
Classification Methods Based on Fitting
Logistic Regression to Positive

and Unlabeled Data
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Abstract. In our work, we consider the classification methods based on
the model of logistic regression for positive and unlabeled data. We exam-
ine the following four methods of the posterior probability estimation,
where the risk of logistic loss function is optimized, namely: the naive
approach, the weighted likelihood approach, as well as the quite recently
proposed methods - the joint approach, and the LassoJoint method. The
objective of our study is to evaluate the accuracy, the recall, the pre-
cision and the F1-score of the considered classification methods. The
corresponding assessments have been carried out on 13 machine learning
model schemes by conducting some numerical experiments on selected
real datasets.

Keywords: Positive unlabeled learning · Logistic regression ·
Empirical risk minimization · Thresholded lasso

1 Introduction

Learning from positive and unlabeled data, i.e. the so-called PU learning, is
an approach where the only information the researcher has consists of positive
examples and unlabeled data. In the PU setting, the training data contains
positive and unlabeled examples, which means that the true labels Y ∈ {0, 1}
are not observed directly in the data and we only observe the surrogate variable
S ∈ {0, 1}, which indicates whether an example is labeled (and consequently
positive, S = 1 then) or not (S = 0 in this case). The history of PU learning dates
back to the early 2000s (see, e.g., [10]) and this idea has gained much attention
throughout recent years. The main reason for such a rapid development of the
PU learning scheme is that this setting is very useful in numerous important

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-08751-6 3.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Groen et al. (Eds.): ICCS 2022, LNCS 13350, pp. 31–45, 2022.
https://doi.org/10.1007/978-3-031-08751-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08751-6_3&domain=pdf
http://orcid.org/0000-0002-7683-4787
http://orcid.org/0000-0001-7408-6060
http://orcid.org/0000-0003-4242-8411
http://orcid.org/0000-0001-9486-1685
https://doi.org/10.1007/978-3-031-08751-6_3
https://doi.org/10.1007/978-3-031-08751-6_3


32 K. Furmańczyk et al.

applications. In particular, the PU learning method can be applied in the case
when under-reporting is present in survey data (see [1]). It is quite common
while analyzing some records from medical surveys, when we wish to predict
the presence of a specific disease. Namely, it often happens that, although some
respondents openly admit to suffering from a disease (the surrogate variable
S = 1 and consequently, the true label Y = 1 in this case), there also exists a
group of respondents who do not report such a disease (we put S = 0 then).
This second group includes both the respondents who in fact have an examined
disease, but do not admit to it (we have Y = 1 and S = 0 in this case) and
the respondents who actually do not suffer from it (we have Y = 0 and S = 0
then). Such the under-reporting phenomenon is frequently justified by the fact
that individuals suffering from some diseases (e.g. - from HIV or alcoholism)
are often negatively perceived and treated by the rest of society. Some other
interesting examples where the under-reporting is present may be found in the
papers by Bekker and Davis [1] and Teisseyre et al. [15].

Now, suppose that X is a feature vector and, as previously, Y ∈ {0, 1}
stands for a true class label and S ∈ {0, 1} denotes the surrogate variable that
indicates, whether an example is labeled (S = 1 in this case) or not (S = 0
then). We consider a single sample scenario, where it is assumed that, there is a
certain unknown distribution P , of (Y,X, S), such that (Yi,Xi, Si), i = 1, . . . , n,
form an iid sample obtained from this distribution, and that only empirical
data (Xi, Si), i = 1, . . . , n, are observed. Thus, we do not have a traditional
sample (Xi, Yi), which is considered in standard classification problems, and
we only observe a sample (Xi, Si), where Si are the observations of variable
S ∈ {0, 1} (since S is a surrogate of the true label Y , then each Si depends on
(Xi, Yi)). In the considered concept only positive examples (i.e., examples for
which Y = 1) may be labeled, which means that P (S = 1|X,Y = 0) = 0. It
should be emphasized that in the PU design, the true class labels Y are only
partially observed, which means that if S = 1, then we know that Y = 1, but if
S = 0, then Y may be either 1 or 0.

The following constraint, called the Selected Completely At Random (SCAR)
condition, is assumed

P (S = 1|Y = 1,X) = P (S = 1|Y = 1).

The SCAR assumption implies that X and S are independent given Y, since
P (S = 1|Y = 0,X) = P (S = 1|Y = 0) = 0. Let c = P (S = 1|Y = 1). The
parameter c is called the label frequency and plays a key role in the PU learning
scheme.

The main objective of our study is to apply the PU learning concept in
order to estimate the posterior probability f(x) = P (Y = 1|X = x), where, as
previously, Y ∈ {0, 1} denotes a true class label and X stands for the feature
vector. Based on logistic model, three basic methods of this estimation have
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been proposed so far. They consist in minimizing the empirical risk of logistic
loss function and are known as the naive method, the weighted method and the
joint method (the latter has been quite recently introduced in Teisseyre et al.
[15]).

Now, let us briefly describe the above mentioned methods.
First, we aim to present the naive method. In this case, having the empirical
data (Xi, Si), we minimize the empirical risk of the form

̂R1(b) = − 1
n

n
∑

i=1

[

Silog(σ(XT
i b)) + (1 − Si)log(1 − σ(XT

i b))
]

,

where σ(s) = 1/(1+exp(−s)). Then, the corresponding estimate of the posterior
probability f(x) is determined as

̂fnaive(x) = c−1σ(xT
̂bnaive),

where c stands for the label frequency (i.e., c = P (S = 1|Y = 1)) and ̂bnaive =
argminb

̂R1(b).
Using the weighted likelihood method (the weighted method in short, see

[1]), we minimize the weighted empirical risk given by

̂R2(b) = − 1
n

∑

i:Si=1

[

c−1log(σ(XT
i b)) + (1 − c−1)log(1 − σ(XT

i b))
]

+
∑

i:Si=0

log(1 − σ(XT
i b)).

Then, the corresponding estimator of the posterior probability f(x) is expressed
as

̂fweighted(x) = σ(xT
̂bweighted),

where ̂bweighted = argminb
̂R2(b).

The joint method from Teisseyre et al. [15] consists in minimizing - with
respect to both the parameter vector b and the label frequency c - the following
empirical risk

̂R3(b, c) = − 1
n

n
∑

i=1

[

Silog(cσ(XT
i b)) + (1 − Si)log(1 − cσ(XT

i b))
]

.

Then, the corresponding estimator of the posterior probability f(x) is stated as
follows

̂fjoint(x) = σ(xT
̂bjoint),

where
{

̂bjoint, ĉjoint

}

= argminb,c
̂R3(b, c).
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In order to optimize ̂R3(b, c), the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm has been applied in Teisseyre et al. [15]. This algorithm enables to
determine the formula for partial derivatives of ̂R3(b, c). It is worth mention-
ing in this place that the Minorisation-Maximisation (MM) algorithm has been
considered for the purpose of optimization by �Laz ↪ecka et al. [11].
In the most recent time, Furmańczyk et al. [5] proposed the LassoJoint proce-
dure. It derives its name from the fact that it combines the thresholded Lasso
procedure with the joint method from Teisseyre et al. [15]. It is a three-step
procedure. Namely, in its two first steps, we perform - for some prespecified level
- the thresholded Lasso procedure, in order to obtain the support for coefficients
of a feature vector X, while in the third step, we apply - on the previously
determined support - the joint method proposed by Teisseyre et al. [15]. More
precisely, the LassoJoint method may be described as follows:

(1) For available PU dataset (Si,Xi), i = 1, . . . , n, we perform the ordinary
Lasso procedure (see Tibshirani [18]) for some tuning parameter λ > 0, i.e.
we compute the following Lasso estimator of β∗

̂β(L) = arg min
β∈Rp+1

̂R(β) + λ

p
∑

j=1

|βj | ,

where

̂R(β) = − 1
n

n
∑

i=1

[

Si log
(

σ(XT
i β)

)

+ (1 − Si) log
(

1 − σ(XT
i β)

)]

and subsequently, we obtain the corresponding support Supp(L) = {1 ≤ j ≤
p : ̂β

(L)
j �= 0};

(2) We perform the thresholded Lasso for some prespecified level δ and obtain
the support Supp(TL) = {1 ≤ j ≤ p :

∣

∣

∣

̂β
(L)
j

∣

∣

∣ ≥ δ};
(3) We apply the joint method from Teisseyre et al. [15] for the predictors from

Supp(TL).

It should be stressed that under some mild regularity conditions, the Las-
soJoint procedure obeys the screening property (all significant predictors of the
model are chosen, with high probability, in the first two steps, see Theorem 1(b)
in [5]).

Apart from the works where different learning methods - based on applica-
tion of the logistic regression model for PU data - have been proposed, there
are also some other interesting articles where various machine learning tools are
used in the PU learning problems. In this context, it is worthwhile to mention:
the papers of Hou [8] and Guo [6] - where the generative adversial networks
(GAN) for the PU problem have been employed, the work of Mordelet and Vert
[13] - where the bagging Support Vector Machine (SVM) approach for the PU
data has been applied. Most relevant methods regarding the learning from PU
data may be found in Lee and Liu [10] and Sansone et al. [14].
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There are two essential objectives of our research. Its first goal is to verify and
compare the accuracy, the recall, the precision and the F1-score of classifications
obtained by the so far introduced primary methods of the posterior probability
estimation, providing that Y is governed by the logistic regression model and PU
data are available. For the corresponding comparisons, we aim to use AdaSam-
pling methods (see [20]). In turn, our second goal is to give a recommendation for
the method that seems the most stable and efficient. The details regarding our
study have been given in further parts of our work. The remainder of our paper
is structured as follows. In Sect. 1, we present the ideas and concepts used in our
investigations, especially the methods that enable attaining the set objectives.
Furthermore - in Sect. 2 we introduce the applied models, in Sect. 3 we present
our numerical experiments together with the obtained results, while Sect. 4 sum-
marizes our study. In order to carry out our simulations, we used the RStudio
server module from the ICM UW Topola server1. We implemented the following
libraries: AdaSampling [21], e1071 [12], glmnet [4], and some additional libraries
available from two selected GitHub repositories: PUlogistic [16], PU class prior
[17].

2 Objectives and Methods

The first goal of our study is to check and compare the accuracy, the recall,
the precision and the F1-score of classifications obtained with use of the recently
proposed methods - the joint method from Teisseyre et al. [15] and the LassoJoint
approach from Furmańczyk et al. [5], as well as with use of the earlier established
estimation methods consisting in fitting the logistic model, i.e. by additional
application of the naive method, the weighted method and the oracle method
for the case when the vector of coefficients is known.

The accuracy, recall, precision and F1-score metrics are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1 =
2 · Precision · Recall

Precision + Recall
,

where TP, FN, TN and FP stand for: the number of true positives, false neg-
atives, true negatives and false positives, respectively.

The assessments of the mentioned metrics have been gained by conducting
some numerical studies on nine real datasets from the UCI Machine Learning
1 This research was carried out with the support of the Interdisciplinary Centre for

Mathematical and Computational Modelling (ICM) at the University of Warsaw,
under computational allocation No. g88-1185.
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Repository [2] and the ‘caret’ package [9]. The second purpose of our research is
to recommend the most reliable and efficient estimation method for the poste-
rior probability f(x) = P (Y = 1|X = x) assessment, where - as in the previous
procedures - it is assumed that Y is governed by the logistic model and the
PU data are available. Our study was constructed on 13 machine learning (ML)
model schemes. We applied the LassoJoint method from [5] by considering the
joint method for two scenarios - with the BFGS or the MM algorithm. The Las-
soJoint approach is a three-step procedure. In its first step, the initial selection
of predictors is carried out by employing the Lasso method, for which the tuning
parameter λ is either obtained by using the 10-fold cross-validation technique or
is fixed. In turn, in the second step, the thresholded Lasso is performed, whereas
in the last step, the joint method is employed for the variables selected in the
second step. The naive logistic regression approach, the joint method, the Lasso-
Joint approach and the weighted method for c estimated from the joint method
(for the BFGS or the MM algorithm) have been employed and the corresponding
results have been compared with the results obtained by implementing the oracle
method when the true label variable Y is known. Moreover, in order to compare
the classification methods based on fitting the logistic regression model, the two
machine learning methods - namely, the Support Vector Machine (SVM) app-
roach and the k-nearest neighbors algorithm (KNN) have been used - both in the
AdaSampling scheme (see Yang et al. [19] and Yang et al. [20]). An application
of the AdaSampling design results in constructing an adaptive sampling-based
noise reduction method, which enables dealing with noisy data. We have also
performed the min-max transformation of our features, which - compared to the
original data - greatly improved the accuracy of all of the obtained results.

3 Numerical Experiments

3.1 Datasets

We consider nine datasets from the UCI Machine Learning Repository [2] and
the ‘caret’ package [9]. In Table 1, we present basic characteristics of each dataset
(from left to right: the number of features, the number of observations, the num-
ber of binary and continuous variables, the number of negative and positive cases,
the percentage of positive cases). The values of these characteristics are obtained
through fundamental preprocessing, including the one-hot encoding and remov-
ing the missing values. In our simulations, we set 1-class as a larger class for
each dataset. The selection of datasets was conducted by taking into account
various types of potential difficulties that may appear while applying the ML
methods. Thus, we tested both a strict low-dimensional datasets (‘Banknote’)
and datasets with many predictors (‘Dhfr ’). In addition to that, we also con-
sidered the sets with only binominal (‘Vote’) or continuous predictors (‘Wdbc’,
‘Spambase’) and mixed instances.
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Table 1. Basic characteristics of the datasets. (from left to right: dataset name, no. of
features, no. of observations, no. of binary variables, no. of continuous variables, no. of
negative instances, no. of positive instances, percentage of positive instances)

Dataset p n nbin variables ncon variables n0 n1 % of 1-class

Banknote 4 1372 0 4 610 762 55.5%

Breastc 9 683 0 9 239 444 65.0%

Credit a 37 653 31 6 296 357 54.7%

Credit g 24 1000 12 12 300 700 70.0%

Dhfr 228 325 11 217 122 203 62.5%

Diabetes 8 768 0 8 268 500 65.1%

Spambase 57 4601 0 57 1813 2788 60.6%

Vote 32 435 32 0 168 267 61%

Wdbc 30 569 0 30 212 357 62.7%

The naive logistic regression approach, the joint method, the LassoJoint app-
roach and the weighted method for c estimated with use of the joint method have
been employed. The corresponding results have been compared with the results
obtained by implementing the oracle method. We deal with the problem of PU
data classification. From the above, completely labeled datasets, we randomly
select c% of the labeled observations S, for c = 0.1; 0.3; 0.5; 0.7; 0.9, and then,
we randomly split these datasets into the training sample (80%) and the test
sample (20%). By applying the LassoJoint method in its first step, we use the
Lasso method with tuning parameters λ, chosen either on the basis of the 10-
fold cross-validation scheme - in the first scenario (where lambda.min gives the
minimum mean cross-validated error, while lambda.1se stands for the largest
value of λ such that an error is within 1 standard error of the cross-validated
errors for lambda.min.) or by putting the fixed λ of the form λ = ((log p)/n)1/3

- in the second scenario, as in [5]. In the second step, we apply the thresholded
Lasso design for δ = 0.5λ, with λ selected in the first step. Next, we determine
the classification metric by simulating from 100 Monte Carlo replications of
our experiment. Subsequently, in order to compare the logistic regression-based
classification methods, the tools of machine learning, such as an AdaSampling
(see Yang et al. [19] and Yang et al. [20]) together with the Support Vector
Machine (SVM) concept and the k-nearest neighbors algorithm (KNN) have
been employed.
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3.2 Results

We conducted our simulation study on 13 ML model schemes based on the
four methods described in Introduction. In our work, we applied four measures
based on the confusion matrix: the accuracy, the recall, the precision, the F1-
score. All of our metrics are the averages of the obtained values of metrics on
a test subset after 100 repetitions. We decided to set a cut-off point at the
level of 0.5. This level is typical in cases when the logistic or the logistic-based
models are fitted. In the examples from the AdaSampling package documentation
[21] the level of 0.5 is commonly used. The average values of the accuracy and
the recall are given in Fig. 1 and Fig. 2. Additionally, we provide a dedicated
visualization for comparison between the joint-wise models with and without
the Lasso component (see Fig. 3 and Fig. 4). Tables presenting the precise values
of some metrics and the charts depicting the values of the remaining measures
are available in our Supplementary Materials2. These Supplementary Materials
also include all of our codes in R.
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Fig. 1. The accuracy for the test datasets

2 http://github.com/kfurmanczyk/ICCS22.

http://github.com/kfurmanczyk/ICCS22
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Spambase Vote Wdbc

Credit_g dhfr Diabetes

Banknote Breastc Credit_a

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

c

R
ec

al
l

AdaS_knn

AdaS_svm

Joint BFGS

Joint MM

LassoJoint_BFGS

LassoJoint_BFGS_lambda.1se

LassoJoint_BFGS_lambda.min

LassoJoint_MM

LassoJoint_MM_lambda.1se

LassoJoint_MM_lambda.min

Naive

Oracle

Weighted BFGS

Fig. 2. The recall for the test datasets

It is clear that in the considered scenarios, performance of the oracle method
may be perceived as a natural top (‘the best’) benchmark. On the other hand,
in many scenarios the bottom (‘the worst’) benchmark is connected with per-
formance of the naive method, but it may not always be treated as a strict
rule.

Apart from obtaining appropriate metric values, we have also developed,
for each value of c, the corresponding ranking methods. The ranking has been
obtained on the basis of calculating the average values of ranks in a single sce-
nario (the greater rank value is, the worse a given method is in our ranking). The
ranking results are collected in Tables 2, 3, 4 and 5. The best methods (except
the oracle approach) are underlined in the columns. Some additional comments
and remarks regarding the obtained results are contained in the next section.



40 K. Furmańczyk et al.
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Table 2. Avg.rank method based on the accuracy

Method c = 0.1 0.3 0.5 0.7 0.9

Oracle 1.00 1.00 2.00 1.11 1.56

LassoJoint BFGS lambda.min 4.11 5.33 5.00 7.22 9.11

LassoJoint MM lambda.min 7.22 8.22 5.56 6.33 5.22

LassoJoint MM lambda.1se 11.22 6.67 5.44 5.56 4.44

LassoJoint MM 7.67 8.78 6.89 6.33 4.56

LassoJoint BFGS 4.44 4.89 7.11 8.56 10.00

Joint MM 7.11 8.22 6.56 7.56 5.67

Joint BFGS 5.44 6.00 7.00 7.78 10.22

AdaS svm 7.78 8.67 8.67 6.56 5.44

LassoJoint BFGS lambda.1se 9.00 5.22 6.78 7.56 8.56

AdaS knn 6.11 8.22 8.78 8.44 8.56

Weighted BFGS 8.11 7.56 9.00 8.11 10.33

Naive 11.78 12.22 12.22 9.89 7.33

Table 3. Avg.rank method based on the recall

Method c = 0.1 0.3 0.5 0.7 0.9

Oracle 1.89 1.44 1.67 1.78 1.00

LassoJoint BFGS lambda.min 3.67 5.56 5.22 6.44 8.44

LassoJoint BFGS 4.78 4.89 6.22 6.67 8.89

LassoJoint BFGS lambda.1se 8.11 4.78 5.89 6.56 7.56

LassoJoint MM lambda.1se 11.56 6.44 5.33 5.44 5.11

Joint BFGS 5.78 6.33 6.33 5.89 9.89

Joint MM 7.33 8.22 6.56 7.11 6.00

AdaS knn 5.78 7.44 8.11 8.11 6.89

LassoJoint MM lambda.min 7.44 8.44 6.78 7.44 6.33

LassoJoint MM 7.89 9.33 7.67 7.67 5.67

Weighted BFGS 7.11 6.78 8.67 8.22 10.33

AdaS svm 7.89 9.11 10.22 8.67 6.11

Naive 11.78 12.22 12.33 11.00 8.78
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Table 4. Avg.rank method based on the precision

Method c = 0.1 0.3 0.5 0.7 0.9

AdaS svm 5.44 3.89 2.89 3.22 5.00

Oracle 3.00 5.67 5.67 6.00 5.56

LassoJoint MM lambda.min 3.00 5.11 6.11 7.22 8.00

LassoJoint MM 5.33 4.67 7.22 6.56 7.56

LassoJoint BFGS lambda.min 6.78 7.67 7.78 6.56 6.11

Naive 10.22 7.78 5.00 4.00 8.11

LassoJoint BFGS 5.56 7.56 9.00 8.56 4.67

Joint BFGS 8.22 7.67 7.33 7.44 4.78

Joint MM 5.89 6.56 6.89 8.44 8.89

LassoJoint MM lambda.1se 10.11 7.33 6.33 8.00 8.22

AdaS knn 7.22 8.00 6.78 8.78 10.56

LassoJoint BFGS lambda.1se 10.22 9.11 9.67 6.78 8.00

Weighted BFGS 10.00 10.00 10.33 9.44 5.56

Table 5. Avg.rank method based on the F1-score

Method c = 0.1 0.3 0.5 0.7 0.9

Oracle 1.00 1.00 2.00 1.11 1.56

LassoJoint BFGS lambda.min 4.56 5.44 5.33 7.56 9.11

LassoJoint MM lambda.1se 10.33 6.67 5.78 5.44 4.11

LassoJoint BFGS lambda.1se 7.89 4.00 6.00 7.00 8.11

LassoJoint MM lambda.min 7.89 8.56 6.22 6.44 5.56

LassoJoint BFGS 4.22 5.11 7.11 8.56 10.00

Joint BFGS 5.33 6.33 6.00 7.89 10.56

Joint MM 7.22 8.44 7.00 7.78 5.89

LassoJoint MM 8.33 9.44 7.44 6.78 5.22

AdaS svm 8.44 8.11 9.22 6.67 5.56

AdaS knn 6.44 8.33 8.33 8.00 7.78

Weighted BFGS 7.56 7.22 8.22 7.89 9.89

Naive 11.78 12.33 12.33 9.89 7.67

4 Conclusions

The primary purpose of our study was to conduct a comprehensive evaluation of
13 ML model schemes, including the methods from literature and the methods
obtained as a result of some modifications we implemented in some other proce-
dures (such that conducting the MM optimization in the LassoJoint procedure).
We decided to apply a few measures in our research, in order to get a guarantee
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of a proper complexity of our assessments. In a typical approach to PU prob-
lems, the main attention is focus on calculating the AUC and Accuracy metrics,
whereas in our work we provide additional analysis regarding different assess-
ment measures. This extension enables to evaluate fractions of the true ‘1-class’
and fractions of the predicted ‘1-class’, among the real positive instances, which
may be very useful in many applications regarding popular PU problems. For
instance, in the credit risk management, we want to detect all frauds, even if we
label too many observations (equivalently - we agree for a larger type I error).
In this case we need to control the recall measure with a greater emphasis. On
the other hand, in various marketing campaigns related models (e.g., such as
uplifting models), we wish to focus our attention on customers who actually
want to buy certain products. In this case we prefer to control the precision
measure. The results of our numerical experiments show that if c increases, then
the percentage of correct classifications increases as well in most cases. Usu-
ally, the LassoJoint procedure helps to improve the classification metrics and
prevails over other methods (see Tables 2, 3, 4 and 5 and Tables 1–35 in the
Supplementary Materials). The LassoJoint method has been constructed for the
high-dimensional cases (i.e., when p > n), but it has to be stressed that it may
be also so in the low-dimensional cases (i.e., when p < n), as we observe that the
joint method performance improves while applying the basic metrics on most
of the tested datasets, except for the Credit g, Diabetes, and Spambase. Only
in few cases, the method based on the BFGS optimization performs worse for
large values of c, but the corresponding accuracy is still acceptable for small val-
ues of c. We may also observe that the classifications obtained by applying the
LassoJoint method with the MM algorithm result in smaller classification errors
(and thus in better classification accuracy) for larger labeling levels c. More-
over, the methods with tuning values λ, obtained by using the cross-validation
scheme, display better accuracy than the methods with fixed values. Based on
the obtained accuracy, recall and F1-score, we recommend using the LassoJoint
method with: (a) the BFGS variant - for small values of c, (b) the MM variant
for the values of c above 0.5 (for comparison - see Fig. 3). Furthermore, it is
worth mentioning that considering the selected cases with small values of c, we
do not observe classification instances from the ‘1-class’. Most of this cases are
connected with the naive method for c = 0.1, 0.3, which can be seen in Fig. 2 and
therefore, using more complex methods is highly recommended in these cases.
However, it is not easy to point out a general winning method by taking into
account all of considered measures. For example, an application of AdaSampling
with the SVM kernel provides the classification results of the highest precision
for almost every dataset scenarios. This high level of precision assures greater
certainty that the predicted positives are real positives. On the other hand, the
values of the accuracy, the recall and the F1-score are not satisfactory in most
cases. In addition to that, the obtained simulations show that the labels noising
can boost the precision metrics, since some methods provide better values of
precision measures than the oracle approach (see Table 4). It is important to
remember that all of the methods based on fitting the logistic regression model
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assume the celebrated SCAR condition. It is a common approach to impose this
assumption in majority of methods dealing with PU learning and only in very
few approaches the researchers try to omit this constraint (see [1]). In further
investigations, it would be interesting to introduce some new methods which
will not require the SCAR assumption. It would also be interesting to check
robustness of existing methods under some disturbances of the SCAR condition.
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