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Abstract. We study a first-order theory of finite full binary trees with
an axiom schema of open induction. We show that this theory is sequen-
tial by constructing a direct interpretation of Adjunctive Set Theory in
a very weak finitely axiomatized subtheory. We show that weakening the
latter theory by removal of an axiom which states that the subtree rela-
tion is transitive gives a theory that directly interprets Vaught’s weak set
theory, a non-finitely axiomatizable fragment of Adjunctive Set Theory.

1 Introduction

In this paper, we show that a very weak finitely axiomatized first-order theory of
finite full binary trees is sequential. Informally, sequential theories are theories
with a coding machinery of a certain strength. It is possible to code any finite
sequence in the domain of the theory. Furthermore, it is possible to extend any
sequence by adjoining an arbitrary element. The concept of sequential theories
was introduced by Pudlák [7] in the study of degrees of multidimensional local
interpretations. Pudlák shows that sequential theories are prime in this degree
structure. An element is prime if it is not the join of two smaller elements.

As a consequence of their expressive power, sequential theories are essentially
undecidable. A computably enumerable first-order theory is called essentially
undecidable if any consistent extension, in the same language, is undecidable
(there is no algorithm for deciding whether an arbitrary sentence is a theorem). A
computably enumerable first-order theory is called essentially incomplete if any
recursively axiomatizable consistent extension is incomplete. It can be proved
that a theory is essentially undecidable if and only if it is essentially incomplete
(see Chapter 1 of Tarski et al. [9]). Two theories that are known to be essentially
undecidable are Robinson arithmetic Q and the related theory R (see Chapter 2
of [9]).

Examples of sequential theories are Adjunctive Set Theory AS (see Fig. 1
for the axioms of AS), the theory of discretely ordered commutative semirings
with a least element PA− (see Jeřábek [4]), Robinson Arithmetic with bounded
induction IΔ0 (see Hájek & Pudlák [3] Section V3b), Peano Arithmetic PA,
Zermelo-Fraenkel Set Theory ZF. Examples of theories that are not sequential
are Robinson Arithmetic Q (see Visser [11] Example 1 or Theorem 9 of [4]) and
Gregorczyk’s theory of concatenation TC (see Visser [12] Sect. 5).
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Fig. 1. Non-logical axioms of the first-order theories AS and VS.

Formally, sequential theories are theories that directly interpret AS (see
Sect. 2). A weaker notion is the concept of theories that directly interpret the
weak set theory VS of Vaught [10], which is a non-finitely axiomatizable frag-
ment of AS (see Figure 1 for the axioms of VS). Vaught introduces VS in the
study of theories that are axiomatizable by a schema. A theory T is axiomati-
zable by a schema if there exists a formula Φ in the language of T plus a fresh
relation symbol R such that the set of universal closures of formulas obtained
by substituting formulas for R in Φ is an axiom set for T . Vaught shows that
any computably enumerable first-order theory of finite signature that directly
interprets VS is axiomatizable by a schema. For more on VS, see Sect. 3.2 of
Visser [11].

In [11] and [12], Visser shows that Q and TC are not sequential by showing
that they do not have pairing. A theory S has pairing if there exists a formula
Pair(x, y, z) in the language of S such that S proves ∀xy ∃z [ Pair(x, y, z) ] and
∀xyzuv [ ( Pair(x, y, z) ∧ Pair(u, v, z) ) → ( x = u ∧ y = v ) ]. In Kristiansen
& Murwanashyaka [5], we introduce an essentially undecidable theory T with
pairing (see Fig. 2 for the axioms of T). The language of T is LT = {⊥, 〈·, ·〉,	}
where ⊥ is a constant symbol, 〈·, ·〉 is a binary function symbol and 	 is a binary
relation symbol. The intended model of T is a term algebra extended with the
subterm relation: The universe is the set of all variable-free LT-terms (equiva-
lently, finite full binary trees). The constant symbol ⊥ is interpreted as itself.
The function symbol 〈·, ·〉 is interpreted as the function that maps the pair (s, t)
to the term 〈s, t〉. The relation symbol 	 is interpreted as the subterm relation
(equivalently, the subtree relation): s is a subterm of t iff s = t or t = 〈t1, t2〉 and
s is a subterm of t1 or t2. In [5], we show that T is essentially undecidable by
showing that it interprets Q but leave open the problem of whether the converse
holds. In [2], Damnjanovic shows that Q interprets T.

It is not clear to us whether T is sequential or even expressive enough to
directly interpret VS. It appears as if the subtree relation does not provide a
good notion of occurrence since T has models where there exist distinct elements
u, v such that u 	 v and v 	 u. In this paper, we consider the theory ΣT

open we
obtain by extending T with an axiom schema of open induction:

φ(⊥, �p ) ∧ ∀xy [ φ(x, �p ) ∧ φ(y, �p ) → φ(〈x, y〉, �p ) ] → ∀x φ(x, �p )



210 J. Murwanashyaka

Fig. 2. Non-logical axioms of the first-order theory T.

where φ is a quantifier-free LT-formula. We study two extensions of T that are
subtheories of ΣT

open. Let T(1) denote the theory we obtain by extending T with
the axiom ∀xy [ 〈x, y〉 
	 x ]. In Sect. 4, we show that T(1) directly interprets VS
(the proof shows that we can in fact do with ∀xy [ x 	 x → 〈x, y〉 
	 x ]). The
proof we give can be easily modified to show that VS is directly interpretable in
T + ∀xy [ 〈x, y〉 
	 y ]. Let T(2) denote the theory we obtain by extending T with
the axioms: ∀xyz [ x 	 y ∧ y 	 z → x 	 z ], ∀xyz [ x 	 y → 〈y, z〉 
	 x ] (we
could also have used ∀xyz [x 	 z → 〈y, z〉 
	 x ]). In Sect. 5.2, we show that T(2)

is a sequential theory by constructing a direct interpretation of AS. In Sect. 5.1,
we formulate the coding technique that is the basis of this interpretation. Since
ΣT

open is an extension of the sequential theory T(2), it is also a sequential theory.
One of the referees found a shorter and neat direct interpretation of AS in T(2).
We present their proof in Sect. 5.3.

2 Sequential Theories

Hájek & Pudlák [3, p. 151] characterize sequential theories as those theories that
interpret Robinson Arithmetic Q and for which there are formulas Seq(z, u) (z
codes a sequence of length u) and β(x, v, z) (x is the v-th element of z) with
the following two properties: (1) If z codes a sequence s of length u, then for
each number v that is strictly less than u, there is a unique x that is the v-th
element of z. (2) If z codes a sequence s of length u, then given y, there exists
z′ that codes a sequence s′ of length u + 1 obtained by extending s with y. This
definition differs slightly from the original definition of Pudlák [7]. Instead of an
interpretation of Q, Pudlák requires that there exist formulas x ≤ y, N(x) such
that ≤ is a total ordering of N and each element of N has a successor in N. In this
paper, we use the equivalent definition of sequentiality in terms of Adjunctive
Set Theory AS (see Pudlák [7, p. 274] and Visser [11] Sect. 3.3). See Fig. 1 for
the axioms of AS.

Definition 1. Let T be a first-order theory in the language of set theory {∈}.
A first-order theory S directly interprets T if there exists a formula φ(x, y) in
the language of S with only x and y free such that the extension by definitions
S + ∀xy [ x ∈ y ↔ φ(x, y) ] proves each axiom of T . A first-order theory is
sequential if it directly interprets AS.
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For a more comprehensive discussion of the notion of sequentiality, we refer
the reader to Visser [11]. In Mycielski et al. [6, Appendix III], it is shown that a
theory of sequences can be developed in any theory that directly interprets AS.
This can be used to show that AS interprets Q (see Pudlák [7] Sect. 2). See also
Damnjanovic [1] for mutual interpretability of AS and Q.

3 Open Induction

In this section, we verify that ΣT
open is an extension of T(1) and T(2). Thus,

when we show that T(2) is a sequential theory, it will also follow that ΣT
open is a

sequential theory.

Theorem 1. ΣT
open is an extension of T(1) and T(2).

Proof. It suffices to show that ΣT
open proves the following: (A) ∀x [ x 	 x ], (B)

∀xyz [ x 	 y ∧ y 	 z → x 	 z ], (C) ∀xyz [ x 	 y → 〈y, z〉 
	 x ].
We prove (A) by induction on x. The base case ⊥	⊥ holds by the axiom

T3 ≡ ∀x [ x 	⊥ ↔ x =⊥ ]. The inductive case (x 	 x ∧ y 	 y ) → 〈x, y〉 	
〈x, y〉 holds by the axiom T4 ≡ ∀xyz [x 	 〈y, z〉 ↔ ( x = 〈y, z〉∨x 	 y∨x 	 z )].
Thus, by induction, ∀x [ x 	 x ] is a theorem of ΣT

open.
We prove (B) by induction on z using x and y as parameters. The base case

x 	 y ∧ y 	⊥→ x 	⊥ holds by T3. We consider the inductive case z = 〈z0, z1〉.
Assume the following formulas hold: (I) x 	 y ∧ y 	 z0 → x 	 z0, (II)
x 	 y ∧ y 	 z1 → x 	 z1. We need to show that x 	 y ∧ y 	 z → x 	 z.
So, assume x 	 y and y 	 z. By T4, we have the following cases: (1) y = z,
(2) y 	 z0, (3) y 	 z1. Case (1) implies x 	 z. We consider (2). Since x 	 y
and y 	 z0, we have x 	 z0 by (I). Hence, x 	 〈z0, z1〉 = z by T4 . By similar
reasoning, Case (3) also implies x 	 z. Thus, x 	 y ∧ y 	 z → x 	 z. By
induction, ∀xyz [ x 	 y ∧ y 	 z → x 	 z ] is a theorem of ΣT

open.
We prove (C) by induction on x with y and z as parameters. We consider

the base case x =⊥. By T3 and T1 ≡ ∀xy [ 〈x, y〉 
=⊥ ], we have 〈y, z〉 
	⊥. We
consider the inductive case x = 〈x0, x1〉. Assume the following formulas hold:
(IV) x0 	 y → 〈y, z〉 
	 x0, (V) x1 	 y → 〈y, z〉 
	 x1. We need to show that
x 	 y → 〈y, z〉 
	 x. Assume for the sake of a contradiction x 	 y and 〈y, z〉 	 x.
By T4, we have the following cases: (i) 〈y, z〉 = x, (ii) 〈y, z〉 	 x0, (iii) 〈y, z〉 	 x1.
We consider (i). By T2 ≡ ∀xyzw [〈x, y〉 = 〈z, w〉 → ( x = z ∧ y = w ) ], we have
y = x0. Hence, by (A), we have x0 	 y. Since 〈x0, x1〉 	 y and 〈x0, x1〉 = 〈y, z〉
and x0 = y, we find 〈y, z〉 	 x0. But x0 	 y and 〈y, z〉 	 x0 contradicts (IV).

We consider (ii). By (A), we have x0 	 x0. By T4, we have x0 	 〈x0, x1〉.
Since x0 	 〈x0, x1〉 and x 	 y, we have x0 	 y by (B). Thus, we have x0 	 y
and 〈y, z〉 	 x0, which contradicts (IV). By similar reasoning, (iii) leads to a
contradiction.

Thus, by induction, ∀xyz [ x 	 y → 〈y, z〉 
	 x ] is a theorem of ΣT
open. ��
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4 Direct Interpretation of VS

Recall that T(1) is T extended with the axiom T
(1)
5 ≡ ∀xy [ 〈x, y〉 
	 x ]. In this

section, we show that VS is directly interpretable in T(1). Since in the proof T
(1)
5

is applied to cases where x is of the form x = 〈x0, x1〉, we can by T4 do with the
weaker axiom ∀xy [ x 	 x → 〈x, y〉 
	 x ].

To improve readability, we introduce the following notation: By recursion,
let () :=⊥ and (x1, . . . , xn) := 〈(x1, . . . , xn−1) , xn〉 for n ≥ 1. So, (x) := 〈⊥ , x〉,
(x, y) := 〈 〈⊥ , x〉 , y 〉, and so on.

Theorem 2. VS is directly interpretable in T(1).

Proof. We translate the membership relation as follows

x ∈ y ≡ ∃uvw
[
y = 〈u, 〈w, v〉〉 ∧ 〈w, x〉 	 y

]
.

By T1 ≡ ∀xy [ 〈x, y〉 
=⊥ ], there does not exist u, v, w such that ⊥= 〈u, 〈w, v〉〉.
Hence, T(1) � ∀u [u 
∈⊥ ]. Thus, the translation of VS0 is a theorem of T(1). We
verify that the translation of VSm is a theorem of T(1) for each 0 < m < ω.

We code a finite sequence x0, x1, . . . , xn as y =
(〈w, x0〉 , 〈w, x1〉, . . . , 〈w, xn〉)

where w =
(
x0 , x1 , . . . , xn

)
. By T1 and T4, we have w 
=⊥ and w 	 w by how

w is defined. By T2 ≡ ∀xyzw [ 〈x, y〉 = 〈z, w〉 → ( x = z ∧ y = w ) ], w
is the unique element w′ such that y = 〈u, 〈w′, v〉〉 for some u and v. By the
axiom T4 ≡ ∀xyz [ x 	 〈y, z〉 ↔ ( x = 〈y, z〉 ∨ x 	 y ∨ x 	 z ) ], we have
〈w, xi〉 	 y for all i ≤ n. Hence, xi ∈ y for all i ≤ n. We need to show that

y = {x0, x1, . . . , xn}. So, assume z ∈ y. By definition of ∈ and uniqueness of w,
this is equivalent to 〈w, z〉 	 y. We need to show that there exists i ≤ n such
that z = xi. For k ≤ n, let y0 = () and yk+1 =

( 〈w, x0〉 , 〈w, x1〉, . . . , 〈w, xk〉 )
.

Observe that yk+1 = 〈 yk , 〈w, xk〉 〉. By T3 ≡ ∀x [ x 	⊥ ↔ x =⊥ ] and T1,
we have 〈w, z〉 
	⊥= y0. Thus, it suffices to show that the following holds: If
〈w, z〉 	 yk+1, then z = xk or 〈w, z〉 	 yk.

So, assume 〈w, z〉 	 yk+1. By T4, we have one of the following cases: (i)
〈w, z〉 = yk+1, (ii) 〈w, z〉 	 〈w, xk〉, (iii) 〈w, z〉 	 yk. Thus, it suffices to show
that (i) leads to a contradiction while (ii) implies z = xk. We show that (i) leads
to a contradiction. By T2, the equality 〈w, z〉 = yk+1 implies w = yk. If k = 0,
then w = yk =⊥ which contradicts T1 by definition of w. If k > 0, then by T4

and the definition of yk, we have 〈w, x0〉 	 yk = w which contradicts T
(1)
5 .

We show (ii) implies z = xk. By T4, we have one of the following cases: (iia)
〈w, z〉 = 〈w, xk〉, (iib) 〈w, z〉 	 w, (iic) 〈w, z〉 	 xk. Case (iia) implies z = xk by
T2. Case (iib) contradicts T

(1)
5 . We consider (iic). We have 〈w, z〉 	 xk. Recall

that w =
(
x0 , x1 , . . . , xn

)
. Hence, by T4, 〈w, z〉 	 xk implies 〈w, z〉 	 w which

contradicts T
(1)
5 . Thus, z = xk. ��

It is not clear to us whether it is possible to directly interpret VS in T since
it appears as if we do not have a good notion of occurrence without the axiom
∀xy [ 〈x, y〉 
	 x ].

Open Problem 2. Is VS directly interpretable in T?
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5 A Sequential Subtheory of ΣT
open

In this section, we show that the theory T(2) is sequential by constructing a
direct interpretation of AS. The construction is given in Sect. 5.2. In Sect. 5.1, we
present the intuition behind the construction. In Sect. 5.3, we give an alternative
proof that was suggested by one of the referees.

5.1 Coding Sequences

In this section, we explain how we intend to construct a formula x ∈ y that
provably in T(2) satisfies the axioms of AS.

We reason in the standard model of T. We start by observing that there is
a one-to-one correspondence between finite binary trees and finite sequences of
finite binary trees. We introduce the following notation: By recursion, let ()α :=
α and (x1, . . . , xn)α := 〈(x1, . . . , xn−1)α , xn〉 for n ≥ 1. So, (x)α := 〈α , x〉,
(x, y)α := 〈 〈α , x〉 , y 〉, and so on. We associate the empty sequence with ⊥. We
associate a finite sequence of finite binary trees T1, T2, . . . , TN with the finite
binary tree

T =
(
T1, T2, . . . , TN

)
⊥ . (*)

Each non-empty finite binary tree T can be written uniquely on the form
(*). Now, the idea is to let the empty tree represent the empty set and to let a
finite binary tree of the form (*) represent the set {T1, . . . , TN}. We observe that
the finite binary tree

(
T1, T2, . . . , TN , TN

)
⊥ also represents the set {T1, . . . , TN}.

This is not a problem since AS does not require sets to be uniquely determined by
their elements. Axiom AS2 requires that we have an adjunction operator adj(·, ·)
that takes two finite binary trees T and u and gives a finite binary tree S that
represents the set T ∪ {u}. Clearly, adj(T, u) = 〈T, u〉 does the job.

The next step is to construct an LT-formula x ∈ T that expresses that x
is an element of T . With T as in (*), the idea is to express that there exists a
finite binary tree W that encodes a sequence V1, V2, . . . , Vk where V1 = T , for
all i ∈ {1, . . . , k − 1} there exists ui such that Vi = 〈Vi+1, ui〉 and there exist
j ∈ {1, . . . , k} and S such that Vj = 〈S, x〉 (this is respectively what clauses (C),
(D), (E) in Sect. 5.2 try to capture). We let W be of the form

W =
(

Vk , Vk−1 , . . . , V2 , V1

)
α

where α is a finite binary tree whose purpose is to allow us to recognize the
subtrees of W of the form

(
Vk , Vk−1 , . . . , Vi

)
α
. This property is essential since

the formula x ∈ T needs to say that W is of a certain form by quantifying
over subtrees of W . We require that α is not a subtree of T (this is what
Clause (A) in Sect. 5.2 tries to capture). Then, the subtrees of W of the form(
Vk , Vk−1 , . . . , Vi

)
α

are exactly those subtrees of W that have α as a subtree.
The problem with this approach is that we need to update α to find a finite

binary tree W ′ that witnesses that x is also an element of T ′ = 〈T, u〉 when u is
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such that α is a subtree of T ′. Since x ∈ T ′, we need to ensure the existence of
a finite binary tree of the form W ′ =

(
Vk , Vk−1 , V2 , . . . , V1 , T ′ )

α′ where α′

is not a subtree of T ′. Although this is not problematic when reasoning in the
standard model, it appears as if we do not have in T(2) the resources necessary
to show that we can construct W ′ from W . Our solution is to let x ∈ T be
witnessed by infinitely many finite binary trees so that any finite binary tree
that witnesses x ∈ T ′ also witnesses x ∈ T . More precisely, we let x ∈ T mean
that there exists a marker α (a finite binary tree that is not a subtree of T ) such
that for any finite binary β that has α as a subtree, there exists a finite binary
tree Wβ of the form

(
Vk , Vk−1 , . . . , V2 , V1

)
β
.

The problem of markers that grow in size is similar to the problem of grow-
ing commas that is encountered when coding finite sequences of strings. In [8],
W.V. Quine shows that first-order arithmetic is directly interpretable in the
free semigroup with two generators by devising a way of coding arbitrary finite
sequences of strings. Let a, b denote the generators of the semigroup. Let {a}∗

denote the set of all finite sequences of a’s. Quine codes a finite set of strings
{w0, . . . , wn} as a string of the form w0bubw1 . . . bubwn where u ∈ {a}∗ is such
that if v ∈ {a}∗ is a substring of some wi, then v is a proper substring of u. If
u is a substring of a string wn+1, we need to encode the set {w0, . . . , wn, wn+1}
as w0bu

′bw1 . . . bu′bwnbu′bwn+1 where u′ ∈ {a}∗ is longer than u. In [12], Albert
Visser observes that this approach has some disadvantages in the setting of weak
theories since we need to be able to update u when we wish to extend the coded
sequence. The solution he provides is to represent a finite set {w0, . . . , wn} as
a string of the form bu0bw0bu1bw1 . . . bunbwn where each ui is in {a}∗, ui is a
substring of uj when i ≤ j and if v ∈ {a}∗ is a substring of some wi, then v is a
proper substring of ui. So, the commas (the ui’s) grow in length.

5.2 Direct Interpretation of AS

In this section, we construct a formula x ∈ y that provably in T(2) satisfies
the axioms of AS. Recall that T(2) is T extended with the following axioms
T
(2)
5 ≡ ∀xyz [ ( x 	 y ∧ y 	 z ) → x 	 z ], T

(2)
6 ≡ ∀xyz [ x 	 y → 〈y, z〉 
	 x ].

We start by constructing a formula W,β � u ∈ z which states that W is a
finite binary tree using the marker β to witness that u is an element of z. Let
W,β � u ∈ z be shorthand for

(A) β 
	 z
(B) there exist z0, z1 such that z = 〈z0, z1〉
(C) there exists W0 such that β 	 W0 ∧ W = 〈W0, z〉
(D) if 〈W1, v〉 	 W ∧ β 	 W1 ∧ W1 
= β, then there exist v0, v1 such that

v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]

(E) there exist W3 and v such that 〈W3 , 〈v, u〉〉 	 W ∧ β 	 W3.

We let W,β 
� u ∈ z be shorthand for ¬(
W,β � u ∈ z

)
. We let adj(x, y) =

〈x, y〉.
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Lemma 1. T � ∀W,β, u [ W,β 
� u ∈⊥ ].

Proof. By T1, Clause (B) of W,β � u ∈⊥ does not hold. ��
Lemma 2. Let W = 〈β, adj(x, y)〉. Then

T(2) � ( β 	 β ∧ β 
	 adj(x, y) ) → W,β � y ∈ adj(x, y) .

Proof. Assume β 	 β ∧ β 
	 adj(x, y) holds. We need to show that each one of
the following clauses holds

(A) β 
	 adj(x, y)
(B) there exist z0, z1 such that adj(x, y) = 〈z0, z1〉
(C) there exists W0 such that β 	 W0 ∧ W = 〈W0, adj(x, y)〉
(D) if 〈W1, v〉 	 W ∧ β 	 W1 ∧ W1 
= β, then there exist v0, v1 such that

v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]

(E) there exist W3 and v such that 〈W3 , 〈v, u〉〉 	 W ∧ β 	 W3.

Since β 
	 adj(x, y), (A) holds. By definition, adj(x, y) = 〈x, y〉. Hence, (B)
holds. It follows from β 	 β and the definition of W that (C) holds. We verify
that (D) holds. Assume 〈W1, v〉 	 W ∧ β 	 W1. By T4, we have

〈W1, v〉 =
〈
β , adj(x, y)

〉 ∨ 〈W1, v〉 	 β ∨ β 	 〈W1, v〉 	 adj(x, y) .

By T
(2)
5 , we have 〈W1, v〉 =

〈
β , adj(x, y)

〉 ∨ 〈W1, v〉 	 β ∨ β 	 adj(x, y). Since
β 	 W1, we have 〈W1, v〉 
	 β by T

(2)
6 . By assumption, β 
	 adj(x, y). Hence,

〈W1, v〉 =
〈
β , adj(x, y)

〉
. By T2, we have W1 = β. Thus, (D) holds.

Finally, we verify that (E) holds. By assumption, β 	 β ∧ W = 〈β, adj(x, y)〉.
By T4, W 	 W . Since adj(x, y) = 〈x, y〉, (E) holds. ��
Lemma 3. T(2) proves the universal closure of

(
u 
= y ∧ 〈W, adj(x, y)〉, β � u ∈ adj(x, y)

) → W,β � u ∈ x .

Proof. Assume u 
= y and that each one of the following clauses holds

(A) β 
	 adj(x, y)
(B) there exist z0, z1 such that adj(x, y) = 〈z0, z1〉
(C) there exists W0 such that β 	 W0 ∧ 〈W, adj(x, y)〉 = 〈W0, adj(x, y)〉
(D) if 〈W1, v〉 	 〈W, adj(x, y)〉 ∧ β 	 W1 ∧ W1 
= β, then there exist v0, v1

such that

v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]

(E) there exist W3 and v such that 〈W3 , 〈v, u〉〉 	 〈W, adj(x, y)〉 ∧ β 	 W3.
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Let (A′), (B′), (C′), (D′), (E′) denote the corresponding clauses where we use
W instead of 〈W, adj(x, y)〉, and we use x instead of adj(x, y). We need to show
that (A′)−(E′) hold.

We show that (A′) holds. By (A) , we have β 
	 adj(x, y). By T4 and the
definition of adj(x, y), β 	 x implies β 	 adj(x, y). Hence, β 
	 x. Thus, (A′)
holds.

We show that (E′), (C′) and (B′) hold. By T4, T2 and (C) , we have β 	 W
and 〈W, adj(x, y)〉 	 〈W, adj(x, y)〉. We show that W 
= β. By (E), there exist
W3 and v such that 〈W3 , 〈v, u〉〉 	 〈W, adj(x, y)〉 ∧ β 	 W3. By T4, we have

〈W3 , 〈v, u〉〉 = 〈W, adj(x, y)〉 ∨ 〈W3 , 〈v, u〉〉 	 W ∨ β 	 〈W3 , 〈v, u〉〉 	 adj(x, y) .

By T2 and T
(2)
5 , we have u = y ∨ 〈W3 , 〈v, u〉〉 	 W ∨ β 	 adj(x, y). Since

u 
= y and β 
	 adj(x, y), we have 〈W3 , 〈v, u〉〉 	 W . This shows that (E′) holds.
Since β 	 W3, we have 〈W3 , 〈v, u〉〉 
	 β by T

(2)
6 . Hence, W 
= β. So

〈W, adj(x, y)〉 	 〈W, adj(x, y)〉 ∧ β 	 W ∧ W 
= β.

Then, by T2 and (D), there exists W0 such that β 	 W0 ∧ W = 〈W0, x〉. Thus,
(C′) holds. Since 〈W3 , 〈v, u〉〉 	 W = 〈W0, x〉 and β 	 W3, we have by T4 and
T2

〈v, u〉 = x ∨ 〈W3 , 〈v, u〉〉 	 W0 ∨ 〈W3 , 〈v, u〉〉 	 x .

If 〈v, u〉 = x, then (B′) holds. We have 〈W3 , 〈v, u〉〉 
	 x since β 	 W3 would
otherwise imply β 	 adj(x, y) by T4 and T

(2)
5 . Assume 〈W3 , 〈v, u〉〉 	 W0. Since

β 	 W3, we have W0 
= β by T
(2)
6 . Hence, by T4, we have

〈W0, x〉 	 〈W, adj(x, y)〉 ∧ β 	 W0 ∧ W0 
= β .

Then, by (D), there exists x0, x1 such that x = 〈x0, x1〉. Thus, (B′) holds.
We verify that (D′) holds. Assume 〈W1, v〉 	 W ∧ β 	 W1 ∧ W1 
= β. By

T4, we have 〈W1, v〉 	 〈W, adj(x, y)〉 ∧ β 	 W1 ∧ W1 
= β. It then follows from
(D) that (D′) holds. ��
Lemma 4. Let W ′ = 〈W, adj(x, y)〉. Then, T(2) proves the universal closure of

( β 
	 adj(x, y) ∧ W,β � u ∈ x ) → W ′, β � u ∈ adj(x, y) .

Proof. Assume β 
	 adj(x, y) and that each one of the following clauses holds

(A) β 
	 x
(B) there exist z0, z1 such that x = 〈z0, z1〉
(C) there exists W0 such that β 	 W0 ∧ W = 〈W0, x〉
(D) if 〈W1, v〉 	 W ∧ β 	 W1 ∧ W1 
= β, then there exist v0, v1 such that

v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]

(E) there exist W3 and v such that 〈W3 , 〈v, u〉〉 	 W ∧ β 	 W3.
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Let (A′), (B′), (C′), (D′), (E′) denote the corresponding clauses where we
use W ′ instead of W , and we use adj(x, y) instead of x. We need to show that
(A′)−(E′) hold.

By assumption, β 
	 adj(x, y). Thus, (A′) holds. Since adj(x, y) = 〈x, y〉, (B′)
holds. By (C), there exists W0 such that β 	 W0 ∧ W = 〈W0, x〉. By T4 and
the definition of W ′, we have β 	 W ∧ W ′ = 〈W, adj(x, y)〉. Thus, (C′) holds.

We verify that (E′) holds. By (E), there exist W3 and v such that β 	 W3

and 〈W3 , 〈v, u〉〉 	 W . By T4 and the definition of W ′, we have β 	 W3 and
〈W3 , 〈v, u〉〉 	 W ′. Thus, (E′) holds.

It remains to verify that (D′) holds. Assume 〈W1, v〉 	 W ′, β 	 W1 and
W1 
= β. By T4 and the definition of W ′, we have

〈W1, v〉 = 〈W, adj(x, y)〉 ∨ 〈W1, v〉 	 W ∨ 〈W1, v〉 	 adj(x, y) .

We cannot have 〈W1, v〉 	 adj(x, y) since β 	 W1 would otherwise by T4 and T
(2)
5

imply β 	 adj(x, y). Hence, 〈W1, v〉 = 〈W, adj(x, y)〉 ∨ 〈W1, v〉 	 W . Assume
〈W1, v〉 = 〈W, adj(x, y)〉. By T2 and (C), there exists W0 such that v = 〈x, y〉,
W1 = W = 〈W0, x〉 and β 	 W0. Assume now 〈W1, v〉 	 W . Then, by (D), there
exist v0, v1 such that v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]. Thus,
(D′) holds. ��

We now have everything we need to show that T(2) is sequential.

Theorem 3. AS is directly interpretable in T(2).

Proof. We translate the membership relation as follows

u ∈ z ≡ ∃α
[
α 	 α ∧ ∀β

[
( α 	 β ∧ β 	 β ) → ∃W [ W,β � u ∈ z ]

] ]
.

By Lemma 1, the translation of AS1 is a theorem of T(2). It remains to show
that the translation of AS2 is a theorem of T(2). It suffices to show that the
sentence ∀xyu [ u ∈ adj(x, y) ↔ ( u = y ∨ u ∈ x ) ] is a theorem of T(2).

We show that T(2) � ∀xy [ y ∈ adj(x, y) ]. Let α = 〈adj(x, y), adj(x, y)〉. By
T4, we have α 	 α. Let β be such that α 	 β and β 	 β. We need to find
W such that W,β � y ∈ adj(x, y). By T

(2)
5 , β 	 adj(x, y) implies α 	 adj(x, y),

which contradicts T
(2)
6 since adj(x, y) 	 adj(x, y) by T4. Hence, β 	 β and

β 
	 adj(x, y). Then, by Lemma 2, we have
〈
β, adj(x, y)

〉
, β � y ∈ adj(x, y).

Thus, T(2) � ∀xy [ y ∈ adj(x, y) ].
We show that T(2) � ∀xyu [ u ∈ adj(x, y) → ( u = y ∨ u ∈ x ) ]. Assume

u ∈ adj(x, y) ∧ u 
= y. We need to show that u ∈ x. Since u ∈ adj(x, y), there
exists α such that

α 	 α ∧ ∀β
[
( α 	 β ∧ β 	 β ) → ∃W [ W,β � u ∈ adj(x, y) ]

]
.

By Clause (C) of W,β � u ∈ adj(x, y), we have

α 	 α ∧ ∀β
[
( α 	 β ∧ β 	 β ) → ∃V [ 〈V, adj(x, y)〉, β � u ∈ adj(x, y) ]

]
.
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Then, by Lemma 3, we have

α 	 α ∧ ∀β
[
( α 	 β ∧ β 	 β ) → ∃V [ V, β � u ∈ x ]

]
.

Thus, T(2) � ∀xyu [ u ∈ adj(x, y) → ( u = y ∨ u ∈ x ) ].
We show that T(2) � ∀xyu [ u ∈ x → u ∈ adj(x, y) ]. Assume u ∈ x holds.

Then, there exists α′ such that

α′ 	 α′ ∧ ∀β
[
( α′ 	 β ∧ β 	 β ) → ∃V [ V, β � u ∈ x ]

]
. (*)

Let α = 〈adj(x, y), α′〉. By T4 and α′ 	 α′, we have α 	 α ∧ α′ 	 α. Hence, by
T
(2)
5 , we have α 	 α ∧ ∀β [ α 	 β → α′ 	 β ]. We have adj(x, y) 	 adj(x, y) by

T4. Hence, α 
	 adj(x, y) by T
(2)
6 . Then, by T

(2)
5 , we have α 	 β → β 
	 adj(x, y).

It then follows from (*) and Lemma 4 that

α 	 α ∧ ∀β
[
( α 	 β ∧ β 	 β ) → ∃V [ 〈V, adj(x, y)〉, β � u ∈ adj(x, y) ]

]
.

Thus, T(2) � ∀xyu [ u ∈ x → u ∈ adj(x, y) ]. ��
Corollary 1. AS is directly interpretable in ΣT

open.

Our interpretation of AS relies heavily on the transitivity of the subtree
relation and it is not clear to us whether it is possible to directly interpret AS
without using this property.

Open Problem 3. Is AS directly interpretable in T? Is AS directly interpretable
in T(1)?

5.3 An Alternative Proof

In this final section, we present an alternative direct interpretation of AS in
T(2) that was suggested by one of the referees. Let Pair(x) ≡ ∃yz [ x = 〈y, z〉 ]
and x ∈′ y ≡ ∃uv [ y = 〈u, v〉 ∧ 〈v, x〉 	 y ]. Let BSh(x) be shorthand for:
there exist u, v such that the following holds: (i) x = 〈u, v〉, (ii) Pair(v), (iii)
∀v′ [

v 	 v′ ∧ Pair(v′) → ∃u′ ∀y [ y ∈′ x ↔ y ∈′ 〈u′, v′〉 ]
]
. We translate the

membership relation as follows: x ∈ y ≡ x ∈′ y ∧ BSh(y).
It is easy to verify, using T1 and T3, that the translation of AS1 is a theorem

of T(2). We verify that the translation of AS2 is a theorem of T(2). We are given
x and y and need to find z such that (1) ∀w [ w ∈ z ↔ ( w ∈ x ∨ w = y ) ]. We
assume first x is not an empty set according to ∈. Then, there exist u, v such
that x = 〈u, v〉, Pair(v) and for any v′ � v such that Pair(v′), there exist u′ such
that x and 〈u′, v′〉 have the same ∈′-elements. To construct z we pick v′ = 〈v, y〉.
Since Pair(v), we have v 	 v′ by T4. We then pick a corresponding u′ and put
z =

〈 〈u′ , 〈v′, y〉 〉 , v′ 〉. It is easy to see that in order to verify (1) it is enough
to fix arbitrary v′′ � v′ and any u′′ such that Pair(v′′) and ∀w [ w ∈′ 〈u′, v′〉 ↔
w ∈ 〈u′′, v′′〉 ] and show that the ∈′ elements of

〈 〈u′′ , 〈v′′, y〉 〉 , v′′ 〉 precisely
are y and all w such that w ∈′ x.
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We have w ∈′ 〈 〈u′′ , 〈v′′, y〉 〉 , v′′ 〉 if and only if 〈u′′, w〉 	 〈u′′ , 〈v′′, y〉 〉.
By T4, the latter happens in exactly the following cases: (a) 〈v′′, w〉 	 u′′, (b)
〈v′′, w〉 	 y, (c) 〈v′′, w〉 	 v′′, (d) 〈v′′, w〉 = 〈v′′, y〉, (e) 〈v′′, w〉 = 〈u′′ , 〈v′′, y〉 〉.
By the choice of v′′ and u′′, (a) holds if and only if w ∈′ 〈u′, v′〉, which in
turn by the choice of v′ and u′ happens if and only if w ∈′ x. By T2, Case (d)
happens if and only if w = y. By definition, v′ = 〈v, y〉. Since Pair(v), we have
v 	 v′ 	 v′′ by T4. By T4, (b) implies 〈u′′, w〉 	 〈v, y〉 = v′ 	 v′′. By T

(2)
5 , (b)

implies 〈u′′, w〉 	 v′′, which contradicts T
(2)
6 since v′′ 	 v′′ by T4 as Pair(v′′).

Similarly, Case (c) contradicts T
(2)
6 . By T2, Case (e) holds if and only if v′′ = u′′

and w = 〈v′′, y〉. Since x is not an empty set according to ∈, there exists w′ such
that 〈v′′, w′〉 	 u′′ = v′′ (since x and 〈u′′, v′′〉 have the same ∈′ elements) which
contradicts T

(2)
6 . This concludes the verification of (1) when x is not an empty

set according to ∈.
If x is an empty set according to ∈, we replace x with 〈⊥, 〈⊥,⊥〉〉 and proceed

as above always choosing u′ =⊥ and u′′ =⊥. This concludes the verification of
AS2. This completes the proof.
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