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Abstract. We propose and test multiple neuro-symbolic methods for
sentiment analysis. They combine deep neural networks – transform-
ers and recurrent neural networks – with external knowledge bases. We
show that for simple models, adding information from knowledge bases
significantly improves the quality of sentiment prediction in most cases.
For medium-sized sets, we obtain significant improvements over state-
of-the-art transformer-based models using our proposed methods: Tai-
lored KEPLER and Token Extension. We show that the cases with the
improvement belong to the hard-to-learn set.
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1 Introduction

Sentiment analysis is an NLP task performed in industrial or marketing solu-
tions. It aims to determine how customers (authors of textual opinions) react to
given products or services. In the classical symbolic approach, a text is evaluated
using external knowledge bases, e.g., sentiment dictionaries [3,4]. Then, words
from the text are linked to positive, negative, or neutral polarization derived
from such dictionaries. The final sentiment is an aggregation over all words.
State-of-the-art sentiment analysis methods are mainly based on transformers.
Such language models contain millions of parameters but also require large com-
putational resources. Hence, their simplified methods, e.g., BiLSTM [15,19], are
often used in practice. We refer to both of these approaches as our baselines.
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In this paper, we present and validate neuro-symbolic solutions to senti-
ment analysis that combine both approaches: deep neural networks and symbolic
inference. These methods use vector representations of text from deep language
models and external knowledge bases in the form of, e.g., lexicons (sentiment),
knowledge graphs (WordNet), and lexico-syntactic patterns (sentiment modifi-
cation rules). Our main contributions are: (1) design or adaptation of multiple
neuro-symbolic methods, (2) comparing our approaches against methods without
knowledge bases; (3) prove that for simpler models, the knowledge base signifi-
cantly improves the prediction quality; (4) showing specific cases of medium-sized
sets for which knowledge base information significantly improves the prediction
quality for the current transformer-based SOTA models; (5) evidence that neuro-
symbolic approaches improve reasoning mainly for hard-to-learn cases.

2 Related Work

Sentiment analysis (SA) is a standard classification task aiming to decide
whether the presented text has a positive, negative or neutral polarity. Some
works treat SA as a multi-class prediction problem when data are focused on
ranking system (e.g. 5-star). In the past, standard machine learning methods
were applied to SA such as decision tree, SVM, Naive Bayes or random for-
est. However, in recent years we are observing the growing popularity of deep-
learning (DL) models which proved to be very succesfull.

Standard Deep-Learning Approach. Different types of DL architectures
were exploited in sentiment classification. We can mention here CNN, LSTM,
RNN, GRU, Bi-LSTM and their variations with attention mechanism [11]. Most
of then were trained in a supervised setting. However, despite the promising
results achieved by these models, vulnerabilities have been observed such as poor
knowledge propagation of cross-domain sentiment analysis in online systems [2],
mainly due to lack of enough manual annotated datasets for all domains.

Neuro-Symbolic Approach. Many lexicon resources for various languages
have been developed. Princeton WordNet (PWN) is a major one for English
but similar knowledge bases were created for other languages too. Some con-
tain emotive annotations for specific word meanings assigned by people (e.g.
SentiWordNet). In addition, NLP tools were created to analyse data in a man-
ner similar to human understanding (POS – part-of-speech tagger, WSD – word
sense disambiguation). Given the complexity of the SA task, which combines nat-
ural language processing, psychology, and cognitive science, using such external
knowledge processed according to human logic could improve results of standard
DL methods. Moreover, it can imply more explainable predictions. Some works
have been done in that field. [8] incorporated graph-based ontology Concept-
Net into sentiment analysis enriching the text semantics. Apart from knowledge
graph, [25] added a WSD process into social media posts processing. A context-
aware sentiment attention mechanism acquiring the sentiment polarity of each
word with its POS tag from SentiWordNet was studied in [13]. The pre-training
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process very rarely respects sentiment-related knowledge. If so, the problem of
proper representation of sentiment words and aspect-sentiment pairs needs to be
solved. To address it Sentiment Knowledge Enhanced Pre-training (SKEP) [24]
has been proposed. It uses sentiment masking and constructs three sentiment
knowledge prediction objectives to embed this information at the word- and
aspect-level into a pre-trained representation.

3 Datasets

3.1 plWordNet and plWordNet Emo

plWordNet is a very large lexico-semantic network for Polish constructed on
the basis of the corpus-based wordnet development method, according to which
lexical units1 (henceforth LUs) are the basic building blocks of the wordnet [7].
LUs of very similar meaning are grouped into synsets (sets of synonyms) – each
LU belongs to only one synset. The most recent version describes ≈295k LUs
for ≈194k lemma of four PoS (part of speech) grouped into ≈228k synsets2 [1].

Emotive annotation was performed on the level of LUs and LU use examples
[27]. Context-independent emotive characterisation of an LU was obtained by
comparing its authentic use in text corpora. The main distinction is between
neutrality vs polarity of LUs. Polarised LUs are assigned the intensity of the
sentiment polarisation, basic emotions and fundamental human values. The lat-
ter two help to determine the sentiment polarity and its intensity expressed in
the 5 grade scale: strong or weak vs negative and positive, plus the ambiguous
tag. Annotator decisions are supported by text examples that must be included
in the annotations. Due to the compatibility with other wordnet-based anno-
tations, eight basic emotions3 recognised by Plutchik [20] were used. One LU
can be assigned more than one emotion and, as a result, complex emotions are
represented by using the same eight-element set. The 12 fundamental human
values4 postulated by Puzynina [21] link the emotive state of the speaker to
the evaluative attitude. The annotations were done by two annotators each (a
linguist and a psychologist) according to the 2+1 scheme.

3.2 PolEmo

PolEmo 2.0 dataset [12,15] is a sentiment analysis task benchmark dataset.
It consists of more than 8,000 consumer reviews, containing more than 57,000
sentences. Texts come from four domains: hotels, medicine, products, and school.
Each review was annotated with sentiment in a 2+1 scheme at the text level
and the sentence level. In this work, only text level examples were used. There
are the following sentiment classes: positive, negative, neutral, and ambivalent.

1 Triples: lemma, Part of Speech (PoS) and sense identifier.
2 http://plwordnet.pwr.edu.pl.
3 Joy, fear, surprise, sadness, disgust, anger, trust and anticipation.
4 Utility, truth, knowledge, beauty, happiness, futility, harm, ignorance, error, ugliness.

http://plwordnet.pwr.edu.pl
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The obtained Positive Specific Agreement (PSA) [9] was 90% at the text level
and 87% at the sentence level. PolEmo 2.05 is available under an MIT open
license.

3.3 Preprocessing

All texts from PolEmo were tokenized, lemmatized, and tagged using CLARIN
PoS tagger6. Word sense disambiguation [10] (WSD7) was performed to identify
the appropriate LU belonging to that token. Next plWordNet Emo was used to
annotate words with sentiment, basic emotions and fundamental human values
(valuations). Additionally, we also propagated sentiment and emotion annota-
tions from wordnet to words that originally did not have this annotation in the
plWordNet Emo. It required training a regressor based on fastText model [6]
using emotive dimensions from plWordNet Emo aggregated per lemma (emo-
tions propagated). Data annotation statistics are presented in Table 1.

The example pipeline for combining text with a knowledge base is shown
in Fig. 1. It tokenizes text and matches words with their correct meanings in
Wordnet. Furthermore, information on sentiment and emotions from Wordnet
annotations (WordnetEmo) is added to the text at the word sense level using the
EMOCCL tool. The emotional Wordnet annotation is aggregated at the word
lemmas level and added to the text (lemma lexicon).

Fig. 1. Baseline approach (ML) vs. neuro-symbolic approach (neuro-symbolic ML).
The blue colour on the diagram indicates neuro-symbolic part of the method. (Color
figure online)

5 https://clarin-pl.eu/dspace/handle/11321/710.
6 http://ws.clarin-pl.eu/tager.
7 http://ws.clarin-pl.eu/wsd.

https://clarin-pl.eu/dspace/handle/11321/710
http://ws.clarin-pl.eu/tager
http://ws.clarin-pl.eu/wsd
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Table 1. Token annotation coverage in preprocessed PolEmo2.0

Feature Train Dev Test

Sentiment (all) 28.3% 28.7% 28.4%

Sentiment (pos/neg) 9.2% 9.4% 9.4%

Basic emotions 8.3% 8.5% 8.5%

Valuations 8.6% 8.8% 8.7%

Emotion propagated 99.9% 99.9% 99.9%

4 Neuro-Symbolic Models

4.1 HB: HurtBERT Model

Fig. 2. HB: HurtBERT model.

HurtBERT [16] (Fig. 2) was proposed for the abusive language detection task.
Apart from the standard transformer-based text representation, it incorporates
knowledge from a lexicon [5]. Additional features are processed by a separate
branch and then are concatenated with a text representation before the clas-
sification layer. Lexical information can be utilized in two ways: (1) HB-enc:
HB-encoding using a simple frequency count for the lexicon categories; (2) HB-
emb: HB-embedding obtained with a LSTM network. The second method is
more expressive, as it takes token order into account. As the number of cate-
gories in plWordNet differs from the ones used in the original paper, we modified
the dimensionality of sentiment embedding layer accordingly.

4.2 TK: Tailored KEPLER Model

Tailored KEPLER model (Fig. 3) is an adaptation of KEPLER [26] which
incorporates information from a knowledge graph (KG) into a pretrained lan-
guage model (PLM) like BERT during fine-tuning. It is different to the original
KEPLER model where extra KE knowledge is used during pretraining stage
(unsupervised masked language modeling). Our Kepler approach is tailored to
single task, it utilizes extra knowledge during fine-tuning. To harness knowl-
edge from KG, its entities representation is obtained by encoding their text
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Fig. 3. Tailored KEPLER model. The same encoder is used to obtain embeddings for
KE loss and for the downstream task.

descriptions with PLM. Thus, PLM can be additionally learned with Knowledge
Embedding (KE) objective along with a task objective.

We used plWordNet as KG from which we extract relations between LUs and
between synsets. The relation facts are described by a triplet (h, r, t) where h,
t represent the head and the tail entities; r is a relation type from set R. After
discarding some types of relations (e.g., hyperonymy is symmetric to hyponymy),
48 types of relations remained.

We get the embeddings for heads and tails by encoding the corresponding
LUs descriptions with PLM. The relation types are encoded by a randomly
initialized, learnable embedding table. As KE loss, the loss from [22] is used.
It adopts negative sampling [18] and tries to minimize TransE distance for the
entities being in the relation and to maximize it for negative samples triplets.

To fine-tune the pretrained model, we applied multitask loss L = LKE+LNLP

where LNLP is loss for a downstream NLP task. We used only those triplets which
LUs are present in the downstream task training set and we clipped the number
of steps in each epoch to the size of the downstream task training set.

4.3 TE: Token Extension Model

The benefits of additional knowledge bases are best seen in simple language
models [17]. For this reason, fastText model for Polish language [14] and BiLSTM
model [15] working on the basis of embeddings per token derived from it has been
taken into consideration (Fig. 4). This approach allows to use the knowledge
base at the level of each token. Thus, we propose 3 variants: (1) baseline - which
uses token embedding only, (2) TE-original – where additional knowledge (as
a vector) from the wordnet is concatenated to the token embedding, and (3)
TE-propagated – using propagated data (Sect. 3.3) on all words in text.

4.4 ST(P): Special Tokens (with Positioning) Model

In transformer with Special Tokens (ST) model (Fig. 5) we added special BERT
tokens corresponding to emotions and sentiments. They are put after a word
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Fig. 4. TE: Token Extension model.

Fig. 5. ST: Special Tokens model.

which lemma is annotated with emotion or sentiment in plWordNet. It is a way
to harness emotive knowledge from plWordNet to Transformer. Exemplary input
can be in a form of: She was still weeping [SAD], despite the happy [JOY] end of
the movie. Since emotion tokens are marked as special tokens, they will not be
broken down into word pieces by tokenizer and their embedding vectors will be
initialized randomly. Since adding new tokens to the text breaks its sequentiality,
we test additional version of the model (STP: Special Tokens with Positioning) in
which we adjust the emotion token position indexes so that they are equal to the
lemma token position indexes they correspond to (e.g. Happy idx=1 [JOY] idx=1

and idx=2 amazed idx=3 [SURPRISED] idx=3 girl idx=4.). With this adjustment,
the emotional tokens will have the same positional embeddings as their corre-
sponding lemmas.

4.5 STN: Special Tokens from Numeric Data Model

STN method is an extension of ST method (same model as in Fig. 5) designed
for the cases when a lemma is annotated by many annotators. Lemma intensity
of emotion e can be expressed as fraction αe ∈ (0, 1) of annotation with emotion
e. Since not all LUs are annotated, a regression model is used to propagate
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these values to other lemmas. A special token for emotion e is put after a word
if its αe > T . In another variant, we add all found special tokens (without
replacement) in a text at its end. Threshold T can be either the same for all
emotions or individual value Te assigned to each emotion e as a quantile of
all αe values for lemmas in the train set. For STN method, the special token
embeddings for each emotion are initialized with an average of the embeddings
of all subword tokens obtained after tokenization of the emotion name. Adjusting
positional embedding proposed for ST method is not applied for STN.

4.6 SE: Sentiment Embeddings Model

Fig. 6. SE: Sentiment Embeddings model.

Both HurtBERT-embedding and HurtBERT-encoding aggregate additional
information at text level, which can limit the interaction between the text and
features obtained from plWordNet. To incorporate token-level lexical annota-
tions into a transformer, we add trainable sentiment embeddings as hidden rep-
resentations before the last transformer layer (Fig. 6). If the word consists of
multiple BPE parts, we add the embedding to all subword tokens. Augmented
representations are then passed to a classifier to compute the probability of
each sentiment class. The classifier consists of a dense layer followed by a soft-
max activation function. During the pretraining phase of HerBERT, there is no
additional lexical information. Adding the sentiment token in the second to last
layer of the transformer could corrupt the token representations. We consider
two variants: (1) SE: the last transformer block’s weights are left unchanged
and (2) SE-reset: the last transformer block’s weights are randomly initialized.
Random reinitialization of the last BERT layer is a common practice [28] and
can make it easier for the model to utilize additional features.
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5 Experimental Setup and Results

For each experimental setup, we compare a baseline neural model with its neuro-
symbolic extension. In each method (excluding TE), we used HerBERT as a
SOTA baseline for sentiment analysis performed on PolEmo 2.0 dataset. We test
the method on selected undersampled training datasets of different sizes. Both
baseline and neuro-symbolic models are trained using the same hyperparameters.
Some of the methods are adapted from other papers, so the baselines are not
identical in different setups in terms of hyperparameters. For each configuration,
the experiments are repeated 10 times.

5.1 TK: Tailored KEPLER Model

Fine-tuning is performed for 4 epochs with learning rate 5e-5, batch size 4 and
weight decay 0.01. Maximum sequence length is 256 and 32 for PolEmo texts
and for entities text representations, respectively. Results are presented in Fig. 8.
The statistical gains are obtained for the smaller training sets what shows that
the extra knowledge from KG helps when an amount of data is limited.

For the case where the difference between the baseline and TK was signif-
icant, both models were compared using the cartography method [23]. It uses

Fig. 7. Datamap [23] for the baseline model in Tailored Kepler (TK) setup. Green
colour indicates cases for which correctness cK of TK has a higher value than correct-
ness cH for the baseline. Gray examples have |cK − cH | ≤ 0.3 (small or no change).
Red instances mean that cK < cH . (Color figure online)
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model confidence, variability, and correctness over epochs to find which texts
are hard, easy or ambiguous to learn. The correctness specifies the fraction of
times the true label is predicted. The confidence is the mean probability of
the ground truth between epochs. The variability measures how indecisive the
model is. Figure 7 shows datamap for HerBERT. Colours of the points on the
diagram indicate if the instance is easier to learn for Tailored KEPLER than the
baseline (HerBERT). The diagram shows that adding extra knowledge improves
correctness for far more cases than it worsens. Moreover, the examples, which
are affected belong to hard-to-learn and ambiguous classes only.

Fig. 8. Results for Tailored KEPLER model.

5.2 TE: Token Extension Model

The models were trained for 25 epochs. The model performing best on the vali-
dation set was used for testing (maximum F1-macro). The results of the exper-
iments are presented in Fig. 9. The performance of models based on fastText
embeddings increases with the size of the training set. On 5 of the 6 dataset
sizes tested, the approach using additional data in the original (TE-orig) or
propagated form (TE-prop) was better than the baseline. For train sizes over
1,000, using propagated data proved to be the best possible approach.

Fig. 9. Results for Token Extension model.
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It is important to compare the running time of the TE model with that of
the example transformer-based (SE) model in Fig. 10. The performance of the
TE model (macro F1: 83%) is significantly worse by about 4 p.p. relative to the
SE model (macro F1: 87%). However, the inference time of the TE model for the
test set (3.6 s) is almost four times shorter than that of the SE model. https://
www.overleaf.com/project/620b8ae3cda06ae4691ba512.

Fig. 10. Inference time of Sentiment Embeddings (transformer-based) and Token
Extension (BiLSTM+fastText) neuro-symbolic models.

5.3 ST(P): Special Tokens (with Positioning) Model

The maximum tokenizer text length has been set to 512, so that adding new
emotional tokens does not require to truncate the text. The batch size was set
to 20. We used the Adam optimizer with the learning rate set to 2e-5 during
training. The models were trained for 5 epochs and the model with the smallest
validation loss was checkpointed and tested. The results are presented in Fig. 11.

Fig. 11. Special Token Model (ST) and ST with positional embeddings (STP).

ST and STP models achieve worse results than the baseline for smaller train
datasets (250 and 500 samples). For bigger train datasets, there are no significant
differences between the models.

https://www.overleaf.com/project/620b8ae3cda06ae4691ba512
https://www.overleaf.com/project/620b8ae3cda06ae4691ba512
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5.4 STN: Special Tokens from Numeric Data

We consider the following variant with in-text and at-end special tokens: (1)
no propagated data, T = 0.5; (2) propagated data, T = 0.6; (3) propagated
data, individual threshold Te equal to 0.75 qunatile. In each case, fine-tuning is
performed for 4 epochs with learning rate 5e-5, batch size 16, weight decay 0.01,
and maximum sequence length 512. Results are presented in Fig. 12.

Fig. 12. Results for Special Tokens for Numeric Data model.

The results do not show significant improvements for each STN method. In
the case of in-text special tokens, the results are usually worse. For at-end-of-text
special tokens performance is very similar to the baseline.

5.5 HB: HurtBERT Model and SE: Sentiment Embeddings Model

Fig. 13. Results for HurtBERT-encoding, HurtBERT-embeddings, Sentiment Embed-
ding and Sentiment Embedding Reset models.

Models are fine-tuned using AdamW optimizer with learning rate 1e-5, linear
warmup schedule, batch size 32, and maximum sequence length 256 for 30 epochs
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and the best model is chosen according to a validation F-score. Results are
presented in Fig. 13. In lower data regimes (250 and 500 samples), there may
not be enough data to learn embeddings of sentiment features, hence the similar
performance. For larger datasets, the additional information from a knowledge
base is outweighed by a textual information. Our experiments do not show a
significant improvement over a baseline, both for HurtBERT and the proposed
SE method. Texts in PolEmo dataset are complex and aggregating additional
lexical features on the level of a whole text is not sufficient.

6 Conclusions

We designed and adapted multiple neuro-symbolic methods. The additional
knowledge in most transformer-based neuro-symbolic models does not lead to
improvement in most cases. For the smallest variants of datasets (training
dataset: 250 texts), it can even make the training process more unstable and
degrade the model quality (ST*, HB*, SE*). Adding special tokens inside the
text is not beneficial for pretrained BERT models because it damages the nat-
ural structure of the text. It is not the case for tokens added at the end of the
text, but still no performance gain is observed. It can be caused by the fact that
the considered PolEmo dataset has high PSA, so the knowledge encompassed in
the pretrained HerBERT model is sufficient to obtain very good results.

However, for small and medium-sized datasets, our Tailored KEPLER neuro-
symbolic transformer-based model produced statistically significant gains. It also
allowed to obtain better and more stable results. Analysis of these cases shows
performance gains for examples belonging to ambivalent sentiment class. We
examined in which cases additional knowledge improved the quality of inference,
Fig. 7. The vast majority of these cases were identified by the baseline model as
hard-to-learn.

A key finding of the study is that the knowledge base significantly improves
the quality of simple models such as Token Extension, Fig. 10. Compared to
transformer-based models, we obtain an almost fourfold reduction in inference
time, at the cost of a significant but relatively small decrease in quality (4 pp.).
For the TK model, the quality gain due to additional knowledge was significant
for most cases. This shows that with very little computational cost, the inference
quality can be significantly improved for such models.
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