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Abstract. Activation function plays an important role in neural net-
works. We propose to use hat activation function, namely the first order
B-spline, as activation function for CNNs including MgNet and ResNet.
Different from commonly used activation functions like ReLU, the hat
function has a compact support and no obvious spectral bias. Although
spectral bias is thought to be beneficial for generalization, we show that
MgNet and ResNet with hat function still exhibit a slightly better gen-
eralization performance than CNNs with ReLU function by our experi-
ments of classification on MNIST, CIFAR10/100 and ImageNet datasets.
This indicates that CNNs without spectral bias can have a good gener-
alization capability. We also illustrate that although hat function has a
small activation area which is more likely to induce vanishing gradient
problem, hat CNNs with various initialization methods still works well.

Keywords: Spectral bias · Convolutional neural network · Activation
function

1 Introduction

Activation function is an important part of neural networks. The most pop-
ular activation function is the Rectified Linear Unit (ReLU) [14]. The ReLU
activation function can speed up the learning process with less computational
complexity as observed in [3,11,12]. Although many other activation functions
have been proposed in the last few years [6,9,13,17,21], ReLU is still the most
commonly used activation function for CNNs in image classification due to its
simplicity and the fact that other activation functions such as ELU [2] and GELU
[9] have no significant advantage over ReLU.

Despite being heavily over-parameterized, deep neural networks have been
shown to be remarkably good at generalizing to natural data. There is a phe-
nomenon known as the spectral bias [16] or frequency principle [1,23,24] which
claims that activation functions such as ReLU make the networks prioritize learn-
ing the low frequency modes and the lower frequency components of trained
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networks are more robust to random parameter perturbations. This has raised
the important problem of understanding the implicit regularization effect of
deep neural networks and is one main reason for good generalization accuracy
[15,16,20,24]. Recently, a theoretical explanation for the spectral bias of ReLU
neural networks is provided in [10] by leveraging connections with the theory
of finite element method and hat activation function for neural networks that
different frequency components of error for hat neural networks decay at roughly
the same rate and so hat function does not have the same spectral bias that has
been observed for networks based on ReLU, Tanh and other activation functions.

In this paper, we consider CNN with the hat activation function which is
defined as follows

Hat(x) =

⎧
⎨

⎩

x, x ∈ [0, 1],
2 − x, x ∈ [1, 2],

0, otherwise,
(1)

and is actually the B-Spline of first order. Different from ReLU function, hat
function has a compact set. We use the hat activation function for CNNs includ-
ing MgNet [4] and ResNet [7].

MgNet [4] is strongly connected to multigrid method and a systematic numer-
ical study on MgNet in [5] shows its success in image classification problems and
its advantages over established networks. We use MgNet in the experiment since it
relates to multiscale structure that can handle the frequency variation in different
resolution data. Note that hat function has a compact support which is more likely
to result in the vanishing gradient problemandno spectral bias, it still obtains com-
parable generalization accuracy and can even perform slightly better than CNNs
with ReLU activation function on MNIST, CIFAR10/100 and ImageNet datasets.
This also questions whether the spectral bias is truly significant for regularization.
We illustrate that the scale of hat activation function in different resolution layer is
of importance and should be set properly for MgNet to adapt the frequency varia-
tion in the network. Furthermore, considering the performance of a neural network
also depends on how its parameters are initialized, we also test several initializa-
tion methods for neural networks including Xavier initialization [3] and Kaiming
initialization [6], the results show that all these initialization methods work well
for these CNNs with hat activation function.

2 Hat Function for MgNet

Different from ReLU function, the hat function has a compact support of [0, 2].
Neural networks with hat function also have the universal approximation prop-
erty [18,19,22]. Hat function is closely related to finite element method and we
can adjust the compact support of this function to change its frequency. Thus,
we define the following scaled hat activation function with parameter M such
that

Hat(x;M) =

⎧
⎨

⎩

x, x ∈ [0, M
2 ],

M − x, x ∈ [M
2 ,M ],

0, otherwise.
(2)
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It has the advantage that its frequency can vary by changing the parameter M .
It is shown in [10] that different frequency components of error for hat neural
networks decay at roughly the same rate and thus hat function does not have the
same spectral bias that has been observed for ReLU networks. To make full good
use of this property, we introduce to use MgNet with hat activation function.

MgNet [4] is a convolutional neural network that strongly connects to multi-
grid methods and also has a good performance in comparison with existing CNN
models [5]. The network consists of several iterative blocks shown in Fig. 1 in
both data space and feature space.

Fig. 1. MgNet Iterative block.

This block is related to the following residual correction step in multigrid
method

ui = ui−1 + Bi ∗ (f − Ai ∗ ui−1). (3)

where Bi, Ai are the convolution operators, f and u denote the source term
(image) and solution (feature) respectively. Besides, downscaling the primary
image f into coarse resolution requires the following iterative step that projects
the high resolution data to the low resolution data

u�+1 = Π�+1
� ∗2 u�, (4)

f �+1 = R�+1
� ∗2 (f � − A� ∗ u�) + A�+1 ∗ u�+1, (5)

where Π�+1
� , R�+1

� ∗2 represent the convolution with stride 2. MgNet imposes
some nonlinear activation function in the iterative steps above to exact the
feature from image as shown in the Algorithm 1.
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Algorithm 1. Feature = MgNet(f ;J, ν1, · · · , νJ )
Initialization: f1 = σ ◦ θ(f), u1,0 = 0
for � = 1 : J do

for i = 1 : ν� do

u�,i = u�,i−1 + σ ◦ B�,i ∗ σ(f � − A� ∗ u�,i−1). (6)
end for
Note u� = u�,ν�

u�+1,0 = σ ◦ Π�+1
� ∗2 u� (7)

f �+1 = σ ◦ R�+1
� ∗2 (f � − A� ∗ u�) + A�+1 ∗ u�+1,0. (8)

end for
Fully connected layer: Feature = FC(Avg(uJ))

In this algorithm, B�,i, A�,Π�+1
� , R�+1

� are some convolution operators of a
given kernel size (we often use size 3), θ is an encoding layer that increases the
number of channel, Avg is the average pooling layer and σ is the activation
function. The hyperparameters J and νi are given in advance.

We note that if we remove the variables with an underline, namely σ and θ in
Algorithm 1, we get exactly one classic multigrid method. From the convergence
theory of multigrid method, we know that the iterative step (6) is associated with
the elimination of high frequency error and with the layer getting deeper, the
frequency of data gets lower. Then we can set hat activation functions with vari-
ous M in different layers of the neural network to adapt this frequency variation
in the network.

The MgNet model algorithm is very basic and it can be generalized in many
different ways. It can also be used as a guidance to modify and extend many
existing CNN models [5]. The following result shows Algorithm1, admits the
following identities

r�,i = r�,i−1 − A� ◦ σ ◦ B�,i ◦ σ(r�,i−1), i = 1 : ν� (9)

where
r�,i = f l − A� ∗ u�,i. (10)

and (9) represents pre-act ResNet [8].

3 Experiments

Since MgNet has strongly connection with ResNet [7], we evaluate the perfor-
mance of hat activation function on image classification for MgNet and ResNet
compared with ReLU neural networks. For MgNet, we consider J = 4 and
ν1 = ν2 = ν3 = ν4 = 2 as stated in Algorithm 1, thus there are four differ-
ent resolution layers.
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The following benchmark datasets are used: (i) MNIST, (ii) CIFAR10, (iii)
CIFAR100, and (iv) ImageNet.

We consider using SGD method with the batchsize of 256 for 150 epochs. The
initialization method of parameters is Kaiming’s uniform intialization [6]. The
initial learning rate is 0.1 with a decay rate of 0.1 per 50 epochs. The following
results are the average of 3 runs. In the Table 1, the numbers [5,10,15,20] denote
the scaling of hat activation in different resolution layers since the size of data
have four different resolution levels in MgNet and ResNet18.

Table 1 shows that hat activation function has slightly better generaliza-
tion capability than ReLU activation function for both MgNet and ResNet. To
illustrate the argument of MgNet, we evaluate the performance of MgNet with
different scale settings of hat activation function. As is shown in Table 2, it is
better to use the hat function with larger support in the coarser resolution data
which is consistent of the frequency variation of MgNet.

To exclude the influence of training process, we train the CNNs with more
epochs of 300. As is shown in Table 3, the test accuracy increases both for hat
MgNet and ReLU MgNet, and hat activation function still maintains slightly
better generalization capability than ReLU activation function which indicates
that hat activation function is truly powerful.

Since the scale of hat function is fixed which can be a potential disadvantage,
we also regard these scale numbers as parameters in the network. Table 4 gives
the results of trainable scale hat MgNet on CIFAR10/100 datasets and we also
record the scale numbers of the model. Though using two different settings of
initial scale, the results all demonstrate that it is better to use the hat function
with larger support in the coarser resolution level and the support intend to
be getting small during the training. The results show that the generalization
accuracy of MgNet is still competitive with a much smaller support in the first
few layers without adding any neurons. We also note that it is available for a
combination of hat function and ReLU function for CNNs with trainable scale
hat function and we can replace the activation function of the encoding layer
with ReLU function.

Kaiming’s initialization has been shown to work well for ReLU networks,
the experiments show that hat CNNs also work well with this initialization
method. Furthermore, we also consider Xavier’s uniform initialization [3] for hat
CNNs on CIFAR10/100 datasets. The results in Table 5 and Fig. 2 show that the
initialization methods make almost no difference on test accuracy but for the
CIFAR100 dataset the loss of Kaiming’s initialization converges slightly fast.
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Table 1. Comparison of hat CNNs and ReLU CNNs for image classification.

Dataset Model Activation function Test accuracy

MNIST MgNet ReLU 99.66

hat-[5,10,15,20] 99.68

CIFAR10 MgNet ReLU 93.13

hat-[5,10,15,20] 93.23

ResNet ReLU 94.64

hat-[20,15,10,5] 94.79

CIFAR100 MgNet ReLU 70.85

hat-[5,10,15,20] 70.96

ResNet ReLU 76.21

hat-[5,10,15,20] 76.47

ImageNet MgNet ReLU 72.36

hat-[10,20,30,40] 72.69

Table 2. Comparison of different scale setting of hat function for MgNet.

Dataset Activation function Test accuracy

MNIST hat-[5,10,15,20] 99.68

hat-[20,15,10,5] 99.64

CIFAR10 hat-[5,10,15,20] 93.23

hat-[20,15,10,5] 92.87

CIFAR100 hat-[5,10,15,20] 70.96

hat-[20,15,10,5] 70.56

ImageNet hat-[10,20,30,40] 72.69

hat-[40,30,20,10] 71.87

Table 3. MgNet results of 300 epochs.

Dataset Activation function Test accuracy

CIFAR10 hat-[5,10,15,20] 93.97

hat-[20,15,10,5] 93.80

ReLU 93.79

CIFAR100 hat-[5,10,15,20] 72.06

hat-[20,15,10,5] 71.68

ReLU 71.73

Table 4. MgNet with hat function of trainable scale (300 epochs).

Dataset Test accuracy Initial scale Final scale

CIFAR10 94.15 [5,10,15,20] [1.0561,1.6974,1.7712,3.2502]

93.99 [20,15,10,5] [1.2643,1.7570,2.8338,3.2682]

CIFAR100 72.18 [5,10,15,20] [1.4278,2.5441,2.7431,9.6464]

72.24 [20,15,10,5] [2.0015,2.4351,2.7342,9.8020]
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Table 5. Comparison of different initialization methods for hat-CNNs.

Dataset Model Activation function Test accuracy(Kaiming) Test accuracy(Xavier)

CIFAR10 MgNet hat-[20,15,10,5] 93.182 93.20

hat-[5,10,15,20] 93.233 93.26

ResNet hat-[20,15,10,5] 94.786 94.77

hat-[5,10,15,20] 94.453 94.47

CIFAR100 MgNet hat-[20,15,10,5] 70.56 70.15

hat-[5,10,15,20] 70.963 70.89

ResNet hat-[20,15,10,5] 76.186 76.15

hat-[5,10,15,20] 75.996 76.22

Fig. 2. Comparison of loss curve and test accuracy curve of MgNet for CIFAR10 and
CIFAR100 datasets versus initialization methods.

4 Conclusion

We introduce the hat activation function, a compact function for CNNs and
evaluate its performance on several datasets in this paper. The results show that
hat activation function which has a compact activation area still has competi-
tive performance in comparison with ReLU activation function for MgNet and
ResNet although it does not have those properties of ReLU which are deemed to
be important. Besides, activation function with a small compact set can cause
gradient vanishing easily but this has no influence on the performances of CNNs
with hat function. Specifically, from the experiments we note that the scale set-
ting of hat activation function also influences the performance, which is related
to the frequency variation in the network. Furthermore, commonly used initial-
ization methods are also shown to be viable for hat CNNs. These numerous
experiments show that hat function is indeed a viable choice of activation func-
tions for CNNs and indicate the spectral bias is not significant for generalization
accuracy.
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