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Abstract. Modeling of turbulent combustion system requires model-
ing the underlying chemistry and the turbulent flow. Solving both sys-
tems simultaneously is computationally prohibitive. Instead, given the
difference in scales at which the two sub–systems evolve, the two sub–
systems are typically (re)solved separately. Popular approaches such as
the Flamelet Generated Manifolds (FGM) use a two–step strategy where
the governing reaction kinetics are pre–computed and mapped to a low–
dimensional manifold, characterized by a few reaction progress variables
(model reduction) and the manifold is then “looked–up” during the run–
time to estimate the high–dimensional system state by the flow system.
While existing works have focused on these two steps independently, we
show that joint learning of the progress variables and the look–up model,
can yield more accurate results. We propose ChemTab an architecture
that learns jointly and demonstrate its superiority.

Keywords: Physics guided neural networks · DNN

1 Introduction

Modeling of turbulent flow combustion is central in the development of new com-
bustion technologies in aviation, automotive and power generation [6]. Turbulent
flow combustion combines two nonlinear and multi–scale phenomena: turbulent
flow and chemical reactions. This coupling of the kinetic chemical reaction equa-
tions with the set of Navier-Stokes flow equations results in a problem that is too
complex to be solved, at full resolution, by the current computational means.
Even for a simple fuel such as methane, the combustion chemistry mechanism
involves 53 species and 325 chemical reactions [19], and the numbers increase
with increasing fuel complexity. Solving the details of such mechanisms during
the flow simulation can consume up to 75% of the solution time [4].

In most cases, the large scale separation between the combustion chem-
istry/flame (typically sub millimeter/microsecond scale) and the characteristic
turbulent flow (typically centimeter or meter/minute or hour scale) allows sim-
plifying assumptions to be made that enable increased computational efficiency
by (re)solving chemistry and flow separately [16]. In this paper, we focus on
approximate methods that deal with handling the chemistry, and in particular,
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the methods based on laminar flames [15]. Here the 1–D or single–species flame
reactions are solved a priori and stored. During the flow simulation, these reac-
tions are looked–up to estimate the high–dimensional thermochemical state of
the system, as shown in Fig. 1.
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Fig. 1. (Re)solving systems separately

Most models developed for increased computational efficiency rely on the
existence of a theoretical low–dimensional thermochemical state–space manifold
to which the combustion chemistry can be mapped [11]. The central question
then is, how to efficiently model low–dimensional thermochemical manifolds that
capture the relevant physics of the problem; and parametrize and approximate
these manifolds which can then be accessed during turbulent flow simulations?

While existing approaches (collectively referred to as state–space parametriza-
tion [16,17]) have been successful, they have primarily solved the two sub–
problems – progress variable generation to characterize the manifold, and mani-
fold approximation to perform the lookup during run–time, independently. This
can result in sub–optimal solutions because the progress variables, learnt using
methods such as Principal Component Analysis (PCA) [2,20], are not necessar-
ily optimized to perform the run–time lookup. Similarly, while the traditional
lookup approaches that use tabulation, or the recently proposed neural net-
work based data–driven alternatives [1], facilitate efficient look–ups, the con-
struction of the underlying data–structure or machine learning based model is
not informed by the learning of the progress variables.

Our main hypothesis is that by simultaneously learning the progress variables
and the manifold approximation (lookup model), we can achieve higher accuracy
in terms of the estimation of the thermochemical state at run–time. But how
does one combine the progress variable learning, an inherently linear mapping
task, with a highly non–linear lookup model, while ensuring that the compo-
nents influence each other during the learning phase? To that end, we propose
a framework called ChemTab, in which the learning of these two components is



ChemTab: A Physics Guided Chemistry Modeling Framework 77

formulated as a joint optimization task. An implementation of ChemTab, using
a novel deep learning architecture, is proposed. The joint optimization includes
a set of mathematical constraints that ensure that the progress variable learn-
ing is approximately similar to a PCA–type linear reduction, and, at the same
time, can also predict the thermochemical state using a non–linear predictive
component.

The deep learning implementation of ChemTab is shown to reduce the error
by 73%, when compared to an existing tabulation based framework, in predicting
one of the key thermochemical term, source energy, when applied to flames data
for a Methane–Air fuel–oxidizer combination generated using the GRI–Mech
3.0 simulator. Moreover, the proposed architecture of ChemTab is shown to
outperform a recently proposed state–of–art decoupled PCA+neural network
based solution by 24%.

2 Related Work

In this section we provide a brief overview of existing in low–dimensional ther-
mochemical manifold modeling, focusing more on data–driven methods. We note
that there have been works that use physics–driven machine learning models for
solving other physics problems [10,23], however, these methods generally focus
on simpler physics and are not necessarily applicable in the domain of turbulent
combustion.

Common approaches to low–dimensional thermochemical manifold modeling
are combustion chemistry mechanism reduction and thermochemical state–space
parametrization [18,20]. Chemistry mechanism reduction approach cannot be
generalized and in the recent past state–space parametrization approach has
been the most dominant method comprising of two phases progress variable gen-
eration and manifold approximation. For progress variable generation, existing
methods have either used domain models or numerical methods.

Domain models like steady Laminar Flamelet Method (SLFM) [15],
Flamelet–Generated Manifold (FGM) [21,22], Flamelet Progress Variable app-
roach (FPVA) [7,17] and Flamelet–Prolongation of ILDM model (FPI) [5] the-
orize that a multi–dimensional flame can be considered as an ensemble of mul-
tiple one–dimensional locally laminar flames (flamelets). These flamelets are
patametrized by a combination of conserved and reactive scalars [3,17,21,22].
A lot of research in this area builds on the principles laid out in [9] for progress
variables regularization however the fundamental problem of generating ade-
quate number of progress variables that capture the underlying physics is still
open.

Numerical methods, like PCA, have shown significant promise for
parametrization of the thermochemical state. PCA provides a method of generat-
ing reaction progress variables using the flamelet solutions, the state–space vari-
ables are still nonlinear functions of the reaction progress variables, and a nonlin-
ear regression is learned to approximate the state–space manifold [2,12,13,20].
This purely numerical parametrization lack interpretability and may also not
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be generalizable enough due to variation capture maximization that may over-
learn the numerical errors in the data. Linear Autoencoders have also been sug-
gested [14] however this definition lacks incorporation of a principled approach
to progress variable generation and thus may not be generalizable.

While domain based model have traditionally relied on tabular lookup, these
are not scalable. Tabulated data occupies a larger portion of the available mem-
ory on every node where the flow simulation is computing. Also the searching
and retrieval of this pre–tabulated data becomes increasingly expensive in a
higher–dimensional space. For example, assuming a standard 3 progress variable
discretization (200, 100, 50) with say 15 tabulated thermochemical state vari-
ables, we obtain a pre–computed combustion table of 120Mb. The addition of
a variable such as enthalpy with a very coarse discretization of 20 points, brings
the size of the table to 2.4 Gb. To address the tabulation problem researchers
like [1,24] build on the work of [8] to investigate the use of a neural networks for
manifold approximation which replaces the Tabulation. The mapping between
the progress variables (reduced dimensionality) and thermochemical state vari-
ables obtained using the flamelets solutions is learnt using a neural network.
However, due to the highly non–linear, knotted and discontinuous nature of the
lower dimensional manifolds formed by the progress variables generated a priori
the accuracy gained by a neural network is not satisfactory.

3 ChemTab: Joint Learning Progress Variables and
Manifold Approximation

To reduce the computational effort in coupled simulations, state–space
parametrization approaches follow a two–phase strategy. First, parametrize and
tabulate a priori the scalar evolution of a reactive turbulent environment by few
progress variables that govern the scalar evolution in a laminar flame. Second, use
a tabular lookup at run–time to determine the high–dimensional chemical state
required by the CFD solver. For instance, the FGM approach replaces all species
and temperature by a mixture–fraction and a single reaction progress variable or
reaction progress parameter. In this study, we focus on state–space parametriza-
tion using Unsteady Flamelet Generated Manifolds or Unsteady FGMs [3]. We
modify this approach in three ways: the progress variable generation is different,
the manifold is not tabulated and lastly, the progress variables and manifold
approximation are done jointly.

3.1 Background: Unsteady FGM

FGM is a widely used tabulated chemistry method and can deal with a range
of complicated conditions. FGM model shares the same theoretical basis with
flamelet approaches [15], in which a multi–dimensional flame can be considered
as an ensemble of multiple one–dimensional flames. Generally FGM model used
for combustion modeling follows three steps as shown below:

1. Calculation of the representative 1–D flamelets.



ChemTab: A Physics Guided Chemistry Modeling Framework 79

2. Transformation of 1–D flamelets solutions to progress variables space.
3. Retrieval of thermo–chemical variables from the FGM tables according to

FGM control variables from CFD simulations.

Table 1. Definitions for terms used in Sect. 3.1

Description Description

Zmix Mixture fraction T Temperature of the mixture

Cpv Progress variable ̂Ṡ Reactive scalars source terms

Y Species mass fraction ψ Non–linear function of ̂Y and Zmix

Ṡ Species source terms k No. of species used to generate progress variables

ρ Density of the mixture p Number of progress variables
̂Y Reactive scalars n Number of data points

Le Lewis number Ṡi Source term of the ith species

μ Viscosities h0
f,i Heat of formation of the ith species

Di Diffusivity of ith species h Total enthalpy

κ Thermal conductivity s Total no. of species in mechanism

Pr Prandtl number φ Non–linear function of Y

Sc Schmidt number ζ Non–linear function of ̂Y

Governing Equations. Conservation equations for mass, species, momentum
and energy for the 1–D, fully compressible, and viscous flames, are given by:
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where the different terms are defined in Table 1.
We simplify the above equations making some well known assumptions. In

1D cartesian coordinates, the steady state solution to (1)–(4) is obtained only
when the total mass flux is zero, i.e., velocity field is zero (ux = 0) and so the
four equations reduce to:
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In (6), the final term in the energy equation is represented by the total sum
of the product of all the source species and their respective heat of formation
and is collectively called the source energy. Source energy is one of the crucial
parameters in the combustion simulation and accurate chemistry description
is required to define it. Prediction error of this term is used as the basis of
comparison of our method against the other state of the art methods.

Flamelet Solutions. The data is generated by solving 1–D Steady State
Flamelets differential equations in (6) using a finite volume PDE solver. The
species Y and thermochemical state variables Ṡ are generated using the solver.

Y =

⎡
⎣Y11 .. .. Y1s

.. .. .. ..
Yn1 .. .. Yns

⎤
⎦ , Ṡ =

⎡
⎣S11 .. .. S1s

.. .. .. ..
Sn1 .. .. Sns

⎤
⎦ , Zmix =

⎡
⎣Zmix1

..
Zmixn

⎤
⎦ (7)

3.2 ChemTab

In ChemTab, the unsteady FGM approach is replaced with the following three
steps:

1. Calculation of the representative 1D flamelets (data generation)
2. Using the data generated jointly generate Progress Variables (encoder) and

Manifold Approximation (regressor) using ChemTab
3. Retrieval of thermo–chemical variables from the ChemTab–regressor accord-

ing to progress variables from CFD simulations.

Formulation. The generated data described in (7) is then used by ChemTab.
Conceptually the following equations summarize the relationships:

Ṡ = φ(Y ) (8)

Senergy = −
s∑
i

h0
f,i ∗ Ṡi (9)

The two sub–problems of state–space parametrization are formulated as a
joint optimization problems as follows:

min(
k∑

i=1

n∑
j=1

|| ˙Sij − ζi(Ŷj)||t +
n∑

j=1

||Senergy − ψ(Ŷ , Zmix)||t) (10)

s.t. t ∈ R (11)

Ŷ
n×p

= Y
n×s

× W
s×p

(12)

p << s (13)
||W || = 1 (14)

WT × W = I (15)
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(Ŷ ⊕ Zmix)T × (Ŷ ⊕ Zmix) = I (16)

Ṡ ≈ ̂̇S = ζ(Ŷ , Zmix) (17)

Senergy ≈ ̂Senergy = ψ(Ŷ , Zmix) (18)

The formulation described in Eq. 10 learns the optimal reactive scalars Cpvs
(described by the embedding Y × W ) that along with Zmix form the progress
variables. This is a linear dimensionality reduction problem such that the new
basis retains the inherent physics in higher dimensions described by the non–
linear relation between Y and Ṡ. To facilitate the development of transport
equations using the progress variables it is necessary that the embedding of the
variables in the low–dimensional space be linear. The constraints on the linear
embedding are inspired by the work of [9] and the key ideas from PCA.

Implementation. The joint optimization problem is solved using a Deep Neu-
ral Architecture. ChemTab jointly optimizes two neural networks for the tasks
of reaction progress variable generation (encoder) and manifold approximation
(regressor). The encoder network focuses on linear dimensionality reduction and
creates a linear embedding for the input. The regressor network focuses on learn-
ing the manifold approximation: a regression function whose input is the lin-
ear embedding and the output are the desired thermo–chemical state variables

Fig. 2. ChemTab architecture

Table 2. Symbols used in Sect. 3.2

Description Description

fθ Prediction function in s × n

y Input/output matrix s Total no. of species in mechanism

W Weight matrix out No. of thermo–chemical variables

b Bias matrix din Input dimensions s

S Themochemical state variables L No. of layers

σ scalar/activation function dout Output dimensions s + 1

o Entry–wise operation m Number of neurons

n Number of data points
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(Fig. 2 and Table 2).

fθ(y) = W [L−1]σ o (W [L−2]σ o (. . . (W [1]σ o

(W [0]y + b[0]) + b[1]) . . . ) + b

where, W [l] ∈ Rml+1 × ml

b[l] = Rml+1 ; m0 = din = d ; mL = dout

(19)

As described by (19) a Deep Neural Network can be conceptualized as a series
of operations. The input of the network is the data for each of the species for
each flame at each axial coordinate.

f
[0]
θ (y) = y

f
[1]
θ (y) = (W [0]f

[0]
θ (y))

f
[2]
θ (y) = (f [2]

θ (y) ⊕ Zmix)

f
[l]
θ (y) = σ o (W [l−1]f

[l−1]
θ (y) + b[l−1]) ∀ l s.t. 3 ≤ l ≤ L − 1

fθ(y) = f
[L]
θ (y) = σ o (W [L−1]f

[L−1]
θ (y) + b[L−1])

(20)

As described by (20) the network is a layer–wise composition. The input of
the network is reduced at the first layer linearly: this creates the linear embed-
ding/reacting scalars (Cpvs). The next layer concatenates the conserved scalar
Zmix with the reacting scalars. These progress variables are then fed to the next
layer. The subsequent layers together make up the regressor that learns a non–
linear function between the progress variables and the thermo–chemical state
variables.

argmin
θ

|fθ(y) − S|
s.t. W [0]T W [0] = I

‖W [0]‖ = 1

f
[2]
θ (y)T f

[2]
θ (y) = I

(21)

As described by (21), ChemTab minimizes the Mean Absolute Error in pre-
dicting the thermo–chemical state variables (Source Energy in the current work)
while ensuring that the linear embedding conforms to the following constraints:

1. Embedding Weights w learnt are unit norm (UN)
2. Embedding Weights w learned for the species mass fractions Yis are uncorre-

lated/orthogonal (WO)
3. The reaction progress variables are uncorrelated/orthogonal (AR)

The constraints in (21) will be also added to the objective in addition to the
predictions of key source terms, corresponding to a few important species, which
serve as the physics constraints.
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Extensions. The current framework and implementation can be very easily
extended to include the prediction of additional thermochemical state variables
and the projection of the embedding to get back the high dimensional mass
fractions. These can be implemented as two other neural networks and their
respective prediction errors can be added to the objective function.

4 Experimentation and Results

In this section we explain the specifics of the data set used, the training strat-
egy, impact of the number of Cpv, comparison with the existing framework and
relevant machine learning methods and the performance of the best model in
the context of the multiple objectives.

4.1 Dataset

The training data was generated by solving 1–D Steady State Flamelets differ-
ential equations using a finite volume PDE solver. GRI–Mech 3.0 is one of the
widely used Methane mechanism to model the reaction kinetics. This mechanism
consists of 53 chemical species and 325 reactions.

The Flamelet solver discretizes the domain into 200 grid points (200 obser-
vations on the axial coordinate) in between the fuel and the air boundary and
100 flame are solved to steady–state. To train the model 20,000 data points (100
flames and 200 grid points) for a single pressure setting are used. Some of the
generated data that represent extinguished flames were discarded, which led to
exclusion of approximately 3,500 data points.

We experiment the model training and evaluation using two strategies:

1. 50% Flamelets – Train using data from 50% of flamelets selected randomly
and test using data from the remaining 50% of the flamelets, and,

2. 50% Data points – Train using 50% data points selected randomly, and test
on remaining 50% data.

4.2 Evaluation

We use the Mean Absolute Error of the Source Energy across the entire dataset
as the metric to compare the performance as described in Eq. (21).

4.3 Implementation and Settings

We implemented ChemTab using Tensorflow 2.3.0, Keras and Adam optimizer.
Models were trained on a server with Nvidia Quadro RTX 5000 GPU and cuDNN
8.0 and CUDA 11.0. We performed a coarse grid search on the hyperparameters
(dropouts, learning rate, early stopping, batch size) & standard model architec-
ture (number of layers, number of nodes in the layers, activation functions). After
the initial model architecture and hyper–parameter search, all subsequent mod-
els in the subsequent studies were trained for 500 epochs. Results are reported
as average over 10 runs (Table 3).
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Table 3. Model parameters

Parameter Value Parameter Value

Learning rate 0.001 Number of layers 11

Momentum 0.5 Layer shapes 32|64|128|256|512

Dropout 5% Activation Functions ReLU

Early stopping Yes Number of epochs 500 (short run) | 20000 (long run)

Batch size 32 Network weight initialization Uniform distribution

Table 4. ChemTab architectural variants

Abbreviation Description

UN Unit norm constraint on weights of the linear embedding
WO Orthogonality constraint on weights of the linear embedding
AR Orthogonality constraint on linear embedding concatenated with

Zmix

UN + WO Unit norm constraint and orthogonality constraint on weights of the
linear embedding

UN + AR Unit norm constraint on the weights and orthogonality constraint on
linear embedding concatenated with Zmix

WO + AR Orthogonality constraint on the weights and linear embedding
concatenated with Zmix

All Unit norm and orthogonality constraint on the weights and linear
embedding concatenated with Zmix

4.4 Compared Methods

We compare the 7 variants of ChemTab with the relevant constraints on the
Linear Embedding and the Progress Variables with a series of state–of–the–art
baselines for Source Energy prediction Sect. 2.

4.5 Results

Current Framework Comparison. The current framework uses FGM based
progress variables and Conformal Mapping based Tabulation and Lagrange Poly-
nomial Interpolation based lookup. The tabulation was generated by using the
entire data–set. The best MAE that the framework generated on the data–set
was 2.243 E+09. The best ChemTab model trained on 50% of the data showed
a 73% reduction in error. This reduction although high comes from the limita-
tion of the current framework to include more than 2 progress variables and the
realization of that through conformal mapping. We present a more principled
comparison with the state–of–the–art methods in the next section.

Other Baseline Comparisons. We include DNN–PVG(NL)–DNN as refer-
ence although it cannot be used due to non–linear embedding. Similarly we
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Table 5. Current state of the art methods and ChemTab variants

Method abbreviation Progress variable generation

FGM–CPVG–DNN FGM Constrained

PCA–PVG–DNN PCA

DNN–PVG(NL)–DNN Non–linear encoder

DNN–PVG(UL)–DNN Unconstrained linear encoder

CT–PVG(ALL)–DNN Physics constrained linear encoder Table 4

CT–PVG(UN)–DNN Physics constrained (UN) linear encoder Table 4

CT–PVG(WO)–DNN Physics constrained (WO) linear encoder Table 4

CT–PVG(AR)–DNN Physics constrained (AR) linear encoder Table 4

CT–PVG(UN+WO)–DNN Physics constrained (UN+WO) linear encoder Table 4

CT–PVG(UN+AR)–DNN Physics constrained (UN+AR) linear encoder Table 4

CT–PVG(WO+AR)–DNN Physics constrained (WO+AR) linear encoder Table 4

did not consider Gaussian Processes as there are several challenges with opera-
tionalization of Gaussian Process in our context and so we focus more on bench–
marking against the relevant DNN based approaches (Table 5).

Fig. 3. MAE for source energy: data set split strategy

Figure 3 shows the results of an ablation study for both types of sampling
strategies. When the trained using the sampled points, all models consistently
do better than when trained using sampled flamelets. Essentially the flame is
considered as an ensemble of multiple one–dimensional flamelets, each of which
captures some of the highly nonlinear state–space and hence almost all models
struggle in this training regime. ChemTab models still perform better and our
assertions are that our constraints help in the generalization process. Our dataset
is limited and so we limit ourselves to use only 50% of the data for training.

As we increase the number of Cpv the computational time of the flow simula-
tion goes up, so we want to use the least number of Cpv while still capturing the
essential physics. Figure 4 shows the MAE decreases with increase in the number
of Cpv and then starts to increase again. As we add more Cpv the embedding
has too many degrees of freedom and hence may start diverging.
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Fig. 4. MAE for source energy: Cpv ablation

Fig. 5. MAE for key source terms – best model

Table 6. Constraints – best model

UN WO

w1 w2 w3 w4

1.004 1.005 1.001 0.998

w1 w2 w3 w4

w1 1.004 -0.003 -0.002 0.005
w2 -0.003 1.004 -0.003 0.002
w3 -0.002 -0.003 1.001 0.001
w4 -0.005 0.002 0.001 0.99

AR
Zmix Cpv1 Cpv2 Cpv3 Cpv4

Zmix 0.004 0.00 0.00 0.00 0.00
Cpv1 0.00 0.008 -0.001 0.001 0.00
Cpv2 0.00 -0.001 0.008 0.00 0.00
Cpv3 0.00 0.001 0.00 0.007 -0.001
Cpv4 0.00 0.00 0.00 -0.001 0.067
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Best Model Performance. Table 6 shows the conformity of the constraints
of Eq. 10. The first tabulation shows the (14) constraint conformity. The second
tabulation shows the (15) constraint conformity and the third (16) constraint
conformity. The (16) is also adequately satisfied as the constraint conformity is
measured through covariance (Fig. 5).

Best Model Long Run Performance. We trained best model architecture
on a 50% Data Points strategy for a long run of 20000 epochs and generated a
MAE of 1.80E+08.

5 Conclusion

We propose ChemTab, a novel framework for jointly learning the progress vari-
ables and the manifold approximation. ChemTab follows the principle of physics
guided neural networks [10], however no solutions exist that can directly benefit
the combustion community. ChemTab outperforms the state–of–the–art state–
space parametrization in combustion. Crucially, ChemTab generated reaction
progress variables can be interpreted by examining the weight matrix, W , and
thus, allow for physical insights into the systems being modeled. Incorporation
of ChemTab into a flow simulation will be explored as part of future work.
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