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Abstract. A critical step in the fight against COVID-19, which contin-
ues to have a catastrophic impact on peoples lives, is the effective screen-
ing of patients presented in the clinics with severe COVID-19 symp-
toms. Chest radiography is one of the promising screening approaches.
Many studies reported detecting COVID-19 in chest X-rays accurately
using deep learning. A serious limitation of many published approaches is
insufficient attention paid to explaining decisions made by deep learning
models. Using explainable artificial intelligence methods, we demonstrate
that model decisions may rely on confounding factors rather than med-
ical pathology. After an analysis of potential confounding factors found
on chest X-ray images, we propose a novel method to minimise their neg-
ative impact. We show that our proposed method is more robust than
previous attempts to counter confounding factors such as ECG leads in
chest X-rays that often influence model classification decisions. In addi-
tion to being robust, our method achieves results comparable to the
state-of-the-art. The source code and pre-trained weights are publicly
available at (https://github.com/tomek1911/POTHER).
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1 Introduction

The SARS-CoV-2 outbreak has claimed the lives of millions of people, and despite
its onset in 2019, it remains a serious concern and a threat to public health. The
gold standard for diagnosing COVID-19 disease is an RT-PCR test; however, it is
expensive, necessitates specialised laboratories and requires the patient to wait rel-
atively long for the outcome. For this reason, computer scientists and radiologists
become interested in the computer-aided diagnosis (CAD) capabilities of chest
X-rays (CXR). The automatic diagnosis of COVID-19 using chest X-ray images is
challenging due to the high intra-class variations, superimposition of anatomical
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structures, or implanted electronic devices [1]. Moreover, a significant limitation
in developing reliable models for detecting pneumonia and COVID-19 is the lack
of precisely annotated and rigorously collected data. These limitations may result
in models learning various confounding factors in the CXRs. We investigate this
phenomenon in our work.

Most of the approaches developed for the classification of the CXR images
relay on global features [2,11,12,14]. However, these features may not accu-
rately represent the complex nature of CXR images [22]. It should be verified
when working with medical images, especially when the model’s accuracy is
very high [13,21], the reasons why algorithms perform so well to prevent devel-
oping algorithms which base their decision on confounding factors rather then
medical pathology. Wang et al. [7] propose COVID-Net, the first lightweight
capacity neural network dedicated for COVID-19 detection and introduce a
novel COVIDx dataset. Authors create a feature extraction method tailored for
COVID-19 and provide results of the model’s decisions analysis with the use of
GSInquire [24]. They create a map of lung areas important for COVID-19 detec-
tion and claim a production-ready solution. Considering the need for a critical
approach to chest classification and analysis of biases [20,22,23], we carry out
further research into the analysis of the deep learning model decisions using the
COVIDx dataset.

Recently, a new patch-based learning technique [3,10,25] emerged as a suc-
cessful method for robust model learning and generalization. Li et al. [3] propose
a multi-resolution patch-based CNN approach for lung nodule detection on CXR
image. The method achieves high accuracy by leveraging the local context of
CXR images. Roy et al. [25] use the model’s local training method for classifi-
cation on the ICIAR-2018 breast cancer histology image dataset, which allows
them to achieve state-of-the-art results on this dataset. Oh et al. [10], inspired
by their statistical analysis of the potential imaging biomarkers of the CXRs,
explore patch-based learning for COVID-19 detection. They propose random
patch cropping, from which the final classification result is obtained by major-
ity voting from inference results at multiple patch locations. Authors analyse
model decisions using proposed probability gradient-weighted class activation
map (GradCAM) [18] as a part of explainable AI (XAI) method [4], upon which
they conclude their results are correlated with radiological findings. Similar to
Oh et al., our proposed method POTHER explores a patch-based learning app-
roach in CXR images for reliably detecting COVID-19. In contrast, we do not use
segmented lungs as input; instead, we propose a multi-task model that leverages
segmentation task to extract valuable features. In addition, we limit the area
from which we draw patches and reduce their size.

We use XAI methods to demonstrate that model decisions may rely on con-
founding factors rather than medical pathology. Degrave et al. [20] and Cabrera
et al. [22] call them shortcuts, while Maguolo et al. [23] biases. An analysis of
shortcuts in CXRs, which we call confounding biases (CBs), based on open-source
datasets and global learning methods, is presented by [20]. It demonstrates the
detrimental influence on models decisions caused by laterality tokens, i.e. L or R
letter, meaning the left or right side of the image, the position of the clavicles and
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Fig. 1. The overview of the proposed POTHER framework for chest X-ray bias anal-
ysis. (a) Pre-trained segmentation network to generate pseudo-labels, (b) an encoder-
decoder patch-based multi-task learning network to classify CXR images. We adopt
majority patch-based voting for classification and employ patch-based activation maps
to explain the results.

the presence of arms in the upper parts of the image. Authors present that machine
learning (ML) models trained on CXR images may generalise poorly and owe the
majority of their performance to the learning of shortcuts that may be consistently
detected in both internal and external domains - making external validation alone
insufficient to detect poorly behaved models. We analyse CBs in the frequently
cited COVIDx dataset [7] and propose a multi-task learning COVID-19 detection
method called POTHER that improves robustness to CBs.

The contributions of this paper are threefold. Firstly, we propose a novel
multi-task patch-voted learning-based method called POTHER for chest X-ray
image analysis for COVID-19 detection. Secondly, we analyse activation maps
of currently available methods and sources of confounding biases in CXRs from
the COVIDx dataset. Our analysis reveals a significant number of CBs. These
biases should be considered when using the COVIDx dataset in future research.
The main CBs are ECG leads, laterality tokens and hospital markings. Finally,
we demonstrate that deep learning models learn how to classify pneumonia man-
ifestations and lung morphology, focusing on the confounding mentioned above
factors rather than the actual manifestation of the disease or lack thereof on lung
parenchyma. In our methods, to counter CBs, we used segmentation as a helper
task which allowed for an efficient feature extraction method that performs com-
parably to the state of the art. The paper is organized as follows. Section 2 details
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our proposed method. Next, Sect. 3 presents details about our experimental setup
and results. We follow with Sect. 4 which discusses the results. Finally, Sect. 5
concludes the paper.

2 Method

Figure 1 presents an overview of our proposed method. First, we pre-train the
U-Net lung fields segmentation network to generate pseudo-labels. Second, we
use patches to train a multi-task U-Net-based neural network for CXR image
bias analysis. Finally, for classification, we use a majority patch-based voting.

Pre-training Segmentation Network. We train a segmentation neural net-
work to extract lung fields from CXR images. For this task, we adopt the U-Net
encoder-decoder to perform semantic segmentation [5]. With the pre-trained
model on [8,9] datasets, we generate pseudo labels for unlabelled COVIDx
dataset [7]. Before feeding those pseudo masks to the multi-task neural network,
we use custom pre-processing algorithms.

Multi-task Neural Network. Inspired by [15–17], we use an encoder-decoder
based convolutional neural network (CNN) for simultaneous classification and
segmentation of the lungs in the CXRs. Our network is U-Net-based with Ima-
geNet pre-trained ResNet-50 as backbone encoder [6]. We use an encoder part
to extract high-level X-ray image features. Every encoder block forwards feature
maps and concatenates them with the corresponding decoder part. We employ
an attention mechanism to the skip connections to learn salient maps suppress-
ing irrelevant lung vicinity that may be a source of CBs. We extend an attention
gate mechanism by aggregating multi-scale feature maps from the decoder to
learn the local context of the lung feature maps representation. Each feature
map is fed through an inception module that leverages convolutional filters of
multiple kernels (i.e. 1× 1, 3× 3, 5× 5, and 7× 7) and stride sizes (S = 1, S = 2),
which does not increase the number of parameters significantly. The amplitudes
of features from the deeper layers are smaller than the shallow ones. To prevent
shallow layers from dominating deeper ones, we normalise the weights of the
features from multiple scales with the L2 norm before concatenation.

Patch-Based Learning. Motivated by [10], we adopt a patch-based learning
method to train our multi-task neural network. Unlike Oh, we do not cut out
the lungs with masks to avoid inductive bias. We use the lung masks instead as
pseudo-labels for segmentation training. This helper task requires the model to
learn new features necessary to recognise lung tissue boundaries. A pre-processed
CXR image and corresponding mask are resized to 1024 × 1024. Then using a
draw area based on the scaled-down, with a ratio of 0.9, whole lung mask, we
randomly choose a patch centre. Its coordinates are drawn with a uniform dis-
tribution of non-zero pixels from the draw area mask. Figure 1(b) shows training
images with corresponding pseudo-labels in the context of the entire CXR image,



Chest X-ray Bias Analysis for COVID-19 Detection 445

i.e. exemplary drawn image patches are marked with white squares in the CXR
image and pseudo-labels with red squares on the corresponding mask. In our
method, we use patches of size 80 × 80, in contrast to Oh uses patches of size
224 × 224. A region of the image and the corresponding mask are cut off using
determined patch coordinates, resulting in an image patch and pseudo-label pair.
Then the image patch and its mask are interpolated to 224 × 224. This pair is
used to train a segmentation head, while the image patch and its corresponding
class represent a training pair for the classification head. Thanks to the reduc-
tion of the draw area and the small size of the patch, the model’s input never
contains laterality tokens and hospital markings. At the same time, if chosen
close to the lung edge, a patch covers a small lung boundary fragment, allowing
the model to recognise lung tissue based on the segmentation task.

Majority Patch-Based Voting. Only one patch per image, per batch, is used
in the training phase. However, we repeat the random draw multiple times for the
inference to cover the whole lung field as the area of interest. Each time, based
on the patch, the model makes a single classification called a single vote. The
majority vote result, i.e. the class chosen based on the majority of the patches,
is the final classification for that image.

3 Experiments and Results

In this section, we evaluate our methods on the COVIDx dataset. Next, we
present gradient-weighted class activation maps that compare the decision bases
of our proposed method with existing methods. We employ GradCAM to provide
visual explanations of our method decision bases that focuses its attention on
lung morphology and is less sensitive to CBs. Finally, we show quantitative
results on the COVIDx test set.

3.1 Datasets

To pre-train a neural network for the segmentation of lungs, we use data from
[8,9]. The datasets consist of 6380 2D CXR images. The annotations for each
image provide a manual segmentation mask rendered as polygons, including the
retrocardiac region. To evaluate our methods, we use an open-source COVIDx
dataset [7]. In total, the dataset consists of 13970 2D CXR images (8806 normal,
5551 pneumonia and 353 COVID-19 cases). The authors constantly expand this
dataset, and in order to compare with their published results, we use the same
version of the dataset as they used at the time of publication. We create a
validation set by splitting the training set with a 70:30 ratio, and the test dataset
is built using the script provided by the COVIDx authors.

3.2 Data Pre-processing

Lung masks. We remove unnecessary objects from lungs masks like electronic
devices, which are labelled with a shade of grey. We perform mask filtering to
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improve the masks or remove them from the dataset when the correction is not
possible. We present a detailed algorithm in the supplement1. Finally, we resize
the original image and the mask to a size of 1024 × 1024 pixels using linear
interpolation. All images are resized to square regardless of their original aspect
ratio.

COVIDx Dataset. The images for the training of our model are pre-processed
with histogram equalisation. Soft augmentation methods consist of offset, scal-
ing without preserved aspect ratio, rotation, horizontal flip, Contrast Limited
Adaptive Histogram Equalisation (CLAHE) with random clip range and random
grid range, brightness and contrast adjustment, sharpening and embossing.

3.3 Implementation Details

We implement our model in PyTorch deep learning framework and train on a
workstation with a single GPU NVIDIA Titan RTX 24 GB until convergence
over 100 epochs, with a mini-batch size of 16, an initial learning rate of 1×10−4

and a weight decay factor of 1 × 10−4. We set Rectified Adam (RAdam) as the
optimiser to minimise the loss function. To prevent overfitting, we apply various
soft data augmentation techniques. During training, we perform the following
transformations: horizontal flip, sharpen, emboss and CLAHE with p = 0.5. We
also apply a random-weighted sampler. The weights are computed as an inverse
class frequency. As loss function, we use Dice loss for segmentation task:

Ldice = 1 − 2
∑N

i pigi + ε
∑N

i p2i +
∑N

i g2i + ε
, (1)

where pi is the prediction pixel value, gi is the ground truth, and ε is a numerical
stability to avoid divide by zero errors, and Weighted Cross-Entropy (WCE) for
classification task:

LWCE = − 1
N

N∑

n=1

wrn log(pn) + (1 − rn) log(1 − pn), (2)

where w is the class weight, pn is the Softmax probability for the ith class, and
rn is the ground truth value of {0, 1}. Finally, the overall multi-task loss function
can be formulated as the sum of both loss functions:

L = LDice + LWCE . (3)

3.4 Gradient-Weighted Class Activation Mapping Results

We analyse probabilistic class activation maps for gradient weighted models
that classify CXR images into three classes: normal, pneumonia and COVID-
19 in the COVIDx dataset. It turns out that the globally [7] and the locally
1 https://cutt.ly/rIB1JFQ.

https://cutt.ly/rIB1JFQ
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Fig. 2. The activation maps of: (a) cropped image global training, (b) segmented
lung patch-based local training, (c) our multi-task patch-based local training method -
POTHER. The globally trained model focuses on artificial electronics, textual infor-
mation, and other non-disease-related features such as shoulder position. The model
trained on the segmented lung is spared textual information but uses lung contour for
classification. Our proposed model does not use these spurious features for classification
but lung morphology instead.

[10] trained model focus on non-disease related elements. In contrast, POTHER
focuses on the morphological structure of lung tissue. The globally trained model
concentrates on laterality tokens and ECG-leads artifacts even though input
images are cropped. The locally trained model lacks textual information, but
instead, it uses the lung mask’s contour, supported by an edge’s strong gradient
because of the black background, to classify the image. The globally trained
ResNet-50 model was fed with images pre-processed and augmented, as described
in Wang’s work. The pre-processing consists of cropping the top 8% of the image,
and according to the authors, it is to mitigate commonly-found embedded textual
information, which, as presented in Fig. 2, is not enough because there are texts
localised too close to the lung to be cropped.
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Fig. 3. Patch learning activation maps comparison: (a) Oh et al. train the model using
big patches which, if placed close to the lung edge, provide a model with awareness of
lung contour, allowing it to learn that, (b) POTHER model focuses on fine-grained
lung markings like, e.g. interstitial opacities.

Figure 3 compares activation maps of two models trained with a patch-based
learning approach. We can see that Oh’s patches cover a considerable percentage
of the image, allowing the model to focus on the lung’s corner or ECG leads. On
the contrary, we train POTHER on the whole unsegmented images. It does not
use pixels outside the lung because of small patches and reduced mask areas inside
which patch centres can be located. Though some of the POTHER’s patches are
confused by cable on the healthy patient’s image, thanks to their relatively small
area, the vast majority of patches vote for a proper class during majority voting.

We analyse activation maps of the POTHER model based on the visible man-
ifestations of pneumonia and COVID-19 on CXRs. Visible with an untrained eye,
pneumonia and COVID-19 pneumonia signs are related to increased lung density,
which maybe seen as whiteness in the lungs, which obscures the lungmarkings that
are typically seen depending on the severity of pneumonia [19]. During COVID-19,
markings are partially obscured by the increased whiteness. These can be subtle
and require a confirmation from a radiologist. COVID-19 pneumonia changes, like
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Fig. 4. POTHER activation maps and per-patch classification results - (a) the model
output class is coded with patch bounding box colour: green - normal lung, blue -
pneumonia, red - COVID-19. (b) black arrows point to the area with white opacity
characteristic of COVID-19, white arrows point to lower lobes opacity characteristic
to different types of pneumonia, outlined arrows point to the area free of opacity. The
areas indicated by the arrows and the POTHER classifications overlap, indicating that
the model may consider manifestations specific to the classified diseases when making
decisions. (Color figure online)

lung involvement, are mostly bilateral on chest radiograph. Areas of lungs - Fig. 4,
where increased whiteness can be found are pointed with blue (pneumonia) and red
(COVID-19) arrows, and the region free of it is marked with green arrows. It can
be seen that POTHER’s decisions about patches are correlated with them, which
may suggest a classification based on the disease symptoms seen on the CXR.

The locations and neighbourhoods of ECG lead elements and other non-
anatomical artifacts are analysed in more detail. Figure 5 presents generated acti-
vation maps of the analysed models, strongly indicating that electronic devices’
presence in the image focuses heavily the model’s attention and can be an impor-
tant factor in decision-making. Using POTHER, we classify the exact locations,
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Fig. 5. Analysis of activation maps in the vicinity of elements influencing the model
decision. Comparison of the models: (b, e) trained globally, (h, k) segmented-lung
patch-based and (c, f, i, l) with our POTHER method. The left column of figures (a,
d, g, j) shows fragments of the original CXR image, figures (b, e, h, k) a fragment
with superimposed activation map and right column (c, f, i, l) activation maps of
individual POTHER patches and their color-coded votes.

and its activation maps show no significant focus on artificial elements. Figure 5f
shows that 3 out of 9 POTHER’s patches change their output near the cable;
however, thanks to the majority voting it does not influence the final decision.
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3.5 Quantitative Analysis

To evaluate results, we use precision, recall, F1 score and accuracy. As a test set,
we use a COVIDx introduced by Wang et al. [7]. It consists of 300 images equally
distributed into three classes. A globally trained model’s inference results in a
single classification per image, while inference of a locally trained one requires
majority voting before making the final decision. When we train Oh’s patch-
based learning model, we follow the same pre-processing and augmentations as
the author and the only differences are the model used for lungs segmentation
and our mask filtration algorithm. We compare the performance of four models
that are trained on the COVIDx dataset. The results presented in Table 1 are
comparable in terms of accuracy, which oscillates around 90%. However, COVID-
Net’s accuracy, as well as its precision of COVID-19 classification, stands out.
Our method achieves the highest F1 score of 0.974 for the COVID-19 class. Oh’s
model performs similarly to the results reported in their work, where it scored
an accuracy of 0.889 on their dataset.

Table 1. The performance comparison on COVIDx test set

Method Class Precision Recall F1 Accuracy

ResNet-50 [7] Normal 0.882 0.970 0.924 0.906

Pneumonia 0.868 0.920 0.893

COVID-19 0.988 0.830 0.902

COVID-Net [7] Normal 0.905 0.950 0.927 0.933

Pneumonia 0.913 0.940 0.926

COVID-19 0.989 0.910 0.948

Patch learning [10] Normal 0.815 0.970 0.886 0.886

Pneumonia 0.914 0.813 0.860

COVID-19 0.963 0.867 0.912

Ours (POTHER) Normal 0.790 0.980 0.875 0.903

Pneumonia 0.963 0.780 0.862

COVID-19 1.000 0.950 0.974

4 Discussion

In this work, we propose a novel learning method specifically designed to address
difficulties inherent in CXR images. In addition, we analyse the model’s biases
when it is making classification decisions. The improvement of diagnostic capa-
bilities and the reduction of the negative influence of the numerous CBs in the
COVIDx dataset guide us during model development. Many researchers have
achieved very high scores on CXR images when trying to improve COVID-19
classification, but unfortunately, very few have analysed what allows the model
to achieve such high scores.
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When trying to improve COVID-19 classification based on CXRs, great
attention should be paid to understanding what features allow the model to
achieve good classification. Otherwise, we may obtain a model with little diag-
nostic value, though it achieves seemingly high scores utilising CBs to classify on
dataset that it was trained and tested. We reveal potential pitfalls in the CXR
medical imaging domain, i.e. some types of clues irrelevant to disease recognition,
like hospital markings and ECG leads, causing the model to miss the point of
the disease symptoms. The list of CBs is not exhaustive as it cannot be guaran-
teed that the model will not shift its attention to something similarly undesired
if known CBs are addressed. Therefore, a dataset specifically designed to elimi-
nate as many detected CBs as possible is desirable. Annotation or segmentation
of the pathological lung area by a radiologist visible in the CXR would also be
valuable. According to [19], a chest radiograph can look normal in up to 63% of
people infected with COVID-19, especially in the early stages. Using COVID-19
labelled radiograph with no noticeable disease-related changes in the lung image
is very likely confusing to the model and encourages learning of undesirable
confounding features.

5 Conclusions

In this paper, we proposed a novel multi-task patch-voted learning-based method
called POTHER for CXR-image-based COVID-19 detection. Our model learns
pneumonia manifestations and lung morphology features. We performed the acti-
vation map analysis and showed that the deep learning methods are susceptible
to learning features unrelated to the pathology. The COVIDx dataset contains
many images that can confuse the learned model, such as ECG leads, lateral-
ity tokens or other hospital-specific markings. To this end, POTHER’s patches
include the area of lung fields and only its closes vicinity to eliminate some of
the sources of undesirable features. Using segmentation task with an attention
mechanism provides an efficient feature extraction, allowing satisfactory results
despite training with limited lung fragments. Thanks to training with small
patches, our method is less sensitive to the CBs. In future work, we will apply
our method with Vision Transformer (ViT) [26] on a large-scale CXR dataset to
improve the model generalisation with more complex lung disease classes.
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