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Abstract. Cancer is a worldwide health problem. The fatality rate of
some types of cancer motivates the scientific community to improve the
standard techniques used to fight against this disease, as well as to
investigate new forms of treatments. One of these emerging treatments
is hyperthermia using the injection of magnetic nanoparticles into the
tumour area. Its basic idea is to heat the target tumour tissue lead-
ing to its necrosis. This study simulates the bioheat processes using
Pennes’ model to evaluate the tissue damage in silico. Furthermore, the
differential evolution optimisation technique is applied to suggest the
optimal location of injection considering the minimisation of damage
to the healthy tissue and the maximisation of the tumour necrosis. The
results suggest that the proposed algorithm is a promising tool for aiding
hyperthermia-based treatment planning.

Keywords: Hyperthermia · Cancer · Bioheat · Optimization ·
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1 Introduction

According to the World Health Organisation (WHO), cancer is the second
biggest cause of death worldwide, and it is estimated that around 9.6 million
people died in 2018 due to this disease [28]. Nearly 70% of the cancer cases
occurs in low or middle-income countries. Furthermore, 30% of the deaths could
be avoid with the early diagnosis and proper treatment [16].

Due to its high mortality rates, cancer is a public health concern worldwide,
which motivates the scientific community to study and develop new strategies
to fight against this disease. Among the methods to treat cancer patients, in
this study we highlight hyperthermia which works as an adjuvant technique to
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help existing treatments such as radiotherapy and chemotherapy. Recent stud-
ies show that hyperthermia is also presenting relevant results when combined
with innovative clinical options such as hadron therapy for treating pancreatic
cancer [4].

Hyperthermia procedure consists in overheating the tumour tissue over 43 ◦C
degrees leading the tissue to necrosis [21]. The necrosis is obtained through the
injection of nanoparticles into the tumour tissue. The nanoparticles produce heat
through Brownian and Neelian relaxation when submitted to a magnetic field
using low frequency [14]. This treatment has the advantage of being semi-invasive
once it can reach the tumour intravenously or through direct injection.

The Pennes model [17] is commonly used to describe the heat transfer in
living tissue, presenting similarities between the theoretical and experimental
results [15,21,23,27]. A large number of works use this model in order to study
the bioheat [6–8,23]. Moreover, the original Pennes model can be modified to
include the hyperthermia cancer treatment process [2,13,18,25,26].

This study uses differential evolution (DE) to search for the best position
for the injection of the magnetic nanoparticles to maximise the death of the
tumour tissue and to minimise the healthy tissue affected by the hyperthermia
process. DE is a heuristic-based algorithm used to find a set of parameters that
minimise a known function [3,12,19,20]. Furthermore, DE is already applied
in correlated studies of hyperthermia to optimise the value of radio frequency
power, amplitude and/or phase [5,9,29]. The heat distribution is evaluated using
the Pennes bioheat model through partial differential equations (PDE) via the
finite difference method (FDM). To evaluate the objective function in DE we use
the bioheat model to obtain the temperature distribution of the modelled tissue
after 50 min of hyperthermia treatment. This information is used to measure the
amount of healthy and tumour tissues influenced by the process.

We organise this paper as follows. Section 2 describes the bioheat model,
numerical approximation and the optimisation strategy. The results are pre-
sented in Sect. 3 and discussed in Sect. 4. Finally, Sect. 5 presents the conclusions
and plans for future work.

2 Methods

2.1 Mathematical Model

The choice of the Pennes model is due to its simplicity, reducing the computa-
tional cost of simulations. So, including the hyperthermia heat source the model
is expressed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ρc
∂T

∂t
= ∇ · k∇T + ωbρbcb(Ta + T ) + Qm + Qr in Ω × I

k∇T · �n = 0 in ∂Ω × I

T (·, 0) = T0 in Ω,

(1)

where Ω ⊂ R
2 is the equation spatial domain, I ⊂ R

+ is the time domain,
T : Ω × I → R

+ is the tissue temperature field; ρ, c and k are density, specific
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heat and thermal conductivity of the tissue, respectively; ρb, cb and ωb are den-
sity, specific heat of the blood and blood perfusion, respectively; Ta and T0 are
the blood temperature and the initial temperature, respectively; Qm and Qr are
the metabolic heat source and the heat generated by the hyperthermia treatment,
respectively.

It is important to emphasise the simplifications made by Pennes in the propo-
sition of his model. The heat exchanges between blood and the tissue occur
between capillaries and arterioles. The blood flow is assumed to be isotropic, i.e.
there is no directional preference. The vascular geometry was disregarded, and
the blood reaches the arterioles at a body temperature, in our case 37 ◦C [10].

The heat generated by the hyperthermia treatment (Qr) is calculated by the
specific absorption rate (SAR) through the Eq. (2) [22]. This equation models the
heat generated considering a set of injections used in the hyperthermia process.
In this study it was approximated by the following equation:

Qr =
Np∑

i=1

Ae−r(�x)2i /r2
0,i , (2)

where Np is the number of injections points in the tissue; A is the energy max-
imum strength of the volumetric heat generation rate, r(�x)2i is the Euclidean
distance to the injection point, i.e. r = ||�x − �x0||2; x0 is the injection position;
r0 is the radius of coverage of hyperthermia.

2.2 Numerical Scheme

The numerical method used to solve Eq. (1) is the Finite Difference Method
(FDM), considering a heterogeneous medium. We consider the closed domain
Ω discretised into a set of regular points defined by Ss = {(xi, yj); i =
0, 1, · · · , Nx; j = 0, 1, · · · , Ny}, where Nx and Ny are the number of intervals
of length hx = hy = h. Moreover, the time discretisation of the time domain
I is partitioned into Nt equal time intervals of length ht, i.e. St = {(tn);n =
0, 1, · · · , Nt}. To obtain the discrete form of the model, we employ an FTCS
(Forward-Time Central-Space), resulting in an explicit numerical method. This
scheme has convergence order O(h2, ht) [11].

Tn+1
i,j =

ht

ρc

[
ki+1/2,j(T

n
i+1,j − Tn

i,j) − ki−1/2,j(T
n
i,j − Tn

i−1,j)

h2

+
ki,j+1/2(T

n
i,j+1 − Tn

i,j) − ki,j−1/2(T
n
i,j − Tn

i,j−1)

h2

+ρbcbωb

(
Ta − Tn

i,j

)
+ Qm + Qr

]
+ Tn

i,j . (3)

2.3 Differential Evolution

Differential evolution (DE) is a stochastic-heuristic algorithm for global optimi-
sation [24]. DE is based on natural evolution, presenting generations, selections,
mutations and the capacity of an individual to survive the environment [1].
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As an evolutionary algorithm, DE works in generations and presents a pop-
ulation with a fixed number of individuals. Given an initial population, the
next generation (or offspring) is formed considering mutation and the crossing
between the individuals of the same generation. This process continues until it
achieves the convergence of results or the maximum number of generations.

To maximise the damage to the tumour tissue and to minimise the damage
to the healthy tissue, we employed the following minimisation problem:

min O(p) = 300 − Nt − (100 − Nh) − 100β, (4)

where p is the set of points to be estimated. Nt ∈ [0, 100] is the percentage
of tumour tissue necrosis and Nh ∈ [0, 100] is the percentage of healthy tissue
necrosis. β ∈ {0, 1} is a variable that assumes 1 when entire tumour reaches
43◦C or more and 0 otherwise.

We consider the mutation strategy best/1/bin, i.e. the best individual (Xbest)
and two more random individuals are chosen (Xa and Xb). The random indi-
viduals are subtracted and multiplied by the mutation factor F . The result is
added to Xbest, originating the mutation vector Xp as shown in Eq (5):

Xi+1
p = Xi

best + F ∗ (Xi
a − Xi

b). (5)

The next step is the crossover operation applied to individuals of the same
generation. This operation considers the mutation vector and a target vector,
randomly chosen from the population. A new vector of individuals is created
and its content depends on a random number generated for each position of the
vector. If the number is smaller than the crossing constant C, the value is taken
from the mutation vector, otherwise, the value is taken from the target vector,
i.e.:

U i+1 =

{
Xi+1

p , if ri ≤ C

Xi
r, otherwise.

(6)

Finally, the fitness of the trial vector is calculated considering the objective
function and compared with the target vector. The individuals with smaller
fitness are considered to pass to the next generation.

3 Results

All results were obtained using of Google Colab platform and C/C++ program-
ming language.

We consider a two-dimensional squared domain of lengths equal to 0.1 m
representing the simulated tissue and circular tumours with radii equal to 0.01 m.
We perform three scenarios: 1) one tumour and one injection point (see Fig. 1A),
2) two tumours and two injections points (see Fig. 2A), and 3) three tumours and
three injections points (see Fig. 3A). All tumours were randomly positioned in
the mesh. The simulated domain is represented in Figs. 1–3 A. Besides, Eq. (1) is
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solved using the parameters described in Tables 1 and 2, and the initial condition
T0 = 37.0 is used for all performed simulations.

Table 1. Parameters used to solve Eq. (1) for both tumour and healthy tissues.

Parameters Unit Healthy tissue Tumour tissue

k W/moC 0.51 0.64

ωb s−1 5.0 × 10−4 1.25 × 10−3

ρ Kg/m3 1000.0 1000.0

ρb Kg/m3 1000.0 1000.0

Qm W/m3 420.0 4200.0

c J/KgoC 4200.0 4200.0

cb J/KgoC 4200.0 4200.0

Table 2. Parameters used in the hypertermia treatment (see Eq. (2)).

Parameters Unit Value

Np − 3

A W 0.05 × 106

r0 m 1.9 × 10−2

For each scenario, the optimisation process was performed 10 times, con-
sidering different seeds to ensure that the algorithm does not converge to a
local minimum. Figures 4, 5 and 6 present a boxplot of all performed simulation
results, considering one, two and three tumours, respectively. It is important to
note that all points presented a standard deviation of the order of 10−3.

Figures 1C, 2C and 3C show the simulation of the hyperthermia process con-
sidering the best result obtained by the optimisation process. Moreover, in all
three scenarios, we perform a naive tentative considering the injection point
in the centre of the tumour, which is illustrated by Figs. 1B, 2B and 3B. These
results represents the temperature distribution of the tissue after 50 min of treat-
ment. The black solid line delimits the entire part of the tissue that reached 43◦

or more, i.e. the region of the tissue that suffered necrosis, and the black dots
represents the injection points.

In the first scenario, we consider a tumour centred at (0.050, 0.050) (Fig. 1A).
Figure 1C presents the result of the optimisation, and the best position found is
in the centre of the tumour, i.e. the same as the naive approach (Fig. 1B).
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Fig. 1. The simulated tissue and the results for the first scenario. In Panel A the red
area represents the tumour tissue, and the blue area the healthy tissue. The tumour
has a radius of 0.01 m, and its centre is positioned at (0.050, 0.050). Panels B and C
present the results of the numerical solution of Eq. (1) at t = 50 min. In Panel B, the
simulation considers P1 = (0.050, 0.050), i.e. the centre of the tumour. In Panel C, the
optimisation processes found P1 = (0.0498984, 0.0497171). The black dots represent
the position of P1, the solid black contour highlights the portion of the domain that
reaches T ≥ 43◦, and the dashed grey contour indicates the tumour location.

Figure 2 shows the results of the second scenario, i.e. the tissue with two
tumours centred at (0.050, 0.030) and (0.050, 0.060), respectively. In this case, the
optimisation result is different from the naive tentative: the amount of healthy
tissue affected by the treatment is reduced from 16.51% (Fig. 2 B) to 15.18%
(Fig. 2 C). In other words, the optimisation reduced the damage to the healthy
tissue.

Finally, the third scenario was performed in the tissue with three tumours
(Fig. 3A). In this case, the first tumour has its centre located at (0.035, 0.025),
the second tumour at (0.065, 0.050), and the third tumour at (0.035, 0.075). In
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Fig. 2. The simulated tissue and the results for the second scenario. In Panel A, the red
area represents the tumour tissue, and the blue area the healthy tissue. The tumours
have a radius of 0.01 m each and their centres are positioned at (0.050, 0.030), and
(0.050, 0.060), respectively. Panels B and C present the results of the numerical solution
of Eq. (1) at t = 50 min. In Panel B, the simulation considers P1 = (0.050, 0.030),
and P2 = (0.050, 0.060), i.e. the centre of each tumour. In Panel C, the optimisation
processes found P1 = (0.0500118, 0.0384764), and P2 = (0.0503467, 0.0523711). The
black dots represent the position of P1 and P2, the solid black contour highlights the
portion of the domain that reaches T ≥ 43◦, and the dashed grey contour indicates the
tumour location.

the third scenario, the optimised solution is different from the naive tentative,
similarly to the observed in the second scenario. In this case, the naive tentative
result in 40% of healthy tissue necrosis while the optimised one affects only about
30% of the healthy tissue.
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Fig. 3. The simulated tissue and the results for the third scenario. In Panel A,
the red area denotes the tumour tissue, and the blue area the healthy tissue. The
tumours have a radius of 0.01 m each and their centres are positioned at (0.035, 0.025),
(0.065, 0.050) and (0.035, 0.075). Panels B and C present the results for numeri-
cal solution of Eq. (1) at t = 50 min. In Panel B, the simulation considers P1 =
(0.035, 0.025), P2 = (0.065, 0.050), and P3 = (0.035, 0.075), i.e. the centre of each
tumour. In Panel C, the optimisation processes found P1 = (0.0313107, 0.0614578),
P2 = (0.0500641, 0.0432409), and P3 = (0.0684779, 0.0617488). The black dots repre-
sent the position of P1, P2 and P3, the solid black contour highlights the portion of
the domain that reaches T ≥ 43◦, and the dashed grey contour indicates the tumour
location.

4 Discussion

Figure 4, 5 and 6 show a boxplot for 10 executions of the optimisation process.
All executions succeed in obtaining the necrosis of the entire tumour tissue,
suggesting that the proposed scheme offers a robust algorithm for hyperthermia-
based cancer treatments. Moreover, Fig. 4, 5 and 6 show that even considering
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Fig. 4. Boxplot for the optimised P1 position. The left axis represents the x coordinate
of P1, while the right axis represents the y coordinate.

Fig. 5. Panels A and B show the boxplots for the optimised P1 and P2 positions,
respectively, considering all the ten tests. The left axis represents the x coordinate of
the point, while the right axis represents the y coordinate.

multiple executions of the proposed scheme, the solution converges for a similar
result. Moreover, the results present a standard deviation smaller than 2%.

Furthermore, the proposed strategy proved to be useful, once the optimisa-
tion process results in a non-trivial solution that minimises tissue damage. For
example, Fig. 3 B demonstrate that the trivial guess does succeed in destroying
the tumour, but produces higher damage to the healthy tissue. The proposed
strategy succeeds in causing less damage to the healthy tissue by formulating
a minimisation problem that penalises damage to healthy tissue and rewards
total tumour destruction. It is worthwhile to notice that none of the injection
points has direct contact with the tumours. A possible explanation is that can-
cerous tissues have higher values of thermal conductivity, blood perfusion and
metabolic heat.
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Fig. 6. Panels A, B and C show the boxplots for the optimised P1, P2 and P3 positions,
respectively, considering all the ten tests. The left axis represents the x coordinate of
the point, while the right axis represents the y coordinate.

5 Conclusions and Future Works

This work presents a tool for aiding hyperthermia-based treatment planning.
The proposed algorithm suggests that it is possible to find optimal locations for
injecting the nanoparticles and for inducing the heat on hyperthermia treatment
considering both damages of the entire tumour and minimal damage to healthy
tissue. Moreover, this study also indicates that the optimal position for injecting
the nanoparticles might be in a non-trivial location such as in the healthy tissue
near the target area instead of injecting inside the tumour site.

For future works, we are planning to expand the simulation to a more realistic
tissue, considering a three-dimensional domain as well as patient-based tumour
formats. Moreover, a parallel strategy is necessary, once the average time for
obtaining each optimised site is 2 h 31 m. So, the reduction of computational
time is going to be even more relevant when considering the three-dimensional
model.
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