
Approximate Function Classification

Martin Lukac1(B) , Krzysztof Podlaski2 , and Michitaka Kameyama3

1 Nazarbayev University, Nur-sultan, Kazakhstan
martin.lukac@nu.edu.kz

2 University of Lodz, Lodz, Poland
krzysztof.podlaski@uni.lodz.pl

3 Emeritus Professor Tohoku University, Sendai, Japan

kameyama@ecei.tohoku.ac.jp

Abstract. Classification of Boolean functions requires specific software
or circuits to determine the class of a function or even to distinguish
between two different classes. In order to provide a less costly solution, we
study the approximation of the NPN function classification by a artificial
neural network (ANN), and shown that there are configurations of ANN
that can perfectly classify four-bit Boolean functions. Additionally, we
look at the possibility of learning the classification of four-bit Boolean
functions using a set of three-bit Boolean neural classifiers, and determine
the scalability. Finally we also learn a discriminator that can distinguish
between two functions and determine their similarity or difference in their
NPN classes. As a result we show that the approximate neural function
classification is a convenient approach to implement an efficient classifier
and class discriminator directly from the data.

Keywords: Function classification · Approximate learning · Neural
networks

1 Introduction

The classification of functions has several applications in both industry and
research. Knowing the properties of groups of functions allows one to study
solutions to a problem from a group-like perspective. This includes the cost of
circuit estimation or group functions implementations. It also helps the industry
to design circuit from an approximate cost: functions grouped into specific groups
can have similar realization properties and thus similar and predictable cost [1,
10,12]. Finally, function classification can be used to discover structures in the
groups of functions that are not completely understood [2,4,5].

The classification can be performed by a standard look-up or by a func-
tional approach. However, such a direct approach is not well scalable because it
requires the definition of all possible input value combinations. Therefore alter-
native methods for generating classes of functions using approximate methods
are desired. The classification of functions using machine learning has been pre-
viously explored [6–9,11]. However, most of the available works focus on learning
Boolean functions using machine learning.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Groen et al. (Eds.): ICCS 2022, LNCS 13351, pp. 207–213, 2022.
https://doi.org/10.1007/978-3-031-08754-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08754-7_28&domain=pdf
http://orcid.org/0000-0001-8754-0701
http://orcid.org/0000-0002-2883-0773
https://doi.org/10.1007/978-3-031-08754-7_28

208 M. Lukac et al.

The function classification becomes function approximation when the classi-
fication is a many to one mapping. In particular, when the classification results
in group properties such that the cost of any function within the group is the
same, then a logic design process can be simplified by searching for equivalence
groups rather than for single functions. The most recognized classifications of
Boolean functions are P-equivalent, NP-equivalent, NPN-equivalent [5].

Two Boolean functions are NPN-equivalent if they can be transformed into
each other by one or more of the following transformations: the negation of any
input variable, permutation of input variables, and negation of the function.

In the paper, we consider the possibility of classification of functions using off-
the-shelf machine learning approaches [6]. The target of such classification will
show if the NPN classification can be efficiently learned. Therefore, if the groups’
properties that represent linear transformations can also be easily represented
in the embedded feature space. In addition, we are also interested to see if we
can learn the classification of NPN classes on a subset of functions and then
generalize it to other functions not used for learning. The expected result will
show if such an approximate learning and NPN classes representation can be
used to learn classifications of functions where there are too many samples to
enumerate. Finally, we consider the proposed method as a general template for
classification: the NPN classification presented in this paper is only a starting
point for a more general classification framework.

The machine learning approach to classification requires learning data. For
functions with more than four input bits, the number of NPN classes and the
number of functions is too large to be used for learning. Therefore, we look at the
problem from the point of view of learning n-bit NPN classes by composing the
machine learning classifier from n−1-bit functions. We train accurate n−1 NPN
function classifiers, and by combining several of them, we train the n bit classifier
on partial data. We show under which conditions such an approach is possible
and what amount of data is required for accurate prediction. We also investi-
gate the discrimination of NPN classes by a trainable neural network. We show
that a single network is quite capable to distinguish between functions of differ-
ent classes without intermediary determination of their respective NPN classes.
Therefore, using the neural methods for distinguishing NPN classes provides a
considerable advantage when compared to classical, circuit-based methods.

2 Experiments

2.1 Datasets

For the experiments, we have created two datasets. The first dataset is the
set of all four-bit irreversible functions, and the mapping to be learned is
M : {0, 1}24 → L4, with L4 being the set of all NPN classes for four-variable
irreversible functions. There are 222 NPN classes for four-variable irreversible
functions, and the number of data samples in the dataset is 65536.

The second set of datasets contains NPN labels and functions for one, two,
three, and four input bits. The target of this dataset is to use it to learn and

Approximate Function Classification 209

to determine the scalability hardness of the mapping from a set of functions of
n − 1-variables to n-NPN labels: N : {0, 1}n−1 × . . . × {0, 1}n−1 → Ln. The Ln

represents the labels of n-bit functions.

2.2 Four-Variable Irreversible Logic Functions

In preliminary experiments, we evaluated various machine learning algorithms:
multi-layer perceptron (MLP), support vector machine (SVM), decision tree
(DT), and random forests (RF), but only the MLP showed good enough learning
convergence and final classification accuracy. Therefore, we decided to analyze
if it’s possible to obtain a perfect classifier using MLP and what architecture is
required. For the experiment, we took 4-bit Boolean functions. The training set
contains 65% of all functions in the dataset, and a test set contains the rest. We
discovered that by learning the default network for up to 300 epochs, we could
not obtain 100% positive answers on the test set with one fully connected hidden
layer MLP with up to 120 neurons. Therefore we have added a second hidden
layer and performed a grid search.

Table 1. Accuracy of MLP classifier with two hidden layers, l1, l2 denote sizes of first
and second hidden layer respectively.

l1\l2 10 15 20 25 30 35 40 45

10 0.128 0.171 0.250 0.234 0.450 0.295 0.267 0.240

30 0.173 0.436 0.718 0.791 0.804 0.823 0.829 0.829

40 0.159 0.700 0.767 0.814 0.809 0.821 0.895 0.865

60 0.341 0.547 0.787 0.922 0.889 0.963 0.968 0.950

70 0.211 0.444 0.760 0.919 0.971 0.945 0.987 0.995

l1\l2 50 55 60 70 75 80 85 90

80 0.997 0.995 1.000 0.999 0.999 1.000 0.997 0.998

90 0.992 0.991 1.000 0.996 1.000 1.000 0.998 1.000

100 0.998 0.996 0.996 0.999 0.999 0.999 0.999 1.000

110 0.998 0.994 0.999 0.999 1.000 0.997 1.000 0.996

120 0.996 0.999 0.996 1.000 0.999 1.000 1.000 1.000

The parameters of the network and the obtained accuracy on the training set
after learning 300 epochs are presented in Table 1. The rows of Table 1 show the
number of neurons in the first hidden layer, and the columns show the number
of neurons in the second hidden layer. As can be seen, the full precision of the
NPN classification was achieved when the first layer had at least 80 neurons and
the second one at least 60. It agrees with the observation that the MLP is able
to approximate the multivariate function only with two hidden layers [3].

2.3 From n − 1 to n Classification

Classifying functions with more than four bits is more difficult due to very large
number of functions and therefore does not allow efficient learning. Consequently,
we evaluate alternative models to classify NPN labels for functions of n bits as
a function of various compositions of functions of n − 1 bits.

The main idea of this approach is shown in Fig. 1: a pre-trained neural net-
work for a n − 1 NPN classification is used as a module (component neural net-
work) for predicting n − 1 NPN labels from a n-variable subfunction extracted
from the target n-variable function. Each component network has as inputs the

210 M. Lukac et al.

bits representing a n−1-variable function and outputs an NPN class. The results
of these component networks are then used to train a n bit NPN classifier. The
main concept is to extract a set of n − 1-variable NPN function labels from
the n-variable function and then use these labels to predict the n-variable NPN
label. Note that in Fig. 1, each component network is the same, and only the
last layer (denoted n to NPN) of the whole network is trained on the n-variable
function dataset.

 to NPN ANN

-variable function

-variable function

-variable function

 to NPN ANN to NPN ANN

(a)

 to NPN ANN

-variable function

 to NPN ANN

-variable function

-variable function

-variable function

 to NPN ANN to NPN ANN

(b)

Fig. 1. Schematic diagram of estimating the NPN classes of a four-variable functions
using pretrained classifiers for the NPN classes of a three bit logic function.

There are in total
(

2n

2n−1

)
possible selection of inputs to each component

network. However, we are mainly interested in selecting 2n−1 out of 2n values in
a continuous manner. Therefore we tested three very simple configurations that
contain: two, three, and five-component neural networks.

The input to the network is represented by 2n values and the 2n−1 values
for the components networks were extracted using positional indexes. For the
two network models, each component network accepts 2n−1 bits at positions 0 to
2n/2−1 and 2n/2 to 2n−1 respectively. For three-component networks, the first
two-component networks take bits in a similar fashion to the two-component net-
work model. The third-component network uses bits starting from the 2n/4 and
ending at 2n/4 + 2n/2 bit. For the five-component networks model, the fourth
and fifth-component neural networks are simply added to the three component
neural network model. The fourth and fifths components ANN had inputs fed
from the 2n/8 to 2n/8 + 2n/2 bit and from the 2n/2 − 2n/8 to 2n − 2n/8 bit
respectively. As an example, Fig. 1 shows the three component model classi-
fier: the blocks labeled n − 1-bit function represents the functions of n − 1-bits
extracted from n-variable input function and the blocks labeled n − 1 to NPN
represents the pre-trained NPN component network classifiers for n− 1-variable
functions.

Approximate Function Classification 211

The component networks were trained independently and prior to the final
experiment. In the presented case the component networks were trained on three-
variable Boolean functions and their NPN labels. In this case the mapping is
K : {0, 1}3 → J3. The three-variable NPN classification networks were trained
up to 100% accuracy. Each component network had two hidden layers with 50
and 20 neurons, respectively, and the n-bit NPN classifier network had the same
structure as well.

Table 2. Results of learning NPN classification for four-variable Boolean functions
using three-bit neural NPN classifiers.

Model 3 bit NPN Accuracy 4 bit NPN Accuracy

ANN specs ANN specs

2 subnets 50/20 1 50/20 0.679 @ 0.7

3 subnets 50/20 1 50/20 0.769 @ 0.65

5 subnets 50/20 1 50/20 0.87 @ 0.26

The results of these experiments are shown in Table 2. Each row shows the
result of a particular configuration and its experimental accuracy. The sec-
ond and fourth columns show the model’s configuration: column two shows
the component network configuration, while column four shows the whole
model configuration. Column three shows the component network accuracy; it
is always one because the networks were pre-trained to the highest accuracy.
Column five shows the accuracy of the whole model. The results are reported
as accuracy@train-set size. The first observation is that the accuracy increases
when more component networks are used. It is natural as there are only thir-
teen NPN labels for functions of three bits. Therefore, using two components
networks does not generate enough output combinations to reach the required
222 NPN classes of four-variable functions. Therefore the most accurate result is
obtained with five components networks. The second observation is that less data
is required when more component networks are provided. As can be seen with
two-component networks the accuracy of 67% was reached at re = 0.3

0.7 but the
highest recorded accuracy was 87% for five-component networks at re = 0.74

0.26 .
Therefore the observation seems to lead to a conclusion that knowledge from
functions on less bits can be efficiently used to learn the classification of larger
functions with a fraction of training data.

3 NPN Classes Discrimination

The final set of experiments is aimed at finding out at what cost a machine
learning approach can be used to distinguish two functions from different or
the same NPN class. The most natural approach is to classify two functions
directly using a binary classifier. The inputs to such a model are two 2n long

212 M. Lukac et al.

binary vectors representing two n-variable functions. The problem that we are
thus facing is a solution to a mapping J : {0, 1}2n × {0, 1}2n → {0, 1}.

Remembering that the number of functions grows rapidly with the number
of bits, already for four-variable functions, the number of samples is (216)2. We
implemented a pseudo-random method, allowing us to quickly get a large number
of samples. Not all combinations can be generated. Therefore, four different
datasets were generated: each dataset being a multiple of the total number of
functions of n-variables. For each dataset a same size test dataset was generated
so that the train and evaluation minimizes the amount of overlap between the
training and testing data. The experiment was run with a multi-layer perceptron
with 33 neurons in the input layer, 100 neurons in the hidden layer and two
neurons in the output layer. Each experiment was run for 2000 learning epochs.

The first experiment was performed only with the training dataset. Thus,
the learning and the evaluation were performed using the same dataset. The
reason for this was to determine the learning difficulty. The summary of this
first learning experiment for comparing four-variable NPN functions is shown
in Table 3. As can be seen, the accuracy of the discrimination remains constant
with the increasing size of the dataset. Each dataset contains more instances
of similar and dissimilar pairs of functions. Interestingly the learning occurred
at only a very high learning rate λ = 0.1. Such high λ is unusual considering
that standard experiments in machine learning use much lower values for the
learning rate. Also, it is worth noting that the learning accuracy grows with
the increasing epochs. With the current model, the accuracy of distinguishing
four-variable NPN classes was determined to be maximal at 97.8% when 10000
epochs were performed.

Table 3. Results of the discrimination learning

Data size

×1 ×2 ×4 ×6 ×8

Training set accuracy 95.1% 95.3% 94.6% 93.9% 93.3%

Test set accuracy 89.7% 89.2% 85.0% 84.9% 77.6%

Next, we evaluated the networks on test datasets different from the train sets
as much as possible. As was expected, the average accuracy on the test set is lower
than the discrimination accuracy on the training dataset. We observed that in
both cases, the False-Negatives are, in general, two to three times more numerous
than the False-Positives. A similar pattern occurs for the smaller dataset. Certain
groups of functions are more learnable than others.

4 Conclusion

In this paper, we presented the study of approximate Boolean functions classi-
fication using machine learning. We demonstrated that the NPN classification

Approximate Function Classification 213

could be perfect when the parameter space is searched systematically. An inter-
esting observation is that one can generate NPN classification for n-variable
function from n − 1-variable NPN function classes. Finally, we also showed that
one can train a classifier for function discrimination without explicit NPN class
computation. Some of the classes are easier to train, some tougher. It depends on
the size of the class as well as on their representatives. In future works, we will
test if these tougher classes also have a more complicated circuit representation.

The usefulness of this approach can seen in the possible application to logic
synthesis. In particular, the learnability of the NPN classes could be used for
estimating the cost of logic circuits before synthesis by learning the function to
be synthesised. The learning result can be then used to determine the synthesis
method. Therefore the future work is to looking closer at the individual classes
learned and determine the difficulty to learn specific categories such as linear,
symmetric, bent, etc.

References

1. Debnath, D., Sasao, T.: Efficient computation of canonical form under variable
permutation and negation for Boolean matching in large libraries. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. E89–A(12), 3443–3450 (2006)

2. Edwards, C.R.: The application of the Rademacher-Walsh transform to Boolean
function classification and threshold logic synthesis. IEEE Trans. Comput. 100(1),
48–62 (1975)

3. Guliyev, N.J., Ismailov, V.E.: Approximation capability of two hidden layer feed-
forward neural networks with fixed weights. CoRR abs/2101.09181 (2021)

4. Harrison, M.A.: On the classification of Boolean functions by the general linear
and affine groups. J. Soc. Ind. Appl. Math. 12(2), 285–299 (1964)

5. Hurst, S.L.: The Logical Processing of Digital Signals. Crane Russak & Company
Inc., Edward Arnold, New York, London (1978)

6. Lukac, M., Moraga, C., Kameyama, M.: Properties of bent functions in the truth
domain. In: 2019 International Conference on Information and Digital Technologies
(IDT), pp. 304–310 (2019)

7. Mhaskar, H., Liao, Q., Poggio, T.A.: Learning real and Boolean functions: when is
deep better than shallow. CoRR abs/1603.00988 (2016)

8. Oliveira, A.L., Sangiovanni-Vincentelli, A.: Learning complex Boolean functions:
algorithms and applications. In: Proceedings of the 6th International Conference
on Neural Information Processing Systems (NIPS 1993), p. 911–918. Morgan Kauf-
mann Publishers Inc., San Francisco (1993)

9. Sadohara, K.: Learning of Boolean functions using support vector machines. In:
Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS, vol. 2225, pp. 106–
118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45583-3 10

10. Sasao, T.: Switching Theory For Logic Synthesis. Cluver Academic Publishers,
Boston/London/Dordrecht (1999)

11. Tavares, A.R., Avelar, P., Flach, J.M., Nicolau, M., Lamb, L.C., Vardi, M.: Under-
standing Boolean function learnability on deep neural networks (2020)

12. Tsai, C.C., Marek-Sadowska, M.: Boolean functions classification via fixed polarity
reed-muller forms. IEEE Tran. Comput. 46(2), 173–186 (1997)

https://doi.org/10.1007/3-540-45583-3_10

	Approximate Function Classification
	1 Introduction
	2 Experiments
	2.1 Datasets
	2.2 Four-Variable Irreversible Logic Functions
	2.3 From n-1 to n Classification

	3 NPN Classes Discrimination
	4 Conclusion
	References

