 was shipped delayed shipping O2 together with the
retailer’s policies.

Event Knowledge Graphs 301

5.4 Aggregating Events and Df-Relationships

Selection and projection allow to subset the data. Aggregation allows to mate-
rialize new nodes and relationships in the data. While the aggregation principle
we explain here can be applied for many purposes, we specifically discuss it for

– aggregating sets of events into activities (or event classes), and
– aggregating df-relationships between events into corresponding relationships

between activities.

The basic aggregation principle from sets of events to activities is formally iden-
tical to creating entity nodes from event properties as given in Definition 11.

– We select one event property that identifies a unique concept shared by many
events, in this case the property Activity.

– For each value c ∈ {e.Activity | e ∈ NEvent} of the Activity property that we
find among the events in the graph, we create a new node c with label Class
(representing the class of events with the same Activity property).

– We add an observes relationship from each event e to the Class node c ∈
NClass if e.Activity = c.

– We can also materialize how many events observe class c ∈ NClass in property
c.count.

The yellow rounded rectangles in Fig. 11 represent the Class nodes of the
events for Orders O1,O2 and Supplier Orders A,B. The dashed edges represent
the observes relationship, e.g., e2 and e1 both observe Create Order.

We then can aggregate the df-relationships in a straight-forward way: for any
two class nodes c1 and c2 we add a df relationship of type ent from c1 to c2 if
there are corresponding events e1 and e2 that directly follow each other for ent ,
i.e., if (e1, c1), (e2, c2) ∈ Robserves and (e1, e2) ∈ Rdf

n , n.type = ent . We can also
count how many df-relationships occur between events of c1 and c2 and add this
as property to this relationship.

For example, in Fig. 11, we observe two df-relationships from Create Order to
Create Invoice (e1, e18) and (e2, e5). Note, that this definition also creates self-
loops around event classes, e.g., we observe three df-relationships from Unpack
to Unpack. Also note that, as for events nodes, a class node can be part of df -
relationships for multiple different entity types, e.g., Update SO is an activity
that occurs for Order and Supplier Order.

5.5 Discovering Multi-entity Process Models

The aggregation operation of Sect. 5.4 essentially constructs a directly-follows
graph. The key difference to the directly-follows graph of classical event logs is
that each df-relationship between Class nodes is specific to one entity type. Thus,
it respects the idea of the local directly-follows relation laid out in Definition 6.
The resulting graph is a multi-entity directly-follows graph, also called multi-
viewpoint DFG [4] or artifact-centric model [41].

302 D. Fahland

Fig. 11. Aggregating events to event classes and lifting the directly-follows relation-
ships

Applying the event and df-aggregation of Sect. 5.4 to the graph of Fig. 9
results in the multi-entity DFG shown in Fig. 12. While the graph as a whole is
rather complex, each edge is grounded in temporal relations of a specific entity
type. Moreover, we can see that the behavior for each entity type is rather simple.

Event and df-aggregation can be implemented as simple, scalable queries7

over standard graph databases, enabling efficient in-database process discov-
ery [25,34]; the queries can be extended to filter based on frequencies or prop-
erties of the event knowledge graph [28].

An alternative representation of the multi-entity DFG is the proclet
model [26] shown in Fig. 13. It is constructed by not creating a global Class
node per unique e.Activity value in the data, but by creating a Class node per
unique pair of activity name and entity type (e.Activity, ent). As a result, we
see for example two Create Invoice nodes, one for Order and one for Invoice.
Two class nodes of the same name are linked by a cardinality relationship that
indicates how many entities are involved in an event of this class. For example,
in every Create Invoice events, one Order and one Invoice is involved, while in
every Receive SO event one Supplier Order and 2-3 Items are involved.

7 https://github.com/multi-dimensional-process-mining/eventgraph tutorial.

https://github.com/multi-dimensional-process-mining/eventgraph_tutorial

Event Knowledge Graphs 303

Fig. 12. Multi-Entity Directly-Follows-Graph of the running example obtained by
aggregating the graph of Fig. 9

Fig. 13. Synchronous proclet model of the running example obtained by aggregating
the graph of Fig. 9

304 D. Fahland

6 Beyond Control-Flow: Multi-dimensional Process
Analysis

So far, we analyzed the entities that are created and updated by the process based
on the event data in Table 1. We now turn our attention to the organizational
entities that actually make the process happen: the workers and supporting
systems often called resources, and the work itself that is being carried out. Along
the way, we showcase how flexible event knowledge graphs are. We integrate new
events from a different data source in Sect. 6.1. We then enrich event knowledge
graphs with df-paths over activities Sect. 6.2, which reveals queues. Enriching
event knowledge graphs with df-paths over workers in Sect. 6.3 reveals patterns
of how individual workers perform larger scale tasks. Finally, we show how to
infer new information from (enriched) event knowledge graphs in Sect. 6.4.

6.1 Extending Event Knowledge Graphs with New Events
EEv

en
tID

Ac
ti v

ity

Ti
m

e

_ I te
m

e12 Scan 04-05 13:00 X1
e13 Store 04-05 13:15 X1
e14 Scan 04-05 15:00 X2
e15 Store 04-05 15:15 X2
e16 Scan 04-05 17:00 X3
e17 Store 04-05 17:15 X3
e22 Retrieve 07-05 11:15 X1
e23 Retrieve 07-05 11:45 X2
e24 Scan 07-05 13:00 Y2
e25 Store 07-05 13:15 Y2
e26 Scan 07-05 15:00 Y1
e31 Retrieve 09-05 09:15 X3
e32 Retrieve 09-05 09:45 Y2

Fig. 14. Warehouse events

The process is supported by an automated
warehouse (see Fig. 1). Figure 14 shows
events of how the Items were handled by the
warehouse. To analyze how the warehouse
influenced the process, we have to combine
these events with the events from Table 1.
Luckily, we can avoid combining both tables
into one joint event table and repeating the
entire procedure of Sect. 4.3. We can simply
locally update an existing graph with new
events as follows. We choose to start from
the graph of Fig. 6.

1. Import Fig. 14 into new event nodes
(Definition 10). This results in new
event nodes e12, . . . , e17, e22, . . . , e26,
e31, e32.

2. Infer entities and correlation from the
new event nodes (Definition 11). This
results in the already existing entity
nodes X1, . . . , Y 2.

3. For each entity node n inferred in step 2, remove every df-relationship
r ∈ Rdf , r.ent = n, and then infer the df-relationships for n (Definition 12)
now including the new imported events.

The resulting graph is shown in Fig. 15. Note that we can obtained the orig-
inal Fig. 6 again by selection of the original entities and projection onto the
original events (see Sect. 5.3).

Event Knowledge Graphs 305

Fig. 15. Event graph after extending Fig. 6 with Fig. 14 (new events highlighted).

6.2 Adding Activities as Entities Reveals Queues

We defined entity inference in Definition 10 for the entity type attributes of the
source event table. However, Definition 10 can be applied on any property of an
event node.

For example, if we pick the Activity property as “entity identifier”, we infer
entities such as Receive SO, Unpack, Scan, Store, Retrieve, Pack Shipment. These
are not entities handled by the process. No, these entities are the actual building
blocks of the process. For example, each Item handled has to “pass through” each
of these entities to be completely processed. We can visualize how other entities
“pass through” activities by inferring in the graph of Fig. 15 the entity nodes for
Activity and their df-paths8. Figure 16 shows the resulting graph (limited to a
subset of events for readability).

We can see that the (red) Activity df-paths “go across” all the existing df-
paths while the (green) Item df-paths traverse the different Activity df-paths
largely “in parallel”. Whenever an Item df-path synchronizes with an Activity
8 Note that the Entity nodes identified by the activity property are semantically dif-
ferent from the Class nodes identified by the activity property that we obtained
in Sect. 5.4. The Class nodes semantically aggregate the existing df relationships
between events observed for other entities to df relationships between Class nodes.
Entity nodes of the entity type Activity instead derive new df relationships in addi-
tion to existing df relationships for other entities.

306 D. Fahland

Fig. 16. Inferring Activity as entities in the graph of Fig. 15 reveals Queues. (Color
figure online)

df-path in an event, the item is being worked on. Thus, we can interpret each
Activity entity A as an abstract “work station” and its events as the work that
is being performed there.

The space between two work stations A and B is a queue A : B, i.e., the space
where Items after being worked on at A wait until being worked on at B. We can see
in the graph in Fig. 16 that the Items do not always leave a queue in the same order
they entered it: X1 entered Unpack:Scan after X3 (e10 follows e8 in the df-path
for Unpack) but leaves before X3 (e12 precedes e16 in the df-path for Scan).

We can better understand this behavior by changing the layout of the graph
in Fig. 16. We select from Fig. 16 only Item and Activity entities. Setting the
x-coordinate of each event by its time property and the y-coordinate by its
Activity entity results in the graph in Fig. 17, which is called the Performance
Spectrum [16].

The Performance Spectrum shows us that batching happens at Receive SO
and Pack Shipment (diverging/converging Item df-paths), that Scan:Store and
Store:Retrieve are being FIFO queues, that Unpack:Scan is not a FIFO queue,
e.g., X3 is overtaken by X1,X2 and Y 1 is overtaken by Y 2.

We already identified in Sect. 5 reasons why Order O2 was not shipped within
the 6 days promised by the retailed (see Sect. 1). We now can also clarify the
reasons for O1. Figure 17 shows that although the second supplier order B with
the required item Y 1 was received on 7-5 (the 6th day of O1), order O1 was only
packed after the 15:00 pick-up time. The non-FIFO handling in Unpack:Scan
seems to be at fault. We observe

Event Knowledge Graphs 307

Receive SO

Unpack

Scan

Store

Retrieve

Pack Shipment

4-5 10:00 7-5 10:00 9-5 10:004-5 15:00 77-5 15:00

1hr

9-5 15:00

Fig. 17. Sub-graph of Fig. 16 for Activity entities and Item entities, with event coordi-
nates defined byActivity (y-axis) and time (x-axis), results in thePerformance Spectrum.

1. a consistent 2-h minimum waiting time between two subsequent Scan activ-
ities (along its Activity df-path) causing Y 1 to finish Scan after Y 2 at 7-5
15:00, and

2. a consistent 2-h minimum soujourn time for the last Item reaching Pack
Shipment, i.e., Pack Shipment for X1,X2, Y 1 completes at 7-5 17:00.

Thus, if Unpack:Scan had followed a strict FIFO policy, Y 1 could have com-
pleted its Scan activity at 7-5 12:45 ; the subsequent Pack Shipment event over
X1,X2, Y 1 could have completed at 7-5 14:45 just before the scheduled pick-up
at 7-5 15:00.

The Performance Spectrum reveals further, far more involved patterns of
process performance over time than just batching and FIFO [16]. It is also imple-
mented as a visual analytics tool over event data [15] and in combination with
process models [54]. Mining performance patterns from it [36] allows to engi-
neer so called inter-case features for improving the accuracy of remaining time
prediction [37].

6.3 Adding Actors as Entities Reveals Complex Tasks

We found in Sect. 6.2 that Activity entities describe the abstract “work stations”
where other entities are being worked on. Workers are performing this actual
work. Often called “resources” in process management literature [18], we prefer
the term Actor used in organizations research [32], as each actor follows its own
behavior. To study actor behavior in the graph of Fig. 6, we only have to (1)
infer the Actor entities from the event nodes (see Table 1), and (2) infer each
actor’s df-path. Figure 18 shows the resulting graph.

We can see actors R1, R2, R3 working “intertwined” in the same part of the
process. In contrast, R4 and R5 work more separated from the other actors.
Also, the actor df-paths actors show very different characteristics. The df-path
〈e1, e2, e3, e7〉 of R1 synchronizes with any other entity only in one event, and

308 D. Fahland

Fig. 18. Adding actors (Resource) entities to the event knowledge graph reveals task
execution patterns

then moves on to the next entity O1, O2, A, B, always performing just a single
activity on each. In contrast, the df-path of R4 synchronizes over multiple subse-
quent events with the same entity, i.e., e27, e28 in O1 and e31, e32 in O2, meaning
R4 always performs a “unit of work” that consists of two subsequent activities.
Such a larger unit of work of multiple related activities is called a task [32,38].

A task instance of an actor R working on an entity X materializes in an event
knowledge graph as a specific subgraph over event nodes e1, . . . , ek: (1) the df-
paths of R and X both meet in e1, (2) diverge in ek, (3) synchronize in each
event node e1, . . . , ek, and (4) at least one of their df-paths has no other event in
between e1, . . . , ek [38]. The grey rectangles highlighted in Fig. 18 shows several
task instance. The task instances themselves and the way they are ordered in
the graph reveal unique characteristics of performing work.

Event Knowledge Graphs 309

– Actor R1 only performs a series of singleton tasks ti1, ti2, ti3, ti4. The df-path
of R1 describes that Supplier Order A has been placed only after both Orders
O1 and O2 were created.

– Actor R4 performs two instances ti27 and ti31 of the same task (first Pack
Shipment then Ship) directly after each other on two different Orders.

– Actor R2 also performs two instances ti6 and ti19 of the same task (first
Receive then repeatedly Unpack) directly after each other; however R2 inter-
rupts ti6 on A to perform ti9 (Update Invoice) on I2.

Further, more complex types of task instances can be identified in event knowl-
edge graphs [38]. The df-relationships between task instances also reveal patterns
of how work is handed over between actors. For example R1 hands work over to
R2 in all Supplier Orders, to R3 in all Orders, and to R4 in O2; R2 hands work
over to R4 in all Items and to R5 in I2. Such patterns are studied in the area
of routines research [32].

We clearly can see some undesirable behavior in how actors collaborate over
the different entities.

– R1 created both Orders O1 and O2 but only placed Supplier Order A.
Instead, R3 placed B and we cannot observe a handover from R1 to R3; this
lack of collaboration may have led to R3 placing a wrongly Supplier Order
B (with only one item Y). The Update SO by R1 remedies the problem but
caused to the delay in delivering Y 1 we identified in Sect. 5. The problem may
have been avoided by R1 completing the “larger task” 〈e1, . . . , e4〉 alone.

– R2 is interrupting their work on unpacking Supplier Order A after X3 (e8)
to Update Invoice I2 before continuing on unpacking X1 (e10). This “context
switch” between handling Items and Invoice results in a longer delay between
two subsequent Unpack events (30mins) than usual (15mins), which we can
directly see in the Performance Spectrum in Fig. 17. The longer delay is a
risk to packing shipments on time as we analyzed in Sect. 6.2. The risk could
be reduced by ensuring that R2 is not interrupting their task; R3 could have
updated the invoice instead.

The process model shown in Fig. 21, and further explained in Sect. 7, describes
for each actor behavioral routines that could avoid undesirable behavior.

6.4 Inference in Event Knowledge Graphs with Multiple Layers

Our discussions so far focused on constructing, understanding, and finding pat-
terns in graphs over Entity and Event nodes and the df and corr relationships.
As the model of event knowledge graphs (Definition 8) is based on labeled prop-
erty graphs (Definition 7), we can extend an event knowledge graph with further
node and relationship types, to describe more knowledge about the process. We
already did that in Sect. 5.4 when aggregating multiple Event nodes of the same
activity to a new node with label Class. In the following we expand on this idea
by an example. We do so in the style of a process mining analyst applying all

310 D. Fahland

the concepts of the previous sections as data processing operations. In fact all
steps shown here can be realized through Cypher queries over a graph database.

Suppose we want to create a concise summary of how actors organize the
work of handling Supplier Orders, based on the graph with actor df-paths shown
in Fig. 18. The actors correlated to Supplier Order events are R1, R2, R3. We
select entities A and B and R1, R2, R3 and then project onto events of a Supplier
Order or between two Supplier Order events (to keep e9). The resulting graph
is shown in Fig. 19 as “Event Entity Layer”.

Fig. 19. An event knowledge graph extended with additional layers into a “process
knowledge graph”.

Next, we aggregate the event layer into a new “Task Instance Layer”.

1. For each task instances, i.e., each subgraph of an Actor df-path and an Sup-
plier Order df-path synchronizing on consecutive events as defined in Sect. 6.3,

Event Knowledge Graphs 311

we extend the graph with a new node with label TaskInstance, resulting in the
nodes ti3, ti4, ti6, ti7, ti9, ti21 shown in the “Task Instance Layer” of Fig. 19.

2. We add a new contains relationship (ti, e) ∈ Rcontains from each TaskIn-
stance node ti to each Event node e that is part of the task instance, e.g.,
(ti9, e19), (ti9, e20), (ti9, e21) ∈ Rcontains in Fig. 19. This connects the nodes in
both layers.

3. Each ti ∈ NTaskInstance gets the property ti.Task by concatenating the Activ-
ity values of the event nodes it contains along their df-path (abstracting
repetitions with a Kleene star), e.g., ti6.Task = 〈Receive SO,Unpack∗〉.

4. We then lift the df-relationships from Event nodes to TaskInstance nodes.
For each df-relationship (e, e′) ∈ Rdf between events e, e′ contained in dif-
ferent task instances ti �= ti′, (ti, e), (ti′, e′) ∈ Rcontains, we create a new df-
relationship (ti, ti′) ∈ Rdf between task instance nodes ti and ti′ (and copy
the properties of the df relationship).

The resulting “Task Instance Layer” in Fig. 19 represents the “Event Entity
Layer” at the aggregation level of task executions instead of activity executions.

5. To understand which tasks are performed and how often, we aggregate Task-
Instance nodes into Task nodes by their Task property (see Sect. 5.4).

The resulting “Task Layer” in Fig. 19 shows four tasks Place SO (performed
twice in ti3, ti4), Update SO (performed once in ti7), Update Invoice (performed
once in ti9), and 〈Receive SO,Unpack∗〉 (performed twice in ti6, ti21).

We now want to visualize the behavior all actors regarding the frequent tasks
in handling Supplier Orders, e.g., tasks performed at least twice. The visualiza-
tion shall be on the abstraction level of the activities performed by actors, i.e., a
multi-entity DFG. To achieve this, we aggregate the “Event Entity Layer” into
a “Class Layer” using the “Task Layer” as context.

1. Select from the “Event Entity Layer” only the Actor entities; this removes
all df-relationships for A and B.

2. Project onto all event nodes e ∈ NEvent having a path 〈e, ti, t〉 to a task node
t ∈ NTask with t.count ≥ 2, i.e., only events that are contained in a task
instance ti of a frequently occurring task. This removes e7 and e9 from the
graph in Fig. 19 and introduces (e8, e10) ∈ Rdf

R2.
3. Aggregate the Event nodes to Class nodes by their Activity property and lift

df-relationships from Event nodes to Class nodes (see Sect. 5.4).

The resulting multi-entity DFG forms a new “Class Layer” in the graph, that
is connected to the “Event Entity Layer” by observes relationships, as shown in
Fig. 19. The multi-entity DFG shows that R1 and R2 work on disjoint sets of
activities, and that R2 indeed follows a cyclic, structured behavior. The paths
from Class nodes Receive SO and Unpack to the Task nodes show that all
activities belong to the same task, i.e., one cycle is one “unit of work”.

The multi-entity DFG is a filtered DFG: it lacks df-relationships for Supplier
Orders and it omits Update SO. Thus, the multi-entity DFG does not fit or deviates
from the “Event Entity Layer”. We can identify the deviations in multi-layered

312 D. Fahland

process knowledge graph in Fig. 19 similar to alignments [9]; see [8]. For instance,
for df-relationship (Unpack,Unpack) ∈ Rdf in the “Class Layer”, we see

– two corresponding “synchronous” df-relationship (e10, e11), (e20, e21) ∈ Rdf
R2

with (ei,Unpack) ∈ Robserves ; and
– one corresponding “log-move” df-path 〈e8, e9, e10〉 ∈ (Rdf

R2)
∗ with

(e8,Unpackt), (e9,Update Invoice), (e10,Unpack) ∈ Robserves , i.e., e9 occurs
in between Unpack and Unpack.

7 Conclusion and Outlook

The preceding sections studied different forms of process mining over multiple
behavioral dimensions that are summarized in Fig. 20. We showed in Sect. 3 how
classical process mining techniques fail when the assumption of a single entity
handled by a single execution (bottom left quadrant in Fig. 20) is violated.

analysis over…

…in process behaviorone en�ty mul�ple en��es

mul�ple dynamics:
all execu�ons

and actors

one dynamic:
one execu�on

ERP Systems
Document-driven

processes

Call Centers
Queuing Networks

Healthcare

classical
process
mining

Logis�cs
Warehouses

Produc�on Systems

Fig. 20. Quadrants of process analysis over multiple behavioral dimensions

To overcome these assumptions, we introduced process mining with event
knowledge graphs, that rests on three simple, but fundamental principles:

1. Explicitly represent every entity that an event is correlated to as a node. An
entity thereby can be anything: a specific object, a person or actor, or even
an abstract concept such as an activity.

2. Infer directly-follows relations over events per entity. This results in directly-
follows paths forming complex, but meaningful structures that can be filtered
for.

3. Aggregate any structure of interest formed by directly-follows paths into new
nodes describing process-related concepts, explicitly linked to the structures
that generate them. This allows to infer interactions between related entities
(see Sect. 4.4), multi-entity process models (see Sect. 5.5), and task instances
(see Sect. 6.3).

Event Knowledge Graphs 313

Applying these principles, we constructed event knowledge graphs from standard
event data through simple concepts in Sect. 4.3. We showed in Sect. 5 how to
analyze processes where each execution involves multiple related entities, such as
ERP systems and document-driven processes (bottom right quadrant in Fig. 20).
We showed in Sect. 6 how event knowledge graphs also allow to analyze multiple
dynamics together. We added actor and queue behavior to study how entities
pass through queues or actors perform tasks across multiple entities, which are
dynamics studied in call centers or in healthcare (top left quadrant in Fig. 20).
Note that, in Sect. 6 we always focused on a single entity processed in a queue
or in a task. How to analyze the combination of multiple dynamics over multiple
entities (top right quadrant in Fig. 20) is an open question.

Event knowledge graphs give rise to a number of novel research questions.
We have shown how to construct event knowledge graphs from event tables,

even automatically [24,25]. We also need techniques to construct event knowl-
edge graphs from relational database while preserving the existing entities and
relations. Existing automated conversion techniques from relational to graph
databases [50] only convert records into entity nodes, while event knowledge
graphs require to construct event nodes.

The quality of a process mining analysis on event knowledge graphs relies on
having identified the relevant structural relations (between entities) and behav-
ioral or cause-effect relations (between events) (see Sect. 4.4). We need auto-
mated techniques to infer relevant relations that take the temporal semantics
of the df-relationship into account. Promising first steps are techniques that
explicitly allow to incorporate domain knowledge when inferring causal relation-
ships from relational data [56], or use ontologies [6,7] for extraction. Specifically,
dynamically changing relationships and changes of object properties [39,40] still
need to be considered.

We have sketched the possibility of structuring a complex process mining
analysis by adding analysis layers to the graph, but limited ourselves to simple
selection, projection, and aggregation queries. Adequate query languages that
also can handle process-relevant phenomena such as frequency, noise, perfor-
mance in relation to multiple entities need to be considered. Also, more complex
behavioral dynamics can be discovered. For example, enriching the event knowl-
edge graph with the activity dimension to derive the performance spectrum (see
Sect. 6.2) allows detecting subgraphs that indicate high workload (many events
in a short interval) or a dynamic bottleneck (a short-term increase in waiting
time) [51]. Aggregating these to “high-level events” and mining for cause-effect
relations among them reveals how performance anomalies cascade through a
process [51].

Finally, while we did discuss how to discover multi-entity directly-follows
graphs through aggregation, true process discovery of models with precise seman-
tics from event knowledge graphs still has to be addressed. In principle, such
models can be discovered through principles of artifact-centric process min-
ing [41,46]: First obtain a classical event log per entity type, e.g., by extracting
the df-paths per entity type from the graph, and discover a classical process

314 D. Fahland

Fig. 21. Synchronous proclet model for the graph of Fig. 9 extended with proclets
describing the intended (not the observed) behavior for all actors.

model per entity type. Then compose the models of the different entity types to
express their synchronization.

Figure 21 shows a possible process model that could be obtained in this way
for our example, using a multi-entity extension for Petri nets, called synchronous
proclets [26]. Each proclet is a Petri net that describes the behavior of one
entity type; bold-bordered initial transitions describe the creation of a new entity.
The dashed synchronization edges describe which transitions occur together; the
multiplicity annotations indicate how many entities of each type have to be
involved. Note that the proclet model in Fig. 21 is a hybrid between discovered
and manually created model. The proclets for Order, Supplier Order, Invoice,

Event Knowledge Graphs 315

Item, Payment, and (Order,Payment) are each discovered from the entity type’s
df-paths of the graph in Fig. 9. The proclets for the Actors however are created
manually9, describing the intended routine for each actor based on the insights in
Sect. 6.3. Bold-bordered initial transitions describe the creation of a new entity;
note that the proclets for actors do not have an initial transition but an initial
marking as actors are not created in the process. Dashed synchronization edges
between transitions describe that the transitions have to occur together; the
multiplicity annotations indicate how many entities of each type have to be
involved. For instance, R1 creates 1 new Order in each occurrence of Create
Order, but R4 always packs 2–3 Items into 1 Shipment in each occurrence of
Pack Shipment.

An alternative formalization of this concept are object-centric Petri nets [53].
Object-centric Petri nets also first discover one Petri net per entity type, then
annotate the places and arcs with entity identifiers, and then compose all entity
nets along transitions for the same activity, resulting in a coloured Petri net
model that is accessible for analysis [53] and measuring model quality [3]. How-
ever, synchronization by composition prevents explicitly modeling (and thus
discovering) interactions between entities such as the relation from Order to
Payment described by proclet (Order,Payment) in Fig. 21.

Fig. 22. Conditional scenario describing an
interaction of 2 Orders and 1 Payment.

Though, while proclets can
describe entity interactions, the
behavior of entity interactions
tends to be rather unstructured
resulting in overly complex mod-
els [41]. Extensions of declarative
models (see [10]) such as modu-
lar DCR graphs [14], that apply
similar principles as synchronous
proclets, could be more suitable.
Alternatively, scenario-based mod-
els [31] that specify conditional par-
tial orders of events over multi-
ple entities could be applied. For
instance, the conditional scenario
in Fig. 22 specifies the interac-
tion between Orders and Payments
observed in the graph of Fig. 9.

Altogether, event knowledge graphs give rise to entirely novel forms of process
mining that support novel forms of process management [17].

9 We created one proclet per actor as introducing a proclet for all actors would result
in a very complex proclet as different actors follow very different behavior. Further,
the manually created model conveniently avoids the issue of having to layout how
R2 synchronizes both with Supplier Order and with Invoice.

316 D. Fahland

References

1. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3–34.
Springer, Cham (2022)

2. Accorsi, R., Lebherz, J.: A practitioner’s view on process mining adoption, event
log engineering and data challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.)
Process Mining Handbook. LNBIP, vol. 448, pp. 212–240. Springer, Cham (2022)

3. Adams, J.N., van der Aalst, W.M.P.: Precision and fitness in object-centric process
mining. In: ICPM 2021, pp. 128–135. IEEE (2021)

4. Berti, A., van der Aalst, W.: Extracting multiple viewpoint models from relational
databases. In: Ceravolo, P., van Keulen, M., Gómez-López, M.T. (eds.) SIMPDA
2018-2019. LNBIP, vol. 379, pp. 24–51. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-46633-6 2

5. Bonifati, A., Fletcher, G.H.L., Voigt, H., Yakovets, N.: Querying Graphs. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2018)

6. Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: OBDA for log extraction
in process mining. In: Ianni, G., et al. (eds.) Reasoning Web 2017. LNCS, vol.
10370, pp. 292–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61033-7 9

7. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access
for extracting event logs from legacy data: the onprom tool and methodology. In:
Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59336-4 16

8. Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process
Mining Handbook. LNBIP, vol. 448, pp. 155–190. Springer, Cham (2022)

9. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

10. Di Ciccio, C., Montali, M.: Declarative process specifications: reasoning, discov-
ery, monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining
Handbook. LNBIP, vol. 448, pp. 108–152. Springer, Cham (2022)

11. Cyganiak, R., Hyland-Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract
syntax. W3C Proposed Recommendation (2014)

12. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Case notion discovery
and recommendation: automated event log building on databases. Knowl. Inf. Syst.
62(7), 2539–2575 (2019). https://doi.org/10.1007/s10115-019-01430-6

13. De Weerdt, J., Wynn, M.T.: Foundations of process event data. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 193–
211. Springer, Cham (2022)

14. Debois, S., López, H.A., Slaats, T., Andaloussi, A.A., Hildebrandt, T.T.: Chain of
events: modular process models for the law. In: Dongol, B., Troubitsyna, E. (eds.)
IFM 2020. LNCS, vol. 12546, pp. 368–386. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-63461-2 20

15. Denisov, V., Belkina, E., Fahland, D., van der Aalst, W.M.P.: The performance
spectrum miner: visual analytics for fine-grained performance analysis of processes.
In: BPM 2018 Demos. CEUR Workshop Proceedings, vol. 2196, pp. 96–100. CEUR-
WS.org (2018)

https://doi.org/10.1007/978-3-030-46633-6_2
https://doi.org/10.1007/978-3-030-46633-6_2
https://doi.org/10.1007/978-3-319-61033-7_9
https://doi.org/10.1007/978-3-319-61033-7_9
https://doi.org/10.1007/978-3-319-59336-4_16
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/s10115-019-01430-6
https://doi.org/10.1007/978-3-030-63461-2_20
https://doi.org/10.1007/978-3-030-63461-2_20

Event Knowledge Graphs 317

16. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description
of processes performance from event data. In: Weske, M., Montali, M., Weber, I.,
vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139–157. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98648-7 9

17. Dumas, M., et al.: Augmented business process management systems: a research
manifesto. CoRR, abs/2201.12855 (2022)

18. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, 2nd edn. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-662-56509-4

19. Esser, S., Fahland, D.: Event Graph of BPI Challenge 2014. Dataset. https://doi.
org/10.4121/14169494

20. Esser, S., Fahland, D.: Event Graph of BPI Challenge 2015. Dataset. https://doi.
org/10.4121/14169569

21. Esser, S., Fahland, D.: Event Graph of BPI Challenge 2016. Dataset. https://doi.
org/10.4121/14164220

22. Esser, S., Fahland, D.: Event Graph of BPI Challenge 2017. Dataset. https://doi.
org/10.4121/14169584

23. Esser, S., Fahland, D.: Event Graph of BPI Challenge 2019. Dataset. https://doi.
org/10.4121/14169614

24. Esser, S., Fahland, D.: Event Data and Queries for Multi-Dimensional Event Data
in the Neo4j Graph Database, April 2021. https://doi.org/10.5281/zenodo.4708117

25. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. 10(1–2), 109–141 (2021). https://doi.org/10.1007/s13740-021-0122-1

26. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 1

27. Fahland, D.: Petri’s understanding of nets. In: Reisig, W., Rozenberg, G. (eds.)
Carl Adam Petri: Ideas, Personality, Impact, pp. 31–36. Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-96154-5 5

28. Fahland, D.: multi-dimensional-process-mining/eventgraph tutorial, April 2022
29. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Behavioral

conformance of artifact-centric process models. In: Abramowicz, W. (ed.) BIS 2011.
LNBIP, vol. 87, pp. 37–49. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21863-7 4

30. Fahland, D., Denisov, V., van der Aalst, W.M.P.: Inferring unobserved events in
systems with shared resources and queues. Fundam. Informaticae 183(3–4), 203–
242 (2021). https://doi.org/10.3233/FI-2021-2087

31. Fahland, D., Prüfer, R.: Data and abstraction for scenario-based modeling with
petri nets. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol.
7347, pp. 168–187. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31131-4 10

32. Goh, K., Pentland, B.: From actions to paths to patterning: toward a dynamic
theory of patterning in routines. Acad. Manag. Ann. 62, 1901–1929 (2019)

33. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4) (2021). https://
doi.org/10.1145/3447772

34. Jalali, A.: Graph-based process mining. In: Leemans, S., Leopold, H. (eds.) ICPM
2020. LNBIP, vol. 406, pp. 273–285. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-72693-5 21

35. Jans, M., Soffer, P.: From relational database to event log: decisions with quality
impact. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp.
588–599. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 46

https://doi.org/10.1007/978-3-319-98648-7_9
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.4121/14169494
https://doi.org/10.4121/14169494
https://doi.org/10.4121/14169569
https://doi.org/10.4121/14169569
https://doi.org/10.4121/14164220
https://doi.org/10.4121/14164220
https://doi.org/10.4121/14169584
https://doi.org/10.4121/14169584
https://doi.org/10.4121/14169614
https://doi.org/10.4121/14169614
https://doi.org/10.5281/zenodo.4708117
https://doi.org/10.1007/s13740-021-0122-1
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-319-96154-5_5
https://doi.org/10.1007/978-3-642-21863-7_4
https://doi.org/10.1007/978-3-642-21863-7_4
https://doi.org/10.3233/FI-2021-2087
https://doi.org/10.1007/978-3-642-31131-4_10
https://doi.org/10.1007/978-3-642-31131-4_10
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.1007/978-3-030-72693-5_21
https://doi.org/10.1007/978-3-030-72693-5_21
https://doi.org/10.1007/978-3-319-74030-0_46

318 D. Fahland

36. Klijn, E.L., Fahland, D.: Performance mining for batch processing using the perfor-
mance spectrum. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM
2019. LNBIP, vol. 362, pp. 172–185. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-37453-2 15

37. Klijn, E.L., Fahland, D.: Identifying and reducing errors in remaining time predic-
tion due to inter-case dynamics. In: ICPM 2020, pp. 25–32. IEEE (2020). https://
doi.org/10.1109/ICPM49681.2020.00015

38. Klijn, E.L., Mannhardt, F., Fahland, D.: Classifying and detecting task executions
and routines in processes using event graphs. In: Polyvyanyy, A., Wynn, M.T., Van
Looy, A., Reichert, M. (eds.) BPM 2021. LNBIP, vol. 427, pp. 212–229. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-85440-9 13

39. Li, G., de Carvalho, R.M., van der Aalst, W.M.P.: Automatic discovery of object-
centric behavioral constraint models. In: Abramowicz, W. (ed.) BIS 2017. LNBIP,
vol. 288, pp. 43–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59336-4 4

40. Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting
object-centric event logs to support process mining on databases. In: Mendling, J.,
Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 182–199. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92901-9 16

41. Xixi, L., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015)

42. Martin, N., Pufahl, L., Mannhardt, F.: Detection of batch activities from event
logs. Inf. Syst. 95, 101642 (2021)

43. Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-
centric and artifact-centric processes. In: La Rosa, M., Soffer, P. (eds.) BPM 2012.
LNBIP, vol. 132, pp. 316–327. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36285-9 36

44. Pegoraro, M., Bakullari, B., Uysal, M.S., van der Aalst, W.M.P.: Probability esti-
mation of uncertain process trace realizations. In: Munoz-Gama, J., Lu, X. (eds.)
ICPM 2021. LNBIP, vol. 433, pp. 21–33. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-98581-3 2

45. Piessens, D.A.M.: Event log extraction from SAP ECC 6.0. Master’s thesis, Eind-
hoven University of Technology (2011)

46. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Coop-
erative Inf. Syst. 24(1), 1550001:1–1550001:44 (2015). https://doi.org/10.1142/
S021884301550001X

47. Pourmirza, S., Dijkman, R.M., Grefen, P.: Correlation miner: mining business pro-
cess models and event correlations without case identifiers. Int. J. Cooperative Inf.
Syst. 26(2):1742002:1–1742002:32 (2017)

48. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, Sebastopol
(2013)

49. Schruben, L.: Simulation modeling with event graphs. Commun. ACM 26(11),
957–963 (1983)

50. Stoica, R., Fletcher, G.H.L., Sequeda, J.F.: On directly mapping relational
databases to property graphs. In: 13th Alberto Mendelzon International Work-
shop on Foundations of Data Management. CEUR Workshop Proceedings, vol.
2369. CEUR-WS.org (2019)

51. Toosinezhad, Z., Fahland, D., Köroglu, Ö., van der Aalst, W.M.P.: Detecting
system-level behavior leading to dynamic bottlenecks. In: ICPM 2020, pp. 17–24.
IEEE (2020). https://doi.org/10.1109/ICPM49681.2020.00014

https://doi.org/10.1007/978-3-030-37453-2_15
https://doi.org/10.1007/978-3-030-37453-2_15
https://doi.org/10.1109/ICPM49681.2020.00015
https://doi.org/10.1109/ICPM49681.2020.00015
https://doi.org/10.1007/978-3-030-85440-9_13
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/978-3-319-92901-9_16
https://doi.org/10.1007/978-3-642-36285-9_36
https://doi.org/10.1007/978-3-642-36285-9_36
https://doi.org/10.1007/978-3-030-98581-3_2
https://doi.org/10.1007/978-3-030-98581-3_2
https://doi.org/10.1142/S021884301550001X
https://doi.org/10.1142/S021884301550001X
https://doi.org/10.1109/ICPM49681.2020.00014

Event Knowledge Graphs 319

52. Aalst, W.M.P.: Object-centric process mining: dealing with divergence and con-
vergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1 1

53. van der Wil, M.P.: Aalst and Alessandro Berti. Discovering object-centric petri
nets. Fundam. Informaticae 175(1–4), 1–40 (2020)

54. van der Aalst, W.M.P., Tacke Genannt Unterberg, D., Denisov, V., Fahland, D.:
Visualizing token flows using interactive performance spectra. In: Janicki, R.,
Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 369–
380. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8 18

55. Waibel, P., Novak, C., Bala, S., Revoredo, K., Mendling, J.: Analysis of business
process batching using causal event models. In: Leemans, S., Leopold, H. (eds.)
ICPM 2020. LNBIP, vol. 406, pp. 17–29. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-72693-5 2

56. Waibel, P., Pfahlsberger, L., Revoredo, K., Mendling, J.: Causal process min-
ing from relational databases with domain knowledge (2022). https://doi.org/10.
48550/ARXIV.2202.08314

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-51831-8_18
https://doi.org/10.1007/978-3-030-72693-5_2
https://doi.org/10.1007/978-3-030-72693-5_2
https://doi.org/10.48550/ARXIV.2202.08314
https://doi.org/10.48550/ARXIV.2202.08314
http://creativecommons.org/licenses/by/4.0/

Predictive Process Monitoring

Chiara Di Francescomarino and Chiara Ghidini(B)

Fondazione Bruno Kessler, Trento, Italy
{dfmchiara,ghidini}@fbk.eu

1 Introduction

Predictive Process Monitoring [29] is a branch of process mining that aims at
predicting the future of an ongoing (uncompleted) process execution. Typical
examples of predictions of the future of an execution trace relate to the outcome
of a process execution, to its completion time, or to the sequence of its future
activities.

Being able to predict in advance the outcome of a process execution, the time
that a process instance will require to complete, or the activities that will be
executed next can be extremely valuable in several domains and scenarios, e.g.,
for production processes, allowing organizations to prevent undesired outcomes,
issues and delays. Indeed, differently from the problem of monitoring business
processes in a reactive way [28], i.e., so that the violation or the delay is iden-
tified only after its occurrence, predicting the violation or the issue before it
occurs, would allow for supporting users and organizations in preventing it by
taking the appropriate preventive countermeasures. Fueled also by the wave of
technical developments in Data Science, Predictive Analytics, and data driven
Artificial Intelligence, the development of predictive techniques tailored to the
field of Process Mining has rapidly established itself both as a vibrant research
topic and as an impactful functionality with a direct application in innovative
organizational contexts and process mining tools, which often go hand in hand.
Examples are the development of new Predictive Process Monitoring pipelines
for specific organizations (such as hospitals) [3] and the investigation of explain-
able Predictive Process Monitoring techniques performed together with leading
Process Mining companies such as myInvenio1 [18] with the aim of incorporating
the features within their Process Mining tools (see also [36]).

Predictive Process Monitoring approaches usually leverage past historical
complete executions in order to provide predictions about the future of an ongo-
ing (incomplete) case. They usually have two phases: a training or learning phase,
in which a predictive model is learned from historical (complete) execution traces
and a runtime or prediction phase, in which the predictive model is queried for
predicting the future of an ongoing case.

1 Recently acquired by IBM as part of the IBM Process Mining suite. See www.ibm.
com/cloud/cloud-pak-for-business-automation/process-mining/.

c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 320–346, 2022.

https://doi.org/10.1007/978-3-031-08848-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_10&domain=pdf
www.ibm.com/cloud/cloud-pak-for-business-automation/process-mining/
www.ibm.com/cloud/cloud-pak-for-business-automation/process-mining/
https://doi.org/10.1007/978-3-031-08848-3_10

Predictive Process Monitoring 321

The chapter is structured as follows:2 after an introduction of a simple
explanatory example (Sect. 2) and of the main dimensions characterizing the
family of the Predictive Process Monitoring approaches for business processes
(Sect. 3), the typical encodings and approaches used for the prediction of out-
comes (Sect. 4), numeric values (Sect. 5), and sequences of activities - and related
payloads - (Sect. 6), are described in the next three sections, respectively. Finally,
Sect. 7 presents new relevant trends in the context of operational support tech-
niques based on Machine Learning and Sect. 8 introduces the main available open
source tools supporting Predictive Process Monitoring tasks. We assume as pre-
requisite for the next sections that the reader has some machine/deep learning
knowledge, especially on classification and regression algorithms, as well as on
recurrent neural networks. The interested reader can refer to [5,19,20].

2 Running Example

During the execution of a business process, process participants cooperate to
satisfy certain business constraints. At any stage of the process enactment, deci-
sions are taken aimed at achieving the satisfaction of these constraints. Being
able to predict in advance certain aspects of a process execution allows organi-
zations to take advantage or adapt to desirable future enfolding or to react and
be able to prevent an undesirable scenario by taking the appropriate preventive
countermeasures.

In this chapter we will illustrate the potential and characteristics of Predictive
Process Monitoring by means of a running example in a healthcare scenario.3

The example describes the process of a patient going to a hospital to perform
a radiology exam and related medical checks. The process covers both the clin-
ical aspects, such as the visit(s) and the radiology exam(s) and administrative
issues, such as the admission to the radiology department, the computation of
the medical bill and its payment. During the process execution, the doctor has to
make decisions on whether further exams are required, and - if possible - issued.
Depending on the examinations visits can precede and/or follow the radiology
exam, which vary in range from Ultrasound, to X-ray, to Pet, MRI, Breast Imag-
ing, and so on. The process typically starts with the admission, the execution of
the medical activities (exams and visits) and the computation and paying of the
bills. Different executions are nonetheless possible such as a payment in advance,
before the visit.

In this scenario, historical information about past executions of the process,
and in particular data related to the clinical history of other patients with similar
characteristics, could be used to support the hospital predicting the unfolding
of a certain execution. As an example, at a certain time during the process
execution, one could predict whether a certain patient will require ultrasounds
2 In this chapter we mostly focus on the main pipeline, omitting aspects mainly related

to the preprocessing and evaluation phase.
3 This example and its instantiations in the following sections are taken and inspired

from the running example used in [25].

322 C. Di Francescomarino and C. Ghidini

Fig. 1. Predictive Process Monitoring along three dimensions.

and/or at what time. This may be used by the hospital staff to improve or adapt
the scheduling of their facilities.

3 The Family of Predictive Process Monitoring
Approaches

Although Predictive business Process Monitoring is a relatively young field, it
has been growing fast in the latest years, as it is also witnessed by recent surveys
on the topic [13,31]. As depicted in Fig. 1, the literature on predictive business
process monitoring can be roughly classified along three main dimensions:

• type of prediction (i.e., the type of predictions provided as output);
• type of adopted approach and technique;
• type of information exploited in order to get predictions (i.e., the type of

information taken as input).

Concerning the type of prediction, according to the literature [13,46], we can
classify the existing prediction types into three main big categories:

• predictions related to predefined categorical or boolean outcome values
(outcome-based predictions);

• predictions related to measures of interest taking numeric or continuous values
(numeric value predictions);

• predictions related to sequences of future activities and related data payloads
(next event predictions).

Predictive Process Monitoring 323

Fig. 2. Types of predictions.

Figure 2 shows an example of an execution trace describing the activities
carried out by John. Let us assume that it is 8:54 a.m now. At 8:00 a.m. John
has registered to the hospital to undergo some health checks, at 8:10 he was taken
to the radiology department where he was visited at 8:15 and he is now having
X-rays. Predictive Process Monitoring would allow us to answer different types of
questions on the future of John. For instance, we could predict whether John will
undergo an ultrasound scan in the future. The answer to this specific question
will be a boolean value (e.g., it is true that John will undergo an ultrasound in
the future). This is a typical example of an outcome-based prediction. However,
this class of predictions also includes predictions assuming categorical values,
that is, values that range in a limited and fixed number of possible options.
Examples are the class of discount that will be applied to a customer at the end
of his shopping, the class of risk of a given execution, or, in our scenario, the
specific exam out of a number of options. Another typical question Predictive
Process Monitoring could allow us to answer about John’s future is, once we
know that he will undergo an ultrasound, in how much time he is going to have
it. The answer to this question is generally provided in terms of a numeric value
(e.g., John is going to have an ultrasound exam in 26 min) and is an example
of a numeric-value prediction. Typical examples in this settings are predictions
related to the remaining time of an ongoing execution, predictions related to the
duration or to the cost of an ongoing case. Finally, we could even predict what
John is going to do from now on. The answer to this question is a sequence of
future activities (e.g., John will undergo an ultrasound, will ask for his bill and
will pay it). Typical examples of predictions falling under this category refer to
the prediction of the sequence of the future activities (and of their data payloads)
of a process case upon its completion.

Predictive Process Monitoring approaches are usually characterized by two
phases. In a first phase, the training or learning phase (see the light blue part in
Fig. 3), one or more models are built or enriched by leveraging the information
contained in the execution log. In the second phase, the runtime or prediction
phase (see the light green part in Fig. 3), the learned model(s) is(are) exploited

324 C. Di Francescomarino and C. Ghidini

Fig. 3. Types of PPM approaches.

in order to get predictions related to an ongoing execution trace. We can identify
two main groups of approaches dealing with the prediction problem:

• approaches relying on an explicit model (model-based approaches), e.g., anno-
tated transition systems. The explicit model can either be discovered from
the event log and then enriched with the information the log contains or
directly be enriched, if an explicit model is already available. In model-based
approaches, the model that is then leveraged at runtime in order to get pre-
dictions is an (enriched) model in which the process control flow is somehow
made explicit (see the blue box in the middle on the right of Fig. 3).

• approaches leveraging machine learning and statistical techniques, e.g., clas-
sification and regression models, as well as neural networks. These approaches
only rely on (implicit) predictive models built by encoding event log infor-
mation in terms of features to be used as input for machine/deep learning
techniques (see the blue box at the top on the right of Fig. 3).

Finally, we can identify four different types of information that can be used
as input to the Predictive Process Monitoring approaches, e.g., for building a
model annotated with execution information or for building the features to be
used by machine learning approaches:

• information related to the control flow - i.e., the sequence of events. As
depicted in the fourth row of Fig. 4, in the example of John’s history this
is the information related to the activities carried out by John (e.g., check in
to the hospital, go to the radiology department, . . .).

• information related to the structured data payload associated to the events.
This information usually include the timestamp of the events, but it can also
include other types of data attributes. For instance, in John’s history, besides

Predictive Process Monitoring 325

Fig. 4. Information used for making predictions.

the timestamp associated to each event, the data payload of the event Visit
patient also includes the doctor who has visited John, i.e., Alice (see the
third row in Fig. 4).

• information related to unstructured (textual) content, which can be available
together with the event log. Indeed, it often happens that, together with the
structured information related to the events and data payload, some unstruc-
tured information is also available. In John’s example, for instance, the text
of Alice’s medical report is available together with the event visit patient
(see the second row in Fig. 4) and could provide useful information on what
John is going to do later on.

• information related to process context, such as workload or resource availabil-
ity. In John’s example, this kind of information could be related for instance
to the availability of free ultrasound scan machines (first row in Fig. 4). Con-
textual information could provide useful information on what John is going to
do later on and when. For example, the time required to John to perform an
ultrasound could be related to the immediate availability of a scan equipment.

In several approaches, more than one of these types of information is used in
order to learn from the past.

After reporting few more details on the model-based approaches and
approaches leveraging machine learning in the next subsection, in the following
sections, we will mainly focus on machine-learning approaches and on encodings
taking into account event and data payload features. We will look in more detail
at each of the three prediction type macro-categories, i.e., predicting outcomes,
numeric values and sequences of activities (and related payloads), respectively.

326 C. Di Francescomarino and C. Ghidini

Fig. 5. Overview of the typical phases of model-based approaches.

Fig. 6. Running example model-based approaches.

3.1 Predictive Process Monitoring Approaches

We report here an overview of the main phases related to the two main families
of Predictive Process Monitoring approaches, i.e., model-based approaches and
approaches based on machine learning.

Figure 5 shows the main phases characterizing the model-based approaches.
At training time, an explicit and conformant model (see [7]) can either be already
available or can be discovered from the historical traces (see [2,4]) using the
optional Model discovery phase in Fig. 5. The model is then enriched with infor-
mation related to the data (Model enrichment), as for instance the remaining
time extracted from the historical traces. At runtime, the enriched model is used
in order to return a prediction.

One of the main model-based approaches leverages a transition system as
explicit control-flow model (see Definition 1 in [4]). The transitions system is
built based on a given abstraction of the representation of the events in the
traces (e.g., the name of the activity), as well as of the representation of the
state of the transition system, as for instance the sequence of activities executed
so far or the set of activities occurred so far. For instance, let us consider the
simple event log reported in Fig. 6 related to the example described in Sect. 2.
Each case relates to a different patient and the corresponding sequence of events
indicates the activities executed for a medical treatment of that patient. Given
the variability of the process, different interplays are possible between the clinical
and administrative activities. In particular in sequence σ1 the process starts

Predictive Process Monitoring 327

Fig. 7. Annotated transition system obtained from the log reported in Fig. 6.

directly with a visit (possibly due to urgency), while the administrative part
is executed in the middle of the process; instead in sequence σ3, the process
starts with a computation of the overall price (possibly due to the request of
having a quote) before proceeding further. The event timestamp of each event
is reported among brackets nearby the activity. For example, trace σ2 refers to
a process execution in which the activity Visit patient is executed at time
08:00, the activity Compute rate at time 10:00 and so on. Figure 7 shows the
transition system computed using as event representation abstraction the name
of the activity and as state representation the activity set.

The transition system is then annotated, given a certain measurement func-
tion, as for instance the elapsed time or the remaining time, with the correspond-
ing information extracted from the event log. For instance, information about
the remaining time can be extracted from the traces and reported for each state
of the transition system. This information is then used for making predictions,
e.g., on the completion time of an ongoing trace, given a certain prediction func-
tion, as for example the average remaining execution time. The transition system
in Fig. 7, for instance, is annotated (in blue) with the remaining time of each
trace in the event log of Fig. 6. Moreover, for each state, the average of these
values is also computed and reported. For example, the state corresponding to
the empty set of activities , is annotated with the remaining time of each trace
at the beginning of the execution, i.e., 11 h for σ1, 8 h for σ2 and so on.

When, at runtime, a prediction about the completion time of a new ongoing
trace is required, the annotated transition system can be queried by looking at
the state of the transition system corresponding to the ongoing case, and the
value of the chosen prediction function returned. For instance, let us assume
we want to predict the completion time of an ongoing case σt = (Compute rate
(CR) {12:00}, Visit patient (VP) {13:00}). Two measurements are associated
to the corresponding state of the transition system in Fig. 7 (see the state in
light green), i.e., 6 and 2 hours. Considering the average as prediction function,
the average value of the measurements (4 hours) can be used to compute the
predicted completion time, i.e., according to the prediction, the patient will
complete his process at 17:00.

Several extensions have been proposed to the original approach, such as anno-
tating the transition systems with machine learning models like Näıve Bayes

328 C. Di Francescomarino and C. Ghidini

Fig. 8. Overview of the typical phases of approaches based on machine learning.

and Support Vector Regression models [34], taking into account also data pay-
loads [35], combining the annotated transition systems with a context-driven
predictive clustering approach [16,17]. Other model-based approaches consider,
instead sequence trees [9] or stochastic Petri nets [40,41] as explicit models to
predict the remaining execution time of a process instance.

Figure 8 sketches the main phases of the typical approaches based on machine
learning. These approaches usually require that trace prefixes are extracted from
the historical execution traces (Prefix extraction phase). This is due to the fact
that at runtime predictions are made on incomplete traces, so that correla-
tions between incomplete traces and what we want to predict (target variables
or labels) have to be learned in the training phase. After prefixes have been
extracted, prefix traces and labels (i.e., the information that has to be predicted)
are encoded in the form of feature vectors (Encoding phase). Encoded traces are
then passed to the (supervised learning) techniques in charge of learning from the
encoded data one (or more) predictive model(s) (Encoding phase). At runtime,
the incomplete execution traces i.e., the traces whose future is unknown, should
also be encoded as feature vectors and used to query the predictive model(s) so
as to get the prediction (Predicting phase).

In this chapter we will mainly focus on approaches leveraging machine learn-
ing - and in particular supervised learning - techniques.

4 Predicting Outcomes

Outcome predictions are predictions related to (categorical) case outcomes [46].
Typical examples of outcome predictions in the Predictive Process Monitoring
literature are predictions related to risks or related the fulfilment of a predi-
cate [11,29].

Given an event log L and a prefix execution trace σm
i = <e1, . . . , em> of

length m, the overall idea is learning a function fc(L, σm
i) returning a categorical

Predictive Process Monitoring 329

Fig. 9. Running example with an outcome label

value labeli, which is as close as possible to labeli, i.e., the actual (categorical)
value of the variable that we aim to predict (e.g., whether the predicate will be
actually fulfilled).

As described in the previous section, when dealing with approaches based on
machine learning, one of the main steps to be carried out deals with encoding the
information contained in (prefix) execution traces and corresponding labels in a
format that is understandable by machine learning techniques. This would allow
the technique to train, and hence learn, from encoded data a predictive model.
In order to train a model, each (prefix) execution trace σi, (and its corresponding
label) have to be represented through a feature vector gi = (gi1, gi2, ...gih, labeli).

In this section (and in the next two sections) we will present first the typical
encodings used with the corresponding type of predictions4 and then the main
(machine-learning) pipelines/approaches used to build the predictive model and
query it.

4.1 Typical Data Encodings

To exemplify the different data encoding techniques, we consider the very simple
log in Fig. 9 pertaining to our running example of Sect. 2. Similarly to the log
used in Sect. 3.1, also in this log each case relates to a different patient and the
corresponding sequence of events indicates the activities executed for a medical
treatment of that patient. Visit patient is the first event of sequence σ1. Its
data payload “{33, radiology}” corresponds to the data associated to attributes
age and department5. Note that the value of age is static: it is the same for all
the events in a case, while the value of department is different for every event.
In the payload of an event, the entire set of attributes available in the log is
considered as well. In case for some event the value for a specific attribute is not
available, the value ⊥ (unknown) is specified for it.

Given a case prefix, we aim at predicting whether the patient will recover soon
(true), or not (false). We report the corresponding value, i.e., the corresponding
label, for each case after the semicolon in Fig. 9.

Boolean Encoding. In the boolean encoding sequences of events are represented as
feature vectors, in such a way that each feature corresponds to an event class (an
activity) from the log. In particular, the boolean encoding represents a sequence
4 Please note that some types of encodings can be used for different types of predic-

tions. For instance encodings related to outcome-based and numerical predictions
are exactly the same - except for the type of the label.

5 We omit here for simplicity the information related to timestamps.

330 C. Di Francescomarino and C. Ghidini

Table 1. Typical outcome-based encodings for the example in Fig. 9.

Visit patient Perform ultrasound ... Get Payment label

σ1 1 1 ... 0 false

...

σk 0 0 ... 1 true

(a) boolean encoding.

Visit patient Perform ultrasound ... Get Payment label

σ1 2 1 ... 0 false

...

σk 0 0 ... 4 true

(b) frequency-based encoding.

event 1 ... event m label

σ1 Visit patient Perform ultrasound false

...

σk Compute rate Get Payment true

(c) simple-index encoding.

age department last label

σ1 33 radiology false

...

σk 56 admin true

(d) latest-payload encoding.

age event 1 ... event m ... department last label

σ1 33 Visit patient Perform ultrasound ... radiology false

...

σk 56 Compute rate Get Payment ... admin true

(e) index latest-payload encoding.

age event 1 ... event m ... department 1 ... department m label

σ1 33 Visit patient Perform ultrasound clinic radiology false

...

σj 56 Compute rate Get Payment general lab admin true

(f) complex index-based encoding.

σi through a feature vector gi = (gi1A , gi2A , ...gihA
, labeli), where hA is the size

of the event class alphabet A = {a1A , . . . , ahA
} and if gijA corresponds to the

event class ajA ∈ A then:

gij =
{

1 if ajA occurs in σi

0 if ajA does not occur in σi

For instance, the encoding of the example reported in Fig. 9 with the boolean
encoding is shown in Table 1a.

Frequency-Based Encoding. The frequency-based encoding, instead of boolean
values, represents the control flow in a case with the frequency of each event
class in the case. The frequency-based encoding gi = (gi1A , gi2A , ...gihA

, labeli)
of σi, is such that, if gijA corresponds to the event class ajA ∈ A then:

gij =
{

n if ajAoccurs n times in σi

0 if ajAdoes not occur in σi

Table 1b shows the frequency-based encoding for the example in Fig. 9, assuming
that Visit patient occurs two times in σi and Get Payment occur four times
in σk.

Predictive Process Monitoring 331

Simple-Index Encoding. Another way of encoding a sequence is by taking into
account also information about the order in which events occur in the sequence,
as in the simple-index encoding. Here, each feature corresponds to a position in
the sequence and the possible values for each feature are the event classes. The
resulting feature vector gi of the simple-index encoding of an execution trace
σi of length m is gi = (ai1, ai2, ...aim, labeli), such that aik corresponds to the
event class of the event at position k in σi. By using this type of encoding the
example in Fig. 9 would be encoded as reported in Table 1c.

Latest-Payload Encoding. The latest-payload encoding takes into account both
the static and the dynamic data attributes of the traces. The value of static
attributes (trace attributes) is the same for all the events in the sequence, while
the value of dynamic data attributes (event attributes) changes for different
events. However, in this encoding, data attributes, also the dynamic ones, are all
treated as static features without taking into consideration their evolution over
time. Indeed, the latest-payload encoding encodes the data attributes and the
data of the latest payload. The latest-payload encoding gi of an execution trace
σi of length m is gi = (s1i , . . . , s

u
i , d1im, . . . , drim, labeli), where each si is a static

feature and each dim is a dynamic feature associated to the last event, i.e., the
event at position m. Table 1d shows this encoding for the example in Fig. 9.

Index Latest-Payload Encoding. The index latest-payload encoding adds the lat-
est encoding to the simple-index encoding. The resulting feature vector gi, for a
sequence gi = σi, is gi = (s1i , . . . , s

u
i , ai1, ai2, . . . , aim, d1im, . . . , drim, labeli), where

each si is a static feature, each aij is the event class at position j and each dim
is a dynamic feature associated to the event at position m. Table 1e reports this
encoding for the example in Fig. 9.

Complex Index-Based Encoding. In the complex-based encoding, the dynamic
nature of the dynamic information is considered and its evolution over time is
taken into account. The resulting feature vector gi, for a sequence σi, is gi =
(s1i , .., s

u
i , ai1, ai2, ..aim, d1i1, d

1
i2, . . . , d

1
im, . . . , dri1, d

r
i2, ...d

r
im, labeli), where each si

is a static feature, each aij is the event class at position j and each dij is a
dynamic feature associated to an event. The example in Fig. 9 is transformed
into the encoding shown in Table 1f.

4.2 Mostly Used Approaches: Classification-Based Approaches

Different pipelines and frameworks have been proposed for providing outcome
predictions. Most of them relies on classification techniques6 (e.g., Decision Tree,
Random Forest, Support Vector Machine) for the supervised learning phase [12,
23,25,29]. Moreover, most of these pipelines have been enriched with a Bucketing
phase [46] (see the orange blocks in Fig. 10). The idea is that at training time

6 Note that deep learning techniques can also be used for predicting outcomes [52],
however we focus here on the mostly used approaches.

332 C. Di Francescomarino and C. Ghidini

Fig. 10. Typical outcome-based pipeline

multiple predictive models are trained. Specifically, the log of prefix traces is
divided in multiple buckets and each bucket is used to train a different classifier.
At runtime, the most suitable bucket is identified and the corresponding classifier
used for predicting the outcome.

The Bucketing phase has been instantiated in different ways in the Predictive
Process Monitoring literature. For instance, in [12] trace clustering has been used
to group prefix traces. Specifically, at training time, a clustering algorithm has
been leveraged to cluster together prefix traces sharing a similar control flow. For
each cluster, the data payload of the prefix traces in the cluster, once encoded
in the proper format, has then been used to train a classifier. At runtime, the
cluster of the incomplete ongoing trace is identified, i.e., the cluster containing
the trace prefixes closest to the current incomplete trace, and the corresponding
classifier queried in order to get the prediction. In [25], instead, a bucket consists
of a set of prefix traces of the same length. Also in this case, at training time,
a classifier for each prefix length k is built by learning from all prefix traces of
length k. At runtime, the classifier of the same length of the ongoing trace is
identified and the prediction returned.

5 Predicting Numeric Values

Numeric value predictions are predictions related to quantitative measures of
interest of business process executions. Typical examples of numeric predictions
in the Predictive Process Monitoring literature are predictions related to time,
cost or generic process performance [1,8,48].

Given an event log L and a prefix execution trace σm
i = <e1, . . . , em> of

length m, the overall idea is learning a function fn(L, σm
i) returning a numerical

value labeli, which is as close as possible to labeli, i.e., the actual (numerical)
value of the variable that we aim to predict (e.g., the remaining cycle time until
the completion of the execution).

Predictive Process Monitoring 333

Fig. 11. Running example with a numeric label

Table 2. Typical numeric-based encodings for the example in Fig. 9.

Visit patient Perform ultrasound ... Get Payment label

σ1 1 1 ... 0 3.5

...

σk 0 0 ... 1 5

(a) boolean encoding.

Visit patient Perform ultrasound ... Get Payment label

σ1 2 1 ... 0 3.5

...

σk 0 0 ... 4 5

(b) frequency-based encoding.

event 1 ... event m label

σ1 Visit patient Perform ultrasound 3.5

...

σk Compute rate Get Payment 5

(c) simple index encoding.

age department last label

σ1 33 radiology 3.5

...

σk 56 clinic 5

(d) latest payload encoding.

age event 1 ... event m ... department last label

σ1 33 Visit patient Perform ultrasound ... radiology 3.5

...

σk 56 Compute rate Get Payment ... clinic 5

(e) index latest payload encoding.

age event 1 ... event m ... department 1 ... department m label

σ1 33 Visit patient Perform ultrasound clinic radiology 3.5

...

σj 56 Compute rate Get Payment general lab clinic 5

(f) complex index-based encoding.

5.1 Typical Data Encodings

Let us consider the running example of Fig. 9 and let us assume that this time we
would like to predict the time required for completing the execution (reported
in Fig. 11 after the semicolon).

Encodings typically used for numeric predictions are the same as the ones
used for categorical predictions, except for the label, which is a numerical value
rather than a boolean or a categorical value. Table 2 summarizes the boolean,
frequency, simple-index, latest-payload, index latest-payload and complex-index
encodings for numeric-based predictions.

334 C. Di Francescomarino and C. Ghidini

5.2 Mostly Used Approaches: Regression-Based Approaches

Pipelines and frameworks proposed for numeric predictions are quite similar to
the ones for outcome predictions. Most of them relies on regression techniques7

(e.g., Regression Trees, Random Forest, XGBoost) for the supervised learning
phase [23,29].

6 Predicting Next Events

Next event predictions are predictions related to the unfolding of the future
events - until the end - of an incomplete ongoing trace [45]. Next event predictions
can be related to the sequence of next event classes, but also to the next data
payloads associated to the events, as for instance, the timestamps or the resources
associated to the next event(s).

In case of activity predictions, given an event log L and a prefix execution
trace σm

i = <e1, . . . , em> of length m, the overall idea is learning a function
fsa(L, σm) returning a sequence of next event classes that is as close as possible
to am+1, . . . , ω, i.e., to the activity suffix of the current ongoing trace.

Most of the approaches for next activity predictions typically first learn a
function f1a that, given the first m events of a trace σm

i , predicts the next event
class, i.e., the event class that will occur at time step m + 1. The suffix of the
ongoing trace σm

i is then predicted until the last event ω, by predicting the next
event iteratively, that is by learning the function fsa:

fsa(L, σm
i) =

⎧⎨
⎩

f1a(σm) if f1a(L, σm
i) = ω

fsa(L,< e1, e2, ..., em, e >) otherwise
with f1a(L, σm

i) as e’s event class
(1)

Similarly, when predicting the values of the next events’ data attribute x,
e.g., the next timestamps, the idea is learning a function fsx(L, σm) returning
a sequence of values of the data attribute x that is as close as possible to the
sequence of values actually held by the attribute x in the next events of the
ongoing trace.

In the next subsection describing the typical data encodings, we mainly focus
on the encoding for the next event class prediction. The results can then be
extended to the prediction of other data attributes related to the next event, as
well as to predictions related to next events, as described in (1).

6.1 Typical Data Encodings

Let us consider the running example described in Fig. 9 enriched with timestamp
information and let us assume that we want to predict the next activity related
to the next time step (i.e., the activity at time step m+1). The actual activity at
time step m+1 is reported after the semicolon for the training traces in Fig. 12.
7 Note that deep learning techniques can also be used for predicting numeric predic-

tions [45], however we focus here on the mostly used approaches.

Predictive Process Monitoring 335

Fig. 12. Running example with next activity as label

Table 3. Typical sequence-based encodings for the example in Fig. 12.

event 1 ... event m label

σ1 1 0 0 0 0 0 ... 0 1 0 0 0 0 0 0 0 0 1 0

...

σk 0 0 1 0 0 0 ... 0 0 0 1 0 0 0 0 0 0 0 1

(a) one-hot encoding

event 1
...

event m
label

a 1 δ1 h1 w1 a m δm hm wm

σ1 1 0 0 0 0 0 0 8 Mon ... 0 1 0 0 0 0 1 11 Mon 0 0 0 0 1 0

...

σk 0 0 0 0 1 0 0 13 Sat ... 0 0 0 0 0 1 2 18 Sat 0 0 0 0 0 1

(b) one-hot with temporal features encoding

One-Hot Encoding. The one-hot encoding allows categorical data to be trans-
formed into a numeric format. It relies on the existence of an alphabet of activ-
ities. Given the set A = {a1A , . . . ahA

} of all possible activities, an ordering
function idx : A → {1, . . . , |A|} ⊆ N is defined on it, such that aiA <> ajA if
and only if iA <> jA, i.e., two activities have the same A-index if and only if
they are the same activity.

For instance, in the example in Fig. 12, if the activity alphabet is A =
{Visit patient, Perform ultrasound, Compute rate, Get Payment, Check
X-ray, Emit receipt}, the function idx :A → {1, 2, 3, 4, 5, 6} can be
defined such that idx(Visit patient) = 1, idx(Perform ultrasound) = 2,
idx(Computerate) = 3 and so on. Each event eij ∈ σi is then encoded as a vector
(Aij) where the features are all set to 0, except the one occurring at the index of
its event class, which is set to 1. In the training phase, the event class of the next
event em+1, which represents the target variable or label, is also encoded in the
corresponding vector (Aim). The trace is finally encoded by composing the vec-
tors obtained from all activities in the trace and the next activity into a matrix.
The encoding of the trace σi is hence given by gi = ((Ai1), ..., (Aim), (Aim+1)).
The one-hot encoding related to the example in Fig. 12 is reported in Table 3a.

One-Hot Encoding with Temporal Features. The one-hot encoding, which takes
into account only the activities, can be enriched with other information. For
instance, another encoding used with activity sequences combines the one-hot
encoding of features related to event classes and features related to time [45]. In
the one-hot encoding with temporal features, given the set A = {a1A , . . . amA

} of
all possible activities, each event eij ∈ σi is encoded as the one-hot encoding of
its event class enriched with three additional features pertaining to time. The
first one relates to the time difference between the considered event and the
one of the previous event (δi), the second one reports the time since midnight
(hi), thus allowing for distinguishing between working and night time, and the
last one refers to the time since the beginning of the week (wi), thus allowing
for distinguishing between business and non-working days. Also in this case,
in the training phase, the label, i.e., the event class of the next event em+1 is

336 C. Di Francescomarino and C. Ghidini

also encoded with the one-hot encoding. The one-hot encoding with temporal
features related to the example in Fig. 12 is reported in Table 3b.

Embedding-Based Encoding. The embedding-based encoding is typically used
when the number of the possible values of one or more categorical variables
is high and the one-hot encoding may cause an exponential growth of the fea-
ture vector dimensionality. In the embedding-based encoding, categorical data
with an alphabet of possible values of size m is mapped into a n-dimensional
embedding space (where n is the chosen dimensionality of the embedded space)
that encodes the values of the categorical attribute so that values that are closer
in the vector space are expected to be similar.

6.2 Mostly Used Approaches: LSTM-Based Approaches

Most of the approaches for next event predictions rely on Recurrent Neural
Networks and, more specifically, on LSTM (Long-Short Term Memory) archi-
tectures [6,26,45].8 This type of deep learning approaches, by using recurrent
connections in a single block (LSTM cell), is indeed particularly suitable to deal
with sequence problems. Different types of LSTM architectures have been pro-
posed in the literature for predicting the label associated to the next event and
its data attributes.

For instance in [45] three types of architectures have been proposed in order
to predict both next activity and the timestamp of the next event and then,
iteratively, suffix prediction and remaining cycle time: a first type with separate
layers for activity and timestamp prediction, a second type with shared LSTM
layers for both activity and timestamp prediction and finally a third one with
some shared and some separate layers. The architecture proposed in [6] for pre-
dicting the next activity and its timestamp and the remaining cycle time and
suffix for a running case is a composition of LSTMs and feedforward layers.
In [26] an encoder-decoder framework based on LSTMs is proposed to predict
the next activity and the suffix of an ongoing case. The encoder maps an input
sequence into a set of high dimensional vectors and the decoder returns it back
into new sequence that can be used for prediction tasks.

7 New Trends in ML-Driven Operational Support

Besides the mainstream works in the field of Predictive Process Monitoring, new
research trends and directions focusing on ML-driven operational support have
recently started being investigated and developed. Some of these new trends are
summarised in the following subsections.

8 Note that the usage of LSTM architectures is not limited to next event predictions
- they are indeed used also for outcome and numerical predictions - nevertheless it
has been widely used in the literature for this type of predictions.

Predictive Process Monitoring 337

Table 4. Simple-index encoding enriched with some inter-case features for the example
in Fig. 9.

event 1 event m simult. trace # avg. duration label

σ1 Visit patient Perform ultrasound 10 6 False

σk Compute rate Get Payment 18 8 True

7.1 Intercase Predictions

In classical works, Predictive Process Monitoring methods assume that the pre-
dicted value of interest of an ongoing case only depends on intra-case information,
as for instance on the execution history of that specific case. This assumption
results in encodings that include past events, inter-event durations, and other
case-related attributes. However, the only intra-case assumption does not hold
in many real-life scenarios. For example, in situations where cases share limited
resources, the completion time of a case heavily depends on other cases that are
running at the same time [42,43].

Inter-case information can be encoded in different ways, as for instance by
aggregating data related to traces running simultaneously. Examples of aggre-
gated inter-case information that can be encoded together with the intra-case
features are the number of traces and the average duration of traces being exe-
cuted in the same time window in which the considered trace (prefix) is being
executed, e.g., the number of traces and the average duration of traces executed
in the same day of the current prefix trace. Table 4 shows an example of a simple-
index encoding enriched with these two simple inter-case features related to the
example reported in Fig. 9, where we assume that 10 other traces are running
the same day in which σm

1 is being executed and that their average duration
is 6 hours, while 18 traces are running simultaneously to σm

k with an average
duration of 8 hours.

Taking into account the inter-case dimension is a challenging problem, since,
on the one hand, we would like to take into account as much inter-case infor-
mation as possible as the levels of dependencies among cases can greatly vary in
different scenarios and, on the other hand, encoding several features for a large
number of simultaneously running cases may lead to a feature space explosion.

7.2 Explainable Predictions

In many applications of Predictive Process Monitoring techniques, users are
asked to trust a model helping them making decisions. However, users would need
a certain level of trust towards the predictive model: a doctor will not operate
on a patient simply because the operation has been predicted or recommended
by the model. Understanding the rationale behind predictions would certainly
help users decide when to trust or not to trust them.

Explainability techniques are a way to implement responsible process decision
making (see [30]) and can help us to this aim. Different explainability techniques

338 C. Di Francescomarino and C. Ghidini

Fig. 13. Example of an explanation plot related to the prediction for σj .

have been proposed in the XAI (Explainable Artificial Intelligence) literature.
Some of these techniques have already been experimented in the field of Pre-
dictive Process Monitoring in order to support users in understanding the over-
all predictive model [33] or the specific predictions it provides [18,44,51]; with
model-agnostic techniques, i.e., techniques that can be applied to any predic-
tive model, as in the case of [18] or with techniques specific to the predictive
model used, as in the case of XNAP [51] and the attention layer [44] for neural
networks.

As an example of prediction explanation related to a trace instance,9 let us
assume that we have trained our predictive model by encoding the training set
of the example reported in Fig. 9 with the complex-index encoding (see Table 1f)
and that, for our current ongoing trace σj (Visit patient {20, clinic}, Perform
X-Ray {20, radiology}, Perform ultrasound {20, radiology}), which we have
observed up to the event 3, the prediction of our predictive model is that the
patient will recover soon. In order to understand whether we can trust or not the
prediction, we would need to understand why our predictive model has returned
such a prediction. Figure 13 shows an example of a possible explanation returned
by a prediction explainer as LIME[37] or SHAP[27] applied to our specific Pre-
dictive Process Monitoring problem. The plot shows the impact of each feature
(and related value) towards (in case of positive values) or against (in case of
negative values) the fast recovery of the patient.10 In the example, the feature

9 Note that we provide here the idea of prediction explanations focusing on those
related to a trace instance. However, aggregated trace prediction explanations (event
log explanations) [18], as well as prediction model explanations [44] have also been
investigated in the literature.

10 Note that the semantics of the values on the x axis changes according to the expla-
nation technique used for the plot. For instance, in the case of SHAP, the values on
the x axis represent the SHAP values of the feature (and the related value) for the
specific instance, that is the contribution of the feature towards the prediction with
respect to the average value.

Predictive Process Monitoring 339

that has impacted most on the prediction of the fast recovery of the patient is
her young age.11

Furthermore, the explanations used for making predictions more trustable
to the users can be eventually used also for understanding the reasons why a
predictive process model is wrong and hence use them to improve the model
accuracy [38].

7.3 Predictions with A-Priori Knowledge

Past event logs, or more in general knowledge about the past, is not the only
important source of knowledge that can be leveraged to make predictions. In
many real life situations, cases exist in which, together with past execution data,
some case-specific additional knowledge (a-priori knowledge) about the future is
available and can be leveraged for improving the predictive power of a Predictive
Process Monitoring technique. Indeed, this additional a-priori knowledge is what
characterizes the future context of the process executions that will affect the
development of the currently running cases.

We can think for instance to the occurrence of a strike, which may cause the
delay or the cancellation of a flight in the travel process of a passenger, or to the
temporary unavailability of a surgery room, which may delay or even rule out the
possibility of executing certain activities in a patient treatment process. In this
kind of scenarios, the information about the strike or about the unavailability of
the surgery room is often available in advance. However, traditional Predictive
Process Monitoring approaches, which only learn from the most frequent observed
behaviours, are not able to take into account this knowledge. They will predict
that the next activities of the passenger will be the usual ones, as if there is no
strike, e.g., having the security check, moving to the boarding gate 3, boarding, ...
. While it is impractical to retrain the predictive algorithms to take into consider-
ation this additional knowledge every time it becomes available, it is also reason-
able to assume that considering it in some way would allow the Predictive Process
Monitoring algorithm to predict for instance that the passenger will be moved to
gate 2 and that there will be no boarding, and hence to improve the accuracy of
the predictions on an ongoing case.

A possibility to deal with a-priori knowledge is to take into account this
knowledge K at prediction time by guiding the Predictive Process Monitoring
algorithm towards a solution that is compliant to the a-priori knowledge [14].
In [14] for instance, an approach using LSTM for predicting the next activi-
ties has been enriched with a mechanism able to take into account background
knowledge K expressed in terms of LTL formulae in order to guide the LSTM
algorithm to make predictions compliant with the a-priori knowledge. The LSTM
approach keeps returning likely predictions on the suffix of the current ongoing
trace (up to the last event ω) until it does not find a suffix that is compliant
with K. More in detail, the LSTM network uses a beam search algorithm for

11 Note that different types of explanations can be returned depending on the type of
encoding that has been used.

340 C. Di Francescomarino and C. Ghidini

Fig. 14. Beam search in the a-priori approach.

considering at each time step the top beam-width bw most likely next events.
Figure 14 shows the idea of the beam-search approach with bw = 2. σm =<Take
shuttle, Enter via door 3, Check in> is the current ongoing trace at time
step m. At time step m + 1, among the three possible next events we take the
bw most likely next events (the green nodes in Fig. 14) and keep exploring those
future paths. At time step m+2, we again select the 2 most likely next events and
keep exploring the next events of these sequences. Whenever we find a sequence
that is not compliant with K, as at time step m + 3, we discard that path and
we keep on exploring bw compliant paths. We stop whenever we predict the last
event ω (see the circle with the thicker border) and the considered trace is still
compliant with K.

7.4 Prescriptive Process Monitoring

Predictive Process Monitoring techniques are able to predict the likelihood of
a positive outcome, the time required for completing an execution or the next
activities that will be executed. However, all these techniques, are limited to
the prediction. They do not support further stakeholders in making decisions on
whether it is worth to intervene to avoid undesired outcomes and what to do next
to optimize a given Key Process Performance Indicator (KPI) [24,32,47,50].

Prescriptive Process Monitoring aims to overcome this limit of Predictive
Process Monitoring by supporting or prescribing stakeholders with decisions on
whether to take actions in order to prevent or mitigate the occurrence of an
undesired outcome [32,47] or on the activities to take for optimizing a certain
measure of interests [24,50].

In the first scenario [32,47], predictions are used in order to evaluate through
a cost model the tradeoffs between the cost of intervention to mitigate undesired
outcomes and the cost of compensating unnecessary interventions. For instance,

Predictive Process Monitoring 341

in the example related to the patient recovery described in Sect. 4, if the pre-
diction related to an ongoing trace is that the patient will not recover soon, a
surgery may increase the likelihood that the patient will recover soon and hence
reduce anyway the cost for the hospital. However, the surgery has a cost, so that
if the surgery has been planned because of a wrong prediction, then the cost of
the surgery is unnecessary and hence should be avoided.

In the second scenario [24,50], predictions are used to uncover the future of
different continuations of the current trace, so as to identify and hence recom-
mend the one(s) leading to the best value for the KPI of interest. For instance,
we can consider the example of the patient recovery described in Sect. 5. If the
aim is recommending next activities to minimize the remaining cycle time until
the completion of the execution of an ongoing trace σm of length m, possible
next activities at step m+1 can be considered. For each possible continuation of
σm, σm+1, the remaining time until the end of the execution can be predicted
and the next activity corresponding to the minimum cycle time recommended.

8 Tool Support

The research related to Predictive Process Monitoring has been paired with the
development of non-commercial plugins and tools with the purpose to be used and
improved by the research community. We briefly illustrate in the following three
among the main open-source tools supporting Predictive Process Monitoring.

8.1 Predictive Process Monitoring in ProM

ProM [15] is one of the most used and known tool in Process Mining. It is
a framework collecting a number of plugins, working independently one from
the other, and each focused on implementing a specific task. Among its variety
of plugins, ProM also collects several plugins implementing techniques for the
prediction of outcomes (e.g., [8,29]), for the prediction of numerical values (e.g.,
[1,10,16,23]), as well as for the prediction of next activity sequences (e.g., [35]).
Some of them leverage model-based approaches (e.g. [1]), while others rely on
machine-learning solutions (e.g., [10]).

8.2 Predictive Process Monitoring in Apromore

Apromore [22] is a well known and established tool. It is an advanced process
model repository that allows to hold, analyse, and re-use large sets of process
models. The tool is web-based and therefore it allows the easy integration of new
plug-ins in a service oriented manner. This tool aims both at allowing practition-
ers to deal with the challenges of stakeholders of processes, and researchers to
develop and benchmark their own techniques with a strong emphasis on the sep-
aration of concerns. The only plug-in performing Predictive Process Monitoring
related challenges in Apromore is the one described in [49]. This plug-in performs
outcome-based, numeric-based prediction, as well as next event predictions.

342 C. Di Francescomarino and C. Ghidini

8.3 Predictive Process Monitoring in Nirdizati

Nirdizati [21,39] is a web-based application for supporting users in building,
comparing, and analyzing predictive models that can then be used to perform
predictions on the future development of an ongoing case. Differently from the
other tools, Nirdizati specifically addresses Predictive Process Monitoring prob-
lems. Nirdizati, which collects a rich set of different state-of-the-art approaches
based on machine learning algorithms, supports users to deal with different pre-
dictive monitoring tasks: outcome-based, numeric and next activities predictions.
Moreover, it provides services for supporting the users in tuning the hyperpa-
rameters of the specific technique, the possibility of adding some simple intercase
features in the encodings, as well as some incremental algorithms, so as to be able
to incrementally update the predictive model as soon as new execution traces
are available. Finally, it also offers several plots for the results visualisation, thus
supporting the users in the predictive model comparison tasks.

Acknowledgements. The work described in this chapter describes the effort of a
number of people. We would like to thank Marlon Dumas, Marcello La Rosa, Anna
Leontjeva, Fabrizio Maria Maggi, Williams Rizzi, Arik Senderovich, Irene Teinemaa,
Ilya Verenich, and Anton Yeshchenko for their precious cooperation and all the (also
joint) work that led to this chapter.

References

1. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

2. Aalst, W.: Foundations of Process Discovery. In: van der Aalst, W.M.P., Carmona,
J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 37–75. Springer, Cham
(2022)

3. Aringhieri, R., et al.: Leveraging structured data in predictive process monitoring:
the case of the ICD-9-CM in the scenario of the home hospitalization service. In:
Proceedings of “Towards smarter health Care: Can Artificial Intelligence Help?
(SMARTERCARE)” Workshop. CEUR Workshop Proceedings, CEUR-WS.org
(2021)

4. Augusto, A., J. Carmona, Verbeek, E.: Advanced Process Discovery Techniques.
In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP,
vol. 448, pp. 76–107. Springer, Cham (2022)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Newyork
(2006). https://doi.org/10.1007/978-1-4615-7566-5

6. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM mod-
els of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M.,
Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26619-6 19

7. Carmona, J., Dongen, B., Weidlich, M.: Conformance checking: foundations, mile-
stones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Min-
ing Handbook. LNBIP, vol. 448, pp. 155–190. Springer, Cham (2022)

8. Castellanos, M., Salazar, N., Casati, F., Dayal, U., Shan, M.: Predictive business
operations management. IJCSE 2(5/6), 292–301 (2006). https://doi.org/10.1504/
IJCSE.2006.014772

https://doi.org/10.1007/978-1-4615-7566-5
https://doi.org/10.1007/978-3-030-26619-6_19
https://doi.org/10.1504/IJCSE.2006.014772
https://doi.org/10.1504/IJCSE.2006.014772

Predictive Process Monitoring 343

9. Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion
time and next activity prediction of processes using sequential pattern mining. In:
Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI),
vol. 8777, pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11812-3 5

10. Chamorro, A.E.M., Resinas, M., Cortés, A.R., Toro, M.: Run-time prediction of
business process indicators using evolutionary decision rules. Expert Syst. Appl.
87, 1–14 (2017). https://doi.org/10.1016/j.eswa.2017.05.069

11. Conforti, R., Fink, S., Manderscheid, J., Röglinger, M.: PRISM - A Predictive Risk
Monitoring Approach for Business Processes, pp. 283–400. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45348-4 22

12. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. IEEE Trans. Serv. Comput. 12(6), 896–909 (2019).
https://doi.org/10.1109/TSC.2016.2645153

13. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process
monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber,
I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 27

14. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An
Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process
Monitoring, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-65000-5 15

15. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 25

16. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012.
LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33606-5 18

17. Folino, F., Guarascio, M., Pontieri, L.: Discovering High-Level Performance Models
for Ticket Resolution Processes, pp. 275–282. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41030-7 18

18. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable
predictive process monitoring. In: van Dongen, B.F., Montali, M., Wynn, M.T.
(eds.) 2nd International Conference on Process Mining, ICPM 2020, Padua, Italy,
4–9 October 2020, pp. 1–8. IEEE (2020). https://doi.org/10.1109/ICPM49681.
2020.00012

19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

20. Hastie, T., Tibshirani, R., Friedman, J.: Overview of Supervised Learning, pp.
9–41. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7 2

21. Jorbina, K., et al.: Nirdizati: a web-based tool for predictive process monitoring.
In: Proceedings of the BPM Demo Track and BPM Dissertation Award co-located
with 15th International Conference on Business Process Modeling (BPM 2017),
Barcelona, Spain, 13 September 2017 (2017)

22. La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling,
J., Dumas, M., Garćıa-Bañuelos, L.: APROMORE: an advanced process model
repository. Expert Syst. Appl. 38(6), 7029–7040 (2011)

https://doi.org/10.1007/978-3-319-11812-3_5
https://doi.org/10.1007/978-3-319-11812-3_5
https://doi.org/10.1016/j.eswa.2017.05.069
https://doi.org/10.1007/978-3-319-45348-4_22
https://doi.org/10.1109/TSC.2016.2645153
https://doi.org/10.1007/978-3-319-98648-7_27
https://doi.org/10.1007/978-3-319-65000-5_15
https://doi.org/10.1007/978-3-319-65000-5_15
https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-642-41030-7_18
https://doi.org/10.1007/978-3-642-41030-7_18
https://doi.org/10.1109/ICPM49681.2020.00012
https://doi.org/10.1109/ICPM49681.2020.00012
http://www.deeplearningbook.org
https://doi.org/10.1007/978-0-387-84858-7_2

344 C. Di Francescomarino and C. Ghidini

23. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Inf. Syst. 56, 235–257 (2016). https://doi.org/10.1016/j.is.2015.07.003

24. de Leoni, M., Dees, M., Reulink, L.: Design and evaluation of a process-aware rec-
ommender system based on prescriptive analytics. In: van Dongen, B.F., Montali,
M., Wynn, M.T. (eds.) 2nd International Conference on Process Mining, ICPM
2020, Padua, Italy, 4–9 October 2020, pp. 9–16. IEEE (2020). https://doi.org/10.
1109/ICPM49681.2020.00013

25. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23063-4 21

26. Lin, L., Wen, L., Wang, J.: MM-Pred: a deep predictive model for multi-attribute
event sequence. In: Berger-Wolf, T.Y., Chawla, N.V. (eds.) Proceedings of the 2019
SIAM International Conference on Data Mining, SDM 2019, Calgary, Alberta,
Canada, 2–4 May 2019, pp. 118–126. SIAM (2019). https://doi.org/10.1137/1.
9781611975673.14

27. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions.
In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4–9 December
2017, Long Beach, CA, USA, pp. 4765–4774 (2017). https://proceedings.neurips.
cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

28. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Com-
pliance monitoring in business processes: Functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015). https://doi.org/10.1016/j.is.2015.02.007

29. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitor-
ing of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-
6 31

30. Mannhardt, F.: Responsible process mining. In: van der Aalst, W.M.P., Carmona,
J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 373–401. Springer, Cham
(2022)

31. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of
business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)

32. Metzger, A., Neubauer, A., Bohn, P., Pohl, K.: Proactive process adaptation using
deep learning ensembles. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS,
vol. 11483, pp. 547–562. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21290-2 34

33. Pauwels, S., Calders, T.: Bayesian network based predictions of business processes.
In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP,
vol. 392, pp. 159–175. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58638-6 10

34. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time
prediction of business process instances. In: 2014 International Joint Conference
on Neural Networks (IJCNN), pp. 816–823, July 2014

35. Polato, M., Sperduti, A., Burattin, A., Leoni, M.: Time and activity sequence
prediction of business process instances. Computing 100(9), 1005–1031 (2018).
https://doi.org/10.1007/s00607-018-0593-x

https://doi.org/10.1016/j.is.2015.07.003
https://doi.org/10.1109/ICPM49681.2020.00013
https://doi.org/10.1109/ICPM49681.2020.00013
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1137/1.9781611975673.14
https://doi.org/10.1137/1.9781611975673.14
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1016/j.is.2015.02.007
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/978-3-030-21290-2_34
https://doi.org/10.1007/978-3-030-21290-2_34
https://doi.org/10.1007/978-3-030-58638-6_10
https://doi.org/10.1007/978-3-030-58638-6_10
https://doi.org/10.1007/s00607-018-0593-x

Predictive Process Monitoring 345

36. Reinkemeyer, L.: Status and future of process mining: from process discovery to
process execution. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining
Handbook. LNBIP, vol. 448, pp. 405–415. Springer, Cham (2022)

37. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the
predictions of any classifier. CoRR abs/1602.04938 (2016). http://arxiv.org/abs/
1602.04938

38. Rizzi, W., Di Francescomarino, C., Maggi, F.M.: Explainability in predictive pro-
cess monitoring: when understanding helps improving. In: Fahland, D., Ghidini, C.,
Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 141–158. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58638-6 9

39. Rizzi, W., Simonetto, L., Di Francescomarino, C., Ghidini, C., Kasekamp, T.,
Maggi, F.M.: Nirdizati 2.0: new features and redesigned backend. In: Depaire, B.,
et al. (eds.) Proceedings of the Dissertation Award, Doctoral Consortium, and
Demonstration Track at BPM 2019 co-located with 17th International Conference
on Business Process Management, BPM 2019, Vienna, Austria, 1–6 September
2019, CEUR Workshop Proceedings, vol. 2420, pp. 154–158. CEUR-WS.org (2019)

40. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-45005-1 27

41. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-
Markovian stochastic petri nets. Inf. Syst. 54(Suppl C), 1–14 (2015)

42. Senderovich, A., Di Francescomarino, C., Maggi, F.M.: From knowledge-driven to
data-driven inter-case feature encoding in predictive process monitoring. Inf. Syst.
84, 255–264 (2019). https://doi.org/10.1016/j.is.2019.01.007

43. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for
delay prediction in multi-class service processes. Inf. Syst. 53(C), 278–295 (2015).
https://doi.org/10.1016/j.is.2015.03.010

44. Sindhgatta, R., Moreira, C., Ouyang, C., Barros, A.: Exploring interpretable pre-
dictive models for business processes. In: Fahland, D., Ghidini, C., Becker, J.,
Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 257–272. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58666-9 15

45. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

46. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive
process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data
13(2), 1–57 (2019). https://doi.org/10.1145/3301300

47. Teinemaa, I., Tax, N., de Leoni, M., Dumas, M., Maggi, F.M.: Alarm-based pre-
scriptive process monitoring. In: Weske, M., Montali, M., Weber, I., vom Brocke,
J. (eds.) BPM 2018. LNBIP, vol. 329, pp. 91–107. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98651-7 6

48. Tu, T.B.H., Song, M.: Analysis and prediction cost of manufacturing process based
on process mining. In: 2016 International Conference on Industrial Engineering,
Management Science and Application (ICIMSA), pp. 1–5, May 2016

49. Verenich, I., et al.: Predictive process monitoring in Apromore. In: Mendling, J.,
Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 244–253. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92901-9 21

http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
https://doi.org/10.1007/978-3-030-58638-6_9
https://doi.org/10.1007/978-3-642-45005-1_27
https://doi.org/10.1016/j.is.2019.01.007
https://doi.org/10.1016/j.is.2015.03.010
https://doi.org/10.1007/978-3-030-58666-9_15
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1145/3301300
https://doi.org/10.1007/978-3-319-98651-7_6
https://doi.org/10.1007/978-3-319-98651-7_6
https://doi.org/10.1007/978-3-319-92901-9_21

346 C. Di Francescomarino and C. Ghidini

50. Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process
monitoring for recommending next best actions. In: Fahland, D., Ghidini, C.,
Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 193–209. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58638-6 12

51. Weinzierl, S., Zilker, S., Brunk, J., Revoredo, K., Matzner, M., Becker, J.: XNAP:
making LSTM-based next activity predictions explainable by using LRP. In: Del
Ŕıo Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp.
129–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5 10

52. Weytjens, H., De Weerdt, J.: Process outcome prediction: CNN vs. LSTM (with
Attention). In: Del Ŕıo Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020.
LNBIP, vol. 397, pp. 321–333. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-66498-5 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-58638-6_12
https://doi.org/10.1007/978-3-030-66498-5_10
https://doi.org/10.1007/978-3-030-66498-5_24
https://doi.org/10.1007/978-3-030-66498-5_24
http://creativecommons.org/licenses/by/4.0/

Assorted Process Mining Topics

Streaming Process Mining

Andrea Burattin(B)

Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

andbur@dtu.dk

Abstract. Streaming process mining refers to the set of techniques and
tools which have the goal of processing a stream of data (as opposed to
a finite event log). The goal of these techniques, similarly to their corre-
sponding counterparts described in the previous chapters, is to extract
relevant information concerning the running processes. This chapter
presents an overview of the problems related to the processing of streams,
as well as a categorization of the existing solutions. Details about control-
flow discovery and conformance checking techniques are also presented
together with a brief overview of the state of the art.

Keywords: Streaming process mining · Event stream

1 Introduction

Process mining techniques are typically classified according to the task they are
meant to accomplish (e.g., control-flow discovery, conformance checking). This
classification, though very meaningful, might come short when it is necessary
to decide which algorithm, technique, or tool to apply to solve a problem in
a given domain, where nonfunctional requirements impose specific constraints
(e.g., when the results should be provided or when the events are recorded).

Most algorithms, so far, have been focusing on a static event log file, i.e., a
finite set of observations referring to data collected during a certain time frame
in the past (cf. Definition 1 [1]). In many settings, however, it is necessary to
process and analyze the events as they happen, thus reducing (or, potentially,
removing) the delay between the time when the event has happened in the real
world and when useful information is distilled out of it. In addition, the amount
of events being produced is becoming so vast and complex [22] that storing them
for further processing is becoming less and less appealing. To cope with these
issues, event-based systems [4] and event processing systems [19] can become
extremely valuable tools: instead of storing all the events for later processing,
these events are immediately processed and corresponding reactions can be taken
immediately. In addition, event-based systems are also responsive systems: this
means they are capable of reacting autonomously when deemed necessary (i.e.,
only when new events are observed).

Coping with the above-mentioned requirements in the context of data anal-
ysis led to the development of techniques to analyze streams of data [3,21].
c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 349–372, 2022.

https://doi.org/10.1007/978-3-031-08848-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_11&domain=pdf
http://orcid.org/0000-0002-0837-0183
https://doi.org/10.1007/978-3-031-08848-3_11

350 A. Burattin

A data stream is, essentially, an unbounded sequence of observations (e.g.,
events), whose data points are created as soon as the event happens (i.e., in
real-time). Many techniques have been developed, over the years, to tackle dif-
ferent problems, including frequency counting, classification, clustering, approx-
imation, time series analysis and change diagnosis (also known as novelty detec-
tion or concept drift detection) [20,46]. Process mining techniques applied to the
analysis of data streams fall into the name of streaming process mining [8] and
both control-flow discovery as well as conformance checking techniques will be
discussed later in the chapter.

The rest of this chapter is structured as follows: this section presents typical
use cases for streaming process mining and the background terminology used
throughout the chapter. Section 2 presents a possible taxonomy of the different
approaches for streaming process mining, which can be used also to drive the
construction and the definition of new ones. Section 3 introduces the problem of
streaming process discovery, by presenting a general overview of the state of the
art and the details of one algorithm. Section 4 sketches the basic principles of
streaming conformance checking. As for the previous case, also this section starts
with a state-of-the-art summary and then dives into the details of one algorithm.
Section 5 mentions other research endeavors of streaming process mining and
then concludes the chapter.

1.1 Use Cases

This subsection aims at giving an intuition of potential use cases for stream-
ing process mining. In general, every setting that requires drawing conclusions
before the completion of a running process instance is a good candidate for the
application of streaming process mining. In other words, streaming process min-
ing is useful whenever it is important to understand running processes rather
than improving future ones or “forensically” investigate those from the past.

Process discovery on event streams is useful in domains that require a clear
and timely understanding of the behavior and usage of a system. For example,
let’s consider a web application to self-report the annual tax statement for the
citizens of a country. Such a system, typically, requires a lot of data to be inserted
over many forms and, usually, the majority of its users have to interact with
help pages, FAQs, and support information. In this case, it might be useful to
understand and reconstruct the flow of a user (i.e., one process instance) to
understand if they are getting lost in a specific section, or in specific cycles and,
if necessary, provide tailored help and guidance support. Since the ultimate goal
is to improve the running process instances (i.e., helping the users currently
online), it is important that the analyses process the events immediately and
that corresponding reactions are implemented straight away.

Conformance checking on event streams is useful whenever it is important to
immediately detect deviations from reference behavior to enact proper counter-
measures. For example, let’s consider operational healthcare processes [31], in
most of these cases (in particular in the case of non-elective care processes, such

Streaming Process Mining 351

as urgent or emergency ones) it is critically important to have a sharp under-
standing of each individual patient (i.e., one process instance), their treatment
evolution, as well as how the clinic is functioning. For example, when treating a
patient having acute myeloid leukemia it is vital to know that the treatment is
running according to the protocol and, if deviations were to occur, it is necessary
to initiate compensation strategies immediately.

Another relevant example of streaming conformance checking could derive
from the investigation of the system calls of the kernel of an operating system
when used by some services or applications. These calls should be combined in
some specific ways (e.g., a file should be open(), then either write() or read()
or both appear, and eventually the file should be close()) which represent the
reference behavior. If an application is observed strongly violating such behavior
it might be an indication of strange activities going on, for example trying to
bypass some limitations or privileges. Exactly the same line of reasoning could
be applied when consuming RESTful services.

Additional use cases and real scenarios are depicted in the research note [5],
where real-time computing1, to which streaming process mining belongs, is iden-
tified as one of the impactful information technology enablers in the BPM field.

1.2 Background and Terminology

This section provides the basic background on streams as well as the terminology
needed in the rest of the chapter.

A stream is a sequence of observable units which evolves over time by includ-
ing new observations, thus becoming unbounded2. An event stream is a stream
where each observable unit contains information related to the execution of an
event and the corresponding process instance. In the context of this chapter, we
assume that each event is inserted into the stream when the event itself happens
in the real world. The universe of observable units O can refer to the activities
executed in a case, thus having O ⊆ Uact × Ucase (cf. Definition 1 [1]), as dis-
cussed in Sect. 3) or to other properties (in Sect. 4 the observable units refer to
relations B between pairs of activities, i.e., O ⊆ (B × Uact × Uact) × Ucase).

Definition 1 (Event stream). Given a universe of observable units O, an
event stream is an infinite sequence of observable units: S : N≥0 → O.

We define an operator observe that, given a stream S, it returns the latest
observation available on the stream (i.e., observe(S) ∈ O is the latest observable
unit put on S).
1 Please note that the paper explicitly mentions that, in that context, “real-time com-
puting refers to the so-called near real-time, in which the goal is to minimize latency
between the event and its processing so that the user gets up-to-date information and
can access the information whenever required”, thus perfectly matching our notion
of streaming process mining.

2 Please note that, in the literature, it is possible to distinguish other streaming mod-
els, where elements are also deleted or updated [21]. However, in this chapter we will
assume an “insert-only model”.

352 A. Burattin

Due to the nature of streams, algorithms designed for their analyses are
required to fulfill several constraints [6,7], independently from the actual goal of
the analyses. These constraints are:

– it is necessary to process one event at a time and inspect it at most once;
– only a limited amount of time and memory is available for processing an event

(ideally, constant time and space computational complexity for each event);
– results of the analyses should be given at any time;
– the algorithm has to adapt to changes over time.

As detailed in [21, Table 2.1], it is possible to elaborate on the differences between
systems consuming data streams and systems consuming static data (from now
on, we will call these “offline”): in the streaming setting, the data elements
arrive incrementally (i.e., one at the time) and this imposes the analysis to be
incremental as well. These events are transient, meaning that they are available
for a short amount of time (during which they need to be processed). In addition,
elements can be analyzed at most once (i.e., no unbounded backtracking), which
means that the information should be aggregated and summarized. Finally, to
cope with concept drifts, old observations should be replaced by new ones: while
in offline systems, all data in the log is equally important, when analyzing event
stream the “importance” of events decreases over time.

In the literature, algorithms and techniques handling data streams are classi-
fied into different categories, including “online”, “incremental”, and “real-time”.
While real-time systems are required to perform the computation within a given
deadline – and, based on the consequences of not meeting the deadline, they
are divided into hard/soft/firm –, incremental systems just focus on processing
the input one element at the time with the solution being updated consequently
(no emphasis/limit on the time). An online system is similar to an incremental
one, except for the fact that the extent of input is not known in advance [37].
Please note that, in principle, both real-time and online techniques can be used
to handle data streams, thus we prefer the more general term streaming tech-
niques. In the context of this chapter, the streaming techniques are in between
the family of “online” and “soft real-time”: though we want to process each event
fast, the notion of deadline is not always available, and, when it is, missing it is
not going to cause a system failure but just degradation of the usefulness of the
information.

When instantiating the streaming requirements in the process mining con-
text, some of the constraints bring important conceptual implications, which are
going to change the typical way process mining is studied. For example, consid-
ering that each event is added to the stream when it happens in the real world
means that the traces we look at will be incomplete most of the time. Consider
the graphical representation reported in Fig. 1a, where the red area represents
the portion of time during which the streaming process mining is active. Only
in the first case (i.e., instance i), events referring to a complete trace are seen.
In all other situations, just incomplete observations are available, either because
events happened before we started observing the stream (i.e., instance l, suffix
trace) because the events have still to happen (i.e., instance k, prefix trace),

Streaming Process Mining 353

Fig. 1. Process mining implications of some streaming requirements.

or because of both (i.e., instance j, subsequence trace). Figure 1b is a graphi-
cal representation of what it means to give results at any time in the case of
conformance: after each event, the system needs to be able to communicate the
conformity value as new events come in. Also, the result might change over time,
thus adapting the computation to the new observations.

2 Taxonomy of Approaches

Different artists are often quoted as saying: “Good artists copy, great artists
steal”. Regardless of who actually said this first3, the key idea is the importance
of understanding the state of the art to incorporate the key elements into newly
designed techniques. Streaming process mining techniques have been around for
some years now, so it becomes relevant to understand and categorize them in
order to relate them to each other and derive new ones.

3 Many people, including Pablo Picasso, William Faulkner, Igor Stravinsky, and sev-
eral others are often referred to as the “first author” of some version of the quote.
Actually, investigating the history of this quote on the Internet represents a forma-
tive yet very procrastination-prone activity (see also https://xkcd.com/214/).

https://xkcd.com/214/

354 A. Burattin

Fig. 2. Taxonomy of the different approaches to solve the different stream process
mining problems. For each technique, corresponding general steps are sketched [10].

It is possible to divide the currently available techniques for streaming pro-
cess mining into four categories. A graphical representation of such taxonomy is
available in Fig. 2, where three main categories are identified, plus a fourth one,
which represents possible mixes of the others. In the remainder of this section,
each category will be briefly presented.

Window Models. The simplest approach to cope with infinite streams consists
of storing only a set of the most recent events and, periodically, analyzing them.
These approaches store a “window” of information that can be converted into
a static log. Then, standard (i.e., offline) analyses can be applied to the log
generated from such a window. Different types of windowing models can be
used and classified based on how the events are removed [34]. These models can
be characterized along several dimensions, including the unit of measurement
(i.e., whether events are kept according to some logical or physical units such
as the time of the events or the number of events); the edge shift (so whether
any of two bounds of a window is fixed to a specific time instant or if these
change over time); and the progression step (i.e., how the window evolves over
time, assuming that either of the bounds advances one observation at a time or
several data points are incorporated at once). These profiles can create different
window models, such as:

– count-based window: at every time instance, the window contains the latest
N observations;

– landmark window: one of the window bounds is fixed (e.g., the starting time
or the end time, far in the future) whereas the other progresses with time;

– time-based sliding window: in this case, the sliding window progresses accord-
ing to two parameters: a time window duration and a time progression step;

– time-based tumbling window: similar to the time-based sliding window but
where entire batches of events are observed so that two consecutive windows
do not overlap.

Streaming Process Mining 355

Algorithm 1: Count-based window model process mining algorithm
Input: S: event stream

M : memory
maxM : number of observation to keep
A: additional information (e.g., a reference model), can be ∅

1 forever do
// Observe a new event

2 e ← observe(S)

// Memory update

3 if max(M) ≥ maxM then
4 dequeue(M) // Forgetting

5 end
6 insert(M, e)

// Mining update

7 if perform mining then
// Memory into event log

8 L ← convert(M)
9 ProcessMining(L, A)

10 end

11 end

Algorithm 1 reports a possible representation of an algorithm for process
mining on a count-based window model. The algorithm uses as a memory model
a FIFO queue and it starts with a never-ending loop which comprises, as the
first step, the observation of a new event. After that, the memory is checked for
maximum capacity and, if reached, the oldest event observed is removed. Then,
the mining can take place, initially converting the memory into a process mining
capable log and then running the actual mining algorithm on the given log.

Window-based models come with many advantages such as the capability
of reusing any offline process mining algorithm already available for static log
files. The drawback, however, comes from the inefficient handling of the memory:
window-based models are not very efficient for summarizing the stream, i.e., the
logs generated from a window suffer from strong biases due to the rigidity of the
model.

Problem Reduction. To mitigate the issues associated with window models, one
option consists of employing a problem reduction technique (cf. Fig. 2). In this
case, the idea is to reduce the process mining problem at hand to a simpler yet
well-studied problem in the general stream processing field in order to leverage
existing solutions and derive new ones. An example of a very well studied prob-
lem is frequency counting : counting the frequencies of variables over a stream
(another example of a relevant and well-studied problem is sampling). To prop-
erly reduce a process mining problem to a frequency counting one, it is important

356 A. Burattin

Algorithm 2: Lossy Counting
Input: S: data stream

ε: maximal approximation error

1 T ← ∅ // Initially empty set

2 N ← 1 // Number of observed events

3 w ← ⌈
1
ε

⌉
// Bucket width

4 forever do
5 e ← observe(S)

6 bcurr ← ⌈
N
w

⌉

// Is there a tuple in T with e as first component?

7 if e is already in T then
8 Increment the frequency of e in T
9 else

10 Insert (e, 1, bcurr − 1) in T
11 end

12 if N mod w = 0 then
13 forall the (a, f, Δ) ∈ T s.t. f + Δ ≤ bcurr do
14 Remove (a, f, Δ) from T
15 end

16 end
17 N ← N + 1

18 end

to understand what a variable is in the process mining context and if it is indeed
possible to extract information by counting how often a variable occurs.

An algorithm to tackle the frequency counting problem is called Lossy Count-
ing [30], described in Algorithm 2 and graphically depicted in Fig. 3. Concep-
tually, the algorithm divides the stream into “buckets”, each of them with a
fixed size (line 6). The size of the bucket is derived from one of the inputs of
the algorithm (ε ∈ [0, 1]) which indicates the maximal acceptable approximation
error in the counting. Lossy Counting keeps track of the counting by means of
a data structure T , where each component (e, f,Δ) refers to the element e of
the stream (the variable to count), its estimated frequency f , and the maximum
number of times it could have occurred Δ (i.e., the maximum error). Whenever
a new event is observed (line 5), if the value is already in the memory T , then
the counter f is incremented by one (line 8), instead, if there is no such value, a
new entry is created in T with the value e corresponding to the observed vari-
able, frequency f = 1, and maximum error equal to the number of the current
bucket minus one (from here it is possible to understand that since the buck
size depends on the maximum allowed error, the higher the error, the larger
the bucket size and hence the higher the approximation error) (line 10). With
a fixed periodicity (i.e., every time a new conceptual bucket starts) the algo-
rithm cleans the memory, by removing elements not frequently observed (lines
12–16). Please note that this specific algorithm has no memory bound: the size

Streaming Process Mining 357

Fig. 3. Graphical representation of the Lossy Counting algorithm.

Fig. 4. Demonstration of the evolution of the internal data structure constructed by
the Lossy Counting on a simple stream. Each color refers to a variable.

of its data structure T depends on the stream and on the max approximation
error (i.e., if the error is set to 0 and the observations never repeat, the size of
T will grow indefinitely). Variants of the algorithm enforcing a fixed memory
bound is available as well [18] but are not described in detail here. In the rest
of this chapter, a set whose entries are structured and updated using the Lossy
Counting algorithm (i.e., T in Algorithm 2) will be called Lossy Counting Set.

Figure 4 shows a demonstration of the evolution of the Lossy Counting Sets
over time (at the end and at the beginning of each virtual bucket) for the given
stream. In this case, for simplicity purposes, the background color of each box
represents the variable that we are counting. The counting is represented as the
stacking of the blocks, and below, in red, the maximum error for each variable
is ported.

The most relevant benefit of reducing the problem to a known one is the abil-
ity to employ existing as well as new solutions in order to improve the efficiency
of the final process mining solution. Clearly, this desirable feature is paid back
in terms of the complexity of the steps (both conceptual and computational)
required for the translation.

Offline Computation. Due to some of the constraints imposed by the streaming
paradigm, one option consists of moving parts of the computation offline (cf.
Fig. 2) so that performance requirements are met when the system goes online.
This idea implies decomposing the problem into sub-problems and reflecting on
whether some of them can be solved without the actual streaming data. If that

358 A. Burattin

Fig. 5. Conceptualization of the streaming process discovery. Figure from [16].

is the case, these sub-problems will be solved beforehand and corresponding
pre-computed solutions will be available as the events are coming in.

Such an approach comes with the advantage of caching the results of com-
putations that would otherwise require extremely expensive computations. This
approach, still, suffers from several limitations since it is not possible to apply this
approach to all streaming process mining problems. Additionally, by computing
everything in advance, we lose the possibility of adapting the pre-computed
solutions to the actual context, which might be uniquely specific to the running
process instance.

Hybrid Approaches. As a final note, we should not rule out the option of defining
ensemble methods that combine different approaches together (see Fig. 2).

3 Streaming Process Discovery

After introducing the general principles and taxonomy of techniques to tackle
streaming process mining, in this section, we will specifically analyze the problem
of streaming process discovery.

A graphical conceptualization of the problem is reported in Fig. 5: the basic
idea is to have a source of events that generates an event stream. Such an event
stream is consumed by a miner which keeps a representation of the underlying
process model updated as the new events are coming in.

3.1 State of the Art

In this section, the main milestones of the streaming process discovery will be
presented. The first available approach to tackle the streaming process discovery
problem is reported in [15,16]. This technique employs a “problem reduction”
approach (cf. Fig. 2) rephrasing the Heuristics Miner [38] as a frequency counting
problem. The details of this approach will be presented in Sect. 3.2. In [23],
authors present StrProM which, similarly to the previous case, tracks the direct

Streaming Process Mining 359

following relationship by keeping a prefix tree updated with Lossy Counting with
Budget [18].

More recently, an architecture called S-BAR, which keeps an updated
abstract representation of the stream (e.g., direct follow relationships), is used
as starting point to infer an actual process model, as described in [44]. Different
algorithms (including α. [39], Heuristics Miner [38] and Inductive Miner [26])
have been incorporated to be used with this approach. Also in this case authors
reduced their problem to frequency counting, thus using Lossy Counting, Space
Saving [32], and Frequent [24].

Declarative processes (cf. Chapter 4) have also been investigated as the target
of the discovery. In [12,14,27], authors used the notion of “replayers” – one for
each Declare [35] template to mine – to discover which one are fulfilled. Also in
this case, Lossy Counting strategies have been employed to achieve the goal. A
newer version of the approach [33], is also capable of discovering data conditions
associated with the different constraints.

3.2 Heuristics Miner with Lossy Counting (HM-LC)

This section describes in more detail one algorithm for streaming process dis-
covery: Heuristics Miner with Lossy Counting (HM-LC) [16].

The Heuristics Miner algorithm [38] is a discovery algorithm which, given
the frequency of the direct following relations observed (reported as |a > b| and
indicating the number of times b is observed directly after a), calculates the
dependency measure, a measure of the strength of the causal relation between
two activities a and b:

a ⇒ b =
|a > b| − |b > a|

|a > b| + |b > a| + 1
∈ [−1, 1]. (1)

The closer the value of such metric is to 1, the stronger the causal dependency
from a to b. Based on a given threshold (parameter asked as input), the algorithm
considers only those dependencies with values exceeding the threshold, deeming
the remaining as noise. By considering all dependencies which are strong enough,
it is possible to build a dependency graph, considering one node per activity and
one edge for each dependency. In such a graph, however, when splits or joins are
observed (i.e., activities with more than one outgoing or incoming connection) it
is not possible to distinguish the type of the splits. In the case of a dependency
from a to b and also from a to c, Heuristics Miner disambiguates between an
AND and an XOR split by calculating the following metric (also based on the
frequency of direct following relations):

a ⇒ (b ∧ c) =
|b > c| + |c > b|

|a > b| + |a > c| + 1
∈ [0, 1]. (2)

When the value of this measure is high (i.e. close to 1), it is likely that b and c
can be executed in parallel, otherwise, these will be mutually exclusive. As for

360 A. Burattin

the previous case, a threshold (parameter asked as input) is used to make the
distinction.

It is important to note that the two fundamental measures employed by
the Heuristics Miner rely on the frequency of the directly-follows measure (e.g.
|a > b|), and so the basic idea of Heuristics Miner with Lossy Counting is to
consider such values as “variables” to be observed in a stream, thus reducing the
problem to frequency counting.

As previously mentioned, Lossy Counting is an algorithm for frequency count-
ing. In particular, the estimated frequencies can be characterized both in terms
of lower and upper bounds as follows: given the estimated frequency f (i.e., the
frequency calculated by the algorithm), the true frequency F (i.e., the actual
frequency of the observed variable), the maximum approximation error ε and
the number of events observed N , these inequalities hold

f ≤ F ≤ f + εN.

To calculate the frequencies, Lossy Counting uses a set data structure where each
element refers to the variable being counted, its current (and approximated) fre-
quency, and the maximum approximation error in the counting of that variable.

For the sake of simplicity, in Heuristics Miner with Lossy Counting, the
observable units of the event stream comprises just the activity name and the
case id (cf. Definition 1). In other words, each event observed from the stream
comprises two attributes: the activity name and the case id (cf. Definition 1 [1],
Sect. 3.2 [1]), so an event e is a tuple with e = (c, a), where #case(e) = c and
#act(e) = a.

Fig. 6. Conceptualization of the need to iso-
late different traces based on a single stream.
Boxes represent events: their background col-
ors represent the case id, and the letters inside
are the activity names. First line reports the
stream, following lines are the single cases.
Figure from [16].

The pseudocode of HM-LC
is reported in Algorithm 3. The
fundamental idea of the app-
roach is to count the frequency
of the direct following relations
observed. In order to achieve this
goal, however, it is necessary to
identify the direct following pairs
in the first place. As depicted in
Fig. 6, to identify direct follow-
ing relations it is first necessary
to disentangle the different traces
that are intertwined in an event
stream. To this end, the HM-LC
instantiates two Lossy Counting Sets: DC , and DR. The first keeps track of the
latest activity observed in each process instance whereas the second counts the
actual frequency of the directly follow relations. These data structures are ini-
tialized at the first line of the algorithm, which is followed by the initialization
of the counter of observed events (line 2) and the calculation of the size of the
buckets (line 3). After the initial setup of the data structure, a never-ending loop
starts by observing events from the stream (line 5, cf. Definition 1), where each

Streaming Process Mining 361

Algorithm 3: Heuristics Miner with Lossy Counting (simplified)
Input: S: event stream

ε: approximation error
1 Initialize Lossy Counting Sets DC and DR

2 N ← 1 // Counter of observed events

3 w ← ⌈
1
ε

⌉
// Bucket size

4 forever do
5 (cN , aN) ← observe(S)

6 bcurr =
⌈

N
w

⌉
// Calculate the current bucket id

// Step 1: Update the Lossy Counting Sets

7 if ∃((c, alast), f, Δ) ∈ DC such that c = cN then
8 Remove the entry ((c, alast), f, Δ) from DC

9 DC ← DC ∪ {((c, aN), f + 1, Δ)}
// Update the DR data structure

10 rN ← (alast, aN) // Build relation rN as alast → aN

11 if ∃(r, f, Δ) ∈ DR such that r = rN then
12 Remove the entry (r, f, Δ) from DR

13 DR ← DR ∪ {(r, f + 1, Δ)}
14 else
15 DR ← DR ∪ {(rN , 1, bcurr − 1)}
16 end

17 else
18 DC ← DC ∪ {((cN , aN), 1, bcurr − 1)}
19 end

// Step 2: Periodic cleanup

20 if N ≡ 0 mod w then
21 forall the ((c, a), f, Δ) ∈ DC such that f + Δ ≤ bcurr do
22 Remove ((c, a), f, Δ) from DC

23 end
24 forall the (r, f, Δ) ∈ DR such that f + Δ ≤ bcurr do
25 Remove (r, f, Δ) from DR

26 end

27 end
28 N ← N + 1

// Step 3: Consumption of the data structure to update the model

29 Update the model using DR

30 end

event is the pair (cN , aN), indicating that the case id observed as event N is
cN (resp., the activity is aN). The id of the current bucket is calculated right
afterwards (line 6). The whole algorithm is then divided into three conceptual
steps: in the first the data structures are updated; in the second periodic cleanup
takes place; in the third the data structures are used to construct and update
the actual model.

362 A. Burattin

Step 1: Updating the Data Structure. The Lossy Counting Set DC has been
defined in order not only to keep a count of the frequency of each case id observed
in the events but also to keep track of the latest activity observed in the given
trace. To achieve this goal, the entries of the data structure are tuples themselves,
comprising the case id as well as the name of the latest activity observed in the
case. Therefore, the first operation within the step consists of checking for the
presence of an entry in DC matching the case id of the observed event (but not
the activity name), as reported in line 7. If this is the case, the data structure
DC is updated, not only by updating the frequency but also by updating the
latest activity observed in the given case (lines 8 and 9). In addition, having
already an entry in DC means that a previous event within the same trace has
already been seen and, therefore, it is possible to construct a direct following
relation (cf. line 10 of Algorithm 3). This relation is then treated as a normal
variable to be counted and the corresponding Lossy Counting Set is updated
accordingly (lines 11–16). In case DC did not contain an entry referring to case
id cN , it means that the observed event is the first event of its process instance
(up to the approximation error) and hence just a new entry in DC is inserted
and no direct following relation is involved (line 18).

Step 2: Periodic Cleanup. With a periodicity imposed by the maximum approxi-
mation error (ε), i.e., at the end of each bucket (line 20), the two Lossy Counting
Sets are updated by removing entries that are not frequent or recent enough
(lines 21–26). Please note that the algorithm expects that observing an event
belonging to a process instance that has been removed from DC corresponds to
losing one direct following relation from the counting in DR. From this point of
view, the error on the counting of the relations is not only affected by DR but,
indirectly, also by the removal of instances from DC which causes a relation not
to be seen at all (and therefore, it cannot be counted).

Step 3: Consumption of the Data Structures. The very final step of the algo-
rithm (line 29) consists of triggering a periodic update of the model. The update
procedure (not specified in the algorithm) extracts all the activities involved in a
direct following relations from DR and uses the dependency measure (cf. Eq. 1)
to build a dependency graph, by keeping the relations with dependency measure
above a threshold. To disambiguate AND/XOR splits Eq. 2 is used. Both these
measures need to be adapted in order to retrieve the frequency of the relations
from DR.

The procedure just mentioned recomputes the whole model from scratch.
However, observing a new event will cause only local changes to a model. Hence
a complete computation of the whole model is not necessary. In particular, it
is possible to rearrange Eqs. 1 and 2 in order to signal when a dependency has
changed. Specifically, given a dependency threshold τdep , we know that a depen-
dency should be present if these inequalities hold:

|a > b| ≥ |b > a|(1 + τdep) + τdep
1 − τdep

or |b > a| ≤ |a > b|(1 − τdep) − τdep
1 + τdep

Streaming Process Mining 363

A A1 B

A2

C D

E

F

Fig. 7. Reference process model used to calculate
the conformance of traces in Table 1, from [17].

Table 1. Example traces with
corresponding offline confor-
mance.

Trace Conf.

t1 = 〈A, A1, B, E, F 〉 1.00

t2 = 〈A, A1, A2, A1, B〉 0.80

t3 = 〈B, C, D, F 〉 0.78

t4 = 〈B, C, D〉 0.62

In a similar fashion, we can rewrite Eq. 2 so that, given an AND threshold
parameter τand, a split (i.e., from activity a to both activities b and c) has type
AND if all these inequalities hold:

|b > c| ≤τand (|a > b| + |a > c| + 1) − |c > b|
|c > b| ≤τand(|a > b| + |a > c| + 1) − |b > c|

|a > b| ≤|b > c| + |c > b|
τand

− |a > c| − 1

|a > c| ≤|b > c| + |c > b|
τand

− |a > b| − 1

If this is not the case, the type of the split will be XOR. Therefore, by monitoring
how the frequencies of some of the relations in DR (which should be used as an
approximation of the direct following frequencies) are evolving, it is possible to
pinpoint the changes appearing in a model, with no need for rebuilding it from
scratch all the times.

In this section, we did not exhaustively cover the reduction of the Heuristics
Miner to Lossy Counting (for example, we did not consider the absolute number
of observations for an activity or parameters such as the relative-to-best) but
we focused on the core aspects of the reduction. The goal of the section was
to present the core ideas behind a streaming process discovery algorithm while,
at the same time, showing an example of an algorithm based on the problem
reduction approach (cf. Fig. 2).

4 Streaming Conformance Checking

Computing the conformity of running instances starting from events observed in
a stream is the main goal of streaming conformance checking.

Consider, for example, the process model reported in Fig. 7 as a reference
process, and let’s investigate the offline conformance (calculated according to
the alignment technique reported in [2]) for the traces reported in Table 1. Trace
t1 is indeed conforming with respect to the model as it represents a possible
complete execution of the process. This information is already properly cap-
tured by the offline analysis. Trace t2, on the other hand, is compliant with the
process but just up to activity B, as reported by the conformance value 0.8:

364 A. Burattin

offline systems assume that the executions are complete, and therefore observ-
ing an incomplete trace represents a problem. However, as previously discussed
and as shown in Fig. 1a, in online settings it could happen that parts of the
executions are missing due to the fact that the execution has not yet arrived
at this part of the computation. This could be the case with trace t2 (i.e., t2 is
the prefix of a compliant trace). Trace t3 suffers from the opposite problem: the
execution is conforming to the model, but just from activity B onward. While
offline conformance, in this case, is calculated to the value of 0.68, as for the
previous case, we cannot rule out the option that the trace is actually compli-
ant but, since the trace started before the streaming conformance checker was
online, it was incapable of analyzing the beginning of it (i.e., t3 is the suffix of
a compliant trace). Trace t4, finally, seems compliant just between activities B
and D. Though offline conformance, in this case, is 0.62, as for the previous two
cases, in a streaming setting, we cannot exclude that the issue actually derives
from the combination of the trace starting before the streaming conformance was
online and the trace not being complete (i.e.,t4 is a subsequence of a compliant
trace).

Hopefully, discussing the previous examples helped to point out the limit of
calculating the extent of the conformance using only one numerical value in a
streaming setting. Indeed, when the assumption that executions are complete
is dropped, the behavior shown in the traces of Table 1 could become 100%
compliant since the actual issue does not lie in the conformity but in the amount
of observed behavior.

4.1 State of the Art

Computing the conformity of a stream with respect to a reference model has
received a fairly large amount of attention, in particular in the case of declarative
processes. Under the name “operational support”, research has been focusing [28,
29] on understanding if and which constraints are violated and satisfied as new
events are coming in. In particular, each constraint is associated with one of four
possible truth values: permanently or temporarily violated or fulfilled which are
computed by representing the behavior as an automaton with all executions
replayed on top of it.

Streaming conformance checking on imperative models has also received
attention, though more recently. Optimal alignments can be computed for the
prefix (i.e., prefix-alignments) of the trace seen up to a given point in time [41],
resulting in a very reliable approach which, however, meets only to some extent
the streaming scenario (cf. Sect. 1.2). A more recent approach [36] is capable of
improving the performance of calculating a prefix-alignment, by rephrasing the
problem as the shortest path one and by incrementally expanding the search
space and reusing previously computed intermediate results.

Streaming Process Mining 365

A different line of research focused on calculating streaming conformance for
all scenarios (cf., Fig. 1a). In this case, techniques employed “offline computa-
tion” approaches [11,17,25] to construct data structures capable of simplifying
the computation when the system goes online. These approaches not only com-
pute the conformity of a running instance but also try to quantify the amount
of behavior observed or still to come.

In addition to these, one of the first approaches [45] focused on a RESTful
service capable of performing the token replay on a BPMN model (via a token
pull mechanism). No explicit guarantees, however, are reported concerning the
memory usage, the computational complexity, or the reliability of the results,
suggesting that the effort was mostly on the interface type (i.e., online as in
RESTful).

4.2 Conformance Checking with Behavioral Patterns

This section presents in more detail one algorithm for streaming conformance
checking using behavioral patterns [17]. The algorithm belongs to the category of
offline computation (cf. Fig. 2), where the heaviest computation is moved before
the system goes online, thus meeting the performance requirement of streaming
settings.

The fundamental idea of the approach is that using just one metric to express
conformity could lead to misleading results, i.e. cases that already started and/or
that are not yet finished get falsely penalized. To solve these issues, the approach
proposes to break the conformity into three values:

1. Conformance: indicating the amount of actually correct behavior seen;
2. Completeness: providing an estimate of the extent to which the trace has

been observed since the beginning; and
3. Confidence: indicating how much of the trace has been seen, and therefore to

what extent the conformance is likely to remain stable.

A graphical representation of these concepts is reported in Fig. 8. In addition,
the approach does not assume any specific modeling language for the reference
process. Instead, the approach takes the reference process as a constraining of
the relative orders of its activities. Such constraints are defined in terms of
behavioral patterns, such as weak ordering, parallelism, causality, and conflict.
Such behavioral patterns (with the corresponding activities involved) represent
also what the conformance checking algorithm observes. In the context of this
chapter, we will consider the directly follow relation as a pattern.

Please note that the input of the algorithm is not a stream of events, but a
stream of observed behavioral patterns, which could require some processing of
the raw events. This, however, does not represent a problem for the behavioral
pattern considered (i.e., directly follow relation), since these can be extracted
using the technique described in Sect. 3.2.

366 A. Burattin

Fig. 8. General idea of the 3 conformance measures computed based on a partially
observed process instance: conformance, completeness, and confidence. Figure from [17].

As previously mentioned, the technique offloads the computation to a pre-
processing stage which takes place offline, before the actual conformance is com-
puted. During such a step, the model is converted into another representation,
better suited for the online phase. Specifically, the new model contains:

1. The set of behavioral patterns that the original process prescribes;
2. For each of the behavioral patterns identified, the minimum and maximum

number of distinct prescribed patterns that must occur before it, since the
very beginning of the trace;

3. For each behavioral pattern, the minimum number of distinct patterns still
to observe to reach a valid accepting state of the process (as prescribed by
the reference model).

These requirements drive the definition of the formal representation called “Pro-
cess Model for Online Conformance” (PMOC). A process model for online con-
formance M = (B,P, F) is defined as a triplet containing the set of prescribed
behavioural patterns B. Each pattern b(a1, a2) is defined as a relation b (e.g., the
directly follow relation) between activities a1, a2 ∈ Uact (cf. Definition 1 [1]). P
contains, for each behavioral pattern b ∈ B, the pair of minimum and maximum
number distinct prescribed patterns (i.e., B) to be seen before b. We refer to
these values as Pmin(b) and Pmax(b). For each pattern, b ∈ B, F (b) refers to the
minimum number of distinct patterns (i.e., B) required to reach the end of the
process from b.

Once such a model is available, the conformance values can be calculated
according to Algorithm 4 which executes three steps for each event: updating the
data structures, calculating the conformance values, and housekeeping cleanup.
After two maps are initialized (lines 1, 2), the never-ending loop starts and, each
observation from the stream (which refers to a behavioral patter b for case id
c, cf. Definition 1) triggers and update of the two maps: if the pattern refers to
a prescribed relation, then it is added to the obs(c) set (line 6)4, otherwise, the
value of incorrect observations for the process instance obs(c) is incremented (line
8)5. In the second step, the algorithm calculates the new conformance values.
4 If obs has no key c, obs(c) returns the empty set.
5 If inc has no key c, then inc(c) returns 0.

Streaming Process Mining 367

Algorithm 4: Conformance Checking with Behavioral Patterns
Input: S: stream of behavioural patterns

M = (B, P, F): process model for online conformance

1 Init map obs // Maps case ids to set of observed patterns from M
2 Init map inc // Maps case ids to integers

3 forever do
4 (c, b) ← observe(S) // New observation of pattern b for case c

// Step 1: update internal data structures

5 if b ∈ B then
6 obs(c) ← obs(c) ∪ {b} // If b already in obs(c), then no effect

7 else
8 inc(c) ← inc(c) + 1
9 end

// Step 2: compute online conformance values

10 conformance(c) ← |obs(c)|
|obs(c)| + inc(c)

11 Notify new value of conformance(c)
12 if b ∈ B then
13 if Pmin(b) ≤ |obs(c)| ≤ Pmax(b) then
14 completeness(c) ← 1
15 else

16 completeness(c) ← min

{
1,

|obs(c)|
Pmin(b) + 1

}

17 end

18 confidence(c) ← 1 − F (b)

maxb′∈B F (b′)
19 Notify new values of completeness(c) and confidence(c)
20 end

// Step 3: cleanup

21 if size of obs and inc is close to max capacity then
22 Remove oldest entries from obs and inc
23 end

24 end

The actual conformance, which resembles the concept of precision, is calculated
(lines 10, 11) as the number of distinct observed prescribed patterns in c (i.e.,
|obs(c)|) divided by the sum of the number of prescribed observed patterns and
the incorrect patterns (i.e., |obs(c)| + inc(c)): 1 indicates full conformance (i.e.,
only correct behaviour) and 0 indicates no conformance at all (i.e., only incorrect
behaviour). Completeness and confidence are updated only when a prescribed
behavioral pattern is observed (line 12) since they require locating the pattern
itself in the process. Concerning completeness, we have perfect value if the num-
ber of distinct behavioral patterns observed so far is within the expected interval
for the current pattern (lines 13, 14). If this is not the case, we might have seen
fewer or more patterns than expected. If we have seen fewer patterns, the com-

368 A. Burattin

pleteness is the ratio of observed patterns over the minimum expected; otherwise,
it’s just 1 (i.e., we observed more patterns than needed, so the completeness is
not an issue). Please bear in mind that these numbers confront the number of
distinct patterns, not their type, thus potentially leading to false positives (line
16). The confidence is calculated (line 18) as 1 minus the proportion of patterns
to observe (i.e., F (b)) and the overall maximum number of future patterns (i.e.,
maxb′∈B F (b′)): a confidence level 1 indicates strong confidence (i.e., the execu-
tion reached the end of the process), 0 means low confidence (i.e., the execution
is still far from completion, therefore there is room for change). The final step
performs some cleanup operations on obs and inc (lines 21–23). The algorithm
does not specify how old entries should be identified and removed, but, as seen
on the previous section, existing approaches can easily handle this problem (e.g.,
by using a Lossy Counting Set).

It is important to note once again that the actual algorithm relies on a
data structure (the PMOC) that is tailored to the purpose and that might be
computational very expensive to obtain. However, since this operation is done
only once and before any streaming processing, this represents a viable solution.
The details on the construction of the PMOC are not analyzed in detail here
but are available in [17]. Briefly, considering the directly follow relation as the
behavioral pattern, the idea is to start from a Petri net and calculate its reverse
(i.e., the Petri net where all edges have opposite directions). Both these models
are then unfolded according to a specific stop criterion and, once corresponding
reachability graphs are computed, the PMOC can be easily derived from the
reachability graph of the unfolded original Petri net and the reachability graph
of the unfolded reverse net.

Considering again the traces reported in Table 1 and the reference model
in Fig. 7, all traces have a streaming conformance value of 1 (when calculated
using the approach just described). The completeness is 1 for t1 and t2, 0.6 for
t3, and 0.5 for t4. The confidence is 1 for t1 and t3, 0.5 for t2, and 0.75 for t4.
These values indeed capture the goals mentioned at the beginning of this section:
do not penalize the conformance but highlight the actual issues concerning the
missing beginning or end of the trace.

As for the streaming process discovery case, in this section, we did not
exhaustively cover the algorithm for streaming conformance checking presented.
Instead, we focused on the most important aspects of the approach, hopefully
also giving an intuition of how an offline computation approach could work (cf.
Fig. 2).

5 Other Applications and Outlook

It is worth mentioning that the concepts related to streaming process mining
have been applied not only to the problem of discovery and conformance but, to
a limited extent, to other challenges.

Examples of such applications are the discovery of cooperative structures out
of event streams, as tackled in [43], where authors process an event stream and

Streaming Process Mining 369

update the set of relationships of a cooperative resource network. In [40], several
additional aspects of online process mining are investigated too.

Supporting the research in streaming process mining has also been a topic
of research. Simulation techniques have been defined both as standalone appli-
cations [9], as ProM plugins [42], or just as communication protocols [13].

Finally, from the industrial point of view, it might be interesting to observe
that while some companies are starting to consider some aspects related to the
topics discussed in this chapter (e.g., Celonis’ Execution Management Plat-
form supports the real-time data ingestion, though not the analysis), none of
them offers actual solutions for streaming process mining. A report from Ever-
est Group6 explicitly refers to real-time monitoring of processes as an important
process intelligence capability not yet commercially available.

This chapter presented the topic of streaming process mining. While the field
is relatively young, several techniques are already available both for discovery
and conformance checking.

We presented a taxonomy of the existing approaches which, hopefully, can be
used proactively, when new algorithms need to be constructed, to identify how
a problem can be tackled. Then two approaches, one for control-flow discovery
and one for conformance checking, are presented in detail which, in addition,
belong to different categories of the taxonomy. Alongside these two approaches,
window models can also be employed, yet their efficacy is typically extremely
low compared to algorithms specifically designed for the streaming context.

It is important to mention that streaming process mining has very important
challenges still to be solved. For example, dealing with a stream where the arrival
time of events does not coincide with their actual execution. In this case, it would
be necessary to reorder the list of events belonging to the same process instance
before processing them. Another relevant issue might be the inference of the
termination of process instances. Finally, so far, we always considered an insert-
only stream model, where events can only be added in a monotonic fashion.
Scenarios where observed events can be changed or removed (i.e., insert-delete
models) are yet to be considered.

References

1. van der Aalst, W.M.P.: Chapter 1 - Process mining: a 360 degrees overview. In: van
der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. Lecture Notes
in Business Information Processing, pp. ??-??, vol. 448. Springer-Verlag, Berlin
(2022)

2. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische
Universiteit Eindhoven (2014)

3. Aggarwal, C.C.: Data Streams: Models and Algorithms. Advances in Database
Systems. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-47534-9

4. Berry, R.F., McKenney, P.E., Parr, F.N.: Responsive systems: an introduction.
IBM Syst. J. 47(2), 197–206 (2008)

6 https://www2.everestgrp.com/reportaction/EGR-2020-38-R-3808/Marketing.

https://doi.org/10.1007/978-0-387-47534-9
https://www2.everestgrp.com/reportaction/EGR-2020-38-R-3808/Marketing

370 A. Burattin

5. Beverungen, D., et al.: Seven paradoxes of business process management in a hyper-
connected world. Bus. Inf. Syst. Eng. 63(2), 145–156 (2021)

6. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data
Streams. The MIT Press, Cambridge (2018)

7. Bifet, A., Kirkby, R.: Data stream mining: a practical approach. Technical report,
Centre for Open Software Innovation - The University of Waikato (2009)

8. Burattin, A.: Process Mining Techniques in Business Environments. Lecture Notes
in Business Information Processing, vol. 207. Springer International Publishing,
Cham (2015). https://doi.org/10.1007/978-3-319-17482-2

9. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. In: Online Proceedings of the BPM Demo Track (2016). CEUR-
WS.org

10. Burattin, A.: Streaming process discovery and conformance checking. In: Sakr, S.,
Zomaya, A., (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-63962-8 103-1

11. Burattin, A., Carmona, J.: A framework for online conformance checking. In:
Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165–177.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 12

12. Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online discovery of declara-
tive process models from event streams. IEEE Trans. Serv. Comput. 8(6), 833–846
(2015)

13. Burattin, A., Eigenmann, M., Seiger, R., Weber, B.: MQTT-XES: real-time teleme-
try for process event data. In: CEUR Workshop Proceedings (2020)

14. Burattin, A., Maggi, F.M., Cimitile, M.: Lights, camera, action! Business process
movies for online process discovery. In: Proceedings of the 3rd International Work-
shop on Theory and Applications of Process Visualization (TAProViz 2014) (2014)

15. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics Miners for Streaming
Event Data. ArXiv CoRR, December 2012

16. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from
event streams. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion, pp. 2420–2427. IEEE (2014)

17. Burattin, A., van Zelst, S.J., Armas-Cervantes, A., van Dongen, B.F., Carmona, J.:
Online conformance checking using behavioural patterns. In: Weske, M., Montali,
M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 250–267.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 15

18. Da San Martino, G., Navarin, N., Sperduti, A.: A lossy counting based approach
for learning on streams of graphs on a budget. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, pp. 1294–1301. AAAI
Press (2012)

19. Dayarathna, M., Perera, S.: Recent advancements in event processing. ACM Com-
put. Surv. 51(2), 1–36 (2018)

20. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
ACM SIGMOD Rec. 34(2), 18–26 (2005)

21. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC,
London (2010)

22. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and ana-
lytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)

23. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from
event streams using sequential pattern mining. In: 2015 IEEE Symposium Series
on Computational Intelligence, pp. 1366–1373 (2015)

https://doi.org/10.1007/978-3-319-17482-2
https://doi.org/10.1007/978-3-319-63962-8_103-1
https://doi.org/10.1007/978-3-319-74030-0_12
https://doi.org/10.1007/978-3-319-98648-7_15

Streaming Process Mining 371

24. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Trans. Database Syst. 28(1), 51–55
(2003)

25. Jonathan Lee, W.L., Burattin, A., Munoz-Gama, J., Sepúlveda, M.: Orientation
and conformance: a HMM-based approach to online conformance checking. Inf.
Syst. 102, 1–38 (2020)

26. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

27. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated
approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38709-8 28

28. Maggi, F.M., Montali, M., van der Aalst, W.M.P.: An operational decision support
framework for monitoring business constraints. In: Proceedings of 15th Interna-
tional Conference on Fundamental Approaches to Software Engineering (FASE),
pp. 146–162 (2012)

29. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23059-2 13

30. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proceedings of International Conference on Very Large Data Bases, pp. 346–357.
Morgan Kaufmann, Hong Kong, China (2002)

31. Mans, R., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16071-9

32. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 398–412. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30570-5 27

33. Navarin, N., Cambiaso, M., Burattin, A., Maggi, F.M., Oneto, L., Sperduti, A.:
Towards online discovery of data-aware declarative process models from event
streams. In: Proceedings of the International Joint Conference on Neural Networks
(2020)

34. Patroumpas, K., Sellis, T.: Window specification over data streams. In: Proceedings
of Current Trends in Database Technology - EDBT, pp. 445–464 (2006)

35. Pešić, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: Proceedings of EDOC, pp. 287–298. IEEE (2007)

36. Schuster, D., van Zelst, S.J.: Online process monitoring using incremental state-
space expansion: an exact algorithm. In: Fahland, D., Ghidini, C., Becker, J.,
Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 147–164. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58666-9 9

37. Sharp, A.M.: Incremental Algorithms: Solving Problems in a Changing World.
Ph.D. thesis, Cornell University (2007)

38. van der Aalst, W.M.P., Ton, A.J., Weijters, M.M.: Rediscovering workflow models
from event-based data using little thumb. Integr. Comput. Aid. Eng. 10(2), 151–
162 (2003)

https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38709-8_28
https://doi.org/10.1007/978-3-642-23059-2_13
https://doi.org/10.1007/978-3-642-23059-2_13
https://doi.org/10.1007/978-3-319-16071-9
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-030-58666-9_9

372 A. Burattin

39. van der Aalst, W.M.P., Ton, A.J., Weijters, M.M., Maruster, L.: Workflow mining:
discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16,
1128–1142 (2004)

40. van Zelst, S.J.: Process mining with streaming data. Ph.D. thesis, Technische Uni-
versiteit Eindhoven (2019)

41. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B., van der Aalst, W.M.P.:
Online conformance checking: relating event streams to process models using
prefix-alignments. Int. J. Data Sci. Anal. 8, 269–284 (2017)

42. van Zelst, S.J., van Dongen, B., van der Aalst, W.M.P.: Know what you stream:
generating event streams from CPN models in ProM 6. In: CEUR Workshop Pro-
ceedings, pp. 85–89 (2015)

43. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Online discovery of
cooperative structures in business processes. In: Debruyne, C., et al. (eds.) OTM
2016. LNCS, vol. 10033, pp. 210–228. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48472-3 12

44. van Zelst, S.J., van Dongen, B., van der Aalst, W.M.P.: Event stream-based process
discovery using abstract representations. Knowl. Inf. Syst. 54, 1–29 (2018)

45. Weber, I., Rogge-Solti, A., Li, C., Mendling, J.: CCaaS: online conformance check-
ing as a service. In: Proceedings of the BPM Demo Session 2015, vol. 1418, pp.
45–49 (2015)

46. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Mach. Learn. 23(1), 69–101 (1996)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-48472-3_12
https://doi.org/10.1007/978-3-319-48472-3_12
http://creativecommons.org/licenses/by/4.0/

Responsible Process Mining

Felix Mannhardt(B)

Eindhoven University of Technology, Eindhoven, The Netherlands

f.mannhardt@tue.nl

Abstract. The prospect of data misuse negatively affecting our life has
lead to the concept of responsible data science. It advocates for respon-
sibility to be built, by design, into data management, data analysis, and
algorithmic decision making techniques such that it is made difficult or
even impossible to intentionally or unintentionally cause harm. Process
mining techniques are no exception to this and may be misused and lead
to harm. Decisions based on process mining may lead to unfair deci-
sions causing harm to people by amplifying the biases encoded in the
data by disregarding infrequently observed or minority cases. Insights
obtained may lead to inaccurate conclusions due to failing to considering
the quality of the input event data. Confidential or personal information
on process stakeholders may be leaked as the precise work behavior of an
employee can be revealed. Process mining models are usually white-box
but may still be difficult to interpret correctly without expert knowledge
hampering the transparency of the analysis. This chapter structures the
topic of responsible process mining based on the FACT criteria: Fairness,
Accuracy, Confidentiality, and Transparency. For each criteria challenges
specific to process mining are provided and the current state of the art
is briefly summarized.

Keywords: Fairness · Accuracy · Confidentiality · Transparency

1 Introduction

Data-based decisions affect our society and our daily life. Organizations leverage
data to obtain objective insights that are based on facts rather than on guess-
work. Being data-driven to guide decisions is in itself hardly new and, certainly,
decisions should be based on data rather than being based on arbitrary factors.
In fact, the scientific method itself is based on meticulously analysing data to
derive trustworthy conclusions.

What changed in recent years, and is increasingly changing every aspect of
our life, is the abundance of data and compute power available to most people
and organizations. The capability of collecting and analysing a large amount of
data is now within the reach for most organization. What used to be a costly
and time consuming operation involving a great degree of planning what data
to be collected and what methods to build, can now be done ad-hoc on large
amounts of stockpiled data.
c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 373–401, 2022.

https://doi.org/10.1007/978-3-031-08848-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_12

374 F. Mannhardt

This abundance of data together with the emergence of a wide variety of
analysis techniques has led to the formation of the data science field. Data
science technique are not limited to giving decision support to human decision
makers but increasingly Artificial Intelligence (AI) is used to automate decisions
based on predictive models. Process mining is a data science method that focuses
on improving an organization’s processes by leveraging event logs. The core of
event logs are timestamped data about all kinds of events that occur in the
context of work or business processes [1]. Process mining techniques have been
very successfully deployed in numerous organizations and have helped to remove
inefficiencies and improve the quality of processes [2].

However, this increased use of data leads to an increased risk of creating
negative effects from its usage by accidental or intentional irresponsible usage of
data [3]. Irresponsible usage of data ranges from invading the privacy of individ-
uals over flawed analysis of data with poor quality or inappropriate methods to
unfair automated decisions of systems trained on data biased towards majority
groups. The potential misuse of this power gives rise to calls for the responsible
use of data by creating knowledge and awareness about possible negative conse-
quences and researching technical and socio-technical solutions to prevent these
negative consequences.

1.1 Responsible Data Science and AI

Many initiatives have called for research and development on methods that can
be broadly categorized under the umbrella term responsible data science under
which sub themes such as responsible AI [4] are included. Depending on the
individual perspective different criteria or principles that are relevant to obtain
responsible methods have been proposed.

– Aalst et al. and the Responsible Data Science consortium1 call for methods
that follow the FACT criteria, which stands for Fairness, Accuracy, Confi-
dentiality, Transparency [5].

– The ACM FAccT Conference2 calls for research on Fairness, Accountability,
and Transparency principles.

– In Information Retrieval, the FACTS-IR critera include Fairness, Account-
ability, Confidentiality, Transparency, and also Safety [6].

– Dignum advoates that systems should be designed to follow the principles of
Accountability, Responsibility, and Transparency (ART) [4].

– The European Commission provided Ethics Guidelines for Trustworthy Arti-
ficial Intelligence3 mentioning principles such as Human agency, Technical
Robustness, Privacy, Transparency, Fairness, and Accountability.

Several other organizations developing or using AI technology have published
manifestos or best practices also include similar principles such as fairness, pri-
vacy or confidentiality, accountability, as well as often also interpretability and
1 https://redasci.org.
2 https://facctconference.org.
3 https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.

https://redasci.org
https://facctconference.org
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

Responsible Process Mining 375

Fig. 1. Example challenges for responsible process mining in context of the 360 degree
overview on process mining [7]

safety. Whereas originating from different perspectives and following slightly dif-
ferent definitions, there is great overlap on the major principles that are deemed
relevant for leveraging data in a responsible manner. Naturally, the importance
of the criteria differs depending on the application area. Considering fairness is
crucial when designing AI systems based on machine learning that may possibly
discriminate against individuals, whereas safety would be important when using
such a system for controlling an industrial process. At the core of these “calls for
action” is the realization that methods from the standard tool set of data science
rarely follow all the desired criteria or principles by themselves. Additional effort
is required, either by the analyst or system designer, to ensure their responsible
use. This often requires ethical considerations since perfect technological solu-
tions commonly do not exist.

1.2 Responsible Process Mining

This chapter instantiates the responsible data science challenges for process min-
ing and summarises the state-of-the-art research on responsible process mining.
Some of the challenges are specific to process mining and the event log data
format whereas others are comparable to any other data science or AI approach.
The context in which process mining operates means that many of the responsi-
ble data science principles and challenges are highly relevant. Figure 1 provides
a non-comprehensive overview on some of the major challenges for responsible
process mining in the context of the different process mining tasks. We discuss
and, at least partially, answer some of these questions.

The subject of investigation in process mining is a business process, e.g.,
the handling of loan applications. So, the process mining analysis is not directly

376 F. Mannhardt

Fig. 2. FACT principles for responsible process mining adapted from [5]

focused on individuals. Rather it looks at the manner in which the work is orga-
nized and performed. When analysing the loan application process, event logs
are commonly not used for deciding the outcome of the loan application but for
deciding how to improve the handling of applications to create a better process.
Here, better may refer to being more efficient, less costly, more transparent, or
any other indicator of process performance. At first glance process mining seems
to not have the same impact on individuals as, e.g., deploying face recognition,
predictive policing, or automatically scoring applicants for a job using AI meth-
ods. However, the manner in which business processes are performed can have
an effect on various stakeholders (customers, employees, etc.).

As any other data science method, process mining relies on data to recon-
struct how processes were performed and how process can be improved. Thus,
the results are highly dependant on the quality of the used event data and the
possible biases contained. Some additional quality and confidentiality challenges
arise from the required sequential ordering of events, grouping of events to a
specific process cases, and events being related to activities. In principle, pro-
cess mining aims to discover human-interpretable models that are supposed to
be accurate and transparent. However, for complex process behaviour process
mining techniques often attempt to generalise from incomplete and noisy data.
This creates accuracy and transparency challenges even in the process mining
setting.

We follow the definitions of the FACT principles brought forward in [3,5] and
illustrated in Fig. 2 to structure the discussion of process mining related chal-
lenges. First, we discuss fairness and its relevance to process mining in Sect. 2.
Then, in Sect. 3, we briefly illustrate aspects of accuracy including data quality
and model quality. Section 4 is a major part of this chapter and is devoted to con-
fidentiality, which is about protecting and respecting sensitive data in event logs
including the privacy of individuals. We close the chapter in Sect. 5 with a look
at transparency focusing on generalization and the interpretability of process
mining results.

Responsible Process Mining 377

2 Fairness

Algorithmic fairness or fairness of automated systems [8] has been an increas-
ingly prominent topic [9] when it comes to the development and usage of AI
systems that are based on black-box machine learning models. Statistical biases
embedded in training data may lead to systems making unfair decisions or clearly
discriminating against certain groups of people. Prominent examples of such bias
are the COMPAS system for predicting the risk of criminals to re-offend, which
seem exhibit racial bias by having a higher false positive rate among blacks4, or
gender stereotypes exhibited by automated translation systems such as Google
Translate, which applies male gender when translating typically male dominated
job names from gender neutral Turkish to English [10]. There are many more
examples and we refer to the first chapter of the Fair ML book [10] for a com-
prehensive introduction.

An important realization regarding bias in data and their usage in any kind
of data-based system is that: “Data and data sets are not objective; they are
creations of human design” [11]. Data may be incomplete for a certain context
leading to representation bias that is reflected in the learned model or the data
analysis. Even when not being incomplete, data can reinforce existing discrim-
ination that is embodied in the available data (historical bias). This cannot be
avoided by simply discarding “problematic” attributes from the datasets since
bias may be hidden in highly correlated attributes [10]. Many more data biases
can be defined depending on the context [9], a notable one being Simpson’s Para-
dox which describe the situation that a statistic may be very different or even
opposite for subgroups of a dataset compared to the statistic on the aggregate
entire dataset including all those subgroups.

2.1 Process Mining Perspective

It seems that the discussion on algorithmic fairness is not directly relevant to
process mining. The impact of process mining on individuals is usually indirect,
so direct discrimination by a process mining analysis seems unlikely to occur.
However, the potential reach of decision made based on process mining may
have impacts on individuals. Employees working in an analysed process may be
subject to unfair decision, customers may be rejected based on predictive process
mining techniques, or processes may be redesigned in a way that is discriminating
minorities. These are unfair results that are hidden behind the scenes and may
not make headlines in the newspaper, unless discovered. Based on the process
illustrated in Fig. 3, we give two examples on how fairness challenges can be part
of a process mining project.

Automated decision making can be part of process mining as it may result
in redesigned processes with changed decision making. As shown in Fig. 3 addi-
tional extensive checks may be added to a loan application process for certain

4 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

378 F. Mannhardt

Application
submitted

Simple check

Extensive check

re-check required

Accept
application

Select and
send offer

Decline
application

Receive offer

Accept offer

Decline offer

Application
finished

Finalise
application

Cancel offer
change requested

Fig. 3. Loan application process in BPMN adapted from the process used in [12].
Additional activities that indicate the kind of checks performed on the loan application
before considering it have been added. Based on some criteria either a simple check or
a more extensive check of the application is performed and in some cases the check is
repeated.

cases leading to fairness challenges. This process re-design may be the outcome
of a process mining analysis with the goal to minimize the cost of background
checks. To further minimize the cost, methods for predictive process mining,
action-oriented process mining, or the integration with robotic process automa-
tion is used to make the decision whether additional or extensive checks are
necessary. Thus, process mining has directly affected the outcome of some pro-
cess cases. Whereas the final decision is still made by a human, some applicants
need to endure much more extensive background checks. This decision is based
on machine learning techniques and, thus, inherits all the fairness issue associ-
ated with algorithmic decision making.

A second example of a fairness challenge that may arise in a process mining
context would be affecting the employees working in the process. For example,
it may be detected that when certain workers are involved in the processing of
the loan application the throughput time is much longer. However, care must be
taken not to draw unfair conclusions as those workers may simply handle more
difficult cases [3], which leads to biased event data. If the nature of the loan
application request is not included in the event log, e.g., due to confidentiality
concerns, these confounding factors are difficult to detect and require careful
human interpretation.

Besides the obvious ethical concerns that make it relevant to investigate
fairness in the context of process mining, there are also upcoming regulations
such as the EU Artificial Intelligence Act [13] that may constitute legal threats
to consider fairness in any kind of automated data analysis. In the remainder
of Sect. 2, we summarise the relevance of fairness for process mining along the
main definitions that attempt to formalise fairness for algorithms. For each of the

Responsible Process Mining 379

definitions, we instantiate them in the context of process mining and summarise
existing work if available.

2.2 Algorithmic Discrimination

In the literature on algorithmic fairness, several types of discrimination that
can arise from unfair algorithms have been defined. Similarly, a wide variety of
definitions on how fair algorithmic systems can be designed have been researched.
We sketch the main fairness definitions and discrimination’s in the light of how
they are relevant to the different process mining tasks as illustrated in Fig. 1.

Many possible types of discrimination are possible. It is important to realize
that discrimination or unfairness does not always need to be caused by direct dis-
crimination [9]. Direct discrimination would be a decision that is solely based on
a sensitive or protected attribute a decision is made that negatively affects them.
For example, if a predictive process monitoring would be trained on a somehow
biased dataset and learn that female applicants for a loan should always received
an extra background check causing a worse service quality or an increase rate of
rejection. Clearly, this type of discrimination would be easily detected and miti-
gated. However, often discrimination can be indirect discrimination or statistical
discrimination [9]. In these cases, some negative effect is applied but it is not
directly based on a sensitive attribute. Rather the attribute or some statistical
distribution is strongly correlated to a sensitive attribute. For example, when
analysing the performance of a process with process mining methods one may
identify a group of workers as being slower than other as they are assigned more
difficult cases [3] or receive less support than others. Similarly, when improving
a process design, one may focus on the 80% most frequent variants and, thereby,
discriminate against minority groups with special needs that trigger infrequent
activities and, thus, are often not visible in the standard process mining visual-
ization.

2.3 Algorithmic Fairness

To counter and detect discrimination, there are attempts to formalize the notion
of fairness of an algorithmic decision based on data. Again, there are many
definitions that formalize different kinds of fairness that can be provided by
algorithms [14,15]. It is important to realize that none of them is universally
applicable and that it depends on the context which one is suitable. Often fairness
definitions are introduced on the example of a simple binary classification task.
The four main types of fairness notions based on [15] are: (1) based solely on
the predicted outcome, (2) based on the predicted outcome and comparing it
with the actual outcome (ground truth), (3) taking additionally into account
the probability of the predictions, (4) notions based on similarity of the non-
sensitive attributes, and (5) notions based on causal reasoning.

We introduce a few selected of these notions in the context of process mining
and assume a simple binary classification model with the protected attribute
gender for concise presentation as done in [15].

380 F. Mannhardt

– Group fairness or statistical parity is of type (1) and satisfied when sub-
jects from the protected group, e.g., females, have equal probability of being
assigned a positive outcome. However, this notion is only applicable if there is
no other, unprotected, attribute that would justify a difference in probability
to be assigned a positive outcome.

– Predictive parity is of type (2) and satisfied when the precision or positive
predictive value of the classifier is equal for both groups. The fraction of
females and males that are predicted to be in the positive group from those
that are in the positive group in the ground truth is the same. So, there are
equal chances for a positive prediction for those that are in the positive group
in the training data. Thus, the definition only works if there are really similar
probabilities to be in the positive class.

– Treatment equality is of type (2) and satisfied when both groups have the
same ratio of false negative and false positives. This allows to compare if the
number of misclassifications (either positive or negative) is different between
the groups.

– Fairness through unawareness is of type (4) and satisfied if the sensitive or
protected attribute is removed from the dataset. Clearly, this will not resolve
the issue of other correlated attributes.

– Fairness through awareness is of type (4) and uses a distance metric between
individuals and compares the distance of the outcome with the distance
between individuals. However, how to define that distance measure if not
always easy.

– Counterfactual fairness is based on causal reasoning, thus, requires the defi-
nition of a causal graph instead of any binary classifier. Here the definition is
satisfied if the predicted outcome does not depend on the protected attribute
in the causal graph [15]. However, building causal graphs generally requires
domain knowledge.

Being only a small selection of possible fairness notions, we refer to [15] for a
comprehensive overview. None of the provided definitions is universally accepted
and provides fairness in every sense of the concept.

The only work so far that directly addresses the challenge of fairness from a
process mining viewpoint is written by Qafari et al. [16]. Here the problem of
creating a fair classifier for data extracted from an event log that is enriched with
process performance information is investigated. The approach firstly advocates
to exclude the sensitive attribute or feature from building the classifier and then
builds a C4.5 decision tree based on a discrimination-aware decision tree learn-
ing method. As fairness decision predictive parity is employed. An interesting
problem is raised that relabeling may not always be desirable, in which case the
fairness guarantees cannot be achieved. This is left as future work.

Though not explicitly addressing fairness, several proposals for applying
causal machine learning techniques in the context of process mining have been
made. For example, Bozorgi et al. [17,18] looked at discovering causal rules from
event logs as well as taking some form of cost into account when making sugges-
tions for intervention in running cases as part of a prescriptive process mining

Responsible Process Mining 381

approach. By making the causalities explicit its may be feasible to include fair-
ness constraints into decisions.

2.4 Open Challenges

Many open research challenges for considering fairness in process mining exists.
So far, there is hardly any research on fairness that is specific to process mining
neither from a technological nor from an organizational perspective, with the
notable exception of [16]. A clear research challenge is to develop specific notions
for fairness in process mining from the more generic fairness definitions. Whereas
one could take the stance that the existing definitions from the wider machine
learning field are sufficient, we motivated the need to consider fairness explicitly
also regarding process mining techniques.

3 Accuracy

Models need to be accurate to be useful in the real world. An analyst relying
on a statistical analysis or an engineer developing a machine learning model for
classification needs to have confidence that the analysis or the model captures the
real-world phenomenon correctly. Differently to a model based on, e.g., physical
laws or logic that can be shown to be correct in any application setting the
kind of statistical models often used in data science can rarely be proven to
be correct. Thus, the level of accuracy with which a real-world phenomenon is
captured or the level of confidence that a user can have when using that model are
important aspects of any such model. The accuracy of models depends on many
factors and it is often not straightforward to measure it properly. A classification
model may, on average, be classifying near perfectly between pictures showing
different breeds of dogs on an independent test set but if the relevant breed is
highly underrepresented the classifier may still be unusable in the real world
due to the class imbalance. It may also be that the classifier provides very good
accuracy but makes its decision based on the wrong features picking up on
spurious correlations introduced when preparing the training data: a data quality
problem.

3.1 Process Mining Perspective

Understanding and being able to measure the accuracy of a process mining
analysis is an integral part of responsible process mining. Whereas it may seem
obvious to only use results that accurately reflect the process reality, this is
frequently impaired in practice by the need to abstract from that reality.

Process discovery techniques are often unable to create the perfectly accurate
model but are forced to balance between several quality dimensions [1] that are
competing with each other. For example, to obtain a process model that is
understandable by a human analyst, some observed behavior may need to be
omitted. In some cases, the process behavior is too complex to be captured by

382 F. Mannhardt

a single case notion and multi dimensional or multi entity representation are
required to avoid drawing inaccurate conclusions [19]. Conformance checking
techniques such as alignments [20] often face the challenge that there are multiple
possible explanations for a non-conformance between observed and prescribed
process behavior. However, it may be infeasible to show all of them due to the
large number of possibilities. Finally, the quality of the input data is often a
substantial issue when applying process mining in a real-world scenario [12,21].

This brief look at possible challenges for accuracy indicates that the topic is
very broad and difficult to discuss comprehensively in the scope of this chapter.
Thus, we limit ourselves to briefly describe several challenges and selected solu-
tion proposals. We categorize them into solutions for data quality and model
quality.

3.2 Data Quality

Data quality is known to be often poor [22] and this may lead to non-factual or
misleading representation of the real business process. Garbage-in garbage-out
is a often used phrase to illustrate this issue. Whereas the data quality issue is
not particular to process mining there are some peculiarities of event logs that
call for specific solutions.

Often data quality problems in process mining are related to the strict
data requirements on timestamps (R1), case identifiers (R2), and event labels
(R3) [23]. Wrong or coarse granular timestamps lead to discovering wrong causal-
ities in process models or parallelism where none exists. Inconsistent event labels
make it difficult to assign clear semantics to the activities of a discovered process
model. These are just two examples of how data quality issue impair process min-
ing. Automated repair approaches to combat some of the data quality problems
exist. For example, in [24] autoencoders are used to add missing values. However,
any such method may affect transparency [25] as it is unclear what part of the
data was inferred and what part of the data can be considered truthful beyond
doubt. A discovered process model may be perfectly accurate, but when it is
based on data with poor quality any conclusions become disputable. Notions of
data quality and remedies are already introduced and discussed in [12], therefore
we go not further into detail on the data quality challenge.

One noteworthy topic connected to data quality is uncertainty at the level of
the event log data [26], e.g., by adding metadata to express the uncertainty [27].
Pegoraro et al. [26] advocate to explicitly encode the uncertainty about events
and traces in order to leverage it in a transparent manner during the analysis.
Based on this event log with explicit uncertainty representation conformance
checking techniques can be adaped [28] to an obtain more trustworthy diagnos-
tics that also provide more transparency about the possible different scenarios
compatible with the (uncertain) observations.

Responsible Process Mining 383

3.3 Model Quality

How to decide whether a process model is of good quality? In fact, even when
it comes to the question on how to measure accuracy there is hardly an agree-
ment in process mining. Classically, process mining quality dimensions consist
of fitness, precision, generalization, and simplicity as introduced in [1]. For most
of these quality dimensions measures have been proposed that are based on
conformance checking, e.g., through alignments as indicated in [20]. However,
this common practice of measuring model quality has been challenged at least
for precision with Tax et al. [29] proposing several axioms that the prevalent
measures do not fulfil.

The issue with initially proposed quality measures led to several new meth-
ods and definitions for measuring various model quality dimensions being pro-
posed [30–34]. Main complications for model quality in process mining are that
process models commonly exhibit infinite behaviour (through loops) and the
absence of negative examples, i.e., behaviour that the model should not con-
tain [1].

Recently, there have been several proposals that aim to extend process discov-
ery and the model quality measures to the stochastic setting in which process
models include probabilities and the likelihood of observing a certain trace is
taken into account [35,36] allowing to better estimate the relevant subset of
the behavior modelled. This may help to truly quantify the confidence that an
analyst can have in a model.

A somewhat related issue on the confidence an analyst can put in the per-
formance of a process discovery algorithm was brought up by Van der Werf et
al. [37]. They observed that process discovery techniques not always discover bet-
ter process models when provided with a better sample of the process behavior,
i.e., a larger event log with observations of process behavior.

3.4 Outlook and Challenges

The extensive discussion around how to measure quality shows that even defining
accuracy for process discovery is not straightforward. In practice, this creates the
challenge to choose which measure should be used in which context and when
can a model be considered good for an analysis purpose. Another very relevant
perspective for responsible process mining regarding model quality is how the
discovered process model representation is understood by the user of such model.
We will come back to this issue when considering transparency.

4 Confidentiality

Confidentiality generally refers to the protection of certain sensitive data or
information from disclosure. In the context of an organization many different
kind of information is usually confidential. Intellectual property such as the
design of machines or software may be confidential to protect it from competitors

384 F. Mannhardt

but also general information on the business such as the amount of sales in a
certain area is usually kept confidential. A subset of the confidential information
in the sphere of an organization relates to personal data. Here, the concern is
on the right to privacy for individuals of which personal data is processed by
the organization. Personal data may relate to customers, employees, suppliers
or other people that interact an organization’s processes. Privacy rights have
received a lot of attention with several high-profile data breaches and increased
regulation such as Europe’s General Data Protection Regulation (GDPR) [38].

4.1 Process Mining Perspective

In the context of process mining, the information contained in event logs may
be sensitive for several reasons. Event logs contain data providing detailed infor-
mation on the operations of an organization, e.g., the order volume or the pro-
duction capacity. Uncontrolled disclosure of such information may be undesired
as it could negatively affect the organization. Event logs contain information on
individuals, e.g., customers, which may be subject to the privacy regulations.

Assume a hospital process is analyzed. Case data is related to the individ-
ual patient and confidentiality challenges to protect sensitive data and privacy
are obvious [39]. However, the employees that work in processes are often also
directly affected by process mining results and may be directly represented in the
event logs e.g. via the resource attribute in XES. This can create an additional
confidentiality challenges to prevent work surveillance [40,41].

Protecting the privacy of individuals in event logs is difficult, as sequential
event data is highly vulnerable to re-identification [42]. In fact, when assuming
some background information, privacy leakages exists in the vast majority of
presumably anonymous event logs that are used in the process mining commu-
nity [42]. As events are linked together through a case, and often the traces in
an event log are highly unique, already very limited background knowledge on
some attributes or events can reveal the identity of an individual.

This “privacy problem” creates challenges in the practical application of pro-
cess mining. Data gathering is more difficult or impossible when privacy concerns
are raised. For example, the hospital may fear that privacy regulations (GDPR,
HIPAA [43]) are violated when analysing patient trajectories [39,44] or a works
council may object to the usage of process mining technology due to fear of
worker surveillance [41]. Regulations threaten organizations with high fines when
personal data is used without legitimate purpose or consent. The fines in GDPR
may be as high as 4% of the organizations worldwide annual revenue [38]. Thus,
there is a clear need for privacy-preserving or protecting techniques for process
mining. Such approaches aim to retain the utility of the data without the risk of
accidental disclosure of personal data. Please note that we use protection here in
the sense of anononymity and unlinkability requirements. Next to those, other
requirements such as notice, transparency, and accountability are often imposed
by regulations [45]. Note that most privacy-preserving techniques differ from the
wide variety of best-effort pseudonymization, perturbation, and generalization

Responsible Process Mining 385

Fig. 4. The main aspects of any confidentiality scenario for process mining: What is
the sensitive information contained in the event log that needs to be protected? Which
background knowledge can be assumed (including provided by external sources)? What
are the attacks used by the adversary and which threats are posed?

methods that are used by commercial tools5. Unfortunately, it has been shown
such näıve replacement of identifiers is often not sufficient to keep information
secure in many scenarios.

For each confidentiality scenario we need to characterize at least the sensitive
information (Sect. 4.2) and the background knowledge (Sect. 4.3) of the attacker
or adversary as illustrated in Fig. 4. Then, we can identify confidentiality attacks
(Sect. 4.4) that are assumed to be employed an the resulting threats that should
be mitigated. Based on the analysis of the available threats, protection tech-
niques have been proposed to mitigate these threats under certain assumptions
(Sect. 4.5).

4.2 Sensitive Information

Several kinds of sensitive information may be derived from event logs. We con-
sider both the scenario in which an event log contains some business information
that needs to be secured as well as the scenario in which personal data of indi-
viduals that took part in the process should not be revealed. These individuals
could be customers that are the subject of the process or workers that perform
activities withing the process.

We assume that the sensitive information is contained in a given event
log as shown in Fig. 4. Sensitive information may be obtained directly from the
attribute values of individual events of or it may be derived by performing some
computation over several events in. Often, in the scenario in which personal data
of individuals is at risk the sensitive information in the event log is assumed to
be connected to the individual through the process cases each of which is about
a single individual. We now illustrate several types of sensitive information with

5 Most commercial tools provide some kind of pseudonymization technique to replace
sensitive data by a hashing or replacement. An example is given here: https://
fluxicon.com/blog/2017/11/privacy-security-and-ethics-in-process-mining-part-3-
anonymization/.

https://fluxicon.com/blog/2017/11/privacy-security-and-ethics-in-process-mining-part-3-anonymization/
https://fluxicon.com/blog/2017/11/privacy-security-and-ethics-in-process-mining-part-3-anonymization/
https://fluxicon.com/blog/2017/11/privacy-security-and-ethics-in-process-mining-part-3-anonymization/

386 F. Mannhardt

Table 1. Example of a loan application event log that contains several types of sensitive
information and may be subject to confidentiality attacks revealing this information
to an adversary possessing suitable background knowledge.

SSN Activity Time Resource Amount Age Type Postcode Income

617-07-5604 SA: Submit appl. 09-02-22 23:39 200k 30 Home 94121 50k

617-07-5604 SC: Simple check 11-02-22 08:38 Alice 200k 30 Home 94121 50k

617-07-5604 AA: Accept appl. 12-02-22 11:35 Joe 200k 30 Home 94121 50k

617-07-5604 SO: Send offer 12-02-22 12:32 Joe 200k 30 Home 94121 50k

617-07-5604 RO: Receive offer 13-02-22 08:14 200k 30 Home 94121 50k

617-07-5604 FA: Finalise appl. 15-02-22 16:30 Alice 200k 30 Home 94121 50k

617-07-5604 AO: Accept offer 19-02-22 23:31 200k 30 Home 94121 50k

528-41-8024 SA: Submit appl. 01-03-22 12:32 60k 42 Car 37287 75k

528-41-8024 SC: Simple check 02-03-22 15:23 Joe 60k 42 Car 37287 75k

528-41-8024 EC: Extensive check 05-03-22 07:31 John 60k 42 Car 37287 75k

528-41-8024 AA: Accept appl. 11-03-22 12:21 Alice 60k 42 Car 37287 75k

528-41-8024 SO: Send offer 11-03-22 15:44 Joe 60k 42 Car 37287 75k

528-41-8024 RO: Receive offer 12-03-22 12:33 60k 42 Car 37287 75k

528-41-8024 FA: Finalise appl. 15-03-22 16:54 Robert 60k 42 Car 37287 75k

528-41-8024 AO: Accept offer 18-03-22 18:23 60k 42 Car 37287 75k

330-80-8169 SA: Submit appl. 02-03-22 23:30 500k 22 Home 32984 45k

330-80-8169 EC: Extensive check 05-03-22 08:30 John 500k 22 Home 32984 45k

330-80-8169 DA: Decline appl. 10-03-22 11:30 John 500k 22 Home 32984 45k

526-34-5246 SA: Submit appl. 15-04-22 23:31 100k 30 Home 75755 30k

526-34-5246 SC: Simple check 17-04-22 12:47 Joe 100k 30 Home 75755 30k

526-34-5246 AA: Accept appl. 18-04-22 11:59 Alice 100k 30 Home 75755 30k

526-34-5246 SO: Send offer 18-04-22 12:29 Alice 100k 30 Home 75755 30k

526-34-5246 RO: Receive offer 19-04-22 07:52 100k 30 Home 75755 30k

526-34-5246 CO: Cancel offer 24-04-22 21:34 100k 30 Home 75755 30k

526-34-5246 SO: Send offer 28-04-22 09:21 John 100k 30 Home 75755 30k

526-34-5246 RO: Receive offer 29-04-22 10:12 100k 30 Home 75755 30k

526-34-5246 FA: Finalise appl. 02-05-22 15:43 Alice 100k 30 Home 75755 30k

526-34-5246 AA: Accept offer 05-05-22 05:23 100k 30 Home 75755 30k

the event log in Table 1 that was obtained from the previously introduced loan
application process.

An example for sensitive information related to an individual that can be
directly obtained is the social security number of the applicant stored in the
column SSN, which also acts as case identifier here. Obviously, using such direct
identifiers of individuals poses a privacy risk as it would allow to directly link all
the remaining information contained in the event log to individuals. Analogously,
the Resource column contains the full name of the employee responsible for
handling the process activities. This information would enable direct profiling of
the work performance of individual employees, which may be against company
policies or forbidden by work regulations. It is easy to remove directly personally
identifiable information such as names or identifying numbers of customers or
workers as they are not necessary for process mining. For example, it would

Responsible Process Mining 387

be trivial to replace both the SSN column and the Resource in Table 1 with
a surrogate case identifier based on a mapping obtained through one-way hash
function or a simple lookup table.

However, it has been shown that obscuring the direct identifiers is not suffi-
cient as also not directly identifying attributes can be problematic [42,46]. Quasi-
identifiers are values not directly revealing the identity of a person but may be
used to do so in combination with other attributes. Common quasi-identifiers are
attributes such as gender, birth dates, or postcodes that taken together are often
unique for an individual. For example, in Table 1 the combination of columns
Age, Type, and Postcode would very likely be uniquely identifying a single cus-
tomer leading to disclosure of other sensitive information contained in the event
log such as the yearly Income of the applicant.

So far, we gave examples of sensitive information that is directly stored in the
event attributes. However, also the presence of a certain activity in the event
log or derived information such as the sequence of events that occurred for a
certain case may be considered sensitive. Take for instance the third case in
Table 1 in which the loan application is declined (DA) after an extensive check
(EC). Knowledge of such details on how the loan application process was carried
out may be used against the individual. Thus, even the sequence of activities
performed for an individual case may be regarded as sensitive information. At
the same time, the sequence of activities performed may also act as a quasi-
identifier as it is often unique and identifies an individual such as an applicant
or a patient [42,47].

When it comes to sensitive business information one may think about
attributes encoding the cost of a certain activity or information on prices paid by
different customer segments (e.g., the interest offered on the loan). Similarly to
the case of personal information, the sensitive information may not only reside
in the attribute values but also be derived from the sequence of events that
occurred or their timestamps, e.g., the throughput times computed for different
organizational units may be considered sensitive.

It is important to realize that these computations may also be based on the
artefacts that are returned by the classical process mining tasks: intermediate
data structures, process models, and conformance checking results. Thus, direct
access to the original event log may not be required to gain access to sensitive
information. For example, the utilisation of a certain department or group may
be determined by considering the number of traces in a certain time period and
could be considered sensitive. The cross-organisational process mining scenario
is also commonly considered when it comes to motivating the need of protecting
sensitive information for process mining. Here, two organizations want to com-
pare their processes to learn from each other or analyse a process that is jointly
performed (e.g., supplier and integrator). However, certain sensitive data should
not be shared.

388 F. Mannhardt

4.3 Background Knowledge

Apart from the trivial case in which an individual or an organizational entity
can be directly identified, attackers often need to possess certain limited back-
ground knowledge about the individual, i.e., the process case, the entity, or about
remaining parts of the dataset. This is reflected in Fig. 4 by assuming the adver-
sary to use some knowledge to facilitate attacks on sensitive information. Some
protection models assume the worst-case scenario in which no restriction on the
background knowledge of an attacker is assumed and still some kind of privacy
guarantee should be given. However, in many cases it is reasonable to assume
only limited background knowledge to be available.

Background knowledge may be fully derived from the event log or it
may also contain information that is not present in the event log but related
to specific cases or events. Thus, it can be any kind of knowledge that gives
an attacker information that can be used to identify sensitive information. We
keep the definition of the background knowledge deliberately vague as it may be
defined in various ways and include arbitrary external data sources. Two more
precise definitions for event logs have been introduced in the literature.

Rafei et al. [48] provide several definitions for possible background informa-
tion in a process mining context. They assume that background knowledge is
defined over a simple view of process traces as sequences of event labels, e.g.,
the third trace in Table 1 would be seen as sequence 〈SA,EC,DA〉. Three cate-
gories are defined: Set knowledge, Multiset knowledge, and Sequence knowledge.
The knowledge refers the occurrence of activity labels in the to be attacked pro-
cess case at one of the three abstraction levels. Thus, an attacker can either know
only about the presence of activities (set abstraction), their frequency (multiset
abstraction), or have in-depth knowledge about a certain ordering of activities
(sequence abstraction). In Table 1, the third trace 〈SA,EC,DA〉 would already
be uniquely identified when having the set background knowledge {DA} since
that is the only trace in which an application is declined. As another example,
the multiset background knowledge of [SO2] would uniquely identify the fourth
case. In many setting such knowledge of process events may be easy to obtain,
e.g., one may know that their neighbours received two loan offers in a specific
time period.

Von Voigt et al. [42] quantify the re-identification risk of individual cases by
assuming different kinds of background knowledge. In addition to knowledge of
activity labels as in [48] also case-level attributes are considered to be candi-
dates for background knowledge. For example, in the well-known BPI Challenge
2018 dataset [49] case attributes have been generalized to provide some level of
privacy protection. However, still when considering the combinations of all case
attributes 84.5% of all cases are unique.

Many other similar abstraction and definitions of background knowledge are
possible but have not yet been investigated. For example, partial orders of activ-
ities or knowledge about time or resource involved. An adversary may know
that two medical diagnostic tests have been performed on the same day and
two days later the patient was re-invited for a discussion by the same doctor.

Responsible Process Mining 389

Also knowledge on the absence of a certain activity in the case to be attacked
could be informative. As Fig. 4 illustrates also external data source may provide
complementary background knowledge. A famous example that involved using
external background knowledge is the successful attack on a Netflix dataset by
using information from the public IMBD movie ratings [50], which included full
names for some users, and compared them to the ratings in the Netflix dataset
thereby identifying users in the supposedly anonymized Netflix dataset.

In summary, a precise analysis of background knowledge assumed is impor-
tant to provide meaningful guarantees against uncovering sensitive information.

4.4 Threats and Attacks

Several attacks on confidential data in event logs are possible. We follow Elkoumy
et al. [45] and focus on a honest-but-curious attacker scenario. An adversary has
access to data or results and tries to identify some sensitive information without
trying to break into systems. So, we do not consider scenarios in which access
control or similar security measures are broken.

We structure confidentiality attacks structured according to the threat that
they pose, i.e., the kind of sensitive information that an attacker or adversary
tries to reveal. As already motivated, it is important to consider the kind of
background knowledge that is assumed in the analysis of a specific threat or
attack to find reliable mitigation strategies. Attacks on confidentiality use this
background knowledge to reveal sensitive information that is contained in the
event log as shown in Fig. 4.

So, a very general definition of a confidentiality attack on an event log can
be given as follows. Given an event log and some sensitive information that is
related to that log, a confidentiality attack uses some background knowledge,
which may be derived from the log or from other available sources, to reveal
some subset of sensitive information that is part of the log. We distinguish four
general types of threats based on the goal of an attacker and the employed attack
method following the categorization in [45].

Membership Disclosure Threats. A basic threat is that an adversary could estab-
lish that an individual was taking part of the process that is described by the
event log. A membership inference attack combines background knowledge about
the individual to the information released by an event log or a process mining
analysis. So, the sensitive information obtained from the event log would consist
of the identifiers for a subset of individuals that took part in the process. Whereas
this does not reveal the exact case in which an individual took part, it still often
allows to draw conclusions about which activities and events an individual was
involved in. Let us assume that the event log obtained in our example loan appli-
cation process scenario only contains loans for starting a business. Already, the
information that an individual is part of that event log, i.e., they were applying
for such a specific loan type can be sensitive information.

390 F. Mannhardt

Re-identification Threats. Threats that cause the disclosure of the identity of a
individual to which some data belongs are called re-identification threats. So,
the sensitive information is the subject of a certain case, e.g., the patient iden-
tity, or the subject of a certain event, e.g., the identity of the resource or worker
that performed the activity recorded by the event. Example attacks are linkage
attacks and intersection attacks [45]. Linkage attacks use background knowledge
to reveal the identity, e.g., a certain combination of attribute values or a cer-
tain sequence of events is known to be connected to an individual. In Table 1,
knowing that an individual received two offers, i.e., multiset background knowl-
edge of [SO2], and that their data is part of the event log uniquely re-identifies
identity of the applicant in the fourth case. Intersection attacks try to estab-
lish a mapping between two separately released event logs revealing the identity
of an individual. Here the information revealed in a second separately released
dataset is assumed to be directly linkable to an individual without containing
any sensitive information. However, in combination this information can be used
as background knowledge and reveal the sensitive information in the first event
log.

Reconstruction Threats. In some cases it may be possible to partially or fully
infer the original event from seemingly protected data. Here, the sensitive infor-
mation to be retrieved would be the entire event log. The two main attack meth-
ods for reconstruction are difference attacks and model-inversion attacks. The
basic idea for both is to repeatedly consult a model or a statistic with slightly
different queries and, thereby, uncovering sensitive data.

Cryptanalysis Threats. Data may have been pseudonymized, as often done by
commercial tools, or encrypted in an attempt to provide confidentiality. How-
ever, näıvely pseudonymized or even fully encrypted event logs are vulnerable
to attacks based on the analysis of the frequency [51]. Please note that this may
lead in turn to re-identification, membership disclosure, or reconstruction, but
may also simply leak sensitive business information such as the number of cer-
tain activity executions. The main attack method is a frequency analysis based
on background knowledge on the activities of the process and their prevalence.

4.5 Protection Approaches

Whereas still in an early stage, the research on privacy and confidentiality has
received increased attention in the past years and several protection techniques
with diverse assumptions and guarantees that protect against the mentioned
threats have been proposed. However, none of the proposed methods is gen-
erally applicable to any possible confidentiality and privacy problems. Each of
them makes certain assumptions regarding the attack scenario including the
background knowledge of the assumed attacker. Conversely, depending on the
input log the methods result in some loss of utility. Thus, the goal of the process
mining analysis (discovery, conformance, etc.), their data requirements, and the
characteristics of the process that generated the event log need to be considered.

Responsible Process Mining 391

Fig. 5. Different protection models have been proposed that protect the data contained
in an event log by transforming it into protected representations: a protected event log,
a protected abstraction the event log, or a protected analysis result.

Protection models can work at different levels of a process mining analysis as
shown in Fig. 5. Following [48], we differentiate between several tasks for protec-
tion models. Some models protecting the event log itself and provide a protected
copy of the original event log. Other techniques provide protected abstractions
over the original event log, e.g., a directly-follows graph representation which can
only be used for certain process mining activities. In [48], these two tasks are
denoted as Privacy-Preserving Data Publishing (PPDP) and Privacy-Preserving
Process Mining (PPPM), respectively. We add a third possible task, which is to
protect process mining results, e.g. a process model or a conformance checking
result, without an intermediate representation.

Regardless of the task at hand, techniques can also be distinguished into
roughly three categories of protection models [45]: group-based privacy mod-
els, indistinguishability-based models, and confidentiality frameworks including
encryption. We now introduce the main properties of the three different protec-
tion model categories and briefly introduce exemplary techniques.

Group-Based Privacy. The prototype of a group-based privacy protection
model are those that provide k-anonymity [52]. The basic idea is that a tabu-
lar dataset containing rows with information about individuals is k-anonymous
when the values for each combination of sensitive attributes or columns (quasi-
identifiers) appear at least k times. So, data similarity is used as a criterion here.
The intuitive idea is that the individual will have the same sensitive data as the
k − 1 other individuals in the same group and, thus, with sufficiently large k it
protects against re-identification. Usually, this is achieved by data suppression
or generalization until the k − anonymity property is achieved. Whereas this
model is interpretable and easy to understand, unfortunately, it has been shown
to be suspect to certain attacks based on background knowledge [53]. Several

392 F. Mannhardt

extensions have been proposed that mitigate some of those including: l-
diversity [53], and t-closeness [54].

For process mining, two methods are providing group-based privacy protec-
tion models. The TLKC model by Rafaei et al. [47] and the PRETSA approach
by [55]. Both aim at the release of a proctected event log, option (A) in Fig. 5.
PRETSA utilizes generalisation based on a prefix-tree that is build on top of the
activity sequence in the event log and provides k-anonymity and t-closeness guar-
antee to prevent the disclosure (membership and re-identification) of resources
or workers that performed certain activities. The TLKC model protects the iden-
tity of cases, e.g., a customer, and provides a relaxed variant of k-anonymity.
Additional, it supports protecting information in the time and organizational
perspective. Both approaches make assumptions on the background knowledge.
Maintaining data utility is challenging for both methods when many unique
traces exist.

Indistinguishability-Based Privacy. Differently to the group-based
models providing guarantees such as k-anonymity for a given dataset,
indistinguishability-based privacy models give a guarantee that two versions of a
dataset are indistinguishable to a certain degree. A central model is Differential
Privacy (DP). The idea is that there is one datasets A without an individuals
information and another one A′ including an individuals information. A mecha-
nism provides DP with a parameter ε when the results of a (randomized) query
mechanism statistically differ between A and A′ only by a small factor that
is controlled by the ε-parameter [56]. This provides a strong guarantee that is
independent of the background knowledge as the guarantee needs to hold for
any dataset A and A′. There have been many variants of the differential privacy
concept [57]. For example, adding a relaxation parameter δ to better tuning the
utility while loosing some of its strengths ((ε, δ)-DP), only requiring the values
of the datasets to not differ too much and ignoring addition and removal of
items (bounded DP), or extending the guarantees in the case individuals appear
multiple times in the dataset (group DP), which is a possible scenario for event
logs.

For process mining, several adaptions have been proposed. The first one was
given by Mannhardt et al. in [58] who assume a protected event log to be queries
through a privacy engine. Laplacian noise is added to the counts returned by each
query, thereby guaranteeing DP with regard to the individual cases. Queries are
defined for both directly-follows relations [1] and complete activity sequences.
The method was later extended in [59] to also protect contextual information
that is encoded in the attributes of the event log. Furthermore, the guarantee
was extended to local DP, which means that a perturbed event log itself can
be released. One major issue of these methods is that obviously invalid process
behavior may be added. Recently, the approach was improved to consider the
semantic of the added noise [60]. Contextual information, in particular process
performance indicators, is also protected in the work by Kabierski et al. [61].
Finally, there is a very recent proposal by Elkoumy et al. [62] that provides only

Responsible Process Mining 393

a bounded DP guarantee but improves the utility of the protected data by using
an oversampling approach instead of adding noise.

Confidentiality Frameworks. The third type that we distinguish are pro-
tection models that are not directly targeted at protecting individuals but any
kind of sensitive information in event logs. Here, mainly encryption schemes
have been proposed. A major family of techniques are those based on on homo-
morphic encryption [63] schemes. The goal is to enable certain computations
on an encrypted version of the data. For process mining, this idea is taken
up by Rafei et al. in [51] and embedded in a framework that aims to pro-
tect against frequency or background knowledge-based attacks by disassociating
events from their respective cases. It could be used to outsource computations
on secured data or in a cross-organizational setting. However, it does not protect
the resulting analysis results (B) and (C) from an internal process analyst. The
cross-organization setting is also targeted by Elkoumy et al. in [64]. A secure
multi-party computation [65] method is proposed that avoids to leak sensitive
information in the cross-organisational process mining scenario.

The above categorization and list of techniques covers the major share of the
work in the process mining field so far.

4.6 Outlook and Challenges

Protecting the privacy and confidentiality of data while keeping it useful for
analysis is a difficult problem. Information needs to be hidden while the objec-
tive is to get as much signal from data as possible. Unsurprisingly, many open
challenges exists for confidentiality in process mining and, apart from academic
prototypes [66,67], none of the proposed techniques has seen uptake in com-
mercial solutions. Seven main challenges for research in the field of privacy and
confidentiality in process mining are identified by [45]:

– Interpretable Quantification of Privacy Disclosure. Protection mechanisms
should be interpretable when it comes to the remaining risk. Guarantees and
attacks are often not obvious for non-experts making adoption by industry
difficult.

– Balancing Risk and Utility. Any protection mechanism may impair the utility
of the source data and poses a trade-off that needs to be made upfont. In the
exploratory process mining setting this is a challenge for adoption. In [68] it
is proposed that mechanisms need to be utlility aware.

– Level of Granularity. Process mining analyses happen at various levels of gran-
ularity and various perspectives. Some tools require only activity sequences
and timestamps, which most current protection models focus upon. Others
also consider the resource perspective including potential sensitive data on
employees. In some cases, access to an event log may not be necessary and
privacy guarantees should be given at the level of a released process model as
proposed in [69]. A one-fits-all approach to privacy is unlikely to work, which
opens opportunities for further research.

394 F. Mannhardt

– Distributed Privacy. In many settings attempts on data sharing between orga-
nizations are made which creates the problem of protecting privacy in an
inter-organizational setting. This setting is currently less well researched.

– Computational Challenges. Some of the approaches proposed are computa-
tionally expensive. Thus, research on making those suitable for real-life set-
tings is required.

– Traceability and Transparency Challenges. Often personal data still needs to
be collected and stored at some point during the analysis. GDPR requires
to trace the processing and usage of data to fulfill the different rights (right
to consent, right to access, right to be forgotten [38]). This is challenging
for process mining where data comes from different distributed data sources.
Similarly, GDPR requires organizations to be transparent about the usage
of data. Traceability is a pre-requisite but not sufficient for achieving trans-
parency. Investigating how to provide information on the purpose for which
data was used in process mining is a research challenge.

Many of these challenges are geared towards the improving technological solu-
tions that provide some form of privacy guarantee in various settings. However,
as already reported in [40] many aspects of privacy and confidentiality as well as
the compliance to regulations such as GDPR cannot be solved by technological
measures alone. However, there is little research from the organizational side
apart from anecdotal discussion on the role of privacy in real-life process min-
ing projects [41]. To conclude, it is notable that process mining has also been
used to check conformance to privacy regulations [70]. Thus, process mining can
also help in uncovering confidentiality issues that are present in an organizations
processes.

5 Transparency

Transparency has been a widely discussed topic for AI systems that are based on
machine learning. Often, a key concern is the explainability of black-box classi-
fiers such as Deep Learning models: Why is a certain classification or prediction
made and what features are important in the decision of the model?

The core process mining tasks of process discovery and conformance check-
ing aim to provide white-box process models that can be interpreted by process
stakeholders. Explainability of the discovered models and, thus, transparency
is key objective of process mining. Still, there are several aspects of process
mining in which transparency is at risk. In the next two section, we focus on
two exemplary transparency challenges for process mining: achieving generaliza-
tion without hampering transparency and the interpretability of the discovered
process model representations.

Besides these two transparency challenges all the common transparency
issues of predictive models are inherited when building predictive process min-
ing models. Therefore, we do not discuss this in detail since many resources on
explainable machine learning are available and [71] gives a brief overview of how
to obtain explainable predictions in the context of process mining.

Responsible Process Mining 395

5.1 Generalization

Process discovery aims to abstract from the exact behaviour observed in the
event log and return a concise model of the underlying process. This often
requires to disregard infrequent behaviour to obtain simpler process models.
Conversely, process discovery techniques often attempt to generalize beyond the
observed behaviour since they cannot be assumed to have observed all possi-
ble incarnations of the process, particularly in the presence of parallel process
behavior. This aspiration creates a transparency challenges.

Disregarding infrequent behaviour may hide important parts of the observed
data. In particular, infrequent patterns may be of high interest [44]. Very few
techniques have been focusing on retaining infrequent data, e.g., in [72] certain
infrequent dependencies are not filtered if they can be reliably predicted from
data attributes and in [73] it is explored how to selectively include infrequent
behaviour by filtering over multiple ranges of parameter values.

In a orthogonal direction, the frequency and probability with which behaviour
is observed gets more attention in approaches that can be labeled as: stochas-
tic process mining. In [35], Leemans et al. proposed a new conformance check-
ing method with the goal of taking into account routing probabilities, which
improves the accuracy of the diagnostics.

5.2 Interpretation of Results

Interpretation of results based on process model notations or visualizations can
be difficult for stakeholders leading to transparency challenges. For example,
the presence of loops together with optional activities may enable non obvious
process behaviour and the filtering of edges in a directly-follows graph may lead
to invalid statistics as is illustrated for many commercial tools in [74].

However, also for discovery approaches based on clear semantics misinter-
pretations are possible. As an example, the models discovered by the Inductive
Miner often contain silent transitions that allow to skip certain behaviour that
in combination with loops allow any behaviour. This may be difficult to spot
for a non-expert. Whereas there exists research on the comprehension of process
models [75], little work has yet been done in the context of automated process
discovery.

Recently the question of interpretability of process mining results has been
touched upon by Mendling et al. [76] who raise the issue that the quality of
process mining results needs to be judged in light of the tasks of a process
analyst using the models. A first technical contribution for process discovery
in this direction was provided by Fahland et al. [77] with a new variant of the
Inductive Miner that was evaluated in a user study in which an analyst’s trust
in the model as considered. Overall, there has been surprisingly little research
on this topic given the claim of process mining to provide white-box models.

396 F. Mannhardt

6 Conclusion

This chapter defined the concept of Responsible Process Mining under the
umbrella of Responsible Data Science. Based on the FACT criteria put for-
ward in [5] (Fairness, Accuracy, Confidentiality, and Transparency), we gave an
overview of challenges related to these criteria and introduced state-of-the-art
approaches for addressing each of them. Due to the broad scope of the FACT
criteria, we can provide only a high-level introduction and discussion for each of
them. We refer to the individual work or relevant surveys for further details.

In some areas the research on responsible process mining is already much
further developed than in others. Little attention has been devoted to fairness in
the context of process mining, at least compared to its prominence in the machine
learning field. The trend to more automated decision taking in process mining
may change this in the future. In contrast, the confidentiality challenge has been
recognized in the process mining research community and has recently received
much attention in research. However, adoption by commercial process mining
tools has not yet started even though the problem has also been recognized by
industry [41].

Criteria such as accuracy and transparency are very broad and many
approaches touch these issues; however, with the notable exception of the work
on data quality [12] they are rarely addressed explicitly under the umbrella of
responsible process mining. More work is required to develop and address these
criteria more explicitly in future process mining research.

References

1. Aalst, W.: Foundations of process discovery. In: van der Aalst, W.M.P., Carmona,
J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham
(2022)

2. Reinkemeyer, L.: Status and future of process mining: from process discovery to
process execution. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining
Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

3. van der Aalst, W.M.P.: Responsible data science: using event data in a “People
Friendly manner. In: Hammoudi, S., Maciaszek, L.A., Missikoff, M.M., Camp, O.,
Cordeiro, J. (eds.) ICEIS 2016. LNBIP, vol. 291, pp. 3–28. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62386-3 1

4. Dignum, V.: Responsible Artificial Intelligence. Springer (2019)
5. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Responsible data science. Bus. Inf.

Syst. Eng. 59(5), 311–313 (2017)
6. Olteanu, A., Garcia-Gathright, J., Rijke, M.d., Ekstrand, M.D.: FACTS-IR:

Fairness, accountability, confidentiality, transparency, and safety in information
retrieval. ACM SIGIR Forum 53(2), 20 (2019)

7. Aalst, W.: Process mining: a 360 degrees overview. In: van der Aalst, W.M.P., Car-
mona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer,
Cham (2022)

8. Friedman, B., Nissenbaum, H.: Bias in computer systems. ACM Trans. Inf. Syst.
14(3), 330–347 (1996)

https://doi.org/10.1007/978-3-319-62386-3_1

Responsible Process Mining 397

9. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Comput. Surv. 54(6) (2021)

10. Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning. fairml-
book.org (2019). http://www.fairmlbook.org

11. Crawford, K.: The hidden biases in big data. Harvard Bus. Rev. 1(4) (2013)
12. De Weerdt, J., Wynn, M.T.: Foundations of process event data. In: van der Aalst,

W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy.
Springer, Cham (2022)

13. Commission, E.: Proposal for a regulation of the European parliament and of the
council laying down harmonised rules on artificial intelligence (artificial intelligence
act) and amending certain union legislative acts (2021)

14. Gajane, P., Pechenizkiy, M.: On formalizing fairness in prediction with machine
learning. CoRR abs/1710.03184 (2018)

15. Verma, S., Rubin, J.: Fairness definitions explained. In: FairWare@ICSE, pp. 1–7.
ACM (2018)

16. Qafari, M.S., van der Aalst, W.: Fairness-aware process mining. In: Panetto, H.,
Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM
2019. LNCS, vol. 11877, pp. 182–192. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-33246-4 11

17. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Process min-
ing meets causal machine learning: discovering causal rules from event logs. In:
ICPM, pp. 129–136. IEEE (2020)

18. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Prescriptive
process monitoring for cost-aware cycle time reduction. In: ICPM, pp. 96–103.
IEEE (2021)

19. Fahland, D.: Process mining over multiple behavioral dimensions with event knowl-
edge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Hand-
book. LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

20. Carmona, J., Dongen, B., Weidlich, M.: Conformance checking: foundations, mile-
stones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Min-
ing Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

21. Accorsi, R., Lebherz, J.: A practitioner’s view on process mining adoption, event
log engineering and data challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.)
Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

22. Wynn, M.T., Sadiq, S.: Responsible process mining - a data quality perspective.
In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM
2019. LNCS, vol. 11675, pp. 10–15. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26619-6 2

23. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining: towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132–150 (2017)

24. Nguyen, H.T.C., Lee, S., Kim, J., Ko, J., Comuzzi, M.: Autoencoders for improving
quality of process event logs. Expert Syst. Appl. 131, 132–147 (2019)

25. Martin, N., Martinez-Millana, A., Valdivieso, B., Fernández-Llatas, C.: Interactive
data cleaning for process mining: a case study of an outpatient clinic’s appointment
system. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019.
LNBIP, vol. 362, pp. 532–544. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-37453-2 43

26. Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in process
mining. In: ICPM, pp. 89–96. IEEE (2019)

http://www.fairmlbook.org
https://doi.org/10.1007/978-3-030-33246-4_11
https://doi.org/10.1007/978-3-030-33246-4_11
https://doi.org/10.1007/978-3-030-26619-6_2
https://doi.org/10.1007/978-3-030-26619-6_2
https://doi.org/10.1007/978-3-030-37453-2_43
https://doi.org/10.1007/978-3-030-37453-2_43

398 F. Mannhardt

27. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: An XES extension for uncertain
event data. In: BPM (PhD/Demos). Volume 2973 of CEUR Workshop Proceedings,
pp. 116–120. CEUR-WS.org (2021)

28. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Conformance checking over
uncertain event data. Inf. Syst. 102, 101810 (2021)

29. Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The imprecisions
of precision measures in process mining. Inf. Process. Lett. 135, 1–8 (2018)

30. van Dongen, B.F., Carmona, J., Chatain, T.: A unified approach for measuring
precision and generalization based on anti-alignments. In: La Rosa, M., Loos, P.,
Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 39–56. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45348-4 3

31. Kalenkova, A., Polyvyanyy, A., La Rosa, M.: A framework for estimating simplicity
of automatically discovered process models based on structural and behavioral
characteristics. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM
2020. LNCS, vol. 12168, pp. 129–146. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58666-9 8

32. Polyvyanyy, A., Solti, A., Weidlich, M., Ciccio, C.D., Mendling, J.: Monotone pre-
cision and recall measures for comparing executions and specifications of dynamic
systems. ACM Trans. Softw. Eng. Methodol. 29(3), 17:1–17:41 (2020)

33. Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., Rosa, M.L.: Measur-
ing fitness and precision of automatically discovered process models: a principled
and scalable approach. IEEE Trans. Knowl. Data Eng. 34(4), 1870–1888 (2022)

34. Polyvyanyy, A., Kalenkova, A.A.: Conformance checking of partially matching pro-
cesses: an entropy-based approach. Inf. Syst. 106, 101720 (2022)

35. Leemans, S.J., van der Aalst, W.M., Brockhoff, T., Polyvyanyy, A.: Stochastic pro-
cess mining: earth movers’ stochastic conformance. Inf. Syst. 102, 101724 (2021)

36. Alkhammash, H., Polyvyanyy, A., Moffat, A., Garćıa-Bañuelos, L.: Entropic rele-
vance: a mechanism for measuring stochastic process models discovered from event
data. Inf. Syst. 107, 101922 (2022)

37. van der Werf, J.M.E.M., Polyvyanyy, A., van Wensveen, B.R., Brinkhuis, M., Rei-
jers, H.A.: All that glitters is not gold. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.)
CAiSE 2021. LNCS, vol. 12751, pp. 141–157. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79382-1 9

38. Regulation, E.G.D.P.: Regulation (eu) 2016/679 of the european parliament and of
the council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
directive 95/46/ec (general data protection regulation) 2016. OJ L 119(1) (2016)

39. Pika, A., Wynn, M.T., Budiono, S., ter Hofstede, A.H.M., van der Aalst, W.M.P.,
Reijers, H.A.: Towards privacy-preserving process mining in healthcare. In: Di
Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp.
483–495. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2 39

40. Mannhardt, F., Petersen, S.A., Oliveira, M.F.: Privacy challenges for process min-
ing in human-centered industrial environments. In: Intelligent Environments, pp.
64–71. IEEE (2018)

41. Mannhardt, F., Koschmider, A., Biermann, L., Lange, J., Tschorsch, F., Wynn,
M.T.: Trust and privacy in process analytics. Enterp. Model. Inf. Syst. Archit. Int.
J. Concept. Model. 15, 8:1–8:4 (2020)

42. Nuñez von Voigt, S., et al.: Quantifying the re-identification risk of event logs for
process mining. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.)
CAiSE 2020. LNCS, vol. 12127, pp. 252–267. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-49435-3 16

https://doi.org/10.1007/978-3-319-45348-4_3
https://doi.org/10.1007/978-3-030-58666-9_8
https://doi.org/10.1007/978-3-030-58666-9_8
https://doi.org/10.1007/978-3-030-79382-1_9
https://doi.org/10.1007/978-3-030-79382-1_9
https://doi.org/10.1007/978-3-030-37453-2_39
https://doi.org/10.1007/978-3-030-49435-3_16
https://doi.org/10.1007/978-3-030-49435-3_16

Responsible Process Mining 399

43. Centers for Medicare & Medicaid Services: The Health Insurance Portability and
Accountability Act of 1996 (HIPAA) (1996). Online at http://www.cms.hhs.gov/
hipaa/

44. Martin, N., et al.: Recommendations for enhancing the usability and understand-
ability of process mining in healthcare. Artif. Intell. Med. 109, 101962 (2020)

45. Elkoumy, G., et al.: Privacy and confidentiality in process mining - threats and
research challenges. ACM Trans. Manage. Inf. Syst. (2021) accepted

46. Sweeney, L.: Simple demographics often identify people uniquely. Health (San Fran-
cisco) 671(2000), 1–34 (2000)

47. Rafiei, M., van der Aalst, W.M.P.: Group-based privacy preservation techniques
for process mining. Data Knowl. Eng. 134, 101908 (2021)

48. Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining.
In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 385–397.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5 29

49. van Dongen, B., Borchert, F.F.: Bpi challenge 2018 (2018)
50. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.

In: IEEE Symposium on Security and Privacy, pp. 111–125, IEEE Computer Soci-
ety (2008)

51. Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Supporting confidentiality
in process mining using abstraction and encryption. In: Ceravolo, P., van Keulen,
M., Gómez-López, M.T. (eds.) SIMPDA 2018-2019. LNBIP, vol. 379, pp. 101–123.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46633-6 6

52. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzz.
Knowl. Based Syst. 10(05), 557–570, 101962 (2002)

53. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) 3-es (2007)

54. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering,
pp. 106–115, IEEE (2007)

55. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: Pretsa: event log sani-
tization for privacy-aware process discovery. In: 2019 International Conference on
Process Mining (ICPM), pp. 1–8. IEEE (2019)

56. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

57. Desfontaines, D., Pejó, B.: SOK: differential privacies. Proc. Priv. Enhancing Tech-
nol. 2020(2), 288–313, 101962 (2020)

58. Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-
preserving process mining - differential privacy for event logs. Bus. Inf. Syst. Eng.
61(5), 595–614 (2019)

59. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRIPEL: privacy-
preserving event log publishing including contextual information. In: Fahland, D.,
Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 111–
128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9 7

60. Fahrenkrog-Petersen, S.A., Kabierski, M., Rösel, F., van der Aa, H., Weidlich, M.:
Sacofa: semantics-aware control-flow anonymization for process mining. In: ICPM,
pp. 72–79. IEEE (2021)

61. Kabierski, M., Fahrenkrog-Petersen, S.A., Weidlich, M.: Privacy-aware process per-
formance indicators: framework and release mechanisms. vol. 12751, pp. 19–36
(2021)

http://www.cms.hhs.gov/hipaa/
http://www.cms.hhs.gov/hipaa/
https://doi.org/10.1007/978-3-030-72693-5_29
https://doi.org/10.1007/978-3-030-46633-6_6
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/978-3-030-58666-9_7

400 F. Mannhardt

62. Elkoumy, G., Pankova, A., Dumas, M.: Mine me but don’t single me out: differen-
tially private event logs for process mining. In: ICPM, pp. 80–87. IEEE (2021)

63. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM
53(3), 97–105 (2010)

64. Elkoumy, G., Fahrenkrog-Petersen, S.A., Dumas, M., Laud, P., Pankova, A.,
Weidlich, M.: Secure multi-party computation for inter-organizational process
mining. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.)
BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 166–181. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-49418-6 11

65. Lindell, Y.: Secure multiparty computation. Commun. ACM 64(1), 86–96 (2021)
66. Bauer, M., Fahrenkrog-Petersen, S.A., Koschmider, A., Mannhardt, F., van der Aa,

H., Weidlich, M.: Elpaas: event log privacy as a service. In: BPM (PhD/Demos).
Volume 2420 of CEUR Workshop Proceedings., CEUR-WS.org, pp. 159–163 (2019)

67. Rafiei, M., van der Aalst, W.M.P.: Practical aspect of privacy-preserving data
publishing in process mining. In: BPM (PhD/Demos). Volume 2673 of CEUR
Workshop Proceedings., CEUR-WS.org, pp. 92–96 (2020)

68. Elkoumy, G., Pankova, A., Dumas, M.: Utility-aware event log anonymization for
privacy-preserving process mining. EMISA Forum 41(1), 37–38 (2021)

69. Maatouk, K., Mannhardt, F.: Quantifying the re-identification risk in published
process models. In: ICPM Workshops, vol. 433, pp. 382–394. LNBIP. Springer
(2021). https://doi.org/10.1007/978-3-030-98581-3 28

70. Zaman, R., Hassani, M.: On enabling GDPR compliance in business processes
through data-driven solutions. SN Comput. Sci. 1(4), 210 (2020)

71. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: van der
Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448,
pp. xx–yy. Springer, Cham (2022)

72. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven
process discovery - revealing conditional infrequent behavior from event logs. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 34

73. Vidgof, M., Djurica, D., Bala, S., Mendling, J.: Cherry-picking from spaghetti:
multi-range filtering of event logs. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P.,
Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 135–149.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49418-6 9

74. van der Aalst, W.M.: A practitioner’s guide to process mining: limitations of the
directly-follows graph. Procedia Comput. Sci. 164, 321–328 (2019). (CENTERIS
2019 - International Conference on ENTERprise Information Systems/ProjMAN
2019 - International Conference on Project MANagement/HCist 2019 - Interna-
tional Conference on Health and Social Care Information Systems and Technolo-
gies, CENTERIS/ProjMAN/HCist 2019)

75. Figl, K.: Comprehension of procedural visual business process models - a literature
review. Bus. Inf. Syst. Eng. 59(1), 41–67, 101962 (2017)

76. Mendling, J., Djurica, D., Malinova, M.: Cognitive effectiveness of representations
for process mining. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M.
(eds.) BPM 2021. LNCS, vol. 12875, pp. 17–22. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-85469-0 2

77. Brons, D., Scheepens, R., Fahland, D.: Striking a new balance in accuracy and
simplicity with the probabilistic inductive miner. In: ICPM, pp. 32–39. IEEE (2021)

https://doi.org/10.1007/978-3-030-49418-6_11
https://doi.org/10.1007/978-3-030-98581-3_28
https://doi.org/10.1007/978-3-319-59536-8_34
https://doi.org/10.1007/978-3-030-49418-6_9
https://doi.org/10.1007/978-3-030-85469-0_2
https://doi.org/10.1007/978-3-030-85469-0_2

Responsible Process Mining 401

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Industrial Perspective and Applications

Status and Future of Process Mining: From
Process Discovery to Process Execution

Lars Reinkemeyer(B)

VP Customer Transformation, Celonis SE, Munich, Germany
lars@reinkemeyer.de, l.reinkemeyer@celonis.com

Abstract. During the last two decades Process Mining has seen a rapid global
adoption: first in academics and then in corporate business. It has evolved into
a foundational technology, allowing users to discover actual process flows with
unprecedented transparency, speed, and detail. In a business environment Process
Mining has no purpose of its own, but companies leverage it to identify process
inefficiencies, improve process execution and ultimately drive value. Process dis-
covery and transparency does not provide immediate business value, but requires
specific use cases combined with human intelligence to identify and deploy levers
for process improvement. In this article we argue that the future focus and evo-
lution of Process Mining shall not focus on lateral expansion - i.e. with further
processes and discoveries - but vertically by enhancing the depth of added value
for business users with artificial intelligence, proactive and predictive enablement
and other levers which boost process execution. In essence, focus should be on
deploying smarter technologies for driving business value in process areas where
Process Mining has shown impact.

1 Setting the Stage

1.1 The Evolution of Process Mining in Operational Business

Process Mining was invented at the end of last millennium byWil van der Aalst and has
seen a strong adoption by academics in the first decade of this millennium. In the second
decade of this millennium companies started to use Process Mining for transparency, to
discover, understand and improve actual processes. To this respect, numerous use cases
i.e. in horizontal support functions such as Procurement and Order Management have
been defined and deployed by companies like BMW, Siemens, Uber and many more
around the world, across all industries, in organizations of any sizes and for processes
along the whole value chain, as the following selected examples show:

– Procurement Experts use Process Mining for order processing e.g., to discover
duplicate payments, payment term deviations and maverick buying.

– Logistic Experts use Process Mining to discover reasons for late deliveries, improve
supply chain resilience and assure on-time deliveries.

– Order Manager use Process Mining to discover customer order processing, identify
inefficiencies resulting from rework and improve customer satisfaction.

© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 405–415, 2022.
https://doi.org/10.1007/978-3-031-08848-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_13

406 L. Reinkemeyer

– Plant Managers use Process Mining to find bottlenecks in manufacturing processes,
conduct value stream analysis and improve efficiencies.

– Sustainability Manager use Process Mining to discover operational root causes for
waste and CO2 impact of single process decisions.

All these sample have in common that Process Mining is used to discover actual pro-
cess flows. Then human intelligence is applied to interpret the achieved transparency,
identify root causes for process inefficiencies, and turn these into business value. How-
ever, the evolution on Process Mining should progress, similar to the evolution of the
imaging method in healthcare.

For an analogy, the evolutions in Healthcare and Process Mining show many simi-
larities: prior to inventing xRay at the end of the 19th century, a Medicus needed to guess
what is happening in the human body andwhat are the root causes for a particular disease.
Similarly – before using Process Mining – process experts had to use process models
and subjective assumptions to guess actual process flows and define process improve-
ment. The invention of xRay allowed to discover the root causes for diseases and thus
decide on appropriate remediation. Similarly, Process Mining enables users to discover
process gaps and decide on improvements. Imaging methods have become smarter and
capable to interpret the images, identify diseases and propose curative measures. Fur-
thermore, medical devices are trained not only to “read” the images, but also to propose
and conduct treatments. In a similar form, we expect Process Mining to develop more
“intelligence”: in a first step by automatically identifying process gaps and proposing
measures for remediation to the users who will then execute the action. And in the future
even “learn” to execute process activities autonomously based on defined criteria, with
only exception based human interference.

1.2 Achievements in the Decade Starting 2010

Process Mining has seen some impressive developments in the last decade and enabled
many companies towards a data- and fact-based culture, using single sources of truth
for process assessment and optimization. The evolution from Business Process Mod-
eling (BPM, the design how processes should happen) to Process Mining (full trans-
parency how processes actually happen) allows organizations to understand and improve
processes.

Many organizations started using Process Mining in single functional silos (e.g.
audit, procurement) and then expanded the usage across different functions. While there
is an amazing variety of use cases, experience shows that the biggest impact is achieved
in the core processes Accounts Payable (A/P), Accounts Receivable (A/R), Purchase-
to-Pay (P2P) and Order-to-Cash (O2C). These horizontal support processes are critical
to any company and are typically executed in transactional systems, providing sufficient
digital event logs with a high degree of standardization, and requiring a high degree of
automation. Many companies, which started their Process Mining journey with a focus
on these core processes, achieved short term transparency and operational impact e.g.,
by eliminating duplicate payments, identifying payment term deviations, and reducing
rework [1].

Status and Future of Process Mining 407

1.3 Hurdles and Challenges

While the concept of Process Mining has seen a rapid expansion, operational adoption
has faced key challenges:

– Focus on the right Purpose: some initial use cases – built with passion for this exciting
new technology – did lack appropriate purpose. Providing process transparency is
great, but it is only valuable if it serves a clearly defined business purpose, e.g.,
improving throughput times or on-time delivery. This purpose must be defined prior
to starting any Process Mining project and the deployment should be continuously
measured regarding impact and value.

– Engaging the right People: as part of human nature, most people are reluctant to
leave their comfort zone. Discovering process inefficiencies does not always resonate
well with people, who have designed or operated a particular process for many years.
Reactance is a typical reactionwhichneeds to bemanagedproactivelywith appropriate
change management and initially engaging people who are open to change.

– Process Mining can enable an operational transformation, which requires the right
organizational setup. Experience shows, that the majority of companies, which have
successfully deployed Process Mining, established a Center of Excellence as central
accelerator to drive change, process transformation and value.

– Technical performance: since my very first days with Process Mining, I have per-
sonally seen a continuous race between business requirements and technical perfor-
mance. Once the concept of Process Mining was understood and data access had been
arranged, the demand for transparency grew exponentially in the organization. This
obviously goes in hand with an exponentially growing demand for data, which must
be extracted, analyzed and presented to the operational users. Technology is required
to assure performance for high customer experience, and has seen a similar exponen-
tial evolution to match demand, with cloud technology and standard connectors being
only two sample for innovation.

1.4 The Power of Processes

Processes represent the lifeblood of any organization and efficient process execution is a
critical success factor to stay competitive. Amazon is probably one of the most efficient
companies, when it comes to process execution and the following quote from Jeff Bezos
shows his reluctance to adopt rigid process frameworks, but rather continuously adjust
and improve processes to maintain Day 1 efficiency and agility:

“You stop looking at outcomes and just make sure you’re doing the process right.
Gulp. It’s not that rare to hear a junior leader defend a bad outcome with something like,
“Well, we followed the process.” Amore experienced leader will use it as an opportunity
to investigate and improve the process. The process is not the thing. It’s always worth
asking, do we own the process or does the process own us? In a Day 2 company, you
might find it’s the second.” [2].

408 L. Reinkemeyer

2 The Future of Process Execution

ProcessMining has enabled thousands of organizations around the world to better under-
stand their actual processes, to fuel data- and fact-based discussions and thus derive pro-
cess improvements. However, the ultimate goal for any organizationmust be tominimize
transactional cost, i.e. the cost induced by executing business processes. The digital age
has seen the raise of an increasing number of digital native companies, which are built
on highly efficient, automated processes e.g. for sales order or purchase order process-
ing. Think of Amazon’s Marketplace, with a maximum degree of automation in order
processing leading to a minimum degree of transactional costs. Traditional companies,
with a grown legacy of IT infrastructure, are challenged to compete against these dig-
ital native companies. While Process Mining is focused on process discovery, process
execution focuses on enabling the companies to execute processes more efficiently and
thus reduce transactional cost by leveraging smart technologies.

2.1 Process- and Organizational Transformation

Leveraging ProcessMining and process execution implies a significant transformation in
the way a company operates. Transformation as a popular buzzword comes in multiple
flavors, such as e.g. digital transformation or transformation of the business model –
which shall not be discussed in further detail. Our focus shall rather be on process
transformation and transformation of the operating model, thus focusing on the way a
company executes its processes and how it is setting up operations to drive change. Pro-
cesses are essential for the value generation of any company, and typically show a high
degree of inertia as employees got used to a certain way of doing things and typically
show reluctance to change.While ProcessMining can discover process inefficiencies and
process execution can provide solutions for increasing efficiency, operational transfor-
mation is a crucial factor for success, which needs to bemanaged proactively. Experience
shows that many Process Mining projects fail due to organizational / human reluctance
in respect to change. Tools and technology represent only one side of the equation for an
organizational transformation, as the following statement shows: “While cutting edge
technology and talent are certainly needed, its equally important to align a company’s
culture, structure, and ways of working to support broad AI adoption. In most firms that
aren’t born digital, mindsets run counter to those needed for AI” [3].

Driving process- and organizational transformation implies a range of different
success factors:

– Value focus: the target value needs to be defined, e.g. strategically (transforming
towards a data driven organization) or operational in measurable value such as e.g.
reduction in working capital or rework, improvement of payment term deviations or
degree of automation. A very tangible definition of measurable value, which is turned
into operational targets, is crucial for a successful transformation.

– Executive sponsorship with a clear focus on targets: all transformational efforts must
be sponsored by a senior executive for priority and guidance. Operationalization via
defined strategic targets, which are ideally aligned with individual incentives, have
yielded maximum success.

Status and Future of Process Mining 409

– Change Management as a conscious approach to prepare, support and enable
individuals and teams to adopt process transformations.

– Organizational setup with a defined accelerator to drive transformation, e.g. a Center
of Excellence (CoE), which is enabled and empowered by an executive sponsor to
drive process transformation across the organization.

2.2 Trends

The following discussion on Trends results from numerous discussions with process
owners and experts, other Process Mining evangelists and market players.

2.2.1 Intelligent Process Execution

While Process Mining has enabled users to discover process inefficiencies with human
intelligence, the concept of intelligent process execution builds on this discovery and
supports users by providing just that kind of informationwhich is relevant.While Process
Mining can screen millions of purchase orders, intelligent process execution provides
the individual users with only those purchase orders which require attention or call for
immediate action. While Process Mining can discover millions of manual activities,
intelligent process execution enables the user to execute multiple activities in one step in
a suitable user interface. In essence, intelligent process execution takes Process Mining
to the next level by leveraging AI, proactive and predictive solutions for the benefit of
providing users only with the relevant information and smart forms of process execution.

2.2.2 Proactive Solutions

While big data and new tools allow unprecedented transparency, most software pro-
vides insights for users to search for relevant issues. Process Mining allows insights
where users can identify e.g. late deliveries, rework effort, process delays and much
more. But should users apply human intelligence to search for relevant issues, spending
high effort and wasting precious time while searching for relevant issues? We don’t
think so. Virtual assistants should provide proactive, customized and individual support.
Intelligent process execution is capable to “learn” current operations and develop skills
to propose relevant exceptions proactively to the users. The software is evolving into
a smart companion, which is capable to discover the operational process, understand
exceptional issues and propose these proactively to the user. E.g. overdue payments can
be presented to the user per push-mail or pop-up message, delayed customer deliveries
will be flagged out and potentials for automation proposed. Dedicated execution Apps
condense execution gaps or exceptions for the user to decide how to proceed in these
cases.

2.2.3 Predictive Solutions

Upcoming events can be predicted to enable users to take preventative measures. It
might – to take an example from procurement - be helpful to get a prediction, which
purchase order will not be delivered on time. Equally, in logistics it is helpful to get

410 L. Reinkemeyer

predictions, which shipment will not be delivered on time. Based on historical data,
predictions are calculated and presented with probability thresholds: as one example,
predictions can identify all supplies, which will not be received on an expended date
with a defined probability threshold. Those kinds of solutions have been developed for
several years, e.g. based on algorithms programmed with Python on R-server, analyzing
open and closed orders including times for process execution, leading to a vast number
of operational execution support cases.

2.2.4 Usability

Application development shows a strong focus on the consumer, with a requirement
to provide intuitive user interfaces (UIs) which are fun to use and quick in interaction.
Usability is equally relevant for standard Apps as well as for individual data analytics:

– Standard Execution Apps: Horizontal core processes such as A/P or A/R should be
standardized to a maximum and can be executed with standard Apps, which provide
the users with a convenient way of interaction. Execution Apps can provide one single
layer across multiple traditional transactional systems and thus allow users to focus
on relevant process exceptions and executions in one user interface.

– A second trend supports dynamic sets of data analytics cubes, which can be con-
sumed individually and intuitively, thus moving away from predefined, static Dash-
boards which had been designed centrally in the past to provide standard transparency
frameworks.

2.2.5 Impact on Digital Workforce and Data Democratization

With the trends for process transformation and organizational change, methodologies
such as Process Execution and AI gain increasing relevance. New digital tools and
data democratization have a major influence on the digital workforce, with changing
requirements and roles. Process Execution enables and supports data analysts to drive
execution efficiency, but at the same time requires new skills, roles and responsibilities. A
new generation of experts has been educated, with a thorough understanding of computer
science, data and IT.

The mindset of a digital workforce differs significantly to the traditional mindset
e.g. regarding access to data: while the traditional approach was extremely restricted in
respect to data access – typically with “eyes only” principles - the democratization of
data is a trend which drives major change towards open data access. Access to data as
well as the preparation and analytics of data was traditionally rather a task conducted by
specialized experts in organizational silos. As the general perception changes towards
an understanding, that data is essential for today’s business, data ubiquity, accessibility,
and usability for everybody becomes a standard requirement.

2.2.6 Data Collection and Preparation

While projects in the past required high effort to identify, collect and prepare event logs,
there is a trend towards usage of standard connectors. In particular structured data from

Status and Future of Process Mining 411

homogeneous systems (e.g. SAP ERP) can easily be identified and read by standard
extractors. Discovering e.g. P2P processes across multiple systems has become possi-
ble with much less effort due to standard connectors, which require little customization.
Automated discovery of event logs is expected to become possible, building on the grow-
ing experience gained fromdata preparation and technical innovations.Machine learning
algorithms will understand the format and structure of data in similar source systems,
facilitating an automation of data collection and preparation. In addition, transactional
ERP systems as well as workflow platforms such as Pegasystems and ServiceNow play
an increasing role for process automation and execution. Data collection and prepara-
tion across different types of platforms allows seamless execution for e.g. financial and
customer data.

2.2.7 Task Mining

While ProcessMining is based on event logs from backend systems, TaskMining allows
for process insights based on recorded activities from individual users, typically from
front office systems. Samples for captured activities are mouse clicks, keystrokes, appli-
cation inputs and field entries, thus providing a much deeper understanding of an indi-
vidual working behavior. Taskmining allows to discover actual human activities with the
purpose to identify potentials for improvement. Any activity can be recorded, including
phone calls, eMail or excel documentation, where no log files are available, and data is
stored in unstructured format. While task mining provides a micro-picture of individual
behavior and thus allows optimization of individual tasks, it does not allow insights
into overarching operational processes, which can only be visualized with Process Min-
ing. Task mining typically complements Process Execution as a “magnified” analysis of
actual user behavior e.g. in Call Centers. Solutions have matured quickly and become a
valuable support for operational experts.

2.2.8 Cloud Technology

Storing digital traces in a public cloud has become commonly accepted and will sup-
port the possibilities to use proven algorithm for extraction and customization of data,
deploy standard use cases and benefit from analytics available in the Cloud. Hosted AI
is expected to become attractive and available in form of Software as a Service (SaaS)
and accessible with standardized Application Programming Interfaces (APIs) to provide
applications, technology, and best practices to a wide number of users.

2.2.9 IIoT Platforms

The Industrial Internet of Things (IIoT) has set the technical foundation for an extensive
access to event logs, as devices become connected to an internet hosted platform, thus
allowing easier access to digital footprints, which are generated from these devices. IIoT
platforms such asMindSphere already today receive data frommillions of single devices,
including relevant event logs. Value can be generated for example by understanding
manufacturing processes based on the event logs from multiple machines – even across
machines at different sites. The collection of event logs from different machines, sites,

412 L. Reinkemeyer

and companies on one common IIoT platform will allow new use cases such as the
visualization of cross-company supply chain processes or inter-company benchmarking.
As a crucial benefit, the IIoT platforms provide a standardized and secured environment
and protocol, which has been adopted to industrial requirements.

2.3 Midterm Future

2.3.1 Self-learning and -Optimizing Systems

With AI becoming more mature and suitable to assist even in environments where pro-
found high domain knowledge is required, technology will evolve towards self-learning
and -optimization. Imagine a process execution system, which is autonomously capable
to learn, i.e. to detect and resolve process inefficiencies. Like self-driving cars, there
will be “self-driving” Process Execution tools which are capable to learn factors which
determine efficient process flows and autonomously suggest or even initiate measures to
optimize process efficiency including optimization of variants and reduction of process
exceptions.

2.3.2 Artificial Intelligence

While the impact of AI, which has been experienced in operational use cases to date, has
been limited, it will grow up to its promises. Some innovative providers show exciting
use cases with virtual process analysts discovering and documenting actual processes by
imitation learning. A virtual digital companion learns from actual and optimum process
handling and is thus trained to become an accepted artificial co-worker, understanding
also complex domain know-how, which is the big challenge in the B2B environment.
Virtual companions are trained to identify and remediate process flaws, which can start
with simple, repeatable process tasks such as the removal of delivery blocks. Besides
all excitement about AI, it must remain explainable in order to ensure ethical data usage
with clear transparency about what and how AI is applied. AI governance will play
an increasing role and will have a significant impact on the acceptance of these new
technologies in particular in a corporate environment.

2.3.3 Benchmarking

Process Mining makes process efficiency measurable and transparent. As it is based
on big data and facts, it is predetermined for benchmarking purposes. Standard pro-
cesses such as P2P and O2C will be benchmarked on operational performances such as
automation rate, throughput time or rework across different organizations. With digital
traces available on standard platforms and in the cloud this will also become available
as a self-service, where companies can access benchmark data – based on appropriate
data anonymization – to assess their own performance versus other market players. And
consulting companies will be able to lift cross-company benchmarking analysis to a new
level of data foundation, as benchmarking can be conducted based on the full set of all
relevant events from different players.

Status and Future of Process Mining 413

2.4 Longterm Future

2.4.1 Inter-Company

The long term perspective provides significant economic and ecologic benefits through
optimization of cross-company supply chains, based on data from different companies
and sources. Process optimization will become possible for inter-company value chains,
including supplier, manufacturer, freight forwarder and customer. Companies like Slync
already today offer multi-party supply chain interaction with a high degree of automa-
tion, across different organizations and multiple data sources. The value proposition
offers logistics orchestration across manufacturers, suppliers, freight forwarder and cus-
tomers. With Process Execution, this could be taken to a new level by understanding
the extended end-to-end process chains. On-time delivery, integrated manufacturing and
optimization of stock/working capital are just a few benefits of a transparent supply
chain processes, which can be monitored and managed with the support of Process Exe-
cution. Empowering the business partner with access to own process data will allow all
parties to benefit. Besides economic benefits this will lead to a sustainable ecological
optimization due to the wholistic approach, which will allow to reduce e.g. the number
of empty deliveries, reduce waste and allow for a better resource management and more
sustainable business.

2.4.2 Sustainability

The sustainability revolution should be supported by technological innovations such as
Process Execution. Think about process inefficiencies in your immediate environment
and how better process efficiency could support sustainability: from traffic congestions
to waiting times in hospitals, from wasted time in call center queues to waiting times for
bureaucratic decisions, from delayed goods deliveries to delayed flight arrival. Process
inefficiencies are omnipresent, producing friction, waste and avoidable emission. Under-
standing the end to end processes allows to track down inefficiencies and reduce waste
in time and resources. While Supply Chain Management is probably the primary field,
where Process Mining can support a sustainability revolution, CRM and other functions
can equally support as ecological driver. The management of resources in ERP systems
(financials, materials, assets and HR) will become more efficient with Process Mining,
thus allowing to optimize scarce resources. In a world with more than 7.9 billion people
and increasing issues due to limited resources this will become a strong purpose.

2.4.3 B2C

While the primary focus on Process Execution to date has been on business-to-business
(B2B) processes, there is a huge potential for process optimization in the business-to-
consumer (B2C) field. Understanding consumer interactions with the additional dimen-
sions of time and activity sequences allows to better interpret and predict e.g. consumer
behavior. B2C use cases could include for example activity tracking for the timing and
sequence of user clicks on shopping pages or in social media platforms. Understanding
of strategies, how users approach challenges such as search for restaurants or music,
appear valuable and might allow for trail prediction. As another example, the insight

414 L. Reinkemeyer

into the search sequence for web offerings could – based on large amounts of activities –
not only be interesting for psychometric analysis, but also for product management and
sales.

2.5 Vision of a Digital Enabled Organization

Imagine an organization which has been automated for most standard processes, such as
procurement of indirect material, financial transactions, order deliveries and customer
order processing. Standard tasks are conducted automatically, supported by anAI, which
is capable to learn not only how to execute standard cases, but also minor exceptions,
conducting immediate actions and corrections. This “intelligent system” processes most
of all activities with zero human touch, and humans only interfere exception based, thus
providing a high process reliability at minimum transactional cost.

Data ingestion from diverse source systems is supported by AI, which allows to
identify and customize structured and unstructured data from various sources such as
ERP or workflow systems. Cloud technology is commonly established as basis for data
hosting, collaboration, and datamining, with the application providers applying continu-
ous monitoring and optimization. Streamed event data allows real time process analytics
for immediate reaction e.g. for customer interaction. Platforms offer standard Apps for
process execution in a secure environment and share best practices for process handling
and monitoring.

As most operational processes have been fully automated, the focus of Process
Execution changes. Based on this vision, there will be less demand for transparency
and discovery in respect to today’s focus areas. Standard support processes such as
P2P and O2C provide decreasing marginal benefits, as they are mostly optimized and
the focus shifts towards more challenging processes such as e.g. customer interaction,
manufacturing, HR and legal proceedings. Besides inter-company automation, process
optimization is happening cross-organization in integrated supply chain process flows.
Exception based activities remain in focus, as they require optimization with appropriate
digital tools. Similar to tele-medicine, remote diagnosis and optimization of processes
based on smart automation will be available through dedicate Process Mining Analysts,
who are alerted by intelligent virtual assistants, which conduct a continuous real-time
monitoring and provide predictive and proactive alerting.

The role of humans has changed significantly: mundane tasks have been completely
automated and new tasks and roles emerged instead. The focus of human responsibility
has changed towards data analytics and steering, using tools which are provided by the
digital enabled organization. Process analysts use digital tools such as virtual assistants,
which collect data from Process- and Task Mining, thus empowering the digital enabled
organization. Value generation shifts towards service innovation. In their book “Dreams
and Details” Snabe and Trolle describe how to reinvent business from a position of
strength and with a compelling vision. An innovative “’Digital Enabled Organization”
could provide the dream to set the mindset and framework to unleash the human and
digital potential.

As a positive ecological contribution, the process optimization has yielded significant
reduction in carbon footprint e.g. due to reduction of empty trips and optimization of
routings. Transactional costs have been reduced to a minimum.

Status and Future of Process Mining 415

3 Conclusion

While the first two decades of Process Mining have been focused on transparency and
discovery, the real impact in a corporate environment is driven through intelligent exe-
cution management. Process Mining provides an excellent foundation, which will be
enhanced with standard process execution Apps, common extractors, process transfor-
mation capabilities and artificial intelligence in order to execute business processes in an
easier, smarter and more efficient manner. Thus Process Mining is the base for a much
wider field which is still to be developed.

References

1. Reinkemeyer, L.: Process Mining in Action. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40172-6

2. Isaacson,W.: Invent andWander: TheCollectedWritings of Jeff Bezos. Blackstone Publishing,
Ashland (2021)

3. Hardvard Business Review 08/19 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/978-3-030-40172-6
http://creativecommons.org/licenses/by/4.0/

Using Process Mining in Healthcare

Niels Martin1,2(B), Nils Wittig3, and Jorge Munoz-Gama4

1 Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
niels.martin@uhasselt.be

2 Research Foundation Flanders (FWO), Egmontstraat 5, 1000 Brussels, Belgium
3 KMS Vertrieb und Services AG, Inselkammerstraße 1,

82008 Unterhaching, Germany
nils.wittig@kms.ag

4 Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860,
7820436 Macul, Chile

jmun@uc.cl

Abstract. This chapter introduces a specific application domain of pro-
cess mining: healthcare. Healthcare is a very promising domain for pro-
cess mining given the significant societal value that can be generated
by supporting process improvement in a data-driven way. Within a
healthcare organisation, a wide variety of processes is being executed,
many of them being highly complex due to their loosely-structured and
knowledge-intensive nature. Consequently, performing process mining in
healthcare is challenging, but can generate significant societal impact. To
provide more insights in process mining in healthcare, this chapter first
provides an overview of healthcare processes and healthcare process data,
as well as their particularities compared to other domains. Afterwards, an
overview of common use cases in process mining in healthcare research is
presented, as well as insights from a real-life case study. Subsequently, an
overview of open challenges to ensure a widespread adoption of process
mining in healthcare is provided. By tackling these challenges, process
mining will become able to fully play its role to support evidence-based
process improvement in healthcare and, hence, contribute to shaping the
best possible care for patients in a way that is sustainable in the long
run.

Keywords: Process mining · Healthcare · Evidence-based process
improvement

1 Introduction

The prior chapters of this book introduced various process mining topics. In
contrast to these preceding chapters, this chapter focuses on introducing a spe-
cific application domain of process mining. In particular, this chapter focuses
on healthcare. In process mining research, healthcare illustrations are often used
to demonstrate new techniques, or a healthcare problem is the starting point

c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 416–444, 2022.

https://doi.org/10.1007/978-3-031-08848-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_14

Using Process Mining in Healthcare 417

of the research project altogether [55]. This can be, at least partly, explained
by the great societal value related to efforts to improve the healthcare system.
In many countries, the long-term sustainability of the healthcare system is an
important societal issue due to trends such as the increasing life expectancy, and
the raising prevalence of chronic diseases [29]. Improvements in terms of health-
care processes is an indispensable piece of the puzzle to sustain the healthcare
system, while continuously improving the quality of care delivered to the patient.

Within the healthcare domain, many different processes are being performed
in a wide variety of healthcare organisations. Many processes in healthcare are
complex as they are loosely-framed and knowledge-intensive [20,55,58]. While
the former indicates that healthcare processes can typically be executed in a
large number of distinct ways [58], the latter indicates that the trajectory that
is followed strongly depends upon complex decisions made by knowledge workers
such as physicians and nurses [20]. These healthcare processes are increasingly
being supported by health information systems [53], which capture data about
the real-life execution of a process in their databases. This data can be leveraged
to compose an event log, the key input for process mining [55].

There has been a steady growth in research interest on process mining in
healthcare in recent years [17]. Despite the great potential of process mining
to support process improvement in healthcare and the increasing number of
methods specifically designed for the healthcare context, the systematic uptake
of process mining in healthcare organisations outside the research context is
still fairly limited [55]. Hence, there are still challenges ahead that need to be
overcome, which is consistent with the fact that process mining in healthcare
is a rather young research area. Moreover, healthcare is a highly dynamic field
as processes change due to advances in, for instance, medicine and technology
[29,55]. For instance, the increasing presence of wearable devices and mobile
health applications provides opportunities to collect richer data about a partic-
ular process, but also presents new challenges, e.g. in terms of merging all data
sources [37,55]. Even though it will require continued efforts, it is worthwhile to
benefit from opportunities and tackle challenges as it will enable process mining
to fully play its pivotal role to instigate evidence-based process improvement in
healthcare [55].

The goal of this chapter is to introduce the reader to healthcare as an appli-
cation domain for process mining. To this end, the remainder of this chapter is
structured as follows. Section 2 provides a primer on healthcare processes and
healthcare process data, with an emphasis on its particularities. Section 3 intro-
duces the reader to the common use cases of process mining in healthcare from
a research point of view. Section 4 discusses a case study, which illustrates the
potential of process mining in the context of a specific hospital. Section 5 outlines
the key open challenges that the community is confronted with when it aspires
a broad uptake of process mining in healthcare. The chapter ends with a brief
conclusion in Sect. 6.

418 N. Martin et al.

2 A Primer on Healthcare Processes and Process Data

Before providing an overview of common use cases in the process mining from
healthcare literature, this section sets the stage by providing an overview of
healthcare organisations and healthcare processes (Sect. 2.1). Moreover, the par-
ticularities of healthcare processes and healthcare process data are introduced
(Sect. 2.2).

2.1 Healthcare Organisations and Healthcare Processes

Some readers might implicitly equate healthcare to the care that patients receive
in a hospital. Hospitals, either general hospitals or specialised hospitals [57], play
an important role in the provision of healthcare services. As will become apparent
in Sect. 3, many process mining applications are also situated within the hospi-
tal context. However, it should be noted that curative care, i.e. care focused on
the treatment of diseases to increase life expectancy [88], is organised in vari-
ous types of healthcare organisations [57]. For instance: long-term care facilities
provide care to patients suffering from a chronic disease or patients needing long-
term rehabilitation after a hospital discharge. Psychiatric care organisations, in
their turn, provide therapy for patients with mental problems. Home-based care
organisations, another category of healthcare organisations, deliver care services
in the comfort of the patient’s home [57].

Within a particular healthcare organisation, a wide variety of healthcare
processes is being performed. A basic distinction between medical treatment
processes and organisational processes is introduced by Lenz and Reichert [46].
Medical treatment processes, also commonly referred to as clinical processes, have
a direct link to the patient and are connected to the therapeutic-diagnostic cycle.
This implies that, in these processes, healthcare professionals takes informed
decisions regarding the patient’s diagnosis or therapy based on medical knowl-
edge and the available patient-related information. Organisational processes, in
their turn, cover all processes that support medical treatment processes by coor-
dinating actions between different healthcare professionals and supporting staff,
potentially even belonging to various departments. Examples include appoint-
ment or procedure scheduling processes, as well as logistical processes of patients
or goods [46,67].

An alternative categorisation of healthcare processes is provided by Mans
et al. [52]. Their classification solely takes processes that are directly related to
the patients into account, but considers both medical activities as the prepa-
ration of these activities (such as booking the appointment) as being part of
the same process. Against this background, Mans et al. [52] make a distinction
between elective care processes and non-elective care processes. The execution
of elective care processes can responsibly be postponed for several days or weeks.
Within this subcategory, a further distinction is made between standard, rou-
tine, and non-routine care processes. For standard care processes, a structured
treatment trajectory is available, containing information about the activities
that need to be performed, as well as the timing that needs to be respected.

Using Process Mining in Healthcare 419

In a routine care process, various treatment trajectories can be followed to obtain
an outcome that is typically known. The latter does not hold for non-routine
care processes as a physician will need to determine the next step in the treat-
ment trajectory based on the patient’s reaction on the current process step.
While elective care can be postponed for several days or weeks, non-elective care
processes refers to unexpected medical treatments that need to be performed
promptly. Here, a distinction is made between emergency care processes, which
should be executed immediately, and urgent care, which can be postponed for a
limited period of time (e.g. a few days) [52].

From the previous, it follows that healthcare is a highly versatile domain,
with a large variety of healthcare organisations and a mix of different processes
being executed at these organisations. These processes can be fairly structured
(e.g. standard care processes) or highly unstructured (e.g. non-routine care pro-
cesses) [52]. The close interconnection between processes, even across different
healthcare organisations, adds to the complexity of the healthcare domain. For
instance: the trajectory of a patient suffering from a chronic disease might consist
of surgery at a specialised hospital, several check-ups at a local general hospital,
as well as multiple therapies taken at home under the supervision of a home
nurse [55]. Even within a single healthcare organisation, processes are closely
intertwined as, e.g., efficiently carrying out surgical processes depends on the
timely execution of logistical processes, both regarding patient transportation
and the material flow.

2.2 Particularities of Healthcare Processes and Process Data

To really grasp the challenging nature of healthcare as an application domain
for process mining, it is important to understand the particularities of health-
care processes and healthcare process data. Munoz-Gama et al. [59] defined ten
distinguishing characteristics of healthcare processes, which also impact the pro-
cess data that will be recorded. While some of these characteristics might also
be relevant for other sectors, their combined occurrence in the healthcare con-
text needs to be reckoned with and will generate challenges when conducting
process mining analyses. The ten key particularities of healthcare processes and
healthcare process data, as defined in Munoz-Gama et al. [59], are discussed in
the remainder of this subsection.

Exhibit Significant Variability. An important contributing factor to the com-
plexity of healthcare processes is their significant variability [63,67]. Variability
is caused, amongst others, by the diversity of activities that can be performed
(e.g. a wide variety of examinations and treatments) in various orders, and the
different characteristics of patients (e.g. they can suffer from various combina-
tions of co-morbidities, influencing the way the process is executed) [67]. As a
consequence, in many healthcare contexts, almost every case will have a unique
trajectory through the process, leading to challenges within the context of, e.g.,
control-flow discovery [59].

420 N. Martin et al.

Value the Infrequent Behaviour. In many domains, process mining is used
to better understand the typical behaviour of a process. Hence, as infrequent
behaviour would complicate, e.g., the discovered control-flow model, it is often
removed in the pre-processing stage of a process mining project [15]. However, in
healthcare, infrequent behaviour can be a source of valuable knowledge about the
process. It might, for instance, highlight infrequent treatment paths that result
in the same clinical outcome, unveiling knowledge about alternative treatment
options for a particular disease [22,59]. Understanding infrequent behaviour
is important as solely focusing on models representing the typical behaviour
could generate blind spots, which constitute missed innovation opportunities for
healthcare processes [59].

Use Guidelines and Protocols. Within the field of medicine, various clini-
cal practice guidelines and protocols are available, which build upon evidence-
based information on a certain topic [79,87]. This implies that, for clinical pro-
cesses, reference processes are often available, which does not hold in many other
domains [35]. This opens opportunities for process mining to, e.g., analyse the
adherence to these guidelines and protocols [34,59].

Break the Glass. While clinical practice guidelines and protocols aim to achieve
standardisation in clinical processes, medical doctors and healthcare profession-
als might need to deviate from guidelines and protocols when confronted with
specific situations. For example: the discovery of specific co-morbidities of a
patient might require an alternative course of action [62,72]. Another situation
that might require a deviation from protocols is an unexpected surge in the
number of arriving patients that should be coped with by a department [59].
The occurrence of such ‘break the glass’ situations will also be reflected in the
data, highlighting the crucial importance to take into account context informa-
tion when using process mining in healthcare to fully understand the process
behaviour [59,80].

Consider Data at Multiple Abstraction Levels. In a healthcare context,
data about the execution of a process can originate from various data sources,
both for clinical processes and organisational processes [45,55]. These data
sources will capture data at multiple levels of abstraction. Medical equipment
such as surgical robots or wearable devices will often generate large volumes
of very fine-grained data, which should be aggregated to retrieve meaningful
patterns [59,85]. High-level data, typically recorded in administrative systems,
tends to be directly interpretable, but might provide an insufficiently detailed
view on the process. Hence, when performing process mining in healthcare, it
might be required to integrate data from various sources, potentially bridging
clinical and administrative systems, as well as different data abstraction levels
[59].

Involve a Multidisciplinary Team. Healthcare processes typically have a
multidisciplinary character, with healthcare professionals (physicians from vari-
ous disciplines, nurses, etc.) and supporting staff with various backgrounds being
involved [55,67]. Given the critical importance of expertise from the healthcare

Using Process Mining in Healthcare 421

domain, a multidisciplinary team needs to be involved during all stages of a pro-
cess mining initiative, ranging from the specification of the problem to the trans-
lation of process mining insights to practical actions. This implies that attention
needs to be attributed to the use of the appropriate medical terminology and
customs to assure mutual understanding [59].

Focus on the Patient. When considering healthcare processes, the key role
of the patient should be emphasised. Patients are, directly or indirectly, at the
core of nearly all healthcare processes. Hence, when performing process mining
in healthcare, specific attention should be attributed to support the provision
of patient-centred care, a key care quality indicator [11]. When focusing on the
patient journey, i.e. the trajectory of a patient over the course of a disease or
treatment [49], it is important to note that (s)he typically receives services from
various healthcare organisations (e.g. the hospital, the general practitioner, and
the physiotherapist). This also causes the patient journey data to be spread over
several organisations, with its associated challenges [55,59].

Think About White-Box Approaches. Recent advances in artificial intelli-
gence and machine learning have provided techniques to support physicians in
taking complex clinical decisions. One of the biggest hurdles for the adoption
of such techniques is the physician’s reluctance to use systems that they do not
fully understand, i.e. to use black-box approaches [65]. Hence, to support deci-
sions in a healthcare context, there is a need for white-box approaches, enabling
healthcare professionals to understand where recommendations originate from.
Process mining is perceived as such a white-box approach [39]. Nevertheless,
the understandability of process mining outcomes for healthcare professionals
should remain a permanent point of attention [55,59].

Generate Sensitive and Low Quality Data. Healthcare processes, espe-
cially clinical processes, generate sensitive data as it typically contain informa-
tion regarding a patient’s health condition, co-morbidities, ongoing treatments,
etc. Consequently, ethics in general and data privacy in particular need to be
first-class citizens when working with healthcare processes [74]. Moreover, strict
regulations are typically in place regarding the use, storage and transfer of sen-
sitive healthcare data [64]. Besides data privacy, poor data quality also char-
acterises data collection regarding healthcare processes [54,86]. Data quality, a
topic which has been discussed in Chapter 6 [18] is highly relevant in the health-
care domain, where data might suffer from various quality issues such as missing
events, incorrect timestamps and imprecise timestamps [52,86]. One of the key
reasons for data quality issues in healthcare is the fact that many events are
recorded after a manual interaction between a healthcare professional and an
information system. This might cause inaccuracies in the recorded data as some
actions might not be recorded in the system, other actions might be recorded in
the system well after they have been executed, etc. Data quality issues have to
be handled with great care when conducting process mining in healthcare [59].

422 N. Martin et al.

Handle Rapid Evolutions and New Paradigms. As the healthcare domain
is rapidly and continuously evolving, this also holds for processes in healthcare.
Changes are induced both by advances in clinical research, leading to changes
in diagnostic or treatment processes [24], as well as advances in technology, e.g.
the rise of remote monitoring due to the development of robust mobile health
solutions [76]. New healthcare paradigms also surface, which also have an impact
on healthcare processes. For instance: patient-centred care has become a core
paradigm in healthcare, implying that care should attribute significant attention
to the needs and preferences of the individual patient [66]. When working on
process mining in healthcare, researchers and practitioners should be aware of
these rapid evolutions and emerging new paradigms, as well as be able to cope
with them [59].

3 Use Cases in Process Mining in Healthcare Research

Against the background of the previous section, this section aims to highlight
some typical use cases for process mining in healthcare as reported in pub-
lished research articles. While many of the papers that will be referenced below
make important methodological contributions, the focus of the discussion in this
section is mainly on how process mining techniques were applied in a particu-
lar healthcare context. To structure the outline, the six process mining types
introduced in Chapter 1 [1] are used: process discovery (Sect. 3.1), conformance
checking (Sect. 3.2), performance analysis (Sect. 3.3), comparative process min-
ing (Sect. 3.4), predictive process mining (Sect. 3.5), and action-oriented process
mining (Sect. 3.6). At the end of the section, some recommendations for further
reading are provided (Sect. 3.7).

3.1 Process Discovery

Process discovery focuses on the discovery of a process model from an event log.
As holds for process mining in general, process discovery is also, by far, the most
prominent use case of process mining in healthcare [17,37]. Papers on process
discovery in healthcare typically center around the discovery of the control-flow,
i.e. the order of activities, from an event log [17].

When focusing on control-flow discovery, various algorithms have been used
to automatically retrieve a visualisation of the activity order from an event log.
Based on a literature review, Guzzo et al. [37] conclude that Heuristics Miner
is the most commonly used algorithm, followed by Fuzzy Miner and Inductive
Miner. Control-flow discovery has been applied in various healthcare contexts.
For instance: Caron et al. [14] use the Heuristics Miner to retrieve a process
model for the radiotherapy department within the context of gynaecologic oncol-
ogy. Duma and Aringhieri [25] use both Heuristics Miner and ‘Inductive Miner
- Infrequent’ to study the patient trajectory at the emergency department of an
Italian hospital. To limit the complexity of the data, they preprocess the event
log by merging consecutive events referring to the same activity in the process.

Using Process Mining in Healthcare 423

Despite these pre-processing efforts, the Heuristics Miner discovers a spaghetti
model, which is not understandable. The ‘Inductive Miner - Infrequent’, in its
turn, generates a very simple, but imprecise model, meaning that the discovered
model allows for a lot of behaviour that is not observed in the event log [25].
Using, amongst others, Heuristics Miner and Fuzzy Miner, Kim et al. [40] focus
on the patient trajectory in an outpatient clinic in Korea. They explicitly com-
pare the process models discovered from data to a process model that has been
developed solely based on a discussion with domain experts. The process mining
insights surface some important trajectories that are not included in the domain
experts’ model, highlighting the added value of process mining [40].

Besides automated control-flow discovery, interactive control-flow discovery
also receives some attention in literature. A distinguishing characteristic of inter-
active control-flow discovery is that a domain expert is interactively involved
while the model is being discovered from the event log [10]. In this way, domain
knowledge is embedded in the discovery processes, instead of being used to inter-
pret the output of an automated algorithm. Using a case study of the patient
trajectory of lung cancer patients, Benevento et al. [10] show that the interac-
tive process discovery approach of Dixit et al. [23] generates control-flow models
which are both accurate and understandable. In contrast, automated control-flow
discovery algorithms might experience difficulties to generate such an accurate
and understandable model. Even though the advanced algorithms discussed in
Chapter 3 [7] will prove helpful, it might still be difficult to discover accurate and
understandable control-flow models automatically. This can be, at least partly,
explained by the fact that the order of tasks in healthcare processes often depends
on highly specialised background knowledge, which is not embedded in the event
log [10]. While interactive control-flow discovery received fairly little attention so
far, it is highly promising for domains in which processes are highly knowledge-
intensive and loosely-structured, which holds for many healthcare processes [55].
For a more extensive introduction on interactive process mining in healthcare,
the reader is referred to Fernandez-Llatas [29].

A important challenge in control-flow discovery in healthcare, especially for
medical treatment processes, is the great variability [59]. As many different paths
through the process tend to occur, applying a control-flow discovery algorithm
often results in a spaghetti model, which is very complex or even impossible to
understand [51]. To handle this problem, trace clustering techniques can be used
to create more homogeneous patient subgroups, which can be studied separately
in an effort to reduce complexity. For instance: Mans et al. [51] use trace cluster-
ing on an event log of gynaecological oncology patients from a Dutch hospital to
generate patient groups that follow a similar trajectory. Despite the potential of
trace clustering, Lu et al. [48] also recognise some challenges. These include the
fact that individual clusters might still contain thousands of distinct activities
performed for patients, which would still be highly problematic for control-flow
discovery purposes. Moreover, suppose clusters are created based on the medical
condition of patients, each cluster might still contain a wide variety of patient
trajectories as the same condition might be handled in a variety of ways. Against

424 N. Martin et al.

this background and with the ambition to generate clusters that are meaning-
ful to domain experts, Lu et al. [48] develop a novel trace clustering method.
Their method starts from a small sample set of patients, based on input from
domain experts, to generate clusters. An evaluation of the method at a Dutch
hospital highlights that the resulting control-flow models presented meaningful
behavioural patterns for medical experts [48].

While the majority of control-flow discovery contributions take data from the
hospital information system as a starting point, other types of input data are
also occasionaly taken into consideration [37]. For example: Fernandez-Llatas
et al. [31] use real-time indoor location systems data, which track the movement
of patients throughout the surgery area of a Spanish hospital. Using this data,
PALIA is used to discover a process model that represents the order of locations
that a patient has visited [31]. Another illustration is the work of Lira et al. [47],
where video recordings of a surgical procedure, i.e. the ultrasound-guided cen-
tral venous catheter placement, are used as input data. These video recordings
are tagged to generate an event log, which is used as an input for control-flow
discovery [47].

All of the aforementioned papers focus on the discovery of control-flow mod-
els. However, as highlighted in Chapter [1] process discovery can also relate to
other perspectives of the process, such as the resource perspective. For instance,
Alvarez et al. [3] identify collaboration patterns between healthcare profession-
als within the emergency department of a hospital. The resulting process model
sheds valuable insights in the interactions between physicians, nurses, medical
assistants and technicians [3]. Similarly, one of the analyses conducted by Agnos-
tinelli et al. [2] centers around the identification of interactions between differ-
ent subdepartments in an Italian outpatient clinic. These examples highlight the
potential of process mining to discover valuable process models in healthcare,
also beyond the control-flow perspective.

3.2 Conformance Checking

As highlighted in Sect. 2.2, a multitude of clinical practice guidelines and proto-
cols are available in the healthcare domain, which can act as reference processes
[59]. Conformance checking, the topic of Chapter 5 [13] and a second common
use case for process mining in healthcare, enables assessing the adherence of the
real-life healthcare process (as captured by the event log) to clinical guidelines
and protocols, as well as to study where reality deviates from an already exist-
ing process model [55]. For instance: Mannhardt and Blinde [50] use the public
sepsis event log and aim to assess the conformance of the real-life process with
two rules put forward by the sepsis guidelines at that time: (i) the time differ-
ence between the moment at which the triage document is completed and the
admission of intravenous antibiotics should be less than 1 h, and (ii) the time
difference between the moment at which the triage document is completed and
the measurement of lactic acid should be less than three hours. Through the
use of multi-perspective conformance checking, the authors conclude that the
first rule is violated for 58.5% of the patients, while the second rule is only vio-
lated for 0.7% of patients. This observation constitutes a basis to look into the

Using Process Mining in Healthcare 425

adherence to medical guidelines in more detail [50]. Another example is the work
by Rinner et al. [68], who use alignment-based conformance checking to assess
the compliance between the European guideline on melanoma treatment and an
event log from an Austrian medical university. This analysis is highly relevant
as the authors indicate that patients which comply to the guidelines have a sig-
nificantly better prognosis than deviating patients [68]. Also focusing on clinical
guidelines, Huang et al. [38] propose an approach to detect both global and local
anomalies between a clinical pathway and an event log. While the former refers
to patient trajectories that significantly deviate from the clinical pathway, the
latter represents a deviation in a particular part of the trajectory. This approach
is applied to an event log containing trajectories of unstable angina patient at a
Chinese hospital [38].

While conformance checking offers great potential, Sato et al. [75] highlight
the challenge that clinical guidelines and protocols are often defined at a differ-
ent level of aggregation than the events in the event log. To tackle this problem
and using the pre-operative phase of bariatric surgery as an illustration, the
high-level activities in the reference model are explicitly mapped to the events
included in the event log. Besides the potential discrepancy in terms of the level
of aggregation, Bottrighi et al. [12] also highlight that clinical guidelines typi-
cally focus on patients in general, while clinical practice often requires adapt-
ing general guidelines to the specificities of individual patients and contexts.
For instance: patients might have several co-morbidities and certain equipment
might not be available in a particular situation. As a consequence, physicians
add what is called basic medical knowledge in order to alter clinical guidelines
to the specific patient and contextual characteristics. This adds a dimension to
conformance checking: besides checking the adherence to the clinical guideline,
the basic medical knowledge that the physician adds also needs to be taken into
consideration [12].

The aforementioned examples use clinical guidelines and protocols as the
reference model. While this is a common situation in the healthcare domain, it
should be noted that conformance checking techniques can also generate valuable
insights when the reference model originates from a different source. For instance:
Kirchner et al. [41] perform conformance checking within the context of the liver
transplantation process. To create the process model to compare the event log
with, an interdisciplinary team consisting of physicians and modelling experts
was brought together [41]. This example highlights that conformance checking is
a versatile toolkit to assess whether hospital processes are performed in reality
as intended according to any form of reference model.

3.3 Performance Analysis

Regarding the evaluation of healthcare process performance, various types of
performance measures can be used. A basic distinction can be made between
clinical, financial and operational key performance indicators. A clinical key
performance indicator relates to a measure of the patient’s medical condition,

426 N. Martin et al.

a financial key performance indicator reflects the financial effect of the execu-
tion of the process, and an operational key performance indicator represents
a measure regarding the operational execution of the process. The category of
operational key performance indicators can be further subdivided in time-related
and resource-related key performance indicators. The former can, for example,
be the waiting time of a patient or the length of stay, while the latter can relate
to the bed occupancy rate or staff utilisation at a particular department [17].

Based on a systematic literature review, De Roock and Martin [17] conclude
that less than half of the reviewed paper reports on a specific key performance
indicator for their process mining analysis. When a key performance indicator
is used, time-related key performance indicators are used the most frequently,
followed by clinical key performance indicators. Financial and resource-related
key performance indicators are rarely used in literature [17]. A commonly used
time-related key performance indicator is the length of stay of a patient, which
represents the time between the arrival of a patient and his/her departure [89].

Rojas et al. [70] use the length of stay when conducting a performance anal-
ysis of processes at the emergency department of a Chilean hospital. Based on
their analysis, they identified that two key steps in the emergency department
process contribute to higher length of stay values for patients. Firstly, the num-
ber of examination-treatment loops that the patient goes through, indicating the
amount of time that is needed to uncover the true problem. Secondly, the need
for a validation examination, which is an examination by a physician to ensure
that the patient is ready to be discharged from the emergency department. In
the same context and with the same key performance indicator, the length of
stay at the emergency department of a hospital, Andrews et al. [5] conduct a
process performance analysis at the St. Andrew’s War Memorial Hospital in
Australia. They conclude that a key contributor to high length of stay values is
the time that elapses between the moment at which it is decided that a patient
should be admitted and the moment at which the patient can actually move to
the relevant ward [5].

3.4 Comparative Process Mining

Comparative process mining, e.g. the comparison of various patient groups,
time periods or healthcare organisations, has also been used in the health-
care domain. With respect to the comparison of patient groups, Rojas and
Capurro [69] study the medication use process for patients suffering from sepsis
in the MIMIC-II database. To this end, three patient groups are distinguished,
based on whether vasodilators, vasopressors, or systemic antibacterial antibiotics
were used. Another example is Pebesma et al. [61], where three patient groups
are separated to model the trajectory of cardiovascular risks for patients with
type 2 diabetes: a high-risk, medium-risk and low-risk group. After modelling
the evolution of the risk level for each group, the gender distribution within
each group is determined, suggesting that female patients tend to be in lower
risk states compared to their male counterparts. A final example is the research
by Andrews et al. [6], who study the pre-hospital care process for victims of

Using Process Mining in Healthcare 427

road traffic accidents. In this respect, they consider three groups: (i) persons
who do not require ambulance transportation, (ii) persons who are transported
to e.g. local medical practices or elderly care facilities, and (iii) persons who are
transported to a hospital [6].

Other papers compare different time periods, which is another type of com-
parative process mining. For instance, Yoo et al. [92] use process mining to assess
the impact of commissioning new buildings of a hospital, where, e.g., the cancer
centre and clinical neuroscience centre have moved to the same floor and addi-
tional administrative counters have been added. To determine the impact of the
move to the new building, as well as the associated new facilities that became
available, the results of a process mining analysis before the move are compared
to the results using an event log of a period after the move. Their findings high-
light that processes run more efficiently in the new facilities, both for the cancer
centre and the clinical neuroscience centre. Moreover, the consultation waiting
time decreased [92]. A different example is situated within the context of an
emergency department. Within that context, Stefanini et al. [77] compare the
summer period to the winter period. In their comparison, they both incorporate
the patients’ trajectory as well as a variety of key performance indicators. One
finding is that urgent patients, on average, have to wait longer before their first
consultation in summer than in winter [77].

Regarding the comparison of healthcare organisations, a prime example is the
work by Partington et al. [60]. They compare four Australian hospitals in terms
of the pathway of patients who presented themselves at the emergency depart-
ment and are suspected to suffer from acute coronary syndrome. The comparison
focuses on the control-flow and time perspectives of the process. Regarding the
time perspective, measures such as waiting times, throughput time and length of
stay are taken into consideration. Various valuable insights were retrieved from
the comparative analysis, e.g. some hospitals use an angiography (i.e. an X-ray
of a patient’s blood vessels) significantly more often than other hospitals. More-
over, significant differences in the length of stay of patients were discovered [60].
The work of Partington et al. [60] highlights the great potential of comparative
process mining to compare local practices and process performance values. This
can constitute a fruitful basis for mutual learning and, hence, the improvement
of healthcare processes. However, it requires a culture of transparency, which has
been highlighted as a challenge for process mining adoption within the broader
process mining field [56].

3.5 Predictive Process Mining

While the aforementioned process mining types are backward-looking, process
mining in healthcare research has also focused on forward-looking approaches,
i.e. predictive process mining (see also Chapter 10 [21]). Two key research topics
are data-driven prediction models and data-driven process simulation. An exam-
ple of the former category, data-driven prediction models, is Benevento et al. [9],
which focus on predicting the waiting time of patients at the emergency depart-
ment. To this end, various predictor variables are taken into consideration, such

428 N. Martin et al.

as patient variables (e.g. their age or the assigned triage code), temporal vari-
ables (e.g. the hour of the day), staff-based variables (e.g. the nurses’ schedules,
the physicians’ schedules). They also consider queue-related variables in the pre-
diction model (e.g. the number of patients who received a triage code, but were
not yet treated), which were identified in an event log. The empirical evidence
suggests that adding the queue-related variables improves the performance of
the waiting time prediction model. In a very different context, van der Spoel
et al. [82] use a combination of data mining and process mining techniques to
predict the cashflow of a Dutch hospital. In this respect, they focus on predicing
the treatment trajectory based on the diagnosis and the start of the trajectory,
as well as on predicting the duration of this trajectory [82].

Several papers have investigated the potential of process mining within the
context of process simulation in healthcare. These efforts belong to the domain
of data-driven process simulation, which refers to the extensive use of an event
log during the development of a simulation model [19]. For example: Tamburis
and Esposito [78] investigate how process mining could be used to support the
development of a simulation model of the cataract treatment process at an oph-
thalmology department. Kovalchuck et al. [42], in their turn, simulate the process
that patients suffering from acute coronary syndrome follow, using process min-
ing to support the model development process. To demonstrate the developed
simulation model, they focus on the effect of the availability of angiography
equipment, which is important to quickly detect the presence of acute coronary
syndrome. In particular, the influence of varying the number of angiography
instruments on output measures such as the length of stay and the average wait-
ing time is predicted [42]. Franck et al. [33] use a simulation-based analysis of
the process of stroke patients at the emergency department. Process mining is
used to determine the order of activities from an event log. Using the simulation
model, various scenarios are defined in terms of the number of neurovascular
intensive care unit beds required to provide patients with care according to the
optimal clinical pathway.

van Hulzen et al. [84] use data-driven process simulation to explore poten-
tial future scenarios to support capacity management decisions for the radiology
department of a Belgian hospital. Within the context of the construction of
new facilities, which involves a centralisation of different geographically sepa-
rated campuses, department management needs to provide input regarding the
required number of radiological devices (X-ray, CT scanner, etc.), the size of the
waiting area for ambulatory patients, and the required number of receptionists.
In particular, the study centers around three key questions formulated by the
department management: (i) what is the effect of the centralisation of services
on the required resource capacities?, (ii) what is the impact of abolishing the
need for patients to drink contrast fluid on the throughput time and required
waiting area size?, and (iii) what would be the effect of an online registration
system for ambulatory patients on the reception staff requirements and the size
of the waiting area? To develop a simulation model to answer these questions, an
event log originating from the radiology information system is intensively used.

Using Process Mining in Healthcare 429

While the case study clearly demonstrates the potential of data-driven process
simulation in healthcare, van Hulzen et al. [84] also highlight challenges such as
data quality issues, as well as the lack of support to interactively involve domain
experts during the development of a simulation model.

3.6 Action-Oriented Process Mining

As highlighted in Chapter 1 [1], action-oriented process mining focuses on trans-
lating process mining insights into actions. This is also a crucial step within the
healthcare domain as only then process mining will reach its full potential as
a catalyst of evidence-based process improvement [55]. Despite its great impor-
tance, research efforts focusing on the translation of process mining insights in
actions are scarce in the healthcare domain. This is confirmed by the review of
De Roock and Martin [17], where the need for more research on the translation
of process mining outcomes to actionable process improvement ideas is indicated
as one of the key recommendations for the future development of the research
field.

A first step in the direction of action-oriented process mining is ensuring that
process mining endeavors start from specific questions put forward by healthcare
professionals [55]. Several research papers explicitly report on this matter, such as
the work by van Hulzen et al. [84] on data-driven process simulation for capacity
management at the radiology department. In a similar vein, Agostinelli et al. [2]
explicitly devote attention to defining the questions of healthcare professionals
in a process mining project in cooperation with the San Carlo di Nancy hospi-
tal. Better understanding three key processes was the central objective of the
process mining analysis, including the hospitalisation process of patients. How-
ever, Agostinelli et al. [2] claimed that it was difficult to elicit specific questions
from healthcare professionals because they had no background knowledge on
process mining. The knowledge gap between process mining experts and domain
experts is an important consideration to take into account when moving towards
action-oriented process mining.

3.7 Further Reading

This section had the ambition to provide an intuitive overview of common use
cases in process mining in healthcare literature. Hence, it does not constitute a
full overview of all scientific contributions in the field. For a more detailed outline
of the state of the art in literature, the reader is referred to one of the literature
reviews on process mining in healthcare that have been published. Some reviews
focus on a particular subdomain in healthcare: Kurniati et al. [43] on oncology,
Kusuma et al. [44] on cardiology, Williams et al. [90] on primary care, and Farid
et al. [28] on frail elderly care. Other reviews take a more generic perspective and
consider process mining in healthcare as a whole: Ghasemi and Amyot [36], Rojas
et al. [71], Batista and Solanas [8], Erdogan and Tarhan [27], Rule et al. [73],
Dallagassa et al. [16], Guzzo et al. [37], and De Roock and Martin [17]. All review
papers significantly differ in terms of the review dimensions that are taken into

430 N. Martin et al.

consideration and whether time trends are taken into consideration [17]. De
Roock and Martin [17] provide an overview of the similarities and differences
amongst 11 published literature reviews.

4 Case Study

The previous sections introduced healthcare processes, their particularities, and
common use cases in process mining in healthcare literature. This section
presents a real-life case study of conducting a process mining analysis in a hos-
pital. The case study is situated in the Superfluid Hospital project conducted
at the hospital of Braunschweig, led by Dr. Andreas Goepfert and Lars Anwand
together with Nils Wittig. The project has the overarching ambition of ensur-
ing that processes run smoothly within the hospital in order to improve the
well-being of patients and employees, the quality of care, as well as the hos-
pital’s financial performance. To outline the case study, the project goal and
IT-infrastructure is discussed (Sect. 4.1), followed by the outcomes of the pro-
cess mining analysis (Sect. 4.2).

4.1 Project Goal and IT-Infrastructure

The specific goal of the Superfluid Hospital project is discovering medical treat-
ment processes within the hospital. To this end, readily available process exe-
cution data and process mining has been used in order to avoid any additional
documentation work for healthcare professionals. The fact that no additional
data needs to be recorded could play an important role in nurturing acceptance
for process mining and to stimulate its use on a continuous basis (e.g. also to
track and evaluate the effect of process changes).

Hospitals typically use a variety of IT systems, implying that process exe-
cution data will also be scattered over various systems. In order to be able to
analyse all relevant data centrally, the Braunschweig hospital uses data ware-
house infrastructure as a starting point for process mining. This data warehouse
already gathers the relevant data from various underlying information systems
in the hospital. In particular, this case study uses the data warehouse infrastruc-
ture and business intelligence solution eisTIK from KMS Vertrieb und Services
AG, which combines process execution data from different data sources such as
the Hospital Information System, the Laboratory Information System, the Radi-
ology Information System, etc. For the process mining analysis, an integrated
version of the tool Celonis has been used within the data warehouse. Hence, pro-
cess mining is no longer a standalone tool, which lowers the efforts for healthcare
professionals to perform process mining.

4.2 Outcomes of the Process Mining Analysis

This subsection illustrates the outcomes of conducting process discovery at the
case study hospital in Braunschweig. In particular, the focus will be on the med-
ical treatment process of cardiology patients, which is a cohort of 1566 patients

Using Process Mining in Healthcare 431

Fig. 1. Detailed view of the trajectories of patients receiving cardiology services, show-
ing only a cut-out of the whole process.

in the data warehouse. It was the ambition of the project team, consisting of
process analysts and healthcare professionals, to gain a deep understanding in
the treatment of cardiology patients in order to identify areas for improvement
towards the future.

Figure 1 provides an overview of the trajectories of patients receiving cardiol-
ogy services, in particular a coronary angiography, containing all activities that
have been conducted. As becomes apparent from the visualisation, this level of
detail is unsuitable to gain insights into potential problems in the process. As a
consequence, the amount of activities represented in the process model is reduced
by means of filtering. Visualising only the most important activities, as shown in
Fig. 2, leads to a less complex process model. The key difference between Figs. 1
and 2 is that the percentage of included activities is reduced from 100% in Fig. 1
to 53% in Fig. 2. Moreover, the number of connections between activities is also
significantly reduced to about 40% in Fig. 2.

When studying Fig. 2 in more detail, it follows that particular diagnostics
have already been performed for some patients before they actually go to the
hospital. In particular, for 593 patients, an electrocardiogram and other check-
ups (‘Vorstationäre Leistungen’) have already been executed before they were
admitted to the hospital. Note that all results that patients bring with them will
still be checked to ensure that the patient is eligible for the procedure. Patients
that do not have prior check-up results generally take one of the following paths
from hospital admission (‘Aufnahme’, blue hexagon) onwards:

432 N. Martin et al.

Fig. 2. Filtered view of the process for cardiology patients receiving a coronary angiog-
raphy, all grouped by DRG F49G (which is a diagnosis-related grouping that is used
as a billing system in Germany). (Color figure online)

– Path 1 – on average 7 h to intervention: Patients following the first path
directly proceed to the coronary angiography (‘Koronarangiographie’, green
hexagon). It takes, on average, seven hours before this intervention with a
coronary angiography can be performed (e.g. due to the need for a general
consultation, the analysis of a blood sample, etc.). This implies that, when
the patient arrives at the hospital in the morning, the intervention occurs on
the same day.

– Path 2 – on average 31 h to intervention: Patients following the second
path receive an electrocardiogram (‘EKG’, yellow hexagon) on average four
hours after their arrival at the hospital. When the results of the electocar-
diogram are available, the patient is ready for the coronary angiography. It
takes, on average, 27 h before the intervention is actually carried out.

– Path 3 – on average 51 h to intervention: Patients which follow the
third path receive an X-ray (‘Radiologische, CT, MRT Leistung’, purple
hexagon), on average, six hours after their arrival at the hospital. Afterwards,
on average 18 h pass before the patient receives an electocardiogram (‘EKG’,
yellow hexagon). Finally, a coronary angiography takes place, on average,
another 27 h later.

Note that Fig. 2 also contains a connection between the execution of an elec-
trocardiogram (‘EKG’, yellow hexagon) and hospital admission (‘Aufnahme’,
blue hexagon). This connection represents patients which are temporarily dis-
charged from the hospital, but return the following day to continue the process.
Another interesting connection was revealed by analysing the data i.e. the direct

Using Process Mining in Healthcare 433

connection from admission (‘Aufnahme’, blue hexagon) to discharge (Entlas-
sung, blue hexagon) in Fig. 2 within 21 h. This connection can be explained by
the existence of a specific group of patients for whom the treatment has been
recorded in a different logic. These patients have previously not been included in
the internal performance measurement. This shows that process mining can also
highlight relevant deviations in the documentation. In this way, important areas
of action for the improvement of data quality have been identified, generating
additional added value for the hospital.

As mentioned in Sect. 3, it is important that process mining insights are
also translated to actions. Based on the analysis, of which some highlights have
been presented above, several actions have been specified in the process, as will
be exemplified here. Firstly, patients will be encouraged to bring all relevant
radiological imaging and recent electrocardiogram reports with them. This will
enable them to get treated much faster by following the first path described
above. Secondly, measures have been taken to accelerate the second path to make
sure that patients receive the intervention during their first day of hospitalisation.
Due to organisational adjustments, patients now receive the ECG with higher
priority. This makes it possible that, after a faster diagnosis, they often receive
the actual intervention in the afternoon of the day of admission. Finally, the third
path outlined above should be combined with the second path by registering
patients for both the radiological and cardiological diagnostic services at the
moment of admission. The relevant preliminary examinations can be carried out
and evaluated over the course of a day. In this way, the procedure can take place
the day after admission, provided that there are no medical reasons for not doing
so.

Healthcare professionals provided positive feedback on the conducted pro-
cess mining analysis, both with respect to the analysis procedure, as well as
with regards to the insights that have been gathered. The conducted analysis
made healthcare professionals aware of the improvement potential in their pro-
cesses, which will result in shorter hospitalisations and improved care quality for
patients. Especially changes that resulted in a reduction of unnecessary waiting
times in the patient’s trajectory are considered highly useful. While the insights
and improvement actions presented in this section are based on an analysis of
historical data, it should be noted that the use of the data warehouse with
integrated process mining functions also enables real-time analyses. As a conse-
quence, it is possible to create a live view of the process, which opens options to
take action in the process while the process for a patient is still running.

5 Open Challenges

Section 3 and Sect. 4 demonstrate the great potential of process mining in health-
care, as well as the research that has been conducted in the research field. How-
ever, it has been reported that the uptake of process mining in healthcare, beyond
case studies in a research context, is fairly limited [55]. Hence, there are still sig-
nificant challenges ahead to ensure a widespread adoption of process mining

434 N. Martin et al.

in healthcare. The remainder of this section provides an overview of ten key
challenges for the field, based upon the recent work by Martin et al. [55] and
Munoz-Gama et al. [59].

Create a Standardised Terminology. In the healthcare domain, there is a
tradition of using standardised terminologies to ensure a common understanding
of concepts [26]. An illustration is the International Classification of Diseases
(ICD), which defines about 55000 codes to label injuries, diseases, and causes
of death in a standardised way [91]. In the process mining field, standardisation
often focuses on the data structure level (e.g. the XES and OCEL standards),
but less on the terminology level. Terms such as event, case, activity, and trace
might be used in an ambiguous way based on the working definitions of indi-
viduals or research groups. This is especially troublesome when working in an
interdisciplinary context as it can lead to problematic communication. Hence,
there is a need to develop a standardised terminology to support process min-
ing in healthcare, which should (i) provide a clear definition of process mining
concepts in a healthcare context, and (ii) link to existing terminologies in the
healthcare domain whenever possible [55].

Tackle Real-World Healthcare Problems. To support the uptake of process
mining, it is important that process mining methods help to solve real-word
problems of healthcare professionals. In order to capture and thoroughly under-
stand these problems, close and ongoing interaction between the process mining
community and healthcare professionals is needed. Only then, methods can be
developed that actually support healthcare professionals to solve these problems
[55,59]. Progress still needs to be made as, based on a systematic literature
review, De Roock and Martin [17] conclude that only 12.5% of the reviewed
papers reported that healthcare professionals were actively involved during the
problem definition stage of a process mining project. Besides eliciting problems
from healthcare professionals instead of assuming that a particular issue is rele-
vant, it is also key to evaluate process mining methods using real-life data from
an authentic healthcare context. Besides enabling the researcher to fine-tune the
developed method based on the complexity of real-life data, a real-life demonstra-
tion will also build confidence among healthcare professionals in process mining’s
ability to tackle real-world problems [55,59].

Deal with Low Quality Data. The healthcare domain has been shown to
suffer from low quality process execution data, the key input for process mining.
As applying process mining techniques to low quality data can lead to counter-
intuitive and even misleading results [4], data quality is an important challenge
for process mining in healthcare (see also Chapter 6 [18]). Data quality issues
include missing events (i.e. events that took place, but which were not registered
in the system), incorrect timestamps (i.e. timestamps that do not correspond
to the time at which the event actually took place), and imprecise resource
information (i.e. resource information that does not refer to a specific healthcare
professional) [52,54]. While approaches have recently been developed to assess
the event log quality or to handle specific event log quality issues using targeted

Using Process Mining in Healthcare 435

heuristics [54], data quality remains a challenge for process mining in healthcare.
In this respect, it is also important that healthcare organisations are made aware
of the need to improve data registration at the source in order to fully leverage
the potential of process mining. Potential initiatives include raising awareness
among healthcare professionals and facilitating data registration when designing
user interfaces [55,59].

Identify the Most Suitable Process Modelling Language. Within the con-
text of control-flow discovery, process mining enables retrieving a visual represen-
tation of how a healthcare process is performed in reality. In order to effectively
use a process model as a communication instrument and, hence, as a basis for
process improvement, it is important to determine the most suitable process
modelling language within a healthcare context. Within the business process
management domain, a wide variety of process modelling languages have been
developed such as BPMN, Petri nets and Declare. At the same time, modelling
languages to represent clinical guidelines such as GLIF3 have been proposed
in the healthcare domain. Given the plethora of available languages and as it
has been shown that the modelling language impacts model understandability
[32], thorough benchmarking research is required. Such research should focus on
both the expressive power of the considered modelling language, as well as the
understandability of the resulting control-flow model for healthcare professionals.
Regarding the latter, a wide range of healthcare contexts and healthcare profes-
sionals should be taken into account. By carefully understanding the strengths
and weaknesses of existing process modelling languages, both from the business
process management and the healthcare domain, valuable lessons can be drawn
on the visualisation of process mining outcomes in healthcare [55].

Move Beyond Control-Flow Discovery. While Sect. 3 aimed at providing a
broad view on process mining in healthcare, it should be recognised that control-
flow discovery remains the most dominant use case of process mining in health-
care [17,37]. While there is a clear need for control-flow discovery algorithms
that are designed with the particularities of healthcare processes in mind, it is
important that targeted methods are also developed for other process mining
types such as conformance checking, predictive process mining or to discover
insights from the time or resource perspective [59]. Moreover, as follows from
Sect. 3, more research on action-oriented process mining in healthcare is needed
as this is the key for process mining to actually contribute to the generation of
societal value in healthcare. With respect to the various perspective of a pro-
cess, analyses that span over several process perspectives, e.g. which combine
the control-flow perspective with the time or resource perspective, also have the
potential to generate great value for healthcare. Such multi-perspective analy-
ses can provide healthcare professionals with rich insights, e.g. about how the
control-flow of the process gives rise to particular resource behaviour [55,59].

Look Beyond the Hospital Walls. As highlighted in Sect. 2.2, patients are at
the core of healthcare processes. Patients, especially patients with a chronic dis-
ease, often have a therapeutic relationship with various healthcare organisations.

436 N. Martin et al.

However, the great majority of the research on process mining in healthcare is
still focused on what happens with patients in the context of a hospital visit
or admission. Exceptions such as Fernandez-Llatas et al. [30], who focus on
supporting nursing home design using process mining, are scarce. Even when
a part of the patient’s diagnosis and treatment process takes place in a hospi-
tal, it is important to note that a significant portion of the process might also
be executed outside the hospital’s walls. For instance: an oncological patient
might have surgery at a specialised hospital, (s)he might have regular check-ups
scheduled at a local general hospital and might receive specific treatments at
home, supported by a home healthcare organisation. When process mining has
the ambition to provide healthcare professionals with valuable insights in the
patient journey, it will probably not be sufficient to only study the process frag-
ment that takes place in the hospital. As process execution data will be spread
over the information systems of several healthcare organisations, this will pose
challenges in terms of obtaining data and connecting all data sources. Moreover,
careful consideration has to be given to data privacy and security. While privacy
and security are relevant for all process mining endeavours, involving several
healthcare organisations will add an additional layer of complexity [55,59].

Give Control to Healthcare Professionals. Currently, process mining ini-
tiatives in healthcare are often carried out by a multidisciplinary team, consist-
ing of both healthcare professionals and process mining experts. Process mining
experts play an important role given the technical skills which are required to
prepare an event log and perform the appropriate analyses. In the long run, it
should be the ambition of the process mining community to develop tools which
are so intuitive that healthcare professionals can autonomously use them, instead
of depending on (potentially external) process mining experts. While this is far
from trivial given the high complexity of many healthcare processes, as well as
due to complicating factors such as data quality issues, efforts to give control to
healthcare professionals are highly valuable. A first step would, for instance, be
to ensure that healthcare professionals are actively involved in the specification
of analysis targets. In order to make informed judgements and clearly delineate
their questions, it would be highly valuable if healthcare professionals have a
minimal level of data and process literacy [2,17]. Moreover, enhanced training
might also nurture a mindset in which process execution data is considered as a
strategic asset that the healthcare organisation wishes to leverage to the largest
extent possible. Additional efforts to gradually give control to healthcare pro-
fessionals involve specific attention to elements such as the use of unambiguous
terminology and the clear visualisation of outcomes when developing tools to
perform process mining in healthcare [55,59].

Integrate Process Mining Functionalities in Existing Systems. The
positioning of process mining as a standalone tool constitutes a major barrier for
the systematic use of process mining in healthcare practice. Nowadays, in order
to use process mining, data often need to be extracted from the health informa-
tion system, reformatted to the required event log structure, and imported in a
process mining tool. While this is feasible for a one-off research project, this is

Using Process Mining in Healthcare 437

impractical in the daily work setting of healthcare professionals. Hence, to sup-
port the use of process mining in healthcare, process mining functionalities need
to be integrated in the information systems that are used by healthcare profes-
sionals. To this end, a strong partnership between the process mining commu-
nity and health information system vendors needs to be established. Moreover,
healthcare organisations can include the need for data-driven process analysis
functions when formulating update requests to their vendors [55]. The case study
presented in Sect. 4 presents a first step towards tackling this challenge as process
mining functionalities were integrated with the data warehouse solution used by
the hospital under consideration.

Develop Tailored Methodologies for Process Mining in Healthcare.
The particularities of healthcare show the need for the development of tailored
methodologies for process mining in healthcare. Such methodologies should pro-
vide specific guidelines for the various phases of a typical process mining initia-
tive in a healthcare context, ranging from the specification of the research prob-
lem, over the composition of the event log, the execution of the analysis, to the
interpretation of the final results, and the actions that will be linked to the find-
ings. When establishing methodologies, inspiration should evidently be drawn
from efforts in the broader process mining field such as the L*-methodology [81],
and the PM2-methodology [83]. However, it is key to also take the particulari-
ties of the healthcare domain into consideration, as well as the wide variety of
contexts in which process mining can be used in the domain. The presence of
solid methodological support might also persuade healthcare organisations that
are considering the adoption of process mining, but still have concerns regarding
the rigour of a relatively young research domain, as well as regarding how the
process mining effort should exactly be approached [55,59].

Evolve in Symbiosis with Evolutions in the Healthcare Domain. As
highlighted in Sect. 2.2, the healthcare domain is in constant evolution due
to advances in various fields such as medicine and technology. Moreover, new
paradigms such as patient-centred care give rise to new care approaches. Against
this background, it will be an ongoing challenge for process mining to follow-
up on these evolutions and to ensure that the provided support matches the
expectations of healthcare organisations. To appreciate the latter statement, it
is important to realise that process mining will always be a means to an end,
rather than a goal in itself. Consequently, the impact of process mining in the
healthcare field will depend on its ability to add value within a constantly chang-
ing context. From that perspective, process mining in healthcare should evolve in
symbiosis with evolutions in the healthcare domain. While the foregoing repre-
sents a more reactive perspective, it is important to note that process mining can
also actively contribute to evolutions in healthcare. For instance: process min-
ing techniques can be used to efficiently compare various treatment processes
with respect to the clinical and patient experience outcomes they generate and,
hence, can contribute to shaping the clinical pathways of the future. Similarly, by
providing profound insights in the usage patterns of mobile health applications,

438 N. Martin et al.

process mining can help to optimise the user-friendliness and, hence, patient
satisfaction with respect to telemonitoring instruments [55,59].

6 Conclusion

This chapter introduced a specific application domain of process mining: health-
care. Healthcare is a promising domain in which process mining can create sig-
nificant societal value by helping healthcare organisations to better understand
and improve their processes. Besides highlighting and illustrating the potential of
various types of process mining in healthcare, the complex nature of many of its
processes was also discussed. The specific characteristics of healthcare processes,
such as the high level of variance and the widespread presence of guidelines and
protocols, necessitate the development of dedicated process mining methods. In
this respect, it is important to note that process mining in healthcare can build
upon an active and committed research community, who are keen to develop
novel methods that start from real-world problems experienced in healthcare.
This will definitely be needed as the systematic uptake of process mining in
healthcare, beyond the research context, is still fairly limited. A multitude of
challenges is still ahead.

While current literature still predominantly focuses on the hospital setting,
as was clearly reflected in the examples used in this chapter, it is important to
also consider other types of healthcare organisations such as elderly care organi-
sations, psychiatric care organisations and home-based care organisations. These
organisations are also confronted with immense challenges and are likely to have
even less resources available for advanced analytics than hospitals. Even though
these other types of healthcare organisations might even be more challenging
for process mining than the hospital context, e.g. because of their lower matu-
rity in terms of data registration, they would greatly benefit from open access
and user-friendly instruments from the research community to gain data-driven
insights in their processes.

As a final reflection, we would like to make a message explicit that might have
already become apparent while reading through this chapter: process mining in
healthcare is not merely about technology and algorithms, but also about peo-
ple. Actionable insights to improve healthcare processes will always emerge from
the interplay between the process mining outcomes and the profound domain
knowledge of healthcare professionals. Hence, it is crucial that healthcare profes-
sionals build trust in the potential of process mining and the results it generates.
While healthcare professionals are a crucial actor in process mining in health-
care, another stakeholder should always remain at the center of attention: the
patient. In the end, healthcare organisations, healthcare professionals, process
miners and many others join forces for a single goal: to provide the best possible
care to patients in a way that is sustainable in the long run. Without disregard-
ing the numerous challenges that are still ahead, this chapter demonstrated that
process mining can (and should) play an important role in achieving that goal.

Using Process Mining in Healthcare 439

References

1. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst,
W.M.P., Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 3–34. Springer,
Cham (2022)

2. Agostinelli, S., Covino, F., D’Agnese, G., De Crea, C., Leotta, F., Marrella, A.:
Supporting governance in healthcare through process mining: a case study. IEEE
Access 8, 186012–186025 (2020)

3. Alvarez, C., et al.: Discovering role interaction models in the emergency room using
process mining. J. Biomed. Inform. 78, 60–77 (2018)

4. Andrews, R., Suriadi, S., Ouyang, C., Poppe, E.: Towards event log querying for
data quality. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman,
D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229, pp. 116–134. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02610-3 7

5. Andrews, R., Suriadi, S., Wynn, M., ter Hofstede, A.H.M., Rothwell, S.: Improving
patient flows at St. Andrew’s War Memorial Hospital’s emergency department
through process mining. In: vom Brocke, J., Mendling, J. (eds.) Business Process
Management Cases. MP, pp. 311–333. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-58307-5 17

6. Andrews, R., Wynn, M.T., Vallmuur, K., Ter Hofstede, A.H.M., Bosley, E.: A com-
parative process mining analysis of road trauma patient pathways. Int. J. Environ.
Res. Public Health 17(10), 3426 (2020)

7. Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques.
In: van der Aalst, W.M.P., Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp.
76–107. Springer, Cham (2022)

8. Batista, E., Solanas, A.: Process mining in healthcare: a systematic review. In: Pro-
ceedings of the 2018 International Conference on Information, Intelligence, Systems
and Applications, pp. 1–6. IEEE (2018)

9. Benevento, E., Aloini, D., Squicciarini, N., Dulmin, R., Mininno, V.: Queue-based
features for dynamic waiting time prediction in emergency department. Meas. Bus.
Excell. 23(4), 458–471 (2019)

10. Benevento, E., Dixit, P.M., Sani, M.F., Aloini, D., van der Aalst, W.M.P.: Evalu-
ating the effectiveness of interactive process discovery in healthcare: a case study.
In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP,
vol. 362, pp. 508–519. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
37453-2 41

11. Berghout, M., Van Exel, J., Leensvaart, L., Cramm, J.M.: Healthcare professionals’
views on patient-centered care in hospitals. BMC Health Serv. Res. 15(1), 1–13
(2015). https://doi.org/10.1186/s12913-015-1049-z

12. Bottrighi, A., Chesani, F., Mello, P., Montali, M., Montani, S., Terenziani, P.:
Conformance checking of executed clinical guidelines in presence of basic medical
knowledge. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol.
100, pp. 200–211. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28115-0 20

13. Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) PMSS
2022. LNBIP, vol. 448, pp. 155–190. Springer, Cham (2022)

14. Caron, F., Vanthienen, J., Vanhaecht, K., Van Limbergen, E., De Weerdt, J., Bae-
sens, B.: Monitoring care processes in the gynecologic oncology department. Com-
put. Biol. Med. 44, 88–96 (2014)

https://doi.org/10.1007/978-3-030-02610-3_7
https://doi.org/10.1007/978-3-319-58307-5_17
https://doi.org/10.1007/978-3-319-58307-5_17
https://doi.org/10.1007/978-3-030-37453-2_41
https://doi.org/10.1007/978-3-030-37453-2_41
https://doi.org/10.1186/s12913-015-1049-z
https://doi.org/10.1007/978-3-642-28115-0_20
https://doi.org/10.1007/978-3-642-28115-0_20

440 N. Martin et al.

15. Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering out infrequent behavior
from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314
(2016)

16. Dallagassa, M.R., dos Santos Garcia, C., Scalabrin, E.E., Ioshii, S.O., Carvalho,
D.R.: Opportunities and challenges for applying process mining in healthcare: a
systematic mapping study. J. Ambient. Intell. Humaniz. Comput. 13, 165–182
(2021). https://doi.org/10.1007/s12652-021-02894-7

17. De Roock, E., Martin, N.: Process mining in healthcare - an updated perspective
on the state of the art. J. Biomed. Inform. 127, 103995 (2022)

18. De Weerdt, J., Wynn, M.T.: Foundations of process event data. In: van der Aalst,
W.M.P., Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 193–211. Springer,
Cham (2022)

19. Depaire, B., Martin, N.: Data-driven process simulation. In: Encyclopedia of Big
Data Technologies, pp. 607–614 (2019)

20. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29–57 (2015). https://doi.org/10.1007/s13740-014-0038-4

21. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: van der
Aalst, W.M.P., Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 320–346.
Springer, Cham (2022)

22. DiMatteo, M.R., Giordani, P.J., Lepper, H.S., Croghan, T.W.: Patient adherence
and medical treatment outcomes a meta-analysis. Med. Care 40(9), 794–811 (2002)

23. Dixit, P.M., Verbeek, H.M.W., Buijs, J.C.A.M., van der Aalst, W.M.P.: Interactive
data-driven process model construction. In: Trujillo, J.C., et al. (eds.) ER 2018.
LNCS, vol. 11157, pp. 251–265. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00847-5 19

24. Djulbegovic, B., Guyatt, G.H.: Progress in evidence-based medicine: a quarter
century on. The Lancet 390(10092), 415–423 (2017)

25. Duma, D., Aringhieri, R.: Mining the patient flow through an emergency depart-
ment to deal with overcrowding. In: Cappanera, P., Li, J., Matta, A., Sahin, E.,
Vandaele, N.J., Visintin, F. (eds.) ICHCSE 2017. SPMS, vol. 210, pp. 49–59.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66146-9 5

26. Engelhorn, M.: Semantics and big data semantics methods for data processing and
searching large amounts of data. In: Langkafel, P. (ed.) Big Data in Medical Science
and Healthcare Management, pp. 177–196. Walter de Gruyter, Berlin (2016)

27. Erdogan, T.G., Tarhan, A.: Systematic mapping of process mining studies in
healthcare. IEEE Access 6, 24543–24567 (2018)

28. Farid, N.F., De Kamps, M., Johnson, O.A.: Process mining in frail elderly care:
a literature review. In: Proceedings of the 12th International Joint Conference on
Biomedical Engineering Systems and Technologies-Volume 5: HEALTHINF, vol.
5, pp. 332–339. SciTePress, Science and Technology Publications (2019)

29. Fernandez-Llatas, C.: Interactive Process Mining in Healthcare. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-53993-1

30. Fernández-Llatas, C., et al.: Behaviour patterns detection for persuasive design in
nursing homes to help dementia patients. In: Proceedings of the Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society, pp.
6413–6417. IEEE (2011)

31. Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., Traver, V.: Process
mining methodology for health process tracking using real-time indoor location
systems. Sensors 15(12), 29821–29840 (2015)

https://doi.org/10.1007/s12652-021-02894-7
https://doi.org/10.1007/s13740-014-0038-4
https://doi.org/10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/978-3-319-66146-9_5
https://doi.org/10.1007/978-3-030-53993-1

Using Process Mining in Healthcare 441

32. Figl, K.: Comprehension of procedural visual business process models. Bus. Inf.
Syst. Eng. 59(1), 41–67 (2017). https://doi.org/10.1007/s12599-016-0460-2

33. Franck, T., Bercelli, P., Aloui, S., Augusto, V.: A generic framework to analyze
and improve patient pathways within a healthcare network using process mining
and discrete-event simulation. In: Proceedings of the 2020 Winter Simulation Con-
ference, pp. 968–979. IEEE (2020)

34. Gatta, R., et al.: Clinical guidelines: a crossroad of many research areas. Challenges
and opportunities in process mining for healthcare. In: Di Francescomarino, C.,
Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 545–556. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-37453-2 44

35. Gatta, R., et al.: What role can process mining play in recurrent clinical guidelines
issues? A position paper. Int. J. Environ. Res. Public Health 17(18), 6616 (2020)

36. Ghasemi, M., Amyot, D.: Process mining in healthcare: a systematised literature
review. Int. J. Electron. Healthc. 9(1), 60–88 (2016)

37. Guzzo, A., Rullo, A., Vocaturo, E.: Process mining applications in the healthcare
domain: a comprehensive review. Wiley Interdisc. Rev. Data Min. Knowl. Discov.
12(2), e1442 (2022)

38. Huang, Z., Dong, W., Ji, L., Yin, L., Duan, H.: On local anomaly detection and
analysis for clinical pathways. Artif. Intell. Med. 65(3), 167–177 (2015)

39. Jans, M., Soffer, P., Jouck, T.: Building a valuable event log for process mining:
an experimental exploration of a guided process. Enterp. Inf. Syst. 13(5), 601–630
(2019)

40. Kim, E., et al.: Discovery of outpatient care process of a tertiary university hospital
using process mining. Healthc. Inform. Res. 19(1), 42–49 (2013)

41. Kirchner, K., Herzberg, N., Rogge-Solti, A., Weske, M.: Embedding confor-
mance checking in a process intelligence system in hospital environments. In:
Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.)
KR4HC/ProHealth - 2012. LNCS (LNAI), vol. 7738, pp. 126–139. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36438-9 9

42. Kovalchuk, S.V., Funkner, A.A., Metsker, O.G., Yakovlev, A.N.: Simulation of
patient flow in multiple healthcare units using process and data mining techniques
for model identification. J. Biomed. Inform. 82, 128–142 (2018)

43. Kurniati, A.P., Johnson, O., Hogg, D., Hall, G.: Process mining in oncology: a liter-
ature review. In: Proceedings of the 2016 International Conference on Information
Communication and Management, pp. 291–297. IEEE (2016)

44. Kusuma, G.P., Hall, M., Gale, C.P., Johnson, O.A.: Process mining in cardiology:
a literature review. Int. J. Biosci. Biochem. Bioinform. 8(4), 226–236 (2018)

45. Lenz, R., Peleg, M., Reichert, M.: Healthcare process support: achievements, chal-
lenges, current research. Int. J. Knowl.-Based Organ. 2(4) (2012)

46. Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges,
perspectives. Data Knowl. Eng. 61(1), 39–58 (2007)

47. Lira, R., et al.: Process-oriented feedback through process mining for surgical proce-
dures in medical training: the ultrasound-guided central venous catheter placement
case. Int. J. Environ. Res. Public Health 16(11), 2019 (1877)

48. Lu, X., Tabatabaei, S.A., Hoogendoorn, M., Reijers, H.A.: Trace clustering on very
large event data in healthcare using frequent sequence patterns. In: Hildebrandt,
T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol.
11675, pp. 198–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26619-6 14

49. Manchaiah, V.K.C., Stephens, D., Meredith, R.: The patient journey of adults with
hearing impairment: the patients’ views. Clin. Otolaryngol. 36(3), 227–234 (2011)

https://doi.org/10.1007/s12599-016-0460-2
https://doi.org/10.1007/978-3-030-37453-2_44
https://doi.org/10.1007/978-3-642-36438-9_9
https://doi.org/10.1007/978-3-030-26619-6_14
https://doi.org/10.1007/978-3-030-26619-6_14

442 N. Martin et al.

50. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using
process mining. In: CEUR Workshop Proceedings, vol. 1859, pp. 72–80 (2017)

51. Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.:
Process mining in healthcare. In: Proceedings of the 2008 International Conference
on Health Informatics, pp. 118–125 (2008)

52. Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Health-
care: Evaluating and Exploiting Operational Healthcare Processes. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-319-16071-9

53. Mans, R.S., van der Aalst, W.M.P., Russell, N.C., Bakker, P.J.M., Moleman, A.J.:
Process-aware information system development for the healthcare domain - con-
sistency, reliability, and effectiveness. In: Rinderle-Ma, S., Sadiq, S., Leymann,
F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 635–646. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12186-9 61

54. Martin, N.: Data quality in process mining. In: Fernandez-Llatas, C. (ed.) Interac-
tive Process Mining in Healthcare. HI, pp. 53–79. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-53993-1 5

55. Martin, N., et al.: Recommendations for enhancing the usability and understand-
ability of process mining in healthcare. Artif. Intell. Med. 109, 101962 (2020)

56. Martin, N., et al.: Opportunities and challenges for process mining in organizations:
results of a Delphi study. Bus. Inf. Syst. Eng. 63(5), 511–527 (2021). https://doi.
org/10.1007/s12599-021-00720-0

57. Maurer, F.A., Smith, C.M.: Community/Public Health Nursing Practice: Health
for Families and Populations. Elsevier Saunders, St. Louis (2013)

58. Mertens, S., Gailly, F., Poels, G.: Towards a decision-aware declarative process
modeling language for knowledge-intensive processes. Expert Syst. Appl. 87, 316–
334 (2017)

59. Munoz-Gama, J., et al.: Process mining for healthcare: characteristics and chal-
lenges. J. Biomed. Inform. 127, 103994 (2022)

60. Partington, A., Wynn, M., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for
clinical processes: a comparative analysis of four Australian hospitals. ACM Trans.
Manag. Inf. Syst. 5(4), 1–18 (2015)

61. Pebesma, J., et al.: Clustering cardiovascular risk trajectories of patients with type
2 diabetes using process mining. In: Proceedings of the 2019 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 341–344.
IEEE (2019)

62. Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J.
Biomed. Inform. 46(4), 744–763 (2013)

63. Pereira Detro, S., Santos, E.A.P., Panetto, H., De Loures, E., Lezoche, M., Cabral
Moro Barra, C.: Applying process mining and semantic reasoning for process model
customisation in healthcare. Enterp. Inf. Syst. 14(7), 983–1009 (2020)

64. Pika, A., Wynn, M.T., Budiono, S., ter Hofstede, A.H.M., van der Aalst, W.M.P.,
Reijers, H.A.: Privacy-preserving process mining in healthcare. Int. J. Environ.
Res. Public Health 17(5), 1612 (2020)

65. Poon, A.I.F., Sung, J.J.Y.: Opening the black box of AI-medicine. J. Gastroenterol.
Hepatol. 36(3), 581–584 (2021)

66. Rathert, C., Wyrwich, M.D., Boren, S.A.: Patient-centered care and outcomes: a
systematic review of the literature. Med. Care Res. Rev. 70(4), 351–379 (2013)

67. Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments:
a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)

https://doi.org/10.1007/978-3-319-16071-9
https://doi.org/10.1007/978-3-642-12186-9_61
https://doi.org/10.1007/978-3-030-53993-1_5
https://doi.org/10.1007/978-3-030-53993-1_5
https://doi.org/10.1007/s12599-021-00720-0
https://doi.org/10.1007/s12599-021-00720-0

Using Process Mining in Healthcare 443

68. Rinner, C., Helm, E., Dunkl, R., Kittler, H., Rinderle-Ma, S.: An application of
process mining in the context of melanoma surveillance using time boxing. In:
Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 175–
186. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5 14

69. Rojas, E., Capurro, D.: Characterization of drug use patterns using process mining
and temporal abstraction digital phenotyping. In: Daniel, F., Sheng, Q.Z., Mota-
hari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 187–198. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11641-5 15

70. Rojas, E., Cifuentes, A., Burattin, A., Munoz-Gama, J., Sepúlveda, M., Capurro,
D.: Analysis of emergency room episodes duration through process mining. In:
Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 251–
263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5 20

71. Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in health-
care: a literature review. J. Biomed. Inform. 61, 224–236 (2016)

72. Roulin, D., Muradbegovic, M., Addor, V., Blanc, C., Demartines, N., Hübner,
M.: Enhanced recovery after elective colorectal surgery-reasons for non-compliance
with the protocol. Dig. Surg. 34(3), 220–226 (2017)

73. Rule, A., Chiang, M.F., Hribar, M.R.: Using electronic health record audit logs
to study clinical activity: a systematic review of aims, measures, and methods. J.
Am. Med. Inform. Assoc. 27(3), 480–490 (2020)

74. Safran, C., et al.: Toward a national framework for the secondary use of health data:
an American Medical Informatics Association white paper. J. Am. Med. Inform.
Assoc. 14(1), 1–9 (2007)

75. Sato, D.M.V., de Freitas, S.C., Dallagassa, M.R., Scalabrin, E.E., Portela, E.A.P.,
Carvalho, D.R.: Conformance checking with different levels of granularity: a case
study on bariatric surgery. In: Proceedings of the 2020 International Congress on
Image and Signal Processing, Biomedical Engineering and Informatics, pp. 820–
826. IEEE (2020)

76. Silva, B.M.C., Rodrigues, J.J.P.C., de la Torre Dı́ez, I., López-Coronado, M.,
Saleem, K.: Mobile-health: a review of current state in 2015. J. Biomed. Inform.
56, 265–272 (2015)

77. Stefanini, A., Aloini, D., Benevento, E., Dulmin, R., Mininno, V.: Performance
analysis in emergency departments: a data-driven approach. Meas. Bus. Excell.
22(2), 130–145 (2018)

78. Tamburis, O., Esposito, C.: Process mining as support to simulation modeling: a
hospital-based case study. Simul. Model. Pract. Theory 104, 102149 (2020)

79. Ten Teije, A., et al.: Improving medical protocols by formal methods. Artif. Intell.
Med. 36(3), 193–209 (2006)

80. van Andel, V., Beerepoot, I., Lu, X., van de Weerd, I., Reijers, H.A.: DEUCE: a
methodology for detecting unauthorized access of electronic health records using
process mining. In: Proceedings of the European Conference on Information Sys-
tems, p. 1340 (2021)

81. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

82. van der Spoel, S., van Keulen, M., Amrit, C.: Process prediction in noisy data sets:
a case study in a Dutch hospital. In: Cudre-Mauroux, P., Ceravolo, P., Gašević,
D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 60–83. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40919-6 4

83. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process
mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P.

https://doi.org/10.1007/978-3-030-11641-5_14
https://doi.org/10.1007/978-3-030-11641-5_15
https://doi.org/10.1007/978-3-030-11641-5_20
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-40919-6_4

444 N. Martin et al.

(eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19069-3 19

84. van Hulzen, G., Martin, N., Depaire, B., Souverijns, G.: Supporting capacity man-
agement decisions in healthcare using data-driven process simulation. J. Biomed.
Inform. 129, 104060 (2022)

85. van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction in
process mining: literature review and taxonomy. Granular Comput. 6(3), 719–736
(2020). https://doi.org/10.1007/s41066-020-00226-2

86. Vanbrabant, L., Martin, N., Ramaekers, K., Braekers, K.: Quality of input data in
emergency department simulations: framework and assessment techniques. Simul.
Model. Pract. Theory 91, 83–101 (2019)

87. Wang, D., et al.: Representation primitives, process models and patient data in
computer-interpretable clinical practice guidelines: a literature review of guideline
representation models. Int. J. Med. Inform. 68(1–3), 59–70 (2002)

88. Wang, F.: The roles of preventive and curative health care in economic develop-
ment. PLoS ONE 13(11), e0206808 (2018)

89. Wiler, J.L., Welch, S., Pines, J., Schuur, J., Jouriles, N., Stone-Griffith, S.: Emer-
gency department performance measures updates: proceedings of the 2014 emer-
gency department benchmarking alliance consensus summit. Acad. Emerg. Med.
22(5), 542–553 (2015)

90. Williams, R., Rojas, E., Peek, N., Johnson, O.A.: Process mining in primary care:
a literature review. Stud. Health Technol. Inform. 247, 376–380 (2018)

91. World Health Organization: WHO releases new international classification of dis-
eases (ICD 11) (2018). https://www.who.int/news-room/detail/18-06-2018-who-
releases-new-international-classification-of-diseases-(icd-11). Accessed 08 Apr
2022

92. Yoo, S., et al.: Assessment of hospital processes using a process mining technique:
outpatient process analysis at a tertiary hospital. Int. J. Med. Inform. 88, 34–43
(2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/s41066-020-00226-2
https://www.who.int/news-room/detail/18-06-2018-who-releases-new-international-classification-of-diseases-(icd-11)
https://www.who.int/news-room/detail/18-06-2018-who-releases-new-international-classification-of-diseases-(icd-11)
http://creativecommons.org/licenses/by/4.0/

Process Mining for Financial Auditing

Mieke Jans1,2(B) and Marc Eulerich3

1 Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
mieke.jans@uhasselt.be

2 Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, Netherlands
3 University Duisburg-Essen, Lotharstr. 65, 47057 Duisburg, Germany

marc.eulerich@uni-due.de

Abstract. Over the last years, process mining has increasingly demon-
strated its potential as a valuable tool for internal and external auditors.
Thereby, the possible use cases in the field of auditing are manifold. This
chapter focuses especially on the use of process mining in the context of
financial audits, which are relevant for both, internal and external audi-
tors. Beside a short explanation of the different types of auditors, this
chapter aims to connect process mining to the different process steps of
an internal (and later also external) audit and discusses the similarities
and differences between both areas.

Keywords: Financial auditing · Internal auditing · External
auditing · Process mining

1 Introduction

Financial auditing refers to an external independent party that examines the
financial statements of an organization and formulates an opinion on how well
those statements present a true and fair view of its financial performance and
position. Apart from hiring external auditors to conduct such investigations,
larger companies also have an internal department that conducts comparable
audits, albeit through a wider lens. Where external auditing is only concerned
with assuring the quality of financial reporting, internal auditing extends this
with an efficiency perspective on the entire functioning of an organisation. Inde-
pendent from the business units, the internal audit department examines the
organisation’s governance mechanisms. A key aspect for both external and inter-
nal audits is to assess whether processes are in control, whether prominent risks
are mitigated (partly by their process design), and whether the input data for
the financial statements are complete, accurate, and valid. Consequently, both
internal and external audits can benefit from process mining, since it provides
the auditor with a realistic view on how processes, that indirectly impact the
financial reporting, are being executed. Not surprisingly, process mining has in
recent years increasingly demonstrated its potential as a valuable tool for finan-
cial auditing.
c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 445–467, 2022.

https://doi.org/10.1007/978-3-031-08848-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_15&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_15

446 M. Jans and M. Eulerich

Running a process mining analysis in the context of an audit, internal or
external, requires a specific approach that takes into account the preliminaries
of audit engagements. This chapter will take the reader through these audit-
specific concerns. The chapter starts with a short introduction into financial
auditing. Both internal and external audit will be introduced, along with the
connection between the two audits. Readers that are familiar with this topic,
can immediately proceed with the next section, that discusses process mining
in the internal audit function. All phases of the internal audit are explained
first, and then revisited while integrating process mining in it. Section 4 brings
the external audit in the picture. How does a process mining approach differ
between the external and the internal auditor? Sects. 5 and 6 deal with the
practical organisation of bringing the right expertise in-house and how to move
from data to audit evidence. We end the chapter with open challenges in Sect. 7
and conclude in Sect. 8.

2 Financial Auditing

Financial statements are key when a stakeholder wishes to inform him- or herself
about an organization. Investors, banks, employees, customers, vendors, etc. are
all parties that might be interested in the financial situation of an organization
before partnering up. To this end, the officially published financial statements
of an organization are the primary documents to consult. These statements are
prepared by the organization, adhering to (national or international) account-
ing standards. The statements include minimally a balance sheet and an income
statement. Depending under which legislation the organization reports, also a
cash-flow statement is included. The balance sheet presents an overview of the
assets, liabilities, and capital that the organization possesses at a particular
moment of time. The income statement provides an overview of the revenues
and the incurred expenses over a period of time, mostly one year. The combi-
nation of the revenues and expenses presents the monetary gain or loss that the
organization realized over that accounting year.

It goes without saying that it is important that the statements are reliable,
given the numerous decisions that are taken based on this information: investors
start, continue, or quit investing, banks offer loans or not, customers churn or
not. The guiding principle is that the statements need to present a ‘true and fair
view’ of the financial situation of the organization. It is the key responsibility of
the auditor to safeguard this principle: they provide reasonable assurance that
the statements indeed present such a view. This assurance is primarily given
by the external auditor (legal requirement for companies from a certain size
onward), but this can also be assisted by the internal auditor.

Financial Auditing 447

This section will provide a general overview on the governance mechanism
that financial auditing holds for companies. It will explain the goals and charac-
teristics of both external and internal auditing and the interaction between these
two. The internal audit department has the latitude to fully implement process
mining at the core of the business in a continuous fashion. The findings of these
continuous monitoring efforts can be passed on to the external auditor who can
use these findings as input for their own investigation. Alternatively, the external
auditor can run their own ‘one shot’-process mining analysis during the annual
audit engagement. The biggest traction of process mining in the auditing field is
achieved through the internal audit, due to its possible embedding in the core of
the organization. The interplay between these two audit settings is elaborated
on further in this section.

2.1 Purpose of the External Financial Audit

The external auditor typically conducts an annual audit [1]. The auditor audits
and reports on the procedures and the recorded transactions relied upon to
prepare the financial statements. When the auditor reports a ‘clean opinion,’
the financial statements are presumed to be free of material misstatements and
hence reliable to share- and stakeholders for decision making [2].

As mentioned, the objective of an external audit is to obtain reasonable
assurance about whether the financial statements are free of material misstate-
ment. It is intended to increase the reliability of the information contained in the
annual financial statement. Nevertheless, an audit must be carried out efficiently,
which might create tension with the goal of providing assurance. To meet the two
requirements, efficiency and reasonable assurance, in the context of the audit,
the so-called risk-based audit approach is applied. Following this approach, the
external auditor first assesses the risks of the organisation in general, but also
per department or business process. Based on this risk assessment, resources
are allocated to the riskiest parts of the organization. If, for example the sales
process is assessed as a key process to have under control, the auditor will put
more emphasis on this process. Differently stated, more resources are allocated
to auditing this element, compared to other processes that are assessed less risky.

The concept of risk-based auditing is also regulated through the relevant
standard setters. For example the International Auditing and Assurance Stan-
dards Board (IAASB) issued the revised auditing standard ISA 315 (Revised
2019) “Identifying and Assessing the Risks of Material Misstatement”. This stan-
dard establishes the risk identification and assessment procedures that form the
basis for a risk-based financial statement audit. The risk assessment procedures
are described “to obtain an understanding of the entity and its environment,
including the entity’s internal control, to identify and assess the risks of mate-
rial misstatement...”. It is clear that the auditor is expected to understand how

448 M. Jans and M. Eulerich

the organisation (the ‘entity’) is organized and how they mitigate risks by their
internal control system. Precisely this internal control system is also a responsi-
bility of the internal audit department, tying the goals of the internal audit and
the external audit to each other. A control refers to a measure that is imple-
mented to mitigate a certain risk. An example is the design of proper access
rights to the financial accounting module to mitigate the risk of having unau-
thorized bookings in the financial ledger.

2.2 Purpose of the Internal Financial Audit

Internal auditing is a support unit of the company’s management that is embed-
ded in the organization and supports the company on two levels. On one hand it
aims to detect and manage potential misstatement risks and on the other hand
guards the operational performance [3]. The officially established definition of
internal auditing by the global Institute of Internal Auditors (IIA) is as follows:

“Internal auditing is an independent, objective assurance and consulting
activity designed to add value and improve an organization’s operations.
It helps an organization accomplish its objectives by bringing a system-
atic, disciplined approach to evaluate and improve the effectiveness of risk
management, control, and governance processes.” [4]

Furthermore, the IIA defines a mission of internal auditing, which states
that the value of an organization is to be increased and protected through risk-
oriented and objective auditing, consulting and insights.

As for external auditing, similar risk assessment standards exist for the inter-
nal audit. The IIA addresses the risk-based audit planning in their Standards
2010 - Planning, 2010.A1, 2010.A2, and 2010.C1. These standards stipulate how
the Chief Audit Executive (CAE) has the responsibility to develop a plan of all
upcoming internal audit engagements based on a risk assessment that is per-
formed at least annually.

2.3 Internal and External Audit: Interplay and Common Challenges

In many respects, the practical procedure of conducting an audit is similar for
both internal and external auditors. Especially since both audits include the
investigation of recorded financial transactions in the light of the prepared finan-
cial statements. In the course of all audits of a material1 and formal nature, the
regularity and reliability of the generated data must be assessed. Hence, the
overall aim is to ensure quality control of all published financial information,
taking into account the processes that precede the reporting.

1 Meaning ‘significant’ in an audit context.

Financial Auditing 449

Fig. 1. Interplay between internal and external audit

Figure 1 provides a simplified overview of the primary responsibilities of the
external and the internal audit. The external auditor is ultimately concerned
with the accuracy of the financial statements, which is basically a summary of
the recorded business transactions that are encapsulated in business processes.
These processes typically integrate one or more recording steps since executing
a business transaction alters the financial situation of the organisation and this
change needs to be recorded. Figure 2 visualizes an example business process
(purchase-to-pay) and its relationship to the financial statements. The process
envisions an efficient execution of the purchase, but it also incorporates controls
like approving once or twice a purchase order, before the purchase is placed.
These type of control measures increase the level of assurance that the reported
financial information is accurate and valid. In the designed process three activ-
ities trigger the reporting of a financial impact: entering a Goods Receipt doc-
ument in the system should be reflected in the books by increasing the assets
and booking an invoice increases your liability (you owe money to a vendor),
while paying the invoice clears that liability again. Hence, during the execution
of the procurement process, in parallel to the business transactions the impact
on the financial situation of the company is tracked in the general ledger. All
these bookings together form the basis for preparing the financial statements
that are issued and audited once a year.

450 M. Jans and M. Eulerich

Fig. 2. Example relationship between the purchase process and the financial statements

The external audit traditionally focuses on the bookings in the general ledger
and the financial statements, whereas the internal audit typically starts from
the designed procedures and how they translated into financial bookings. In a
world without resource limitations, the external auditor could trace back every
recorded transaction to its origin and double-check whether the recorded trans-
action is backed-up by a real transaction (Is there for example evidence of deliv-
ering goods or encountering certain expenses?). In reality, however, the external
auditor examines the organization’s controls to ensure that only legitimate trans-
actions get recorded. The auditor investigates the design of the controls and tests
their effectiveness. In our procurement process, the auditor might test whether
it is indeed not possible to enter an invoice and have it paid, without creating a
purchase order and having it approved by someone else than the auditor. These
checks make part of ‘understanding the entity’s control environment’, an essen-
tial aspect of risk assessment as stipulated in ISA 315 and mentioned before.
The working assumption is that if the processes, foreseen of enough controls, are
under control, the generated financial data is accurate.

The above described examination of the control environment is not only the
responsibility of the external auditor, but is also part of the internal auditor’s
function. Although the internal auditor includes an additional efficiency point
of view, auditing the control structure and installed control measures is a core
responsibility of the internal audit department. Consequently, the external audi-
tor may rely on the internal auditor’s findings. Of course, additional checks are
always required.

Financial Auditing 451

3 Process Mining in the Internal Audit Function

Given the increasing complexity and availability of information in accounting,
digital data analysis has emerged as an innovative audit approach to perform
financial audits by internal and external auditors [5]. Given the strong connec-
tion between the internal audit function and the organization, we start from
the perspective of internal auditing. How can process mining support the inter-
nal audit? Subsequently, this perspective will be expanded by looking at the
application of process mining by external auditors over the course of their audit
engagements.

3.1 Internal Auditing Background

The range of internal auditing tasks is subject to constant change, which is
reflected in not only a shift of focus within the individual audit areas but also
a varying understanding of the role of internal auditing. Within the traditional
range of auditing activities, a distinction is made between audits of financial
processes, operational processes, and management processes [6]:

– Audits of financial processes describe formal audits in finance and
accounting with the primary objective of determining compliance with laws
and to guarantee a reliable financial reporting process. The audit is aimed at
ensuring the appropriateness, correctness, and reliability of the financial infor-
mation. Within the scope of the audit, the aspect of compliance is expanded
to include determining whether all relevant legal framework conditions and
internal guidelines have been adhered to. Thus, this type of audit is focusing
especially on the conformance with laws and regulations.

– Audits of operational processes refer to the audit of systems and pro-
cesses in an organization. Its purpose is to examine the structural and proce-
dural organization of a company by looking at the present or the future. The
aim of this audit procedure is to determine whether the design of corporate
processes, structures, and systems is appropriate. At the very center of this
process is a review of the appropriateness and cost-effectiveness of essentially
all corporate processes to ensure future viability. In this context, no common
standards can be established as criteria of comparability. The target values
must first be determined by internal auditing through analyses of relevant
processes. This type of internal audit increasingly adopts the function of an
advisory activity and can be seen in the light of continuous process improve-
ment, a key goal of business process management.

– Audits of management processes focus on assessing the performance
of management processes and institutions. The audit process in this field
includes a past-oriented root cause analysis, paired with a potential identifi-
cation of future points of weakness. In contrast to operational auditing, the
focus of the review is no longer on the operational process but on management
and its strategic decisions. Just as in operational auditing, the audit criteria
- efficiency and effectiveness - remain to be the focus, and thus contribute to
the future safeguard of the organization.

452 M. Jans and M. Eulerich

A major trend can be noted in the field of internal auditing activities. The solely
past-oriented audit is increasingly complemented by future-oriented auditing
activities. This expansion is accompanied by a further development of audit-
ing activities. Namely, internal auditing is more and more intended to initiate
approaches to solve organizational problems. Providing improvement recommen-
dations can therefore be referred to as the overall mission of all internal audit
activities. Consequently, the internal audit shifts from a purely control-oriented
view towards an enterprise-wide view.

3.2 The Internal Audit Process

The internal audit process generally pertains to the structure and standardized
procedure of auditing activities of the internal audit function and can be struc-
tured following the so-called phase model (see Fig. 3). The phase model of the
audit activity is organized according to a sequence of audit phases. These audit
phases are inherently separate units in terms of both content and methodology,
yet there is a predetermined order for their execution. In fact, they are connected
in such a manner that the start of the respective phase is directly linked to the
completion of the preceding phase. As a result, the phase model is in effect the
process model of the internal audit.

1. The traditional internal audit process typically starts with the (risk-based)
planning of the (annual) audit schedule in order to allocate the internal audit
resources (e.g. staff) to various potential audit objects. Usually, this phase is
performed by the chief audit executive and defines the areas of the organiza-
tion that will be audited in the forthcoming year.

2. Subsequently, the planning of the process audit is being conducted. Thus, each
auditor or audit team plans and prepares their upcoming audit engagement
in terms of objectives, scoping, and needed audit methodologies.

3. The third phase of the audit process consists of conducting the audit on-site,
namely the actual audit. In this phase, the internal auditors apply differ-
ent methodologies, such as data analysis, interviews, walk-throughs, etc., to
gather audit evidence and achieve the overall objective of the audit.

4. The final phase of each audit process is the preparation and finalization of
an audit report for the audited entity and relevant stakeholders, such as the
CEO, CFO, or the Audit Committee to communicate the results. This report
encompasses the main objectives of the audit and outlines any performed
audit steps and the obtained evidence. Ultimately, the report evaluates the
findings and offers additional recommendations.

5. As an additional phase - directly linked to the specific audit engagements -
a follow-up attempts to monitor the enhancement and improvement of the
audited entity based on the previously defined recommendations.

Figure 3 visualizes the phase model of the internal audit, along with possible
ways to integrate process mining activities in the different phases. The following
paragraphs will describe these starting points in greater depth. We present a
running example to further explain the connection between internal auditing
and process mining.

Financial Auditing 453

Fig. 3. Integration of process mining activities in the internal audit process

3.3 Planning the Audit Schedule

Imagine an exemplary audit engagement that should assess the functioning and
the exposure to risk of a manufacturing company. Through an internal audit, the
auditor needs to determine whether the internal rules and guidelines (controls)
are fulfilled, if the processes are efficient, if there are specific risks that are not
mitigated by appropriate controls and whether there is room for improvement.

The first phase of this audit entails planning the audit; determining the allo-
cation of resources. In order to do so effectively, the auditor could visualize the
organization’s core business processes and then analyze them in terms of con-
formity and process efficiency. This would require the use of process discovery
algorithms (as described in [7,8]). Any variances, weaknesses, and risks identified
throughout this phase can subsequently serve as indicators to guide the allocation
of resources. In other words, this phase involves an attempt to “explore” the pro-
cesses and process discovery is well-positioned to support this phase. In a more
mature setting, where the core business processes are efficiently logged and event
logs can be extracted automatically, a quick discovery step can yield insights in
which processes are highly structured and which aren’t simply by looking at the
discovered process models and their level of ‘spaghettiness’2 (see [9]).

Measures of ‘structuredness’ are necessary to turn this step objective, to
select which process to give prior attention. For example, one could identify
processes with a very high number of variants. In the running example, the
purchase-to-pay (P2P) process might show a high number of variants, whereas
the hiring process only exhibit a low number of process variants. This is an
indication of a myriad of possible execution variants in the P2P process, accom-
panied with higher risk exposure. However, indicators such as ‘20 variants per
100 cases’ are very generic. This can relate to two extremes (and everything
in between): one variant representing 81 cases and 19 variants each represent-
ing a single case is one extreme, versus all 20 variants representing five cases
as the other extreme. Consequently, the distribution of variants might be more
insightful. Possible measures for structuredness are variance, self-loops, repeti-
tion and batch-processing [10]. This enables the identification of potential audit
objects (risky processes) and, preferably, a simultaneous assessment of the risks

2 ‘Highly structured’ is directly associated with ‘less risky’.

454 M. Jans and M. Eulerich

inherent to these objects. In this phase of the audit process, process mining is
consequently used to support the creation of the risk-based audit plan.

For Example, Table 1 presents a set of different structuredness measures to gain
an insight in which process is more or less structured than other processes. The
structuredness measures are calculated for the P2P process of different plants,
helping the auditor to classify the individual risk level of each business unit.
Based on this exploratory phase, the audit schedule would reserve resources to
an audit of the P2P process in the Norway facility in year n, and leave the audit
of the P2P process of the USA for year n+1, and the audit of Germany for
year n+2, perhaps together with the Belgium plant. Also the other processes
would be integrated in the audit schedule, typically covering a cycle of four to
six years.

Table 1. Measures of process structuredness, used to plan the Audit Schedule

Business unit Variants
per 100 cases

Repetition
per 100 cases

Self-loops Classification

USA 1.5 198 24 High risk

Norway 6 151 56 Very high risk

Belgium 2 206 19 Very low risk

Germany 1 76 23 Low risk

...

3.4 Planning the Audit

Once the audit object of a specific audit is identified -the P2P process in the Nor-
wegian facility in our example- the audit is scheduled and the audit engagement
needs to be planned in more detail. Starting with process discovery, the individual
steps of the audited unit can be visualized and analyzed before the actual on-site
audit. This helps the auditor gain a better understanding of the area to be audited
and familiarize with the unique features of the process environment. The deduc-
tion of the process model based on available transactions facilitates identifying
parallel process steps, loops, and undesired process skips [11,12]. This approach
bears the advantage of verifying the assurance of the process flows on one hand
and revealing process steps that require further examination on the other hand. A
first scan of the discovered process model involves a critical look at the discovered
edges. Even when not looking at complete process executions from start to end,
examining the most frequent direct flows yields interesting information.

For example, when the default discovered process shows an edge between
‘book invoice’ and ’first approval order’, it is clear that unexpected sequences
are present in a significant part of the transactions. This information is valuable
when planning the audit, since it provides indicators of which directions should
be investigated more thoroughly.

Financial Auditing 455

After process discovery, the auditor can perform a first conformance check
against the normative model to verify whether the individual process steps of the
examined transactions comply with the previously defined process. In contrast
with the exploratory process discovery step, the focus now shifts towards com-
plete process executions. Since the auditor is still in the planning phase, it is rec-
ommended to compare the logged transactions with a procedural normative pro-
cess model (like a BPMN-model that represents the ‘to be’-model). The idea is
to have a first impression of the level of business alignment: “Are the real process
and the process model properly aligned?”[13]. This approach enables identifying
variants that are not in line with the (often overly simplified) normative process
model. Further investigation during the audit will reveal the real, associated risks.
However, during the phase of planning the audit, the auditor can already have a
first look at variants that represent a majority of non-conforming cases.

For example, Table 2 presents a set of variants in our P2P process that
deviate from the normative model in Fig. 2 and that could be skimmed during
this audit phase (see how to analyze deviations between observed and modeled
behavior in [14]).

– The first variant presents a double second approval, which indeed deviates
from the process model, but would not trigger any additional audit inquiries
in the next phase. This is called an exception: a deviation from the normative
model, but not presenting a risk according to the auditor. In these cases, the
auditor can clear the deviation’.

– The second example shows that 16% of the cases are not associated with a
receipt of goods. Although this comes across worrisome initially, there might
be a perfectly reasonable explanation. Perhaps these purchases relate to ser-
vices and not to goods. The auditor should test this hypothesis in the next
audit phase, however. As for now, this deviation is classified as potential com-
pliance issue.

– The last example deviating variant in Table 2 is an example where the auditor
cannot formulate any hypothesis on situations where this deviation would
not represent a risk. As such, the deviation can directly be classified as an
anomaly. This, too, will be taken as input to the next audit phase.

Table 2. Example output of non-conforming variants

Deviating variant Presence in log Classification

Create PO - First approval - Second
approval - Second approval - Enter Goods
Receipt - Book invoice - Pay invoice

21% Exception

Create PO - First approval - Second
approval - Book invoice - Pay invoice

16% Potential compliance
issue

... ...

Create PO - Pay invoice 10% Anomaly

... ...

456 M. Jans and M. Eulerich

So within the scope of planning the process audit, both process discovery
and conformance checking can be used to determine the focus of the audit. The
insights that are gained during this phase provide guidance on which special
features or possible deviations of the prescribed process warrant further investi-
gation. Sometimes, these analyses already allow for the identification of potential
findings before the actual audit takes place. It should be noted that although pro-
cess deviations might be identified, it does not necessarily represent a financial
statement risk. Further tests are required to uncover potential “false positives”
[15]. This will be elaborated on in the next phase.

3.5 Conducting the Audit

When conducting the audit, the auditor takes a deep dive into the control and
operational environment. Specific analyses are conducted during this audit phase.
Whereas the previous phases were preparatory, this phase is targeted to identify-
ing risks and weaknesses in the reviewed process. As mentioned before, the opinion
that auditors issue at the end of the engagement is partly based on an evaluation
of the existing controls in terms of their effectiveness and efficiency [16].

The rationale of how internal controls are evaluated by making use of trans-
actional data is presented as a process in Fig. 4 [17]. During the previous two
audit phases, potential violations of internal controls have been identified. Also,
a preliminary start of deviation analysis is taken in these phases (see example in
Table 2). When conducting the audit, this preliminary analysis is extended. The
purpose is to classify all deviations that stem from a procedural conformance
check as either an exception or an anomaly. To date, in practice these confor-
mance checks are solely using a control-flow perspective. In theory, however,
this can be extended to a multi-paradigm conformance check that, for example,
includes a Segregation of Duties control between two activities.

Starting from deviations, an iterative cycle presents itself, until all devia-
tions are classified as either an anomaly or an exception. When the deviation is
classified as a potential compliance issue, a follow-up investigation is triggered.
Taking back our example of missing the receipt of goods, this might–or might
not–be a compliance issue. It was not classified as anomaly, because a possi-
ble explanation could be formulated: perhaps the purchase related to services,
making the receipt of goods an illogical activity. The auditor should test this
potential explanation in order to reach a conclusion on whether this deviation
is an anomaly or an exception to the normative process. To do so, the auditor
collects all cases where the receipt of goods is missing, and subjects this (filtered)
log to a conformance check where the formulated hypothesis is tested. Hence,
a declarative constraint is checked on this set of transactions: ‘if the receipt of
goods is missing, the purchase relates to services’. The cases that follow this rule
can be cleared and listed as exception. If there are still cases that are not cleared
by this possible explanation, the same approach is repeated.

The cycle, as described above, presents the theory. In practice, too many
deviations are presented to inspect all of them and auditors fall back to a sam-
pling approach. Current research is looking into weak supervision and active

Financial Auditing 457

learning to support the auditor in the iterative cycle such that a full-population
testing can be reached [18]. The goal is to present deviations in an intelligent
way to the auditor whom provides a classifier with the labels anomaly, excep-
tion, or uncertain. In case of uncertainty, the auditor provides a possible rule to
check (the hypothesis). Based on the iterative human input the classifier can sup-
port a classification of all identified deviations, preferably with minimal expert
knowledge input [17].

By identifying deviations that can be tracked to the document level, the
auditor can also direct the auditing activities in a target-oriented manner. More
specifically, in-depth variant analysis and case analysis can be used to evaluate
both the functioning of the internal controls and the process performance. The
majority of process mining solutions offer various metrics in this regard, such
as duration of the process, number of process steps, number of loops, number
of variants, etc. Internal auditors can create additional value through this third
dimension by auditing, analyzing, and identifying improvement opportunities
and utilize process mining for consulting activities in addition to its conventional
auditing activities.

Fig. 4. Internal control testing rationale, including process mining (Source: [17])

3.6 Communicating the Result

The advantages of visualizing processes and existing process deviations as well as
conformance checks and identification of control weaknesses can also be used by
the auditor as part of the audit report and the presentation of audit results. The
visualization generally leads to the audited entity or report addressees being even
more receptive to the potential findings or recommendations for improvement.
Clearly, this area is of limited relevance compared to those mentioned previously,
yet it provides an advantage that should not be overlooked.

458 M. Jans and M. Eulerich

3.7 Follow-up

During the follow-up of an audit, the auditor normally tries to check if the
problems and negative findings of the initial audit were solved and whether the
recommendations were implemented. Thus, the auditor can actually use all of
the prior process mining analysis to double-check if the expected improvements
were realized.

3.8 Maturity Levels

Although a match between the different internal audit phases and separate pro-
cess mining activities is presented in the previous sections, sometimes an internal
auditor only relies on process mining during the core of the audit (the phase
‘Conducting the audit’), as visually presented in Fig. 5, or another single phase.
After building the event log, process discovery can help the auditor to understand
the existing process variants and identify potential risk areas. Furthermore, the
check of the existing process structure compared to the process model allows
the internal auditor to clarify existing deviations or identify additional risks.
Checking the process executions against business rules offers an additional way
to gather evidence of, for example internal control weaknesses or potential fraud
cases. The variant analysis allows the auditor to compare different variants to
identify additional risks, but also opportunities, since the as is-process might be
a more efficient or effective way to organize the process instead of the intended
process model. Finally, the case analysis allows a deep-dive of the auditor on
the transaction level to analyze the identified cases. It goes without saying that
integrating process mining throughout the entire internal audit is next-level in
terms of maturity, compared to the integration in only one phase.

Fig. 5. Example of how process mining can be integrated in a single phase of the
internal audit

4 The Symbiosis Between Internal and External Auditing
When Using Process Mining

As mentioned before, the external and internal audit have partially overlapping
goals. Although internal audits include the investigation of process improvement
from an efficiency point of view, both audits have the goal to assure the validity

Financial Auditing 459

of the reported financial statements. As a result, the audit phases of the external
and internal audit are not that different in nature. However, differences exist;
some in nature and some in terminology.

4.1 External Auditing and Process Mining

Where the internal audit starts with planning the audit schedule for a period of
one or several years, the external audit does not have such a long-term setting.
The external audit standards also describe a phase of planning the audit, but this
is in the light of a running audit engagement and relates to the audit of that spe-
cific accounting year. In order to plan the audit approach, a risk assessment phase
takes place. Based on the risk assessment, the auditor decides where to allocate
most resources to. This is comparable with the internal audit phase ‘planning the
process audit’. Similarly, this phase would rely mostly on process discovery and a
rather high-level conformance check against a procedural model (Fig. 6).

Fig. 6. Integration of process mining activities in the external audit process

Based on the assessed risks, targeted business processes will be investigated
through ‘tests of controls’ and ‘tests of details’. The tests of controls are related
to examining the design and implementation of the organisation’s control envi-
ronment. The tests of details are checks that take place at the transaction level.
This distinction stems from before the digital era, where tests of controls were
not executed at a detailed level. Nowadays, however, the distinction is less clear.
For example, checking whether all documents in a system have been approved,
is a test of details that also checks the effectiveness of a control. Given the lesser
delineation between these two concepts, these tests are often intertwined and
form, together with other analytical procedures3, the core of the external audit.
Similar to the internal audit phase of conducting the audit, these tests would
heavily rely on checking rules, a more in-depth variant analysis and case analysis
3 Analytical procedures in the context of an external audit are defined as “... evalua-

tions of financial information through analysis of plausible relationships among both
financial and non-financial data. Analytical procedures also encompass such investi-
gation as is necessary of identified fluctuations or relationships that are inconsistent
with other relevant information or that differ from expected values by a significant
amount.” [19].

460 M. Jans and M. Eulerich

[11,20]. The driver of the tests is currently stemming from the traditional audit.
The check-lists that were used before, are now automated and extended with
additional dimensions. Still, the core of the audit did not yet change drastically.
This can be devoted to the standards that remain unchanged, creating some
reluctance with the auditors to turn to new techniques.

After the tests of details and controls, the results are communicated. As
with the internal audit, the visual aspect of process mining is an important
characteristic. A graphical presentation of the phases of the internal and external
audit, along with the process mining analysis phases that can be used, is given
in Fig. 7.

Fig. 7. Parallels between internal and external auditing and the process mining analysis
phases that support the audits.

4.2 Relying on Internal Audit’s Process Mining Efforts

If the external auditor can start from the process mining efforts of the internal
auditor, obviously, more can be reached than if this is not the case. In this setting,
the external auditor would have to examine the process that was followed by the
internal auditor when conducting the process analysis. Following questions will
be important to have a clear answer to (and hence clear documentation on):

Financial Auditing 461

– Which information is used to build the event log?
– How exactly is the event log built? (which process instance was selected, which

activities were included, based on which tables and fields in the information
system,...)

– Which filters were applied before starting the analyses?
– How is dealt with running cases?
– How are the analyses run? (in which tool, with which commands,...)
– How are the results written away? Is there an unmodified audit trail?
– ...

So although the external auditor does not have to start from scratch, a lot
of effort will still be devoted to having assurance over the process of process
mining. Only with a reasonable level of assurance of this internal process, the
external auditor can rely on the outcome of the internal auditor.

The alternative is that the auditor takes full control of the process mining
analysis. They can still start from the internal auditor’s expertise, which will
speed-up the process of building the event log for instance. But the external
auditor would extract the data from the information systems himself, build the
event log and run the analysis himself. This trade-off between control and depth
of analysis is related to the personal preference of the external auditor.

5 Organizational Integration of Process Mining
in the Auditing Function

Aside from the theoretical integration of process mining in the auditing process,
organizational integration is equally important. There are different approaches
how internal and external auditors can implement process mining in the audit-
ing process. The following options present potential approaches and should be
examined individually for the respective auditor. Of course, the best-fitting solu-
tion always depends on the financial, technical and human resources available.
Also, the time factor for the implementation of process mining and the necessary
training of the employees are not to be neglected.

5.1 Individual Process Mining Experts

Solutions with one or few process mining experts are conceivable, especially in
smaller and medium-sized audit departments. The required profile is comparable
to the members of a specialized team described above. Aside from profound
process mining knowledge, the expert should have an excellent command of data
analysis tools and, consequently, design and manipulate queries and data easily.
This enables the expert to create the analyses necessary for successful use in the
auditing process. As a direct contact person, the expert becomes a shorter link
to the auditor than when working with process mining teams. On one hand, the
advantage is the lower financial investment and the possibility to easily upscale
the team. On the other hand, a challenge could be that the expert’s capacity is
too low when there are frequent requests.

462 M. Jans and M. Eulerich

5.2 Specialized Process Mining Team

It is a good idea to set up an independent process mining team, especially for
sizeable internal audit functions or functions with solid data analysis activities.
This team specializes in data analysis and process mining and prepares reports
to support each audit. Consequently, this team belongs to the core of the audit
function and is heavily involved in audit preparations. In such a team, especially
auditors with profound ERP systems and process expertise should be involved.
This know-how enables the team to develop and prepare target-oriented analyses
of data and processes, such that the auditors outside the team reap significant
benefits from this. Since the experts can reuse some procedures to prepare differ-
ent dashboards and process analyses, learning effects can be assumed. While the
high degree of specialization of the team brings numerous advantages, the dis-
advantages of this approach should not be neglected either. The team members
are primarily “remote” active, potentially leading to isolation from the actual
audit process. Such an approach is also associated with high personnel costs,
so it must be examined per company to what extent this can be realistically
implemented. If individual teams for data analysis already exist in the auditing
function, this would, of course, be a sensible starting point for this approach.

5.3 Training of All Staff

When process mining becomes an integral part of the auditing function, com-
prehensive training of all auditors working with it is unavoidable. Depending
on the selected process mining software, specific levels of training are required.
The training should include the connection to the ERP system: understanding
the ERP data structure is a prerequisite to building a suitable event log. The
connection to the corresponding process specifications of the company is also of
central importance against this background. What do the processes in our com-
pany look like? What controls have been implemented? Where are the critical
points? All these questions need to be translated into clear questions to feed the
process analysis of the auditor. These sample questions show how demanding
training on this topic is. The high demands on training must also be understood
against the background of the local or global orientation of the internal audit
function of the respective company. If the auditing functions have several loca-
tions, possibly even in different nations, a corresponding global training concept
to roll out to the different nations is recommended. Overall, training should help
standardize procedures, develop appropriate competencies, and build a shared
knowledge base across the audit function. Only with a sound thought-out train-
ing concept, the auditing department can successfully implement process mining
in their processes.

5.4 Process Mining Competencies of Other Departments
or Outsourcing

In addition to building up process mining competencies within the auditing
team, the auditing function can also draw on support from outside. Numerous

Financial Auditing 463

companies have now implemented process mining solutions in various areas of
the company, which is why a cooperation with other functions in the context of
process mining analyses is conceivable. This approach is particularly useful if the
auditing department has not yet been able to think through the process mining
approach or if initial trial analyses are to be carried out. The great advantage of
this approach is that the auditing team has to expand relatively limited resources
in order to fundamentally evaluate the possible applications. An important note
is, however, that audit-specific aspects that should be included during the log
building phase, might not be included. To mitigate this risk, it is important to
team-up with a partner that has process mining expertise in an auditing context.
Another important characteristic that holds for every outsourcing act, is that the
auditor doesn’t develop deep in-house expertise. Alternatively, an outsourcing is
possible, in order to maintain the flexibility of the auditing function. However,
outsourced analyses will probably produce comparable costs due to the enormous
implementation effort later on.

6 From Data to Audit Evidence

When the auditor decides to apply a process mining approach, there are two
preparatory steps that are key to success: identify the scope of your process
under investigation and formulate (upfront!) the most important questions that
need to be answered. The process can be either a core business process, like
purchase or sale, or a supporting process like an incident management or change
management process. It is paramount to identify which activities are subject
(and which are not) to the audit. Aside from the process scope, the formulated
key questions are of paramount importance. Based on these questions, the event
log can be built. Although research on object-centric process mining is on the
rise, in practice, process mining for audit is still document-centric: a case is either
an order, or a journal posting, or an invoice, or another document of relevance.

Based on the audit questions, the relevant information can be extracted from
the information system. Unfortunately, the selection of a case identifier poten-
tially creates noise on the analyses to follow. When many-to-many relationships
exist between a document at the beginning of the process and another document
that is created near the end, choosing one or the other document always has its
up- and downsides. In general, it seems that the auditor prefers to select a doc-
ument that leads to a financial transaction and at the same time is earlier in the
process [21]. If a choice needs to be made on whether to follow that document on
its header level, or on a more detailed level, the auditor is attracted to examine
the case at the lower level.

To select activities to include in the event log, most ERP systems give a
plethora of options to enrich the log with. A lot of recorded events could be
included on top of the most straight forward (process) activities. It is for exam-
ple possible to include both, the moment an invoice was put in the system and
the date that it was posted, where the former is cpu-timestamped and the latter
timestamp is manually entered. These additional insights are still to be inte-
grated in regular audits. To date, the auditor is not yet fully grasping these

464 M. Jans and M. Eulerich

opportunities. In a future audit, perhaps when standards have been updated,
these type of activities should find their way into typical standard analyses.

As the event log serves as ‘audit evidence’4 in the context of an external
audit, it is tied to audit regulations. To assemble the audit evidence, and hence
build the event log, the auditor is expected to obtain sufficient appropriate audit
evidence. This leaves room for discussion on whether, according to this stipu-
lation, an auditor can ask full access to a client’s information system or not. If
not, the auditor will need to submit a detailed data request. This is the standard
procedure for regular audits where you can request ‘information’. However, when
you are interested in the data underneath the information, this is more difficult.
Submitting a sufficient data request to build an event log later is only possible
if the auditor is acquainted with the company’s information system.

Once the auditor has access to information, the auditor has to decide on
whether it is suited to use as audit evidence and base an opinion on this infor-
mation. Particularly relevant to the case of process mining in auditing are the
stipulations on audit evidence that has been prepared using the work of a manage-
ment’s expert. In such cases, the auditor is expected to “evaluate the competence,
capabilities and objectivity of that expert; obtain an understanding of the work
of that expert; and evaluate the appropriateness of that expert’s work as audit
evidence for the relevant assertion.” [22]. When using information produced by
the entity, the auditor is expected to have a view on the accuracy and com-
pleteness of the information, and whether the information is sufficiently precise
and detailed [22]. Taking these regulations into account makes it clear that it is
not straightforward for an external auditor to rely on other parties to conduct
process mining analyses and build further on this.

7 Open Challenges

Although the preceding discussion demonstrates the numerous benefits of apply-
ing process mining within internal and external auditing, numerous fundamental
challenges also exist. These challenges can be divided into four areas:

– Data quality
– Auditor skill-set
– Stakeholder
– Full-population testing

All four areas have varying degrees of relevance to their respective organizations
and include numerous broader challenges and components.

4 Audit evidence is defined in ISA 500 as “Information used by the auditor in arriving
at the conclusions on which the auditor’s opinion is based. Audit evidence includes
both information contained in the accounting records underlying the financial state-
ments and other information.” [19].

Financial Auditing 465

Data Quality. With regard to data, the application of process mining within
the audit is jeopardized if the available data is either not usable or irrelevant.
Also, data integrity and compatibility play a key role against this backdrop. For
example, having different source systems implies that the creation of a usable
data model for process mining is not straightforward. Consequently, all known
problems and challenges of data analyses and IT systems are also valid for process
mining in the context of auditing.

Auditor Skill-Set. Both, internal and external auditors must have the required
know-how and appropriate training for the use of process mining in the context
of the audit. However, information systems, data analytics, and process mining
are no standard topics in auditing education curricula. Although programs are
increasingly including these topics in courses and providing good starting points,
the acceleration must be sustained during career development. Therefore, it is
equally important that audit companies (or departments) sharpen these skills
with the new hires. Only then can this lead to a know-how flow through the
entire audit firm.

Stakeholder. It is important for the auditor to clarify the compliance with
auditing standards during the financial audit with process mining and get the
commitment from the audit committee or the audited entity while using pro-
cess mining. The regulator or the respective professional association must also
support the use of new technologies for obtaining an audit result accordingly.

Full-Population Testing. Process mining often extends the traditional sam-
pling approach, where a sample is taken from a population as audit evidence.
Process mining, on the other hand, generally uses the entire population of trans-
actions, so that the potential alpha and beta errors of a sample no longer exist.
However, this consideration becomes difficult if, for example, several hundred or
even thousands of deviations (‘red flags’) are identified during the audit. In such
a case, it is necessary to decide how the auditor arrives at the intended reasonable
assurance. Does the auditor draw a sample from the identified red flags, because
of resource constraints? Or does the auditor use additional resources, because the
risk of not evaluating all red flags impairs the audit judgment? In practice, the
latter is often not feasible, pushing auditors sometimes back to traditional sam-
pling approaches. This is of course not the way forward when new techniques are
around to move closer to full-population testing. The answer should be sought in
providing support to dealing with all these deviations (see Sect. 3.5).

In addition to these general areas, further challenges can be identified, such
as the high entry barriers and costs for smaller audit functions or audit firms.

8 Conclusion and Outlook

The use of process mining in internal and external auditing offers a magni-
tude of potential benefits. Through the visualization and analysis of process

466 M. Jans and M. Eulerich

steps, especially in combination with an in-depth data analysis, auditors can
use numerous new ways and approaches to generate unique insights. For exam-
ple, process mining can support compliance with (global) process governance
and thereby improve the process landscape in national and international orga-
nizations. Moreover, by combining data from different areas of the company,
completely new contexts can be mapped and a true added value for auditing can
be created. Process mining can support all areas of auditing work. This includes
the identification of risk areas or compliance violations, the audit of the internal
control system, and the compliance with governance requirements.

Of course, process mining is a tool on the process level, which is why the
link to real business processes and data is of decisive importance for a success-
ful implementation in auditing. When reaching this process connection through
the audit, process mining offers numerous approaches and applications for both,
experienced and novice auditors. Depending on the focus and experience of the
auditor, the field of application can be completely different. Successfully apply-
ing process mining in auditing is hitting the balanced combination of the right
process mining techniques and skills with the right level of audit expertise. Only
running an analysis, without the interpretation of a domain expert, is like any
other data analysis meaningless. The added value is found in the powerful com-
bination of techniques and domain expertise. This is where future investigations
of this topic should focus at.

References

1. IAASB: International Standard on Auditing 200: Overall objectives of the inde-
pendent auditor and the conduct of an audit in accordance with international
standards on auditing (2009)

2. IAASB: International Standard on Auditing 700: Forming an opinion and reporting
on financial statements (2016)

3. Carcello, J.V., Eulerich, M., Masli, A., Wood, D.A.: Are internal audits associated
with reductions in perceived risk? Auditing: J. Pract. Theory 39(3), 55–73 (2020)

4. The Institute of Internal Auditors (IIA): The Professional Practices Framework.
The Institute of Internal Auditors, Altamonte Springs (2017)

5. Christ, M.H., Eulerich, M., Wood, D.A.: Internal Auditors’ Response to Disruptive
Innovation, 1st edn. Internal Audit Foundation, Lake Mary, Florida (2019)

6. Eulerich, M., Eulerich, A.: What is the value of internal auditing? - A literature
review on qualitative and quantitative perspectives. Maandblad Voor Accountancy
en Bedrijfseconomie 94, 83–92 (2020)

7. Aalst, W.: Foundations of process discovery. In: Aalst, W., Carmona, J., (eds.)
Process Mining Handbook. LNBIP, vol. 448, pp. 37–75. Springer, Cham (2022)

8. Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques.
In: Aalst, W., Carmona, J., (eds.) Process Mining Handbook. LNBIP, vol. 448, pp.
76–107. Springer, Cham (2022)

9. Aalst, W.: Process mining: a 360 degrees overview. In: Aalst, W., Carmona, J.,
(eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3–34. Springer, Cham (2022)

Financial Auditing 467

10. Swennen, M., Janssenswillen, G., Jans, M., Depaire, B., Vanhoof, K.: Capturing
process behavior with log-based process metrics. In Ceravolo, P., Rinderle-Ma, S.
(eds.) SIMPDA. CEUR Workshop Proceedings, vol. 1527, pp. 141–144. CEUR-
WS.org (2015)

11. Jans, M., Alles, M.G., Vasarhelyi, M.A.: A field study on the use of process mining
of event logs as an analytical procedure in auditing. Account. Rev. 89(5), 1751–
1773 (2014)

12. Folino, F., Greco, G., Guzzo, W., Pontieri, L.: Discovering multi-perspective pro-
cess models: the case of loosely-structured processes. In: Filipe J., Cordeiro J. (eds.)
Enterprise Information Systems. ICEIS 2008 (2009)

13. Rozinat, A., Van der Aalst, W.M.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

14. Carmona, J., Dongen, B., Weidlich, M.: Conformance checking: foundations, mile-
stones and challenges. In: Aalst, W., Carmona, J., (eds.) Process Mining Handbook.
LNBIP, vol. 448, pp. 155–190. Springer, Cham (2022)

15. Baader, G., Krcmar, H.: Reducing false positives in fraud detection: combining the
red flag approach with process mining. Int. J. Account. Inf. Syst. 31, 1–16 (2018)

16. Chiu, T., Jans, M.: Process mining of event logs: a case study evaluating internal
control effectiveness. Account. Horiz. 33(3), 141–156 (2019)

17. Jans, M., Hosseinpour, M.: How active learning and process mining can act as
continuous auditing catalyst. Int. J. Account. Inf. Syst. 32, 44–58 (2019)

18. Laghmouch, M., Jans, M., Depaire, B.: Classifying process deviations with weak
supervision. In: 2020 2nd International Conference on Process Mining (ICPM), pp.
89–96. IEEE (2020)

19. IAASB: International Standard on Auditing 520: Analytical procedures (2009)
20. Jans, M., Alles, M., Vasarhelyi, M.: The case for process mining in auditing: sources

of value added and areas of application. Int. J. Account. Inf. Syst. 14(1), 1–20
(2013)

21. Jans, M.: Auditor choices during event log building for process mining. J. Emerg.
Technol. Account. 16(2), 59–67 (2019)

22. IAASB: International Standard on Auditing 500: Audit evidence (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Robotic Process Mining

Marlon Dumas1,3(B), Marcello La Rosa2,3, Volodymyr Leno1,2,3,
Artem Polyvyanyy2, and Fabrizio Maria Maggi4

1 University of Tartu, Tartu, Estonia
marlon.dumas@ut.ee

2 University of Melbourne, Melbourne, Australia
{marcello.larosa,artem.polyvyanyy}@unimelb.edu.au

3 Apromore, Melbourne, Australia
volodymyr.leno@apromore.com

4 University of Bozen-Bolzano, Bolzano, Italy
maggi@inf.unibz.it

Abstract. User interaction logs allow us to analyze the execution of
tasks in a business process at a finer level of granularity than event logs
extracted from enterprise systems. The fine-grained nature of user inter-
action logs open up a number of use cases. For example, by analyzing such
logs, we can identify best practices for executing a given task in a process,
or we can elicit differences in performance between workers or between
teams. Furthermore, user interaction logs allow us to discover repetitive
and automatable routines that occur during the execution of one or more
tasks in a process. Along this line, this chapter introduces a family of
techniques, called Robotic Process Mining (RPM), which allow us to
discover repetitive routines that can be automated using robotic process
automation technology. The chapter presents a structured landscape of
concepts and techniques for RPM, including techniques for user inter-
action log preprocessing, techniques for discovering frequent routines,
notions of routine automatability, as well as techniques for synthesizing
executable routine specifications for robotic process automation.

1 Introduction

The rigidity and complexity of legacy applications, particularly in large organi-
zations, engender situations in which workers are required to perform repetitive
routines to transfer data from one application to another via their user interfaces.
Examples of such repetitive routines include:

– Downloading and opening an Excel workbook attached to an inbound email
(e.g. a list of academic credentials of a prospective student) and copying data
records from one of the sheets in this workbook (e.g. the credential details of
the student) into a student admission system accessed via a web browser.

– Accesing a legacy ERP system to retrieve one or more purchase orders of
a given customer, copying data from each of these purchase orders into a
consolidated sheet, and sending the resulting spreadsheet to a customer by
email.

c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 468–491, 2022.

https://doi.org/10.1007/978-3-031-08848-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_16

Robotic Process Mining 469

The automation of such routines can eliminate tedious and demotivating
manual work, reduce cycle times, and enhance data quality. Advances in Robotic
Process Automation (RPA) technology [1,41] make it possible to automate rou-
tines like the above ones. However, building and maintaining RPA bots requires
a significant investment and hence, it is important for organizations to make the
right decisions as to which bots they should build. In a typical organization, there
may be tens of thousands of types of tasks, and any of them may involve one or
more repetitive routines. Some routines are sufficiently frequent and widespread
across the organization that they can be identified and scoped via interviews,
focus groups, and workshops with workers. Other routines, however, may be
less widespread or performed sporadically, but still sufficiently often that it is
beneficial to automate them.

Robotic Process Mining (RPM) is a family of techniques to discover repetitive
routines that can be automated using RPA technology, by analyzing interactions
between one or more workers and one or more software applications, during
the performance of one or more tasks in a business process. In general, RPM
techniques take as input User Interaction logs (UI logs).1 These UI logs are
recorded while workers interact with one or more applications, typically desktop
applications. Based on these logs, RPM techniques produce specifications of one
or more routines that can be automated using RPA or related tools.

Depending on the type of technique, the discovered routine specifications may
be conceptual (i.e. non-executable) or executable. A conceptual routine specifica-
tion provides guidance to analysts and developers to help them scope a repetitive
routine and to build an executable script to fully or partially automate the rou-
tine. For example, a non-executable specification of a routine could take the
form of a textual description (in natural language), or a sequence of screenshots
corresponding to repetitive sequences of interactions, or a sequence of user inter-
actions (e.g. [“open sheet”,“select cell”, “edit cell”, “copy cell contents”, ...]). An
executable routine specification is a specification that contains all the informa-
tion required to fully reproduce the routine via a dedicated execution engine or
to synthesize a script that can be executed using an RPA tool or a similar type
of automation tool.

This chapter reviews the state of the art in the field of RPM and provides a
structured overview of the steps of a typical RPM pipeline, the techniques that
may be employed in each of these steps, as well as open research challenges on
the way to realizing mature RPM tool sets.

The chapter is partially based on a previous journal article [32]. The chapter
extends this journal article by positioning the vision of RPM within the broader
context of task mining and process mining, and by providing an updated review
of related work in the field.

The rest of the chapter is structured as follows. Section 2 gives an overview of
techniques related to robotic process mining, including task mining and process
mining, and gives an overview of existing work on identification of task automa-

1 In this chapter, we use the acronym UI to refer to a user interaction, not to be
confused with a user interface which is another common use of this acronym.

470 M. Dumas et al.

tion opportunities. Section 3 presents a framework for robotic process mining
and introduces techniques covering each component of the framework. Finally,
Sect. 4 discusses open challenges in the field of robotic process mining.

2 Background

2.1 Robotic Process Automation

RPA is a class of tools to automatically execute sequences of steps (herein
called routines) involving interactions between a user and a software applica-
tion, or interactions between multiple applications via Application Program-
ming Interfaces (APIs). In an RPA tool, the execution of a routine is driven
by a pre-specified script, which consists of atomic steps corresponding to indi-
vidual interactions, assembled together via control-flow structures (if-then-else
statements, repeat-until loops, etc.) [43]. A common characteristic of RPA tools
is that they are able to “operate on the user interfaces of computer systems
in the way a human would do” [1]. For example, an RPA tool may perform
clicks or keystrokes on the user interface of a desktop application to mimic
a sequence of steps that would normally be performed by a human operator.
Examples of RPA tools, as of the time of writing this chapter, include Automa-
tion Anywhere RPA Workspace2, Blue Prism Intelligent Automation Platform3,
Microsoft Power Automate Desktop4, RocketBot5, and UiPath Platform.6

Typically, RPA tools include a design environment, where different types of
users, ranging from software developers to business users, may specify and test
scripts to automate one or more routines. Each such script is then embedded
into a so-called software bot. A bot is a unit of execution in an RPA tool. A
bot is responsible for executing a given script whenever a given type of trigger
occurs. Bots are operated via so-called control dashboards, which allow human
operators to oversee the work performed by a collection of bots.

Depending on how the control dashboard is used, we can distinguish two
RPA use cases: attended and unattended [43]. In attended use cases, the bot is
triggered by a user. During its execution, an attended bot may provide data to
a user and take in data from a user. In these use cases, the user may run the
bot’s script step-by-step, pause or stop the bot, or otherwise intervene during
the script’s execution. Attended bots are suitable for routines where dynamic
inputs are required (i.e. inputs gathered during a routine execution), where some
decisions or checks require human judgment, or when the routine is likely to
have unforeseen exceptions. For example, entering data from an invoice in a
spreadsheet format into a financial system is an example of a routine suitable for
attended RPA, given that in this setting, some types of errors may have financial

2 https://www.automationanywhere.com/.
3 https://www.automationanywhere.com/.
4 https://powerautomate.microsoft.com/.
5 https://www.rocketbot.com/.
6 https://www.uipath.com/.

https://www.automationanywhere.com/
https://www.automationanywhere.com/
https://powerautomate.microsoft.com/
https://www.rocketbot.com/
https://www.uipath.com/

Robotic Process Mining 471

consequences. Unattended RPA bots, on the other hand, execute scripts without
human involvement and do not take inputs during their execution. Unattended
RPA bots are suitable for executing deterministic routines where all execution
paths (including exceptions) are well understood and can be codified. Copying
records from one system into another via their user interfaces through a series of
copy-paste operations is an example of a routine that an unattended bot could
execute. In this chapter, we focus on unattended RPA bots.

Figure 1 presents a simple lifecycle model of RPA bots, which we use below
to position the role of robotic process mining.7 According to this lifecycle model,
an RPA bot goes through four phases:

Analysis

Development

Testing

Deployment
and

maintenance

Fig. 1. Simple RPA bot lifecycle [23]

– Analysis. In this phase, analysts identify candidate routines for automation,
examine the current ways of their execution (e.g. by constructing the as-is
process model), assess the costs and benefits of their automation as well as the
related risks, and analyze whether the identified routines can be automated
without being redesigned.

– Development. In this phase, the routines identified earlier are automated.
This involves constructing a process model representing the desired execution
of the routines to be automated (i.e. the to-be process model). Then RPA
developers implement the routine using a specialized development environ-
ment by creating an executable software script, a.k.a. RPA bot. Depending on
the complexity of the task to be automated, this requires a different amount of
coding. Large enterprise RPA tools such as UiPath or Automation Anywhere
allow for the creation of the scripts by dragging and dropping the required
functions (e.g. open a file, copy a cell). Since this step requires a large amount
of manual, error-prone work, a code review and script evaluation are required.

7 For the sake of conciseness, the RPA bot lifecycle model discussed here consists
of four coarse-grained phases. A finer-grained RPA bot lifecycle can be found, for
example, in [16].

472 M. Dumas et al.

– Testing. In this phase, the implemented bot undergoes testing in a pre-
production environment. It is evaluated in the different scenarios to examine
whether it works as intended and how it handles exceptions. If the tests are
successful, the bot proceeds to the deployment phase. If the tests fail, it is
sent back to the developers to identify and fix the identified issues.

– Deployment and maintenance. After successful testing, the bot is
deployed in the production environment and is ready to be used via a control
dashboard. As the bot performs its work, certain issues may arise. In this
case, the bot may be sent back to the testing or development phases.

In this chapter, we focus on techniques that leverage UI logs to support the
analysis and development phases of RPA bots.

2.2 Task Mining

Task mining is a collection of techniques for analyzing the execution of tasks
performed by human workers, based on records of interactions between these
workers and one or more software applications. Depending on the goal of the
analysis, we can distinguish between three use cases of task mining [26]: (i) task
discovery and optimization; (ii) resource and workforce optimization; and (iii)
task automation.

Task Discovery and Optimization. In this use case, the goal is to discover
how a task is performed by one or more workers, to identify deviations with
respect to policies or work instructions related to that task, and/or to uncover
ways of improving the performance of the task. By applying task mining tech-
niques to a task, we may discover that different workers perform the task in
different ways. For example, one worker might open all the desktop windows
required to perform a task upfront (e.g. an email client, a spreadsheet applica-
tion, and a browser window connected to a CRM system), and only once all
windows are open, they start navigating across these windows to complete the
task. Another worker might start performing the task in one desktop window
(e.g. the email client’s window) and then open the other windows incrementally.
Similarly, one worker might usually execute a task in a single go, without inter-
ruptions, while another might interleave the execution of the task with other
work, or might multitask.

Having identified how a task is performed by one or more resources, task
mining can help us to identify steps in a task that are responsible for delays
(bottlenecks), as well as common rework loops or workarounds with respect to
normative work instructions. Task mining also allows us to relate the sequences
of steps that different workers perform with performance measures, such as the
mean cycle time of a task or the defect rate of a task. For example, task mining
may help us to identify that when a given step, such as clicking on a given cell
number in a sheet, is repeated multiple times, the mean cycle time of a task is
significantly higher than when this cell is visited only once.

Robotic Process Mining 473

Resource and Workforce Optimization. In this use case, the goal is to
identify inefficiencies in the way tasks are assigned to resources, or conversely,
to uncover ways to improve the assignment of tasks. For example, by analyzing
UI logs, we may find that when an invoice entry task relates to an invoice from
a company in country X, it takes more time for worker A to perform the task
(rather than another worker B) whereas the opposite holds for invoices coming
from country Y. We might also find that when worker A performs an invoice data
entry task after 4:30pm, the task gets completed faster, but when this happens,
some fields in the invoice are left unfilled, which might then be causing issues
downstream.

Task Automation and Robotic Process Mining. In this use case, the goal
is to discover opportunities to automate a task or part of a task. The automation
of a task can be achieved using a variety of technologies. For example, if a task
involves information flows between multiple applications, one could use middle-
ware technology to programmatically connect these applications, thus replacing
the manual information flow with an automated (programmatic) flow. Another
approach is to develop and RPA bot to transfer data from one application to
another by replicating the user interactions that a human worker would do to
achieve this. Robotic Process Mining (RPM) refers to the use case of task min-
ing where UI logs are analyzed in order to identify frequent routines that can be
automated by means of one or more RPA bots. The rest of this chapter focuses
on this latter use case of task mining.

2.3 Relations Between Task Mining and Process Mining

Task mining is in many ways related to process mining, particularly to techniques
for automated process discovery (cf. Sects. 2 and 3). However, task mining and
process mining differ in several respects. These differences stem from the dif-
ferences in the inputs of these techniques. Process mining take as input event
logs extracted from enterprise systems that support the execution of one or
more business processes in an organization – e.g. Enterprise Resource Planning
(ERP) or Customer Relationship Management (CRM) systems, as discussed
in [2]. Meanwhile, task mining techniques take as input UI logs, consisting of
records of micro-steps performed by workers while they interact with software
applications to perform individual tasks in a process. Both types of logs con-
sist of timestamped records, such that each record refers to the execution of an
action (or task) by a user. Also, each record may contain a payload consisting
of one or more attribute-value pairs. However, UI logs and event logs differ in
at least four ways.

First, event logs intended for process mining consist of events at a finer level
of granularity than UI logs. An event in an event log typically refers to the start,
completion or other significant state change in the execution of a task within a
business process, such as Check purchase order or Transfer student records. Such
tasks can be seen as a composition of lower-level (micro-)steps, which may be

474 M. Dumas et al.

recorded in an UI log. For example, task Transfer student records may involve
multiple actions to copy the records associated with a student (name, surname,
address, course details) from one application to another. In other words, an UI
log may contain dozens or even hundreds of entries per task execution, whereas
an event log would typically only contain one or a handful of entries per task
execution. Also, the payload of the events in an event log may contain low-
level information such as the specific cell or the pixel coordinates involved in
a user interaction, or it may be associated to a screenshot taken during a user
interaction. In contrast, event logs contain business-relevant attributes, such as
the amount of a loan offer, the interest rate, the repayment term, etc.

Second, UI logs do not come with a notion of case identifier (or process
instance identifier), whereas event logs typically do. In other words, events in
an UI log are not explicitly correlated. A typical UI log consists of thousands of
user interactions recorded during a period of several hours on the workstation(s)
of one or more workers. Prior to being used, such UI logs needs to be segmented
into logical units corresponding to task executions, as discussed later in this
chapter.

Third, a record in an event log often does not contain all input or output data
used or produced during the execution of the corresponding task. For example,
a record in an event log corresponding to an execution of task Transfer student
records, is likely not to contain all attributes of the corresponding student (e.g.
address). Meanwhile, an UI log typically collects all the data observed during
the execution of a task, particularly when the UI log is intended to be used for
RPM purposes. Indeed, if some input or output attributes are missing in the
UI log, the resulting routine specification would be incomplete, and hence the
resulting RPA bot would not perform the routine correctly.

A fourth difference is that event logs are typically obtained as a by-product
of transactions executed in an information system, rather than being explicitly
recorded for analysis purposes. The latter characteristic entails that event logs
are more likely to suffer from incompleteness, including missing attributes as
discussed above, but also missing events. For example, in a patient treatment
process in a hospital, it may be that the actual arrival of the patient to the
emergency room is not recorded when a patient arrives by themselves, but it is
recorded when a patient arrives via an ambulance. In other words, the presence
or absence of an event in an event log depends on whether or not the information
system is designed to record it, and whether or not the workers actually record
it. Meanwhile, an UI log is recorded specifically for analysis purposes, which
allows all relevant events to be collected subject to the capabilities of the UI
recording tool.

The above differences in the input entail that it is often not possible nor
desirable to use the same techniques for process mining as for task mining.
In the field of process mining, a typical visualization consists of a graph with
one node per activity. The emphasis of these techniques is to show the most
frequent control-flow dependencies between the activities of the process. This
approach is not feasible in the context of task mining because the steps are fine-

Robotic Process Mining 475

grained and therefore too numerous to be displayed in their entirety. Besides,
only certain steps are relevant for a given use-case, specifically those that are part
of a frequent routine. Accordingly, a task mining technique typically starts by
pre-processing the UI log in order to extract only the most frequent sequences of
steps (i.e. the most frequent routines) using sequence pattern mining techniques,
or using event abstraction techniques such as those developed in the field of
process mining [44].

Notwithstanding these differences, several commercial process mining ven-
dors, such as Apromore8, Celonis9, and Minit10, take advantage of the com-
monalities between UI logs and business process event logs to offer task mining
features. Typically, these tools discover directly-follows graphs (cf. [3]) from UI
logs or from combinations of event logs and UI logs. For example, these tools
may discover directly-follows graphs to visualize the sequences of screens visited
by a user during the performance of one or more tasks, or to visualize the most
frequent or the slowest steps during the performance of a task.

These visualizations are suitable when analyzing tasks for the purpose of task
optimization and workflow optimization (cf. the first two use-cases above). They
can also help users to visually detect candidate routines for automation, when
those routines have a simple structure (e.g. perfect sequences of steps). However,
beyond simple scenarios, these visualizations do not allow users to determine if
a given task contains routines that can be automated by means of an RPA
bot. In this respect, RPM techniques complement task mining techniques by
explicitly addressing the questions of: (1) how to identify candidate routines for
automation? and (2) how to derive an executable specification of a routine that
has been identified as a candidate for automation?

3 Robotic Process Mining: A Framework

RPA tools are able to automate a wide range of routines, raising the question
how to identify routines in an organization that may be beneficially automated
using RPA? [41] To address this question, we envision a new class of tools,
namely Robotic Process Mining (RPM) tools.

We define RPM as a class of techniques and tools to analyze data collected
during the execution of user-driven tasks to support identifying and assessing
candidate routines for automation and discovering routine specifications that
RPA bots can execute. In this context, a user-driven task is a task that involves
interactions between a user (e.g. a worker in a business process) and one or more
software applications.

Accordingly, the primary source of data for RPM tools consists of user inter-
action (UI) logs. RPM aims at assisting the analysts in drawing a systematic
inventory of candidate routines for automation and help them to produce exe-
cutable specifications that can be used as a starting point for their automation.
8 https://apromore.com.
9 https://celonis.com.

10 https://minit.io.

https://apromore.com
https://celonis.com
https://minit.io

476 M. Dumas et al.

3.1 UI Logs and Routines

Figure 2 presents a class diagram capturing the core concepts and RPM and their
relations. In this class diagram, the two main concepts are User Interaction log
(UI log) and Routine. UI logs are the input of RPM, while routines (represented
as routine specifications or as RPA scripts) are the output of RPM.

implements

User interaction

timestamp
type
payload engages

UserInformation system 11..*
impacts

1..*1

User interaction log

name

Task trace

Routine

activation condition

describes

Routine specificationRPA script

1

0..* 1..*

1

0..*

1..*

0..* 111

Text

Fig. 2. Class diagram of RPM concepts

An UI log is a chronologically ordered sequence of user interactions, or UIs in
short, performed by a single user in a single workstation and involving interac-
tions across one or more applications (including web and desktop applications).
An example of an UI log, which we use herein as a running example, is given in
Table 1.

Each row in this example corresponds to one UI (e.g. clicking a button or
copying the content of a cell). Each UI is characterized by a timestamp, a type,
and a set of parameters, or payload (e.g. application, button’s label or value of a
field). To be useful in the context of RPA, the payload should contain sufficient
information for a software bot to reproduce the performed activity. For example,
for a UI that refers to clicking a button, it is important to store a unique identifier
of this button (e.g. either the element identifier, or its name if this is unique in
the page). Likewise, for an event that refers to editing a field, an identifier of the
field as well as a new value assigned to that field are required attributes. The
payload of a UI is not standardized and depends on the UI type and application.

Robotic Process Mining 477

Table 1. Fragment of a user interaction log

Row UI UI Payload

Timestamp Type P1 P2 P3 P4 P5 P6

1 2019-03-03T19:02:23 Navigate to (web) https://www.unimelb.au 204 Google search – – –

2 2019-03-03T19:02:26 Click button (web) https://www.unimelb.au New record newRecord Button – –

3 2019-03-03T19:02:28 Select cell (Excel) StudentRecords Sheet1 A 2 “John” –

4 2019-03-03T19:02:31 Select field (web) https://www.unimelb.au First name First Input “” –

5 2019-03-03T19:02:37 Edit field (web) https://www.unimelb.au First name First Input “John” –

6 2019-03-03T19:03:56 Create new tab (web) https://chrome/new-tab/ 219 New tab – – –

7 2019-03-03T19:03:56 Select tab (web) https://chrome/new-tab/ 219 New tab – – –

8 2019-03-03T19:04:05 Navigate to (web) https://www.facebook.com 219 New tab – – –

9 2019-03-03T19:07:50 Select tab (web) https://www.unimelb.au 204 New record – – –

10 2019-03-03T19:08:02 Select field (web) https://www.unimelb.au Last name Last Input “” –

11 2019-03-03T19:08:05 Edit field (web) https://www.unimelb.au Last name Last Input “Do3” –

12 2019-03-03T19:08:08 Select field (web) https://www.unimelb.au Last name Last Input “Do3” –

13 2019-03-03T19:08:12 Edit field (web) https://www.unimelb.au Last name Last Input “Doe” –

14 2019-03-03T19:08:16 Select field (web) https://www.unimelb.au Birth date Date Input “” –

15 2019-03-03T19:08:20 Edit field (web) https://www.unimelb.au Birth date Date Input “18-11-1992” –

16 2019-03-03T19:08:24 Select field (web) https://www.unimelb.au Country of residence Country Input “” –

17 2019-03-03T19:08:27 Edit field (web) https://www.unimelb.au Country of residence Country Input “Australia” –

18 2019-03-03T19:08:31 Click button (web) https://www.unimelb.au Submit Submit Submit – –

19 2019-03-03T19:08:35 Click button (web) https://www.unimelb.au New record newRecord Button – –

20 2019-03-03T19:08:38 Select cell (Excel) StudentRecords Sheet1 A 3 “Albert” –

21 2019-03-03T19:08:40 Copy cell (Excel) StudentRecords Sheet1 A 3 “Albert” “Albert”

22 2019-03-03T19:08:42 Select field (web) https://www.unimelb.au First name First Input “” –

23 2019-03-03T19:08:43 Paste (web) https://www.unimelb.au First name First Input “” “Albert”

24 2019-03-03T19:08:44 Edit field (web) https://www.unimelb.au First name First Input “Albert” –

25 2019-03-03T19:08:47 Select cell (Excel) StudentRecords Sheet1 B 3 “Rauf” –

26 2019-03-03T19:08:49 Copy cell (Excel) StudentRecords Sheet1 B 3 “Rauf” “Rauf”

27 2019-03-03T19:08:52 Select field (web) https://www.unimelb.au Last name Last Input “” –

28 2019-03-03T19:08:53 Paste (web) https://www.unimelb.au Last name Last Input “” “Rauf”

29 2019-03-03T19:08:54 Edit field (web) https://www.unimelb.au Last name Last Input “Rauf” –

30 2019-03-03T19:08:59 Select cell (Excel) StudentRecords Sheet1 C 3 “08/09/1989” –

31 2019-03-03T19:09:02 Copy cell (Excel) StudentRecords Sheet1 C 3 “08/09/1989” “08/09/1989”

32 2019-03-03T19:09:07 Select field (web) https://www.unimelb.au Birth date Date Input “” –

33 2019-03-03T19:09:10 Paste (web) https://www.unimelb.au Birth date Date Input “” “08/09/1989”

34 2019-03-03T19:09:12 Edit field (web) https://www.unimelb.au Birth date Date Input “08-09-1989” –

35 2019-03-03T19:09:17 Select cell (Excel) StudentReords Sheet1 D 3 “Germany” –

36 2019-03-03T19:09:21 Copy cell (Excel) StudentRecords Sheet1 D 3 “Germany” “Germany”

37 2019-03-03T19:09:26 Select field (web) https://www.unimelb.au Country of residence country Input “” –

38 2019-03-03T19:09:32 Paste (web) https://www.unimelb.au Country of residence country Input “” “Germany”

39 2019-03-03T19:09:35 Edit field (web) https://www.unimelb.au Country of residence country Input “Germany” –

40 2019-03-03T19:09:48 Edit field (web) https://www.unimelb.au International Student international checkbox TRUE –

41 2019-03-03T19:09:54 Click button (web) https://www.unimelb.au Submit submit submit – –

. .

Consequently, the UIs recorded in the same log may have different payloads. For
example, the payload of UIs performed within a spreadsheet contains information
regarding the spreadsheet name and the location of the target cell (e.g. the cell’s
row and column). In contrast, the payload of the UIs performed in a web browser
contains information regarding the webpage URL, the name and identifier of the
UI’s target HTML element, and its value (if any).

An UI log consists of interactions of different types. To illustrate the types
of interactions that may be exploited in the context of robotic process min-
ing, Table 2 provides the concrete list of UI types (and associated parameters)
supported by the Action Logger tool [33]. Action Logger is an open-source UI
recording tool designed to record events generated by browsers and desktop
applications, in a way that enables the discovery of automatable routines.

https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.facebook.com
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au
https://www.unimelb.au

478 M. Dumas et al.

Note that in Table 2, the UI types are grouped into three groups: navigation,
read, and write UIs. Navigation UIs correspond to actions that affect the state
of the user interface, but without reading or writing any data. This includes, for
example, moving from one tab to another in a broader, or selecting a cell in an
Excel spreadsheet. Read actions are those where some data item is accessed, for
example in order to copy it into the clipboard. Meantime, “write” actions are
those where data is written into an element of the UI, for example, pasting the
contents of the clipboard into the currently selected cell of an Excel spreadsheet.

Table 2. User interaction types and their parameters

UI UI Parameter names

group type P1 P2 P3 P4 P5 P6

Navigate Create new tab (web) URL ID Title

Select tab (web) URL ID Title

Close tab (web) URL ID Title

Navigate To (web) URL Tab ID Tab title

Add worksheet (Excel) Workbook Worksheet

Select worksheet (Excel) Workbook Worksheet

Select cell (Excel) Workbook Worksheet Cell column Cell row Value

Select range (Excel) Workbook Worksheet Range columns Range rows Value

Select field (web) URL Name ID Type Value

Read Copy (web) URL Name ID Value Copied content

Copy cell (Excel) Workbook Worksheet Cell column Cell row Value Copied content

Copy range (Excel) Workbook Worksheet Range columns Range rows Value Copied content

Write Paste into cell (Excel) Workbook Worksheet Cell column Cell row Value Pasted content

Paste into range (Excel) Workbook Worksheet Range columns Range rows Value Pasted content

Paste (web) URL Name ID Value Pasted content

Click button (web) URL Name ID Type

Click link (web) URL Inner text Href

Edit field (web) URL Name ID Type Value

Edit cell (Excel) Workbook Worksheet Cell column Cell row Value

Edit range (Excel) Workbook Worksheet Range columns Range rows Value

To obtain an UI log suitable for RPM, all UIs related to a particular task
have to be recorded. This recording procedure can be long-running, covering a
session of several hours of work if the user performs multiple instances of this
task one after the other. During such a session, a worker is expected to per-
form a number of tasks of the same or different types. The UI log shown in the
example above describes the execution of a task corresponding to transferring
student data from a spreadsheet into the web form of a study information system.

Robotic Process Mining 479

The web form requires information such as the student’s first name, last name,
date of birth, and country of residence. If the country of residence is not Aus-
tralia, the worker needs to perform one more step, indicating that the student
will be registered as an international student.

Each execution of a task (herein also called a task instance) is represented by
a task trace. In our running example, there are two traces belonging to a “new
record creation” task. From the log, we can see that the worker performed this
task in two different ways. In the first case, she manually filled in the form (UIs
1 to 18), while in the second case, she copied the data from a worksheet and
pasted it into the corresponding fields (UIs 19 to 41).

Given a collection of task traces, the goal of RPM is to identify a repetitive
sequence of UIs that can be observed in multiple task traces, herein called a
routine, and to identify routines amenable for automation. For each such routine,
RPM then aims at discovering an executable specification (herein called a routine
specification). This routine specification may be initially captured in a platform-
independent manner and then compiled into a platform-dependent RPA script
to be executed in a given RPA tool.

3.2 RPM Phases

We distinguish three main phases in RPM: (1) collecting and pre-processing
UI logs corresponding to the executions of one or more tasks; (2) discovering
candidate routines for RPA; and (3) discovering executable RPA routines.11

Collecting and Pre-processing UI Logs. We decompose the first phase into
the recording step itself and two preprocessing steps, namely the segmentation
of the log into task traces and the simplification of the resulting task traces. We
map the second phase into a single step. Then, we decompose the third phase
into three steps: the discovery of platform-independent routine specifications, the
aggregation of routines with the same effects, and the compilation of the discov-
ered specifications into platform-specific executable scripts. This decomposition
of the three phases into steps is summarized in the RPM pipeline depicted in
Fig. 3. Below we discuss each step of this pipeline.

11 Once an RPA routine has been automated via an RPA bot, a fourth phase is to
monitor this bot to detect anomalies or performance degradation events that may
signal that the bot may need to be adjusted and re-implemented or retired. While
relevant from a practical perspective, this phase is orthogonal to the three previous
phases since it is relevant both for bots developed manually and bots developed
using RPM techniques. Furthermore, previous work has shown that existing process
mining tools are suitable for analyzing logs produced by RPA bots for monitoring
purposes [20].

480 M. Dumas et al.

Task Traces

UI log

Routine
Specifications

Candidate
routines

RPA Script

Executable
(sub)routines

discovery

Simplified
Task Traces

Non-redundant
Routine

Specifications

Recording Segmentation

Aggregation

Simplification

Compilation

Candidate
routines

identification

Fig. 3. RPM pipeline

The recording of an UI log involves capturing low-level UIs, such as selecting
a field in a form, editing a field, opening a desktop application, or opening a web
page. UI log recording may be achieved by instrumenting the software appli-
cations (including web browsers) used by the workers via plug-in or extension
mechanisms. Logs collected by such plug-ins or extensions may be merged to
produce a raw UI log corresponding to the execution of one or more tasks by a
user during a period of time. This raw log usually needs to be preprocessed to
be suitable for RPM.

The main challenge in this step is to identify what UIs must be recorded.
The same UI (e.g. mouse click) can either be important or irrelevant in a given
context. For example, a mouse click on a button is an important UI, but a
mouse click on a web page’s background is an irrelevant UI. Also, when a worker
selects a web form, we need to record UIs at the level of the web page (the
Document Object Model – DOM) in order to learn routines at the level of logical
input elements (e.g. fields) and not at the level of pixel coordinates, which are
dependent on screen resolution and window sizes. Existing UIs recording tools,
such as JitBit Macro Recorder12, TinyTask13, and WinParrot14, save all the
UIs performed by the user at a too low level of granularity, with reference to

12 https://www.jitbit.com/macro-recorder/.
13 https://www.tinytask.net/.
14 http://www.winparrot.com/.

https://www.jitbit.com/macro-recorder/
https://www.tinytask.net/
http://www.winparrot.com/

Robotic Process Mining 481

pixel coordinates (e.g. click the mouse at coordinates 748,365). As a result, the
UI logs generated by these tools are not suitable for extracting useful routines.
The RPA tools mentioned in Sect. 2.1 (e.g. UiPath and Automation Anywhere)
provide recording functionality. However, this functionality is intended to record
RPA scripts. These tools do not capture details about different fields’ values, as
these values are not relevant for RPA script generation. For example, an RPA
script must know which cell in a spreadsheet has to be copied, and it is agnostic
to the value stored in that cell. Hence, a new family of recording tools is needed
to record UI logs required for RPM.

In [33], we introduced a tool to record UI logs in a format that is suitable
for RPM. The tool records not only the UI actions (selecting a field, editing a
field, copying into or pasting from the clipboard) but also the values associated
with these actions (e.g. the value of a field after an editing event). The tool
supports MS Excel and Google Chrome. The tool also simplifies the recorded
UI logs by removing redundant events (e.g. double-copying without pasting,
navigation between cells in Excel without modifying or copying their content).
The applicability of such tool, however, is limited to desktop applications that
provide APIs for listening to UI events and accessing the data consumed and
produced by these events. To achieve a more general solution, it may be necessary
to combine this latter approach with OCR technology in order to detect UI events
and associated data from application screenshots, as outlined in [35,38].

In its raw form, an UI log consists of one single sequence of UIs recorded
during a session. During this session, a user may have performed several execu-
tions of one or multiple tasks, that may be mixed up in the log. Moreover, in
case of multi-tasking, UIs of multiple concurrent task executions may be mixed
together. Before identifying candidate routines for automation, an UI log has to
be segmented into task traces, such that each trace corresponds to the execu-
tion of one task instance. This involves the identification of the boundaries of the
tasks and the assignment of UIs to specific task traces. Given the fragment of the
UI log demonstrated in the running example, we can extract two segments, each
corresponding to the processing of a specific entry in the spreadsheet containing
students’ data (UIs 1 to 18 and 19 to 41 in Table 1).

The problem of extracting segments from an UI log corresponding to task
instances is similar to that of web session reconstruction [40], where the goal is to
identify the beginning and the end of web navigation sessions in server log data
(e.g. streams of clicks and web page navigation) [40]. Methods for session recon-
struction are usually based on heuristics that rely on the structural organization
of websites or time intervals between events. The former approach covers only
the cases where all the user interactions are performed in the web applications.
In contrast, the latter approach assumes that users make breaks in-between two
consecutive segments – in our case, two routine instances.

The problem of segmentation is also related to that of preprocessing so-called
uncorrelated event logs in process mining. As discussed in [2,3] each event in a
log should include, as a minimum, a case identifier, a timestamp, and an activity
label. When the events of an event log do not have a case identifier, the log is said

482 M. Dumas et al.

to be uncorrelated. Various methods have been proposed to extract correlated
(i.e. regular) event logs from uncorrelated ones. However, existing methods in this
field address the problem in restrictive settings. Specifically, some approaches [17]
assume that the underlying process is acyclic, while others [10,11] assume that
an explicit process model is given as input (in addition to the uncorrelated event
log). These assumptions do not hold in the context of RPM, where no explicit
process model is available, and a routine may contain repetitions. Also, the
above approaches sometimes produce inaccurate results, whereas in the context
of RPM, we need to identify routines with high levels of confidence (preferably
100% confidence), since an inaccurate replication of a routine by an unattended
RPA bot may lead to costly errors.

In some scenarios, segmentation may be accomplished by combining trans-
actional data recorded by enterprise information systems and user interactions
logs, as proposed in [35]. However, a shortcoming of this approach is that such
transactional data often provides only limited information about the process
context, which is not enough to identify the boundaries of tasks captured in the
user interactions logs.

Recent work on UI log segmentation [5,7] proposes to use trace alignment
between the logs and the corresponding interaction models to identify the seg-
ments. In practice, however, such interaction models are not available before-
hand.

Another related work [30] proposes to discover segments in the log by iden-
tifying cycles in the graph constructed from this log. These cycles represent
repetitive behavior in the log and thus potentially correspond to task instances
recorded in the log. However, this approach assumes that the task instances
recorded in the log do not overlap and occur consequently one after the other.

In the context of desktop assistants, research proposals such as TaskTracer
and TaskPredictor have tackled the problem of analyzing UI logs generated by
desktop applications to identify the current task performed by a user and to
detect switches between one task and another [15,39]. These approaches can
potentially be used to split the UI logs into segments corresponding to different
tasks. However, such approaches are not able to distinguish different instances
of the same task.

Ideally, UIs recorded in a log should only relate to the execution of the
task(s) of interest. However, in practice, a log often also contains UIs that do
not contribute to completing the recorded task(s). We can consider such UIs to
be noise. Examples of noise UIs include a worker browsing the web (e.g. social
networking) while executing a task that does not require doing that, or a worker
committing mistakes (e.g. filling a text field with an incorrect value or copying
a wrong cell of a spreadsheet). UIs 6, 7, 8, 9, 10, and 11 are noise in our running
example. During the creation of the student record, the worker decided to make
a small pause, switched to a new tab in the web browser (6–7), and navigated
to Facebook (8), where she spent almost 4 min browsing the news feed, before
going back to the tab with the active student form (9). All these UIs do not
have any relation to the task being recorded; thus, they constitute noise. When

Robotic Process Mining 483

performing the task, the worker selected a surname field in the form (10) and
made a mistake by accidentally misspelling the surname of the student (11). She
then had to select the same field again (12) and fill it in with the correct value
(13). Although the UIs 10 and 11 belong to the performed task, their effects
are overwritten by successive UIs (e.g. UI 11 is overwritten by UI 13) and,
therefore, they do not affect the outcome of the routine and are considered to
be noise. The presence of the noise may negatively affect the subsequent steps of
the RPM pipeline (e.g. the discovery of the candidate routines). Accordingly, the
next step in the RPM pipeline is simplification, which aims at noise identification
and removal. The UIs in the log are removed so that the resulting log captures
the same effects as the original one while being simpler (i.e. having fewer UIs).

One of the challenges that arises during the pre-processing step of the RPM
pipeline is to separate irrelevant UIs (i.e. noise) from those UIs that do contribute
to the completion of a task. A possible approach is to assume that noise takes
the form of chaotic events that may happen anywhere during process execution.
One technique for filtering out such chaotic events is described in [42]. However,
if noise gravitates towards one particular state or set of states in the task (e.g.
towards the start or the end of the task), techniques such as the one mentioned
above may not discover it and consequently not filter it out. Moreover, some
UIs can be mistakenly removed due to the different ways the same task can be
performed and induce what may mistakenly appear to be chaotic sequences of
UIs. Thus, it is important to consider the data perspective, i.e. values of data
objects that are manipulated by the UIs. In this way, one can identify the UIs
that share the same parameter values (e.g. copying a value from a worksheet and
then pasting it in a web form), or have the same source/origin (e.g. all the UIs are
performed on the same website). The UIs that do not share any data parameters
and/or values or originate from different sources most likely constitute noise.

Discovering Candidate Routines for Automation. Given a set of simpli-
fied task traces, the next phase is to identify candidate routines for automation.
This phase aims at extracting repetitive sequences of UIs that occur across mul-
tiple task traces, a.k.a. routines, and to identify which of those routines are
amenable for automation. The output of this step is a set of candidate routines
for automation.

Even though an automated RPM tool can considerably reduce the effort
required to automate routine, there is still a lot of development, quality assur-
ance, and maintenance effort required to automate a routine in a real-life setting.
Also, the automation of a routine may require re-training and re-allocation of
human workers involved in the process. And if the routine is only partially auto-
mated (as opposed to fully automated), some handoffs will have to be put in
place between the manual and the automated parts of a routine. As a result,
the costs of automating a routine may sometime (or even often) outweigh the
benefits. Thus, the cost-benefit analysis of routine automation is an important
step in an end-to-end RPM method. To perform this analysis, a first step is to
assess is a routine is suitable for automation.

484 M. Dumas et al.

Mindful of this requirement, Lacity and Willcocks [27] propose high-level
guidelines for determining if a task is a candidate for automation in the context
of a case study at Telefonica. The guidelines, however, do not provide a formal
and precise definition of what makes a routine suitable for automation.

In a recent systematic review of the RPA literature, Syed et al. [41] conclude
that “there is a need for formal, systematic and evidence-based techniques to
determine the suitability of tasks for RPA.”. In other words, a major challenge in
the field of RPM is how to formally characterize what makes a routine amenable
for automation via RPA or other automation technologies.

Two necessary criteria for a routine to be amenable for automation are:

1. Frequency [20] The more frequently a routine is performed, the more its
automation is likely to lead to significant reductions in processing times, wait-
ing times, and defects (due to human mistakes).

2. Determinism [12,34]. A candidate routine for automation should be such that
a software bot is always able to determine the next step it should perform next
in order to complete an execution of the routine. In other words, a routine can
be automated only if: (1) every UI in the routine is deterministically activated,
meaning that we know when to execute it (e.g. the box International is ticked
whenever the student’s country of residence is not Australia); and (2) every
UI in the routine relies only on data produced by previous UIs (e.g. one of
the UIs in the routine consists in entering the country of birth of a student
into a field of a web form, and this data item has been previously copied from
a cell of a spreadsheet in a previous UI).

Considering the running example provided in Table 1 and assuming that the
identified task traces frequently occur in the log, we would discover two candidate
routines, handling the domestic and international students, respectively. Note
that the routine in the first task trace is only partially automatable. The worker
manually filled in the form by looking at the corresponding entry values in the
spreadsheet. Since she did not read the data values explicitly (e.g. by copying
the values to the clipboard), these values are unknown for the recording tool.
Hence, it is not possible to understand how the values used for editing the form’s
fields were obtained. On the other hand, the routine from the second task trace
is fully automatable, as it is clear how to compute the values for the fields of the
web form in the target application (i.e. by copying them from the spreadsheet).

Several techniques proposed in the field of UI log mining address the problem
of identifying routines that fulfill the “frequency” criterion. Dev and Liu [14] have
noted that the problem of frequent routine identification from (segmented) UI
logs can be mapped to that of frequent pattern mining, a well-known problem in
the field of data mining [22]. In the literature, several algorithms are available to
mine frequent patterns from sequences of symbols. Depending on their output,
we can distinguish two types of frequent pattern mining algorithms: those that
discover only exact patterns [28,37] (hence vulnerable to noise), and those that
allow frequent patterns to have gaps within the sequence of symbols [18,45]
(hence noise-resilient).

Robotic Process Mining 485

Bosco et al. [12] address the problem of discovering routines that fulfill the
“determinism” requirement. Specifically, this technique discovers sequences of
actions such that the input(s) of each action in the sequence (except the first
one) can be derived from the data observed in previous actions. However, this
technique can only discover perfectly sequential routines and is hence not resilient
to noise and variability in the order of the actions.

Leno et al. [29,31] combine techniques for discovering frequent routines, with
techniques for discovering deterministic routines, thus addressing both of the
above requirements. This latter proposal also addresses the problem of syn-
thesizing an executable routine specification and that of detecting semantically
equivalent routines, as discussed later in this chapter.

The discovery of automatable routines from sequences of actions is related
to the problem of automated process discovery, discussed in [3,8] of this hand-
book. This relation is explored by Jiménez-Ramı́rez et al. [24], who apply process
discovery techniques to extract process models from segmented UI logs. Impor-
tantly though, while it is possible to use automated process discovery algorithms
to extract process models from segmented UI logs, the resulting process models
cannot readily be used for automation (via RPA or other automation technology)
for two reasons.

First, the process models discovered by process discovery techniques, such as
those presented in [3,8], are control-flow models. They capture the occurrence
and order of steps (tasks) in a process, but not the data taken as input and
produced as output by each step in the process. Yet, in order to automate a
routine, we need to know which data is used by each step in the routine and where
these data comes from. We note that a subset of process discovery approaches can
discover process models with data-driven branching conditions [13], or process
models where some control-flow relations only hold under certain data-driven
conditions [36], but they do not discover process models with data manipulation
logic.

Second, the process models produced by automated process discovery tech-
niques, typically contain traces that have not been observed (cf. the generaliza-
tion property discussed in Chap. 2). However, when the purpose of a model is to
serve as a blueprint for RPA, the generalization property is not desirable. Indeed,
if a software bot executes such a model, it will sometimes produce sequences of
action that might not correspond to a sequence of actions that a human worker
would have performed. This, in turns, may lead to errors and these errors may
later require time-consuming and costly corrective actions. Instead, routines for
RPA must be 100% precise (cf. the definition of precision in Chap. 2), as a lack
of precision may lead to potential errors when the routines are executed by an
unattended RPA bot.

Discovering Executable Routine Specifications. Having identified a set
of candidate routines for automation, the next step is that of executable (sub-)
routine discovery. For each candidate routine, this step identifies the activation
condition (UIs 2 and 19 in Table 1), which indicates when an instance of the

486 M. Dumas et al.

routine should be triggered, and the routine specification, which specifies what
UIs should be performed within that routine, what data is used by each UI in
the routine, and how these data should be obtained.

The discovery of a routine specification involves identifying and synthesizing
the transformation functions that have to be applied to the input data to convert
it to the required format in the target application. In the running example, we
can see that the web form requires a different date format than the one used in
the spreadsheet (UIs 29 to 34). Hence, transferring the date of birth via simple
copy and paste operations is insufficient, and the transformation function must
be applied to achieve the desired result.

The problem of discovering executable routine specifications has been widely
studied in the context of table auto-completion and data wrangling. For example,
the Excel’s Flash Fill feature detects string patterns in the values of the cells
in a spreadsheet and uses these patterns for auto-completion [21]. Similarly, the
authors in [9] propose an approach to extract structured relational data from
semi-structured spreadsheets. However, such approaches can discover only the
executable routines performed in one application and have a limited area of
usage. In practice, the RPA routines often involve many of these applications.

Bosco et al. [12] suggest that the discovery of executable routine specifications
can be tackled by applying methods for automated discovery of data transfor-
mations from examples [4,25]. However, these methods suffer from scalability
issues when applied naively. Leno et al. [29] explore this approach and propose
a series of optimizations to improve performance of the data transformation dis-
covery techniques in the context of synthesis of routine specifications for RPA.
This approach is further elaborated by the same authors in [31].

Gao et al. [19] extract rules from segmented UI logs to automatically fill in
(web) forms. However, this approach only discovers branching conditions that
specify whether a given activity has to be performed or not (e.g. check a box
in a form) and only focuses on copy-paste operations without identifying more
complex manipulations.

Agostinelly et al. [6] present an approach to discover routines from segmented
UI logs and automate these routines via scripts. This approach, however, assumes
that all the actions within a routine are automatable. In practice, it is possible
that some actions have to be performed manually, and they can not be auto-
mated.

The output of the executable (sub)routine discovery step is a set of executable
routine specifications of each automatable candidate routine. However, some of
these specifications may produce identical effects, as they describe different vari-
ants of the same routine (e.g. filling in a web form in different orders). These
variants are considered as duplicates and should be ignored, as their automation
will not bring any benefits to the organization. Therefore, the next step in the
RPM pipeline is aggregation. During this step, the discovered routine specifica-
tions leading to the same effects are replaced with one specification that captures
the optimal way of performing the underlying routine. Several routine specifi-

Robotic Process Mining 487

cations may also be combined into a more complex specification that contains
instructions on how to deal with different cases.

Once the script has been generated, it may be manually refined by an RPA
developer, tested, and deployed into a production environment. The bot can
be executed in attended or unattended settings. In attended settings, given an
activation condition extracted from the routine specification, it can notify the
user about its “readiness” to perform the routine when the condition is met and
can be paused during execution, so that the user can make small corrections
if needed and then resume the work. In unattended settings, the bot works
independently without human involvement.

4 Outlook

There are a number of research challenges that need to be overcome to realize
the vision of RPM, particularly in the areas of candidate routine discovery,
extraction of automatable routines, and aggregation of equivalent routines (cf.
Fig. 3).

In the area of candidate routine identification (and the related area of UI
log segmentation), existing techniques assume that the routine instances are
strictly separated in the UI log, i.e. there is no interleaving of user interactions
belonging to one instance of one routine, and user interactions belonging to
another instance of the same or of another routine. In practice, such interleaving
may occur, for example, when a user is multi-tasking and thus alternating their
attention between multiple routines.

In the area of automatable routine discovery, existing techniques are based
on data transformation discovery, and as such they are limited to data transfer
routines, where the goal is to take data from one system and transfer them to
another system. Furthermore, these techniques are limited in scope to discovering
routines where one record in one application, e.g. one row of a spreadsheet,
is copied into one or more fields of another application (e.g. a web form). In
reality, a single routine may involve complex iterations, for example, a routine
may involve copying an invoice containing multiple invoice line-items from one
application to another. In this case, the top-level routine (copying an invoice)
contains a nested iterated sub-routine (copying multiple line items). These kind
of structures cannot be discovered via existing data transformation discovery
techniques. These latter techniques can discover that there is a routine consisting
in copying an invoice line item, but they cannot reason holistically about the
higher-level routine where the entire invoice is copied.

The area of routine aggregation is still a green field of research. A fundamental
open problem in this space is the definition of notions of routine equivalence that
would allow us to detect, for example, that a routine performed by one worker is
the same as the one performed by another worker, even though these two workers
perform the steps in their respective routines in completely different ways.

The RPM techniques discussed in this chapter focus on the discovery of
routines that can be executed in an end-to-end manner by an RPA bot. This

488 M. Dumas et al.

assumption is constraining. In reality, routines may be automated for a certain
subset of cases, but not for all cases (i.e. automation may only be partially
achievable). A key challenge, which goes beyond the scope of the proposed RPM
pipeline, is how to discover partially deterministic routines. While a fully deter-
ministic routine can be executed end-to-end in all cases, a partially deterministic
routine can be stopped if the bot reaches a point where the routine cannot be
deterministically continued given the input data and other data that the bot
collects during the routine’s execution. For example, while copying records of
purchase orders from a spreadsheet or an enterprise system, a bot may detect
that this order comes from China and then it may stop because it does not
know how to handle such orders. Or, in a similar vein, a bot may find that a
PO number is missing (the corresponding cell is empty), and hence it cannot
proceed. Discovering conditions under which a routine cannot be deterministi-
cally continued (or started) is an open challenge in the field of RPM. Yet, this
capability is a precondition to ensure that bots synthesized via RPM techniques
can gracefully degrade and stop in order to hand off to human operators.

Finally, the vision of RPM exposed in this chapter, focuses on the problem
of discovering automatable routines. Besides this problem, we envision that the
field of RPM will encompass complementary problems and questions such as
performance mining of RPA bots. This includes answering questions such as:
“What is the success or defect rate of a bot when performing a given routine?”,
“What patterns are correlated with or are causal factors of bot failures?”, and
“Are there cases where the effects of a bot’s actions are abnormal and warrant
manual inspection?” In other words, over time, we envision that the scope of
RPM will expand to cover the entire RPA lifecycle (cf. Fig. 1), rather than being
purely focused on the development of RPA bots.

Acknowledgments. Work supported by the European Research Council (PIX
project) and by the Australian Research Council (DP180102839).

References

1. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. BISE
60(4), 269–272 (2018)

2. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3–34.
Springer, Cham (2022)

3. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 37–75.
Springer, Cham (2022)

4. Abedjan, Z., Morcos, J., Ilyas, I.F., Ouzzani, M., Papotti, P., Stonebraker, M.:
Dataxformer: a robust transformation discovery system. In 32nd IEEE Interna-
tional Conference on Data Engineering, ICDE 2016, Helsinki, Finland, 16–20 May
2016, pp. 1134–1145. IEEE Computer Society (2016)

Robotic Process Mining 489

5. Agostinelli, S.: Automated segmentation of user interface logs using trace align-
ment techniques (extended abstract). In: Di Ciccio, C., Depaire, B., De Weerdt, J.,
Di Francescomarino, C., Munoz-Gama, J., (eds.) Proceedings of the ICPM Doc-
toral Consortium and Tool Demonstration Track 2020, vol. 2703, CEUR Workshop
Proceedings, pp. 13–14. CEUR-WS.org (2020)

6. Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: Automated generation of
executable RPA scripts from user interface logs. In: Asatiani, A., et al. (eds.) BPM
2020. LNBIP, vol. 393, pp. 116–131. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58779-6 8

7. Agostinelli, S., Marrella, A., Mecella, M.: Automated segmentation of user interface
logs. In: Czarnecki, C., Fettke, P., (eds.), Robotic Process Automation. De Gruyter
(2021)

8. Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques.
In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP,
vol. 448, pp. 76–107. Springer, Cham (2022)

9. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.G.: Flashrelate: extracting relational
data from semi-structured spreadsheets using examples. In: Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion 2015, pp. 218–228 (2015)

10. Bayomie, D., Awad, A., Ezat, E.: Correlating unlabeled events from cyclic business
processes execution. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE
2016. LNCS, vol. 9694, pp. 274–289. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39696-5 17

11. Bayomie, D., Di Ciccio, C., La Rosa, M., Mendling, J.: A probabilistic approach
to event-case correlation for process mining. In: Laender, A.H.F., Pernici, B., Lim,
E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 136–152. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33223-5 12

12. Bosco, A., Augusto, A., Dumas, M., La Rosa, M., Fortino, G.: Discovering automat-
able routines from user interaction logs. In: Hildebrandt, T., van Dongen, B.F.,
Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 144–162.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1 9

13. de Leoni, M., Dumas, M., Garćıa-Bañuelos, L.: Discovering branching conditions
from business process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE
2013. LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37057-1 9

14. Dev, H., Liu, Z.: Identifying frequent user tasks from application logs. In: Proceed-
ings of IUI 2017, pp. 263–273. Springer (2017)

15. Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin, M.R., Li, L., Her-
locker, J.L.: Tasktracer: a desktop environment to support multi-tasking knowledge
workers. In: IUI, ACM (2005)

16. Gonzalez, J., et al.: Robotic process automation: a scientific and industrial system-
atic mapping study. IEEE Access 8, 39113–39129 (2020)

17. Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol.
5701, pp. 143–158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03848-8 11

18. Fumarola, F., Lanotte, P.F., Ceci, M., Malerba, D.: CloFAST: closed sequential
pattern mining using sparse and vertical id-lists. Knowl. Inf. Syst. 48(2), 429–463
(2016)

https://doi.org/10.1007/978-3-030-58779-6_8
https://doi.org/10.1007/978-3-030-58779-6_8
https://doi.org/10.1007/978-3-319-39696-5_17
https://doi.org/10.1007/978-3-319-39696-5_17
https://doi.org/10.1007/978-3-030-33223-5_12
https://doi.org/10.1007/978-3-030-26643-1_9
https://doi.org/10.1007/978-3-642-37057-1_9
https://doi.org/10.1007/978-3-642-37057-1_9
https://doi.org/10.1007/978-3-642-03848-8_11
https://doi.org/10.1007/978-3-642-03848-8_11

490 M. Dumas et al.

19. Gao, J., van Zelst, S.J., Lu, X., van der Aalst, W.M.P.: Automated robotic process
automation: a self-learning approach. In: Panetto, H., Debruyne, C., Hepp, M.,
Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM 2019. LNCS, vol. 11877, pp.
95–112. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33246-4 6

20. Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and
robotic process automation: a perfect match. In: Proceedings of the Dissertation
Award, Demonstration, and Industrial Track at BPM 2018, pp. 124–131. CEUR-
WS.org (2018)

21. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, pp. 317–330 (2011)

22. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Mining Knowl. Disc. 15(1), 55–86 (2007)

23. Intellipaat. RPA Lifecycle. https://intellipaat.com/blog/tutorial/rpa-tutorial/rpa-
lifecycle/. Accessed 12 Sep 2021

24. Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A method to improve
the early stages of the robotic process automation lifecycle. In: Giorgini, P., Weber,
B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 446–461. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21290-2 28

25. Jin, Z., Anderson, M.R., Cafarella, M.J., Jagadish, H.V.: Foofah: transforming data
by example. In: SIGMOD, ACM (2017)

26. Kerremans, M., Srivastava, T.: Discover the differences and use cases of process
mining versus task mining. Research Note G00723821, Gartner, April 2020

27. Lacity, M., Willcocks, L.P.: Robotic process automation at telefónica O2. MIS Q.
Execut. 15(1), 1–4 (2016)

28. Lee, S.D., De Raedt, L.: An efficient algorithm for mining string databases under
constraints. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp.
108–129. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31841-
5 7

29. Leno, V., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Auto-
mated discovery of data transformations for robotic process automation.
arXiv:abs/2001.01007 (2020)

30. Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.:
Identifying candidate routines for robotic process automation from unsegmented
UI logs. In: 2nd International Conference on Process Mining, ICPM 2020, Padua,
Italy, 4–9 October 2020, pp. 153–160. IEEE (2020)

31. Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.:
Discovering data transfer routines from user interaction logs. Inf. Syst. 107, 101916
(2022)

32. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process
mining: vision and challenges. Bus. Inf. Syst. Eng. 63(3), 301–314 (2021)

33. Leno, V., Polyvyanyy, A., La Rosa, M., Dumas, M., Maggi, F.M.: Action logger:
enabling process mining for robotic process automation. In Proceedings of the
Dissertation Award, Doctoral Consortium, and Demonstration Track at BPM 2019,
vol. 2420, CEUR Workshop Proceedings, pp. 124–128. CEUR-WS.org (2019)

34. Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for
robotic process automation in textual process descriptions. In: Gulden, J.,
Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.)
BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 67–81. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91704-7 5

https://doi.org/10.1007/978-3-030-33246-4_6
https://intellipaat.com/blog/tutorial/rpa-tutorial/rpa-lifecycle/
https://intellipaat.com/blog/tutorial/rpa-tutorial/rpa-lifecycle/
https://doi.org/10.1007/978-3-030-21290-2_28
https://doi.org/10.1007/978-3-540-31841-5_7
https://doi.org/10.1007/978-3-540-31841-5_7
http://arxiv.org/abs/2001.01007
https://doi.org/10.1007/978-3-319-91704-7_5

Robotic Process Mining 491

35. Linn, C., Zimmermann, P., Werth, D.: Desktop activity mining - a new level
of detail in mining business processes. In: Workshops der INFORMATIK 2018
- Architekturen, Prozesse, Sicherheit und Nachhaltigkeit, pp. 245–258 (2018)

36. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven
process discovery - revealing conditional infrequent behavior from event logs. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 34

37. Ohlebusch, E., Beller, T.: Alphabet-independent algorithms for finding context-
sensitive repeats in linear time. J. Disc. Algorithm 34, 23–36 (2015)

38. Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A method to improve
the early stages of the robotic process automation lifecycle. In: Giorgini, P., Weber,
B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 446–461. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21290-2 28

39. Shen, J., Li, L., Dietterich, T.G.: Real-time detection of task switches of desktop
users. In: IJCAI (2007)

40. Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A framework for the
evaluation of session reconstruction heuristics in web-usage analysis. Informs J.
Comput. 15(2), 171–190 (2003)

41. Syed, R., et al.: Robotic process automation: contemporary themes and challenges.
Comput. Ind. 115, 103162 (2020)

42. Tax, N., Sidorova, N., van der Aalst, W.M.P.: Discovering more precise process
models from event logs by filtering out chaotic activities. J. Intell. Inf. Syst. 52(1),
107–139 (2019)

43. Tornbohm, C.: Gartner market guide for robotic process automation software.
Report G00319864, Gartner (2017)

44. van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction in
process mining: literature review and taxonomy. Granul. Comput. 6(3), 719–736
(2020). https://doi.org/10.1007/s41066-020-00226-2

45. Wang, J., Han, J.: Bide: efficient mining of frequent closed sequences. In :Proceed-
ings of the 20th International Conference on Data Engineering, pp. 79–90. IEEE
(2004)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-59536-8_34
https://doi.org/10.1007/978-3-030-21290-2_28
https://doi.org/10.1007/s41066-020-00226-2
http://creativecommons.org/licenses/by/4.0/

Closing

Scaling Process Mining to Turn Insights
into Actions

Wil M. P. van der Aalst1(B) and Josep Carmona2

1 Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

2 Universitat Politècnica de Catalunya, Barcelona, Spain
jcarmona@cs.upc.edu

Abstract. This final chapter reflects on the current status of the process mining
discipline and provides an outlook on upcoming developments and challenges.
The broader adoption of process mining will be a gradual process. Process mining
is already used for high-volume processes in large organizations, but over time
process mining will also become the “new normal” for smaller organizations and
processes with fewer cases. To get the highest return on investment, organizations
need to “scale” their process mining activities. Also, from a research point-of-
view, there are many exciting challenges. On the one hand, many of the original
problems (e.g., discovering high-quality process models and scaling conformance
checking) remain (partly) unsolved, still allowing for significant improvements.
On the other hand, the large-scale use of process mining provides many research
opportunities and generates novel scientific questions.

Keywords: Process mining · Execution management · Process management

1 Process Mining: Overview and Summary

The chapters in this book illustrate the broadness of the process mining discipline.
The interplay between data science and process science provides many challenges and
opportunities [1]. In this book, we aim to provide a comprehensive overview. There are
many dimensions to characterize the 16 earlier chapters.

– Theory-driven versus application-driven.
– Backward-looking (e.g., process discovery and conformance checking) versus
forward-looking (e.g., simulation and predictive process analytics).

– Simple control-flow-oriented event logs versus complex object-centric event data
considering different types of objects and attributes.

In the first chapter of this book [3], we started with Fig. 1 showing a 360 degrees
overview of process mining. The subsequent chapters have been focusing on different
parts of the pipeline depicted in Fig. 1. The initial chapters focused on process discov-
ery, starting with creating a simple Directly-Follows Graph (DFG) followed by a range
of alternative, more sophisticated, techniques. As shown, process discovery is an impor-
tant topic, but also very difficult [1]. Event data do not contain negative examples and
c© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 495–502, 2022.
https://doi.org/10.1007/978-3-031-08848-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_17&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_17

496 W. M. P. van der Aalst and J. Carmona

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret

drill down

ML

event
data

Fig. 1. Process mining uses event data extracted from information systems to provide insights
and transparency that, ultimately, should lead to process improvements (i.e., process redesign,
improved control, and automation).

the positive examples typically only cover a fraction of all possible behaviors. Mixtures
of choice, concurrency, and loops make process discovery a notoriously difficult task
with many trade-offs. Also, process models may be used for different purposes.

After discovery, the focus shifted to conformance checking [1,5]. Here the input
consists of both modeled and observed behavior. For example, a multiset of traces is
compared with an accepting Petri net. Surprisingly, state-of-the-art conformance check-
ing techniques tend to be more demanding than discovery techniques (from a computa-
tional point of view). Computing alignments corresponds to solving optimization prob-
lems that grow exponentially in the size of the model and the length of traces in the
event log.

Several chapters discussed the importance and complexity of data extraction and
preprocessing. Later chapters focused on practical applications and more advanced top-
ics such as model enhancement, streaming process mining, distributed process mining,
and privacy-preserving process-mining techniques.

Figure 2 shows another overview of the building blocks of a successful process min-
ing solution. The top of Fig. 2 shows examples of application domains where process
mining can be used. In this book, we elaborated on applications in healthcare, auditing,
sales, procurement, and IT services. However, process mining is a generic technology
that can be used in any domain.

In the remainder of this concluding chapter, we take a step back and reflect on the
developments in our discipline. Section 2 discusses the inevitability of process mining,
but also stresses that concepts such as a Digital Twin of an Organization (DTO) are still
far away from being a reality. Section 3 explains that it is important to scale process
mining. Finally, Sect. 4 provides an outlook also listing research challenges.

Scaling Process Mining to Turn Insights into Actions 497

data extraction, loading, and transformation

event data

process
exploration

process
discovery

conformance
checking

process
models

automation
(e.g. RPA and WFM)

change
management

machine learning /
simulation

healthcare logistics production sales finance
insurancetelecom energy mobilityIT services auditing

procurement
e-learning

Fig. 2. Process mining can be used in any application domain. However, it may be non-trivial
to extract accurate event data and turn process mining results into actions. Change management
and automation play a key role in realizing sustained improvements (as indicated by the two arcs
closing the loop).

2 Process Mining as the New Normal

Although process mining has proven its value in many organizations, it is not so easy to
create a convincing business case to justify investments [1]. The reason is that process
mining will most likely reveal performance and compliance problems, but this does not
imply that these are automatically solved [8]. Financial and technical debts are well-
known concepts. However, most organizations tend to ignore their Operational Process
Debts (OPDs). OPDs cause operational friction, but are difficult to identify and address.
Although process mining results are often surprising, they typically reveal OPDs that
were known to some, but not addressed adequately. Making these OPDs visible and
transparent helps to address them.

In [2], the first author coined the term Process Hygiene (PH) to stress that process
mining should be the “new normal” not requiring a business case. Just like personal
hygiene, one should not expect an immediate return on investment. We know that activ-
ities such as brushing our teeth, washing our hands after going to the toilet, and chang-
ing clothes are the right thing to do. The same applies to process mining activities,
i.e., process hygiene serves a similar role as personal hygiene. People responsible for
operational processes need to be willing to look at possible problems. Objectively mon-
itoring and analyzing key processes is important for the overall health and well-being
of an organization. Process mining helps to ensure process hygiene. Not using process
mining reflects the inability or unwillingness to manage processes properly. Fortunately,
an increasing number of organizations is aware of this.

498 W. M. P. van der Aalst and J. Carmona

Although process mining is slowly becoming the “new normal”, most organizations
will not be able to use the forward-looking forms of process mining. As long as the
extraction of event data, process discovery, and conformance checking are challeng-
ing for an organization, it is unlikely that machine learning and other forward-looking
techniques (including artificial intelligence and simulation) will be of help. Terms such
as the Digital Twin of an Organization (DTO) illustrate the desire to autonomously
manage, adapt, and improve processes. Gartner defines a DTO as “a dynamic software
model of any organization that relies on operational and/or other data to understand
how an organization operationalizes its business model, connects with its current state,
responds to changes, deploys resources and delivers exceptional customer value”. Cre-
ating a DTO can be seen as one of the grand challenges in information systems, just
like autonomous driving in mobility. However, just like the development of self-driving
cars, the process will be slow with many minor incremental improvements.

3 Scaling Process Mining

One of the main conclusions in [6] is that process mining needs scale to be most cost
effective. Organizations need to aim for the continuous usage of process mining for
many processes bymany people. Initially, process mining was primarily used in process
improvement projects. In such projects, a problematic process is analyzed to provide
recommendations for improvement. Since data extraction is often the most problematic
step, such projects often struggle to get results quickly. Moreover, the “end product”
of such a project is often a just a report. To improve the process, change management
and automation efforts are still needed. Therefore, traditional process mining projects
struggle to realize a good Return on Investment (ROI).

Fig. 3. Scaling process mining to maximize the benefits.

Scaling Process Mining to Turn Insights into Actions 499

Therefore, process mining should not be seen as a project, but as a continuous
company-wide activity as shown in Fig. 3. There are several reasons for this.

– If data extraction is done properly, the initial efforts are high, but this can be repeated
without much extra work. Once the data extraction pipeline is realized, it is possible
to continuously produce process mining results based on new event data.

– Process mining is a generic technology. Hence, investments in software and people
should be spread over many processes and organizational units. For example, an
insurance company that has multiple products (e.g., different types of insurance) and
multiple offices (in different countries and cities) should not limit process mining to
one product or one location.

– Organizational change often requires commitment from many stakeholders. There-
fore, results should be visible for all involved in the process. If performance and
compliance problems are only visible to a small group of experts, it is difficult to
realize durable behavioral changes. Many improvement projects fail because people
slip back into old ways of working after some time.

Compare process mining for an organization to creating weather forecasts for a
country. It does not make any sense to create a weather forecast for just one city on a
particular day. Investments only make sense if one is able to create a weather forecast
for any city on any day. Similarly, process mining is most effective when applied to
many processes continuously.

Fig. 4. Turning insights into actions.

As part of scaling process mining, it is essential that insights are turned into con-
crete improvement actions. This is illustrated in Fig. 4. Process discovery and confor-
mance checking can be seen as creating detailed X-ray images to detect problems and
find root causes [1]. However, the value of an X-ray image is limited if it is not fol-
lowed by interventions and treatment, e.g., surgery, chemotherapy, diet, and radiation
therapy. Therefore, commercial process mining vendors are combining process mining
with automation, e.g., Robotic Process Automation (RPA) and low-code automation
platforms like Make.

500 W. M. P. van der Aalst and J. Carmona

4 Outlook

How will the process mining discipline and market evolve? Most analysts expect the
usage of process mining to grow exponentially in the coming years. Given the growing
availability of event data and mature tools, there is no reason to doubt this. To predict the
evolution of methods, techniques, and software capabilities, it is good to take another
look at the process mining manifesto [7] written by the IEEE Task Force on Process
Mining in 2011. The process mining manifesto lists the following eleven challenges.

– C1: Finding, Merging, and Cleaning Event Data
– C2: Dealing with Complex Event Logs Having Diverse Characteristics
– C3: Creating Representative Benchmarks
– C4: Dealing with Concept Drift
– C5: Improving the Representational Bias Used for Process Discovery
– C6: Balancing Between Quality Criteria such as Fitness, Simplicity, Precision, and
Generalization

– C7: Cross-Organizational Mining
– C8: Providing Operational Support
– C9: Combining Process Mining With Other Types of Analysis
– C10: Improving Usability for Non-Experts
– C11: Improving Understandability for Non-Experts

There has been substantial progress in the areas covered by these challenges posed
over a decade ago. For example, we now have comprehensive sets of publicly avail-
able benchmarks (C3) and we much better understand the different quality criteria
(C6). Thanks to the over 40 commercial process mining tools, it is now much easier
to apply process mining (C10) and understand the diagnostics (C11). Due to the many
approaches combining process mining and machine learning, there has been major
progress with respect to C8 and C9. Nevertheless, most of the challenges are still rel-
evant and even basic problems such as process discovery and conformance checking
have not been completely solved.

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret
drill down

ML

event
data

1
2

3

Finding, extracting, and transforming event data is still
taking up to 80% of the time.
Most techniques focus on a single case notion (i.e., a single
process), whereas problems may be caused by interacting or
competing processes.
Process discovery is not a solved problem despite powerful
techniques like inductive mining. Concurrency is hard to
discover from event data that provide only a sample.
There is a need to better integrate mining and modeling
(e.g., user-guided discovery).
Conformance checking is time-consuming and diagnostics
tend to be non-deterministic.
There is a need for techniques recommending process
changes (i.e., moving beyond diagnostics).
Machine Learning (ML) techniques tend to perform poorly
because essential aspects are missed (e.g., system load).
Process mining results need to trigger automated actions
(e.g., start a corrective workflow).

1
2

3

4

5
6

7
8

4
5

6

7

8

Fig. 5. Process mining challenges in focus in the next five years.

Scaling Process Mining to Turn Insights into Actions 501

Figure 5 annotates the overview diagram with some of the most relevant challenges
for the coming years. There is quite some overlap with the eleven challenges in [7]. For
example, finding, extracting and transforming input data is still one of the main chal-
lenges when applying process mining in practice. Approaches such as object-centric
process mining [3,4] try to make this easier by storing information about multiple
objects in a consistent manner and allowing for process models that are not limited
to a single case notion. Figure 5 also shows that there are still many open problems
when it comes to basic capabilities such as process discovery and conformance check-
ing. Figure 5 also lists challenges that were not discussed in [7]. For example, how to
better combine algorithms and domain knowledge to create better process models (user-
guided discovery) and suggest improvements. There is also an increased emphasis on
using process mining results to automatically trigger improvements (action-oriented
process mining).

We hope that this chapter and book will inspire both academics and practitioners to
work on these important challenges. The process mining discipline is rapidly develop-
ing and there is still room for original and significant contributions.

Acknowledgments. Funded by the Alexander von Humboldt (AvH) Stiftung and the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC 2023 Internet of Production – 390621612.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016).
https://doi.org/10.1007/978-3-662-49851-4

2. Aalst, W.: Academic view: development of the process mining discipline. In: Process Mining
in Action, pp. 181–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40172-
6 21

3. van der Aalst, W.M.P.: Chapter 1 - process mining: a 360 degrees overview. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448. Springer, Berlin
(2022). https://doi.org/10.1007/978-3-662-49851-4

4. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fundam. Informat.
175(1–4), 1–40 (2020)

5. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating Pro-
cesses and Models. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99414-7

6. Galic, G., Wolf, M.: Global process mining survey 2021: delivering value with process analyt-
ics - adoption and success factors of process mining. Deloitte (2021). https://www2.deloitte.
com/de/de/pages/finance/articles/global-process-mining-survey-2021.html

7. van der Aalst, et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.)
BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28108-2 19

8. Reinkemeyer, L.: Process Mining in Action: Principles. Use Cases and Outlook. Springer-
Verlag, Berlin (2020). https://doi.org/10.1007/978-3-030-40172-6

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-40172-6_21
https://doi.org/10.1007/978-3-030-40172-6_21
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-99414-7
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-030-40172-6

502 W. M. P. van der Aalst and J. Carmona

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Accorsi, Rafael 212
Augusto, Adriano 76

Burattin, Andrea 349

Carmona, Josep 76, 155, 495

de Leoni, Massimiliano 243
De Weerdt, Jochen 193
Di Ciccio, Claudio 108
Di Francescomarino, Chiara 320
Dumas, Marlon 468

Eulerich, Marc 445

Fahland, Dirk 274

Ghidini, Chiara 320

Jans, Mieke 445

Lebherz, Julian 212
Leno, Volodymyr 468

Maggi, Fabrizio Maria 468
Mannhardt, Felix 373
Martin, Niels 416
Montali, Marco 108
Munoz-Gama, Jorge 416

Polyvyanyy, Artem 468

Reinkemeyer, Lars 405
Rosa, Marcello La 468

van der Aalst, Wil M. P. 3, 37, 495
van Dongen, Boudewijn 155
Verbeek, Eric 76

Weidlich, Matthias 155
Wittig, Nils 416
Wynn, Moe Thandar 193

	 Preface
	 Contents
	Introduction
	Process Mining: A 360 Degree Overview
	1 Introduction
	2 Process Models
	3 Event Data
	3.1 Notations
	3.2 Standard Event Log
	3.3 Simplified Event Log
	3.4 Object-Centric Event Logs
	3.5 XES Standard

	4 Different Types of Process Mining
	4.1 Process Discovery
	4.2 Conformance Checking
	4.3 Performance Analysis
	4.4 Comparative Process Mining
	4.5 Predictive Process Mining
	4.6 Action-Oriented Process Mining

	5 Applications and Software
	6 Summary and Outlook
	References

	Process Discovery
	Foundations of Process Discovery
	1 Introduction
	2 Directly-Follows Graphs: A Baseline Approach
	2.1 Directly-Follows Graphs: Basic Concepts
	2.2 Baseline Discovery Algorithm
	2.3 Footprints
	2.4 Filtering
	2.5 A Larger Example

	3 Challenges
	4 Process Modeling Notations
	4.1 Labeled Accepting Petri Nets
	4.2 Process Trees
	4.3 Business Process Model and Notation (BPMN)

	5 Bottom-Up Process Discovery
	5.1 The Essence of Bottom-Up Process Discovery: Admissible Places
	5.2 The Alpha Algorithm

	6 Top-Down Process Discovery
	7 Conclusion
	References

	Advanced Process Discovery Techniques
	1 Introduction
	2 Motivation
	3 The Theory of Regions
	3.1 State-Based Region Approach for Process Discovery
	3.2 Language-Based Region Approach for Process Discovery
	3.3 Strengths and Limitations of Region Theory

	4 Split Miner
	4.1 Step 1: DFG and Loops Discovery
	4.2 Step 2: Concurrency Discovery
	4.3 Step 3: Filtering
	4.4 Step 4: Splits Discovery
	4.5 Step 5: Joins Discovery
	4.6 Step 6: OR-joins Minimization
	4.7 Strengths and Limitations of Split Miner

	5 Log Skeletons
	5.1 Discovering the Log Skeleton
	5.2 Visualizing the Log Skeleton
	5.3 Handling Noise
	5.4 Strengths and Limitations

	6 Related Work
	7 Challenges Ahead
	8 Conclusion
	References

	Declarative Process Specifications: Reasoning, Discovery, Monitoring
	1 Introduction
	2 DECLARE: A Gentle Introduction
	3 Formal Background
	3.1 Linear Temporal Logic on Finite Traces
	3.2 Finite-State Automata

	4 Reasoning
	4.1 Semantics of DECLARE
	4.2 Reasoning on DECLARE Specifications

	5 Declarative Process Mining
	5.1 Declarative Process Discovery
	5.2 Declarative Process Monitoring
	5.3 A Note on Conformance Checking

	6 Recent Advances and Outlook
	6.1 Beyond DECLARE Patterns
	6.2 Dealing with Uncertainty
	6.3 Mixed-Paradigm Models
	6.4 Multi-perspective DECLARE Specifications

	7 Conclusion
	References

	Conformance Checking
	Conformance Checking: Foundations, Milestones and Challenges
	1 Introduction
	2 Relating Observed and Modelled Behaviour: The Basics
	2.1 Quality Dimensions to Relate Process Models and Event Logs
	2.2 Rule Checking
	2.3 Token Replay
	2.4 Alignments

	3 Relating Observed and Modelled Behaviour: Advanced Techniques
	4 Applications of Conformance Checking
	4.1 The Case of Model-Based Process Analysis
	4.2 A General View on Conformance Checking

	5 Further Reading
	6 Milestones and Challenges
	7 Conclusions
	References

	Data Preprocessing
	Foundations of Process Event Data
	1 Introduction
	2 The Fundamental Structure of Event Logs
	2.1 Essential Event Log Data Requirements
	2.2 Additional Data Attributes
	2.3 Storing Event Data
	2.4 Event Types

	3 Event Log Preprocessing
	3.1 Event Log Data Sources
	3.2 A Comparison with Classical Analytics Data Preprocessing

	4 Event Log Preparation
	4.1 Extraction of Event Data
	4.2 Correlation of Event Data
	4.3 Abstraction of Event Data

	5 Process Mining Data Quality Considerations
	5.1 Data Quality Dimensions
	5.2 Detection and Repair
	5.3 Quality-Informed Process Mining

	References

	A Practitioner's View on Process Mining Adoption, Event Log Engineering and Data Challenges
	1 Introduction
	2 Process Mining Adoption
	2.1 Business Usage
	2.2 Drivers for Process Mining Deployment

	3 Real-World Example: Order-to-Cash on SAP Systems
	4 Event Log Engineering in Practice
	4.1 Data Selection and Extraction
	4.2 Data Transformation
	4.3 Data Model Engineering

	5 Best Practices
	6 Outlook
	References

	Process Enhancement and Monitoring
	Foundations of Process Enhancement
	1 Process Extension: Basic Techniques
	1.1 Model-Aligned Event Logs
	1.2 Data-Perspective Discovery
	1.3 Organizational Mining
	1.4 Time Perspective

	2 Process Extension: Advanced Techniques
	2.1 Data-Perspective Discovery of Guards with Variable Comparison
	2.2 Discovery Roles with Overlapping Resources

	3 Process Improvement
	3.1 Model Repair to Reflect Reality
	3.2 KPI-Driven Model Improvement

	References

	.26em plus .1em minus .1emProcess Mining over Multiple Behavioral Dimensions with Event Knowledge Graphs
	1 Introduction—A Second Look at Processes
	2 Multi-entity Event Data
	2.1 Events
	2.2 Entities and Correlated Events
	2.3 Relations Between Entities

	3 Shortcomings of Event Logs over Multi-entity Event Data
	3.1 Classical Event Log Extraction
	3.2 False Behavioral Information in Classical Event Logs
	3.3 Correct Behavioral Information: Local Directly-Follows

	4 Event Knowledge Graphs
	4.1 Labeled Property Graphs
	4.2 Formal Definition of an Event Knowledge Graph
	4.3 Obtaining an Event Knowledge Graph from an Event Table
	4.4 Inferring Entity Interactions
	4.5 Creating Event Knowledge Graphs from Real-Life Data

	5 Understanding Behavior over Multiple Entities
	5.1 How to Read Df-Paths in an Event Knowledge Graph
	5.2 How to Read Synchronization in a Graph
	5.3 Basic Querying Operations
	5.4 Aggregating Events and Df-Relationships
	5.5 Discovering Multi-entity Process Models

	6 Beyond Control-Flow: Multi-dimensional Process Analysis
	6.1 Extending Event Knowledge Graphs with New Events
	6.2 Adding Activities as Entities Reveals Queues
	6.3 Adding Actors as Entities Reveals Complex Tasks
	6.4 Inference in Event Knowledge Graphs with Multiple Layers

	7 Conclusion and Outlook
	References

	Predictive Process Monitoring
	1 Introduction
	2 Running Example
	3 The Family of Predictive Process Monitoring Approaches
	3.1 Predictive Process Monitoring Approaches

	4 Predicting Outcomes
	4.1 Typical Data Encodings
	4.2 Mostly Used Approaches: Classification-Based Approaches

	5 Predicting Numeric Values
	5.1 Typical Data Encodings
	5.2 Mostly Used Approaches: Regression-Based Approaches

	6 Predicting Next Events
	6.1 Typical Data Encodings
	6.2 Mostly Used Approaches: LSTM-Based Approaches

	7 New Trends in ML-Driven Operational Support
	7.1 Intercase Predictions
	7.2 Explainable Predictions
	7.3 Predictions with A-Priori Knowledge
	7.4 Prescriptive Process Monitoring

	8 Tool Support
	8.1 Predictive Process Monitoring in ProM
	8.2 Predictive Process Monitoring in Apromore
	8.3 Predictive Process Monitoring in Nirdizati

	References

	Assorted Process Mining Topics
	Streaming Process Mining
	1 Introduction
	1.1 Use Cases
	1.2 Background and Terminology

	2 Taxonomy of Approaches
	3 Streaming Process Discovery
	3.1 State of the Art
	3.2 Heuristics Miner with Lossy Counting (HM-LC)

	4 Streaming Conformance Checking
	4.1 State of the Art
	4.2 Conformance Checking with Behavioral Patterns

	5 Other Applications and Outlook
	References

	Responsible Process Mining
	1 Introduction
	1.1 Responsible Data Science and AI
	1.2 Responsible Process Mining

	2 Fairness
	2.1 Process Mining Perspective
	2.2 Algorithmic Discrimination
	2.3 Algorithmic Fairness
	2.4 Open Challenges

	3 Accuracy
	3.1 Process Mining Perspective
	3.2 Data Quality
	3.3 Model Quality
	3.4 Outlook and Challenges

	4 Confidentiality
	4.1 Process Mining Perspective
	4.2 Sensitive Information
	4.3 Background Knowledge
	4.4 Threats and Attacks
	4.5 Protection Approaches
	4.6 Outlook and Challenges

	5 Transparency
	5.1 Generalization
	5.2 Interpretation of Results

	6 Conclusion
	References

	Industrial Perspective and Applications
	Status and Future of Process Mining: From Process Discovery to Process Execution
	1 Setting the Stage
	1.1 The Evolution of Process Mining in Operational Business
	1.2 Achievements in the Decade Starting 2010
	1.3 Hurdles and Challenges
	1.4 The Power of Processes

	2 The Future of Process Execution
	2.1 Process- and Organizational Transformation
	2.2 Trends
	2.3 Midterm Future
	2.4 Longterm Future
	2.5 Vision of a Digital Enabled Organization

	3 Conclusion
	References

	Using Process Mining in Healthcare
	1 Introduction
	2 A Primer on Healthcare Processes and Process Data
	2.1 Healthcare Organisations and Healthcare Processes
	2.2 Particularities of Healthcare Processes and Process Data

	3 Use Cases in Process Mining in Healthcare Research
	3.1 Process Discovery
	3.2 Conformance Checking
	3.3 Performance Analysis
	3.4 Comparative Process Mining
	3.5 Predictive Process Mining
	3.6 Action-Oriented Process Mining
	3.7 Further Reading

	4 Case Study
	4.1 Project Goal and IT-Infrastructure
	4.2 Outcomes of the Process Mining Analysis

	5 Open Challenges
	6 Conclusion
	References

	Process Mining for Financial Auditing
	1 Introduction
	2 Financial Auditing
	2.1 Purpose of the External Financial Audit
	2.2 Purpose of the Internal Financial Audit
	2.3 Internal and External Audit: Interplay and Common Challenges

	3 Process Mining in the Internal Audit Function
	3.1 Internal Auditing Background
	3.2 The Internal Audit Process
	3.3 Planning the Audit Schedule
	3.4 Planning the Audit
	3.5 Conducting the Audit
	3.6 Communicating the Result
	3.7 Follow-up
	3.8 Maturity Levels

	4 The Symbiosis Between Internal and External Auditing When Using Process Mining
	4.1 External Auditing and Process Mining
	4.2 Relying on Internal Audit's Process Mining Efforts

	5 Organizational Integration of Process Mining in the Auditing Function
	5.1 Individual Process Mining Experts
	5.2 Specialized Process Mining Team
	5.3 Training of All Staff
	5.4 Process Mining Competencies of Other Departments or Outsourcing

	6 From Data to Audit Evidence
	7 Open Challenges
	8 Conclusion and Outlook
	References

	Robotic Process Mining
	1 Introduction
	2 Background
	2.1 Robotic Process Automation
	2.2 Task Mining
	2.3 Relations Between Task Mining and Process Mining

	3 Robotic Process Mining: A Framework
	3.1 UI Logs and Routines
	3.2 RPM Phases

	4 Outlook
	References

	Closing
	Scaling Process Mining to Turn Insights into Actions
	1 Process Mining: Overview and Summary
	2 Process Mining as the New Normal
	3 Scaling Process Mining
	4 Outlook
	References

	Author Index

