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Abstract. The Partitioned Global Address Space (PGAS) model is well
suited for executing irregular applications on cluster-based systems, due
to its efficient support for short, one-sided messages. Separately, the
actor model has been gaining popularity as a productive asynchronous
message-passing approach for distributed objects in enterprise and cloud
computing platforms, typically implemented in languages such as Erlang,
Scala or Rust. To the best of our knowledge, there has been no past work
on using the actor model to deliver both productivity and scalability to
PGAS applications on clusters.

In this paper, we introduce a new programming system for PGAS
applications, in which point-to-point remote operations can be expressed
as fine-grained asynchronous actor messages. In this approach, the
programmer does not need to worry about programming complexities
related to message aggregation and termination detection. Our approach
can also be viewed as extending the classical Bulk Synchronous Paral-
lelism model with fine-grained asynchronous communications within a
phase or superstep. We believe that our approach offers a desirable point
in the productivity-performance space for PGAS applications, with more
scalable performance and higher productivity relative to past approaches.
Specifically, for seven irregular mini-applications from the Bale bench-
mark suite executed using 2048 cores in the NERSC Cori system, our
approach shows geometric mean performance improvements of ≥20× rel-
ative to standard PGAS versions (UPC and OpenSHMEM) while main-
taining comparable productivity to those versions.

Keywords: Actors · Communication aggregation · Conveyors ·
OpenSHMEM · PGAS · Selectors

1 Introduction

In today’s world, performance is improved mainly by increasing parallelism,
thereby motivating the critical need for programming systems1 that can deliver
1 Following standard practice, we use the term, “programming system”, to refer to

both compiler and runtime support for a programming model.
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both productivity and scalability for parallel applications. The Actor Model [4]
is the primary concurrency mechanism in languages such as Erlang and Scala,
and is also gaining popularity in modern system programming languages such as
Rust. Large-scale cloud applications [3] from companies such as Facebook and
Twitter that serve millions of users are based on the actor model. Actors express
communication using “mailboxes” [16]; the term, “selector” [11], has been used to
denote an actor with multiple mailboxes. The actor runtime maintains a separate
logical mailbox for each actor. Any actor or non-actor, can send messages to an
actor’s mailbox. An important property of communication in Actors/Selectors
is their inherent asynchrony, i.e., there are no global constraints on the order in
which messages are processed in mailboxes.

The Partitioned Global Address Space (PGAS) model [20] is well suited to
such irregular applications due to its efficient support for short, non-blocking
one-sided messages. However, a key challenge for PGAS applications is the
need for careful aggregation and coordination of short messages to achieve low
overhead, high network utilization, and correct termination logic. Communica-
tion aggregation libraries such as Conveyors [17] can help address this problem
by locally buffering fine-grain communication calls and aggregating them into
medium/coarse-grain messages. However, the use of such aggregation libraries
places a significant burden on programmer productivity and assumes a high
expertise level.

In this paper, we introduce a new programming system for PGAS applica-
tions, in which point-to-point remote operations can be expressed as fine-grained
asynchronous actor messages. In this approach, the programmer does not need
to worry about programming complexities related to message aggregation and
termination detection. Further, the actor model also supports the desirable goal
of migrating computation to where the data is located, which is beneficial for
many irregular applications [15].

Our approach can also be viewed as extending the classical Bulk Synchronous
Parallelism (BSP) model with fine-grained asynchronous communications within
a phase or superstep. Many current HPC execution models have been influ-
enced by the simplicity and scalability of the BSP model, which consists of
“supersteps” separated by barriers executing on homogeneous processors. How-
ever, the increasing degree of heterogeneity and performance variability in exas-
cale machines has motivated the need for including asynchronous computations
within a superstep so as to reduce the number of barriers performed and the
total time spent waiting at barriers.

Specifically, this paper makes the following contributions:

1. An extension of the BSP model to a Fine-grained-Asynchronous Bulk-
Synchronous Parallelism (FA-BSP) model.

2. A new PGAS programming system which extends the actor/selector model
to enable asynchronous communication with automatic message aggregation
for scalable performance.

3. Development of a source-to-source translator that translates our lambda-
based API for actors to a more efficient class-based API.
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4. Our results show a geometric mean performance improvement of 25.59× rel-
ative to the UPC versions and 19.83× relative to the OpenSHMEM versions,
while using 2048 cores in the NERSC Cori system on seven irregular mini-
applications from the Bale suite [17,18]

2 Background: Communication in PGAS Applications

In this section, we summarize two fundamental messaging patterns in PGAS
applications, namely read and update, as well as the Conveyors library that
can be used to aggregate messages. Since the focus of our work is on scalable
parallelism, we assume a Single Program Multiple Data (SPMD) model in which
each processing element (PE) starts by executing the same code with a distinct
rank, as illustrated in the following code examples.

Listing 1.1. An OpenSHMEM program
that reads data from a distributed array.

1 for(i = 0; i < n; i++){
2 int col = index[i] / shmem_n_pes();
3 int pe = index[i] % shmem_n_pes();
4 gather[i] = shmem_g(data+col, pe);
5 }

Listing 1.2. An OpenSHMEM program
that creates a histogram by updating a
distributed array.

1 for(i = 0; i < n; i++) {
2 int spot = index[i] / shmem_n_pes();
3 int PE = index[i] % shmem_n_pes();
4 shmem_atomic_inc(histo+spot, PE);
5 }

2.1 Read Pattern

In this pattern, each PE sends a request for data from a dynamically identified
remote location and then processes the data received in response to the request.
An OpenSHMEM version of a program using this pattern is shown in Listing 1.1.
This program reads values from a distributed array named data and stores the
retrieved values in a local array named gather based on global indices stored in
a local array named index. The corresponding operation can also be performed
in MPI using MPI Get.

2.2 Update Pattern

In this pattern, each PE updates a remote location at an address that is
computed dynamically. An OpenSHMEM program that updates remote loca-
tions is shown in Listing 1.2. This program updates a distributed array named
histo based on global indices stored in each PE’s local index array using
atomic increment, thereby creating a histogram. The corresponding operation
can also be performed in MPI using MPI Accumulate or MPI Get Accumulate or
MPI Fetch and op.
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2.3 Conveyors

Conveyors [17] is a C-based message aggregation library built on top of conven-
tional communication libraries such as SHMEM, MPI, and UPC. It provides the
following three basic operations:
1. convey push: locally enqueue a message for delivery to a specified PE.
2. convey pull: attempts to fetch a received message from the local buffer.
3. convey advance: enables forward progress by transferring buffers.

It is worth noting that both push and pull operations can fail (return false)
due to resource constraints. push can fail due to a lack of available buffer space,
and pull can fail due to a lack of an available item. Due to these failures,
push and pull operations must always be placed in a loop that ensures that the
operations are retried. Further, advance needs to be called to ensure progress and
to also help with termination detection. These complexities place a significant
burden on programmer productivity and assumes a high expertise level. Table 1
demonstrates that user-directed message aggregation with Conveyors can achieve
much higher performance compared to non-blocking operations in state of the
art communication libraries/systems, some of which includes automatic message
aggregation [6]. Analysis using Rice University’s HPCToolkit [2] showed that the
conveyors version reduced stall cycles by an order of magnitude compared to the
OpenSHMEM version. As a result, we decided to use Conveyors as a lower-level
library for automatic message aggregation in our programming system.

Table 1. Absolute performance numbers in seconds using best performing variants for
Read and Update benchmarks on 2048 PEs (64 nodes with 32 PEs per node) in the
Cori supercomputer which performs 223 (≈8 million) reads and updates.

Communication system Non blocking Read (sec) Update (sec)

OpenSHMEM (cray-shmem 7.7.10) N 35.5 NA

OpenSHMEM NBI (cray-shmem 7.7.10) Y 4.2 4.3

UPC (Berkley-UPC 2020.4.0) N 22.6 23.9

UPC NBI (Berkley-UPC 2020.4.0) Y 19.7 NA

MPI3-RMA (OpenMPI 4.0.2) Y 25.8 88.9

MPI3-RMA (cray-mpich 7.7.10) Y 8.3 >300

Charm++ (6.10.1, gni-crayxc w/TRAM) Y 21.3 9.7

Conveyors (2.1 on cray-shmem 7.7.10) Y 2.3 0.5

3 Our Approach

3.1 Fine-grained-Asynchronous Bulk-Synchronous Parallelism
(FA-BSP) Model

The classical Bulk-Synchronous Parallelism (BSP) [19] model consists of “super-
steps” separated by barriers executing on homogeneous processors. Each proces-
sor only performs local computations and asynchronous communications in a
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superstep, and the role of the barrier is to ensure that all communications in a
superstep have been completed before moving to the next superstep. However,
the increasing degree of heterogeneity and performance variability in modern
cluster machines has motivated the need for including asynchronous computa-
tions within a superstep so as to reduce the number of barriers performed and
the total time spent waiting at barriers. To that end, we propose extending
BSP to a Fine-grained-Asynchronous Bulk-Synchronous Parallelism (FA-BSP)
model, as follows.

Our proposal is to realize the FA-BSP model by building on three ideas from
past work in an integrated approach. The first idea is the actor model, which
enables distributed asynchronous computations via fine-grained active messages
while ensuring that all messages are processed atomically within a single-mailbox
actor. For FA-BSP, we extend classical actors with multiple symmetric mailboxes
for scalability, and with automatic termination detection of messages initiated
in a superstep. The second idea is message aggregation, which we believe should
be performed automatically to ensure that the FA-BSP model can be supported
with performance portability across different systems with different preferences
for message sizes at the hardware level due to the overheads involved. The third
idea is to build on an asynchronous tasking runtime within each node, and to
extend it with message aggregation and message handling capabilities.

3.2 High-Level Design of Programming System

Our primary approach to delivering both productivity and scalability for PGAS
applications is by building a programming system based on the actor model that
also supports automatic message aggregation and termination detection. Rela-
tive to the Conveyors approach, we would like to remove the burden of the user
having to worry about about 1) the lack of available buffer space (convey push),
2) the lack of an available item (convey pull), and 3) the progress and ter-
mination of communications (convey advance). We believe that the use of the
actor/selector model is well suited for this problem since its programming model
productively enables the specification of fine-grained asynchronous messages.
Some key elements of the high-level design are summarized below

Abstracting Buffers as Mailboxes. We observe that buffer operations can be
elevated to actor/selector mailbox operations with much higher productivity. For
example, the convey push operation on a buffer can be elevated to an actor/se-
lector send operation, and a convey pull operation can be made implicit in an
actor/selector’s message processing routine, while leaving it to our programming
system to handle buffer/item failures and progressing/terminating communica-
tions among actors/selectors. More details on how our runtime handles failure
scenarios are given in Sect. 4.3.

An important design decision for scalability is to treat a collection of mail-
boxes as a distributed object so that the mailboxes can be partitioned across
PEs, analogous to how memory is partitioned in the PGAS programming model.
This partitioned global actor design allows users to access a target actor’s mail-
box conveniently, instead of having to search for the corresponding actor object
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across multiple nodes as is done in many actor runtime systems. Thus we differ
from classical actors through the usage of partitioned global mailbox.

Among the two patterns discussed in Sect. 2, the read patterns differs from
the update pattern in that it involves communication in two directions, namely
request and response. In this case we can use ‘Selector’ [11], which is an actor
with multiple mailboxes.

Progress and Termination. In general, the Actors/Selectors model provides
an exit [13] operation to terminate actors/selectors. While it may seem some-
what natural to expose this operation to users, one problem with this termination
semantics is that it requires users to ensure that all messages in the incoming
mailbox are processed (or received in some cases) before invoking exit, which
adds additional complexities even for the simplest mini-applications such as His-
togram Listing 1.2. To mitigate this burden, we added a relaxed version of exit,
which we call done, to enable the runtime do more of the heavy lifting. The
semantics of done is that users tell the runtime that the PE on which a specific
actor/selector object resides will not send any more messages in the future to a
particular mailbox, so the runtime can still keep the corresponding actor/selector
alive so it can continue to receive messages and process them.

3.3 User-facing API

Based on the discussions in Sect. 3.2, we provide a C/C++ based actor/selector
programming framework as shown in Listing 1.3.

Listing 1.3. Actor/Selector Interface
with partitioned global mailboxes.

1 //L: lambda type
2
3 class Actor<L> {
4 void send(int PE, L msg);
5 void done();
6 };
7
8 class Selector<N, L> { // N mailboxes
9 void send(int mailbox_id,

10 int PE, L msg);
11 void done(int mailbox_id);
12 };

Listing 1.4. Actor version of the Update
benchmark (Histogram) using lambda.

1 Actor h_actor;
2 for(int i=0; i < n; i++) {
3 int spot = index[i] / shmem_n_pes();
4 int remote_PE = index[i] % shmem_n_pes();
5 h_actor.send(remote_PE,
6 [=](){histo[spot]+=1;});
7 }
8 h_actor.done();

Update:2 Listing 1.4 shows our version of the histogram benchmark. We use
C++ lambdas to succinctly describe both the message and its processing routine.
The main program creates an Actor object as a collective operation in Line: 1,
which is used for communication. Then to create the histogram, it finds the
target PE in Line:4 and local index within the target in Line: 3 from the global
index. Then it sends a message lambda to the target PE’s mailbox using the
send API. Once the target PE’s mailbox gets the message, the actor invokes it,

2 Showing only update pattern due to page limitation. Read pattern is in the artifact.
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which updates the histo array. Note that the lambda automatically captures
the value of spot inside it. Also, the code for the lambda does not need to be
communicated since it is compiled ahead of time and available on nodes.

3.4 Class-based API

While lambdas help with productivity by automatically capturing variables
from the environment and enabling the developer to write routines with in-line
message-handling logic instead of separate functions, lambda-based operations
can incur additional overhead relative to direct method calls. To avoid this over-
head, we also created a class-based version of our APIs (Listing 1.5) that gives
the user more control regarding what data needs to be communicated and also
allows for automatic translation from the lambda API to the class-based API. In
the class based version, user need to express message handling using the process
API and explicitly construct the message used in send API.

Listing 1.5. Actor/Selector class-based
interface with partitioned global mail-
boxes.

1 class Actor<T> {

2 void process(T msg, int PE);

3 void send(T msg, int PE);

4 void done();

5
6 Actor() {

7 mailbox[0].process = this->process;

8 }

9 };

10 class Selector<N,T> { // N mailboxes

11 void process_0(T msg, int PE);

12 ...

13 void process_N_1(T msg, int PE);

14 void send(int mailbox_id, T msg, int PE);

15 void done(int mailbox_id);

16
17 Selector() {

18 mailbox[0].process = this->process_0;

19 ...

20 mailbox[N-1].process = this->process_N_1;

21 }

22 };

4 Implementation

In this section, we discuss the implementation of the selector runtime prototype
created by extending HClib [9], a C/C++ Asynchronous Many-Task (AMT)
Runtime library. We first discuss our execution model in Sect. 4.2 and then
describe our extensions to the HClib runtime to support our selector runtime in
Sect. 4.3.

4.1 HClib Asynchronous Many-Task Runtime

Habanero C/C++ library (HClib) [9] is a lightweight asynchronous many-task
(AMT) programming model-based runtime. It uses a lightweight work-stealing
scheduler to schedule the tasks. HClib uses a persistent thread pool called work-
ers, on which tasks are scheduled and load balanced using lock-free concurrent
deques. HClib exposes several programming constructs to the user, which in turn
helps them to express parallelism easily and efficiently.

A brief summary of the relevant APIs is as follows:

1. async: Used to create asynchronous tasks dynamically.
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2. finish: Used for bulk task synchronization. It waits on all tasks spawned
(including nested tasks) within the scope of the finish.

3. promise and future: Used for point-to-point inter-task synchronization in
C++11 [7]. A promise is a single-assignment thread-safe container, that is
used to write some value and a future is a read-only handle for its value.
Waiting on a future causes a task to suspend until the corresponding promise
is satisfied by putting some value to the promise.

4.2 Execution Model

Figure 1 shows the high level structure of the execution model for our approach
from the perspective of PE j, shown as process[j], with memory[j] representing
that PE’s locally accessible memory. This local memory includes partitions of
global distributed data, in accordance with the PGAS model. Users can create
as many tasks as required by the application, which are shown as Computation
Tasks. For the communication part, each mailbox corresponds to a Communica-
tion Task. All tasks get scheduled for execution on to underlying worker threads.
For example, if an application uses a selector with two mailboxes and an actor/s-
elector with one mailbox, it corresponds to three communication tasks—two for
the selector and one for the actor. All computation and communication tasks are
created using the HClib [9] Asynchronous Many-Task (AMT) runtime library.

Fig. 1. The execution model showing
internal structure of tasks and mail-
boxes within a single PE.

Fig. 2. Source-to-source translator from
lambda version to class based version.

To enable asynchronous communication, the computation tasks offload all
remote accesses on to the communication tasks. When the computation task
sends a message, it is first pushed to the communication task associated with
the mailbox using a local buffer. Eventually, the communication task uses the
conveyors library to perform message aggregation and actual communication.
Currently we use a single worker thread that multiplexes all the tasks. When a
mailbox receives a message, the mailbox’s process routine is invoked.

It is worth noting that users are also allowed to directly invoke other commu-
nication calls outside the purview of our Selector runtime. For example, the user
application can directly invoke the OpenSHMEM barrier or other collectives.
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4.3 Selector Runtime

The implementation details presented are based on the class-based interface
introduced in Sect. 3.4, since our results were obtained by converting the lambda
API to the class-based API using the translator described in Sect. 4.4. As men-
tioned earlier, we hide the low-level details of Conveyors operations from the pro-
grammer and incorporate them into our Selector runtime instead. To reiterate,
such details include maintaining the progress and the termination of communi-
cation as well as handling 1) the lack of available buffer space, and 2) the lack
of an available item. This enables users to only stick with the send(), done(),
and process() APIs. The implementation details of these APIs are as follows:

Selector.send(): We map each mailbox to a conveyor object. Each send in a
mailbox gets eventually mapped to a conveyor push. Note that the send does
not directly invoke the conveyor push because we want to relieve the compu-
tation task on which the application is running from dealing with the failure
handling of conveyor push. Instead, this API adds a packet with the message
and receiver PE’s rank to a small local buffer3 that is based on the Boost Cir-
cular Buffer library [8]. The packet is later picked up by the communication
task associated with the mailbox and is passed into a conveyor push operation.
Whenever the mailbox’s local circular buffer gets filled, the runtime automati-

Algorithm 1. Worker loop associated with each mailbox
1: while buff.isempty() do
2: yield() � yield until message is pushed to buffer
3: end while
4: pkt ← buffer[0]
5: while convey advance(conv obj, is done(pkt)) do
6: for i ← 0 to buffer.size-1 do
7: pkt ← buffer[i]
8: if is done(pkt) then
9: break

10: end if
11: if convey push(conv obj, pkt.data,pkt.rank) then
12: break
13: end if
14: end for
15: buffer.erase(0 to i)
16: while convey pull(conv obj, &data, &from) do
17: create computation task(
18: process(data, from)
19: )
20: end while
21: yield()
22: end while
23: end promise.put(1) � To signal completion of mailbox

3 This local buffer is different from the Conveyor’s internal buffer.
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cally passes control to the communication task, which drains the buffer, thereby
allowing us to keep its size fixed.

Selector.done(): Analogous to send, when done is invoked, we enqueue a spe-
cial packet to the mailbox that denotes the end of sending messages from the
current PE to that mailbox.

Selector.process(): When the communication task receives a data packet
through conveyor pull, the mailbox’s process routine is invoked.

Worker Loop: The selector runtime creates a conveyor object for each mail-
box and processes them separately within its own worker loop, as shown in Algo-
rithm 1. When a mailbox is started, it creates a corresponding conveyor object
(conv obj) and a communication task that executes the algorithm shown in Algo-
rithm 1. Initially, the communication task waits for data packets in the mailbox’s
local buffer, which gets added when the user performs a send from the mailbox
partition. During this polling for packets from the buffer, the communication task
yields control to other tasks, as shown in Line 2. Once the data is added to the
buffer, it breaks out of the polling loop and starts to drain elements from the buffer
in Line 6. It then pushes each element in the buffer to the target PE in Line 11 until
push fails. Then it removes all the pushed items from the buffer and starts the pull
cycle. It pulls the received data in Line 16 and creates a computation task, which
in turn invokes the mailbox’s process method, as shown in Line 18. As mentioned
before, in case there is only one worker that is shared by all the tasks, we invoke
the process method directly without the creation of any computation task. Once
we come out of the processing of the received data, the task yields so that other
communication tasks can share the communication worker.

Once the user invokes done, a special packet is enqueued to the buffer. When
this special packet is processed, the is done API in Line 5 returns true, thereby
informing the conveyor object to start its termination phase. Once the communi-
cation of all remaining items is finished, the convey advance API returns false,
thereby exiting the work loop. Finally the communication task terminates and
signals the completion of the mailbox using a variable of type promise named
as end promise, as shown in Line 23. The signaling of the promise schedules a
dependent cleanup task which informs all dependent mailboxes about the termi-
nation of the current mailbox. This task also manages a counter to find out when
all the mailboxes in the selector have performed cleanup, to signal the comple-
tion of the selector itself using a future variable associated with the selector.
Since the selector runtime is integrated with the HClib runtime, the standard
synchronization constructs in AMT runtimes such as finish scope and future
can be used by the user to coordinate with the completion of the selector. Other
dependent tasks can use the future associated with the selector to wait for its
completion. Users can also wait for completion by using a finish scope.

4.4 Source-to-Source Translation from Lambda-Based
to Class-Based Messaging

While the use of C++ lambda expressions further simplifies writing remote
message handlers (Sect. 3.3), during experiments the performance of the lambda-
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based version was found to be 2× slower than that of the class-based version
(Sect. 3.4). This motivates us to perform automatic source-to-source translation
from the lambda version to the class version to improve productivity without this
performance loss. This kind of translation could be beneficial to other lambda-
based libraries as well.

Figure 2 illustrates the end-to-end flow for the translation. The translator is
a standalone tool built on top of Clang LibTooling. First, it identifies the use
of the send API with a lambda expression by utilizing Clang LibTooling’s AST
traversal APIs. For each lambda, it analyzes captured variables to synthesize a
packet structure that is used for the class-based version. Then, it synthesizes
a class declaration with a message handler and a packet struct type for actor
messages.

5 Evaluation

This section presents the results of an empirical evaluation of our selector runtime
system on a multi-node platform to demonstrate its performance and scalability.
The goal of our evaluation is twofold:

1. to demonstrate that our selector-based programming system based on the
FA-BSP model can be used to express a range of irregular mini-applications,
and

2. to compare the performance of our approach with that of UPC, OpenSHMEM
and Conveyors versions of these mini-applications.

Platform: We ran the experiments on the Cori supercomputer located at
NERSC. In Cori, each node has two sockets, with each socket containing a
16-core Intel Xeon E5-2698 v3 CPU @ 2.30 GHz (Haswell). For inter-node con-
nectivity, Cori uses the Cray Aries interconnect with Dragonfly topology that
has a global peak bisection bandwidth of 45.0 TB/s. We use one worker thread
per PE rank for the experiments; since the mini-applications have sufficient par-
allelism across PE ranks, there was no motivation to use multiple worker threads
within a single PE rank. The Conveyors library was compiled using cray-shmem
for our experiments since cray-shmem provided the best performance based on
our evaluation in Table 1.

Mini-applications: We used all seven mini-applications in Bale [17,18] that
have Conveyors versions for our study. Bale can be seen as a proxy for key
components in an irregular application that involve a large number of irregular
point-to-point communication operations.

Experimental Variants:

1. UPC: This version is written using UPC.
2. OpenSHMEM: This version is written using OpenSHMEM.
3. Conveyor: This version directly invokes the Conveyors APIs, which includes

explicit handling of failure cases and communication progress.
4. Selector: This version uses the class-based version of the Selector API intro-

duced in this paper, obtained by automatic translation from the lambda ver-
sion as described in Sect. 4.4.
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Fig. 3. Comparison of execution time of the
UPC, OpenSHMEM, conveyor and selector
variants (lower is better for the Y-axis).

In Figs. 3(a) to 3(g), the Y-axis
shows the weak scaling average exe-
cution time of five runs in seconds,
so smaller is better. From the figures,
we can see that the Conveyor versions
perform much better than their UPC
and OpenSHMEM counterparts. For
the 2048 PE/core case, the Conveyor
versions show a geometric mean per-
formance improvement of 27.77× rel-
ative to the UPC and 21.52× relative
to the OpenSHMEM versions, across
all seven mini-applications.

This justifies our decision to use
the Conveyors library for message
aggregation in our Selector-based
approach. Overall, we see that the
Selector version also performs much
better than the UPC/OpenSHMEM
versions and close to the Conveyor
version. For the 2048 PE/core case,
the Selector versions show a geomet-
ric mean performance improvement
of 25.59× relative to the UPC and
19.83× relative to the OpenSHMEM
versions, and a geometric mean slow-
down of only 1.09× relative to the
Conveyor versions. These results con-
firm the performance advantages of
our approach, while the productivity
advantages can be seen in the simpler
programming interface for the Selec-
tor versions relative to the Conveyor
versions.

Table 2 shows the source lines of
code (SLOC) for different versions of
the kernel of each mini-application,
as measured by the CLOC utility [1].
The table convincingly shows that
moving to the Actor/Selector model
results in lower SLOC values relative
to the Conveyor model, which in turn
demonstrates higher productivity for
the Actor/Selector model.
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Table 2. Kernel size of each mini-application in terms of source lines of code.

Histogram Index-gather Permute-matrix Random-permutation Topological-sort Transpose Triangle-counting

UPC 18 16 37 41 72 43 43

OpenSHMEM 19 17 51 43 92 50 49

Conveyor 30 40 108 111 148 83 61

Actor/Selector 21 25 78 99 130 69 53

6 Related Work

The actor is the primary concurrency mechanism in Scala, however it is not
scalable for HPC workloads [5]. The Chare abstraction in Charm++ [14] has
taken inspiration from the Actor model, and is also designed for scalability. As
indicated earlier, the performance of Charm++ is below that of Conveyors (and
hence that of our approach) for the workloads studied in this paper.

In the past, there has been much work on optimizing the communication of
PGAS programs through communication aggregation. Jenkins et al.. [12] cre-
ated the Chapel Aggregation Library (CAL) which aggregates user-defined data
using an Aggregator object. UPC [6] performs automatic message aggregation to
improve the performance of fine-grained communication but is unable to achieve
performance compared to user-directed message aggregation.

7 Conclusions and Future Work

This paper proposes a scalable programming system for PGAS runtimes to accel-
erate irregular distributed applications. Our approach is based on the actor/s-
elector model, and introduces the concept of a Partitioned Global Mailbox. Our
programming system also abstracts away low-level details of message aggregation
(e.g., manipulating local buffers and managing progress and termination) so that
the programmer can work with a high-level selector interface. Our Actor runtime
is more than a message-aggregation system since it also supports user-defined
active messages, which can support the migration of computation closer to data
that is beneficial for irregular applications. For the 2048 PE case, our approach
show a geometric mean performance improvement of 25.59× relative to the UPC
versions, 19.83× relative to the OpenSHMEM versions, and a geometric mean
slowdown of only 1.09× relative to the Conveyors versions. These results suggest
that the FA-BSP model offers a desirable point in the productivity-performance
spectrum, with higher performance relative to PGAS models such as UPC and
OpenSHMEM and higher productivity relative to the use of low-level hand-coded
approaches for communication management and message aggregation.

In future, it would be interesting to explore compiler extensions to automat-
ically translate from the natural version to our selector version, thereby directly
improving the performance of natural PGAS programs. We would also like to
improve our performance result reporting based on the paper [10].

Artifact. https://github.com/srirajpaul/hclib/tree/bale actor/modules/bale actor

https://github.com/srirajpaul/hclib/tree/bale_actor/modules/bale_actor
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