
Chapter 8 
On the Terrain Guarding Problems: New 
Results, Remarks, and Directions 

Haluk Eliş 

Abstract A guard is defined as an entity capable of observing the terrain or sensing 
an event on the terrain. By this definition, relay stations, sensors, watchtowers, mili-
tary units, and similar entities are considered as guards. Terrain Guarding Problem 
(TGP) is about locating a minimum number of guards on terrain such that points on 
the terrain are guarded by at least one of the guards. Terrains are generally repre-
sented as triangulated irregular networks (TIN), and TINs are also referred to as 
2.5 dimensional (2.5D) terrains. TGP on 2.5D terrains is known as 2.5D TGP. 1.5D 
terrain is a profile of a 2.5D terrain, and the guarding problem on a 1.5D terrain is 
referred to as 1.5D TGP. This paper presents an example that illustrates that the set of 
vertices in TIN does not necessarily contain an optimal solution, which implies that 
an optimal solution is yet to be found for 2.5D TGP. We show that a finite dominating 
set (FDS) found earlier for 1.5D TGP is optimal in the sense that no other FDS has 
a smaller cardinality. 

Keywords Location theory · Finite dominating sets · Terrain guarding problem ·
Set-covering 

8.1 Introduction 

A guard is defined as an entity capable of observing the terrain or sensing an event 
on the terrain. In real life, numerous guards are used for a variety of purposes. For 
example, forest fires are detected by watchtowers located on terrains [12], where 
watchtowers are considered as guards since, with the appropriate equipment, they 
can guard the terrain (to detect fires). It is important for military units to prevent 
any intrusion into their region of deployment. Military units achieve this by locating 
watch-posts on the terrain such that no dead zone exists [6]. In order to maintain 
effective communication, relay stations need to be placed on the terrain such that 
each station is visible from at least one other station [10]. As defined in Eliş [8],
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the goal in the Terrain Guarding Problem (TGP) is to locate a minimum number of 
guards on the terrain such that each point on the terrain is visible or guarded by at 
least one of the guards. 

Real three-dimensional terrains need to be represented as mathematical objects to 
be able to solve TGP and to perform similar terrain-related analyses. A mathematical 
or a digital representation of a real terrain surface is known as a Digital Elevation 
Model (DEM) [9, 15]. Triangulated irregular network (TIN) is a preferred DEM 
since some important terrain features are preserved [9]. As described in Eliş [8], a 
TIN is obtained as follows. Suppose that S ∈ R3 is a real terrain surface. Points are 
sampled from S that we assume represent S sufficiently. Let P = {p1, …,  pn} be  
the set of such points with x, y, and z coordinates. Let pi ∈ R2 be the projection of 
pi onto the x–y plane, and P = {p1, . . . ,  pn} be the set of such points. The points 
sampled from S and their projections are referred to as vertices. The vertices in P 
become the vertices of the triangles on the plane after the triangulation is performed 
[4]. Let us denote the triangulation by T . Next, each point pi ∈ P is elevated to its 
real height together with the edges. The object obtained as such is a TIN (Fig. 8.1). 

In the following, we largely adopt the notation used in Eliş [6–8]. Let us denote 
TIN by T. We may assume that T is in the nonnegative orthant without loss of 
generality. Let g((x, y)) denote the height of the terrain at (x, y) and V be the visible 
region, i.e. V = {(x, y, z): (x, y) ∈ T and z ≥ g((x, y))}. The region below T is 
denoted by F. Let  p1 and p2 ∈ R3 such that their projection is in T . The line segment 
LS(p1, p2) ≡ {p1 + λ (p2 − p1): λ ∈ [0, 1]} connects p1 and p2. We say that p2 is 
visible from/guarded by p1 if LS(p1, p2) is a subset of V, and not visible from p1 if

Fig. 8.1 Triangulated irregular network (as illustrated in Church [2])
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LS(p1, p2) ∩ F /= ∅. A visibility function is defined as follows,

v
(
p1, p2

) = v
(
p2, p1

) =
{
1 if  LS

(
p1, p2

) ⊆ V 
0 otherwise 

Let VS(x) denote the “viewshed” of p, i.e. V S(x) = { y ∈ T : v(x, y) = 1}. Let  
X = {x1, …,  xk} be a set of points on T. We say that X guards or covers T if every 
point on T is guarded by at least one of the guards located at points in X. A formal  
definition is given by the following function, 

V I  S( y, X) =
{
1, if ∃ x j ∈ X, such that v

(
y, x j

) = 1 
0, otherwise 

In the Terrain Guarding Problem (2.5D TGP), the goal is to find a set X such that 
X guards T and has the minimum cardinality. A formal definition is given as follows, 

(2.5D TGP) 
Minimize |X| 
Subject to V I  S( y, X) = 1, ∀ y ∈ T 

X ⊆ T 

For 1.5 D terrains, we adopt the notation used in Eliş [7]. 1.5D terrain (T′ ) is  
a profile of a 2.5D terrain along a line and is characterized by a piecewise linear 
curve (Fig. 8.2). The definition of 1.5D TGP is the same as 2.5D TGP except that the 
terrain is a 1.5-dimensional surface. 1.5D TGP has applications where street lights 
or security sensors are placed along roads, communication networks are constructed 
[1], or cameras/posts are located on the borderline [7]. 

As shown in Fig. 8.2, the terrain surface T′ is denoted by h(x), which gives the 
height of x ∈ [0, L]. Visibility and covering of a given point by another point or by a 
set of guards are defined as in 2.5D case. The formal definition of 1.5D TGP is the 
same as 2.5D except that the terrain is 1.5 dimensional. 

Fig. 8.2 A 1.5 dimensional 
terrain 
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8.2 Literature Review 

8.2.1 2.5D TGP 

The 2.5D TGP was first investigated by De Floriani et al. [5]. They showed that a 
set-covering formulation could be used to solve the TGP. In their study, the vertices 
of the triangles were used as potential guard locations, among which an optimal 
solution is sought. We note that in order for the solution obtained to be optimal, it is 
not sufficient to use an exact algorithm. In addition to using an exact algorithm, one 
also needs to prove that the set of guard locations is a finite dominating set (FDS). 
An FDS is a finite set of points that contains an optimal solution to an optimization 
problem with (possibly) an uncountable feasible set. Perhaps, the best-known FDS 
is the set of extreme points in linear programming. The concept of FDS was used in 
his seminal paper by Hakimi [13] and others thereafter in location problems. Yet, the 
term ‘finite dominating set’ is due to Hooker et al. [14]. In order to solve the TGP to 
optimality, an FDS must be identified, and then an exact algorithm (such as branch 
and bound) must be used. 

In the next section, we present an example where an optimal solution is not 
necessarily a vertex of a triangle. In other words, we show that the set of vertices is 
not a finite dominating set for the 2.5D terrain guarding problem. 

As discussed in Eliş et al.  [6] and in more depth in ReVelle and Eiselt [16], in 
location problems, there are customers whose demand must be met by a number of 
facilities to be located on a surface. The goal is to minimize the number of facilities 
such that the demand of each customer is met. In this respect, TGP is also a location 
problem since guards, similar to facilities, are located on terrain to guard each point 
on the terrain. In a sense, each point on the terrain has a demand, which is being 
guarded, that needs to be met by the guards. 2.5D TGP is NP-Hard, as shown in Cole 
and Sharir [3]. 

When potential guard locations are identified, 2.5D TGP can be solved by Location 
Set Covering Problem (LSCP) formulation. LSCP is a set-covering problem within 
a location context. LSCP was introduced by Toregas et al. [17], and the problem 
formulation can be used for solving 2.5D TGP as follows, 

Minimize 
nΣ

j=1 

y j 

Subject to 
nΣ

j=1 

ai j  y j ≥ 1, ∀ i = 1, . . . ,  m. 

y j ∈ {0, 1}, ∀ j = 1, . . . ,  n. 

where yj is 1 if a guard is located at site j, and 0 otherwise. Each part of a terrain 
surface (part of a triangle) seen by each potential guard location is considered a
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demand element to be covered in the formulation. aij is 1 if the guard location j 
covers region i and 0 otherwise. 

8.2.2 1.5D TGP 

We note that 1.5D TGP can be solved to optimality by LSCP formulation as in 2.5D 
TGP once the set of guard locations is an FDS. Friedrichs et al. [11] presented the 
first FDS, and thus an optimal solution for 1.5D TGP. The FDS they have found has a 
size of O(n2). The regions covered by each potential guard location are taken to be a 
“witness set” such that guarding the elements of the witness set implies guarding of 
the terrain. The witness set in Friedrichs et al. [11] has  a size O(n3). Ben-Moshe et al. 
[1] showed that there exists a witness set of size O(n2) before Friedrichs et al. [11]. 
Later, Eliş [7] showed a smaller finite dominating set and a smaller witness set, each 
of which has a size of O(n). Friedrichs et al. [11] posed the question of whether any 
optimal discretization exists, that is, whether an optimal FDS and an optimal witness 
set exist. A set is referred to as optimal if it has the minimum cardinality. In the next 
section, we show that the FDS found in Eliş [7] is optimal; that is, no other FDS for 
the problem has a smaller cardinality than O(n). 

8.3 Analysis and Remarks 

8.3.1 2.5D TGP 

Consider the terrain shown in Fig. 8.3. The terrain is shaped like a football stadium 
such that the rectangle ABCD is at ground level, and the terrain rises from the edges 
of the rectangle. The horizontal lines passing through points 1–8 are the edges of 
tilted planar surfaces such that every cross-section of the terrain across the edges 
of AB and CD is like a staircase. Note that point P is inside a triangle and not a 
vertex. Consider, for example, the cross-section of the terrain along with the points 
1-P-8 (Fig. 8.4). In each such cross-section, P (and possibly other nonvertex points) 
can guard the cross-section. Thus, P is an optimal solution (there may be alternative 
optimal points). We conclude that the set of vertices is not a finite dominating set 
and a finite dominating set needs to be identified in order to solve TGP to optimality 
by LSCP formulation.
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Fig. 8.3 A 2.5-dimensional 
terrain 
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Fig. 8.4 Cross-section of the terrain along with the points 1-P-8 

8.3.2 1.5D TGP 

We use the same definitions and notations that are used in Eliş [7],  which we give in  
the following. T denotes the terrain surface. 

Convex region: Function h(x) may be convex in some intervals. The part of h(x) that 
is composed of maximally connected edges is referred to as a convex region. The set 
of convex regions is denoted by ‘CR’. 

Convex point: A vertex where two convex regions intersect is referred to as a convex 
point. The two endpoints of T are included in the set of convex points, and the set of 
convex points is denoted by ‘C’, |C| = k. If  k is the number of convex points, then the 
number of convex regions is k − 1 and vice versa. There are 11 vertices, 10 edges, 6 
convex points, and 5 convex regions in Fig. 8.5. The part of T that is between convex 
points 5 and 6 is a convex region that has 4 edges. 

Dip point: A point p on T “fully covers” N if N ⊆ VS(p). A point that is not a convex 
point and fully covers at least one convex region to its left and right, which are both
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Fig. 8.5 Convex points and 
convex regions on T 
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Fig. 8.6 Illustration of a dip point Q 

different from the convex region it is in, is called a dip point. A dip point is illustrated 
in Fig. 8.6. 

The set of dip points and convex points is referred to as critical points. Eliş [7] 
has shown that the set of critical points is an FDS and has a cardinality of O(n), and 
that the number of dip points is bounded by k − 1. Eliş [8] showed that there is even 
a smaller bound on the number of dip points, given by (k−2) 

2 , and this bound is tight. 
In the following theorem, we show that the FDS of critical points is optimal in the 
sense that no other FDS for the problem can have a smaller cardinality. 

Theorem The FDS of critical points is optimal for 1.5D TGP in the sense that the 
number of points in any FDS is at least the number of critical points. 

Proof We note that an FDS is a set of points with predefined properties such that 
the points in FDS must be identifiable for all instances of TGP. Let X be an arbitrary 
FDS. Suppose, for example, that the points in X are defined such that the ith convex 
point is not in X. One can build an instance such that the ith convex point is the 
only optimal point. This can be done easily by constructing an example in which 
the height of the ith convex point is set at a value such that it is an optimal solution, 
i.e., the only point that can see both of its sides. Suppose, alternatively, that X does 
not contain a dip point. This implies that X, by construction, contains no nonconvex 
point that fully covers convex regions to its left and right, since if it contained, there 
would exist a dip point by definition. However, as shown in Fig. 8.6, there may exist 
an instance in which a dip point is the only optimal solution. Thus, X must contain
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Fig. 8.7 A comparison of the FDS of Friedrichs et al. [11] to the optimal FDS of Eliş [7] 

convex points and dip points. Since X is arbitrary, together with the fact that the set 
of critical points is an FDS, it follows that the FDS of critical points is optimal. 

We note that the points in an FDS correspond to the decision variables in the LSCP 
formulation. Thus, fewer points in the FDS imply that there will be fewer columns 
in matrix A(aij) of the formulation, which, in turn, implies that the solution time will 
be shorter. The following example compares the number of points in the FDS found 
in Friedrichs et al. [11] to that in Eliş [7], which is shown to be optimal by the above 
theorem. As illustrated by the terrain in Fig. 8.7, the number of points in the FDS 
of Friedrichs et al. [11] is more than three times the number of points in the FDS of 
Eliş [7]. 

8.4 Conclusions and Directions for Future Research 

We have shown by a counter-example that the set of vertices is not a finite dominating 
set for 2.5D TGP. This implies that solving TGP to optimality is an open problem. 
Considering the important application areas of 2.5D TGP, future research may focus 
on finding an FDS for this problem. The type of points we have shown in the counter-
example suggests that such points might belong to an FDS. 

We have provided a partial answer to the research question posed in Friedrichs 
et al. [11] and shown that FDS of critical points found in Eliş [7] is optimal in the 
sense that no FDS exists with a cardinality smaller than O(n). Thus, future research 
efforts can be directed towards investigating an optimal witness set.
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8. Eliş H (2017a) Terrain visibility and guarding problems. Ph.D. dissertation. Bilkent University 
9. De Floriani L, Magillo P (2003) Algorithms for visibility computation on terrains: a survey. 

Environ Plann B Plann Des 30(5):709–728 
10. De Floriani L, Marzano P, Puppo E (1994) Line-of-sight communication on terrain models. Int 

J Geogr Inf Syst 8(4):329–342 
11. Friedrichs S, Hemmer M, Schmidt C (2014) A PTAS for the continuous 1.5D terrain guarding 

problem. 26th Canadian conference on computational geometry (CCCG), Halifax, Nova Scotia 
12. Goodchild MF, Lee J (1989) Coverage problems and visibility regions on topographic surfaces. 

Ann Oper Res 18(1):175–186 
13. Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians 

of a graph. Oper Res 12(3):450–459 
14. Hooker JN, Garfinkel RS, Chen CK (1991) Finite dominating sets for network location 

problems. Oper Res 39(1):100–118 
15. Li Z, Zhu Q, Gold C (2004) Digital terrain modeling: principles and methodology. CRC Press 
16. ReVelle CS, Eiselt HA (2005) Location analysis: a synthesis and survey. Eur J Oper Res 

165(1):1–19 
17. Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. 

Oper Res 19(6):1363–1373


	8 On the Terrain Guarding Problems: New Results, Remarks, and Directions
	8.1 Introduction
	8.2 Literature Review
	8.2.1 2.5D TGP
	8.2.2 1.5D TGP

	8.3 Analysis and Remarks
	8.3.1 2.5D TGP
	8.3.2 1.5D TGP

	8.4 Conclusions and Directions for Future Research
	References




