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Abstract. The problem of fitting multidimensional reduced data is ana-
lyzed here . The missing interpolation knots T are substituted by T̂
which minimize a non-linear multivariate function J0. One of numeri-
cal schemes designed to compute such optimal knots relies on iterative
scheme called Leap-Frog Algorithm. The latter is based on merging the
respective generic and non-generic univariate overlapping optimizations
of J (k,i)

0 . The discussion to follow establishes the sufficient conditions

enforcing unimodality of the non-generic case of J (k,i)
0 (for special data

set-up and its perturbation). Illustrative example supplements the anal-
ysis in question. This work complements already existing analysis on
generic case of Leap-Frog Algorithm.

Keywords: Data fitting · Optimization · Curve modelling

1 Introduction

Assume that n interpolation points Mn = {xi}n
i=0 in arbitrary Euclidean space

E
m are given with the associated knots T = {ti}n

i=0 unavailable. The analyzed
here class of fitting curves I forms piecewise C2 functions γ : [0, T ] → E

m

satisfying γ(ti) = qi and γ̈(t0) = γ̈(T ) = 0. It is also assumed that γ ∈ I is at
least of class C1 over Tint = {ti}n−1

i=1 and extends to C2([ti, ti+1]). The unknown
internal knots Tint are called admissible if ti < ti+1, for i = 0, 1, . . . , n − 1 (here
t0 = 0 and tn = T ). Different choices of Tint permits to control and model the
trajectory of γ. A possible criterion (measuring the “average acceleration” of γ)
for a given choice of fixed knots T is to minimize

JT (γ) =
n−1∑

i=0

∫ ti+1

ti

‖γ̈(t)‖2dt , (1)
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(over I) which yields a unique optimal curve γopt ∈ I being a natural cubic
spline γNS - see [1,9]. Thus, varying Tint reformulates (1) into searching for an
optimal natural spline γNS with Tint treated as free variables. As shown in [3]
the latter reformulates into optimizing a highly non-linear function J0 in n − 1
variables Tint subject to ti < ti+1. Due to the complicated nature of J0 most
of numerical schemes used to optimize J0 face numerical difficulties (see e.g.
[3]). Equally, studying the character of critical points of J0 forms a non-trivial
task. A possible remedy is to apply a Leap-Frog Algorithm (see [2,3]) designed
to optimize J0 upon merging the iterative sequence of univariate overlapping
optimizations of J

(k,i)
0 preserving ti < ti+1. Recent work [5] deals with the generic

case of a Leap-Frog recomputing iteratively the knots {t2, t3, . . . , tn−2}.
This paper discusses1 a non-generic case of Leap-Frog covering the recursive

readjustment of knots t1 and tn−1. The latter establishes sufficient conditions
for unimodality of J

(k,1)
0 and J

(k,n−1)
0 . First a special data case (18) is considered

(see Sect. 4) which in turn is subsequently extended to its perturbed version (22)
preserving in practice the unimodality (once it occurs for (18)) for substantially
large perturbations (see Proposition 1 and Example 1 in Sect. 5).

Numerical performance of Leap-Frog and comparison tests with other opti-
mization schemes are presented in [2,3,7]. Some applications of Leap-Frog opti-
mization scheme in modelling and simulation are covered in [10–12].

2 Preliminaries

A cubic spline interpolant (see [1]) γCi

T = γC
T |[ti,ti+1], for a given admissible knots

T = (t0, t1, . . . , tn−1, tn) defined as γCi

T (t) = c1,i + c2,i(t − ti) + c3,i(t − ti)2 +
c4,i(t− ti)3, (for t ∈ [ti, ti+2]) satisfies (for i = 0, 1, 2, . . . , n− 1; cj,i ∈ R

m, where
j = 1, 2, 3, 4) γCi

T (ti+k) = xi+k and γ̇Ci

T (ti+k) = vi+k, for k = 0, 1 with the
velocities v0, v1, . . . , vn−1, vn ∈ R

m assumed to be temporarily free parameters
(if unknown). The coefficients cj,i read (with Δti = ti+1 − ti):

c1,i = xi, c2,i = vi ,

c4,i =
vi + vi+1 − 2xi+1−xi

Δti

(Δti)2
, c3,i =

(xi+1−xi)
Δti

− vi

Δti
− c4,iΔti . (2)

The latter follows from Newton’s divided differences formula (see e.g. [1,
Chap. 1]). Adding n − 1 constraints γ̈

Ci−1
T (ti) = γ̈Ci

T (ti) for continuity of γ̈C
T

at x1, . . . , xn−1 (with i = 1, 2, . . . , n − 1) leads by (2) (for γCi

T ) to the m tridi-
agonal linear systems (strictly diagonally dominant) of n − 1 equations in n + 1
vector unknowns representing velocities at M i.e. v0, v1, v2, . . . , vn−1, vn ∈ R

m:

vi−1Δti + 2vi(Δti−1 + Δti) + vi+1Δti−1 = bi ,

bi = 3(Δti
xi − xi−1

Δti−1
+ Δti−1

xi+1 − xi

Δti
) . (3)

1 This work is a part of Polish National Centre of Research and Development research
project POIR.01.02.00-00-0160/20.



Non-Generic Case of Leap-Frog Algorithm 343

(i) Both v0 and vn (if unknown) can be e.g. calculated from a0 = γ̈C
T (0) = an =

γ̈C
T (Tc) = 0 combined with (2) (this yields a natural cubic spline interpolant γNS

T
- a special γC

T ) which supplements (3) with two missing vector linear equations:

2v0 + v1 = 3
x1 − x0

Δt0
, vn−1 + 2vn = 3

xn − xn−1

Δtn−1
. (4)

The resulting m linear systems, each of size (n + 1) × (n + 1), (based on (3) and
(4)) as strictly row diagonally dominant result in one solution v0, v1, . . . , vn−1, vn

(solved e.g. by Gauss elimination without pivoting - see [1, Chap. 4]), which when
fed into (2) determines explicitly a natural cubic spline γNS

T (with fixed T ). A
similar approach follows for arbitrary a0 and an.
(ii) If both v0 and vn are given then the so-called complete spline γCS

T can be
found with v1, . . . vn−1 determined solely by (3).
(iii) If one of v0 or vn is unknown, this can be compensated by setting the
respective terminal acceleration e.g. to 0. The above scheme relies on solving (3)
with one equation from (4). Such splines are denoted here by γvn

T or γv0
T . Two

non-generic cases of Leap-Frog optimizations deal with the latter.
By (1) JT (γNS

T ) = 4
∑n−1

i=0 (‖c3,i‖2Δti + 3‖c4,i‖2(Δti)3 + 3〈c3,i|c4,i〉(Δti)2) ,
which ultimately reformulates into (see [2]):

JT (γNS
T ) = 4

n−1∑

i=0

( −1
(Δti)3

(−3‖xi+1 − xi‖2 + 3〈vi + vi+1|xi+1 − xi〉Δti

−(‖vi‖2 + ‖vi+1‖2 + 〈vi|vi+1〉)(Δti)2
)

. (5)

As mentioned before for fixed knots T , the natural spline γNS
T minimizes (1)

(see [1]). Thus upon relaxing the internal knots Tint the original infinite dimen-
sional optimization (1) reduces into finding the corresponding optimal knots
(topt

1 , topt
2 , . . . , topt

n−1) for (5) (viewed from now on as a multivariate function
J0(t1, t2, . . . , tn−1)) subject to t0 = 0 < topt

1 < topt
2 < · · · < topt

n−1 < tn = T .
Such reformulated non-linear optimization task (5) transformed into minimiz-
ing J0(Tint) (here t0 = 0 and tn = T ) forms a difficult task for critical points
examination as well as for the numerical computations (see e.g. [2,3,7]). One of
the computationally feasible schemes handling (5) is a Leap-Frog Algorithm. For
optimizing J0 this scheme is based on the sequence of single variable iterative

optimization which in k-th iteration minimizes J
(k,i)
0 (s) =

∫ tk−1
i+1

tki−1
‖γ̈CS

k,i (s)‖2ds,

over Ik−1
i = [tki−1, t

k−1
i+1 ]. Here tki is set to be a free variable denoted as si. The

complete spline γCS
k,i : Ik−1

i → E
m is determined by {tki−1, si, t

k−1
i+1 }, both veloci-

ties {vk
i−1, v

k−1
i+1 } and the interpolation points {xi−1, xi, xi+1}. Once sopt

i is found
one updates tk−1

i with tki = sopt
i and vk−1

i with the vk
i = γ̇CS

k,i (sopt
i ). Next we pass

to the shifted overlapped sub-interval Ik
i+1 = [tki , tk−1

i+2 ] and repeat the previous
step of updating tk−1

i+1 . Note that both cases [0, tk−1
2 ] and [tk−1

n−2, T ] rely on splines
discussed in (iii), where the vanishing acceleration replaces one of the velocities
vk−1
0 or vk−1

n . Once tk−1
n−1 is changed over the last sub-interval Ik−1

n−1 = [tkn−2, T ]
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the k-th iteration is terminated and the next local optimization over Ik
1 = [0, tk2 ]

represents the beginning of the (k+1)-st iteration of Leap-Frog. The initialization
of Tint for Leap-Frog can follow normalized cumulative chord parameterization
(see e.g. [9]) which sets t00 = 0, t01, . . . , t

k
n−1, t

0
n = T according to t00 = 0 and

t0i+1 = ‖xi+1 − xi‖T
T̂

+ t0i , for i = 0, 1, . . . , n − 1 and T̂ =
∑n−1

i=0 ‖xi+1 − xi‖.

3 Non-generic Case: First Acceleration and Last Velocity

Let for x0, x1, x2 ∈ M (for n ≥ 3) the corresponding knots (see [1]) t0 and t2
be somehow given together with the respective first acceleration and the last
velocity a0, v2 ∈ R

m (without loss t0 = 0). We construct now a C2 piecewise
cubic γc

0 : [t0, t2] → E
m depending on varying t1 ∈ (t0, t2) (i.e. a cubic on

each [t0, t1] and [t1, t2]) satisfying γc
0(tj) = xj (for j = 0, 1, 2), γ̈c

0(t0) = a0 and
γ̇c
0(t2) = v2. With φ0 : [t0, t2] → [0, 1] (with φ0(t) = (t − t0)(t2 − t0)−1) the

re-parameterized curve γ̃c
0 = γc

0 ◦ φ−1
0 : [0, 1] → E

m satisfies, for 0 < s1 < 1
(where s1 = φ0(t1)): γ̃c

0(0) = x0, γ̃c
0(s1) = x1 and γ̃c

0(1) = x2, with the adjusted
ã0, ṽ2 ∈ R

m equal to:

ã0 = γ̃c′′
0 (0) = (t2 − t0)2a0 , ṽ2 = γ̃c′

0 (1) = (t2 − t0)v2 . (6)

An easy inspection shows (for each s1 = φ0(t1)):

Ẽ0(s1) =
∫ 1

0

‖γ̃c′′
0 (s)‖2ds = (t2 − t0)3

∫ t2

t0

‖γ̈c
0(t)‖2dt = (t2 − t0)3E0(t1) . (7)

Thus critical points scrit
1 of Ẽ0 are mapped (and vice versa) onto the correspond-

ing critical points tcrit
1 = φ−1

0 (scrit
1 ) = scrit

1 (t2 − t0) + t0 of E0. Hence optimal
points of Ẽ0 and E0 satisfy topt

1 = φ−1
0 (sopt

1 ). Thus by (7) to decrease E0 it suffices
to decrease Ẽ0. To find the expression for Ẽ0 we determine γ̃c

0 (depending on s1)

γ̃c
0(s) =

{
γ̃lc
0 (s) , for s ∈ [0, s1]

γ̃rc
0 (s) , for s ∈ [s1, 1] (8)

with c0j , d0j ∈ R
m and γ̃lc

0 (s) = c00 + c01(s − s1) + c02(s − s1)2 + c03(s − s1)3

and γ̃rc
0 (s) = d00 + d01(s − s1) + d02(s − s1)2 + d03(s − s1)3, the following holds:

γ̃lc
0 (0) = x0 , γ̃lc

0 (s1) = γ̃rc
0 (s1) = x1 , γ̃rc

0 (1) = x2 , (9)

γ̃lc′′
0 (0) = ã0 , γ̃rc′

0 (1) = ṽ2 , (10)

together with the smoothness (C1 and C2) constraints at s = s1 i.e.:

γ̃lc′
0 (s1) = γ̃rc′

0 (s1) , γ̃lc′′
0 (s1) = γ̃rc′′

0 (s1) . (11)

We may assume that (upon shifting the origin of coordinate system) x̃0 = x0−x1,
x̃1 = 0, x̃2 = x2 − x1 and therefore by (9) we have

γ̃c
0(0) = x̃0 , γ̃c

0(s1) = 0 , γ̃c
0(1) = x̃2 . (12)
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In sequel, combining (11) with x̃1 vanishing gives

γ̃lc
0 (s) = c01(s − s1) + c02(s − s1)2 + c03(s − s1)3 ,

γ̃rc
0 (s) = c01(s − s1) + c02(s − s1)2 + d03(s − s1)3 , (13)

with c00 = d00 = 0. The unknown vectors c01, c02, c03, d03 are determined by
solving the system of four linear vector equations obtained from (10) and (12):

x̃0 = −c01s1 + c02s
2
1 − c03s

3
1 ,

x̃2 = c01(1 − s1) + c02(1 − s1)2 + d03(1 − s1)3 ,

ã0 = 2c02 − 6c03s1 ,

ṽ2 = c01 + 2c02(1 − s1) + 3d03(1 − s1)2 . (14)

An inspection reveals that:

c01 =
s21ã0 + 2s31ã0 − s41ã0 + 4s21ṽ2 − 4s31ṽ2 + 6x̃0 − 12s1x̃0 + 6s21x̃0 − 12s21x̃2

2s1(s21 + 2s1 − 3)
,

c02 = −−s21ã0 + s31ã0 − 3s1ṽ2 + 3s21ṽ2 + 6x̃0 − 6s1x̃0 + 9s1x̃2

s1(s1 − 1)(s1 + 3)
,

c03 = −−s1ã0 + s31ã0 − 2s1ṽ2 + 2s21ṽ2 + 4x̃0 − 4s1x̃0 + 6s1x̃2

2s21(s
2
1 + 2s1 − 3)

,

d03 = −s21ã0 − 2s31ã0 + s41ã0 + 6s1ṽ2 − 8s21ṽ2 + 2s31ṽ2 − 6x̃0 + 12s1x̃0 − 6s21x̃0

2s1(s1 + 3)(s1 − 1)3

− −12s1x̃2 + 8s21x̃2

2s1(s1 + 3)(s1 − 1)3
(15)

satisfy (14) (as functions in s1). As ‖γ̃lc′′
0 (s)‖2 = 4‖c02‖2 + 24〈c02|c03〉(s − s1) +

36‖c03‖2(s−s1)2, ‖γ̃rc′′
0 (s)‖2 = 4‖c02‖2 +24〈c02|d03〉(s−s1)+36‖d03‖2(s−s1)2:

Ẽ0(s1) =
∫ s1

0

‖γ̃lc′′
0 (s)‖2ds +

∫ 1

s1

‖γ̃rc′′
0 (s)‖2ds = I1 + I2,

where I1 = 4(‖c02‖2s1 − 3〈c02|c03〉s21 + 3‖c03‖2s31) and I2 = 4(‖c02‖2(1 − s1) +
3〈c02|di3〉(1−s1)2+3‖d03‖2(1−s1)3). The latter combined with a0 = 0 (and ã0 =
0 - see (6)), (13) and (15) yields (with Mathematica Integrate and FullSimplify):

Ẽ0(s1) =
−1

(s1 + 3)s21(s1 − 1)3
(12(−‖x̃0‖2(s1 − 1)3 + s1(‖x̃2‖2(3 − 2s1)s1

+ ‖ṽ2‖2(s1 − 1)2s1 + (s1 − 1)3〈ṽ2|x̃0〉 − (s1 − 3)(s1 − 1)s1〈ṽ2|x̃2〉
+ 3(s1 − 1)2〈x̃0|x̃2〉))) . (16)

Note also that lims1→0+ Ẽ0(s1) = (12‖x̃0‖2/0+) = +∞, and lims1→1− Ẽ0(s1) =
(12‖x̃2‖2/0+) = +∞. Hence as Ẽ0 ≥ 0 and Ẽ0 ∈ C1 the global minimum sopt

1 ∈
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(0, 1) exists (one of critical points of Ẽ0). Note that xi 
= xi+1 yields ‖x̃0‖ 
= 0 and
‖x̃2‖ 
= 0. An inspection shows that (or differentiate symbolically in Mathematica
Ẽ0 and use FullSimplify):

Ẽ ′
0(s1) =

1
(s1 − 1)4s31(s1 + 3)2

(12(2‖ṽ2‖2(s1 − 1)2s31(s1 + 1) − 6‖x̃2‖2s31(s21 − 3)

− 3‖x̃0‖2(s1 − 1)4(s1 + 2) + (s1 − 1)4s1(2s1 + 3)〈ṽ2|x̃0〉
− 2(s1 − 1)s31(−6 + (−3 + s1)s1)〈ṽ2|x̃2〉
+ 3(s1 − 1)2s1(−3 + s1(4 + 3s1))〈x̃0|x̃2〉)) . (17)

The numerator of (17) is the polynomial of degree 6 i.e. N0(s1) = b00+b01s1+b02s
2
1+

b03s
3
1 + b04s

4
1 + b05s

5
1 + b06s

6
1, with the coefficients b0j ∈ R (for j = 0, 1, . . . , 6) equal

to (use e.g. Mathematica functions Factor and CoefficientList): b00
12 = −6‖x̃0‖2,

b01
12 = 21‖x̃0‖2 + 3〈ṽ2|x̃0〉 − 9〈x̃0|x̃2〉, b02

12 = −24‖x̃0‖2 − 10〈ṽ2|x̃0〉 + 30〈x̃0|x̃2〉,
b03
12 = 2‖ṽ2‖2 + 6‖x̃0‖2 + 18‖x̃2‖2 + 10〈ṽ2|x̃0〉 − 12〈ṽ2|x̃2〉 − 24〈x̃0|x̃2〉, b04

12 =

−2‖ṽ2‖2 + 6‖x̃0‖2 + 6〈ṽ2|x̃2〉 − 6〈x̃0|x̃2〉, b05
12 = −2‖ṽ2‖2 − 3‖x̃0‖2 − 6‖x̃2‖2 −

5〈ṽ2|x̃0〉 + 8〈ṽ2|x̃2〉 + 9〈x̃0|x̃2〉 and b06
12 = 2‖ṽ2‖2 + 2〈ṽ2|x̃0〉 − 2〈ṽ2|x̃2〉.

In a search for a global optimum of Ẽ0, instead of performing any iterative
optimization scheme (relying on initial guess), one can invoke Mathematica Pack-
age Solve which easily finds all roots (real and complex) for a given low order
polynomial in one variable. Upon computing the roots of N0(s1) we select only
these which are real and belong to (0, 1). Next we evaluate Ẽ0 on each critical
point scrit

1 ∈ (0, 1) and choose scrit
1 with minimal energy Ẽ0 as optimal. Again

this particular property of optimizing Ẽ0 is very useful for future Leap-Frog Algo-
rithm as compared with optimizing multiple variable function (5). We analyze
in the next section the character of the energy Ẽ0 for the special case (18).

The case of first velocity and last acceleration given (covering the last three
interpolation points xn−2, xn−1, xn ∈ M) is symmetric and as such is omitted.

4 Special Conditions for Non-generic Case of Leap-Frog

For a global minimum of Ẽ0 the analysis of Ẽ ′
0(s1) = 0 reduces into finding

all real roots of the sixth order polynomial N0(s1). Consider a special case of
x̃0, x̃1, x̃2 ∈ E

m and ṽ2 ∈ R
m which satisfy (for some k 
= 0 as x̃0 
= 0):

x̃2 − x̃0 = ṽ2 x̃0 = kx̃2 . (18)

Remark 1. The case of k < 0 yields the so-called co-linearly ordered data
x̃0, x̃1, x̃2. Here the function x(s) = sx̃2 + (1 − s)x̃0 (with s ∈ (0, 1)) satisfies
required constraints (18), namely: x(0) = x̃0, x(1) = x̃2, x′(1) = x̃2 − x̃0 = ṽ2,
and x′′(0) = 0. For k 
= 0 the normalized cumulative chord reads

ŝcc
1 = ŝcc

1 (k) =
‖x̃0‖

‖x̃2‖ + ‖x̃0‖
=

|k|
1 + |k| . (19)
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Noticeably, ‖x̃2‖ 
= 0 and ‖x̃0‖ 
= 0 as x0 
= x1 and x1 
= x2. Thus since |k| = −k

(for k < 0) by (18) we have x
(

|k|
1+|k|

)
= x̃2

|k|
1+|k| +x̃0

1
1+|k| = x̃2

(
|k|

1+|k| + k
1+|k|

)
=

0 = x̃1. Hence the interpolation condition x(s1) = 0 is satisfied with s1 = ŝcc
1 .

In sequel since ‖x′′(s)‖ = 0 over (0, 1), the integral (7) vanishes with s = ŝcc
1 .

Thus ŝcc
1 is a global minimizer of Ẽ0 for any k < 0. This does not hold for k > 0.

Note that for n big the case k > 0 prevails. ��

By (18) we have ‖x̃0‖2 = k2‖x̃2‖2, ‖ṽ2‖2 = (1 − k)2‖x̃2‖2, 〈ṽ2|x̃2〉 = (1 −
k)‖x̃2‖2, 〈ṽ2|x̃0〉 = (k − k2)‖x̃2‖2, 〈x̃0|x̃2〉 = k‖x̃2‖2. Substituting the latter
into (16) yields (upon using e.g. FullSimplify in Mathematica) Ẽ0(s) = Ẽd

0 (s) =
(−12(‖x̃2‖(k+s(1−k)))2)/((s−1)3s2(3+s)). The latter vanishes iff s = −k/(1−
k) which for k < 0 reads as s = |k|/(1 + |k|) = ŝcc

1 (k) (as previously ŝcc
1 can

be treated as a function in k). In a search for other critical points of Ẽd
0 , the

respective derivative Ẽd′
0 (e.g. use symbolic differentiation in Mathematica and

FullSimplify) reads:

Ẽd′
0 (s) =

24‖x̃2‖2(k + s(1 − k))(−3k + 6ks + s2(4 − k) + s3(2 − 2k))
(s − 1)4s3(3 + s)2

. (20)

If k 
= 1 (i.e. x̃2 
= x̃0) the first numerator’s factor of (20) yields exactly one
root ŝL

1 = −k/(1 − k). Only for k < 0 we have ŝL
1 ∈ (0, 1). Otherwise for k > 1

we have ŝL
1 > 1 and for 0 < k < 1 we have ŝL

1 < 0. The analysis of k < 0 and
k > 0 (with k 
= 1) for the second cubic factor in (20) is performed below. Note
that with k = 1 the first linear factor in (20) has no roots and the second cubic
factor reduces in quadratic with the roots ŝ±

1 = −1±
√

2. Only ŝ1 = ŝ+1 ∈ (0, 1).
(i) Assume that k < 0 (the data are co-linearly ordered). The latter shows

that cumulative chord ŝcc
1 (see the linear factor in (20)) is a critical point of Ẽd

0 .
To find the remaining critical points of Ẽd

0 the real roots of M0(s) = −3k +
6ks+s2(4−k)+s3(2−2k) over (0, 1) are to be examined. Note that as M0(0) =
−3k > 0 (as k < 0) and M0(1) = 6 > 0 for the existence of one critical point ŝ1
of Ẽ ′

0 (i.e. here with ŝ1 = ŝcc
1 ) it suffices to show that M0 is positive at any of

its critical points û0 ∈ (0, 1) (i.e. at points where M ′
0(û0) = 0 with M0(û0) > 0).

Indeed M ′
0(u) = 0 iff 3k+u(4−k)+u2(3−3k) = 0. The discriminant (as k < 0)

Δ̄(k) = 16 − 44k + 37k2 > 0 and thus there are two different real roots û−
0 and

û+
0 (both depending on parameter k < 0). Since (−k)/(k − 1) < 0 (again as

k < 0) by Vieta’s formula both roots are of opposite signs. Thus as

û±
0 = û±

0 (k) =
k − 4 ±

√
Δ

6(1 − k)
(21)

we have û−
0 < 0 (since for k < 0 we have k − 4 −

√
Δ < 0 and 6(1 − k) >

0). Hence û+
0 > 0 - this can be independently shown as being equivalent to

true inequality 36k(k − 1) > 0. But as M ′
0(0) = 6k < 0 and M ′

0(1) = 14 −
2k > 0 by Intermediate Value Theorem we have that û+

0 ∈ (0, 1) (and it is
a unique root of M ′

0(u) = 0 over (0, 1)). As also M ′
0(0) < 0 for u ∈ (0, û+

0 )
and M ′

0(0) > 0 for û ∈ (u+
0 , 1) we have minimum of M0 at û+

0 over interval
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(0, 1). Evaluating M0(û+
0 (k)) (see (21)) yields a function M̄0(k) = M0(û+

0 (k)) in
k (again use. e.g. Mathematica FullSimplify and Factor) which reads: M̄0(k) =

−1
54(k−1)2 (−64+426k−606k2+217k3+16

√
Δ̄(k)−44k

√
Δ̄(k)+37k2

√
Δ̄(k)). By

Taylor expansion we have f(x) =
√

1 + x = 1 + (1/2)x + (−1/(2(1 + ξ)3/2))x2

(with 0 < ξ < x if x > 0 and x < ξ < 0 if x < 0). Upon applying the
latter to

√
Δ̄(k) = 4

√
1 + (37/16)k2 − (11/4)k with x = (37/16)k2 − (11/4)k

we arrive at limk→0− M̄0(k) = 0. Again by Taylor expansion, the domineering
factor (recall for k ≈ O− we have |k| ≥ |k|α with α ≥ 1) in the expression
for M0(k) (inside the brackets) is a linear component 426k − 88k − 176k =
162k < 0, as k < 0 - (here the constant 64 is canceled). Thus M̄0(k) > 0,
for sufficiently small k < 0. To show that limk→−∞ M̄0(k) = −∞, it suffices
to show limk→−∞((217k3 + 37k2

√
Δ̄(k))/(k − 1)2) = +∞. The latter follows

upon observation that (for k < 0) 217k3 + 37k2
√

Δ̄(k) > 217k3 + 37k2
√

36k2 =
217k3+222k2|k| = −5k3. The Mathematica function NSolve applied to M̄0(k) =
0 yields two real roots i.e. k1 = 0 (excluded as x̃0 = kx̃2) and k2 ≈ −26.1326.
Next M̄ ′

0(k) = 1
54(k−1)3 (−298+786k−651k2 +217k3 +34

√
Δ̄(k)−89k

√
Δ̄(k)+

37k2
√

Δ̄(k)). Again, Solve applied to M̄ ′
0(k) = 0 yields one root −4.61116.

Combining the latter with the plotted graph of M̄0(k) renders for each k ∈ (k2, 0)
the following: M̄0 > 0 and thus M0 > 0. Hence, for each k ∈ (k2, 0) there is only
one critical point of Ẽd

0 over (0, 1) - i.e. cumulative chord ŝcc
1 = |k|/(1 + |k|).

Hence if any iterative optimization scheme for Ẽd
0 is invoked a good initial guess

can be an arbitrary number from the interval (0, 1) (due to unimodality of Ẽd
0 ).

In case of small perturbations of (18) one expects that Ẽδ
0 preserves a similar

pattern as its unperturbed counterpart Ẽ0
0 = Ẽd

0 (see Proposition 1). Thus, for
arbitrary k2 < k < 0, a good initial guess to optimize Ẽδ

0 should be chosen in
the proximity of cumulative chord ŝcc

1 (k).
Clearly for k = k2 ≈ −26.1326 (the second case when k = 0 is excluded)

M0(û+
0 (k2)) = M̄0(k2) = 0 and M ′

0(û
+
0 (k2)) = M ′

0(k2) = 0 (see (21)). Thus we
have one additional critical point û+

0 (k2) ∈ (0, 1) of Ẽd
0 . Hence for k2 there are

exactly two critical points of Ẽd
0 over (0, 1) - one is a cumulative chord ŝcc

1 (k2) ∈
(0, 1) (a global minimum) and the second one ŝ01 = u+

0 (k2) ∈ (0, 1). Substituting
k2 ≈ −26.1326 into (19) and (21) gives û+

0 (k2) ≈ 0.813606 < ŝcc
1 (k2) = (|k2|/(1+

|k2|)) ≈ 0.963144. Of course u+
0 (k2) must be a a saddle-like point of Ẽd

0 - recall
here that Ẽd

0 (ŝcc
1 (k2)) = 0 (attained global minimum), which is smaller than

Ẽd
0 (û+

0 (k2)) ≈ 12083.9‖x̃2‖2 > 0 and that lims→0+ Ẽd
0 (s) = lims→1+ Ẽd

0 (s) =
+∞. This together with non-negativity of Ẽd

0 and its smoothness over (0, 1)
implies that û+

0 (k2) is a saddle-like point of Ẽd
0 . Thus for k = k2 if any iterative

optimization scheme for Ẽd
0 is to be invoked a good initial guess can be an

arbitrary number from the interval (ŝcc
1 (k2), 1). As for small perturbations of

(18) one expects the energy Ẽδ
0 to have as similar pattern as its unperturbed

counterpart Ẽ0
0 = Ẽd

0 . Thus, for k = k2, a good initial guess to optimize Ẽδ
0

should also be taken closely to cumulative chord ŝcc
1 (k2) and preferably from

(ŝcc
1 (k2), 1).
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For k ∈ (−∞, k2) we have M0(û+
0 (k)) = M̄0(k) < 0. Thus for each k ∈

(−∞, k2), as M0(0) > 0, M0(1) > 0, M0(û+
0 (k)) < 0 and M ′

0 vanishes over (0, 1)
only at û+

0 (k) ∈ (0, 1), there are exactly two different additional critical points
ŝ10(k), s20(k) ∈ (0, 1) (say ŝ10(k) < ŝ20(k)) of Ẽd

0 (as M0(s
1,2
0 (k)) = 0). Clearly

the inequalities hold ŝ10(k) < û+
0 (k) < ŝ20(k). Recall that the global minimum

of Ẽd
0 is attained at cumulative chord ŝcc

1 , where Ẽd
0 vanishes. Note also that

here ŝcc
1 ≈ 1 as ŝcc

1 (k) = |k|/(1 + |k|) ∈ (|k2|/(1 + |k2|), 1) = (0.963144, 1)
for k ∈ (−∞, k2). To show the latter use the facts that f(x) = (x/(1 + x)) is
increasing and 0 ≤ f(x) < 1 for 0 ≤ x ≤ 1 and limx→1− f(x) = 1. In addition, as
M0(ŝcc

1 (k)) = (3−4k)k/(−1+k)2 
= 0 for k ∈ (−∞, k2), and M0(ŝ
1,2
1 (k)) = 0 we

have ŝcc
1 (k) 
= s1,2

0 (k). In Remark 2 we will show that none of ŝ1,2
0 can be saddle-

like points (for k ∈ (−∞, k2)). Thus as lims→0+ Ẽd
0 (s) = lims→1− Ẽd

0 (s) = +∞
and Ẽd

0 (ŝcc
1 (k)) attains its global minimum both ŝ1,2

0 must be on one side of ŝcc
1 (as

otherwise that would imply both ŝ10 and ŝ20 to be saddle-like points, since no more
than 3 critical points of Ẽd

0 over (0, 1) exist). Thus to prove that û1,2
0 (k) < ŝcc

1 (k)
its suffices to show ŝ10(k) < ŝcc

1 (k). For the latter (as ŝ10(k) < û+
0 (k)) it is sufficient

to prove û+
0 (k) < ŝcc

1 (k) (where k ∈ (−∞, k2)). A simple inspection shows that
û+
0 (k) = (4 − k −

√
16 − 44k + 37k2)/(6(k − 1)) < ŝcc

1 (k) = |k|/(1 + |k|) holds
as this requires 4 − 7k >

√
Δ which is true since k(k − 1) > 0 (with k < 0).

Thus at ŝ10(k) (at ŝ20(k)) we have a local minimum (maximum) of Ẽd
0 . Again, if

any iterative optimization scheme for Ẽd
0 is invoked a good initial guess can be

an arbitrary number from the interval (ŝcc
1 , 1). For small perturbations of (18)

one expects the energy Ẽδ
0 to preserve a pattern of its unperturbed counterpart

Ẽ0
0 = Ẽc

0 (see Proposition 1). Consequently, for any k ∈ (−∞,−26.1326), a good
initial guess can be taken as a close to ŝcc

1 (k) and from the interval (ŝcc
1 (k), 1).

(ii) Assume now that k > 0 (the data are co-linearly unordered). As here
sL
1 = −k/(1 − k) /∈ (0, 1) (see (20)) the critical points of Ẽd

0 coincides with the
roots of a cubic Nc(s) = −3k + 6ks + s2(4 − k) + s3(2 − 2k).

Evidently for that for 0 < k < 1 there is only one change of signs of the
coefficients (three are positive and one is negative). By Fermat sign principle
there exists up to one positive root of Nc(s). The analysis from Sect. 3 assures
the existence of at least one critical point of Ẽ0 over (0, 1) (Ẽd

0 is a special case
of Ẽ0). Thus for 0 < k < 1 there exists exactly one critical point ŝ1 ∈ (0, 1) (a
global minimum) of Ẽd

0 .
The case k = 1 (with x̃2 = x̃0) already analyzed yields one critical point

ŝ1 = −1 +
√

2 ∈ (0, 1) of Ẽd
0 .

Finally, for k > 1 as Nc(0) = −3k < 0, Nc(1) = 6 > 0 and Nc ∈ C∞,
it suffices to show that there is up to one root of N ′

c(u) = 0, for u ∈ (0, 1).
Of course no roots for N ′

c(u) = 0 yields strictly increasing Nc(s) over (0, 1)
(as Nc(0) < 0 and Nc(1) > 0) and hence exactly one critical point ŝ1 ∈ (0, 1)
(a global minimum) of Ẽd

0 . The existence of exactly one root u1 ∈ (0, 1) for
N ′

c(u) = 0, still yields (since Nc(0) < 0 and Nc(1) > 0) exactly one root ŝ1 ∈
(0, 1) of Nc(s) = 0 (this time Nc is not monotonic with the exception of the
case when ŝ1 = u1, i.e. when u1 is a saddle-like point of Nc). To show that
N ′

c(s) = 6k + 2s(4 − k) + 6s2(1 − k) = 0 has up to one root over (0, 1), note
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that as now 1−k < 0 we have lims→±∞N ′
c(s) = −∞. The latter combined with

N ′
c(0) = 6k > 0 assures the existence of exactly one negative and one positive

root N ′
c(s) = 0. This completes the proof.

Thus for k > 0 the energy Ẽd
0 has exactly one critical point ŝ1 ∈ (0, 1).

5 Perturbed Special Case

The case when {x̃0, x̃1 = 0, x̃2} and ṽ2 do not satisfy (18) is considered now.
Upon introducing a perturbation vector δ = (δ1, δ2) ∈ R

2m the question arises
whether a unimodality of Ẽd

0 = Ẽδ=0
0 (holding for special data (18)) extends to

the perturbed case i.e. to Ẽδ
0 . In doing so, assume the following holds:

x̃2 − x̃0 − ṽ2 = δ1 , x̃0 − kx̃2 = δ2 , (22)

(for some k 
= 0) with the corresponding Ẽδ
0 derived as in (16) (see also (23)).

For δ1 = δ2 = 0 ∈ R
m formulas (22) reduce into (18) (i.e. Ẽ0

0 = Ẽ0 derived
for (18)). For an explicit formula of Ẽδ

0 and Ẽδ′
0 we resort to (recalling (22)):

‖x̃0‖2 = k2‖x̃2‖2 + ‖δ2‖2 + 2k〈x̃2|δ2〉, ‖ṽ2‖2 = (1 − k)2‖x̃2‖2 + ‖δ1‖2 + ‖δ2‖2 +
2〈δ1|δ2〉 − 2(1 − k)〈x̃2|δ1〉 − 2(1 − k)〈x̃2|δ2〉, 〈ṽ2|x̃2〉 = (1 − k)‖x̃2‖2 − 〈x̃2|δ1〉 −
〈x̃2|δ2〉, 〈ṽ2|x̃0〉 = (k − k2)‖x̃2‖2 + (1 − 2k)〈x̃2|δ2〉 − k〈x̃2|δ1〉 − 〈δ1|δ2〉 − ‖δ2‖2
and 〈x̃0|x̃2〉 = k‖x̃2‖2 + 〈x̃2|δ2〉. Substituting the latter into the formula for Ẽ0

(here s1 = s) (see (16)) yields (we use here Mathematica function FullSimplify)

Ẽδ
0 (s) =

−1
(s − 1)3s2(s + 3)

(12(‖δ2‖2(s − 1)2 + k2‖x̃2‖2(s − 1)2

+ s(〈δ1|δ2〉(s − 1)2(1 + s) + s(‖x̃2‖2 + ‖δ1‖2(s − 1)2 + 〈x̃2|δ1〉
− s2〈x̃2|δ1〉 − 2〈x̃2|δ2〉) + 2〈x̃2|δ2〉) + k(s − 1)(−2‖x̃2‖2 s

+ (s − 1)(s(1 + s)〈x̃2|δ1〉 + 2〈x̃2|δ2〉)))) (23)

which upon simplification yields Ẽδ
0 (s) = (−12M δ

0 (s))/((s − 1)3s2(s + 3)), where
M δ

0 is the 4-th order polynomial in s with the coefficients (use Mathemat-
ica functions Factor and CoefficientList): a0,δ

0 = ‖δ2‖2 + k2‖x̃2‖2 + 2k〈x̃2|δ2〉,
a0,δ
1 = 〈δ1|δ2〉 − 2‖δ2‖2 + 2k‖x̃2‖2 − 2k2‖x̃2‖2 + k〈x̃2|δ1〉 + 2〈x̃2|δ2〉 − 4k〈x̃2|δ2〉,

a0,δ
2 = −〈δ1|δ2〉 + ‖δ1‖2 + ‖δ2‖2 + ‖x̃2‖2 − 2k‖x̃2‖2 + k2‖x̃2‖2 + 〈x̃2|δ1〉 −

k〈x̃2|δ1〉 − 2〈x̃2|δ2〉 + 2k〈x̃2|δ2〉, a0,δ
3 = −〈δ1|δ2〉 − 2‖δ1‖2 − k〈x̃2|δ1〉 and a0,δ

4 =
〈δ1|δ2〉 + ‖δ1‖2 − 〈x̃2|δ1〉 + k〈x̃2|δ1〉 with the corresponding derivative (use
symbolic differentiation in Mathematica and apply Factor and CoefficientList)
Ẽδ′
0 (s) = (12N δ

0 (s))/((s − 1)4s3(s + 3)2), where N δ
0 is the 6-th order polyno-

mial in s with the coefficients: b0,δ
0 = −6‖δ2‖2 − 6k2‖x̃2‖2 − 12k〈x̃2|δ2〉, b0,δ

1 =
−3〈δ1|δ2〉 + 18‖δ2‖2 − 6k‖x̃2‖2 + 18k2‖x̃2‖2 − 3k〈x̃2|δ1〉 − 6〈x̃2|δ2〉 + 36k〈x̃2|δ̃2〉,
b0,δ
2 = 10〈δ1|δ2〉 − 14‖δ2‖2 + 20k‖x̃2‖2 − 14k2‖x̃2‖2 + 10k〈x̃2|δ1〉 + 20〈x̃2|δ2〉 −

28k〈x̃2|δ2〉, b0,δ
3 = −6〈δ1|δ2〉 + 2‖δ1‖2 − 2‖δ2‖2 + 8‖x̃2‖2 − 6k‖x̃2‖2 − 2k2‖x2‖2 +

8〈x̃2|δ1〉 − 6k〈x̃2|δ1〉 − 6〈x̃2|δ2〉 − 4k〈x̃2|δ2〉, b0,δ
4 = −4〈δ1|δ2〉 − 2‖δ1‖2 + 4‖δ2‖2 +

4‖x̃2‖2 − 8k‖x̃2‖2 + 4k2‖x̃2‖2 − 2〈x̃2|δ1〉 − 4k〈x̃2|δ1〉 − 8〈x̃2|δ2〉 + 8k〈x̃2|δ2〉,
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b0,δ
5 = 〈δ1|δ2〉 − 2‖δ1‖2 − 4〈x̃2|δ1〉 + k〈x̃2|δ1〉 and b0,δ

5 = 2〈δ1|δ2〉 + 2‖δ1‖2 −
2〈x̃2|δ1〉 + 2k〈x̃2|δ1〉.

The following result holds (the proof is straightforward):

Proposition 1. Assume that for unperturbed data (18) the corresponding
energy Ẽ0

0 has exactly one critical point ŝ0 ∈ (0, 1) at which Ẽ0′′
0 (ŝ0) > 0.

Then there exists sufficiently small ε0 > 0 such that for all ‖δ‖ < ε0 (where
δ = (δ1, δ2) ∈ R

2m) the perturbed data (22) yield the energy Ẽδ
0 with exactly one

critical point ŝδ
0 ∈ (0, 1) (a global minimum ŝδ

0 of Ẽδ
0 is sufficiently close to ŝ0).

Remark 2. The condition Ẽ0′
0 (s) = Ẽ0′′

0 (s) = 0 excludes among all possi-
ble saddle-like points of Ẽ0

0 = Ẽd
0 (which as shown, e.g. happens for k =

k2 ≈ −26.1326). In a search for other possible saddle-like points for k ≤ k2
varying we eliminate variable s Ẽ0′

0 (s) = 0 and Ẽ0′′
0 (s) = 0 by resorting to

Mathematica function Eliminate. Indeed upon symbolic differentiation of Ẽδ′
0

(and then putting δ = 0) with Mathematica function FullSimplify we obtain
Ẽ0′′
0 (s) = −24‖x̃2‖2

(s−1)5s4(s+3)3 (27k2 + (18k − 102k2)s + (−72k + 120k2)s2 + (96k −
12k2)s3+(46+28k−53k2)s4+(40−50k+10k2)s5+(10−20k+10k2)s6. Using Elim-
inate function in Mathematica applied to Ẽ0′

0 (s) = Ẽ0′′
0 (s) = 0 (in fact applied to

the respective numerators of the first and the second derivatives of Ẽ0
0 ) leads to

576k3−4209k4+10636k5−11277k6+4152k7+176k8 = 0 which when factorized
(use e.g. Mathematica Factor) equals to k3(−3+4k)2(64−297k+276k2+11k3) =
0. Mathematica function NSolve yields four non-negative roots k = 0, k = 3/4,
k = 0.300288 and k = 0.741423 (excluded as k ≤ k2) and one negative
k = −26.1326 = k2. The latter is not only consistent with the previous analysis
but also implies that the saddle-like point can only occur for k = k2. This fact
was used when we analyzed the critical points of Ẽ0

0 for different k < 0. ��

Example 1. Let x̃0, x̃1 = 0, x̃2 ∈ E
m be co-linearly ordered i.e. x̃0 = kx̃2, for

some k < 0 and ‖x̃2‖ = 1. The energy Ẽd
0 with ‖x̃2‖ = 1 reads here as Ẽd

0 (s) =
(−12((k+s−ks)2))/((s−1)3s2(3+s)). The plot of Ẽd

0 with k = −4,−15,−25 ∈
(k2 ≈ −26.1326, 0) is shown in Fig. 1. As already proved, in this case there is
only one critical point of Ẽd

0 at cumulative chords ŝcc
1 (k) = 4/5 = 0.6, ŝcc

1 (k) =

Fig. 1. The graph of Ẽd
0 for different x̃0, x̃1, x̃2 ∈ E

m co-linearly ordered with varying
k ∈ (k2, 0) and ‖x̃2‖ = 1: (a) k = −4 and a global minimum at ŝcc

1 (k) = 4/5 = 0.8, (b)
k = −15 and a global minimum at ŝcc

1 (k) = 15/16 ≈ 0.9375, (c) k = −25 and a global
minimum at ŝcc

1 (k) = 25/26 ≈ 0.961538.
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Fig. 2. The graph of Ẽd
0 for x̃0, x̃1, x̃2 ∈ E

m co-linearly ordered with varying k ∈
(−∞, k2] and ‖x̃2‖ = 1: (a) k = k2 and a global minimum at ŝcc

1 (k2) = (|k2|/(1+|k2|)) ≈
0.963144 and saddle-like point at ŝ01(k2) ≈ 0.813607, (b) k = −35 and a global minimum
at ŝcc

1 (k) = 35/36 ≈ 0.972222 and two other critical points i.e. with local maximum
ŝ20 ≈ 0.897748 and with local minimum ŝ10 ≈ 0.743991, (c) k = −65 and global minimum
at ŝcc

1 (k) = 65/66 ≈ 0.984848 and two other critical points i.e. with local maximum
ŝ20 ≈ 0.950547 and with local minimum ŝ10 ≈ 0.711383.

15/16 ≈ 0.9375 and ŝcc
1 (k) = 25/26 ≈ 0.961538, respectively (where Ẽd

0 (scc
1 (k)) =

0). Similarly the plot of the corresponding energy Ẽd
0 with k = k2 ≈ −26.1326 is

shown in Fig. 2a). Here there are two critical points of Ẽd
0 i.e. a global minimum at

cumulative chord ŝcc
1 (k2) ≈ 26.1326/27.1326 ≈ 0.963144 (where Ẽd

0 (ŝcc
1 (k2)) = 0)

and a saddle-like point ŝ01(k2) ≈ 0.813607 (with Ẽd
0 (ŝ01(k2)) ≈ 12083.9). Finally,

the plot of Ẽd
0 with k = −35,−65 ∈ (−∞, k2) is shown Fig. 2b)–c). As established

above, a single global minimum Ẽd
0 is again taken at cumulative chord ŝcc

1 (k) =
35/36 ≈ 0.972222 (or at ŝcc

1 (k) = 65/66 ≈ 0.984848) with Ẽd
0 (ŝcc

1 (k)) = 0.
There are other two critical points: local maximum at ŝ20(k) ≈ 0.897748 with
Ẽd
0 (ŝ20(k)) ≈ 25683.8 (or at ŝ20(k) ≈ 0.950547 with Ẽd

0 (ŝ20(k)) ≈ 142466) and local
minimum at ŝ10(k) ≈ 0.743991 with Ẽd

0 (ŝ10(k)) ≈ 23297 (or at ŝ21(k) ≈ 0.711383
with Ẽd

0 (ŝ21(k)) ≈ 86569.7). Note that for k = 35, 64 as already proved the critical
points and cumulative chord ŝcc

1 (k) satisfy ŝ1,2
0 (k) < ŝcc

1 (k) and ŝcc
1 (k) ≈ 1.

Let now x̃0, x̃1 = 0, x̃2 ∈ E
m be co-linearly unordered i.e. x̃0 = kx̃2, for some

k > 0 (here also ‖x̃2‖ = 1). The corresponding energy Ẽd
0 coincides with the one

derived for k < 0. The plot of Ẽd
0 with k = 1/2, 1, 5 is shown in Fig. 3. As proved

for k > 0 there is only one critical point (a global minimum) of Ẽd
0 different

Fig. 3. The graph of Ẽd
0 for x̃0, x̃1, x̃2 ∈ E

m co-linearly unordered with varying k ∈
(0, +∞) and ‖x̃2‖ = 1: (a) k = 1/2 and a global minimum at ŝ1 ≈ 0.346272 different
than ŝcc

1 (k) = (|k|/(1 + |k|)) = 1/3 ≈ 0.333333, (b) k = 1 and a global minimum at
ŝ1 = 1 −

√
2 ≈ 0.414214 different than ŝcc

1 (k) = 1/2, (c) k = 5 and global minimum at
ŝ1 ≈ 0.556194 different than ŝcc

1 (k) = 5/6 ≈ 0.833333.
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than cumulative chords ŝcc
1 (k) = 1/3 ≈ 0.333333, ŝcc

1 (k) = 1/2 and ŝcc
1 (k) =

5/6 ≈ 0.833333, respectively. For k = 0.5 (see Fig. 3a)) the global minimum
ŝ1 ≈ 0.346272 yields Ẽd

0 (ŝ1) ≈ 48.5065 < Ẽd
0 (ŝcc

1 ) = 48.6. For k = 1 (see Fig. 3b))
the global minimum ŝ1 ≈ 0.414214 yields Ẽd

0 (ŝ1) ≈ 101.912 < Ẽd
0 (ŝcc

1 ) ≈ 109.714.
Note that here as proved ŝ1 = −1+

√
2. Finally, for k = 5 (see Fig. 3c)) the global

minimum ŝ1 ≈ 0.556194 yields Ẽd
0 (ŝ1) ≈ 961.081 < Ẽd

0 (ŝcc
1 ) = 2704.7.

Consider the unperturbed planar data x̃2 = (3/5, 4/5), x̃0 = (−12/5,−16/5),
ṽ2 = (3, 4) clearly satisfying (18) with k = −4 ∈ (k2 ≈ −26.1226, 0). The graph
of Ẽ0

0 is shown in Fig. 1a). We perturb now the co-linearity of x̃0, x̃1 = 0, x̃2

by taking x̃δ2
0 = kx̃2 + δ2 = x̃0 + δ2, for some δ2 ∈ R

2 (and any fixed k < 0).
In this example the second interpolation point x̃2 remains fixed with ‖x̃2‖ = 1.
Similarly we violate the first condition in (18) by choosing a new velocity ṽδ1,δ2

2

and perturbation δ1 ∈ R
2 such that x̃2 − x̃δ2

0 − ṽδ1,δ2
2 = δ1 holds (i.e. ṽδ1,δ2

2 =
ṽ0−(δ1+δ2)). For k = −4 and δ1 = (−1/5, 1), δ2 = (1,−2/5) (small perturbation
with (‖δ1‖, ‖δ2‖) = (

√
26/25,

√
29/25)) the data x̃2, x̃δ2

0 = (−1 2
5 ,−3 3

5 ) and
ṽδ1,δ2
2 = (11/5, 17/5) satisfy (22). Similarly, for k = −4 and δ1 = (−4, 1), δ2 =

(7,−2) (big perturbation with (‖δ1‖, ‖δ2‖) = (
√

17,
√

53)) the data x̃2, x̃δ2
0 =

(43
5 ,−5 1

5 ) and ṽδ1,δ2
2 = (0, 5) satisfy (22). Lastly, for k = −4 and δ1 = (−12, 1),

δ2 = (−11,−8) (large perturbation with (‖δ1‖, ‖δ2‖) = (
√

145,
√

185)) the data
x̃2, x̃δ2

0 = (−13 2
5 ,−11 1

5 ) and ṽδ1,δ2
2 = (26, 11) satisfy (22). Comparing the graph

of Ẽd
0 from Fig. 1a) with the graphs of Ẽδ

0 from Fig. 4 shows that unimodality of
Ẽd
0 is preserved for substantial perturbations δ 
= 0. This trend repeats for other

k ∈ (k2, 0)∪ (0,∞) which indicates that in practice the perturbation δ = (δ1, δ2)
from Proposition 1 can be taken as reasonably large. ��

Fig. 4. The graph of Ẽδ
0 for k = −4, x̃0, x̃

δ2
2 , ṽδ1,δ2

2 ∈ R
2 and for (a) δ1 = (−1/5, 1)

and δ2 = (1, −2/5) yields a global minimum at ŝ1(k) ≈ 0.76615 �= ŝcc
1 (k) ≈ 0.79435,

(b) δ1 = (−4, 1) and δ2 = (7, −2) yields a global minimum at ŝ1(k) ≈ 0.755816 �=
ŝcc
1 (k) ≈ 0.874097, (c) δ1 = (−12, 1) and δ2 = (−11, −8) yields a global minimum

at ŝ1(k) ≈ 0.654924 �= ŝcc
1 (k) ≈ 0.945841, and two other critical points i.e. a local

minimum at ŝ10(k) ≈ 0.944104 and a local maximum at ŝ20(k) ≈ 0.922.

6 Conclusions

The optimization task (1) is reformulated into (5) (and (16)) to minimize a highly
non-linear multivariate function J0 depending on knots Tint. One of the numeri-
cal scheme to handle the latter is a Leap-Frog. The generic case of this algorithm
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is studied in [5]. Here, we complement the latter by analyzing non-generic case
of Leap-Frog and formulate sufficient conditions preserving unimodality of (16).
In doing so, first a special case of data (18) is addressed. Subsequently its per-
turbed analogue (22) is covered. Example shows that unimodality for (18) (if it
occurs) is in practice preserved by large perturbations (22). The performance of
Leap-Frog compared with Newton’s and Secant Methods is reported in [2,3,7].
More applications of Leap-Frog are discussed in [10–12]. For related work on
fitting (sparse or dense) reduced data Mn see e.g. [4,6,8].
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