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Abstract. Quite recently some noteworthy papers appeared showing
classes of deep neural network (DNN) training tasks where rather simple
one-population evolutionary algorithms (EA) found better solutions than
gradient-based optimization methods. However, it is well known that
simple single-population evolutionary algorithms generally suffer from
the problem of getting stuck in local optima. A multi-population adap-
tive evolutionary strategy called Hierarchic Memetic Strategy (HMS) is
designed especially to mitigate this problem. HMS was already shown
to outperform single-population EAs in general multi-modal optimiza-
tion and in inverse problem solving. In this paper we describe an appli-
cation of HMS to the DNN training tasks where the above-mentioned
single-population EA won over gradient methods. Obtained results show
that HMS finds better solutions than the EA when using the same time
resources, therefore proving the advantage of HMS over not only the EA
but in consequence also over gradient methods.

Keywords: Neuroevolution - Deep neural networks * Evolutionary
algorithm

1 Introduction

Deep Neural Networks (DNN) in their versatility have become one of the most
popular techniques to be used in many areas, including advanced applications
such as image recognition [6] or reinforcement learning [8]. In the DNN train-
ing domain gradient methods, such as Adam [4], are state-of-the-art techniques
for problems such as the supervised learning. As the development advanced
new methods emerged to solve restrictions emerging from existing approaches,
including architectural solutions, e.g. deep residual learning [3]. One of the Deep
Learning (DL) fields that has been in the spotlight for many years is reinforce-
ment learning (RL). The specificity of optimization problems stated in this field,
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i.e. the multimodality and deceptiveness of the loss (objective) function, forced
to search for new model training approaches in both gradient based methods [5]
and those coming from other optimization techniques.

Neuroevolution, as an application of evolutionary algorithms in the neural
networks domain, offers a multitude of approaches to be used: from architecture
search to plain model training. Evolution as a substitution for gradient based
training algorithms was recently successfully applied in RL settings [1,7,9]. In
[9], which was the main inspiration for our work, a simple Genetic Algorithm
(GA) was able to outperform state-of-the-art gradient methods, such as Deep Q-
Learning (DQN) and Actor-Critic, for selected Atari games. In the same paper
authors also considered the problem of getting stuck in local minima and envi-
ronment deceptiveness in RL, proposing “Novelty Search” method for GA that
rewards an agent for picking new actions, therefore enhancing exploration. Sim-
ilar research was done for Evolution Strategies (ES) in [1], as ESs are even more
prone to local minima traps, and a set of new “Novelty Search” methods for ESs
was proposed. Another proposition described in [7] made one step further and
showed that abandoning fitness maximization completely and focusing solely on
rewarding novelty in actions also offers a viable approach for tackling environ-
ment deceptiveness.

Some advances in evolving both network topology and weights were also
made. The work in [13,14] showed that as the human brain exhibits regularities
and modularity in its structure a similar approach in DNN encoding can allow to
encode trained neural networks previously unavailable due to their scale. In their
first work [13] authors propose a graph based indirect encoding technique and
apply this method in [14] to evolve both architecture and weights showing that
DNN with 8 million connections can be effectively trained with an evolutionary
algorithm.

One of the evolution-based methods that has not been applied in the DNN
training is Hierarchic Memetic Strategy (HMS). HMS, introduced in [12] is a
multi-population strategy with populations organized in a hierarchy according
to the accuracy of performed search. It has been specifically designed to address
ill-conditioned problems with high risk of getting stuck in local minima, with a
special attention for the inverse problems solution. In this work we explore the
application of HMS to training DNNs in the RL setting.

2 Hierarchic Memetic Strategy (HMS)

HMS is a complex multi-stage stochastic global optimizer and inverse problem
solver. It has been developed to address the ill-conditioning of the considered
problem, i.e., various kinds of multimodality of the objective function. It started
with solving problems with multiple isolated local minima where it outperformed
other global optimization methods (cf. [12]). Currently, the strategy is able to
approximate the shape of sets of local minima in problems where those local
minima sets have positive Lebesgue measure (cf. [11] and the references therein).
The core of HMS is a multi-population evolutionary strategy. It is itself a global
optimization method able to detect multiple isolated local minima. In this work
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we use only this evolutionary core, so we will concentrate on it in the description
below. For the description of the full HMS as well as the analysis of its asymptotic
properties we refer the reader to [10] and the references therein.

The HMS core is a multi-population strategy where single-population evolu-
tionary algorithm instances (i.e., demes) form a fixed-height parent-child hierar-
chy with a single root and a different parametrization on each level. A single step
of the strategy, called metaepoch, consists of a series of standard evolutionary
epoch executions in each deme. HMS can utilize various GAs as deme engines.
In the past it was used mostly with the simple evolutionary algorithm (SEA),
but also with such strategies as the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) or Non-dominated Sorting GA II (NSGA-II). In this work
we utilize a no-crossover evolutionary algorithm used in [9]. In the sequel we
shall call the algorithm single-population GA or simply GA.

After each metaepoch we decide whether to spawn new demes based on
current state of the strategy. Spawning, in HMS framework called sprouting,
creates a new child deme around the current local minimum found in the parent
deme if a given sprouting condition is satisfied: see Fig.1. A typical sprouting
condition disallows spawning new demes in the proximity of already explored
regions. The lifecycle of a deme is driven by Sprouting Condition and Local Stop
Condition (LSC) to control search process and avoid unnecessary evaluations in
low-quality regions. With Global Stop Condition (GSC) that determines when
we should stop our search we end up with a full-fledged framework that allows
us to perform broad search on high levels (i.e., closer to the root) to look for
promising regions and high-precision search on the lower levels. In case a leaf
deme gets stuck around a low-quality minimum a properly set LSC will purge it
to avoid unnecessary evaluations. In this work the parametrization of each level
consists of mutation power, population count, LSC and sprouting condition.

3 Application in Neuroevolution

In this section we will explore and explain the proposed method for incorporat-
ing HMS in the neuroevolution setting for RL environments. As shown in [9] the
fact that a simple GA can outperform gradient methods suggests specific char-
acteristics of the loss function, such as multimodality or deceptiveness. These

Deme 0 (root)

Fig. 1. Idea of HMS sprouting operation Fig. 2. Genotype direct encoding
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are target issues for HMS; i.e., a method aimed at avoiding getting stuck in local
minima, that are expected to show the advantage of HMS over single-population
GA and consequently over gradient methods.

The first decision to be made when applying evolutionary algorithm in the
DNN domain is the representation. As a neural network is not directly suitable
for genotype operations we need an encoding technique to easily and unambigu-
ously translate genotype into a network. In [2] a distinction was proposed into
three types of encoding: direct, indirect and parametric. In this work we use
a special kind of direct encoding with compression introduced in [9] for Atari
problems. In the direct encoding a genotype determines only weights and biases.
As shown in Fig.2 genotype, which is an array of genes being floating point
values, is unambiguously translated into a neural network. A gene 0! at index
m for some individual in epoch n represents a specific weight. This one-to-one
direct encoding allows to interpret a gene as a concrete value for some weight
or bias in the target DNN. From now on we will call this translation process a
DNN materialization. It is worth noticing that in our experiments m exceeds 1.5
million, so the search domain is rather big.

In our experiments the evaluation of an individual is the process of running
an individual in RL environment for a given number of iterations, determined
by episode duration. For each step the model makes a decision which action to
take by performing a forward pass for an input, which is a current observation.
A reward r; is given in i-th step and the final fitness of the model is the sum of
all rewards G acquired through the episode: G = r1 + 19 + - - -+ rr. The episode
duration depends on the environment and selected actions: if in a game we lose
all available lives the episode ends. Also the exact definition of r; varies among
games: from the collected item number to the time of staying alive.

4 Experiments

The methodology described in the previous section was applied to different RL
environments, following the work in [9]. Main experiments were conducted in
the Atari 2600 environment®.

In all experiments we used the same type of LSC and sprout condition. The
LSC stopped a deme after a given number of metaepochs without a signifi-
cant improvement in the best objective value. The sprout condition prohibited
sprouting when the nearest child-deme centroid was closer than a given minimal
distance.

For Atari games GA parametrization and DNN architecture was the same
as in [9] and only HMS parameters were adapted to conform with desired num-
ber of evaluations in total. As [9] compares GA to gradient methods, our work
only covered HMS to GA comparison. It’s also important to stress that GA
algorithm to which we are comparing exactly follows the one proposed in [9].
Selected DNN architecture was originally proposed in [8] and is comprised of

! https://gym.openai.com/envs/#atari.
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Table 1. Atari 2600: global parameters Table 2. Eval. number
Parameter 2-level HMS | Single-pop GA Game GA HMS
Environment Atari 2600 | Atari 2600 Frostbite 13900035250
GSC (nr of epochs) |40 40 Kangaroo 39000 | 31950
Metaepoch length |3 - Zaxxon |39000 33750
Number of levels 2 1 Venture |39000| 31950

Asteroids | 39000 | 34200

convolutional layers and fully connected ones with ReLLU activation function.
Also each experiment was performed for 40 epochs. The selection of parameters
for the experiments are shown in Table 1 and 3.

In this work we report the results of experiments with selected five Atari
games, which were also used in [9]. These are: Frostbite, Kangaroo, Zaxxon,
Venture and Asteroids. Here, similarly to [9], we also got best results for the
Frostbite game where the best individual was able to play the game and finish
with a score on par with a human player. What is the most important, HMS was
able to reach those scores much faster and using less iterations. The same applies
to the Zaxxon game and also to some degree to the Kangaroo game, for which
score was not that much better but resulting individual learned basic behaviour
of dodging falling items. Results of these experiments are presented in Fig. 3.
Each plot shows the medians and the 95% bootstrapped confidence intervals
obtained from evaluating the best individual in a given epoch multiple times in
the target environment, each time with a different initial seed. The maximum
number of evaluations for both competing algorithms is shown in Table 2. For
single-population GA the number was the same for each game, whereas in HMS
this number varies but for each game it is less than in GA. The results show
that even in the worst case (Asteroids) HMS performs at least as well as than
GA. In remaining four cases HMS performs better and its advantage over GA is
the most prominent in Frostbite and Zaxxon cases.

Table 3. Atari 2600: local parameters

Parameter HMS level 0 | HMS level 1 | Single-pop GA
Mutation probability | 1.0 1.0 1.0

Mutation power 0.05 0.002 0.002
Population count 600 150 1000

Number of promoted |45 20 20

LSC (no improvement) | — 3 -

Sprouting condition 0.5 - -
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Fig. 3. Results for Atari games experiments.

The implemented framework for conducting experiments is available in a
public GitHub repository?. A showcase playlist with recorded episodes performed
by the best individuals for selected environments is also available®.

2 https://github.com/mtsokol /hms-neuroevolution.
3 https://bit.ly /hms-neuroevolution-playlist.
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5 Conclusions

In this work we showed that HMS as an evolutionary optimization method
designed for multimodal and deceptive fitness functions outperforms simple GA
and consequently also gradient methods in selected RL problems. In our opin-
ion it makes HMS a noticeable competitor in RL area. The obtained results are
also very promising in the context of the application of HMS in other problems
involving DNN training. Apart from considering new problems with a fixed DNN
structure further studies will include the application of HMS in DNN architec-
ture learning problems.
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