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Preface

Computability in Europe (CiE) is an annual conference organized under the auspices
of the Association Computability in Europe (ACiE), a European association of
researchers from a broad variety of backgrounds who are connected to one another
through their work in computability. The conference series has built up a strong tra-
dition of developing an interdisciplinary scientific program that brings together
researchers in all aspects of computability, foundations of mathematics, and computer
science as well as the interplay of these theoretical areas with practical issues in
computer science and with other disciplines such as biology, mathematics, philosophy,
and physics. Its purpose is not only to allow researchers to report on their own ongoing
work but also to broaden their own perspectives by engaging with the work of others
from different backgrounds.

The motto of CiE 2022 was “Revolutions and Revelations in Computability”. This
alludes to the revolutionary developments we have seen in computability theory, starting
with Turing’s and Gödel’s discoveries of the uncomputable and the unprovable and
continuing to the present day with the advent of new computational paradigms such as
quantum computing and bio-computing, which have dramatically changed our view of
computability and revealed new insights into the multifarious nature of computation.
The motto also hints at the historic role of the host city, Swansea, in the Industrial
Revolution, as the world center of copper smelting in the 18th and 19th centuries.

CiE 2022 was the 18th conference in the series, and this was the second time it has
been held in Swansea. Previous meetings have taken place in Amsterdam (2005),
Swansea (2006), Siena (2007), Athens (2008), Heidelberg (2009), Ponta Delgada
(2010), Sofia (2011), Cambridge (2012), Milan (2013), Budapest (2014), Bucharest
(2015), Paris (2016), Turku (2017), Kiel (2018), Durham (2019), and, virtually, in
Salerno (2020) and Ghent (2021). After two online CiE conferences, we were very
happy to be able to hold CiE 2022 as a largely in-person meeting with some online
elements.

The conference series has become a major event and is the largest international
conference that brings together researchers focusing on computability-related issues.
The CiE conference series is coordinated by the ACiE Conference Series Steering
Committee consisting of Alessandra Carbone (Paris), Liesbeth De Mol (Lille), Gianluca
Della Vedova (Executive Officer, Milan), Nataša Jonoska (Tampa), Benedikt Löwe
(Amsterdam), Florin Manea (Chair, Göttingen), Klaus Meer (Cottbus), Russell Miller
(New York), Mariya Soskova (Madison), and ex-officio members Elvira Mayordomo
(President of the Association, Zaragoza) and Marcella Anselmo (Treasurer, Salerno).

Conference Structure and Program

The conference program was centered around tutorials, invited lectures, and a set of
special sessions ranging over a variety of topics as well as contributed papers and
informal presentations. The Program Committee of CiE 2022 consisting of 32



members, selected the invited and tutorial speakers and the special session organizers
and coordinated the reviewing process and the selection of submitted contributions.
The Program Committee selected 19 of the 34 non-invited submitted papers for pub-
lication in this volume. Each paper received at least three reviews by the Program
Committee and their subreviewers. In addition to the contributed papers, the volume
contains seven invited papers and 23 abstracts.

Invited Tutorials

– Dora Giammarresi (Università di Roma, Italy), Two-Dimensional Languages and
Models

– Noam Greenberg (Victoria University of Wellington, New Zealand), Recent
Interactions Between Computability and Set Theory

Invited Lectures

– Erika Ábrahám (RWTH Aachen University, Germany), SMT Solving: Historical
Review and New Developments

– Thierry Coquand (University of Gothenburg, Sweden), Sheaf Cohomology in
Univalent Foundation

– Liesbeth De Mol (Université de Lille, France), Towards a Diversified Under-
standing of Computability, or Why We Should Care More about Our Histories

– Damir Dzhafarov (University of Connecticut, USA), Reverse Mathematics 2021
– Harvey M. Friedman (The Ohio State University, USA), String Replacement

Systems
– Svetlana Selivanova (KAIST, South Korea), Computational Complexity of Clas-

sical Solutions of Partial Differential Equations

Special Sessions

At the intersection of computability and other areas of mathematics. Organizers: Denis
Hirschfeldt (University of Chicago) and Karen Lange (Wellesley College)

– Meng-Che Ho (California State University, Northridge), A Computable Functor
from Torsion-Free Abelian Groups to Fields

– Bjørn Kjos-Hanssen (University of Hawai`i at Mānoa), An Incompressibility The-
orem for Automatic Complexity

– Elvira Mayordomo (Universidad de Zaragoza), Algorithmic Dimensions, the
Point-to-Set Principles, and the Complexity of Oracles

– Alexandra Shlapentokh (East Carolina University), A Connection Between Inverse
Galois Problem of a Field and Its First-Order Theory
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Computability theory of blockchain technology. Organizers: Arnold Beckmann
(Swansea University) and Anton Setzer (Swansea University)

– Eli Ben-Sasson (StarkWare), Ultra Scaling Blockchains with ZK-STARKs
– Maurice Herlihy (Brown University), Blockchains and Related Technologies:

Which Ideas Are Likely to Endure?
– Philip Wadler (University of Edinburgh), Smarter Contracts: Applications of

Haskell and Agda at IOG

Computing Language: Love Letters, Large Models and NLP. Organizers: Liesbeth De
Mol (Université de Lille) and Giuseppe Primiero (University of Milan) for the Council
of the HaPoC Commission

– Troy Astarte (Swansea University), ‘My avid fellow feeling’ and ‘Fleas’: Playing
with Words on the Computer

– Juan-Luis Gastaldi (ETH Zürich), Mathematics as Natural Language: Principles,
Consequences and Challenges of the Application of NLP Models to the Treatment
of Mathematical Knowledge

– Maël Pégny (Universität Tübingen), Are Large Language Models Models (of
Language)?

– Jacopo Tagliabue (Coveo Labs), Are We There Yet? Meaning in the Age of Large
Language Models

Computing with bio-molecules. Organizers: Jérôme Durand-Lose (Université d’Or-
léans) and Claudio Zandron (University of Milano-Bicocca)

– Giuditta Franco (University of Verona), DNA Library Evidence Strings
– Maria Dolores Jiménez-López (University of Tarragona), Processing Natural

Language with Biomolecules: Where Linguistics, Biology and Computation Meet
– Nicolas Schabanel (CNRS - LIP, École Normale Supérieure de Lyon), Turedo a

New Computational Model for Molecular Nanobots?
– Petr Sosík (Silesian University in Opava), Computability and Complexity in Mor-

phogenetic Systems

Constructive and reverse mathematics. Organizers: Samuele Maschio (Università di
Padova) and Takako Nemoto (Hiroshima Institute of Technology)

– Makoto Fujiwara (Tokyo University of Science), An Extension of the Equivalence
Between Brouwer’s Fan Theorem and Weak König’s Lemma with a Uniqueness
Hypothesis

– Takayuki Kihara (Nagoya University), Computability Theory and Reverse Mathe-
matics via Lawvere-Tierney Topologies

– Robert Lubarsky (Florida Atlantic University), On the Necessity of Some Topo-
logical Spaces

– Huishan Wu (BLCU Beijing), Reverse Mathematics and Semisimple Rings
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Reachability problems. Organizers: Paul Bell (Liverpool John Moores University) and
Igor Potapov (University of Liverpool)

– Kitty Meeks (University of Glasgow), Reducing Reachability in Temporal Graphs:
Towards a More Realistic Model of Real-World Spreading Processes

– Olivier Bournez (École Polytechnique), Programming with Ordinary Differential
Equations: Some First Steps Towards a Programming Language

– Véronique Bruyère (Université de Mons), A Game-Theoretic Approach for the
Automated Synthesis of Complex Systems

– James Worrell (University of Oxford), The Skolem Landscape

Women in Computability Workshop

ACiE and this conference have had a strong tradition of encouraging women to par-
ticipate in computability-related research since CiE 2007. In 2016, a Special Interest
Group for Women in Computability was established, and in 2021, Mariya Soskova set
up an online mentorship program associated with this group to connect junior
researchers in computability theory with women mentors not just at the conference but
throughout the year. These initiatives are anchored in the annual Women in Com-
putability workshop, held this year with the following speakers:

– Troy Astarte (Swansea University, Wales)
– Dora Giammarresi (Università di Roma, Italy)
– Svetlana Selivanova (KAIST, South Korea)

Organization and Acknowledgements

The CiE 2022 conference was organized by the Theory Group of the Department of
Computer Science at Swansea University.

We are happy to acknowledge and thank the following for their financial support:
Association Computability in Europe, the Institute of Coding in Wales, the London
Mathematical Society, and technocamps.

We are also happy to announce that CiE 2022 was held in cooperation with the
Association for Women in Mathematics for the first time in the history of this con-
ference series and supports its Welcoming Environment Statement.

The high quality of the conference was achieved through the careful work of the
Program Committee, the Special Session organizers, and all of the referees, and we are
very grateful for their help in creating an exciting program for CiE 2022.

May 2022 Ulrich Berger
Johanna N. Y. Franklin

Florin Manea
Arno Pauly
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Invited Tutorials



Two-Dimensional Languages and Models

Dora Giammarresi

Dipartimento di Matematica, Università Roma “Tor Vergata”, via della Ricerca
Scientifica, 00133 Rome, Italy

giammarr@mat.uniroma2.it
https://www.mat.uniroma2.it/*giammarr/

A picture, defined as a rectangular array of symbols chosen from a given alphabet, is
the two-dimensional counterpart of a string. Researchers were inspired by the attempt
to reproduce Chomsky’s hierarchy for picture languages. In the past and more so in
recent years, the classical methods used to define string languages have been essayed
for picture languages, thus obtaining various formal models and picture language
families.

The tutorial presents the state of the art of formal definitions for picture languages.
The formal models considered are: 2D regular expressions, tiling systems, automata
and grammars of different types. Each picture language family will be presented by
means of typical examples that illustrate its expressiveness. Moreover each 2D formal
model will be compared with the corresponding string model to point out similarities
and differences. The two-dimensional perspective will show up with its intrinsic
richness whose we will analyze drawbacks and benefits.

Reference

1. Reghizzi, S.C., Giammarresi, D., Lonati, V.: Two-dimensional models. In: J.-É., Pin (ed.)
Handbook of Automata Theory, vol. 1, pp. 303–333, EMS Publishing House, Berlin (2021)

MIUR Excellence Department Project awarded to the Department of Mathematics, University
of Rome Tor Vergata, CUP E83C18000100006 and OBPOBS Project funded by Tor Vergata
University, CUP E83C22001660005.

https://orcid.org/0000-0001-6100-2438


Recent Interactions Between Computability
and Set Theory

Noam Greenberg

School of Mathematics and Statistics, Victoria University of Wellington,
Wellington, New Zealand

Since very early days, there has been a certain overlap between computability theory
and set theory: one can view both fields as inhabiting two parts of a spectrum that starts
with regular languages and polynomial-time computation, continues with partial
computable functions and Turing reducibility, and then the hyperarithmetic realm,
effective descriptive set theory, fine structure of the constructible hierarchy, and inner
models for large cardinals. Thus the same diagonal argument was used by Cantor for
the unctounability of the reals, by Gödel for the incompleteness theorem, and by Turing
for the undecidability of the halting problem.

I plan to survey three areas which have seen recent activity.

1. Higher randomness. Both Martin-Löf and Sacks suggested strenghtening the
notions of effective randomness to obtain nice closure properties. They considered
randomness with respect to effectively Borel (hyperarithmetic) sets, and effectively
co-analytic (P1

1) sets. This subject was later picked up and developed by Hjorth and
Nies, and then Chong and Yu. In parallel, Hamkins, Welch and others have con-
sidered infinite-time Turing machines and related notions of higher randomness. At
the extreme end we find randomness over Gödel’s L studied originally by Solovay.
I will discuss relativising randomness in the higher setting, and what this tells us
about the different equivalent definitions of ML-randomness.

2. Uncountable structures. Computable algebra and computable model theory
investigate the interplay between information and structure: what information can
be stored in a structure or in its isomorphism type. By the nature of computability,
this study is restricted to countable or separable structures. Admissible computability
is a generalisation of computability to domains beyond the natural numbers, and can
be used to study the effective properties of uncountable, well-ordered structures.
I will in particular examine the case of free and almost-free abelian groups, related
to Shelah’s work on the subject.

3. Effective Borel sets. Shoenfield’s limit lemma says that membership in a D0
2 set can

be understood as an approximation process, involving finitely many mind-changes.
To understand membership in more complicated Borel sets, the extra ingredient
needed is the Turing jump. Montalbán’s “true stages” machinery allows us to
dynamically approximate membership in Borel sets. It was one of the ingredients in
Day and Marks’s recent resolution of the decomposability problem. I will discuss
other applications to descriptive set theory.



Invited Lectures



SMT Solving: Historical Review and New
Developments

Erika Ábrahám

RWTH Aachen
abraham@informatik.rwth-aachen.de

Satisfiability modulo theories (SMT solving) is a relatively recent research thread in
computer science, with the aim to provide algorithms and tools for checking the
satisfiability of (usually quantifier-free) first-order logic formulas over different theo-
ries. Starting with relatively easy theories like equalities and uninterpreted functions,
state-of-the-art SMT solvers nowadays provide support for numerous theories,
including (quantifier-free) real arithmetic. For real arithmetic, some exciting recent
developments combine traditional SMT solving ideas with a kind of
counterexample-guided abstraction refinement using methods from computer algebra.

In this talk we give a historical review of SMT solving with a focus on arithmetic
theories, describe our own solver SMT-RAT and discuss some of these fascinating new
research directions.



Sheaf Cohomology in Univalent Foundation

Thierry Coquand

Computer Science Department, University of Gothenburg
coquand@chalmers.se

http://www.cse.chalmers.se/*coquand

Abstract. In the introduction of his book on Higher Topos Theory, Jacob Lurie
motivates this theory by the fact that it allows an elegant and general treatment
of sheaf cohomology. It was realised early on that these ideas could be
expressed in the setting of univalent foundations/homotopy type theory. I will
try to explain in my presentation recent insights which show that this can be
done in a maybe suprisingly direct way. Furthermore, all this can be formulated
in a constructive meta theory, avoiding the non effective notion of injective
resolutions.

Keywords: Univalent Foundation � Homotopy Type Theory � Constructive
Mathematics

https://orcid.org/0000-0002-5429-5153


Towards a Diversified Understanding
of Computability or Why We Should Care

More About Our Histories

Liesbeth De Mol

CNRS, UMR 8163 Savoirs, Textes, Langage, Université de Lille
liesbeth.de-mol@univ-lille.fr

Abstract. In this talk I will argue that we should care more for and be more
careful with the history of computability making a plea for a more diverse and
informed understanding. The starting point will be the much celebrated Turing
machine model. Why is it that within the computability community, this model
is often considered as thé model? In the first part of this talk I review some of
those reasons, showing how and why they are in need of a revision based,
mostly, on historical arguments. On that basis I argue that, while surely, the
Turing machine model is a basic one, part of its supposed superiority over other
models is based on socio-historical forces. In part II then, I consider a number of
historical, philosophical and technical arguments to support and elaborate the
idea of a more diversified understanding of the history of computability. Central
to those arguments will be the differentiation between, on the one hand, the
logical equivalence between the different models with respect to the computable
functions, and, on the other hand, some basic intensional differences between
those very same models. To keep the argument clear, the main focus will be on
the different models provided by Emil Leon Post but I will also include refer-
ences to the work by Alonzo Church, Stephen C. Kleene and Haskell B. Curry.

Supported by the PROGRAMme project, ANR-17-CE38-0003-01.



Reverse Mathematics 2021

Damir Dzhafarov

Department of Mathematics, University of Connecticut
damir.dzhafarov@uconn.edu

Reverse mathematics is a foundational program in logic aimed at measuring the
complexity of mathematical proofs and constructions according to the strength of the
axioms needed to carry them out. Founded by Friedman in the 1970s, and principally
developed by him and Simpson throughout the 1980s, it has become an incredibly
active and far reaching area. Part of its appeal comes from its close, nearly inseparable
connection to computability theory. The initial focus of the subject was a classificatory
one, of categorizing different parts of mathematics into one of a handful of benchmark
subsystems of second order arithmetic. Over time, interest has shifted to examples that
defy this classification, giving rise to a zoo of mathematical principles with a rich and
intricate web of strengths and interconnections. More recently, the subject has
expanded to include notions and techniques from computable analysis, giving an even
finer gauge with which to calibrate mathematical complexity, and offering new insights
along the way. The talk will survey a bit of the history of the subject, some of the recent
and ongoing developments, and offer a view of where it may be headed next.
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A Computable Functor from Torsion-Free
Abelian Groups to Fields

Meng-Che “Turbo” Ho1 , Julia Knight2, and Russell Miller3

1 California State University, Northridge, Northridge, CA 91330,
USA

2 University of Notre Dame, Notre Dame, IN 46556, USA
3 City University of New York, New York, NY 10017, USA

In descriptive set theory, complexities of classes of countable structures are studied.
A classical example is the isomorphism problem ffir on the class of torsion-free abelian
groups of rank r. Baer [1] gave a simple invariant for ffi1, i.e., when two torsion-free
abelian groups of rank 1 are isomorphic. However, Hjorth [3] showed thatffi1\Bffi2 and
Thomas [6] generalized this to show that ffin\Bffinþ 1. Recently, Paolini and Shelah [5]
showed that the class of torsion-free abelian group with domain x is Borel complete.

We compare the class of torsion-free abelian groups and the class of fields using the
notion of computable functors defined by Miller, Poonen, Schoutens, and Shlapentokh
[4], and the notion of effective interpretability. Harrison-Trainor, Melnikov, Miller, and
Montalban [2] showed that the presence of a uniform effective interpretation between
two classes implies the presence of a computable functor between them and vice versa.
WritingTFAbr to be the class of torsion-free abelian groups of rank r andTDr to be the
class of fields of transcendence degree r with characteristic 0, we show the following:

Theorem 1 (Ho, Knight, and Miller)

1. There is a Turing-computable reduction from TFAbr to TDr that is uniform in r.
That is, there is a Turing functional (uniform in r) Ur : TFAbr ! TDr such that
for every G;H 2 TFAbr, G ffi H if and only if UrðGÞ ffi UrðHÞ.

2. There is a uniform effective interpretation of UrðGÞ in G. Thus, Ur can be com-
pleted to a computable functor in the sense of [4].

References

1. Baer, R.: Abelian groups without elements of finite order. Duke Math. J. 3(1), 68–122 (1937)
2. Harrison-Trainor, M., Melnikov, A., Miller, R., Montalbán, A.: Computable functors and

effective interpretability. J. Symb. Log. 82(1), 77–97 (2017)
3. Hjorth, G.: Around nonclassifiability for countable torsion free abelian groups. In: Eklof,

P.C., Göbel, R. (eds.) Abelian Groups and Modules, pp. 269–292. Trends in Mathematics,
Birkhäuser (1999)

4. Miller, R., Poonen, B., Schoutens, H., Shlapentokh, A.: A computable functor from graphs to
fields. J. Symb. Log. 83(1), 326–348 (2018)

5. Paolini, G., Shelah, S.: Torsion-free abelian groups are borel complete (2021). https://arxiv.
org/abs/2102.12371

6. Thomas, S.: The classification problem for torsion-free abelian groups of finite rank. J. Amer.
Math. Soc. 16(1), 233–258 (2003)

https://orcid.org/0000-0001-6292-6835
https://arxiv.org/abs/2102.12371
https://arxiv.org/abs/2102.12371


An Incompressibility Theorem for Automatic
Complexity

Bjørn Kjos-Hanssen

University of Hawai’i at Mānoa
bjoernkh@hawaii.edu

https://math.hawaii.edu/wordpress/bjoern/

Abstract. Shallit and Wang showed that the automatic complexity AðxÞ satisfies
AðxÞ� n=13 for almost all x 2 f0; 1gn.
They also stated that Holger Petersen had informed them that the constant 13

can be reduced to 7.
Here we show that it can be reduced to 2þ e for any e[ 0.
The result also applies to nondeterministic automatic complexity ANðxÞ. In

that setting the result is tight inasmuch as ANðxÞ� n=2þ 1 for all x.



Algorithmic Dimensions, The Point-To-Set
Principles, and the Complexity of Oracles

Elvira Mayordomo

Departamento de Informática e Ingeniería de Sistemas, Instituto de Investigación
en Ingeniería de Aragón, Universidad de Zaragoza, Spain

Effective and resource-bounded dimensions were defined by Lutz in [5] and [4] and
have proven to be useful and meaningful for quantitative analysis in the contexts of
algorithmic randomness, computational complexity and fractal geometry (see the
surveys [1, 2, 6, 12] and all the references in them).

The point-to-set principle of J. Lutz and N. Lutz [8] fully characterizes Hausdorff
and packing dimensions in terms of effective dimensions in the Euclidean space,
enabling effective dimensions to be used to answer open questions about fractal
geometry, with already an interesting list of geometric measure theory results (see [3,
11] and more recent results in [7, 13–15]). This characterization has been recently
extended to separable spaces [10] and to resource-bounded dimensions [9].

In this talk I will review the point-to-set principles focusing on the importance
of the oracle that achieves the characterization of classical dimension in terms of an
algorithmic dimension. For instance Stull [15] has been able to improve the Marstrand
projection theorem by analyzing the optimality of the oracles in the point-to-set prin-
ciples. I will discuss some open problems on the complexity of the oracles involved in
the point-to-set principles for both the effective and resource-bounded cases.
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Given a countable field F and a finite group G the Inverse Galois Problem for F and G
is the problem of determining whether the field F has a finite Galois extension L such
that GalðL=FÞ ffi G. We show that the Turing degree of this problem is less or equal to
the Turing degree of the first-order theory of the field.
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Abstract. Scalable and Transparent ARguments of Knowledge (STARKs) are
practically efficient cryptographic proofs that use minimal cryptographic
assumptions and are capable of improving the scalability and privacy of
blockchains. By now, there have been weeks during which STARK-based
systems settled 33% more transactions than Ethereum, while using only 1% of
Ethereum’s computational resources.

This talk explains why STARKs and blockchains blend nicely together like
wine and cheese, and will describe the “theory-to-practice” journey of STARK
technology from the early days of PCP theory to blockchain rollups, layer 2/3
systems, and beyond.
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Abstract. Blockchains and distributed ledgers have become the focus of much
recent attention. Like many innovations, this field emerged from outside
mainstream computer science, although almost all the component ideas were
already well-known. As a new area driven mostly by technological and financial
innovations, it can be difficult to distinguish accomplishment from aspiration,
and especially difficult to tell which ideas are of transient versus lasting interest.

This talk surveys the theory and practice of blockchain-based distributed
systems from the point of view of classical distributed computing, along with
opinions about promising future research directions for our community.
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Abstract. Cardano is a proof-of-stake blockchain platform developed by IOG.
Its smart contract language, Plutus, is based on Haskell, and supports both
on-chain and off-chain components with a single sourcce language; and much
of the software of Cardano is implemented in Haskell. On-chain components of
smart contracts are compiled to Plutus Core, which is a variant of System F and
has been formally specified in Agda. Property-based testing is used to compare
the production implementation of Plutus Core with an evaluator derived from
the proof of soundness of System F written in Agda. Astonishingly, IOG is one
of the few firms to insist its products be based on peer-reviewed research.

Keywords: Smart contracts � blockchain � Haskell � Agda
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‘My Avid Fellow Feeling’ and ‘Fleas’

Playing with Words on the Computer
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An early non-numerical application of computers was processing human language,
such as in the field of machine translation; natural language processing remains a
significant field today. But almost as soon as they were employed for serious language
applications, computers were applied to playful or artistic endeavours as well. This talk
explores two historical examples: one fairly well-studied, the other a new archival
discovery. One is Strachey’s 1952 program for randomly generating love letters, and
the other a poetry programming competition held at Newcastle University in 1968.

In the early 1950s Christopher Strachey, a schoolmaster at Harrow, visited
Manchester University to write some programs for its Ferranti Mark 1. This included a
program randomly generate (rather mawkish) love letters. The letters were based on a
template with blanks of particular types (adjectives, nouns, adverbs), and a pool of
words which were inserted into the appropriate spaces at random. This program, which
Strachey may have written with help from both Turing and his literary sister Barbara,
represents a very early example of digital combinatory literature.

The University of Newcastle upon Tyne’s Computing Laboratory underwent a
period of change in the late 1960s: expanding teaching, experiments in new networked
computing, and growing breadth of research. Such research topics included
automatic typesetting, medical literature information retrieval, and bibliographic data
processing—manipulating language. In this context the lab director, Prof. Ewan
Page, announced a competition for the production of limericks or poems, written as
programs, such that their output was also poetic. The competition saw entries by a
number of PhD students and the ingenuity on display was high. Programs humorously
explored existing algorithms, reflected on life as a PhD student, or referenced classic
works of literature.

Various analyses of Strachey’s work discuss its position as an early form of digital
art, as a parody of attitudes towards love written by a gay man, and as a technical
exploration. In my talk, I extend these analyses and consider how they apply to the
Newcastle poetry competition. I argue that both examples show the crucial role of play
in the practice of programming, and discuss how considering humans and machines
together provides a better perspective on the perennial questions of the form “Will a
computer ever write a symphony as good as Beethoven?”
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Recent years have seen a remarkable development of deep neural network
(DNN) techniques for data analysis, along with their increasing application in scientific
research across different disciplines. The field of mathematics has not been exempted
from this general trend. Indeed, various works have suggested the relevance of possible
applications of DNNs to the treatment of mathematical knowledge at multiple levels [1,
2, 4–9, 12, 14–16]. Significantly, the vast majority of those results resort to neural
models specifically developed for the processing of natural language (NLP), from word
embeddings [10, 11, 13] to seq2seq [17] and Transformers [3, 18].

This circumstance is remarkable for several reasons. Starting with the fact that,
while the computational treatment of natural language traditionally implied an effort
toward the latter’s mathematization, it is now the mathematical knowledge that needs
to be conceived as a kind of natural language, thus suggesting novel and non-trivial
articulations between both. Furthermore, these contemporary neural approaches entail a
renewed interest in textual aspects of mathematics and their representational capabil-
ities. More precisely, since mathematical texts (statements, expressions, symbols) are
all DNNs can rely on to perform tasks involving mathematical knowledge, the success
of these methods would imply a new fundamental role of mathematical texts, going far
beyond the usual understanding of mathematical writing as a simple notation for a
pre-existing mathematical content, or a more or less arbitrary syntax for an indepen-
dently determined semantics. Finally, even more than any other field of application,
these attempts in mathematics raise critical epistemological questions since the formal
(i.e., non-empirical) nature generally attributed to mathematical knowledge contrasts
with the radically empirical position assumed by connectionist approaches guiding the
application of DNNs and characterizing the practice of natural language.

After reviewing the most relevant literature in the field, this paper assesses the
philosophical stakes of recent attempts to apply NLP models to mathematical knowl-
edge. It concludes by indicating the conceptual and technical challenges and orienta-
tions to be drawn from such applications for a linguistically-driven philosophy of
mathematics.

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 839730.
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Abstract. Large Language Models (LLMs) are extremely large deep neural
networks trained on humongous amount of data. Primarily trained for
part-of-speech prediction, i.e. roughly the task of predicting what comes next in
a text, they have been able to display not only state-of-the art performances for
this task, but also have shown a great versatility to be fine-tuned for many other
NLP tasks. Recently, they have even shown a surprising ability to be used as a
basis to build efficient models for non-NLP tasks on multi-modal data. LLMs are
thus slowly emerging as some of the most crucial models in all of AI. In this
presentation, I will try to articulate the epistemological consequences of this
evolution. First, I will first examine the respective consequences of two different
paths towards task-agnosticity in NLP and beyond (in-context learning and
transfer learning), and then see whether they can be seen as a true road towards,
if not the great General AI, at least a more general AI. Finally, I will try to
articulate how this question of task-agnosticity relates to the nature of the
knowledge produced by large opaque models.



Are We There Yet? Meaning in the Age
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1 Long Abstract

There is no time like the present. With the advent of the “golden age of Natural
Language Processing” [1] (NLP), a contagious enthusiasm on the capabilities of large
language models (LLMs) started spreading from research institutions into the general
public [2]. While critics, mostly from academia, have repeatedly argued that LLMs
show limited “understanding” [3, 4], the pace of development of increasingly larger
models doesn't seem to slow down [5]: are we there yet?

In this talk, we briefly review the two dominant traditions on meaning of the last
century:

– the “symbolic” tradition, where meaning is mostly about deductive composition of
atomic components which are given; for example, see the model-theoretic semantics
in [8];

– the “neural” tradition, where meaning is mostly about statistical association of
atomic components which are learned; for example, see the distributional semantics
in [9].

While a satisfactory unification of the two approaches is ultimately desirable [7],
we argue that the duality of meaning – which sometimes behaves like a function,
sometimes like a vector – is here to stay, at least for the time being. Contrary to the
symbolic camp, we stress the importance of a theory of lexical acquisition and ana-
logical reasoning; contrary to the neural camp, we stress the importance of true
zero-shot generalization and a more rounded (and less naive) view of what counts as
“grasping the meaning” of something [6].

In particular, the two camps seem to fundamentally disagree not (only) on what
counts as a good explanation, but what is there to explain in the first place. In this
perspective, we discuss the famous architecture behind recent LLMs – i.e. the trans-
former [10] –, which has been successfully adapted to many sequential problems that
have nothing to do with the original NLP problem [11]: whether language is simply yet
another sequence prediction problem is a contentious issue with deep ramifications into
linguistics and cognitive sciences.

Finally, we conclude showing recent progress made in grounded language models
– including our own research –, and sketch a roadmap for investigating meaning in
more ecological settings.
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Generation of a combinatorial library of n-long binary strings, especially by starting
from few sequences and by applying yet efficient basic DNA operations, has a bio-
logical, technological, and algorithmic relevance. Namely, some DNA based research,
including tools and technologies from life science, aim at improving the cost, speed and
efficiency of technologies for writing and combining DNA or other information-storing
bio-polymers. DNA-based digital data storage provides a valid alternative to current
technologies: it is promising in terms of information density (orders of magnitude
higher than traditional memories) and of stability (millennia versus years). From a
computational perspective, the design of efficient molecular algorithms is a challenge
for the development of new biotechnologies generating DNA libraries.

In the context of design and development of string algorithms for computational
biotechnology, this talk revolves around a simple DNA library generation algorithm,
which starts from four specific DNA strings and efficiently produces a library of 2n

different strings in linear time. It consists in an iterative application of specific null
context splicing rules, which recombine a couple of strings (in which one given sub-
string occurs) by producing a new couple of chimerical strings, and may be imple-
mented in laboratory by an XPCR procedure (a variant of the well known PCR). Of
course such an algorithm is correct (and complete) iff it produces the whole library of
DNA strings. Correctness is proved from a theoretical viewpoint while the experi-
mental feasibility needs to be demonstrated independently. In an experimental context,
the algorithm outcome is proved by the existence, in the final pool, of two specific
patterns called library evidence strings, which are specific cyclic strings with a motif
four characters long. If they (both) are present in the pool after the execution of the
algorithm, we are guaranteed that each single instruction (an XPCR based string
recombination) had produced the expected result, then the whole library has been
generated (with no experimental drawbacks).

The algorithm with the experimental work validating all the procedures are pre-
sented in the talk, as well as the concept of evidence strings, with their combinatorial
properties. This is a nice showcase where a string combinatorial property allows us to
assess the experimental success of a DNA algorithm.

Keywords: Computational biotechnology � DNA library � Molecular computing �
Periodic strings � XPCR
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Abstract. Different models have been proposed to understand natural phe-
nomena at the molecular scale from a computational point of view. Oritatami
systems are a model of molecular co-transcriptional folding: the transcript (the
“molecule”) folds as it is synthesized according to a local energy optimisation
process, in a similar way to how actual biomolecules such as RNA fold into
complex shapes and functions. We introduce a new model, called turedo, which
is a self-avoiding Turing machine on the plane that evolves by marking visited
positions and that can only move to unmarked positions. Any oritatami can be
seen as a particular turedo. We show that any turedo with lookup radius 1 can
conversely be simulated by an oritatami, using a universal bead type set. Our
notion of simulation is strong enough to preserve the geometrical and dynamical
features of these models up to a constant spatio-temporal rescaling (as in
intrinsic simulation). As a consequence, turedo can be used as a readable ori-
tatami “higher-level” programming language to build readily oritatami “smart
robots”, using our explicit simulation result as a compiler. Furthermore, as our
gadgets are simple enough, this might open the way to a readable oritatami
programming, and these ingredients could be regarded as a promising direction
to implement computation in co-transcribed RNA nanostructures in wetlab.
As an application of our simulation result, we prove three new complexity

results on the (infinite) limit configurations of oritatami systems (and radius-1
turedos), assembled from a finite seed configuration. First, we show that such
limit configurations can embed any recursively enumerable set, and are thus
exactly as complex as aTAM limit configurations. Second, we characterize the
possible densities of occupied positions in such limit configurations: they are
exactly the P2-computable numbers between 0 and 1. We also show that all
such limit densities can be produced by one single oritatami system, just by
changing the finite seed configuration. Third, we exhibit a universal turedo (and
consequently a universal oritatami system) that is able to build any finite shape



up to some upscaling from an asymptotically minimum size seed, and show
conversely that uncomputably large upscaling is needed in general in this
regards.
None of these results is implied by previous constructions of oritatami

embedding tag systems or 1D cellular automata, which produce only com-
putable limit configurations with constrained density.
Note that, reframing our results, we prove that doodling without lifting the

pen nor intersecting lines and using only a 1-local view to decide for the
drawing directions produce drawings as complex and as dense as can be.

Keywords: Molecular self-assembly � Co-transcriptional folding � Intrinsic
simulation � Arithmetical hierarchy of real numbers � 2D Turing machines �
Computability
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Extended Abstract

Morphogenesis, literally meaning generation of the form, lies at the core of many
processes of both organic and inorganic nature, described in biology or geology.
Morphogenesis inspires many ideas of human creation, e.g., in architecture, design and
art. Basic principles of morphogenesis, in a nutshell, are controlled growth and
self-assembly. Both these topics are often understood as (semi)-algorithmic processes,
for a mutual benefit of biology, chemistry and computer science.

To capture algorithmic aspects of morphogenesis, we have created a formal model
of morphogenetic growth called the morphogenetic (M) system [5]. The model unfolds
in a 3D (or generally, dD) continuous space in discrete time steps. Spatial structure
of the model is determined by the underlying so-called polytopic tile system in R

d : It is
based on a generalization of Wang tiles to arbitrary d0-dimensional polytopes of
specified sizes and shapes, 1� d0 � d � 1: Unlike Wang tiling or algorithmic tile
assembly (aTAM) [1], the tiles (polytopes) are not present in an arbitrary many copies,
but they are created by reactions of simpler shapeless atomic objects. These objects can
mutually react and pass through a specific protion channels in tiles. Their “metabo-
lism” is controlled by a set of evolutionary rules inspired by membrane systems with
proteins on membranes [2]. Every object, either a tile or a floating object, has at each
moment its specific position and orientation in R

d ; possibly changing as the system
evolves. The combination of self-assembly and evolutionary rules provides the M
system with feedback loops and hence with the ability of a surprisingly complex
behaviour. We refer the reader to [5] for a formal description and detailed examples of
M systems formation.

In previous publications we have used M systems as models of bacterial
growth, self-healing properties and resistance to damages caused by, e.g., antibiotics
[3]. Computer simulations with our freely available software package Cytos

Supported by the Silesian University in Opava under the Student Funding Scheme, project
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(https://github.com/mmaverikk/Cytos) were in a very good agreement with biological
experiments. Here we focus on computational aspects of morphogenetic systems. After
reviewing previous results related to their computational universality (in the Turing
sense), we present two new results on minimal universal M systems.

Theorem 1. There exists a universal M system in 2D with three tiles, 26 floating
objects, one protion and 26 rules.

We further extend the result to the case of self-healing M system which can recover
from injuries to their structure.

Theorem 2. There exists an M system in 2D with 8 tiles, 28 floating objects, 4 protions
and 100 rules, that simulates a universal Turing machine M on any given input in
linear time, and it is self-healing of degree 1, provided that injuries at each step only
affect tiles and objects belonging to a single tape cell.

Then we focus on computational complexity of M systems and we demonstrate
how they can characterize the P versus NP borderline. M systems under standard
definition can solve NP-complete problems in randomized polynomial time. We
introduce M systems with mass, where mutual pushing of objects are at each step
limited by a certain certain distance, due to their nonzero mass.

Theorem 3. M systems with mass can solve in polynomial time exactly the class of
problems P.

Finally, we also discuss a possible relation of M systems to the class PSPACE and
we conjecture that, even under the standard definition, they most likely cannot solve
PSPACE-complete problems in a polynomial time. For a more detailed description
of the results presented here we refer the reader to [4].
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We present a new perspective of oracle: We consider an oracle to be an “operation on
truth-values” that may cause a transformation of one world into another: A mathe-
matical statement u may be false in computable mathematics, but u can be true in
computable mathematics relative to an oracle a. This means that the oracle a caused a
change in the truth value of the statement u, and also caused a change from the
computable world to the a-relative computable world. One might say that this is based
on the idea that there is a correspondence between “computations using oracles” and
“proofs using transcendental axioms”. Such an idea is used as a very standard tech-
nique in, for example, classical reverse mathematics. Our approach is similar, but with
a newer perspective that deals more directly with operations on truth-values. More
explicitly, it is formulated using topos-theoretic notions such as Lawvere-Tierney
topology, which is a kind of generalization of Grothendieck topology to an arbitrary
topos.

In this talk, we will connect the structure of the Lawvere-Tierney topologies on a
certain relative realizability topos (e.g., the effective topos; the Kleene-Vesley topos)
with a certain degree structure in computability theory, based on previous work by Lee
and van Oosten. For this purpose, we introduce a new computability-theoretic
reducibility notion, which is a common extension of the notions of Turing reducibility
and generalized Weihrauch reducibility. This notion can be thought of as a fusion
of the notions of generalized Weihrauch reducibility and Bauer’s extended Weihrauch
reducibility. We introduce a realizability predicate relative to a “extended generalized
Weihrauch degree”, which is identical to the realizability relative to the corresponding
Lawvere-Tierney topology, and then show some separation results on constructive
reverse mathematics.
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We study rings and modules from the standpoint of reverse mathematics. In this talk,
we mainly focus on semisimple rings and semisimple modules. Semisimple modules
are often defined as modules that can be written as direct sums of simple submodules.
In 2013, Yamazaki initiated the study of semisimple modules as well as other kinds of
modules like projective modules and injective modules in reverse mathematics; he
showed that the statement “every submodule of a semisimple module is a direct
summand” is equivalent to ACA0 over RCA0. Semisimple modules have various
equivalent definitions in classical algebra. We first discuss equivalent characterizations
of semisimple modules in reverse mathematics. By choosing a different characteriza-
tion for semisimple modules, We first discuss equivalent characterizations of
semisimple modules in reverse mathematics. By choosing a different characterization
for semisimple modules, we define a left R-module M over a ring R to be semisimple if
every submodule of it is a direct summand. We view a ring R as left semisimple if the
left regular module RR is semisimple. Based on such definitions of semisimple modules
and semisimple rings, we study characterizations of left semisimple rings in terms of
projective modules and injective modules in reverse mathematics. For instance, we
show that ACA0 is equivalent to the statement “any left module over a left semisimple
ring is projective” over RCA0 and that ACA0 proves the statement “if every cyclic left
R-module is injective, then R is a left semisimple ring”. For more details of the work,
refer to a recent paper in Archive for Mathematical Logic https://doi.org/10.1007/
s00153-021-00812-4.
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Abstract. We overview the Skolem and Positivity Problems for C-finite and P-
finite recurrence sequences. We describe the history of these problems, their
relevance to computer science, and the state of the art as regards decidability.
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problem � Positivity problem

1 A Landscape of Decision Problems

This talk aims to paint a landscape of decision problems for recurrence sequences. We
consider sequences that satisfy linear recurrences with constant coefficients (the
so-called C-finite sequences) and, more generally, we consider those that satisfy
recurrences with polynomial coefficients (the so-called P-finite sequences). For
example, the Fibonacci sequence is C-finite, while the sequence of harmonic numbers
is P-finite. Many authors use the term holonomic in place of P-finite.

The two main decision problems that we investigate are the Skolem Problem (does
the sequence have a zero term?) and the Positivity Problem (are all terms of the
sequence positive?). From a computer science perspective, we consider these as
canonical reachability problems for linear systems.

Decidability of the Skolem and Positivity Problems are open, both for C-finite
sequences and for P-finite sequences. In the talk we will survey the history of the two
problems, starting with the celebrated Skolem-Mahler-Lech theorem which charac-
terises the structure of the set of zeros of a C-finite sequence. We will mention also
subsequent variations and generalisations of this theorem to P-finite sequences, both in
finite and zero characteristic. For further motivation, we will describe some of the many
different guises in which the Skolem and Positivity Problems appear in automata
theory, logic and model checking, analysis of algorithms, combinatorics, and related
areas.

In the second half of the talk, we will describe partial decidability results for
variations of the problems, including recent developments (of ourselves and others).
We will, in particular, mention a recent proof that the Skolem Problem for simple C-
finite sequences is decidable subject to two well known number-theoretic conjectures:
the p-adic Schanuel Conjecture and the exponential local-global principle. In general,
we will attempt to give a flavour of some of the relevant mathematics, which ranges
from classical results in Diophantine geometry, such as the Subspace theorem, to more
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speculative number-theoretic conjectures, such as the periods conjecture of Kontsevich
and Zagier.

In summary, the talk aims to give an idea of a landscape of decision problems for
recurrence sequences, to explain why the problems are important, what is currently
known in terms of partial decidability results, and why decidability of the central
problems in this landscape remain open.

xlviii J. Worrell
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Abstract. This paper studies algorithmic learning theory applied to
algebraic structures. In previous papers, we have defined our framework,
where a learner, given a family of structures, receives larger and larger
pieces of an arbitrary copy of a structure in the family and, at each
stage, is required to output a conjecture about the isomorphism type
of such a structure. The learning is successful if there is a learner that
eventually stabilizes to a correct conjecture. Here, we analyze the number
of mind changes that are needed to learn a given family K. We give a
descriptive set-theoretic interpretation of such mind change complexity.
We also study how bounding the Turing degree of learners affects the
mind change complexity of a given family of algebraic structures.

Keywords: Inductive inference ¨ Computable structures ¨ Algorithmic
learning theory ¨ Mind change complexity

1 Introduction

Learning theory is one of the mathematical approaches that study the adaptation
of a rational agent to an environment. In this paper, we deal with a particular
style of learning called learning in the limit or inductive inference. Introduced
by Gold [11] and Putnam [16] in the 1960s, this paradigm was meant to infer
objects that were either formal languages or computable functions. Generally,
such a paradigm is constituted by a learner that analyzes a growing amount
of data about some environment and, in the limit, is able to get a systematic
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knowledge of it. In recent times, learning of mathematical structures, first consid-
ered by Glymour [10], received interest, with special attention paid to families of
computable structures, like vector spaces, rings, trees, and matroids [9,12,15,17].

At each stage, the learner outputs a conjecture about the isomorphism type
of the presented structure. That is, the learner either produces a new hypothesis
or stays with its previous conjecture. The information provided to the learner
may also be empty, and on the other side, the learner can output the sym-
bol “?” whenever the information received so far is considered insufficient. The
learning is successful if, in the limit, the learner eventually guesses the correct
isomorphism type of presented structure. This paradigm is analogous to what,
in classical algorithmic learning theory, is called InfEx-learnability: namely, Inf
(for informant) stresses that the information provided to the learner contains
both positive and negative information about the object to be learned; Ex (for
explanatory) stresses that the learner needs to stabilize the correct hypothesis
in the limit.

In [5], the authors obtained a complete model-theoretic characterization of
which families of algebraic structures are learnable, using tools coming from
infinitary logic. This allowed to witness the non-learnability of (apparently) sim-
ple families such as {ω, ζ}, where ω is the order type of natural numbers and ζ
of integers. In [6], the authors built a family composed of two structures which is
learnable, even if no Turing machine learns it. More recently, in [3] we presented
a new hierarchy to classify the complexity of learning problems for algebraic
structures via descriptive set-theoretic tools coming from the study of reduc-
tions between equivalence relations.

As the title suggests, the main theme of this paper will be the study of
the number of mind changes made by a learner while learning a given family.
This was already done for formal languages (e.g., in [1,8]), where the authors
study which families are learnable when the number of mind changes allowed is
bounded by some ordinal α. In this paper, we put the same constraint to the
problem of learning algebraic structures. After some preliminaries (Sect. 2), we
attack this problem in two different ways. In Sect. 3 we study particular types
of families that we call limit-free, considering the partial order (poset) given by
some suitable embedding relation on the family K, and we show that the mind
change complexity of K is affected by the height of such a poset. Our results
characterize only families that are learnable with n many mind changes, where n
is a finite ordinal. Secondly, in Sect. 4, following [3] and exploiting ideas from [14],
we characterize certain types of families that are learnable with α many mind
changes, with α a countable ordinal, in topological and descriptive set-theoretic
terms. The last part of this paper is meant to study how the complexity of
a learner, defined in terms of Turing reducibility, affects the number of mind
changes required to learn a given family. This leaves further directions open,
starting from the definition, suggested here, of the n-learning spectrum of a
family of structures.
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2 Preliminaries

2.1 Our Paradigm

We assume that the reader is familiar with basic notions and terminology from
computable structure theory, as in [2].

Definition 1 ([3], Definition 2.2). Let K be a family of computable
L-structures.

– The learning domain (LD) is the collection of all copies of the structures from
K. That is,

LD(K) :=
⋃

APK
{S : S ∼= A}.

As we identify each countable structure with an element of Cantor space (writ-
ten as 2N), we obtain that LD(K) ⊆ 2N.

– The hypothesis space (HS) contains, for each A P K, a formal symbol �A�
and a question mark symbol. That is,

HS(K) := {�A� : A P K} ∪ {?}.
– A learner M sees, by stages, all positive and negative data about any given

structure in the learning domain and is required to output conjectures. This
is formalized by saying that M is a function

from 2ăN to HS(K).

– The learning is successful if, for each structure S P LD(K), the learner even-
tually stabilizes to a correct conjecture about its isomorphism type. That is,

lim
n→∞M(S �n) = �A� if and only if S is a copy of A.

We say that K is learnable, if some learner M successfully learns K.

Since our paradigm is defined on countable families of computable structures,
we will omit the words “countable” and “computable”. Notice that what here
we call learnable is what in classical algorithmic learning theory is called InfEx-
learnable. We also highlight that, since we defined a learner as a function, we
can consider learners of different complexity: for example, a computable learner
is simply a computable function from 2ăN to HS(K).

We now proceed in refining our paradigm in order to characterize n-lear-
nability, that is, learnability where we allow only n many mind changes. Let ε
denote the empty string and given σ P 2ăN we indicate by σ´ the finite sequence
σ without the last digit. We say that M changes its mind at σ if M(σ) �=
M(σ´) and M(σ´) �= ?.

Definition 2. Let M be a learner, K be a countable family of computable struc-
ture, and let c : 2ăN → Ordinals.
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– c is a mind change counter for M and K if
‚ c(σ) ď c(σ´) for all σ �= ε, and
‚ c(σ) ă c(σ´) if and only if M changes its mind at some σ P 2ăN;

– K is α-learnable if and only if there is a learner M that learns K and there is
a mind change counter c for M and K such that c(ε) = α;

– K is properly α-learnable if K is α-learnable but not β-learnable for all β ă α.

Notice that, in the first point of the definition, one could define a counter c with
the property that, for σ P 2ăN, c(σ) ă c(σ´) even if M does not change its mind
at σ. In this case, M would have different counters that are in a certain sense not
“optimal” with respect to M’s mind changes. Our choice allows us to associate
a single counter c to a learner M, so that, given M and once we have set c(ε),
we can easily reconstruct c at any stage: this makes our proofs smoother.

2.2 Topology

In this paper, our paradigm and the equivalence relations involved, are defined
on Cantor space. Such a space can be represented as the collection of reals,
equipped with the product topology of the discrete topology on {0, 1}. Given
σ P 2ăN, let [σ] = {α P 2N : σ ⊂ α} be a cylinder. These cylinders form a basis of
Cantor space. Given two finite strings σ, τ P 2ăN, we write σ � τ to denote that
σ is an initial segment of τ (σ � τ in case σ is a proper initial segment of τ). For
any topological space, we say that a point x is isolated if there is an open set
O such that O = {x}. If x is not isolated, then x is a limit point. We shall now
define the Cantor–Bendixson derivative of X (see [13] for more on this topic).
Given any topological space X, let X ′ = {x P X : x is a limit point of X} and
call such a set the Cantor–Bendixson derivative of X. Using transfinite induction
we define the iterated Cantor–Bendixson derivatives Xα, where α is an ordinal,
as follows. Starting with X0 = X we let Xα`1 = (Xα)′ and Xλ =

⋂
αăλ Xα

if λ is limit. By a classical theorem (Theorem 6.11 in [13]), if the space X is
Polish (that is, separable and completely metrizable), then this iteration process
“stops” at some countable ordinal. That is, for any Polish space X, there is a
countable ordinal α0 such that Xα = Xα0 for all α ą α0. The set Xα0 is called
the perfect kernel of X, while X \ Xα0 is the scattered part. Notice that α0 is
called the Cantor–Bendixson rank of X, and we denote it by CB(X): in case
Xα0 = H, we say that X is scattered We also easily get that for a separable
topological space X, X is countable if and only if XCB(X) = H.

3 Learnability and Posets

In this section, we will discuss some results about the relation between the
number of mind changes made when learning a family K and structural properties
of K. The first remark is that it is not always possible to define an upper bound
of the number of mind changes. This may happen for two reasons. Either the
family is not learnable at all, or the family is learnable but, at any finite stage,
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it is always possible to extend the copy built so far to a structure different from
the one the learner is conjecturing. To study when it is possible to define such a
bound, we provide the following definition.

Definition 3. Let A and B be two structures. A finitely embeds in B (notation
A ↪→fin B) if for all s, A �s↪→ B.

In general, ↪→fin is a preorder on K. In some nice cases, for example, if every
structure in K is finite, such relations are partial orders (posets). On the other
hand, anti-symmetry is not guaranteed in the infinite case; we may have two
infinite structures A,B P K such that A ↪→fin B and vice versa but A fl B.
In this section, we will consider only families on which ↪→fin is a partial order,
and we denote it by (K, ↪→fin) (whenever we use this notation, we assume that
↪→fin is a partial order on K). We say that A P K has height n, denoted by
height(A) = n, if in the corresponding poset there exists a chain (i.e., a totally
ordered set) of length n having A as maximal element but no chain of greater
length has A as maximal element. In case the structure of the greatest height in
the poset has height n, we say that (K, ↪→fin) has height n, and we denote this
by height((K, ↪→fin)) = n.

Definition 4. Let K be a family of structures and suppose that (K, ↪→fin) has
height n. Let K=m = {A P K : height(A) = m}. We say that K is limit-free if

(@m)(@A P K=m)(@S ∼= A)(Ds)({B P K : S �s↪→ B} ∩ K=m = {A}).
In this case we say that A is m-minimal on S �s.

Intuitively, a limit-free K allows a learner M not to change its mind between
two structures having the same height. Indeed, given S P LD(K), if S � t ↪→ A
where height(A) = n, M can wait for a stage s such that S � s ↪→ A, and A
is the unique structure in K=m for some m ď n where n = height((K, ↪→fin)).
A trivial observation is that all finite families are clearly limit-free. For clarity,
we provide an example of a non-limit-free family of graphs Knlf = {Ai : i P N},
where:

– A0 is a one-way infinite line, i.e., the graph with vertices V = {vj : j P ω}
and edges E = {(vj , vj`1) : j P ω};

– Ai`1 is a copy of Ci`3, i.e., the cyclic graph of i ` 3 vertices.

We can easily notice that A0 witnesses that K is not limit-free. Indeed, given
S P LD(K) such that S ∼= A0, for all s, {B P K : S �s↪→ B} ∩ K=1 contains
infinitely many structures, i.e., A0 and for i ą 0 all the Ai’s such that S �s↪→
Ci`3, which are cofinitely many. The next result (whose simple proof is omitted)
gives a characterization of n-learnability for limit-free families.

Theorem 1. Let K be a limit-free family of structures. Then K is n-learnable
if and only if height((K, ↪→fin)) ď n ` 1. Consequently, K is proper n-learnable
if and only if height((K, ↪→fin)) = n ` 1.

Just considering limit free-families with (K, ↪→fin) of different heights, we
can easily derive that for any n P N, there is a family K of structures that is
proper n-learnable by a computable learner.
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4 A Descriptive Set-Theoretic Characterization
of n-Learnability

Before describing our results, we first give a formal definition of a reduction
between equivalence relations. Let E,F be equivalence relations on 2N. A reduc-
tion from E to F is a function Γ : 2N → 2N s.t. αEβ ⇐⇒ Γ (α)FΓ (β), for
all reals α, β. In this paper, we’ll concentrate on continuous reducibility, i.e., E
is continuously reducible to F , if there is a continuous function Γ : 2N → 2N

reducing E to F .

Definition 5 ([3]). A family of structures K is E-learnable if there is function
Γ : 2N → 2N which continuously reduces LD(K)/∼= to E.

In [3] we considered several benchmark equivalence relations connecting E-
learnability with the learnability notion defined in our paradigm (that recall in
classical algorithmic learning theory resembles InfEx learnability). Among the
equivalence relations we considered in the aforementioned paper, we report here
the definition of E0, the eventual agreement on reals. Given two reals α, β P 2N,
αE0β if and only if (Dn)(@m ą n)(α(m) = β(m)).

Theorem 2 (Theorem 3.1 in [3]). A family of structures K is learnable if and
only if there is a continuous function Γ : 2N → 2N such that for all A,B P LD(K),

A ∼= B ⇐⇒ Γ (A)E0Γ (B).

This correspondence between learnability and E0-learnability is quite intu-
itive: while in our paradigm we require a learner to eventually stabilize to the
correct conjecture, E0-learnability requires that two reals identifying the same
structure are mapped into two reals that eventually agree in all coordinates.
In this section, after introducing Id-learnability we will study its relations with
α-learnability, where α is a countable ordinal. Here, Id defines the identity on
reals. That is, given two reals α, β P 2N, αId β if and only if (@n)(α(n) = β(n)).
The next proposition highlights the relation between Id-learnability and 0-
learnability. Given σ P N

ăN and k P N, we denote by σk the sequence obtained
by the concatenation of k many σ’s. The real obtained by the concatenation of
infinitely many copies of σ is denoted by σ∞.

Proposition 1. Let K be a family of structures. If K is 0-learnable, then it is
also Id-learnable. The converse is not true, i.e., there exists a family that is
Id-learnable but not 0-learnable.

Proof. The first part of the proposition is trivial. Indeed, let M be a learner that
0-learns K. Let α be a real which encodes the atomic diagram of a structure S
isomorphic to some A in K. By definition of 0-learnability, there exists a stage
s0 such that for all s ě s0 M(S �s) = �Ai� for some i P ω and for all t ă s0,
M(S �t) = ?. Then, we define our continuous operator Γ as Γ (α) = i∞c , where
ic is the binary translation of i. Trivially given two structures αi, αj identifying
respectively Ai and Aj we have that Γ (αi)IdΓ (αj) ⇐⇒ i = j.



Calculating the Mind Change Complexity of Learning Algebraic Structures 7

For the converse, consider the non-limit-free family Knlf = {Ai : i P ω} that
we introduced in Sect. 3. Recall that A0 is a one-way infinite line and Ai`1 is
a copy of Ci`3, i.e., the cyclic graph of i ` 3 vertices. A continuous reduction
from LD(K)/∼= to Id is induced by a Turing operator Ψ . We give an informal
description of Ψ . Let α be a real, which encodes the atomic diagram of a structure
B isomorphic to some Ai. Suppose that at stage s, α �s, is isomorphic to a finite
path of length s. Then Γ (α)(s) = 0s. If at some stage s0 ą s, α �s0

∼= Cs0 , then
Γ (α) = 0s0´21∞. This concludes the description of Ψ . It is clear that for every
i ě 1, we have:

B ∼= A0 ⇔ Ψ(α) = 0∞,

B ∼= Ai ⇔ Ψ(α) = 0i`21∞.

Therefore, the family Knlf is Id-learnable.
To complete the proof, suppose towards a contradiction that a learner M

0-learns Knlf . Let S be an isomorphic copy of A0 and let s be the least stage
such that M(S �s) �=?. If M(S �s) �= �A0�, M fails to 0-learn Knlf . Otherwise, it
is not hard to build a copy S ′ of Ak where k is such that A0 �s embeds into Ak

and S �s= S ′ �s. Since M 0-learns Knlf , we have that M(S ′ �s) = �A0�, getting
the desired contradiction. 
�

Using non-limit-free families similar to the one used in the previous proof, it
is not hard to show that there are Id-learnable families that are not n-learnable
for some n P ω. On the other hand, even for n = 1, it is possible to define
1-learnable families that are not Id-learnable. We postpone the proof of this fact
to the end of this section, when we will have a characterization of α-learnability
(where α is a countable ordinal) for families that are Id-learnable. To do so,
we give a “learning theoretic” characterization of the concepts coming from
topology discussed in Sect. 2.2. The following definitions and results are inspired
by Sects. 3.1 and 3.2 of [14]: here Lemma 1 and Theorem 3 are respectively the
analogues of Lemma 3.1(1) and Theorem 3.1(1) in [14].

Let K = {Ai : i P N}, and let Γ be an operator that induces a continuous
reduction from LD(K) to Id. Given σ P 2ăN, we define the cone above σ (with
respect to Γ ) as

[σ]Γ = {Ai : Γ (σ) � S ∼= Ai}
Similarly to [σ] defined in Sect. 2.2, notice that the collection of [σ]Γ is a base

for LD(K), i.e.,
⋃

σP2ăN

[σ]Γ ⊇ LD(K). Then for Ai P [σ]Γ , let

CBΓ (Ai, σ) = max{α : Γ (Ai) P range(Γ )α ∧ Γ (σ) � Γ (Ai)}
and

CBΓ (σ) = sup{CBΓ (Ai, σ) : Ai P [σ]Γ }.
We say that Ai P [σ]Γ identifies [σ]Γ if CBΓ (Ai, σ) = CBΓ (σ). If for all

j �= i, Aj does not identify [σ]Γ we say that Ai uniquely identifies [σ]Γ . Similarly
to what we have done in Sect. 2.2, we say that range(Γ ) is scattered, if there
exists a countable ordinal α such that range(Γ )α = H. Trivially, if σ � τ , then
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CBΓ (σ) ď CBΓ (τ). It is easy to notice that if K is an Id-learnable family via
some continuous operator Γ , then range(Γ ) is clearly scattered. The next lemma
shows a simple but useful fact that will be essential in the proof of Theorem3.

Lemma 1. Let K be an Id-learnable family via some continuous operator Γ .
Then for any Ai P K and for every S P LD(K) with S ∼= Ai there exists a stage
s such that Ai uniquely identifies [S �s]Γ .

Proof. Suppose there exists Ai P K and S P LD(K) with S ∼= Ai such
that for every s P N, there is a structure Aj P [S �s]Γ , where j �= i and
CBΓ (Aj ,S �s) ě CBΓ (Ai,S �s) = α. Then Ai is not isolated in range(Γ )α

that, by definition, contains all structures Aj such that CBΓ (Aj ,S �s) ě α.
Hence, we have CBΓ (Ai, S �s) ě α ` 1, contradiction. 
�
Theorem 3. Let K be an Id-learnable family via some continuous operator Γ .
K is α-learnable if and only if range(Γ )1`α = H.

Proof. Suppose K is α-learnable by a learner M, i.e., set the mind change counter
c(ε) = α. As range(Γ ) is scattered, this implies that it is also non-empty (recall
that the empty set is perfect by definition). This means that range(Γ )α = H if
and only if α ą 0. By transfinite induction we prove that if CBΓ (ε) ą 1 ` α,
then M does not α-learn K (i.e., c is not a valid mind change counter). Suppose
that for all β ă 1 ` α the claim holds, and consider the case for 1 ` α. By
contradiction, suppose that range(Γ )1`α �= H: this means that there exists an
S P LD(K) and an s such that CBΓ (S �s) ą 1 ` α or, equivalently, that there is
a Ai P [S �s]Γ such that CBΓ (Ai,S �s) ě 1 ` α ` 1. We have two cases: either
M(S �s) = �Ai� or M(S �s) �= �Ai�.
– Suppose M(S �s) = �Ai�. Then since Γ (Ai) is not isolated in range(Γ )1`α,

there is Γ (Aj) P range(Γ )1`α with j �= i such that CBΓ (Aj ,S �s) ě 1 ` α.
Suppose that S ∼= Aj . Since M learns K by hypothesis, there will be a stage
s′ such that M(S �s′) = �Aj� and M(S �s′) �= M(S �s). Since this is a mind
change, we will have that c(S �s′) ă c(S �s) and c(S �s′) = β ă 1`α. On the
other hand, CBΓ (Aj ,S �s′) ě 1 ` α and so CBΓ (S �s′) ą β. By induction
hypothesis for β, this is not a valid mind change counter for M.

– Suppose M(S �s) �= �Ai� and S ∼= Ai. Since M learns K by hypothesis, there
will be a stage s′ such that M(S �s′) = �Ai�. Similarly to the first case, we
get that c(S �s′) ă c(S �s) ď 1 ` α, but CBΓ (S �s′) ą 1 ` α, and so c is not
a mind change counter for M.

For the other direction, suppose range(Γ )1`α = H. Let M be a learner with
mind change counter c such that c(ε) = α. Recall that if M(σ) �= M(σ´) and
M(σ´) = ?, this is not a mind change. Let S P LD(K) and s P N. M is defined
as follows:

M(S �s`1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

? if S �s`1= ε ∨ CBΓ (S �s`1) ă CBΓ (S �s)
�Ai� if CBΓ (S �s`1) = CBΓ (S �s) and Ai

uniquely identifies [S �s]Γ
M(S �s) if CBΓ (S �s`1) = CBΓ (S �s) and there is no Ai

that uniquely identifies [S �s]Γ
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Informally, the second disjunct in the first case of M’s definition deals with
the scenario in which M realizes that its conjecture is wrong and changes its
mind to ?. We immediately get that M learns K. Indeed, for any Ai P K and
for any S P LD(K) such that S ∼= Ai, by Lemma 1 there is a stage s such that
for all s′ ě s, Ai uniquely identifies [S �s′ ]Γ . So, for any s′ ą s the second case
of M’s definition applies and M correctly learns Ai. It remains to show that c
is a mind change counter for M and K. We first show the following claim that,
informally, states that if M rejects a hypothesis at a stage r, it will not output
it in the future.

Claim 1. Let S P LD(K) and r P N. Suppose Ai /P [S �r]Γ . If M(S �r) �= �Ai�,
then for all t ą r, M(S �t) �= �Ai�.

Proof. Let t ě r be such that M(S �t) = �Ai�. Then there is s such that r ă
s ď t such that M(S �s´1) �= �Ai� but M(S �s) = �Ai�. Then (as M(S �r) �=
�Ai�) by the second case of M’s definition, we have that Ai uniquely identifies
[S �s]Γ . On the other hand, Ai /P [S �r]Γ and consequently, by continuity of Γ ,
Ai /P [S �s]Γ , contradiction. This proves the claim. 
�
Claim 2. Let S P LD(K) and s P N. If the second case of M’s definition applies
at S �s`1, then there is no mind change: that is, either M(S �s`1) = M(S �s) or
M(S �s) = ?.

Proof. Suppose that M(S �s) = �Aj� with j �= i, where Ai uniquely identifies
[S �s`1]Γ and CBΓ (S �s`1) = CBΓ (S �s). Let r ă s ` 1 be the least stage
such that M(S �r) = �Aj�. The second case of M’s definition implies that
Aj uniquely identifies [S �r]Γ . But since Ai uniquely identifies [S �s`1]Γ and
i �= j, we immediately get that CBΓ (S �s`1) ă CBΓ (S �r), and so r ă s
as CBΓ (S �s`1) = CBΓ (S �s) by the second case of M’s definition. So CBΓ

(S �s) ă CBΓ (S �r). By the first case of M’s definition, there is a stage m with
r ă m ă s such that M(S �m) = ? and Aj /P [S �m]Γ . Then the previous claim
implies that M(S �s) �= �Aj�, a contradiction. The claim is proved. 
�

We derive that M changes its mind only if the first clause of M’s definition
applies (i.e., the third clause clearly does not imply a mind change, and the
second one was excluded by Claim 2). As in the first part of the proof, recall
that range(Γ )α = H if and only if α ą 0: this implies that for all S P LD(K)
and for all s P N. CBΓ (S �s) ą 0. So, whenever the first case of M’s definition
applies, we have that 0 ă c(S �s`1) = CBΓ (S �s`1) ă CBΓ (S �s) = c(S �s),
and so c is a mind change counter for M and K, i.e., M α-learns K. This ends
the proof of Theorem 3. 
�

Combining Proposition 1 and Theorem 3 we derive the following corollary
that characterizes 0-learnability in terms of Id-learnability.

Corollary 1. K is 0-learnable (i.e., InfFin-learnable) if and only if K is Id-
learnable via some continuous operator Γ such that range(Γ )1 = H, i.e., all
points in range(Γ ) are isolated.
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The last corollary shows that Id-learnability “contains” all 0-learnable fami-
lies. We are now ready to show that it is not true anymore for n ą 0. Just consider
1-learnability and let K = {A,B}, where A is isomorphic to infinitely many dis-
joint cycles C3, while B is A “plus” C4. Since K is limit-free and A ↪→fin B,
Theorem 1 implies that K is proper 1-learnable. Suppose that K is Id-learnable
via some continuous operator Γ . Then, as K contains only two structures, the
points in range(Γ ) are two, and they are clearly isolated. Now Theorem 3 implies
that K is 0-learnable, getting the desired contradiction.

5 Learner Complexity

In this section, we show that for certain families, the complexity of the learner
plays a role in the number of mind changes during the learnability process.

Theorem 4. For any c.e. non-computable set X, there exists a countable family
of graphs K such that:

– K is 0-learnable by an A-computable learner if and only if X ďT A;
– K is 1-learnable by a computable learner.

Proof. Let X be a non-computable c.e. set. We dynamically build K = {Ge :
e P N} as follows. In the construction below, when we write “add Ci to Ge” we
mean that we append to some isolated vertex of Ge a copy of Ci

– Stage 0: for any e P ω, let G2e be isomorphic to the infinite graph composed
by infinitely many disjoint vertices and a copy of C4e (i.e., the cyclic graph
composed by 4e vertices). Similarly, G2e`1 is composed by infinitely many
disjoint vertices and a copy of C4e`1. Note that G2e and G2e`1 are not iso-
morphic and are incomparable with respect to ↪→fin.

– Stage s+1: if e P Xs`1\Xs, then
‚ add C4e to G2e`1 and C4e`1 to G2e;
‚ add C4e`2 to G2e and C4e`3 to G2e`1.

Informally, if e P Xs`1\Xs we first modify G2e and G2e`1 so that they are
isomorphic, and then we make them again non-isomorphic and incomparable
with respect to ↪→fin.

We first prove the first point of the theorem, starting from the right to left
direction. Let A be such that X ďT A. We show that K is 0-learnable by an
A-computable learner. Let S P LD(K) and let s ą 1. Then the following A-
computable learner clearly 0-learns K.

MA(S �s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

? if (@n)(Cn �↪→ S �s) ∨ (e P X ∧ C4e`i ↪→ S �s where
i P {0, 1} ∧ C4e`j �↪→ S �s where j P {2, 3})

�G2e� if (C4e`2 ↪→ S �s) ∨ (e /P X ∧ C4e ↪→ S �s)
�G2e`1� if (C4e`3 ↪→ S �s) ∨ (e /P X ∧ C4e`1 ↪→ S �s)
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Informally, MA(S �s) = ? if either S �s contains no cycle, or the cycle(s) in
S �s allow MA only to distinguish that either S ∼= G2e or S ∼= G2e`1. In the
first case MA waits for a stage t ą s such that S �t contains some cycle (the
existence of such a stage is guaranteed by K’s construction). In the second case,
as e P X and by K’s construction, MA knows that only one between C4e`2 and
C4e`3 will be in S and this will allow it to output the correct conjecture, i.e.,
depending on the length of the cycle, the first disjunct of the second or third
case of MA’s definition applies. Trivially, if S �s contains C4e`2 or C4e`3 then
MA immediately outputs the correct conjecture, same if S �s contains C4e or
C4e`1 and e /P X.

For the left to right direction, assume that there exists an A-computable
learner MA that 0-learns K but X ęT A. We show that if it is the case, A can
enumerate N\X, contradicting the fact that X ęT A. For any e P N, let Be,n be
a structure isomorphic to C4e and n many disjoint vertices. It is clear that for
any n, Be,n ↪→ G2e, independently of the presence/absence of e in X. In other
words, there exists S P LD(K) such that S ∼= G2e and for any n P ω, Be,n ↪→ S.
This means that there exists an n P N such that MA(Be,n) = �G2e� and for
all n′ ą n MA(Be,n′) = �G2e�. Let f be the following function computing the
characteristic function of X:

f(e) =

{
1 if e P X

0 if (Dn)(MA(Be,n) = �G2e� ∧ n = minm MA(Be,m) �= ?)

To show that the second case of f ’s definition is correct, suppose that there is n
such that MA(Be,n) = �G2e�∧n = minm MA(Be,m) �= ? but e P X. Then, there
is some S ′ P LD(K) such that Be,n ↪→ S ′ (i.e., by K’s construction, C4e, C4e`3 ↪→
S ′). This means that if MA(Be,n) ↓ = �G2e�, MA needs to change its mind to
�G2e`1� contradicting that MA 0-learns the family. We derive that f is clearly
A-computable and witnesses that X ďT A getting the desired contradiction.

It remains to show that a computable learner M can 1-learn the family. Let
S P LD(K) and s ą 1:

M(S �s) =

⎧
⎪⎨

⎪⎩

? if (@n)(Cn �↪→ S �s)
�G2e� if (Dn)(Cn ↪→ S �s ∧(n = 4e ∨ n = 4e ` 2))
�G2e`1� if (Dn)(Cn ↪→ S �s ∧(n = 4e ` 1 ∨ n = 4e ` 3))

M can change its mind only in the second and the third case and this may
happen at most a single time, i.e., in case C4e ↪→ S �s and there exists s′ ą s
such that C4e`3 ↪→ S �s′ (similarly, for C4e`1 instead of C4e and C4e`2 instead
of C4e`3). This shows that K is 1-learnable by M. 
�

In analogy to several established notions from computable structure theory
(see, e.g., [4,7]), the proof of Theorem 4 suggests the definition of 0-learning
spectrum. Indeed, for any non-computable c.e. set X we defined a family K such
that the oracles A for which there exists an A-computable learner that 0-learns
K coincide with the Turing cone above X,

Spec0-learn(K) = {A : (DM)(MA 0-learns K)} = {A : X ďT A}.
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In the same spirit, it is natural to define Specn-learn(K) as the collection of all
oracles that allow us to learn K with n many mind changes. We postpone the
analysis of such spectra to future work.
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Abstract. We study countable linear orders realized by computably
enumerable equivalence relations (ceers). A ceer E realizes a linear order
L if there exists a computably enumerable binary relation � respecting
E such that the induced quotient structure (N/E, �) is isomorphic to
L. In this line of research, there are many nontrivial results demonstrat-
ing complex interplay between the computability-theoretic properties of
a ceer E and the isomorphism types of orders L realizable by E. For
example, Gavryushkin, Khoussainov, and Stephan proved that there is
a ceer E realizing only one order type—the type of ω + 1 + ω∗.

In this paper, we obtain a complete characterization of well-orders L
realizable by a given ceer E for the case when E realizes some ordinal
α < ω3. Informally speaking, our proofs develop methods of fine-tuning
the behavior of limit points of L via computability-theoretic properties
of E.

Keywords: Well-order · Computable ordinal · Equivalence relation ·
Computable structure theory · Computably enumerable structure

1 Introduction

The paper investigates algebraic aspects of computably enumerable equivalence
relations (or ceers, for short). Ceers and their applications in algebra consti-
tute a classical topic in computability theory. This line of research goes back
to the works of Novikov [14] and Boone [6]: independently, they built a finitely
presented group with an undecidable word problem. This classical result can
be re-cast in the setting of ceers as follows. Consider a finitely presented group
G = 〈X | R〉. One can encode elements of the free group FX (with generators X)
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by their Gödel numbers. Then the word problem of the group G can be treated
as a ceer that identifies two elements a, b ∈ FX if and only if ab−1 belongs to
the normal subgroup of FX generated by the relators from R. Consequently, the
ceer induced by the Novikov–Boone group is non-computable.

In recent years, significant advances have been made in the studies of ceers—
in particular, their computability-theoretic properties and their applications in
computable structure theory. For a detailed discussion of these results, we refer
the reader to, e.g., the surveys [1,17] and recent papers [2,3,7].

In this paper, we follow the approach of [11] (to be elaborated) and study
algebraic structures S realized by ceers. Here we concentrate on the case when S
is a well-order. In recent works, the approach of [11] was applied to the studies
of graphs [10], linear orders [9], Boolean algebras [5], models of arithmetic and
set theory [12]. The reader is referred to the survey [13] for details.

If not specified otherwise, we assume that every considered binary relation
R has domain N, i.e., the set of natural numbers. Recall that a relation R is a
preorder if R is reflexive and transitive. A preorder R is an equivalence relation
if R is symmetric. For an equivalence relation E and for a number a ∈ N, by [a]E
we denote the E-class of a. A preorder R is a linear order if R is antisymmetric
and any two elements a and b are comparable with respect to R.

Before providing further formal definitions, we give an informal toy example.
Consider the natural (lexicographic) presentation of the well-order ω2 on the
natural numbers:

〈x, y〉 ≤ω2 〈u, v〉 iff (x <N u) or (x = u & y ≤N v),

where 〈·, ·〉 is some fixed computable bijection from N
2 onto N, and ≤N is the

standard ordering of natural numbers.
Then, informally speaking, one can say that (a presentation of) the ordinal

ω can be obtained as a quotient of the relation ≤ω2 , as follows:

– First, consider a new equivalence relation E:

(〈x, y〉E 〈x′, y′〉) ⇔ x = x′. (1)

– Second, the order ≤ω2 induces (in a natural way) a strict ordering � on the
E-classes:

[a]E � [b]E ⇔ (a ≤ω2 b)&¬(aE b).

It is clear that the quotient structure (N/E;�) is isomorphic to (N;<N).
Another intuitive way of looking at this quotient is as follows. First, one fixes

the relation E from Eq. (1). Then in our new, “imaginary” universe, the relation
E plays the role of equality : if natural numbers x and y are E-equivalent, then
they are indistinguishable for us.

Following the approach of [9–11], here we are concerned with the following
informal problem

(�) Which well-orders can be represented in the new E-universe?
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The argument above shows that with the help of the recursive relation ≤ω2 , one
can represent (in a formal way) the usual ordering of natural numbers.

Now we are ready to give the formal definitions, and to provide the formaliza-
tion of Problem (�). We say that a binary relation R respects an equivalence rela-
tion E if the following holds. For all x, x′, y, y′ ∈ N such that (xE x′) & (y E y′)&
¬(xE y), the condition (x, y) ∈ R holds if and only if (x′, y′) ∈ R.

If R respects E, then one can introduce a well-defined quotient structure
QR = (N/E;Rq):

– The domain of QR consists of equivalence classes [x]E , x ∈ N.
– For x, y ∈ N, we have ([x]E , [y]E) ∈ Rq if and only if one of the following

holds: either (x E y), or ¬(xE y) & (x, y) ∈ R.

Definition 1 (see [9]). A computably enumerable equivalence relation (ceer) E
realizes a countable linear order L if there exists a computably enumerable binary
relation R such that R respects E, and the quotient structure QR is isomorphic
to L. In this case, we say that the structure QR = (N/E;Rq) is a presentation
(or realization) of the order L.

The papers [9,11] study various problems on linear orders realized by ceers.
In particular, Definition 1 induces a degree structure on ceers: if E and F are
ceers, then E ≤lo F if and only if every linear order realized by E is also realized
by F . The poset of ≤lo-degrees contains infinite chains (Corollary 43 in [11],
Theorem 3.1 in [9]) and antichains (Theorem 2.6 of [9]). This poset is not an
upper semilattice (Corollary 5.4 in [9]).

In this paper we work on the following problem:

Problem 1. For a ceer E, let Ord(E) denote the family of all ordinals realized
by E. Provide a characterization of possible families Ord(E).

Notice the following: if a ceer E has precisely m classes, where m < ω, then
it is clear that E can realize only one ordinal—the natural number m. Therefore,
we always assume that every considered ceer has infinitely many classes. If α < β
are ordinals, then we use the following notations:

[α;β] = {γ : α ≤ γ ≤ β}, [α;β) = {γ : α ≤ γ < β}.

The paper is arranged as follows. Section 2 contains necessary preliminar-
ies and some simple useful facts. In this paper, we obtain a complete solution
of Problem 1 in two particular cases. Consider a ceer E with infinitely many
equivalence classes.

Theorem 1. Suppose that α < ω2 and α ∈ Ord(E). Then for some non-zero
m ∈ ω, one of the following cases holds:

1. Ord(E) = [ω · m;ωCK
1 );

2. Ord(E) = [ω · m;ω · (m + 1));
3. Ord(E) = [ω · m + 1;ω · (m + 1)).
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Each of these three cases is realizable by some ceer E.

Theorem 2. Suppose that α < ω3, α ∈ Ord(E), and Ord(E) ∩ [ω;ω2) = ∅.
Then for some non-zero m ∈ ω, one of the following cases holds:

1. Ord(E) = [ω2 · m;ωCK
1 );

2. Ord(E) = [ω2 · m;ωCK
1 ) \ {ρ + ω : ρ is an ordinal};

3. Ord(E) = [ω2 · m;ω2 · (m + 1));
4. Ord(E) = [ω2 · m;ω2 · (m + 1)) \ {ρ + ω : ρ is an ordinal};
5. Ord(E) = [ω2 · m + 1;ω2 · (m + 1));
6. Ord(E) = [ω2 · m + 1;ω2 · (m + 1)) \ {ρ + ω : ρ is an ordinal}.
Each of the six cases is realizable.

Section 3 proves Theorem 1. For reasons of space, the proof of Theorem 2
(which is more technically involved) is omitted. In order to prove Theorem 2,
one has to work carefully with the classes [x]E representing limit points of an
ordinal α: in some cases, we want to realize, say, an ordinal ω2 · m + ω; and in
other cases, this ordinal should be “omitted”.

We emphasize that the obtained theorems are fully relativizable: i.e., for any
oracle X ⊆ N, if an X-computably enumerable equivalence relation E realizes
some infinite α < ω2, then E satisfies one of the cases from Theorem 1. We
strongly conjecture that the developed methods could provide a complete solu-
tion of Problem 1 for the case when some α < ωω belongs to Ord(E).

2 Preliminaries and Simple Observations

The reader is referred to [4,8] for the background on computable structure theory.
Preliminaries on countable linear orders can be found in [16]. By ωCK

1 we denote
the least non-computable ordinal. By Id we denote the identity relation on N.

If E and F are equivalence relations on N, then by E ⊕ F we denote their
uniform join which is defined as follows. For numbers x, y ∈ N, we have (x, y) ∈
E⊕F if and only if either (x = 2k) & (y = 2�) & ((k, l) ∈ E) or (x = 2k+1)& (y =
2� + 1)& ((k, l) ∈ F ).

One can also define uniform join for an arbitrary finite number of equiva-
lences:

n+1⊕

i=1

Ei =
( n⊕

i=1

Ei

)
⊕ En+1.

Definition 2. For a c.e. set W , the ceer E(W ) is defined as follows:

E(W ) = {(x, y) : x = y or x, y ∈ W}.

As usual, (ϕe)e∈N denotes the standard list of all unary partial computable
functions, and We = dom(ϕe), for e ∈ N. For the background on computability
theory, we refer to [15]. Further preliminaries on ceers can be found, e.g., in the
papers [1,3].

Let L be a linear order. An element a ∈ L is an isolated point if it satisfies
one of the following conditions:
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– a is the least element in L and a has an immediate successor,
– a is the greatest in L and a has an immediate predecessor,
– a has both immediate successor and predecessor.

If a is not an isolated point, then a is called a limit point of L.
The following fact will be often used without an explicit reference:

Remark 1 (see Remark 30 in [11]). Suppose that a ceer E realizes a linear order
L. If a class [x]E is an isolated point in L, then [x]E is a computable set. Fur-
thermore, if L is a union of two intervals I and J such that I <L J , I has a
greatest element, and J has a least element, then the sets {x : [x]E ∈ I} and
{x : [x]E ∈ J} are computable.

In our proofs, we will implicitly use the fact that a c.e. relation R from
Definition 1 can be always chosen as a preorder:

Proposition 1. Let E be a ceer, and let L be a linear order. Then E realizes L
if and only if there exists a c.e. preorder R with the following properties:

1. The relation supp(R) = {(x, y) : (x, y) ∈ R & (y, x) ∈ R} is equal to E.
2. Consider the quotient structure DR = (N/supp(R);�R), where [x]supp(R) �R

[y]supp(R) iff (x, y) ∈ R. Then DR is isomorphic to L.

Proof (sketch). (⇐). It is straightforward to check that the c.e. relation R sat-
isfies all conditions from Definition 1.

(⇒). Suppose that a c.e. relation R1 (not necessarily preorder) satisfies
Definition 1. Then one can show that a new relation R := R1 ∪E has all desired
properties. ��

Now we give several simple facts which will be used throughout further proofs.
First, recall that every hyperarithmetical ordinal has a computable copy. Hence,
every ordinal realized by a ceer is computable.

Remark 2. The relation Id realizes all ordinals from the interval [ω;ωCK
1 ).

The following two lemmas will be useful for us.

Lemma 1. Let E be a ceer, and let α be a computable ordinal. Suppose that
β < α is a successor ordinal, and γ is the ordinal such that α = β + γ. If E
realizes α, then E also realizes the ordinal γ + β.

In particular, if an infinite ordinal α = λ + k + 1 (where k < ω) is realizable
by E, then λ + 1 is also realizable by E.

Proof. Consider a presentation (N/E;�) of the ordinal α. Find the class [x]E
such that the initial segment {[y]E : [y]E�[x]E} is isomorphic to β. By Remark 1,
both sets

A = {y : [y]E � [x]E} and B = {z : [z]E � [x]E}
are computable. A new c.e. preorder � on N is defined as follows:
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– If x ∈ B and y ∈ A, then set x � y.
– If {x, y} ⊆ A or {x, y} ⊆ B, then put x � y if and only if x � y.

It is not hard to show that (N/E;�) is a presentation of well-order γ + β. ��
Lemma 2. Let E and F be ceers. Suppose that α ∈ Ord(E) and β ∈ Ord(F ).
Then α + β ∈ Ord(E ⊕ F ).

Lemma 2 is an almost immediate corollary of the definitions. Together with
Remark 2, this implies the following: if α ∈ Ord(E), then [α + ω;ωCK

1 ) ⊆
Ord(E ⊕ Id).

3 Proof of Theorem 1

In this section, we prove Theorem 1, i.e., we obtain a complete characterization
of families Ord(E) with the following additional property: there exists α < ω2

such that α is realized by E. The section is arranged as follows. In Subsect. 3.1
we give a list of examples of realizable classes Ord(E). Subsection 3.2 shows that
this list is exhaustive.

3.1 Examples Which Can Be Realized

The first such example is obtained in the paper [11]. Recall that an infinite
set A ⊆ N is immune if A does not have infinite c.e. subsets. A c.e. set W is
simple if its complement is immune. A set A is semirecursive if there exists a
computable function f(x, y) such that for all x and y, we have f(x, y) ∈ {x, y},
and if {x, y} ∩ A �= ∅, then f(x, y) ∈ A.

Proposition 2 (Theorem 39.1 in [11]). If W is a simple, semirecursive c.e.
set, then Ord(E(W )) = [ω + 1;ω · 2).

Proposition 2 has the following easy consequences:

Corollary 1. Suppose that W is a simple, semirecursive c.e. set, and 2 ≤ n <
ω. Consider a ceer

En :=
⊕

1≤i≤n

E(W ).

Then Ord(En) = [ω · n + 1;ω · (n + 1)).

Proof (sketch). By combining Proposition 2 with Lemma 2, it is easy to show
that [ω · n + 1;ω · (n + 1)) is a subset of Ord(En).

Now suppose that α ∈ Ord(En). Then one can obtain a decomposition α =
β1 + β2 + · · · + βn such that each βi is realizable by E(W ). Clearly, this implies
that ω · n + 1 ≤ α < ω · (n + 1). ��
Corollary 2. For every non-zero m < ω, there is a ceer E such that

Ord(E) = [ω · m;ωCK
1 ).
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Proof. Recall that we have Ord(Id) = [ω;ωCK
1 ) (Remark 2). Hence, we can

assume that m ≥ 2. By Corollary 1, one can choose a ceer F with Ord(F ) =
[ω · (m − 1) + 1;ω · m). Now, similarly to Corollary 1, it is not hard to deduce
that Ord(F ⊕ Id) = [ω · m;ωCK

1 ). ��
The second series of examples is provided by the following result:

Proposition 3. For every non-zero n < ω, there is a ceer E such that Ord(E)
equals [ω · n;ω · (n + 1)).

Proof. Here we give a proof for the case of the interval [ω · 2;ω · 3). The general
case can be obtained via a similar argument.

We build a presentation (N/E;�) as an isomorphic copy of the well-order
ω · 2, while satisfying the following requirement:

The set of all E-classes cannot be split into three computable parts such that
each of these parts contains infinitely many classes.

Notice that Lemma 1 immediately implies that every ordinal ω · 2 + k, for 1 ≤
k < ω, is also realizable by E.

Why is the requirement above sufficient for our purposes? Towards a contra-
diction, assume that there exists an E-realization of some ordinal β ≥ ω · 3, i.e.,
a c.e. preorder � with (N/E;�) ∼= β.

Then this realization gives a natural splitting of N into three computable
parts which is recovered as follows. Consider classes [c]E and [d]E which are the
least and the second least limit points (with respect to �), respectively. Let [c1]E
be the immediate successor of [c]E , and let [d1]E be the successor of [d]E . Then
by Remark 1, computable sets

U = {x : x � c}, V = {y : c1 � y � d}, W = {z : d1 � z}
form a splitting of N. In addition, each of the sets U, V,W includes infinitely
many E-classes, which contradicts our requirement.

Hence, if we satisfy the requirement, then any β ≥ ω · 3 will be not realizable
by E. The fact that the ordinals ω + k, for k < ω, are also not realizable by E
will follow from Proposition 4 (see below) and the fact that ω · 2 ∈ Ord(E).

Our requirement can be formally re-written as a series of requirements:
P〈i, j, k〉 : For the triple (Wi,Wj ,Wk) (where i < j < k), at least one of the

following properties does not hold:

1. the sets are pairwise disjoint;
2. Wi ∪ Wj ∪ Wk = N;
3. for all � ∈ {i, j, k} and x, y ∈ N, if x ∈ W� and (y E x) then y ∈ W�;
4. for each �, W� contains infinitely many E-classes.

We describe a strategy for satisfying one requirement.
P〈i, j, k〉-strategy. In the background, we construct a c.e. preorder � aiming

for the goal (N/E;�) ∼= ω · 2. So, semi-formally speaking, at a stage s, all
(current) E-classes are split into two intervals I0[s] and I1[s] in a computable
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way. In the limit, each of these intervals will have order type ω. In addition, if
a class [x]E is added to an interval I�, then it never goes to the other interval
I1−�.

We notice that P〈i, j, k〉 can be satisfied in a happy-go-lucky way: if we see
an element x belonging to, say, Wi ∩ Wj , then we immediately declare that the
requirement is satisfied.

If P〈i, j, k〉 is not satisfied yet, then we wait until two of the sets Wi, Wj , Wk

enumerate elements x �= y (say, x is enumerated into Wi, and y is enumerated
into Wk) such that:

– at this stage s, we have x �s y (i.e., x �s y and y ��s x);
– x and y belong to the same ω-interval I�, and
– both elements are far enough from the leftmost point of the interval I�, i.e.,

x belongs to at least 〈i, j, k〉-th class (with respect to �s) of the interval.

Then we glue the E-classes containing x and y, i.e., we declare that all elements
z, where [x]E �s [z]E �s [y]E , are E-equivalent to the element x. It is clear that if
our W -sets are disjoint, then the described action forces the triple (Wi,Wj ,Wk)
to fail Condition (3) above.

Note that if the W -sets are pairwise disjoint and every W -set is infinite, then
we will eventually find the desired pair x, y (essentially, this is the pigeonhole
principle applied to the three W -sets and two ω-intervals).

If our strategy “freezes” (i.e., it waits for appropriate elements forever), then
this means that one of the sets Wi, Wj , Wk includes only finitely many E-classes,
i.e., Condition (4) does not hold.

Since we wait for elements, which are far enough from the leftmost point of
the interval I�, this ensures that every initial segment of an ω-interval can be
injured only by finitely many strategies. Each strategy acts at most one time,
and, consequently, every initial segment of an ω-interval can be injured only
finitely many times. Hence, a whole construction for all requirements can be
handled via using a standard priority argument (even with no injuries). We
leave further (standard) details to the reader. Proposition 3 is proved. ��

3.2 Why Are There No More Examples?

We recover a restriction on which families of ordinals can be realized as Ord(E):

Proposition 4. Assume that a ceer E realizes both α = ω · m + k and β, where
1 ≤ m < ω, k < ω, and β ≥ ω · (m + 1). Then we have [ω · m;ωCK

1 ) ⊆ Ord(E).

Proof. By Lemma 1, without loss of generality, we may assume that k = 1. We
consider a presentation A = (ω/E,≤A) for α and a presentation B = (ω/E,≤B)
for β.

(1) First, we show that the ordinal ω · m is realizable by the relation E.
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We choose m limit points [x1]E <B [x2]E <B · · · <B [xm]E inside B. They
give a computable partition of N into (m + 1) intervals:

I1 = {y : [y]E ≤B [x1]E}, I2 = {y : [x1]E <B [y]E ≤B [x2]E},

I3 = {y : [x2]E <B [y]E ≤B [x3]E}, . . . ,

Im = {y : [xm−1]E <B [y]E ≤B [xm]E}, Im+1 = {y : [y]E >B [xm]E},

where each Ij includes infinitely many E-classes.
Let [z1]E <A [z2]E <A · · · <A [zm]E be all limit points inside A, and [z0]E be

the least ≤A-element. By the pigeonhole principle, at least one of the intervals

Jt := {y : [zt−1]E <A [y]E ≤A [zt]E}, 1 ≤ t ≤ m,

includes infinitely many E-classes both from Ip and from Iq, for some p < q ≤
m + 1.

Without loss of generality, we assume that J2 includes infinitely many classes
from both I1 and I2. Furthermore, we assume that z2 �∈ I1. Then for any element
u ∈ N, we have u �∈ [z2]E if and only if one of the following two conditions holds:

1. [u]E >A [z2]E , or
2. there is an element v ∈ I1 such that [u]E ≤A [v]E ≤A [z2]E .

This implies that the class [z2]E is a computable set.
By recombining the ≤A-intervals (notice that these intervals are computable

sets, since [z2]E is computable):

{[y]E : [y]E ≥A [z2]E}
by def.

� {[u]E : [u]E <A [z2]E},

we obtain that the ordinal ω · m is realizable by E.
(2) Now we show that an arbitrary computable γ ≥ ω·(m+1) is also realizable

by E. For a non-zero j ≤ m + 1, we say that an element x ∈ N has Ij-color if
[x]E ⊆ Ij .

We start from the preorder ≤A, and our goal is to “re-configure” the ≤A-in-
terval J2 in an appropriate way. First, we find a computable sequence

z1 <A c0 <A d0 <A c1 <A d1 <A · · · <A c� <A d� <A · · · <A z2

such that each ci has I1-color and each dj has I2-color. Note that such an alter-
nating sequence exists. Indeed, consider an arbitrary <A-increasing sequence
(c′

i)i∈ω of I1-colored elements inside J2. Then for every I2-colored element
d �∈ [z2]E from J2, there exists i such that d <A c′

i: if there is no such i,
then the interval J2 will contain a limit point which is different from the points
[z1]E , . . . , [zm]E , and this gives a contradiction. So, informally speaking, inside
J2, the colors I1 and I2 alternate, and this allows to construct the needed
sequence.

We proceed with the following semi-formal “surgery”:
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(a) If one deletes the I1-colored intervals

Ci = ({x ∈ I1 : di ≤A x ≤A di+1};≤A), i ∈ N,

from (N/E;≤A), then the resulting structure still has order type ω · m + 1.
(b) Note that every Ci includes only finitely many E-classes. Since the sequence

(Ci)i∈ω is uniform, it is not hard to recombine these intervals is such a way
that the resulting order (on the intervals) is isomorphic to a given infinite
computable ordinal. Since γ ≥ ω · (m + 1), this allows to appropriately “re-
attach” the deleted intervals Ci, and obtain a new preorder � such that
(ω/E;�) ∼= γ.

Proposition 4 is proved. ��
Now we are ready to finish our main proof.

Proof (of Theorem 1). Recall that the relation E realizes some infinite ordinal
less than ω2. We choose the least ordinal α ∈ Ord(E). It is clear that α = ω·m+k
for some k < ω and non-zero m < ω. By Lemma 1, we deduce that k ∈ {0, 1}.

If there exists some β ∈ Ord(E) with β ≥ ω · (m+1), then by Proposition 4,
we obtain that Ord(E) = [ω · m;ωCK

1 ). Otherwise, it is obvious that Ord(E) is
equal either to [ω · m;ω · (m + 1)) or to [ω · m + 1;ω · (m + 1)). ��

In conclusion, we mention an interesting connection with the modern studies
of natural combinatorial properties of ceers. Andrews and Sorbi [3] introduced
the notions of light and dark ceers. A ceer E is light if there exists an infinite
c.e. set W = {ai : i ∈ ω} such that for all i �= j, the elements ai and aj are not
E-equivalent. If a ceer E is not light and it has infinitely many classes, then E
is dark.

The methods developed in our work allow to prove the following result. Let
m be a non-zero natural number, and let E be a ceer.

(a) If Ord(E) = [ω · m;ωCK
1 ), then E is light.

(b) If Ord(E) = [ω · m + 1;ω · (m + 1)), then E is dark.
(c) There exist a light ceer E0 and a dark ceer E1 such that both Ord(E0) and

Ord(E1) are equal to [ω · m;ω · (m + 1)).
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helpful comments.
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2 Università di Verona, Strada le Grazie 15, 37134 Verona, Italy

petermichael.schuster@univr.it

Abstract. The existence of a maximal ideal in a general nontrivial
commutative ring is tied together with the axiom of choice. Following
Berardi, Valentini and thus Krivine but using the relative interpretation
of negation (that is, as “implies 0 = 1”) we show, in constructive set the-
ory with minimal logic, how for countable rings one can do without any
kind of choice and without the usual decidability assumption that the
ring is strongly discrete (membership in finitely generated ideals is decid-
able). By a functional recursive definition we obtain a maximal ideal in
the sense that the quotient ring is a residue field (every noninvertible ele-
ment is zero), and with strong discreteness even a geometric field (every
element is either invertible or else zero). Krull’s lemma for the related
notion of prime ideal follows by passing to rings of fractions. All this
equally applies to rings indexed by any well-founded set, and can be car-
ried over to Heyting arithmetic with minimal logic. We further show how
a metatheorem of Joyal and Tierney can be used to expand our treat-
ment to arbitrary rings. Along the way we do a case study for proofs
in algebra with minimal logic. An Agda formalization is available at an
accompanying repository.

Let A be a commutative ring with unit. The standard way of constructing a
maximal ideal of A is to apply Zorn’s lemma to the set of proper ideals of A; but
this method is less an actual construction and more an appeal to the transfinite.

If A is countable with enumeration x0, x1, . . ., we can hope to provide a more
explicit construction by successively adding generators to the zero ideal, skipping
those which would render it improper:

m0 = {0} mn+1 =

{
mn + (xn), if 1 �∈ mn + (xn),
mn, else.

A maximal ideal is then obtained in the limit as the union of the intermedi-
ate stages mn. For instance, Krull in his 1929 Annals contribution [33, Hilfssatz]
and books on constructive algebra [37, Lemma VI.3.2], [34, comment after The-
orem VII.5.2] proceed in this fashion. A similar construction concocts Henkin
models for the purpose of proving Gödel’s completeness theorem for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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countable languages, successively adding formulas which do not render the cur-
rent set inconsistent [62, Satz I.56], [17, Lemma 1.5.7], [60, Lemma III.5.4], [28,
Lemma 2.1].

This procedure avoids any form of choice by virtue of being a functional recur-
sive definition, but still requires some form of omniscience in order to carry out
the case distinction. In the present text we study a variant of this construction,
due to Berardi and Valentini [9], which avoids any non-constructive principles
and decidability assumptions, similar to a construction which has been studied
by Krivine [32, p. 410] and later Herbelin and Ilik [24, p. 11] in the context of
Gödel’s completeness theorem. In this generality, the resulting maximal ideal has
an elusive quality to it, but useful properties can still be extracted; and not only
do we recover the original construction under certain decidability assumptions,
we can also exploit a relativity phenomenon of mathematical logic in order to
drop, with some caveats, the assumption that A is countable.

An Agda formalization is available at an accompanying repository (https://
github.com/iblech/constructive-maximal-ideals/).

Conventions. Throughout this note, we fix a ring A, and work in a construc-
tive metatheory. In the spirit of Lombardi and Quitté [34], we employ minimal
logic [29], where by “not ϕ” we mean “ϕ ⇒ 1 =A 0”, and do not assume any form
of the axiom of choice. Consequently, by “x �∈ M” we mean x ∈ M ⇒ 1 =A 0,
and a subset M ⊆ A is detachable if and only if for all x ∈ A, either x ∈ M
or x �∈ M . For general background on constructive mathematics, we refer
to [7,8,12].

For an arbitrary subset M ⊆ A, not necessarily detachable, the ideal (M)
generated by M is given by

{∑n
i=1 aivi

∣∣ n ≥ 0, a1, . . . , an ∈ A, v1, . . . , vn ∈
M

}
. Notice that, for every element v ∈ (M), either v = 0 or M is inhabited,

depending on whether n = 0 or n > 0 in
∑n

i=1 aivi. This can also be seen from
the alternative inductive generation of (M) by the following rules:

v = 0
v ∈ (M)

v ∈ M

v ∈ (M)

v ∈ (M) w ∈ (M)

v + w ∈ (M)

a ∈ A v ∈ (M)

av ∈ (M)

Here we adhere to the paradigm of generalized inductive definitions [1,2,44].

1 A Construction

We assume that the ring A is countable, with x0, x1, . . . an enumeration of the
elements of A. We do not assume that A is discrete (that is, that x = y or x �= y
for all elements of A) or that it is strongly discrete (that is, that finitely generated
ideals of A are detachable). Up to Corollary 1.2(a) below we follow [9].

We study the following recursive construction of ideals m0,m1, . . . of A:

m0 := {0} mn+1 := mn + ({xn | 1 �∈ mn + (xn)}).

https://github.com/iblech/constructive-maximal-ideals/
https://github.com/iblech/constructive-maximal-ideals/
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Finally, we set m :=
⋃

n mn. The construction of mn+1 from mn is uniquely
specified, requiring no choices of any form.

The set Mn := {xn | 1 �∈ mn+(xn)} occurring in this construction contains the
element xn if and only if 1 �∈ mn+(xn); it is obtained from the singleton set {xn}
by bounded separation. This set Mn is inhabited precisely if 1 �∈ mn + (xn), in
which case mn+1 = mn +(xn). However, in the generality we work in, we cannot
assume that Mn is empty or inhabited.

We can avoid the case distinction by the flexibility of nondetachable subsets,
rendering it somewhat curious that—despite the conveyed flavor of a conjuring
trick—the construction can still be used to obtain concrete positive results.

The ideal (Mn) is given by (Mn) = {axn | (a = 0) ∨ (1 �∈ mn + (xn))}.

Lemma 1.1. (a) The subset m is an ideal.
(b) The ideal m is proper in the sense that 1 �∈ m.
(c) For every number n ∈ N, the following are equivalent:

(1) xn ∈ mn+1. (2) xn ∈ m. (3) 1 �∈ m + (xn). (4) 1 �∈ mn + (xn).

Proof. (a) Directed unions of ideals are ideals.
(b) Assume 1 ∈ m. Then 1 ∈ mn for some number n ≥ 0. We verify 1 = 0 by

induction over n. If n = 0, then 1 ∈ m0 = {0}. Hence 1 = 0.
If n > 0, then 1 = y + axn−1 for some elements a, y ∈ A such that y ∈ mn−1

and such that a = 0 or 1 �∈ mn−1 + (xn−1). In the first case, we have 1 =
y ∈ mn−1, hence 1 = 0 by the induction hypothesis. In the second case we
have 1 = 0 by modus ponens applied to the implication 1 �∈ mn−1 + (xn−1)
and the fact 1 ∈ mn−1+(xn−1) (which follows directly from the equation 1 =
y + axn−1).

(c) It is clear that (3) ⇒ (4) ⇒ (1) ⇒ (2). It remains to show that (2) ⇒ (3).
Assume xn ∈ m. In order to verify 1 �∈ m + (xn), assume 1 ∈ m + (xn).
Since m + (xn) ⊆ m, we have 1 ∈ m. Hence 1 = 0 by properness of m.

Corollary 1.2. (a) The ideal m is maximal in the sense that it is proper and
that for all elements x ∈ A, if 1 �∈ m + (x), then x ∈ m.

(b) The ideal m is prime in the sense that it is proper and that for all ele-
ments x, y ∈ A, if xy ∈ m and x �∈ m, then y ∈ m.

(c) The ideal m is radical in the sense that for every k ≥ 0, if xk ∈ m, then
x ∈ m.

Proof. (a) Immediate by Lemma 1.1(c).
(b) This claim is true even for arbitrary maximal ideals: By maximality, it suf-

fices to verify that 1 �∈ m+(y). If 1 ∈ m+(y), then x = x·1 ∈ (x)·m+(xy) ⊆ m
by xy ∈ m, hence x ∈ m, thus 1 = 0 by x �∈ m.

(c) Let xk ∈ m. Then 1 �∈ m + (x), for if 1 ∈ m + (x), then also 1 = 1k ∈
(m + (x))k ⊆ m + (xk) ⊆ m. Hence x ∈ m by maximality.

Remark 1.3. The ideal m is double negation stable: for every ring element x,
if ¬¬(x ∈ m), then x ∈ m. This is because by Lemma 1.1(c) membership of m is
a negative condition and ¬¬¬ϕ ⇒ ¬ϕ is a tautology of minimal logic.
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This first-order maximality condition is equivalent [9] to the following higher-
order version: For every ideal n such that 1 �∈ n, if m ⊆ n, then m = n.

The quotient A/m is a residue field in that 1 �= 0 and that every element
which is not invertible is zero—as with the real or complex numbers in construc-
tive mathematics.1 Each of the latter is in fact a Heyting field, a residue field
which also is a local ring : if a finite sum is invertible then one of the summands is.

Example 1.4. If we enumerate Z by 0, 1,−1, 2,−2, . . ., the ideal m coincides
with (2). If the enumeration starts with a prime p, the ideal m coincides with (p).

Example 1.5. If A is a local ring with group of units A×, then m = A \ A×.

Example 1.6. We can also use an arbitrary ideal a as m0 instead of the zero ideal.
All results in this section remain valid once “not ϕ” is redefined as “ϕ ⇒ 1 ∈ a”;
the resulting ideal m is then a maximal ideal above a; it is proper in the sense
that 1 ∈ m ⇒ 1 ∈ a. It can also be obtained by applying the original version of
the construction in the quotient ring A/a (which is again countable) and taking
the inverse image of the resulting ideal along the canonical projection A → A/a.

Example 1.7. Assume that A is a field. Let f ∈ A[X] be a nonconstant monic
polynomial. Since f is monic, it is not invertible; thus Example 1.6 shows that
there is a maximal ideal m above (f). Hence A[X]/m is a field in which f has a
zero, namely the equivalence class of X. Iterating this Kronecker construction, we
obtain a splitting field of f . No assumption regarding decidability of reducibility
has to be made, but in return the resulting fields are only residue fields.

If we can decide whether a finitely generated ideal contains the unit or not,
we can improve on Corollary 1.2(a). For instance this is the case for strongly
discrete rings such as the ring Z, more generally for the ring of integers of every
number field, and for polynomial rings over discrete fields [37, Theorem VIII.1.5].

Proposition 1.8. Assume that for every finitely generated ideal a ⊆ A we
have 1 �∈ a or ¬(1 �∈ a). Then:

(a) Each ideal mn is finitely generated.
(b) The ideal m is detachable.

If even 1 ∈ a or 1 �∈ a for every finitely generated ideal a ⊆ A, then:

1 Residue fields have many of the basic properties of the fields from classical mathe-
matics. For instance, minimal generating families of vector spaces over residue fields
are linearly independent, finitely generated vector spaces do (up to ¬¬) have a finite
basis, monic polynomials possess splitting fields and Noether normalization is avail-
able (the proofs in [37] can be suitably adapted). The constructively rarer geometric
fields—those kinds of fields for which every element is either invertible or zero—are
required to ensure, for instance, that kernels of matrices are finite dimensional and
that bilinear forms are diagonalizable.
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(c) The ideal m is maximal in the strong sense that for every element x ∈ A, x ∈
m or 1 ∈ m+ (x), which is to say that the quotient ring A/m is a geometric
field (every element is zero or invertible).2

Proof. We verify claim (a) by induction. The case n = 0 is clear. Let n > 0.
By the induction hypothesis, the ideal mn−1 is finitely generated, hence so
is mn−1 + (xn−1). By assumption, 1 �∈ mn−1 + (xn−1) or ¬(1 �∈ mn−1 + (xn−1)).
In the first case mn = mn−1 + (xn−1). In the second case mn = mn−1. In both
cases the ideal mn is finitely generated.

To verify claim (b), let an element xn ∈ A be given. By assumption, 1 �∈
mn + (xn) or ¬(1 �∈ mn + (xn)). Hence xn ∈ m or xn �∈ m by Lemma 1.1(c).

For claim (c), let an element xn ∈ A be given. If 1 ∈ mn + (xn), then
also 1 ∈ m + (xn). If 1 �∈ mn + (xn), then xn ∈ m by Lemma 1.1(c).

Remarkably, under the assumption of Proposition 1.8, the ideal m is detach-
able even though in general it fails to be finitely generated. Usually in construc-
tive mathematics, ideals which are not finitely generated are seldom detachable.
For instance the ideal {x ∈ Z |x = 0 ∨ ϕ} ⊆ Z is detachable if and only if
ϕ ∨ ¬ϕ.

Remark 1.9. There is an equivalent description of the maximal ideal m which
uses sets Gn of generators as proxies for the intermediate ideals mn:

G0 := ∅ Gn+1 := Gn ∪ {xn | 1 �∈ (Gn ∪ {xn})}

An induction establishes the relation (Gn) = mn; setting G :=
⋃

n∈N
Gn, the

analogue of Lemma 1.1(c) states that for every number n ∈ N, the following are
equivalent: (1) xn ∈ Gn+1. (2) xn ∈ G. (3) 1 �∈ (G) + (xn). (4) 1 �∈ (Gn) + (xn).

In particular, not only do we have that (G) = m, but G itself is already an
ideal. This description of m is in a sense more “economical” as the intermediate
stages Gn are smaller (not yet being ideals), enabling arithmetization in Sect. 3.

Remark 1.10. All results in this section carry over mutatis mutandis if A is only
assumed to be subcountable, that is, if we are only given a partially defined
surjection N ⇀⇀ A. In this case, we are given an enumeration x0, x1, . . . where
some xi might not be defined; we then define mn+1 := mn+({xn |xn is defined∧
1 �∈ mn +(xn)}). The generalization to the subcountable case is particularly use-
ful in the Russian tradition of constructive mathematics as exhibited by the effec-
tive topos [6,27,39,41], where many rings of interest are subcountable, including
uncountable ones such as the real numbers [27, Prop. 7.2].

2 This notion of a maximal ideal, together with the corresponding one of a complete
theory in propositional logic, has been generalized to the concept of a complete
coalition [53,55] for an abstract inconsistency predicate.
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2 On the Intersection of All Prime Ideals

Classically, Krull’s lemma states that the intersection of all prime ideals is the
nilradical, the ideal

√
(0) of all nilpotent elements. In our setup, we have the

following substitute concerning complements:√
(0)

c
=

⋃
p⊆A

p prime
p¬¬-stable

pc =
⋃

p⊆A
p prime
p radical

pc.

Lemma 2.1. Let x ∈ A. Then there is an ideal p ⊆ A which is

1. “x-prime” in the sense that 1 ∈ p ⇒ x ∈ √
(0) and ab ∈ p ∧ (

b ∈ p ⇒ x ∈√
(0)

)
=⇒ a ∈ p, that is, prime if the negations occurring in the definition of

“prime ideal” are understood as “ϕ ⇒ x ∈ √
(0)”,

2. “x-stable” in the sense that
(
(a ∈ p ⇒ x ∈ √

(0)) ⇒ x ∈ √
(0)

) ⇒ a ∈ p,
3. radical,
4. and such that x ∈ p if and only if x is nilpotent.

Proof. The localization A[x−1] is again countable, hence the construction of
Sect. 1 can be carried out to obtain a maximal (and hence prime) ideal m ⊆
A[x−1]. Every negation occurring in the terms “maximal ideal” and “prime ideal”
refers to 1 = 0 in A[x−1], which is equivalent to x being nilpotent.

The preimage of m under the localization homomorphism A → A[x−1] is the
desired x-prime ideal.

Corollary 2.2 (Krull [33]). Let x ∈ A be an element which is not nilpotent.
Then there is a (radical and ¬¬-stable) prime ideal p ⊆ A such that x �∈ p.

Proof. Because x is not nilpotent, the notion of an x-prime ideal and an ordinary
prime ideal coincide. Hence the claim follows from Lemma 2.1.

An important part of constructive algebra is to devise tools to import proofs
from classical commutative algebra into the constructive setting.3 The following
two statements are established test cases exploring the power of such tools [4,
14,15,40,42,45,50–52,56].

Proposition 2.3. Let f ∈ A[X] be a polynomial.

1. If f is nilpotent in A[X], then all coefficients of f are nilpotent in A.
2. If f is invertible in A[X], then all nonconstant coefficients of f are nilpotent.

These facts have abstract classical proofs employing Krull’s lemma as follows.
3 Forms of Zorn’s Lemma similar to Krull’s Lemma feature prominently in algebra; to

wit, in ordered algebra there are the Artin–Schreier theorem for fields, Levi’s theorem
for Abelian groups and Ribenboim’s extension to modules. Dynamical algebra aside,
to which we will come back later, these statements have recently gained attention
from the angle of proof theory at large; see, for example, [11,43,46–48,57,66,67].
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Proof of 1. Simple induction if A is reduced; the general case reduces to this one:
For every prime ideal p, the coefficients of f vanish over the reduced ring A/p.
Hence they are contained in all prime ideals and are thereby nilpotent.

Proof of 2. Simple induction if A is an integral domain; the general case reduces
to this one: For every prime ideal p, the nonconstant coefficients of f vanish over
the integral domain A/p. Hence they are contained in all prime ideals and are
thereby nilpotent.

Both statements admit direct computational proofs which do not refer to
prime ideals; the challenge is not to find such proofs, but rather to imitate
the two classical proofs above constructively, staying as close as possible to the
original. It is remarkable that the construction of Sect. 1 meets this challenge
at all, outlined as follows, despite its fundamental reliance on nondetachable
subsets.

We continue assuming that A is countable: Sect. 4 indicates how this assump-
tion can be dropped in quite general situations, while for the purposes of specific
challenges such as Proposition 2.3 we could also simply pass to the countable
subring generated by the polynomial coefficients or employ the method of inde-
terminate coefficients.

Proof (of Proposition 2.3). The first claim follows from a simple induction if A
is a reduced ring. In the general case, write f = anXn + an−1X

n−1 + · · · + a0.
Let p be a radical an-prime ideal as in Lemma 2.1. Since A/p is reduced, the
nilpotent coefficient an vanishes over A/p. Thus an ∈ p, hence an is nilpotent.
Since the polynomial f −anXn is again nilpotent, we can continue by induction.

The second claim follows by a simple inductive argument if A is an integral
domain with double negation stable equality. In the general case, write f =
anXn + · · · + a0 and assume n ≥ 1. To reduce to the integral situation, let p be
an an-prime ideal as in Lemma 2.1. With negation “¬ϕ” understood as “ϕ ⇒
an ∈ √

(0)”, the quotient ring A/p is an integral domain with double negation
stable equality. Hence an = 0 in A/p, so an ∈ p whereby an is nilpotent. The
polynomial f − anXn is again invertible in A[X] (since the group of units is
closed under adding nilpotent elements) so that we can continue by induction.

Just as Corollary 2.2 is a constructive substitute for the recognition of the
intersection of all prime ideals as the nilradical, the following proposition is a
substitute for the classical fact that the intersection of all maximal ideals is the
Jacobson radical. As is customary in constructive algebra [34, Section IX.1], by
Jacobson radical we mean the ideal {x ∈ A | ∀y ∈ A. 1 − xy ∈ A×}.

Proposition 2.4. Let x ∈ A. If x is apart from the Jacobson radical (that
is, 1 − xy �∈ A× for some element y), then there is a maximal ideal m such
that x �∈ m.

Proof. The standard proof as in [34, Lemma IX.1.1] applies: There is an ele-
ment y such that 1 − xy is not invertible. By Example 1.6, there is an ideal m
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above a := (1 − xy) which is maximal not only as an ideal of A/a (where “¬ϕ”
means “ϕ ⇒ 1 ∈ a”) but also as an ideal of A (where “¬ϕ” means “ϕ ⇒ 1 = 0”).
If x ∈ m, then 1 = (1 − xy) + xy ∈ m; hence x �∈ m.

The two test cases presented in Proposition 2.3 only concern prime ideals. In
contrast, the following example crucially rests on the maximality of the ideal m.

Proposition 2.5. Let M ∈ An×m be a matrix with more rows than columns.
Assume that the induced linear map Am → An is surjective. Then 1 = 0.

Proof. By passing to the quotient A/m, we may assume that A is a residue field.
In this case the claim is standard linear algebra: If any of the matrix entries
is invertible, the matrix could be transformed by elementary row and column
operations to a matrix of the form

(
1 0
0 M ′

)
, where the induced linear map of the

submatrix M ′ is again surjective. Thus 1 = 0 by induction.
Hence by the residue field property all matrix entries are zero. But the vector

(1, 0, . . . , 0) ∈ An still belongs to the range of M = 0, hence 1 = 0 by n > 0.

Remark 2.6. A more significant case study is Suslin’s lemma, the fundamen-
tal and originally non-constructive ingredient in his second solution of Serre’s
problem [61]. The classical proof, concisely recalled in Yengui’s constructive
account [68], reduces modulo maximal ideals. The construction of Sect. 1 offers
a constructive substitute. However, since gcd computations are required in the
quotient rings, it is not enough that they are residue fields; they need to be
geometric fields. Hence our approach has to be combined with the technique
variously known as Friedman’s trick, nontrivial exit continuation or baby version
of Barr’s theorem in order to yield a constructive proof [5,10,21,38].

3 In Heyting Arithmetic

The construction presented in Sect. 1 crucially rests on the flexibility of nonde-
tachable subsets: In absence of additional assumptions as in Proposition 1.8, we
cannot give the ideals mn by decidable predicates A → {0, 1}—without addi-
tional hypotheses on A, membership of the ideals mn is not decidable. As such,
the construction is naturally formalized in intuitionistic set theories such as czf
or izf, which natively support such flexible subsets.

In this section, we explain how with some more care, the construction can
also be carried out in much weaker foundations such as Heyting arithmetic ha.
While formulation in classical Peano arithmetic pa is routine, the development
in ha crucially rests on a specific feature of the construction, namely that the
condition for membership is a negative condition.

To set the stage, we specify what we mean by a ring in the context of arith-
metic. One option would be to decree that an arithmetized ring should be a
single natural number coding a finite set of ring elements and the graphs of the
corresponding ring operations; however, this perspective is too narrow, as we
also want to work with infinite rings.
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Instead, an arithmetized ring should be given by a “formulaic setoid with
ring structure”, that is: by a formula A(n) with free variable n, singling out
which natural numbers constitute representatives of the ring elements; by a
formula E(n,m) describing which representatives are deemed equivalent; by
a formula Z(n) singling out representatives of the zero element; by a for-
mula P (n,m, s) singling out representatives s of sums; and so on with the
remaining data constituting a ring; such that axioms such as

∀n.Z(n) ⇒ A(n) “every zero representative belongs to the ring”

∃n.Z(n) “there is a zero representative”

∀n,m.Z(n) ∧ Z(m) =⇒ E(n,m) “every two zero representatives are equivalent”

∀z, n. Z(z) ∧ A(n) =⇒ P (z, n, n) “zero is neutral with respect to addition”

hold. This conception of arithmetized rings deviates from the usual definition in
reverse mathematics [60, Definition III.5.1] to support quotients even when ha
cannot verify the existence of canonical representatives of equivalence classes.

Although first-order arithmetic cannot quantify over ideals of arithmetized
rings, specific ideals can be given by formulas I(n) such that axioms such as

∀n. I(n) ⇒ A(n) “I ⊆ A”
∃n. Z(n) ∧ I(n) “0 ∈ I”

hold. It is in this sense that we are striving to adapt the construction of Sect. 1
to describe a maximal ideal.

In this context, we can arithmetically imitate any set-theoretic description
of a single ideal as a subset cut out by an explicit first-order formula. How-
ever, for recursively defined families of ideals, we require a suitable recursion
theorem: If we are given (individual formulas Mn(x) indexed by numerals repre-
senting) ideals m0,m1,m2, . . ., we cannot generally form

⋃
n∈N

mn, as the naive
formula “

∨
n∈N

Mn(x)” representing their union would have infinite length. We
can take the union only if the family is uniformly represented by a single for-
mula M(n, x) (expressing that x represents an element of mn).

This restriction is a blocking issue for arithmetizing the construction of the
chain m0 ⊆ m1 ⊆ · · · of Sect. 1. Because mn occurs in the definition of mn+1 in
negative position, naive arithmetization results in formulas of unbounded logical
complexity, suggesting that a uniform definition might not be possible.

This issue has a counterpart in type-theoretic foundations of mathematics,
where the family (mn)n∈N cannot be given as an inductive family (failing the
positivity check), and is also noted, though not resolved, in related work [24,
p. 11]. The issue does not arise in the context of pa, where the law of excluded
middle allows us to bound the logical complexity: We can blithely define the joint
indicator function g(n, i) for the sets Gn (such that Gn = {xi | i ∈ N, g(n, i) = 1})
of Remark 1.9 by the recursion

g(0, i) = 0

g(n + 1, i) =

{
1, if g(n, i) = 1 ∨ (i = n ∧ 1 �∈ (g(n, 0)x0, . . . , g(n, n − 1)xn−1, xn))

0, else.
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This recursion can be carried out within pa since the recursive step only refer-
ences the finitely many values g(n, 0), . . . , g(n, i). Heyting arithmetic, however,
does not support this case distinction. The formalization of the construction
in ha is only unlocked by the following direct characterization.

Lemma 3.1 (In the situation of Remark 1.9). For every finite binary
sequence v = [v0, . . . , vn−1], set av := (v0x0, . . . , vn−1xn−1, xn). Then:

1. For every such sequence v = [v0, . . . , vn−1], if
∧n−1

i=0 (vi = 1 ⇔ 1 �∈
a[v0,...,vi−1]), then av = (Gn) + (xn). In particular, in this case xn ∈ G if
and only if 1 �∈ av.

2. For every natural number n ∈ N,

xn ∈ G ⇐⇒ ¬∃v ∈ {0, 1}n. 1 ∈ av ∧
n−1∧
i=0

(vi = 1 ⇔ 1 �∈ a[v0,...,vi−1]).

Proof. The first part is by induction, employing the equivalences of Remark 1.9.
The second rests on the tautology ¬α ⇐⇒ ¬(α ∧ (ϕ ∨ ¬ϕ)):

xn ∈ G ⇐⇒ ¬(
1 ∈ (Gn) + (xn)

) ⇐⇒ ¬(
1 ∈ (Gn) + (xn) ∧

n−1∧
i=0

(xi ∈ G ∨ xi �∈ G)
)

⇐⇒ ¬∃v ∈ {0, 1}n.
(
1 ∈ (Gn) + (xn) ∧

n−1∧
i=0

(vi = 1 ⇔ xi ∈ G)
)

⇐⇒ ¬∃v ∈ {0, 1}n.
(
1 ∈ av ∧

n−1∧
i=0

(vi = 1 ⇔ 1 �∈ a[v0,...,vi−1])
)

Condition (2) is manifestly formalizable in arithmetic, uniformly in n.

4 For General Rings

The construction in Sect. 1 of a maximal ideal applies to countable rings. In
absence of the axiom of choice, some restriction on the rings is required, as
it is well-known that the statement that any nontrivial ring has a maximal
ideal implies (over Zermelo–Fraenkel set theory zf) the axiom of choice
[3,19,25,26,58].

However, this limitation only pertains to the abstract existence of maxi-
mal ideals, not to concrete consequences of their existence. Mathematical logic
teaches us by way of diverse examples to not conflate these two concerns. For
instance, although zf does not prove the axiom of choice, it does prove every
theorem of zfc pertaining only to natural numbers (by interpreting a given zfc-
proof in the constructible universe L and exploiting that the natural numbers are
absolute between V and L [22,49]); similarly, although intuitionistic Zermelo–
Fraenkel set theory izf does not prove the law of excluded middle, it does prove
every Π0

2-theorem of zf (by the double negation translation combined with Fried-
man’s continuation trick [20]). A similar phenomenon concerns countability, as
follows.
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A Metatheorem by Joyal and Tierney. Set theory teaches us that whether
a given set is countable depends not only on the set itself, but is more aptly
regarded as a property of the ambient universe [23]: Given any set M , there
is a (non-Boolean) extension of the universe in which M becomes countable.
Remarkably, the passage to such an extension preserves and reflects first-order
logic. Hence we have the metatheorem that countability assumptions from intu-
itionistic proofs of first-order statements can always be mechanically eliminated.4

Crucially, the first-order restriction is only on the form of the statements, not
on the form of the proofs. These may freely employ higher-order constructs.

“First-order” statements are statements which only refer to elements, not
to subsets; for instance, the statements of Proposition 2.3 are first-order and
hence also hold without the countability assumption. In contrast, the statement
“there is a maximal ideal” is a higher-order statement; hence we cannot eliminate
countability assumptions from proofs of this statement.

The metatheorem expands the applicability of the construction of Sect. 1
and underscores the value of its intuitionistic analysis—the metatheorem cannot
be applied to eliminate countability assumptions from classical proofs. Taken
together, they strengthen the view of maximal ideals as convenient fictions [54,
Sect. 1]. Maximal ideals can carry out their work by any of the following possi-
bilities: (1) For countable (or well-founded) rings, no help is required. Section 1
presents an explicit construction of a maximal ideal. (2) For arbitrary rings, the
existence of a maximal ideal follows from the axiom of choice. (3) Intuitionistic
first-order consequences of the existence of a maximal ideal are true even if no
actual maximal ideal can be constructed.

Comparison with Dynamical Algebra. The dynamical approach [34,
Sect. XV.6], [15,18,69] is another technique for constructively reinterpreting,
without countability assumptions, classical proofs involving maximal ideals. We
sketch here how the dynamical approach is intimately connected with the tech-
nique of this section, even though it is cast in entirely different language.

4 For every set M , there is a certain locale X (the classifying locale of enumerations
of M) which is overt, positive and such that its constant sheaf M is countable in
the sense of the internal language of the topos of sheaves over X. A given intuition-
istic proof can then be interpreted in this topos [13,35,59]; since the constant sheaf
functor preserves first-order logic (by overtness), the sheaf M inherits any first-order
assumptions about M required by the proof; and since it also reflects first-order logic
(by overtness and positivity), the proof’s conclusion descends to M .

When we apply the construction of Sect. 1 internally in this topos, the result
will be a certain sheaf of ideals; it is in that sense that every ring constructively
possesses a maximal ideal. This sheaf will not be constant, hence not originate from
an actual ideal of the given ring; but first-order consequences of the existence of this
sheaf of ideals pass down to the ring. Details are provided by Joyal and Tierney [31,
pp. 36f.], and introductions to pointfree topology and topos theory can be found
in [10,30,63,64]. A predicative account on the basis of [16,36,65] is also possible. The
phenomenon that size is relative also emerges in the Löwenheim–Skolem theorem.
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Suppose that a given classical proof appeals to the maximality condition
“x ∈ m or 1 ∈ m + (x)” (“x is zero modulo m or invertible modulo m”) only for
a finite number x0, . . . , xn−1 of ring elements fixed beforehand. In this case we
can, even if no enumeration of all elements of A exists or is available, apply the
construction in Sect. 1 to this finite enumeration and use the resulting ideal mn

as a partial substitute for an intangible maximal ideal.
The tools from pointfree topology driving Joyal and Tierney’s metatheorem

widen the applicability of this partial substitute to cases where the inspected
ring elements are not fixed beforehand, by dynamically growing the partial enu-
meration as the proof runs its course. If required, a continuation-passing style
transform as in Remark 2.6 can upgrade the maximal ideal from only satisfy-
ing “1 �∈ m + (x) implies x ∈ m” to satisfying the stronger condition “x ∈ m
or 1 ∈ m + (x)”. Unfolding the construction of m and the proof of Joyal and
Tierney’s metatheorem, we arrive at the dynamical method.
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Abstract. Various open problems have been recently solved using Ordi-
nary Differential Equation (ODE) programming: basically, ODEs are
used to implement various algorithms, including simulation over the con-
tinuum of discrete models such as Turing machines, or simulation of dis-
crete time algorithms working over continuous variables. Applications
include: Characterization of computability and complexity classes using
ODEs [1–4]; Proof of the existence of a universal (in the sense of Rubel)
ODE [5]; Proof of the strong Turing completeness of biochemical reac-
tions [6], or more generally various statements about the completeness
of reachability problems (e.g. PTIME-completeness of bounded reacha-
bility) for ODEs [7].

It is rather pleasant to explain how this ODE programming technol-
ogy can be used in many contexts, as ODEs are in practice a kind of
universal language used by many experimental sciences, and how conse-
quently we got to these various applications.

However, when going to say more about proofs, their authors including
ourselves, often feel frustrated: Currently, the proofs are mostly based on
technical lemmas and constructions done with ODEs, often mixing both
the ideas behind these constructions, with numerical analysis consider-
ations about errors and error propagation in the equations. We believe
this is one factor hampering a more widespread use of this technology in
other contexts.

The current article is born from an attempt to popularize this ODE
programming technology to a more general public, and in particular mas-
ter and even undergraduate students. We show how some constructions
can be reformulated using some notations, that can be seen as a pseudo
programming language. This provides a way to explain in an easier and
modular way the main intuitions behind some of the constructions, focus-
ing on the algorithm design part. We focus here, as an example, on how
the proof of the universality of polynomial ODEs (a result due to [8],
and fully developed in [2]) can be reformulated and presented.

1 Introduction

It has been understood quite recently that it is possible to program with Ordi-
nary Differential Equations (ODEs). This actually was obtained as a side effect
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Berger et al. (Eds.): CiE 2022, LNCS 13359, pp. 39–51, 2022.
https://doi.org/10.1007/978-3-031-08740-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08740-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-08740-0_4


40 O. Bournez

from attempts to relate the computational power of analog computational mod-
els to classical computability. Refer to [9–11] for surveys on analog computa-
tion with a point of view based on computation theory aspects, or to [12–14]
for surveys discussing historical and technological aspects. In particular, sev-
eral authors revisited the General Purpose Analog Computer (GPAC) model of
Shannon [15]. Following [16], this model can essentially be abstracted as corre-
sponding to (vectorial) polynomial ordinary differential equations: That is to say,
as dynamics over R

d corresponding to solutions of ODEs of the form y′ = p(y)
where y(t) ∈ R

d is some function of time, and p : Rd → R
d is (componentwise)

polynomial, and d is some integer. If some initial condition is added, this is also
called a polynomial Initial Value Problems (pIVP).

We do not intend to repeat here the full story, but in short, two main notions
of computations by pIVP have been introduced: the notion of GPAC-generated
function, corresponding to the initial notion from Shannon in [15], and the notion
of GPAC-computable function. This latter notion of computability is now known
to be equivalent to classical computability [17]. It is also possible to talk about
complexity theory in such models: It has been established that this is indeed
possible, if measuring time of computation as the length of the solution [7]. This
has been recently extended to space complexity in [18], or to exponential time
and the Grzegorczyk hierarchy [19].

All these statements have been obtained by realizing that continuous time
processes defined by ODEs, and even defined by polynomial ODEs, can simulate
various discrete time processes. They hence can be used to simulate models such
as Turing machines [2,20], and even some more exotic models working with a
discrete time but over continuous data. This is based on various refinements of
constructions done in [1–4,20]. We call this ODE programming, as this is indeed
some kind of programing with various continuous constructions.

Forgetting analog machines or models of computation, it is important to real-
ize that ODEs is a kind of universal language of mathematics that is used in
many, if not all, experimental sciences: Physics, Biology, Chemistry, . . . . Conse-
quently, once it is known that one can program with ODEs, many questions ask-
ing about universality, or computations, in experimental contexts can be solved.
This is exactly what has been done by several authors, including ourselves, to
solve various open problems, in various contexts such as applied maths, com-
puter algebra, biocomputing. . . We do not intend here to be exhaustive about
various applications, but we describe some of them.

Some Applications of ODE Programming

– Implicit complexity: computability Concepts such as being computable
for a function over the reals (in the sense of computable analysis) can be
described using ODEs only, i.e., with concepts from analysis only, and no-
reference to computational models such as Turing machines.

Theorem 1 ([17]). Let a and b be computable reals. A function f : [a, b] → R is
computable in the sense of computable analysis iff there exist some polynomials
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with rational coefficients p : R
n+1 → R

n, some polynomial p0 : R → R with
rational coefficients, and n − 1 computable real values α1, ..., αn−1 such that:

1. (y1, ..., yn) is the solution of the initial value problem1 y′ = p(y, t) with initial
condition (α1, ..., αn−1, p0(x)) set at time t0 = 0

2. There are i, j ∈ {1, ..., n} such that limt→∞ yj(t) = 0 and |f(x)−yi(t)| ≤ yj(t)
for all x ∈ [a, b] and all t ∈ [0,+∞).

Condition 2. basically says that some component, namely yi is converging over
time t toward f(x), with error given by some other component, namely yj(t).

– Robust complexity theory for continuous-time systems: Defining a
robust time complexity notion for continuous time systems was a well-known
open problem [10], with several attempts, but with no generic solution pro-
vided. In short, the difficulty is that the naive idea of using the time variable
of the ODE as a measure of “time complexity” is problematic, since time
can be arbitrarily contracted in a continuous system due to the “Zeno phe-
nomena”. This was solved by establishing that the length of the solutions
for pODEs provides a robust complexity, that corresponds to classical com-
plexity [7]. This also provides some implicit characterization of PTIME, and
completeness of bounded time reachability.

– Characterization of other computability and complexity classes:
This has been extended very recently to space complexity, with a characteri-
zation of PSPACE in [18], and of EXPTIME in [19], and to the Grzegorczyk
hierarchy [4].

– A universal ordinary differential equation: Following [21], there exists
a fixed non-trivial fourth-order polynomial differential algebraic equation
(DAE) p(y, y′, . . . , yd) = 0 such that for any continuous positive function ϕ
on the reals, and for any continuous positive function ε(t), it has a C∞ solu-
tion with |y(t) − ϕ(t)| < ε(t) for all t. The question whether one can require
the solution that approximates ϕ to be the unique solution for a given initial
data was a well-known open problem [21, page 2], [22, Conjecture 6.2]. It has
been solved using ODE programming.

Theorem 2 ([5], Universal PIVP). There exists a fixed polynomial vector p
in d variables with rational coefficients such that for any functions f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ R

d such that there exists a unique solution
y : R → R

d to y(0) = α, y′ = p(y). Furthermore, this solution satisfies that
|y1(t) − f(t)| � ε(t) for all t ∈ R.

– Strong Turing completeness of biochemical reactions: Ordinary dif-
ferential equations are a well-used models for modeling the dynamics of the
kinetic of reactions, and in particular of biochemical reactions between pro-
teins. Their Turing completeness was an open problem (see e.g. [23, Section 8])
solved in [6] using ODE programming.

1 We suppose that y(t) is defined for all t ≥ 0. This condition is not necessarily satisfied
for all polynomial ODEs, and we restrict our attention only to ODEs satisfying this
condition.
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However, one difficulty when one wants to present ideas of the proofs, is that
currently the proofs are based on technical lemmas and constructions done with
ODEs, often mixing both the ideas behind these constructions, with numerical
analysis considerations about errors and error propagation in the equations. We
believe this is one factor hampering a more widespread use of this technology in
other contexts. This is also clearly a difficulty for newcomers in the field.

The current document is a preliminary step towards solving this, by present-
ing through an example a pseudo-programming language. Actually, this docu-
ment follows from an attempt to popularize this ODE programming technology
to a more general public, and in particular master and even undergraduate stu-
dents. We show how some constructions can be reformulated using some nota-
tions, that can be seen as a pseudo programming language. This provides a way
to explain in an easier and modular way the main intuitions behind some of the
constructions, focusing on the algorithm design part.

From our experiments, it can be done more generally for all of the construc-
tions of the references above. By lack of space, we only take an example, namely
the main result of [8], fully developed in [2], establishing the universality of
ODEs. We agree that for experts, this might be, or it is, at the end the same
proofs, but we believe, that presented that way, with this pseudo-programming
language the intuition is easier to grasp for newcomers. One motivation of pop-
ularizing ODE programming is that this may then help to solve other various
problems in particular in experimental sciences.

We also believe that this example is good to make our reader feel what ODE
programming is at the end, and the kind of techniques that are used in all the
mentioned references to establish all these results.

2 Computing with pIVPs

Proving a result such as Theorem 1, is done in one direction by simulating some
Turing machine using some pIVP. The purpose in this section is to provide the
intuition on how this is indeed possible to do so. We believe this provides a good
intuition on how this is possible to program with ODEs, and more generally
solve various discrete problems in some continuous way.

Remark 1. The other direction of the theorem, that we will not discuss in this
article, is obtained by proving that one can solve the involved ordinary differen-
tial equations by some numerical method, and hence a Turing machine. Notice
that this is not as obvious as it may seem: All the ordinary differential equations
cannot be solved easily (see famous counterexample [24]), and we use the fact
that we restrict to some particular (polynomial) ordinary differential equations:
See for example [25] for some conditions and methods to guarantee effectivity
for more general ordinary differential equations.

Remark 2. Notice that our example of simulation of a Turing machine by an
ordinary differential equation may be however misleading, as it may be thought
that, as Turing machines are universal for classical computability, this is the
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end of the story. But, actually some results (e.g. Theorem 2) are obtained by
simulating a discrete time model not directly covered by classical computability,
as working over continuous variables. Understanding the suitable underlying
models is a fascinating question from our point of view, which remains to be
fully explored and understood.

2.1 Discrete Time Computations

Encoding a Turing Machine Configuration with a Triplet. Consider
without loss of generality some Turing machine M using the ten symbols
0, 1, . . . , 9, where B = 0 is the blank symbol. Let . . . BBBa−ka−k+1 . . . a−1a0

a1 . . . anBBB. . . . denotes the content of the tape of the Turing machine M . In
this representation, the head is in front of symbol a0, and ai ∈ {1, . . . , 9} for all
i. Suppose that M has m internal states, corresponding to integers 1 to m. Such
a configuration C can be encoded by some element γ(C) = (y1, y2, q) ∈ N

3, by
taking

y1 = a0 + a110 + · · · + an10n,

y2 = a−1 + a−210 + · · · + a−k10k−1,

and where q denotes the internal state of M .
Let θ : N

3 → N
3 be the transition function of M : Function θ maps the

encoding γ(C) of a configuration C to the encoding γ(Cnext) of its successor
configuration.

Determining Next Configuration. Next step is to observe that one can
construct some function f : R3 → R

3 that realizes some analytic extension of θ:
i.e. that coincides with θ on N

3. To do so, the problems to solve are the following:

1. Determine the symbol being read. The symbol a0 in front of the head of
the machine is given by a0 = mod 10(y1), where mod 10(n) is the remain-
der of the division of integer n by 10. Since we want to consider some analytic
functions, we can instead consider

a0 = ω(y1), (1)

where ω is some analytic extension of mod 10. For example, it can be taken
of the form

ω(x) = a0 + a5 cos(πx) +

⎛
⎝

4∑
j=1

aj cos
(

jπx

5

)
+ bj sin

(
jπx

5

)⎞
⎠ , (2)

where a0, . . . , a4, b1, . . . , b4 are some (computable) coefficients that can be
obtained by solving some system of linear equations: write ω(i) = i, for
i = 0, 1, ..., 9.
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2. Determine the next state. The function that returns the next state can be
defined by a Lagrange interpolation polynomial as follows: Let y = ω(y1) = a0

be the symbol being currently read and q the current state. Take

qnext =
9∑

i=0

m∑
j=1

⎛
⎝

9∏
r=0,r �=i

(y − r)
(i − r)

⎞
⎠

⎛
⎝

m∏
s=1,s �=j

(q − s)
(j − s)

⎞
⎠ qi,j , (3)

where qi,j is the state that follows symbol i and state j.
3. Determine the symbol to be written on the tape. The symbol to be

written, snext, can be obtained by some similar interpolation polynomial.
4. Determine the direction of the move for the head. Let h denote

the direction of the move of the head, where h = 0 denotes a move to the
left, h = 1 denotes a “no move”, and h = 2 denotes a move to the right.
Then, again, the “next move” hnext can be obtained by some interpolation
polynomial.

5. Update the tape contents. Define functions P1, P2, P3, that provides
the tape contents after the head moves left, does not move, or moves right,
respectively. Then, the next value of y, denoted by ynext

1 , can be obtained by

ynext
1 = P1

(1 − H)(2 − H)
2

+ P2H(2 − H) + P3
H(H − 1)

2
, (4)

With P1 = 10 (y1 + snext − y) + ω (y2), P2 = y1 + snext − y and P3 = y1−y
10 ,

where H = h is the direction of the move given by previous item, and still
y = ω(y1) = a0. We can do something similar to get ynext

2 .

Consequently, it is sufficient to take f
(
y1, y2, q

)
= (ynext

1 , ynext
2 , qnext).

It follows that if one succeeds to repeat in a loop the instruction

x ← f
(
x
)
,

where ← denotes an assignment, that is to say replacing the value of x by f (x),
one will simulate Turing machine M : starting from x(0) = γ(C0), encoding the
initial configuration of the Turing machine M , then x(t) will be γ(C(t)), where
C(t) is the configuration of the machine at time t.

2.2 Computations with a Continuous Time

Write instruction1; instruction2 to denote the fact of doing first instruction1

and then instruction2. Actually, if we succeed to repeat in a loop x2 ←
f (x) ;x ← x2 that would be sufficient: We will do the same, but two times
slower, in the sense that starting from x(0) = γ(C0), then now x(2t) will be
γ(C(t)). If we want to preserve speed, it would be sufficient to repeat in a loop

x2 ←1/2 f (x);x ←1/2 x2 (5)
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when x ←1/2 y means an assignment done in time 1/2, i.e. doing x(t+ 1
2 ) = y(t)

if executed at time t. That way, x(t) will still be γ(C(t)).
To do so with ODEs, one needs to be able to do this operation ←1/2. A

construction, due to Branicky in [20], is based on the following remark: One
can construct some ODE that does some assignment, and even this particular
assignment. More precisely, if one takes some ODE of the form

y′ = c(g − y)3φ(t), (6)

where c is some real constant, one can check by some simple arguments from
analysis, that whatever the value of y(0) is, the solution will converge very fast
to g. Even uniformly, in the sense that for any function φ(t) of positive integral,
for any precision ε > 0, real constant c > 0 can be fixed sufficient big, such
that for any y(0), it is certain that y(12 ) is at a distance less than ε of g. In
other words, looking what is written in italic like this, this essentially means
realizing the equivalent of assignment y ←1/2 g (possibly with some error, but
less than ε).

Remark 3 (Notation). In order to help, we use the following notation: we write
y ←1/2 g

ε

′ for c(g − y)3φ(t) with the real constant c associated to that ε.
Consequently, writing ODE

y′ = y ←1/2 g
ε

′

is the same as dynamics (6), i.e. some ODE doing y ←1/2 g with an error less
than ε.

The intuition about these notations is that operation is about a function

doing some exact operation, whereas operation is about some function that is
intending to do something similar, but possibly introducing some errors.

Once we understand this, we can solve our problem: Consider a function r
that does some rounding componentwise, say on every component r(x) = j for
x ∈ [j − 1/4, j + 1/4], for j ∈ Z. We will use some function θ(u) that we will
also write when u ≥ 0 . Observing that sin(2πt) is alternatively positive and
negative, and of period 1, we consider dynamic:

⎧⎪⎨
⎪⎩

x′ = when − sin(2πt) ≥ 0 · x ←1/2 r(x2)
1/4

′

x′
2 = when sin(2πt) ≥ 0 · x2 ←1/2 f

(
r(x)

)
1/4

′ (7)

with x1(0) = x2(0) = x0.
Written in another way, this is the dynamic:

{
x′ = c1(r(x2) − x)3θ(− sin(2πt))
x′
2 = c2( f (r(x)) − x2)3θ(sin(2πt)) (8)
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We select the function θ(x) = when x ≥ 0 so that it is 0 for x ≤ 0, and
positive for x > 0 (say x2 for x > 0). The idea is that sin(2πt) is alternatively
positive for t ∈ [j, j + 1/2], then negative for t ∈ [j + 1/2, j] when t increases,
where t is some integer. Consequently, θ(sin(2πt)) is alternatively positive and
null. Consequently, x′

2 alternates between the right hand side of ODE (6) with
g = f (r(x)) (for some function φ) and exactly 0. In other words, alternatively

x2 evolves in order to do x2 ←1/2 f (r(x)), then stay fixed, and this process is
repeated for ever.

In a symmetric way, x′ alternates between exactly 0 and exactly the right
hand side of ODE (6) with g = r(x2) (for some function φ). In other words, x
evolves between instants where it is fixed, and where one does x ←1/2 r(x2)).

Clearly, if one starts from a point x0 with integer coefficients, and since f
preserves the integers, this will do exactly what intended, that is to say repeat
in a loop (5): In order to get this working, it is sufficient to consider ε < 1/4 and
select c1 and c2 sufficiently big, by the property of the ODE (6) above.

Indeed, each time t multiple of 1/2 is starting to do some assignment of
type y ←1/2 r(g). Actually, this does not do this exactly: y is not set to the
precise value r(g) at next multiple of 1

2 , but with these hypotheses, we (by a
simple induction) are always in the case where we know that r(g) has integer
coordinates, and since ε < 1/4, r(y) will indeed be the correct integer after time
1
2 . In other words, by recurrence, if we consider r(x) and r(x2) at some time
multiple of 1

2 , this does exactly the same as repeating in a loop (5).
This works perfectly fine, and provides a way to simulate some Turing

machine by some ODE, and more generally the iterations of some functions
over the integers.

However, we want a stronger property: we want to simulate some Turing
machine by some analytic dynamic. We know from the theory of analytic func-
tions, that some analytic function that is constant in some interval is necessarily
constant. Consequently, our functions θ and r above cannot be analytic.

The idea is then to replace ideal when u ≥ 0 by when u ≥ 0
ε′ that would

approximate the first.

2.3 Some Useful Functions to Correct Errors

A function such as σ(x) = x − 0.2 sin(2πx) is a contraction on the vicinity of
integers:

Lemma 1. Let n ∈ Z, and let ε ∈ [0, 1/2). Then there is some contracting factor
λε ∈ (0, 1) such that ∀δ ∈ [−ε, ε], |σ(n + δ) − n| < λεδ.

This function can be used to do some static error correction. To help read-
ability, we will also write x for σ(x). We will also write x

[n]
for σ[n](x), i.e.

n fold composition of function σ. We do so, as when x is close to some integer,
these values are basically close to x: Just ignore rounded corners in our notations
for intuition.
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It is also possible to do some dynamic error correction: We construct a func-
tion ↪→ {0, 1} . It takes two arguments, a and y, and its value, that we will

write a ↪→ {0, 1}
y
, values a with error at most 1/y when a is close to a, with

a ∈ {0, 1} and we have some positive y > 0. Formally:

Lemma 2 ([2, Lemma 4.2.5]). One can create ↪→ {0, 1} : R2 → R such that
for all y > 0, and for all a ∈ R, as soon as |a − a| ≤ 1/4 with a ∈ {0, 1}, then
a ↪→ {0, 1}

y
∈

]
a − 1

y , a + 1
y

[
.

Proof. Consider x ↪→ {0, 1}
y

= 1
π arctan(4y(x − 1/2)) + 1

2 , and observe that∣∣π
2 − arctan x

∣∣ < 1
x for x ∈ (0,∞) and

∣∣π
2 + arctan x

∣∣ < 1
|x| for x ∈ (−∞, 0).

In x ↪→ {0, 1}
y
, the argument x is expected to take essentially only two

values. We can construct a version with 3 values, namely 0, 1 and 2.

Lemma 3 ([2, Lemma 4.2.7]). Fix ε > 0. One can create ↪→ {0, 1, 2} : R2 → R

such that for all y ≥ 2, and for all a ∈ R, as soon as |a−a| ≤ ε with a ∈ {0, 1, 2},
then a ↪→ {0, 1, 2}

y
∈

]
a − 1

y , a + 1
y

[
.

Proof. Take
(

x
[d+1]

− 1
)2

↪→ {0, 1}
3y

·
(

2 · x
[d]

/2 ↪→ {0, 1}
3y

− 1

)
+ 1,

where d = 0 if ε ≤ 1/4 and d = 	− log(4ε)/ log λε
 otherwise.

2.4 And Hence, How to so with Analytic Functions?

We would like to do some dynamic close to the one of (7), but using only analytic
functions. We intend to replace φ(t) = θ(sin 2πt) = when sin 2πt ≥ 0 in the
dynamic ζ(t), by some analytic function ζ : R → R.

An idea to get such a function is to consider ζε(t) = ϑ(t) ↪→ {0, 1}
1/ε

,

with ϑ(t) = 1
2

(
sin2(2πt) + sin(2πt)

)
. Using the notation when u ≥ 0

1/ε
=

u ↪→ {0, 1}
1/ε

, we can also write ζε(t) = when ϑ(t) ≥ 0
1/ε

.

We would then like to replace dynamic (7) by something like
⎧⎨
⎩

x′ = when ϑ(−t) ≥ 0
1/ε

· x ←1/2 r(x2)
ε

′

x′
2 = when ϑ(t) ≥ 0

1/ε
· x2 ←1/2 f (r(x))

ε

′ (9)

We however still need to get rid of functions r(r) doing some exact rounding,
that cannot be analytic. The ideas is to consider that σ[n](x) = x

[n]
does the

job, if integer n is big enough, and if f commits an error that remains small
and uniform, in the vicinity of integers.
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How to Control Errors on f? We basically replace f by some function f
that is built exactly with the same ideas, but keeping errors under control.

Theorem 3 ([2, Theorem 4.4.1]). Let θ : N3 → N
3 be the transition function of

some Turing machine. Then, given 0 ≤ ε < 1/2, θ has some analytic expansion
f : R3 → R

3 such that

‖(y1, y2, q) − (y1, y2, q)‖ ≤ ε ⇒
∥∥∥θ(y1, y2, q) − f (y1, y2, q)

∥∥∥ ≤ ε

where (y1, y2, q) ∈ N
3 encodes a configuration of M .

Proof. To get so, using previous ideas, replace Eq. (1), by a0 = y = ω

(
y1

[l]

)
,

and the polynomial interpolations such as Eq. (3) to determine the next state,
the next symbol and the direction of the move, by the equivalent expression
where each variable has been “rounded cornered”. For example, instead of (3),
write

qnext =
9∑

i=0

m∑
j=1

⎛
⎜⎜⎝

9∏
r=0,r �=i

(
y

[n]
− r

)

(i − r)

⎞
⎟⎟⎠

⎛
⎜⎝

m∏
s=1,s �=j

( q
[n]

− s)

(j − s)

⎞
⎟⎠ qi,j ,

If l and n are chosen sufficiently big, the approximation of the interpolation
will be uniform, and as small as desired.

The difficulty is on Eq. (4), since the error is not uniform if this is done in a
too naive way. But actually, instead of taking H = h, the idea is to take some
dynamic approximation sufficiently precise to correct errors.

More concretely: We still intend to define some functions P 1, P 2, P 3, which
intend to approximate the content of the tapes if the head respectively move
left, don’t move or move right. Let H some “sufficiently big” approximation of
h, still to be determined. Then ynext

1 can be approximated by

ynext
1 = P 1

1
2
(1 − H)(2 − H) + P 2H(2 − H) + P 3(−1

2
)H(1 − H), (10)

With P 1 = 10
(

y1
[j]

+ snext
[j]

− y
[j]

)
+ ω

(
y2

[j]

)

[j]

, P 2 = y1
[j]

+

snext
[j]

− y
[j]

, and P 3 =
y1

[j]
− y

[j]

10 .

This is at the end, once again exactly similar to expressions in (4), but where
all variables have been “rounded cornered”.

The difficulty is that in that case, P 1 depends on y1, which is not a
bounded value. So if we take as before H = h = hnext, the error on term
(1 − H)(2 − H)/2 can be arbitrarily amplified when this term is multiplied by
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P 1. But one can take some error proportional to y1. One can then check that
H = h3 ↪→ {0, 1, 2}

10000(y1+1/2)+2
is fine.

Use same arguments on P 2 and P 3 to define |ynext
1 − ynext

1 | < ε. And does
something similar for the other part of the tape, to define ynext

2 such that |ynext
2 −

ynext
2 | < ε.

At the end, consider f : R3 → R
3 defined by

f
(
y1, y2, q̄

)
= (ynext

1 , ynext
2 , qnext).

Coming Back to the Simulation. So at the end, we have replaced the
dynamic of (7) by a dynamic of the form:

⎧⎪⎪⎨
⎪⎪⎩

x′ = when ϑ(−t) ≥ 0
1/ε

· x ←1/2 x2
[n]

ε′

′

x′
2 = when ϑ(t) ≥ 0

1/ε
· x2 ←1/2 f

(
x

[m]

)

ε′

′
(11)

with when u ≥ 0
1/ε

= u ↪→ {0, 1}
1/ε

.

We get consequently to some functions that are indeed analytic. It remains
to check that each of the parameters n, m, ε, ε′, . . . can be fixed sufficiently small
so that the dynamic will never leave a vicinity of the dynamic that we intend to
simulate. This is basically developing all the previous arguments, without true
difficulties, using basic analysis: refer to [2] for details.

2.5 Going to pODEs

The ODE that we obtained is not polynomial: It uses sin, arctan, . . . for example.
But it can be transformed into some pODE. The idea is that many ODEs can be
transformed as such using a simple process: Introduce some variables that are
needed, express their derivative in terms of already present variables, using usual
relations on derivatives, and repeat this process until it terminates. It terminates
in practice very quickly for usual functions.

Maybe an example is more clear than a long and formal discussion. Suppose

that you want to program the equation
{

y′
1 = sin2 y2

y′
2 = y1 cos y2 − eey1+t with the initial

condition y1(0) = 0 and y2(0) = 0.
Since y′

1 is expressed as the square of the sinus of y2, and this is not a
polynomial, we introduce y3 = sin y2, and we write y′

1 = y2
3 with y3(0) = 0.

Similarly, since y1 cos y2−eey1+t is not polynomial, we introduce y4 = cos y2 and
y5 = eey1+t, and we write y′

2 = y1y4 − y5.
We then consider the derivatives of the variables that have been introduced.

We compute the derivative of y3, and we realize that this is y′
2 cos(y2). We

already know y′
2, and cos(y2) is y4. We can hence write y′

3 = y4(y1y4 − y5) that
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is a polynomial. We now focus on the derivative of y4 that values −y′
2 sin(y2),

which can be written y′
4 = −y3(y1y4 − y5). We next go to the derivative of y5

that writes y′
5 = y5(y6y2

3 + 1) if we introduce y6 = ey1 to keep it polynomial,
writing y5(0) = e. We then go to the derivative of y6 that values y′

1e
y1 = y6y

2
3

which is polynomial and we write y6(0) = 1.
We have obtained that we can simulate (by just projecting) the previous

system by the pIVP⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y′
1 = y2

3

y′
2 = y1y4 − y5

y′
3 = y4(y1y4 − y5)

y′
4 = −y3(y1y4 − y5)

y′
5 = y5(y6y2

3 + 1)
y′
6 = y6y

2
3

with y(0) = (y1, . . . , y6)(0) = (0, 0, 0, 1, e, 1).

Coming back to previous dynamics (11): Just do the similar process on the
analytic dynamic. This will necessarily terminates (from known closure proper-
ties established in [2]) and this will provide a pIVP.

Of course not all the ingredients of ODE programming are covered by this
example, and we miss constructions such as using change of variables, or mixing
results, etc.. . . by lack of space. But it is however quite representative of ODE
programming technology, and of our pseudo programming language.
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thesis, LORIA, 7 Décembre 2006
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Abstract. In this brief overview, we consider multi-player turn-based
infinite-duration games that are played on a finite directed graph and
such that each player aims at maximizing a payoff or minimizing a cost.
We discuss several solution concepts and present some classical as well
as some more recent results, with a focus on reachability objectives for
the players.

Keywords: Computer-aided synthesis · Games played on graphs ·
Solution concepts

1 Introduction

Game theory is a well-developed branch of mathematics with applications to
various domains like economics, biology, computer science, etc. It is the study
of mathematical models of interaction and conflict between individuals and the
understanding of their decisions assuming that they act rationally [44,45]. The
last decades have seen a lot of research in computer-aided synthesis by using
a game-theoretic approach. One important line of research is concerned with
reactive systems that must continuously react to the events produced by the
environment in which they evolve (daily life examples are engine control units
in automotive industry, plane autopilots, medical devices, etc.). A challenging
goal, called synthesis, is to propose techniques (models, algorithms and tools)
that, given a specification for a system and a model of its environment, compute
(synthesize) a controller of the system that enforces the specification no matter
how the environment behaves. To this end, researchers have advocated the use
of two-player games played on a graph: the vertices of the graph model the pos-
sible configurations, the system and the environment are the two players whose
objectives are antagonistic, the infinite paths in the graph model their contin-
uous interactions. Building a controller for the system reduces to computing a
winning strategy in the corresponding game (if one exists) [34]. A case study
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of synthesis is presented in [46] where it is explained how an automated lawn-
mower can be controlled in a way to satisfy some qualitative and quantitative
requirements when its environment is composed of the weather and a cat in the
garden.

In practical situations, neither the system nor the environment are mono-
lithic, and their objectives are not necessarily antagonistic: they are composed
of several parts whose individual objectives must all be taken into account. For
those more complex situations, it is advocated to use the model of multi-player
non-zero-sum games played on graphs: the components are the different players,
each of them aiming at satisfying their own objective. The synthesis problem is
then different: winning strategies are no longer appropriate and are replaced by
the concept of equilibrium [35]. An equilibrium models a rational behavior of the
players: it can be seen as a contract (strategy profile) between the players that
makes each player satisfied with respect to his objective and discourages him to
break this contract. Different kinds of equilibria have been studied including the
famous notions of Nash equilibrium (NE) [43] from game theory or of subgame
perfect equilibrium (SPE) [47] more adapted to games played on graphs.

In the first part of this brief survey, we focus on the threshold synthesis
problem: does there exist an equilibrium such that each player receives a payoff
greater than a given threshold with respect to his own objective? This prob-
lem is rather well understood for NEs and for classical objectives like ω-regular
objectives (like avoiding a deadlock or always granting a request) or quantita-
tive objectives (such as minimizing the energy consumption or guaranteeing a
limited response time to a request) [17,35]. SPEs are more complex objects to
study, elegant results have been recently obtained about the threshold synthesis
problem for SPEs [11,12,14] but some questions remain unsolved.

In the second part of this survey, we present some interesting refinements of
reactive systems proposed in the literature that avoid modeling the environment
as a player with an antagonistic objective. One such refinement [31,39] mod-
els the environment as several players that rationally behave by settling to an
equilibrium. Two scenarios are investigated. Either the environment cooperates
with the system, i.e., it agrees to play an equilibrium that is satisfactory for
the system. Or it is adversarial : the environment can follow any equilibrium,
and one has to synthesize a strategy for the system that is satisfactory against
all these equilibria. Another refinement has been recently proposed in [20]: the
environment is modeled as a single player that has several objectives. Given a
strategy of the system, rationality of the environment is modeled by the fact that
it only responds to this strategy in such a way to get a Pareto-optimal tuple of
payoffs with respect to its objectives. The goal is to synthetize a strategy for the
system that guarantees it to obtain a satisfactory payoff, whatever the response
of the environment which ensures it a Pareto-optimal tuple of payoffs.

This survey gives a brief overview of a game-theoretic approach to computer-
aided synthesis of complex systems, with a focus on results about (quantitative)
reachability objectives. It is inspired by the more detailed survey [18]. The reader
is referred to [7,17,35] for additional readings.
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2 Games Played on Graphs

We consider multi-player turn-based games played on a finite directed graph [35].
An arena is a tuple A = (Π,V, (Vi)i∈Π , E, v0) where Π is a finite set of players,
V is a finite set of vertices and E ⊆ V × V is a set of edges1, (Vi)i∈Π is a
partition of V where Vi is the set of vertices controlled by player i ∈ Π, and v0
is an initial vertex. A play is an infinite sequence ρ = ρ0ρ1 . . . ρk . . . of vertices
such that ρ0 = v0 and (ρk, ρk+1) ∈ E for all k ∈ N. Histories are finite sequences
defined in the same way. The set of plays is denoted by Plays and the set of
histories (resp. histories ending with a vertex in Vi) by Hist (resp. by Histi).

Definition 1 (Game). A game G = (A, (payi)i∈Π) is composed of an arena
A and payoff functions payi : Plays → R, i ∈ Π, that assign a payoff to every
play.

Player i prefers play ρ to play ρ′ if payi(ρ) > payi(ρ′), that is, he wants
to maximize his payoff. A particular class of games G are those equipped with
Boolean functions payi : Plays → {0, 1}, i ∈ Π, such that a Boolean payoff is
assigned to each play. The objective Ωi = {ρ ∈ Plays | payi(ρ) = 1} of player i
is composed of his most preferred plays. Classical objectives Ωi are ω-regular
ones [34,35]. In this paper we focus on reachability objectives: each player i has
a target set Ui ⊆ V that he wants to reach, i.e., Ωi = {ρ = ρ0ρ1 . . . ∈ Plays |
∃k, ρk ∈ Ui}. We refer the reader to [34,35] for other ω-regular objectives like
Büchi, co-Büchi, parity, Rabin, Streett, etc.

Other classical payoff functions are quantitative functions payi : Plays → R

defined from a weight function wi : E → Q, i ∈ Π [22]. The most studied
payoffs assigned to plays are the liminf (or limsup) of the weights seen along
the play [22], their mean-payoff or their discounted-sum [29]. In this paper we
also focus on quantitative reachability objectives: each player i wants to reach
his target set Ui as quickly as possible (when counting the number of traversed
edges2). In this case, it is rather a cost that player i wants to minimize (instead
of a payoff that he wants to maximize).

A strategy σi : Histi → V for player i assigns to each history hv ∈ Histi a
vertex v′ = σi(hv) such that (v, v′) ∈ E [34,35]. Thus σi(hv) is the next vertex
chosen by player i (who controls vertex v, i.e., v ∈ Vi) after history hv has
been played. A play ρ is compatible with σi if ρk+1 = σi(ρ0 . . . ρk) for all k with
ρk ∈ Vi. The simplest strategies are the memoryless ones: they only depend on
the last vertex of the history, i.e., σi(hv) = σi(h′v) for all hv, h′v ∈ Histi. A
strategy profile is a tuple σ = (σi)i∈Π of strategies. It determines a unique play
〈σ〉, called the outcome of σ, that starts in the initial vertex v0 and is compatible
with all strategies σi.

Example 2. Consider the two-player game G in Fig. 1 such that circle (resp.
square) vertices are controlled by player 0 (resp. player 1). Both players have a
target set: U0 = {v5, v7, v10} for player 0 and U1 = {v7} for player 1. Consider
1 Each vertex has at least one successor in a way to avoid deadlocks.
2 Function wi assigns a weight of 1 to each edge.
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v0

v8

v1

v9

v2

v10

v6 v7

v3 v4 v5

Fig. 1. A two-player game with U0 = {v5, v7, v10} and U1 = {v7}.

the play ρ = v0v1v2v3v4v
ω
5 looping on v5 that visits U0 but not U1. In case of

reachability, we thus have (pay0(ρ), pay1(ρ)) = (1, 0), and in case of quantitative
reachability, we have (pay0(ρ), pay1(ρ)) = (5,+∞). Consider the memoryless
strategy σ0 (resp. σ1) such that player 0 plays v2 → v3 and v8 → v9 (resp.
player 1 plays v0 → v1 and v6 → v6). The outcome of the strategy profile
σ = (σ0, σ1) is the play 〈σ〉 = ρ.

3 Models of Rationality

Suppose that we have a game G = (A, (payi)i∈Π) such that each player i plays
according to his strategy σi. The players are assumed to act rationally in pursuit
of their preferences. This rationality is modeled as an equilibrium seen as a con-
tract (strategy profile) between the players that makes each player satisfied with
respect to his payoff function payi and discourages him to break this contract. A
famous notion of equilibrium is the concept of Nash equilibrium (NE) [43] from
game theory. Informally, a strategy profile is an NE if no player has an incentive
to deviate when the other players stick to their own strategies.

Definition 3 (Nash equilibrium). A strategy profile σ = (σi)i∈Π is a Nash
equilibrium if payi(〈σ〉) ≥ payi(〈σ′

i, σ−i〉) for all players i ∈ Π and all strategies
σ′

i of player i.

In this definition, σ−i denotes the strategy profile (σj)j∈Π\{i} of all players except
player i. By using σ′

i instead σi, player i is not capable to strictly increase3 his
payoff.

NEs do not take into account the sequential nature of games played on graphs.
Indeed after any history, the players face a new situation and may want to change
their strategies. It is well-known that NEs suffer from the problem of non-credible
threat [45]: the existence of NEs may rely on irrational strategies of some players
in subgames. Another well-known concept of equilibrium from game theory is
the notion the subgame perfect equilibrium (SPE) [47] that avoids non-credible
threat: a strategy profile is an SPE if it is an NE from each history of the game.

3 “stricly decrease his cost” in case of a cost function payi.
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Example 4. Let us come back to Example 2 and its strategy profile σ whose
outcome has costs (5,+∞). This profile is an NE. Indeed player 0 has no incentive
to deviate with v2 → v6 as he will get cost +∞ instead of 5; player 1 has no
incentive to deviate with v0 → v8 as he will keep the same cost +∞. Nevertheless
this NE shows a non-credible threat. From history v0v1v2v6, in the subgame
restricted to vertices {v6, v7}, player 1 irrationally loops on v6 to avoid player 0
from deviating in v2. It would be more rational for player 1 to play v6 → v7.

As a game may have several equilibria, it is natural to ask whether there
exists one that fulfils certain requirements, like the following ones [17,35].

Problem 5 (Threshold synthesis problem). Let G be a game and μi ∈ Q be a
threshold for each i ∈ Π. The threshold synthesis (TS) problem is to decide
whether there exists an equilibrium σ = (σi)i∈Π such that μi ≤ payi(〈σ〉) for all
players i ∈ Π.

Notice that when the given bounds impose no constraint (for instance μi =
0, i ∈ Π, in case of Boolean payoff functions), the decision problem can be
rephrased as the existence synthesis problem: “decide whether there exists an
equilibrium”. For certain classes of games and equilibrium concepts, this problem
does not need to be solved because there always exists an equilibrium for those
games.

Theorem 6. For games with (quantitative) reachability objectives,

– there always exists an NE (resp. SPE) [25,33,38,49].
– the TS problem is NP-complete for NEs [15,26] and PSpace-complete for

SPEs [13,14].

NEs are rather well understood. There always exists an NE in all games with
ω-regular objectives4 [25,35] and in a large class of games with quantitative
payoff functions including mean-payoff and discounted-sum functions [16]. The
TS problem is solved in [26,50] for different types of ω-regular objectives. The
exact complexity class for Rabin objectives is left open. The TS problem is solved
in [51] for games with mean-payoff functions but is open for discounted-sum
functions. The latter case is related to the challenging open target discounted-sum
problem itself related to several open questions in mathematics and computer
science [6]. For most of those results, the same general approach can be used
that works as follows (see e.g. [17]). Under some general hypothesis, the plays
that are NE outcomes can be characterized thanks to certain properties of the
n = |Π| two-player zero-sum games where one player (among the n players)
is opposed to the coalition of the other players. From this characterization, it
follows that there always exists an NE and that the TS problem is decidable
(with known complexity class).

Whereas NEs are much studied, SPEs have received less attention and some
questions are still unsolved. There always exists an SPE in games with ω-regular

4 This result holds for the larger class of games with Borel Boolean objectives.
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objectives [35]. It is only recently that the TS problem has been proved NP-
complete for parity objectives [12] and for mean-payoff functions [11]. This prob-
lem is again related to the target discounted-sum problem for discounted-sum
functions. The recent results [11,12,14] rely on a new adequate characterization
of SPE outcomes more intricate than the one for NEs (see also [32]).

The TS problem for NEs and SPEs is in 3ExpTime for objectives specified by
LTL formulas [31]. This upper bound is obtained thanks to another approach:
the existence of an equilibrium satisfying the threshold is encoded into a strategy
logic formula [24,42]. Recently, the TS problem for NEs and LTL objectives has
been proved to be 2ExpTime-complete [40] by using tree automata techniques.
Tree automata [41] allow to describe strategy profiles that are solution to the
TS problem, and testing existence of a solution then reduces to tree automata
non-emptiness.

Other models of rationality have been investigated. NEs capture rational
behaviors when the players only care about their own payoff. The notion of
secure equilibrium is introduced in [23] such that the players also care about the
payoff of the other players. The existence of secure equilibria and the related
TS problem are studied in [19,23,27]. A variant of secure equilibrium, called
Doomsday equilibrium, is studied in [21] for games with ω-regular objectives.
SPEs are immune of the problem of non-credible threats. Another concept that
avoids this problem is studied in [5,28] with the concept of admissible strategies
which are strategies not dominated by any other strategies. The algorithmic
synthesis properties of this concept are studied in [4,8–10].

4 Rational Environments

In the traditional approach to synthesis of reactive systems, the environment is
modeled by one player whose only objective is to conspire to fail the system.
However, in real life, the environment can be composed of several players having
objectives of their own other than to be antagonistic to the objective of the
system. We here present another concept more adequate for the synthesis of
reactive systems: Stackelberg games [48]. Those games have a specific player
called the leader modeling the system, the other players being called followers
and modeling the environment. The leader starts by announcing his strategy
and the followers respond by playing rationally given that strategy. In case of
one follower, his strategy can be an optimal response with respect to his own
objective; in case of several followers, they can respond with a strategy profile
that is an NE. The goal of the leader is to announce a strategy that guarantees
him a payoff at least equal to some given threshold whatever the rational response
of the follower(s).

We begin with the case of several followers, one per component of the envi-
ronment. Rationality is modeled by assuming that the environment settles to an
NE: each component is seen as an independent selfish individual [31,36,39].

Definition 7 (σ0-Stackelberg profile). Let G be a game with a specific
player 0 ∈ Π. Let σ0 be a strategy for player 0. A σ0-Stackelberg profile (σ0-SP)
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is a strategy profile σ = (σ0, (σi)i∈Π\{0}) such that payi(〈σ〉) ≥ payi(〈σ′
i, σ−i〉)

for all players i ∈ Π\{0} and all strategies σ′
i of player i.

In this definition, the strategy σ0 of the leader is fixed, only deviating strategies
σ′

i of the followers, i.e., with i �= 0, are considered. Two variants of the TS
problem are proposed in the context of Stackelberg games.

Problem 8 (Cooperative/adversarial TS problem). Let G be a game and μ ∈ Q

be a threshold.

– The cooperative TS problem is to decide whether there exists a strategy σ0

for player 0 and a σ0-SP σ such that μ ≤ pay0(〈σ〉).
– The adversarial TS problem is to decide whether there exists a strategy σ0

for player 0 such that for all σ0-SP σ, we have μ ≤ pay0(〈σ〉).

v0

v1

v3 v4

v2

(0, 1)

(2, 0) (1, 1)

Fig. 2. A cooperative or adversarial follower.

Example 9. Consider the two-player game G in Fig. 2 such that the payoffs are
indicated below each of the three plays. The leader is the player that controls
the circle vertices and the (unique) follower is the other player. Suppose that the
leader announces to play v1 → v4. The follower has two possible responses that
are NEs: he can either play v0 → v1 or v0 → v2. A cooperative follower will play
v0 → v1 that maximizes the payoff (equal to 1) of the leader. An adversarial
follower will play v0 → v2 such that the leader only gets a payoff of 0.

Every NE is a σ0-SP. However, a solution to the cooperative TS problem
is not necessarily an NE [36]. In case of Boolean payoff functions, the cooper-
ative/adversarial TS problem is interesting only with the threshold μ equal to
1: we ask for the objective Ω0 of the leader to be satisfied. In this case a σ0-
SP is an NE and the cooperative TS problem corresponds to the TS problem
studied for NEs in Sect. 3. In case of quantitative payoff functions, the cooper-
ative TS problem is studied in [36] for mean-payoff functions and in [30,37] for
discounted-sum functions. We have the following result for the adversarial TS
problem for reachability objectives.

Theorem 10 ([26]). For games with reachability objectives, the adversarial TS
problem is PSpace-complete.
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Other types of ω-regular objectives are considered in [26], the exact com-
plexity class being left open in certain cases. The adversarial TS problem is
studied in [3,30] for two-player games with mean-payoff functions. An example
of a game is given in [30] such that the (unique) follower has no NE to respond
to the strategy announced by the leader. Hence two notions of ε-best responses
are proposed and studied in [3,30]. Only preliminary results are thus known;
the cooperative/adversarial TS problem needs to be further investigated and
extended to other kinds of equilibria. Another interesting line of research is sur-
veyed in [1] (see references therein): it is focused on rational verification (instead
of synthesis) seen as a refinement of model-checking. The model-checking prob-
lem [2] asks whether all paths in a graph satisfy some property (e.g., modeled
by an LTL formula). It is proposed in [1] to limit this check to paths that are
rational behaviors of multiple players, i.e., to NE outcomes. The obtained results
concern NEs and objectives specified by LTL formulas. It would be interesting
to investigate other types of equilibria and objectives.

We now consider the case of only one follower modeling the environment,
however, with several payoff functions, one function for each component of the
environment. Assume the leader has announced his strategy σ0. After respond-
ing to σ0 with his own strategy, the follower receives a tuple of payoffs in the
corresponding outcome. Rationality of the follower is encoded by the fact that
he only responds in a way to receive a Pareto-optimal tuple of payoffs. This
setting encompasses scenarios where, for instance, several components can col-
laborate and agree on trade-offs. The goal of the leader is to announce a strategy
that guarantees his own payoff to be larger than a given threshold, whatever the
rational response of the follower [20]. Formally, we consider two-player games
such that player 0 is the leader with one payoff function pay0 and player 1
is the follower with several payoff functions (payi)i∈{1,...,n}. We denote by ≤
the component-wise partial order on the set of n-tuples of payoffs received by
player 1. Given a strategy σ0 for player 0, Pσ0 denotes the set of n-tuples of
payoffs (for player 1) of plays compatible with σ0 that are Pareto-optimal with
respect to ≤.

Example 11. We come back to the example of Fig. 1 (thus with a single objective
for player 1). Assume player 0 announces the strategy σ0 such that v2 → v6 and
v8 → v9. There are three compatible plays with σ0: v0v8v9v

ω
10, v0v1v2v

ω
6 and

v0v1v2v6v
ω
7 with respective Boolean payoff for player 1: 0, 0, and 1. Player 1 will

rationally only respond with the last play since Pσ0 = {1}.

We say that Pσ0 is achievable if it is not empty and for each p ∈ Pσ0 , there
exists a play ρ compatible with σ0 such that p = (payi(ρ))i∈{1,...,n}. Finite-
range payoff functions (thus in particular Boolean payoff functions) always yield
an achievable set Pσ0 . However, for games with mean-payoff functions, the set
Pσ0 may be empty [30]. For games with Boolean payoff functions, the following
Pareto-optimal TS problem is introduced and studied in [20].

Problem 12 (Pareto-optimal TS problem). Let G be a game with Boolean payoff
functions and let μ ∈ Q be a threshold. The Pareto-optimal TS problem is to
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decide whether there exists a strategy σ0 for player 0 such that for all strategies
σ1 for player 1 such that (payi(ρ))i∈{1,...,n} ∈ Pσ0 with ρ = 〈(σ0, σ1)〉, we have
μ ≤ pay0(ρ).

Theorem 13 ([20]). For games with reachability objectives, the Pareto-optimal
TS problem (with threshold μ = 1) is NExpTime-complete.

Few results are known about the Pareto-optimal TS problem (parity objec-
tives are studied in [20]). For quantitative payoff functions, as the set Pσ0 may
be empty, adequate variants of this problem need to be introduced and further
studied.
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Abstract. For an ordinal α, an α-ITRM is a machine model of transfi-
nite computability that operates on finitely many registers, each of which
can contain an ordinal ρ < α; they were introduced by Koepke in [11]. In
[4], it was shown that the α-ITRM-computable subsets of α are exactly
those in a level Lβ(α) of the constructible hierarchy. It was conjectured
in [4] that β(α) is the first limit of admissible ordinals above α. Here,
we show that this is false; in particular, even the computational strength
of ωω-ITRMs goes far beyond ωCK

ω . To this end, we prove lower bounds
on this computational strength, using a strategy for iterating α-ITRM-
computable operators for η many steps on αη-ITRMs.

Keywords: Ordinal Computability · Infinite Time Register
Machines · Gandy ordinals

1 Introduction

In [11], Koepke introduced resetting α-Infinite Time Register Machines, abbre-
viated α-ITRMs. Such machines have finitely many registers, each of which can
store a single ordinal smaller than α. Programs for α-ITRMs are just programs
for classical register machines as introduced, e.g., in [7] and consist of finitely
many enumerated program lines, each of which contains one of the following
commands: (i) an incrementation operation, which increases the content of some
register by 1, (ii) a copy instruction, which replaces the content of one register
by that of another, (iii) a conditional jump, which changes the active program
line to a certain value when the contents of two registers are equal and other-
wise proceeds with the next program line, (iv) an oracle command, which checks
whether the content of some register is contained in the oracle and changes the
content of that register to 1 if that is the case and otherwise to 0.1 For techni-
cal reasons that will become apparent below, we start the enumeration of the
program lines with 1 rather than 0.

1 Note that the “reset” command for replacing the content of a register by 0 can be
carried out by having a register with value 0 and using the copy instruction; for this
reason, it is not included here, in contrast to the account in [11].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The computation of an α-ITRM then works as follows: At successor stages,
we simply carry out the program as we would in a classical (finite) register
machine.2 At limit stages, the content of each register is the inferior limit of the
sequence of earlier contents of this register; if this happens to be α, we say that
the register “overflows” and set its content to 0.3 The active program line is just
the inferior limit of the sequence of earlier active program lines.

In [11], Koepke showed that, for α = ω, the subsets of α computable by such an
α-ITRM are exactly those in LωCK

ω
. Further information on ω-ITRMs was obtained

in [5] and [12]. It is also known from Koepke and Siders [13] that, when one lets α be
On, i.e., when one imposes no restriction on the size of register contents, the com-
putable sets of ordinals are exactly the constructible ones. Recently, strengthening
a result in [3], it was shown in [4] that the α-ITRM-computable subsets of α coin-
cide with those in Lα+1 if and only if Lα |= ZF−4; and moreover, it was shown
that, for any exponentially closed α, the α-ITRM-computable subsets of α are
exactly those in Lβ(α), where β(α) is the supremum of the α-ITRM-halting times,
which coincides with the supremum of the ordinals that have α-ITRM-computable
codes. To determine the computational strength of α-ITRMs for some exponen-
tially closed ordinal α, one thus needs to determine β(α). However, except for the
cases α = ω, α = On and Lα |=ZF−, no value of β(α) is currently known. A reason-
able conjecture compatible with all results obtained in [4] was that β(α) = α+ω,
the first limit of admissible ordinals greater than α, unless Lα |=ZF−, which would
be the most obvious analogue of Koepke’s result on ω-ITRMs.

In this paper, we will obtain lower bounds on the computational strength of α-
ITRMs by showing how, when α is exponentially closed, α-ITRMs can compute
transfinite (in fact α·ω long) iterations of β-ITRM-computable operators for β <
α. As a consequence, we are able to show that the conjecture mentioned above
fails dramatically: In fact, for the first exponentially closed ordinal ε0 larger than
ω, we will already have β(ε0) ≥ ωCK

ε0·ω, while the next limit of admissible ordinals
after ε0 is of course still ωCK

ω . This improves Corollary 48 of [4], where it was
shown that β(α) ≥ α+ω when α is an index ordinal.

For an ordinal α, we will write α+ to denote the smallest admissible ordinal
strictly larger than α. Moreover, for α, ι ∈ On, we recursively define α+0 = α,
α+(ι+1) = (α+ι)+ and α+ι = supξ<ια

+ξ when ι is a limit ordinal.

2 Iterations of α-ITRM-computable Operators

In [4], it was proved that, if Lα |=ZF−, then the supremum of the α-ITRM-
clockable ordinals is αω. This situation, however, is rather special, and it was
2 If α is a successor ordinal, the incrementation operation may lead to the register
content α; in that case, the content is replaced by 0. However, only limit values of
α will be considered in this paper.

3 There is also a “weak” model for register computations on α for which the compu-
tation is undefined in this case. However, in this paper, only the strong variant will
be considered.

4 I.e., ZF set theory without the power set axiom; for the subtleties of the axiomatiza-
tion, see [8].
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still consistent with the results obtained in [4] that the following natural gener-
alization of Koepke’s result on the computational strength of ITRMs (see [11])
holds:

Conjecture 1. Let α be an exponentially closed ordinal. Unless Lα |=ZF−, we
have β(α) = α+ω.

We will now show that this conjecture fails dramatically even for the first
exponentially closed ordinal ε0 = ωωω...

greater than ω. In fact, we will show
that already β(ωω) is way bigger than ωCK

ω .

Definition 1. Let α be an ordinal. We say that F : P(α) → P(α) is α-ITRM-
computable if and only if there is an α-ITRM-program P such that, for all x ⊆ α
and all ι < α, we have P x(ι) ↓= 1 if and only if ι ∈ F (x) and otherwise
P x(ι) ↓= 0. In this situation, we also say that P computes F .

Definition 2. For each infinite ordinal α, pick an α-ITRM-computable bijection
pα : α × α → α.

Let α be an infinite ordinal, and let F : P(α) → P(α), x ⊆ α. We define the
iteration of F along α as follows:

– F 0(x) = x
– F ι+1(x) = F (F ι(x)).
– When δ ≤ α is a limit ordinal, then F δ(x) = {pα(ι, ξ) : ι < δ, ξ < α, ξ ∈

F ι(x)}.

In addition we also write F β·k for (F β)k.

Lemma 1. Let α be an ordinal, and let F : P(α) → P(α) be an α-ITRM-
computable function and let n ∈ ω. Then Fn, the n-th iteration of F , is α-
ITRM-computable.

Proof. We prove this by induction. For n = 1, there is nothing to show. Let Q be
an α-ITRM-program that computes F and let Qn be an α-ITRM-program that
computes Fn. Then an α-ITRM-program Qn+1 for computing Fn+1 works as
follows: Run Q. Whenever Q makes an oracle call to ask whether ι ∈ Fn(x), run
Qn to evaluate this claim. When Q uses r0 many registers and Qn uses r1 many
registers, this can be implemented on an α-ITRM using r0 + r1 many registers.

The above iteration technique yields a new program for every iteration index
n. The key for our main result is Lemma 3, a uniform version of Lemma 1, which
is our next goal.

The following lemma is a standard application of ordinal arithmetic; as a
coding device in infinite computability, it was already used by Koepke in [11].

Lemma 2. Let α be an ordinal, δ be a limit ordinal, (γι : ι < δ) a sequence of
ordinals such that γι < α for each ι < δ, and let ρ, η be arbitrary ordinals. Then
liminfι<δα

η+2 · ρ + αη · γι = αη+2 · ρ + αη · liminfι<δγι.
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Definition 3. Let α, β be ordinals. We say that α is exponentially closed up to
β if and only if, for all γ < α and all ι < β, we have γι < α.

The following crucial observation is similar in spirit to the iteration lemma
for infinite time Blum-Shub-Smale machines, see [6], Lemma 10.

Lemma 3. Let α be closed under ordinal multiplication, and let F : P(α) →
P(α) be α-ITRM-computable. Moreover, let η ∈ On be closed under ordinal
addition. Then there is an αη-ITRM-program Piterate such that, for all ι < η,
P x
iterate(ι) computes F ι(x). More precisely, for all ι < η, ξ < α, we will have

P x
iterate(ι, ξ) ↓= 1 if and only if ξ ∈ F ι(x) and P x

iterate(ι, ξ) ↓= 0, otherwise.

Proof. Let P be an α–ITRM-program that computes F . Suppose that P uses
n registers R1, ..., Rn. The program Piterate will use registers R′

1, ..., R
′
n for sim-

ulating the register contents of P , a register L for storing active program lines
and various auxiliar registers that will not be mentioned explictly.

The rough idea is this: When δ < η is a limit ordinal, the question whether
ξ ∈ F δ(x) can be decided by writing ξ as ξ = pα(ξ0, ξ1) and then deciding
whether ξ1 ∈ F ξ0(x); we will have ξ0 < ξ. To compute F ι+1(x) for a given ι < α,
Piterate will run P in the oracle F ι(x). This may again call P for a lower iterate
etc. Since α is well-founded, however, the nesting depth will remain finite at all
times. At any time of this computation, there will be a configuration (lι, rι

1, ..., r
ι
n)

corresponding to the outermost run of P , along with finitely many configuration
(lξ1 , rξ1

1 , ..., rξ1
n ) corresponding to the first iteration etc., up to (l0, r01, ..., r

0
n) for

the top iteration which works on input x directly. The program Piterate will store
this by having αι·2 · lι + αξ1·2 · l1 + ... + α0 · l0 in L and αι·2 · rι

i + ... + α0 · r0i in
R′

i. When the topmost computation terminates, it is taken off the stack and the
computation “below” it is continued.

We now do it precisely. Suppose that x ⊆ α is given in the oracle, and that
some ordinal ι < η is given in the first register. Our goal is to compute F ι(x).

The computation proceeds in ι + 1 many “levels”, where a computation step
takes place at level ξ ≤ ι when it belongs to an evaluation of F ξ. When an oracle
call of the form O(ζ) is made in level ξ +1, the computation enters level ξ; when
it takes place in level δ with δ a limit ordinal and ζ is of the form pα(ζ0, ζ1), the
computation continues at level ζ0 with the computation of F ζ0(ζ1). For the sake
of convenience, we use a register S for storing the sequence (ξ1, ..., ξk) of currently
relevant levels in the form α2ξ1 + ... + α2ξk , where, of course ξ1 > ξ2 > ... > ξk.

We now describe how to carry out instructions at level δ ≤ ι (all contents
of registers other than the ones explicitly mentioned are left unchanged). Note
that δ can be reconstructed from the content of the line register L, the content
of which will be of the form αγ·2 · ρ + αδ·2 · l with γ > δ and l > 0 (since, as we
recall from the introduction, we start the enumeration of program lines with 1).
The l appearing as the coefficient in this representation will be the index of a
program line of P ; depending on the content of this program line, the following
steps are carried out:
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– (Before carrying out the other steps:) When Ri contains an ordinal of the
form αγ·2 · ρ + αδ·2+1 for any i ≤ n, replace it with αγ·2 · ρ (this corresponds
to a reset after a register overflow).

– The active program line contains the command Ri ← Ri + 1: Read out the
content of R′

i. It will be an ordinal of the form αγ·2 · ρ + αδ·2 · ri with γ > δ;
replace it with αγ·2 · ρ + αδ·2 · (ri + 1). Moreover, the content of L will be an
ordinal of the form αγ·2 · ρ′ + αδ·2 · l; replace it with αγ·2 · ρ′ + αδ·2 · (l + 1).

– The active program line contains the command COPY(i, j): Read out the
contents of Ri and Rj , which will be of the forms αγ0·2 · ρ + αδ·2 · ri and
αγ1·2 · ρ′ + αδ·2 · rj , where δ < γ0, γ1. Replace the content of Ri with αγ0·2 ·
ρ + αδ·2 · rj ; modify the content of L as in the incrementation operation.

– The active program line contains the command IF Ri = Rj GOTO l: Read
out the contents of Ri and Rj , which will be of the forms αγ0·2 · ρ + αδ·2 · ri

and αγ1·2 · ρ′ + αδ·2 · rj , where γ0, γ1 > δ; moreover, let αγ2·2 · ρ′′ + αδ·2 · l′

be the content of L, where δ < γ2. If ri = rj , replace the content of L with
αγ2·2 · ρ′′ + αδ·2 · l; if not, replace it with αγ2·2 · ρ′′ + αδ·2 · (l′ + 1).

– The active program line contains the oracle call O(ξ) and δ = δ̄ + 1 < ι
is a successor ordinal: Let αγ0·2 · ρ + αδ·2 · r be the content of R1, and let
αγ1·2 · ρ′ + αδ·2 · l be the content of L, where δ < γ0, γ1. Replace the content
of R1 by αγ0·2 · ρ + αδ·2 · r + αδ̄·2 · ξ and replace the content of L by αγ1·2 ·
ρ′′ + αδ·2 · l + αδ̄·2 · 1. Also, we are now working at level δ̄, so we add αδ̄·2 to
the content of S.

– The active program line contains the oracle call O(ξ) and δ < ι is a limit
ordinal: Calculate ξ0, ξ1 with ξ = pα(ξ0, ξ1). If ξ0 ≥ δ, return 0 and modify
the content of L as in the incrementation operation. (Note that this output
will be right due to the definition of the iteration at limit levels). If ξ0 < δ, we
need to check whether ξ1 ∈ F ξ0(x). The computation will then enter level ξ0.
Thus, we add αξ0·2 to the content of S. Let αγ0·2 · ρ + αδ·2 · r be the content
of R1, and let αγ1·2 ·ρ′ +αδ·2 · l be the content of L, where δ < γ0, γ1. Replace
the content of R1 by αγ0·2 · ρ + αδ·2 · r + αξ0·2 · ξ1 and replace the content of
L by αγ1·2 · ρ′′ + αδ·2 · l + αξ0·2 · 1.

– The active program line contains the oracle call O(ξ) and δ = 0: This means
that we are simply making a call to the given oracle, with no iterations of F
applied to it. Let αγ0·2 ·ρ+αδ·2 · r be the content of R1. Check whether ξ ∈ x
(recall that x is our oracle). If yes, replace the content of R1 by αγ0·2·ρ+αδ·2·1,
otherwise, replace the content of R1 by αγ0·2 · ρ. Modify the content of L as
in the incrementation operation.

– When the coefficient of the minimal power of α in the Cantor normal form
representation of the content of L is the index of a line of P that contains
the “halt” command: Let R1 contain αγ0·2 · ρ′ + αγ1·2 · r + αδ·2 · r′; replace it
with αγ0·2 · ρ′ + αγ1·2 · r′ (the result of the oracle call is passed down to the
level that made the call).
For i ∈ {2, ..., n}, let Ri contain αγ0,i·2 ·ρi +αγ1,i·2 ·ri +αδ·2 ·r′

i; replace it with
αγ0,i·2 · ρi + αγ1,i·2 · ri (the topmost layer corresponding to the now finished
computation is deleted).
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Also, if the content of S is αν · ρ + αδ·2, replace it with αν · ρ (the last entry
in the sequence of currently relevant levels is deleted).
Finally, let the content of L be αγ0·2 · ρ′′ + αγ1·2 · l + αδ·2 · l′; replace it by
αγ0·2 · ρ′′ + αγ1·2 · (l + 1) (the active program line is increased by 1, as the
oracle command has been carried out).

Piterate now works on input (ι, ξ) ∈ η × α by first instantiating L with αι·2,
R1 with αι·2 ·ξ and Ri with 0 for i ∈ {2, 3, ..., n} and then carrying out the above
instructions. By additive closure of η, we will have γ · 2 < η whenever γ < η,
so that all register contents generated in this procedure will be below αη. By
induction on ι and using Lemma 2, the program works as desired.

We note some important consequences of this result:

Corollary 1. Let α > ω be exponentially closed, and let β < α. Moreover, let
F : P(β) → P(β) be a β-ITRM-computable operator. Then:

1. There is an α-ITRM-program P such that, for each x ⊆ β and each ι < α,
P x(ι) computes F ι(x).

2. Fα, the α-th iteration of F , is α-ITRM-computable.
3. Fα·i, the α · i-th iteration of F , is α-ITRM-computable, for every i ∈ ω.

Proof. 1. Since βι+1 < α by exponential closure of α, is a direct consequence of
Lemma 3.

2. In order to decide whether pα(ξ0, ξ1) ∈ Fα(x), use the algorithm P from (1)
to decide whether or not ξ1 ∈ F ξ0(x).

3. This is a consequence of (2) and Lemma 1.

We now extract information on β(α), for various values of α, thus, in particu-
lar, refuting the conjecture mentioned above that β(α) = α+ω unless Lα |= ZF−.

Definition 4. Let α be an ordinal. By recursion, we define, for ι ∈ On: 0α = α,
ι+1α = α

ια, ια =
⋃

ξ<ι
ξα for ι a limit ordinal.

As usual, we denote ωω by ε0.

Recall the following result from Koepke and Miller [12]:

Definition 5 (Cf., e.g., [14], p. 48). Let x ⊆ ω. The hyperjump of x is the
set of all i ∈ ω such that the i-th Turing program computes a well-ordering in
the oracle x. For ι < ε0, denote by HJι(x) the ι-th hyperjump of x; HJι denotes
the ι-th hyperjump of 0.

Theorem 6 [See [12], Theorem 1]. There is an ITRM-program Phj such that,
for each x ⊆ ω, P x

hj computes HJ(x).

Corollary 2.

1. For any n ∈ ω, the function Fn : x 	→ HJωn(x), defined on P(ω), is ωωn

-
ITRM-computable.
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2. For n ∈ ω, we have β(ωωn

) ≥ ωCK
ωn+1 . In particular, we have β(ωω) ≥ ωCK

ω2 .
3. We have β(ε0) ≥ ωCK

ε0·ω.

Proof.

1. We prove this by induction. For n = 0, this is Theorem 6. Now suppose that
x 	→ HJωn(x) is ωωn

-ITRM-computable, say by the program Pn. By Lemma
3, there is an (ωωn

)ω-ITRM-program Q that computes F i
n(x) on input i ∈ ω;

note that (ωωn

)ω = ωωn+1
. By running Q(i, j) on input pω(i, j), we obtain

an ωωn+1
-ITRM-program Q′ that computes Fω

n (x) in the oracle x. But Fω
n is

just Fn+1.
2. From (1), we have that HJωn is ωωn

-ITRM-computable; using Lemma 1, we
obtain that HJωn·k is ωωn

-ITRM-computable for every k ∈ ω. Therefore, a
code for ωCK

ωn·k is ωωn

-ITRM-computable for every k ∈ ω. Consequently, the
supremum β(ωωn

) of the ordinals with ωωn

-ITRM-computable codes is at
least ωCK

ωn+1 .
3. By Theorem 6 and Corollary 1, HJε0·k is ε0-ITRM-computable for any k ∈ ω.

Thus, β(ε0) is larger than ωCK
ε0·k for any k ∈ ω, and thus β(ε0) ≥ ωCK

ε0·ω.

The same approach works in a much more general situation:

Definition 7. Let us say that α is ITRM-countable if and only if there is an
α-ITRM-computable bijection f : ω → α. More generally, let us say that α is
ITRM-effectively β-codable if and only if there is an α-ITRM-computable bijec-
tion f : β → α.

Remark 1. In particular, α is ITRM-countable whenever α is an index (i.e., an
ordinal α such that (Lα+1 \ Lα) ∩ P(ω) �= ∅). Note that ITRM-countability
implies that there is an α-ITRM-computable real number that codes α.

Corollary 3. Let α > ω be exponentially closed and ITRM-countable. Then
β(α) ≥ α+α·ω.

Proof. Let x ⊆ ω be an α-ITRM-computable code for α. By applying Corollary
8 to x and the (ω-)ITRM-program that computes hyperjumps from Theorem 6,
we see that HJα·k(x) is α-ITRM-computable for every k ∈ ω. But then, we have
β(α) ≥ α+α·k for every k ∈ ω, i.e., β(α) ≥ α+α·ω.

Remark 2. Note that the iteration technique just described never yields to a reg-
ister overflow, so that the lower bounds just obtained in fact hold true already
for the weak (“unresetting”) α-ITRMs as well that were mentioned in the intro-
duction. In the case α = ω, it is known that α-ITRMs are far stronger than their
unresetting cousins. We do not know whether the same is true for, e.g., α = ε0.

2.1 Uncountable α

The lower bounds obtained from the iteration lemma above can only work when
α is countable. In this section, we indicate how Abramson’s and Sacks’ “lifting”
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of results of Gostanian [9] on Gandy ordinals to the uncountable in [1] can be
exploited to yield information on α-ITRM-computability for certain uncountable
values of α. For the sake of brevity, simplicity and surveyability, we restrict
ourselves to the case α = ℵ+

ω treated in [1]; further generalizations are deferred
to later work. (The argument would equally well work for (ℵL

ω)+.)
In [1], the authors prove that ℵ+

ω is Gandy, i.e., that the supremum of
the ℵ+

ω -recursive ordinals is (ℵ+
ω )+. Clearly, α-recursive sets are also α-ITRM-

computable, and so this implies that β(ℵ+
ω ) ≥ (ℵ+

ω )+; indeed, this much was
observed in [4]. However, in order to use the strength of the iteration lemma,
this is not enough: rather than being able to go from ℵ+

ω to (ℵ+
ω )+, we would

need a uniform way – i.e., an α-ITRM-program – that allows us to go from some
x ⊆ α that codes a well-ordering to ωCK,x

1 , i.e., the smallest ordinal β > α such
that Lβ [x] is admissible.

Such a program can indeed be obtained from the proof of Theorem 5 of [1]
by a relativization of the construction; we will offer a brief sketch of the general
strategy and the necessary adaptations.

We use the following generalization of Theorem 1 of [12]:

Definition 8 ([3], Definition 2.3.23). An ordinal α > ω is ITRM-singular
if and only if there is an α-ITRM-computable cofinal function f : β → α with
β < α.

Lemma 4 [See [3], Theorem 2.3.25]. If α is ITRM-singular, then there is an α-
ITRM-program Pifs (“ill-founded sequence”) such that, for any x ⊆ α that codes
a tree T on α, P x

ifs outputs ∅ when T is well-founded and otherwise outputs an
infinite branch of T .5

Lemma 5. If α is ITRM-singular, then there is an α-ITRM-program Pwfp

(“well-founded part”) such that, for any x ⊆ α that encodes a structure (X,E),
P x computes a subset of α that codes the well-founded part of X with respect to
E.

Proof. This follows from Lemma 4 by cutting off the given structure (X,E) below
any given x and applying the well-foundedness check to determine whether there
is an infinite E-decreasing sequence that starts with x.

The general strategy in [1] is the following: They define an ℵ+
ω -recursive

tree T , guaranteed to have an infinite branch, whose infinite branches encode –
possibly ill-founded – models of KP for which ℵ+

ω belongs to the well-founded
part. Since well-founded parts of admissible sets are known to be admissible,
it follows that the height of the well-founded part of such a model must be of
height at least (ℵ+

ω )+, from which one obtains the Gandyness of ℵ+
ω .

It is not hard to modify their construction to obtain, for a given x ⊆ ℵ+
ω ,

a tree Tx that is uniformly ℵ+
ω -ITRM-computable in the oracle x, has at least

one infinite branch and whose infinite branches encode models of KP whose
5 More precisely, P x

ifs(i) will output the i-th element of an infinite branch of T , for
every i ∈ ω.
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well-founded part includes ℵ+
ω and x. All that is required is to add, in the proof

of Theorem 5 of [1], a new variable χ to the language L∗ and the statements
{dγ ∈ χ : γ ∈ x}∪{dγ /∈ χ : γ /∈ χ} to the theory T ∗ and modify condition (viii)
to demand that (V,G) ∈ Lℵ+

ω
[x]. The proof that the tree arising in this way has

an infinite branch and that one obtains a model with the required properties from
each infinite branch then works as in [1]. Now, by Lemma 4, we can uniformly
compute a code b ⊆ ℵ+

ω for such a branch on an ℵ+
ω -ITRM in T ∗. From b, one

can then easily obtain a code m ⊆ ℵ+
ω that encodes a model of KP with ℵ+

ω and
x in its well-founded part. We can then use Lemma 5 to compute a code w ⊆ ℵ+

ω

for the well-founded part of m. Using bounded truth predicate evaluation (see,
e.g., [3], Theorem 2.3.28) in m, this yields a code for the set of ordinals in m,
which will be a code of an ordinal ≥ ωCK,x

1 .
Since this works for any x ⊆ ℵ+

ω , it is now possible to proceed as above to
obtain the following:

Theorem 9. We have β((ℵ+
ω )+) ≥ (ℵ+

ω )+(ℵ+
ω ·ω).

3 Open Questions

While the above refutes a natural conjecture on the computational strength of
α-ITRMs by providing some lower bounds, the value of β(α) is still unknown
for any value of α unless α = ω or Lα |=ZF−. Some special cases that might be
good starting points would be to determine β(ωω), β(ε0), β(ℵω) or β(ωCK

1 ).
A crucial feature of ω-ITRMs established by Koepke and Miller in [12], the

generalization of which may well shed light on the computational power of α-
ITRMs, is the solvability of the bounded halting problem: Namely, for each k,
the halting problem for ω-ITRMs using at most k registers is solvable on an ω-
ITRM (using more than k registers). Although we are able to prove that, for each
ordinal α, there is either a universal α-ITRM-program or the bounded halting
problem for α-ITRMs is solvable, we are in a quite unsatisfying situation: We
do not know for a single exponentially closed ordinal α except when α = ω or
when Lα |=ZF− which alternative holds. A crucial step in further work on the
computational strength of α-ITRMs might be to generalize the work on the cases
α = ω and Lα |=ZF− by seeing whether the computational strength of α-ITRMs
can be characterized by iterating some operator that is β-ITRM-computable for
some β ≤ α. We also currently do not know whether there are values of α for
which the lower bounds obtained in this paper are optimal. We expect that proof-
theoretical considerations on iterated admissibility and inductive operators such
as Jäger [10] and [2] will become relevant in further investigations.

Acknowledgements. We thank our three anonymous referees for their valuable feed-
back, in particular for pointing out several subtle typos.
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Abstract. We investigate the proof complexity of systems based on
positive branching programs, i.e. non-deterministic branching programs
(NBPs) where, for any 0-transition between two nodes, there is also a
1-transition. Positive NBPs compute monotone Boolean functions, like
negation-free circuits or formulas, but constitute a positive version of
(non-uniform) NL, rather than P or NC1, respectively.

The proof complexity of NBPs was investigated in previous work by
Buss, Das and Knop, using extension variables to represent the dag-
structure, over a language of (non-deterministic) decision trees, yielding
the system eLNDT. Our system eLNDT` is obtained by restricting their
systems to a positive syntax, similarly to how the ‘monotone sequent cal-
culus’ MLK is obtained from the usual sequent calculus LK by restricting
to negation-free formulas.

Our main result is that eLNDT` polynomially simulates eLNDT over
positive sequents. Our proof method is inspired by a similar result
for MLK by Atserias, Galesi and Pudlák, that was recently improved
to a bona fide polynomial simulation via works of Jeřábek and Buss,
Kabanets, Kolokolova and Koucký. Along the way we formalise sev-
eral properties of counting functions within eLNDT` by polynomial-size
proofs and, as a case study, give explicit polynomial-size poofs of the
propositional pigeonhole principle.

Keywords: Proof Complexity · Branching Programs · Monotone
Complexity

1 Introduction

Proof complexity is the study of the size of formal proofs. This pursuit is funda-
mentally tied to open problems in computational complexity, in particular due
the Cook-Rechow theorem [8]: coNP “ NP iff there is a ‘formal’ proof system
that has polynomial-size proofs of each propositional tautology. This has led to
what is known as ‘Cook’s program’ for separating P and NP (see, e.g., [7,17]).

Systems of interest in proof complexity are typically motivated by analogous
results from circuit complexity. For instance ‘bounded depth’ systems restrict
proofs to formulas with a limit on the number of alternations between _ and
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^ in its formula tree, i.e. AC0 concepts. Indeed, H̊astad’s famous lower bound
technique for AC0 [13] was lifted to the setting of proof complexity in [4], yielding
lower bounds for a propositional formulation of the pigeonhole principle.

Monotone proof complexity is motivated by another famous lower bound
result, namely Razborov’s lower bounds on the size of negation-free circuits
[22,23] (and similar ones for formulas [16]). In this regard, there has been
much investigation into the negation-free fragment of Gentzen’s sequent calculus,
called MLK [2,3,6,14]. [3] showed a quasipolynomial simulation of LK by MLK
on negation-free sequents by formalising an elegant counting argument using
quasipolynomial-size negation-free counting formulae. This has recently been
improved to a polynomial simulation by an intricate series of results [3,6,14],
solving a question first posed in [21]. However, note the contrast with bounded
depth systems: restricting negation has a different effect on computational com-
plexity and on proof complexity.

In this work we address a similar question for the setting of branching pro-
grams. These are (presumably) more expressive than Boolean formulas, in that
they are the non-uniform counterpart of log-space (L), as opposed to NC1. They
have recently been given a proof theoretic treatment in [5]. We work within that
framework, only restricting to formulas representing positive branching programs.

Positive (or ‘monotone’) branching programs have been considered several
times in the literature, e.g. [12,15], and are identical to Markov’s ‘relay-diode
bipoles’ from [20]. [11,12] give a general way of making a non-deterministic model
of computation ‘positive’; in particular, a non-deterministic branching program
is positive if, whenever there is a 0-transition from a node u to a node v, there
is also a 1-transition from u to v. As in the earlier work [5] we implement such
a criterion by using disjunction to model nondeterminism.

Contribution. We present a formal calculus eLNDT`, reasoning with formula-
based representations of positive branching programs, by restricting the calculus
eLNDT from [5] appropriately. We consider the ‘positive closures’ of well-known
polynomial-size ‘ordered’ BPs (OBDDs) for counting functions, and show that
their characteristic properties admit polynomial-size proofs in eLNDT`.

As a case study, we show that these properties can be used to obtain
polynomial-size proofs of the propositional pigeonhole principle, by adapting an
approach of [2] for MLK. Our main result is that eLNDT` in fact polynomially
simulates eLNDT over positive sequents. For this we again use representations
of positive NBPs for counting and small proofs of their characteristic properties.
At a high level we adapt the approach of [3], but there are several additional
technicalities specific to our setting. In particular, we require bespoke treatments
of negative literals in eLNDT and of substitutions of (representations of) positive
NBPs into (representations of) other positive NBPs.

Terminology. Throughout this work, we shall reserve the words ‘monotone’,
‘monotonicity’ etc. for semantic notions, i.e. as a property of Boolean functions.
For (non-uniform) models of computation such as formulas, branching programs,
circuits etc., we shall say ‘positive’ for the associated syntactic constraints, e.g.
negation-freeness for the case of formulas or circuits. While many works simply
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say ‘monotone’ always, in particular [11,12], let us note that the distinction we
make is employed by several other authors too, e.g. [1,10,18,19].

Proofs and Full Version. Proofs of all results stated in this work can be found
in a preprint available at [9].

2 Preliminaries

We will use a countable set of propositional variables, written p, q etc., and
Boolean constants 0 and 1, with their usual interpretations. An assignment,
written α, β etc., is just a map from propositional variables to {0, 1}, and a
Boolean function, f, g etc., is just a map from assignments to {0, 1}. We write
α ď β if, for all propositional variables p, we have α(p) ď β(p). We say that a
Boolean function f is monotone if α ď β “⇒ f(α) ď f(β).

In proof complexity, formally, a propositional proof system is just a
polynomial-time function P from Σ∗ to the set of propositional tautologies, for
Σ some finite alphabet. The idea is that P checks (efficiently) that an element
σ P Σ∗ correctly codes a proof in the system in which case the output P (σ) is
the tautology σ proves. Otherwise P outputs the tautology 1 by convention. We
say that a propositional proof system P polynomially simulates a system Q if
we can construct in polynomial-time, for each Q proof π of A, a P -proof of A.
In practice (and throughout this work) we shall avoid specifying proof systems
at such a low level, leaving such formalisation implicit.

2.1 Positive Branching Programs and Their Representations

A (non-deterministic) branching program (NBP) is a (rooted) directed acyclic
graph G with two distinguished sink nodes, 0 and 1, such that:

– G has a unique root node, i.e. a unique node with in-degree 0.
– Each non-sink node v of G is labelled by a propositional variable.
– Each edge e of G is labelled by a constant 0 or 1.

Definition 1 (Positive NBPs, e.g. [12]). An NBP is positive if, for every
0-edge from a node u to a node v, there is also a 1-edge from u to v.

A run of a NBP G on an assignment α is a maximal path beginning at the
root of G consistent with α. I.e., at a node labelled by p the run must follow an
edge labelled by α(p) P {0, 1}. G accepts α if there is a run on α reaching the
sink 1. We extend α to a map from all NBPs to {0, 1} by setting α(G) “ 1 if G
accepts α. Thus each NBP computes a unique Boolean function α �Ñ α(G).

Fact 2. A positive NBP computes a monotone Boolean function.

Example 3 (2-out-of-4 Threshold). The 2-out-of-4 Threshold function, returning
1 if at least two of its four inputs are 1, is computed by the positive NBP on
the left of Fig. 1. Here 0-edges are dotted, and 1-edges are solid; the multiple
0-leaves correspond to the same sink.
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Fig. 1. Pos. NBP for 2-out-of-4 Threshold and representation by extension axioms.

Like in [5], we shall represent (positive) NBPs in proofs by means of extension
variables, e0, e1, . . . (distinguished from propositional variables). An extended
non-deterministic decision tree formula (eNDT formula), written A,B etc., is
generated from constants, propositional variables and extension variables by:

– If A and B are eNDT formulas then so is (A _ B).
– If A and B are eNDT formulas then so is (ApB).

Disjunction, _, has its usual semantic interpretation, while ApB should be
interpreted as “if p then B else A”. The role of extension variables is to ‘abbrevi-
ate’ complex formulas, intuitively ‘naming’ nodes in branching programs. Their
interpretation is thus determined by additional data:

Definition 4. A set of extension axioms A is a set of the form {ei Ø Ai}iăn,
where each Ai may only contain extension variables among e0, . . . , ei´1.

Thanks to the subscripting condition for A above we inherit a natural induction
principle (‘A-induction’) for formulas over e0, . . . , en´1. For instance, this means
that formulas over e0, . . . , en´1 indeed compute unique Boolean functions with
respect to A:

Definition 5 (Semantics of eNDT formulas). Satisfaction with respect to
a set of extension axioms A “ {ei Ø Ai}iăn, written �A, is a (infix) binary
relation between assignments and formulas over e0, . . . , en´1 defined as follows:

– α �A 0, α �A 1 and α �A p if α(p) “ 1.
– α �A A _ B if α �A A or α �A B.
– α �A ApB if either α(p) “ 0 and α �A A, or α(p) “ 1 and α �A B.
– α �A ei if α �A Ai.

Remark 6 (Distinguishing extension variables). Note that we do not allow deci-
sions on extension variables, i.e. formulas may not have the form AeiB. Other-
wise we would be able to represent all Boolean circuits succinctly, cf. [5].

Definition 7 (Positive formulas). An eNDT formula is positive if, for each
subformula of the form ApB, we have B “ A _ C for some C.

A set of extension axioms A “ {ei Ø Ai}iăn is positive if each Ai is positive.
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As expected, positive formulas over positive extension axioms represent pos-
itive NBPs, and so compute monotone Boolean functions.

Example 8 (2-out-of-4 Threshold, revisited). Returning to Example 3 earlier, the
positive NBP on the left of Fig. 1 is represented by the extension variable e11
under the extension axioms on the right of Fig. 1. Each eij represents the jth

node (left to right) on the ith row (top to bottom) for 1 ď i ď 4 and 1 ď j ď i;
for well-foundedness of the extension axioms (i.e. the subscripting condition of
Definition 4), note that we may identify each eij with e4(4´i)`j .

2.2 The System eLNDT and its Positive Fragment

We now recall the system for NBPs introduced in [5]. The language of the sys-
tem eLNDT comprises of just the eNDT formulas. A sequent is an expression
Γ Ñ Δ, where Γ and Δ are multisets of eNDT formulas (‘ Ñ ’ is just a syntac-
tic delimiter). Semantically, such a sequent is interpreted as a judgement “some
formula of Γ is false or some formula of Δ is true”.

Definition 9 (Systems). The system LNDT is given by the rules in Fig. 2. An
LNDT derivation of Γ Ñ Δ from hypotheses H “ {Γi Ñ Δi}iPI is defined as
expected: it is a finite list of sequents, each being either some Γi Ñ Δi from H
or following from previous ones by rules of LNDT, ending with Γ Ñ Δ.

An eLNDT proof is just an LNDT derivation from hypotheses that are a set of
extension axioms A “ {ei Ø Ai}iăn, with A Ø B construed as an abbreviation
for the pair of sequents A Ñ B and B Ñ A. Furthermore, we (typically) require
that the conclusion of an eLNDT proof has no extension variables.

The size of a proof/derivation P or a formula A, written |P | or |A| respec-
tively, is just the number of symbols occurring in it.

Our formulation of eLNDT differs slightly from the original one in [5] in that
(a) we admit Boolean constants in our language; and (b) we admit decisions only
on propositional variables, not their negations. Both of these are only cosmetic,
and in particular do not affect proof complexity, as observed in [5].

To define our ‘positive fragment’ of eLNDT notice that Ap(A _ B) is seman-
tically equivalent to A_(p^B), which motivates the following analytic ‘positive
decision’ rules:

Γ,A Ñ Δ Γ, p,B Ñ Δ
p`-l

Γ,Ap(A _ B) Ñ Δ

Γ Ñ Δ,A, p Γ Ñ Δ,A,B
p`-r

Γ Ñ Δ,Ap(A _ B)
(1)

Definition 10 (System eLNDT`). The system eLNDT` is defined just like
eLNDT, except replacing the p-l and p-r rules by the positive ones above in (1).
Moreover, all extension axioms and formulas occurring in a proof (in particular
cut-formulas) must be positive.
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Fig. 2. Rules for system (e)LNDT.

2.3 Some Basic (Meta) theorems for eLNDT`

Let us first note that the set of valid positive sequents (without extension vari-
ables) is actually sufficiently expressive to be meaningful for proof complexity:

Proposition 11. Validity of extension-free positive sequents is coNP-complete.

This follows by a basic reduction from DNF validity, expressing positive terms
(i.e. conjunctions of propositional variables) by recursively using the equivalence
p ^ A ⇐⇒ 0p(0 _ A).

Note that our logical rules, in particular p`-l and p`-r, are not only sound
but also invertible: the validity of the conclusion implies the validity of each
premiss. A basic bottom-up proof search argument thus gives:

Proposition 12 (Soundness and completeness). eLNDT` proves a positive
sequent Γ Ñ Δ (without extension variables) iff

Ź
Γ Ą Ž

Δ is valid.

As an example of explicit proofs in eLNDT` (and for later use) we have:

Proposition 13 (General identity). Let A “ {ei Ø Ai}iăn be a set of posi-
tive extension axioms. There are polynomial-size eLNDT` proofs of A Ñ A, for
positive formulas A containing only extension variables among e0, . . . , en´1.

Proof. We construct proofs inductively according to the extension axiom set A.
When A is a propositional variable or Boolean constant, the required derivation
is immediate by initial rule id or by the initial rules 0, 1 along with w-l,w-r resp.

If A “ ei for some i ă n or A “ B _ C, then we have proofs,1

ei Ñ Ai

IH
Ai Ñ Ai Ai Ñ ei

2cut

ei Ñ ei

IH
B Ñ B

w-r

B Ñ B,C

IH
C Ñ C

w-r

C Ñ B,C
_-l

B _ C Ñ B,C
_-r

B _ C Ñ B _ C

1 The first case exemplifies a typical argument by ‘A-induction’, but note also that a
single cut rule between ei Ñ Ai and Ai Ñ ei would suffice.
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where sequents marked IH are obtained by inductive hypothesis; other premisses
are extension axioms from A. If A “ Bp(B _ C) then we have the proof:

IH
B Ñ B

w-r

B Ñ B

IH
B Ñ B

w-r

B Ñ B,C
p`-r

B Ñ Bp(B _ C)

id

p Ñ p
w-l,w-r

p, C Ñ B, p

IH
C Ñ C

w-l,w-r

p, C Ñ B,C
p`-r

p, C Ñ Bp(B _ C)
p`-l

Bp(B _ C) Ñ Bp(B _ C)

Note that we do not formally ‘duplicate’ the subproof corresponding to B Ñ B,
we simply use it twice. Similarly, the proofs of B Ñ B and C Ñ C may have
common subproofs corresponding to, say, the same extension variable.

To evaluate proof size note that, at each step of the argument above, we add
a constant number of lines of polynomial size in A and A. Since the total number
of steps is bounded by |A| ` ř

iăn |Ai|, we obtain polynomial-size proofs overall.

Note that the result above, together with completeness, means that we can
sometimes obtain polynomial-size proofs ‘for free’: for each valid (extension-free)
sequent there is a constant-size proof by completeness, Proposition 12, and by
the above result, we have polynomial-size proofs for all its ‘instances’ under
substitution. E.g., by simply observing semantic validity, we immediately have:

Proposition 14 (Truth conditions). Let A “ {ei Ø Ai}iăn be a set of
positive extension axioms and let A and B be formulas over e0, . . . , en´1. There
are polynomial-size eLNDT` proofs of the following sequents with respect to A:

Ap(A_B) Ñ A, p Ap(A_B) Ñ A,B A Ñ Ap(A_B) p,B Ñ Ap(A_B)

3 Formalising Counting Arguments in eLNDT`

In this work we shall make use of monotone Boolean counting functions, namely
the Threshold functions Thn

k : {0, 1}n → {0, 1} by Thn
k (b1, . . . , bn) “ 1 if at least

k of b1, . . . , bn are 1. For a list of propositional variables p “ p1, . . . , pn, we can
compute the function Thn

k (p) with polynomial-size positive NBPs as follows:

Definition 15 (Thresholds). For each list p of propositional variables, and
each integer k, we introduce an extension variable tpk and write T for the set of
all extension axioms of the form (i.e. for all choices of p, p and k):

tε0 Ø 1, tεk Ø 0 (if k ‰ 0), tppk Ø tpkp(tpk _ tpk´1) (2)

Example 16. Revisiting Fig. 1, note that we may visualise tp1p2p3p4
2 by the pro-

gram on the left. Referencing the extension axioms on the right, we may simply
identify each eij with tpi···p4

2´j`1 (for 1 ď i ď 4). It is not hard to see that, in general,
tpk represents a positive NBP with number of nodes and edges quadratic in |p|.
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It turns out that eLNDT` admits small proofs of several characteristic prop-
erties of the Threshold functions, which we now survey. The following result is
shown by induction on |p|, appealing to Lemma 14 for all the inductive steps.

Proposition 17 (tpk is decreasing in k). There are polynomial-size eLNDT`
proofs of the following sequents over extension axioms T :

Ñ tp0 , tpk`1 Ñ tpk , tpk Ñ (if k > |p|)

The next result simplifies many of our later arguments, admitting a ‘direct’ proof
peculiar to the structure of our particular threshold programs (cf., e.g., [2,3]).

Lemma 18. There are polynomial-size eLNDT` proofs over T of tpqq
k Ø tqpq

k .

The proof is, again, by induction on |p|, this time using small proofs of the
following ‘medial’ property for the inductive step:

(Aq(A _ B))p((Aq(A _ B)) _ (Cq(C _ D)))Ø (Ap(A _ C))q((Ap(A _ C)) _ (Bp(B _ D)))

By repeatedly applying the above lemma, we obtain the following crucial result:

Theorem 19 (Symmetry). Let π be a permutation of p. Then there are
polynomial-size eLNDT` proofs over T of tpk Ø t

π(p)
k .

4 Case Study: The Pigeonhole Principle

As a warm up to our main result in the next section, we will show here how we
may use the previous results to obtain polynomial-size proofs of the propositional
pigeonhole principle in eLNDT`. In our setting, this principle is encoded as:

PHPn :“
{

nł

j“1

pij

}n`1

i“1

Ñ nł

j“1

nł

i“1

n`1ł

i′“i`1

0pij(0 _ pi′j) (3)

It is helpful to think of the propositional variables pij as expressing “pigeon i
sits in hole j”. In the RHS the formulas 0pij(0 _ pi′j) are usually written as
pij ^ pi′j but, in the absence of conjunction, we adopt the current encoding.

We show that PHPn admits small proofs in eLNDT` with a ‘standard’ high-
level argument. We fix n throughout this section and write:

– pi for the list pi1, . . . , pin, and just p for the list p1, . . . ,pn`1.
– pᵀ

j for the list p1j , . . . , pn`1j and just pᵀ for the list pᵀ
1 , . . . ,p

ᵀ
n.

The notation pᵀ is suggestive since, construing p as an (n ` 1) × n matrix of
propositional variables, pᵀ is just the transpose n × (n ` 1) matrix.

Our approach towards proving PHPn in eLNDT` (with small proofs) will be
broken up into the three smaller steps. Writing LPHPn and RPHPn for the LHS
and RHS, respectively, of PHPn in (3), we will prove the following sequents:



82 A. Das and A. Delkos

LPHPn Ñ tpn`1 (4) tpn`1 Ñ t
pᵀ

n`1 (5) t
pᵀ

n`1 Ñ RPHPn (6)

Notice that, since pᵀ is just a permutation of p, we already have small proofs
of (5) from Theorem 19, so we focus on the other two sequents. We will need:

Lemma 20 (Merging and splitting). There are polynomial-size eLNDT`
proofs, over extension axioms T , of the following sequents:

tpk , tql Ñ tpq
k`l (7) tpq

k`l Ñ tpk`1, t
q
l (8)

This is again proved by induction on |p|, appealing several times to Proposi-
tion 14. (7) yields small proofs of (4), and (8) yields small proofs of (6). Finally,
(4), (5) and (6) are combined by cuts to obtain:

Theorem 21. There are polynomial-size eLNDT` proofs of PHPn.

5 Positive Simulation of Non-positive Proofs

We have shown that eLNDT` can formalise basic counting arguments by giving
small proofs of the pigeonhole principle. We now go further and show:

Theorem 22. eLNDT` polynomially simulates eLNDT over positive sequents.

This section is devoted to demonstrating this result, in particular defining various
intermediate systems to this end. The high-level structure of the argument is
similar to that of [3], but we must make several specialisations to the current
setting due to the peculiarities of eNDT formulas and extension.

5.1 Positive Normal Form of eLNDT proofs

We first deal with non-positive formulas occurring in an eLNDT proof. The
intuition is similar to that in [3] where negations are reduced to the variables
using De Morgan duality. In our setting formulas are no longer closed under
duality but, nonetheless, we are able to devise a bespoke ‘positive normal form’.

First, we shall temporarily work with a presentation of eLNDTwithin eLNDT`
by allowing negative literals, in order to facilitate our later translations.

Definition 23 (eLNDT`
´). For each propositional variable p we introduce a

distinguished propositional variable p. The system eLNDT`
´ is defined just like

eLNDT` but also allows positive decisions on variables p. All syntactic positivity
constraints remain. Furthermore, eLNDT`

´ has additional initial sequents of the
forms p, p Ñ and Ñ p, p.
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Definition 24 (Positive normal form). We define a (polynomial-time)
translation from an eLNDT formula A to an eLNDT`

´ formula A´ as follows:

0´ :“ 0
1´ :“ 1

p´ :“ p
p´ :“ p

e´
i :“ ei

(A _ B)´ :“ A´ _ B´
(ApB)´ :“ 0p(0 _ A´) _ 0p(0 _ B´)

For a multiset of formulas Γ “ A1, . . . , An we write Γ ´ :“ A´
1 , . . . , Ań . For a

set of extension axioms A “ {ei Ø Ai}iăn, we write A´ for {ei Ø A´
i }iăn.

By induction on the length of an eLNDT proof, we obtain:

Theorem 25. Let P be an eLNDT proof of Γ Ñ Δ over extension axioms A.
There is an eLNDT`

´ proof P ´ of Γ ´ Ñ Δ´ over extension axioms A´ of size
polynomial in |P |.

The critical cases for the above theorem are the decision steps, since ·´ commutes
with everything else. For this we appeal to another ‘truth lemma’:

Lemma 26 (Truth for ·´-translation). Let A “ {ei Ø Ai}iăn be a set of
positive extension axioms and let A and B be formulas over e0, . . . , en´1. There
are polynomial-size eLNDT`

´ proofs of the following sequents over A´:

(ApB)´ Ñ A´, p (ApB)´, p Ñ B´ A´ Ñ (ApB)´, p p,B´ Ñ (ApB)´

Combining the above lemma with the original truth conditions, Proposi-
tion 14, we can show, for positive extension-free formulas A, that there are
polynomial-size eLNDT`

´ proofs of A´ Ø A. This is established by direct struc-
tural induction on A (which has no extension variables), and thus yields:

Corollary 27. eLNDT`
´ polynomially simulates eLNDT, over positive sequents.

5.2 Generalised Counting Formulas

[3] relies heavily on substitution of formulas for variables in proofs of LK. Being
based on usual Boolean formulae, this is entirely unproblematic in that setting,
but for us causes low-level difficulties due to the restrictions of our syntax.

Our aim is to ‘replace’ negative literals in an eLNDT`
´ proof by certain thresh-

old formulas from Definition 15. However, if a literal occurs as a decision variable,
then we cannot directly substitute an extension variable for it, since the syntax
of eLNDT (crucially) does not allow this. To handle this, we introduce a gen-
eralisation of our previous threshold extension variables and axioms below that
accounts for all such substitution situations. To maintain well-foundedness of
sets of extension axioms, cf. Definition 4, these extension variables should be
considered defined mutually inductively with eNDT formulas themselves. We
shall gloss over the details of this technicality in what follows.



84 A. Das and A. Delkos

Definition 28 (Threshold decisions).We introduce extension variables
[Atpk (A_B)] for each list p of propositional variables, integer k, and formulas A,B.
We extend T to include all extension axioms of the following form:

[Atε0(A_B)] Ø A _ B
[Atεk(A_B)] Ø A if k ‰ 0

[Atppk (A_B)] Ø [Atpk (A_B)]p([Atpk (A_B)] _ [Atpk´1(A_B)])
(9)

Despite the notation, [Atpk (A_B)] is, formally speaking, a single extension variable,
not a decision on the extension variable tpk which, recall, our syntax does not
permit. However the notation is suggestive, justified by the following counterpart
of the truth conditions from Proposition 14 (proved by induction on |p|):
Proposition 29 (Truth).There are polynomial size eLNDT` proofs over T of:

[Atpk (A_B)] Ñ A, tpk [Atpk (A_B)] Ñ A,B A Ñ [Atpk (A_B)] tpk , B Ñ [Atpk (A_B)]

5.3 ‘Substituting’ Thresholds for Negative Literals

For the remainder of this section we work with a fixed eLNDT`
´ proof P , over

extension axioms A “ {ei Ø Ai(e0, . . . , ei´1)}iăn, of a positive sequent Γ Ñ Δ,
with propositional variables among p “ p0, . . . , pm´1 and extension variables
among e “ e0, . . . , en´1. Recall we are only concerned with the provable positive
sequents of eLNDT, so our consideration of eLNDT`

´ here suffices by Corollary 27.
Throughout this section, we write pi for p0, . . . , pi´1, pi`1, . . . , pm´1, i.e. just

p with pi removed. We will need to define a family of intermediary systems
eLNDT`

k (P ), for each k ≥ 0. Before that, we introduce the following translation:

Definition 30 (‘Substituting’ thresholds). We define a (polynomial-time)
translation from an eLNDT`

´ formula A (over p, p and e) to an eLNDT` formula
Ak (over p, some extension variables ek and extension variables from T ) by:

– 0k :“ 0, 1k :“ 1 and pk
i :“ pi

– pk
i :“ tpi

k

– ek
i is a fresh extension variable.

– (A _ B)k :“ Ak _ Bk

– (Api(A _ B))k :“ Akpi(Ak _ Bk)
– (Api(A _ B))k :“ [Akt

p[0/pi]
k (Ak_Bk)]

Also Ak :“ {ek
i Ø Ak

i (ek
0 , . . . , e

k
i´1)}iăn, and {B1, . . . , Bl}k :“ Bk

1 , . . . , Bk
l .

While this translation, and the threshold decisions themselves, may seem syn-
tactically heavy, at the level of branching programs the idea is simple: the NBP
represented by Ak is obtained by substituting the NBP represented by tpi

k for
each node labelled by pi in the NBP represented by A. This may be visualised:

A :
pi

pi
Ak :

tpi

k

tpi

k



Proof Complexity of Monotone Branching Programs 85

Our systems eLNDT`
k (P ) are parametrised by the choice of k ≥ 0, and are

peculiar to A, p and P we fixed at the beginning of this subsection:

Definition 31. eLNDT`
k (P ) is defined just like eLNDT`, but has extra initial

sequents pi, t
pi

k Ñ and Ñ pi, t
pi

k , and only uses extension axioms T ∪ Ak.

By replacing every formula A in P by Ak and locally repairing the proof:

Lemma 32. There is a eLNDT`
k (P ) proof P k of Γ Ñ Δ of size polyno-

mial in |P |.

The critical cases for this result are positive decisions on negative literals, for
which we appeal to the previously given truth conditions, Proposition 29.

5.4 Putting It All Together

In this section we stitch together the proofs obtained in each eLNDT`
k (P ) for

0 ď k ď m ` 1 to obtain our main simulation result. Before this we will need
the following result, proved by directly applying Lemmas 18 and 20.

Proposition 33. For k ≥ 0, there are polynomial size eLNDT` proofs over T

of:
pi, t

pi

k Ñ tpk`1 (10) tpk Ñ pi, t
pi

k (11)

By adding tpk to the LHS and tpk`1 to the RHS of each sequent in P k from
Lemma 32, replacing the additional initial sequents of eLNDT`

k (P ) from Defini-
tion 31 by (10) and (11) resp., we obtain:

Lemma 34. For k ≥ 0, there are polynomial size eLNDT` proofs over extension
axioms T ∪ Ak of tpk , Γ Ñ Δ, tpk`1

We may now assemble the proof of our main result:

Proof (of Theorem 22). By Corollary 27, without loss of generality let P be
an eLNDT`

´ proof of a positive sequent Γ Ñ Δ over extension axioms A.
By Lemma 34 we construct, for each k ď n ` 1, polynomial-size proofs of
tpk , Γ Ñ Δ, tpk`1, over T ∪ Ak, and we simply cut them all together as follows:

Prop. 17

tp0

Lem. 34

tp0 , Γ Δ, tp1

Lem. 34

tpm, Γ Δ, tpm 1

Prop. 17

tpm 1
m 2 cut

Γ Δ

The resulting proof is indeed an eLNDT` proof of the required sequent, in
particular over extension axioms T ∪ A0 ∪ A1 ∪ · · · ∪ Am`1.
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Abstract. We discuss ideal presentations of effective quasi-Polish spaces
and some of their subclasses. Based on this, we introduce and study natu-
ral numberings of these classes, in analogy with the numberings of classes
of algebraic structures popular in computability theory. We estimate the
complexity of (effective) homeomorphism w.r.t. these numberings, and of
some natural index sets. In particular, we give precise characterizations
of the complexity of certain classes related to separation axioms.
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1 Introduction

The investigation of computability in topological structures (which is currently a
hot topic in computability theory) is less straightforward than the investigation
of computability in countable algebraic structures [2,7]. A reason is that it is
not clear how to capture the computability issues for a topological space (even
if the space is Polish) by a single countable algebraic structure. Nevertheless,
people often look for analogues of well-developed notions and methods of the
computable structure theory in the topological context. For instance, analogues
of computable categoricity turned out fruitful also in the study of computable
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metric spaces and Banach spaces (see e.g. [18,19]), and analogues of degree
spectra turned out interesting also for topological spaces [12,14,22].

In this paper, we introduce some natural numberings of classes of effective
quasi-Polish (EQP-) spaces and initiate their investigation in analogy with num-
berings of classes of algebraic structures popular in computable structure the-
ory (see e.g. [8–11,20] and references therein). Quasi-Polish spaces [3] are a
class of well-behaved countably based spaces that includes many spaces of inter-
est in analysis and theoretical computer science, such as Polish spaces and ω-
continuous domains. The study of effective versions of quasi-Polish spaces was
initiated in [16,21] and recently continued in [4,6,13]. Theorem 11 in [6] char-
acterises the EQP-spaces (called there precomputable QP-spaces) as the spaces
of ideals of c.e. transitive relations on ω (see also Theorem 3 in [4] for a more
direct proof). This characterisation is very much in the spirit of domain theory
where similar characterisations of computable domains are important. It is a
basic technical tool of our paper because it enables to deduce precise complexity
estimates for (the index sets of) several natural classes of EQP-spaces. These
estimates are the main technical results of this paper but we also establish some
facts on the complexity of (effective) homeomorphism.

After recalling some preliminaries in the next section, we discuss in Sect. 3
natural numberings of some classes of c.e. binary relations on ω and of the cor-
responding classes of EQP-spaces (some of which were considered in [22]). In
Sect. 4 we estimate the complexity of (effective) homeomorphism in the intro-
duced numberings in parallel to the similar question for algebraic structures (see
e.g. [8,9,11]). In Sect. 5 we establish precise estimates of index sets of some pop-
ular classes of spaces related to separation axioms, which are certainly the main
technical results of this paper.

2 Preliminaries

Here we recall some notation, notions and facts used throughout the paper. More
special information is recalled in the corresponding sections below.

We use standard set-theoretical notation, in particular, Y X is the set of func-
tions from X to Y , and P (X) is the class of subsets of a set X. All (topological)
spaces in this paper are countably based T0 (cb0-spaces, for short). We denote the
homeomorphism relation by ». An effective space is a pair (X,β) where X is a
cb0-space, and β : ω → P (X) is a numbering of a base in X such that there is a
uniformly c.e. sequence {Aij} of c.e. sets with β(i)Xβ(j) “ ⋃

β(Aij) where β(Aij)
is the image of Aij under β. We simplify (X,β) to X if β is clear from the context.

The effective space (X,β) is c.e. (or overt) if the set {n | β(n) ‰ H} is c.e. A
subspace of a c.e. space is not necessarily c.e. Among the effective spaces are: the
discrete space N of natural numbers, the Euclidean spaces Rn, the Scott domain
Pω (the powerset of the natural numbers with the Scott-topology; see [1] for
information about domains), the Baire space N “ N

N, the Hilbert cube [0, 1]ω;
all these spaces come with natural numberings of bases. With any effective space
(X,β) we associate the canonical embedding e : X → Pω defined by e(x) “ {n |
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x P β(n)}. The canonical embedding is a computable homeomorphism between
X and the subspace e(X) of Pω.

In any effective space X, one can define effective versions of classical hier-
archies (see e.g. [21]), in particular the effective Borel hierarchy {Σ0

1`n(X)}năω

and the effective Luzin hierarchy {Σ1
n(X)}năω. For X “ ω, these coincide resp.

with the arithmetical and analytical hierarchies.
An effective space is effective Polish (resp. effective quasi-Polish, abbrevi-

ated as EQP) if it is effectively homeomorphic to a Π0
2 -subspace of the Hilbert

cube (resp. the Scott domain). Note that EQP-spaces are called in [6] precom-
putable QP-spaces, while c.e. EQP-spaces are called computable QP-spaces. All
the aforementioned examples of spaces are c.e. EQP-spaces. Moreover, all com-
putable Polish spaces and all computable ω-continuous domains (see e.g. [21])
are c.e. EQP-spaces. However, an effective Polish space is not necessarily com-
putable Polish (nor even Δ1

1-computable Polish; for example, consider a Π0
1

subspace P of N
N with no Δ1

1 elements. If P were Δ1
1-overt, P would have a

Δ1
1 element). The relation of effective homeomorphism between effective spaces

will be denoted by »e. Note that if (X,β) »e (Y, γ) then X » Y . All classes of
effective spaces considered below will be closed under »e.

We use standard terminology about binary relations and about domains (see
e.g. [1,22]). In particular, an ideal of (S; ρ) is a directed lower subset of S. By
interpolable relations we mean transitive relations ă on S such that any initial
segment {x | x ă y}, y P S, is directed.

We conclude this section with recalling the basic fact established in Theorem
11 [6] (see also Theorem 3 in [4] for additional details). Let ă be a transitive
relation on ω. We consider the set I(ă) of all ideals of ă as a topological space
with the topology induced by the Scott topology on Pω. More precisely, the
sets [n]ă “ {I P I(ă) | n P I} for n P ω form a basis of the topology and
not just a subbasis. As shown in [6], such spaces of ideals are closely related to
QP-spaces, namely: a space X is quasi-Polish iff it is homeomorphic to I(ă) for
some transitive relation ă on ω. Moreover, an effective space (X, ξ) is EQP iff it
is computably homeomorphic to I(ă) for some transitive c.e. relation ă on ω.

3 Enumerating Classes of Spaces

Here we introduce and study numberings of some classes of relations on ω and of
EQP-spaces. Some natural numberings of spaces may be defined directly from
the definitions of Sect. 2. For any effective space X, let πX be the standard
numbering of Π0

2 -subspaces of X. In the particular case X “ Pω we obtain
the numbering π “ πX of all (up to »e) EQP-spaces. In the particular case
X “ [0, 1]ω, πX is a numbering of all effective Polish spaces (because, up to
homeomorphism, Polish spaces are precisely the Π0

2-subspaces of the Hilbert
cube, see e.g. Theorem 4.14 in [15]); setting μ(n) “ e(πX(n)), where e is the
canonical embedding of [0, 1]ω into Pω, we obtain a numbering μ of effective
Polish spaces realised as Π0

2 -subspaces of Pω.
Other natural numberings of spaces are defined using the ideal represen-

tations. We first define some numberings of classes of relations on ω. Setting



Enumerating Classes of Effective Quasi-Polish Spaces 91

Vn “ {(i, j) | 〈i, j〉 P Wn}, we obtain a standard computable numbering {Vn} of
the class E of all c.e. binary relations on ω. Let T, I, P, O be the classes of all
transitive c.e. relations, all interpolable c.e. relations, all c.e. preorders, and all
c.e. partial orders on ω, respectively.

Proposition 1.

(1) There is a computable function t such that: Vt(n) P T, Vn P T implies
Vn “ Vt(n), and Vm “ Vn implies Vt(m) “ Vt(n).

(2) There is a computable function p such that: Vp(n) P P, Vn P P implies
Vn “ Vp(n), and Vm “ Vn implies Vp(m) “ Vp(n).

(3) There is a computable function o such that: Vo(n) P O, and Vn P O implies
Vn “ Vo(n).

Proof.

(1) As t we can take arbitrary computable function such that Vt(n) is the tran-
sitive closure of Vn (such a function obviously exists).

(2) As p we can take arbitrary computable function such that Vp(n) is the reflex-
ive transitive closure of Vn (such a function obviously exists).

(3) Given a computable step-wise enumeration of {Vp(n)}, it is straightforward
to construct a computable sequence {An} of c.e. partial orders on ω such
that: An Ď Vp(n); if Vp(n) is a partial order then An “ Vp(n); if Vp(n) is not a
partial order then almost all elements of An are pairwise incomparable. As
o we can take arbitrary computable function such that Vo(n) “ An. �

We thank an anonymous referee for showing that there is no function o as in
item (3) with the additional property that Vm “ Vn implies Vo(m) “ Vo(n).

Corollary 1. The classes T,P,O have computable numberings, namely the
numberings {Vt(n)}, {Vp(n)}, {Vo(n)}, respectively.

We do not know whether the class I has a computable numbering but we
can define a natural non-computable one {Vi(n)} where i is the H′′-computable
function which enumerates the Π0

2 -set {m | Vt(m) P I} in the increasing order.
Let also j, c be H′′-computable functions which enumerate the Σ0

3 -sets {m |
Vt(m) is computable} and {m | Vp(m) is computable}, respectively.

Theorem 11 in [6], Corollary 1, and Propositions 3, 4 in [22] imply that
{I(Vt(n))}, {I(Vp(n))}, {I(Vo(n))}, {I(Vc(n))} are numberings of all (up to »e)
EQP-spaces, positive algebraic domains, c.e. algebraic domains, and computable
algebraic domains, respectively (see [22] for precise definitions and a discus-
sion of these classes of domains); we sometimes denote these numberings by
ι, α, β, γ, respectively. Sequences {I(Vi(n))} and {I(Vj(n))} are numberings of
natural classes of ω-continuous domains, which we also denote by δ and ε, respec-
tively. Below is a summary of the introduced numberings.

– μ: Standard numbering of Π0
2 -subspaces of [0, 1]ω.

– π: Standard numbering of Π0
2 -subspaces of Pω.
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– ι: Numbering of EQP-spaces derived from the computable numbering {Vt(n)}
of c.e. transitive relations (T).

– α: Numbering of positive algebraic domains derived from the computable
numbering {Vp(n)} of c.e. preorders (P).

– β: Numbering of c.e. algebraic domains derived from the computable num-
bering {Vo(n)} of c.e. partial orders (O).

– γ: Numbering of computable algebraic domains derived from the H′′-
computable numbering of computable partial orders.

– δ: Numbering of ω-continuous domains derived from the H′′-computable num-
bering {I(Vi(n))} of interpolable c.e. relations (I).

– ε: Numbering of ω-continuous domains derived from the H′′-computable num-
bering {I(Vj(n))} of interpolable computable relations.

The next proposition compares the introduced numberings under the follow-
ing preorder on the numberings of effective spaces: ν ďe ν′, if ν(n) »e ν′(f(n))
for some computable function f ; let ”e be the equivalence relation induced by
ďe. For an oracle h, let ďh

e and ”h
e be the h-relativizations of ďe and ”e, respec-

tively. The presence of oracles in some of the reductions below is explained by
the fact that numberings γ, δ, ε are defined in a less constructive way than the
other numberings.

Proposition 2. We have: μ ďe π ”e ι, β ďe α ďe ι, ε ďH′′
e δ ďH′′

e ι, and
γ ďH′′

e α. The binary operations of product and coproduct are represented by
computable functions in any of the numberings μ, π, ι, α, γ (again, up to ”e).

Proof. The relation π ”e ι follows from the effectivity of proofs of Theorem
11 in [6] and Theorem 3 in [4]. The relation μ ďe π follows from Theorem 1
in [13] because the Hilbert cube is a computable Polish space. The remaining
relations follow from the definition of the numbering and of functions i, j, c, and
from Proposition 1. The assertion about product and coproduct is checked in a
straightforward way, similar to Sects. 3.1 and 3.2 in [4]. �

One could hope to find new interesting classes of EQP-spaces by restricting
the general transitive relations. We conclude this section by showing that we get
computably equivalent numberings of EQP-spaces based on computable strict
partial orders instead of all c.e. transitive relations.

Proposition 3. There is a computable function s such that Vs(n) is a com-
putable strict partial order and I(Vt(n)) »e I(Vs(n)) for each n P ω.

Proof. We write ăn for the relation Vt(n). Let ă(k)
n be a computable relation sat-

isfying ∀n, x, y(x ăn y Ø Dk(x ă(k)
n y)), and let {Fi} be a computable enumera-

tion of all non-empty finite subsets of ω. Then there is a computable function s
such that s(n) is an index for the relation Ăn defined as 〈i, l〉 Ăn 〈j,m〉 iff the fol-
lowing all hold: (1) Fi Ď Fj , (2) l ă m, (3) ∀x ď m,∀k ď m(x ă(k)

n y Ñ x P Fj),
(4) Dy P Fj ,∀x P Fi, Dk ď m(x ă(k)

n y). The relation Ăn is computable, irreflex-
ive, and transitive, hence it is a computable strict partial order. One then
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checks that the functions f : I(ăn) → I(Ăn) and g : I(Ăn) → I(ăn), defined
as f(I) “ {〈j,m〉 | Fj Ď I ^ m P ω} and g(I) “ ⋃

〈j,m〉PI Fj , are computable
inverses of each other. We omit the details. �

4 Complexity of (Effective) Homeomorphism

Here we estimate the complexity of (effective) homeomorphism relations »e and
» in the introduced numberings and deduce some corollaries. Similar questions
for algebraic structures were studied in detail (see e.g. [8,9,11]). In the next
theorem we collect some estimates which for the classes of domains resemble the
corresponding estimates for algebraic structures1, while for Polish and quasi-
Polish spaces are apparently higher.

To obtain the estimate for ι, we employ the representation of computable
functions f : I(ă1) → I(ă2) between spaces of ideals, where ă1, ă2 P T, estab-
lished in [4], Theorem 2. We associate with any R Ď N ˆ N a partial func-
tion �R� from I(ă1) to I(ă2) as follows: �R�(I) “ {n P N | Dm P I(mRn)},
dom(�R�) “ {I P I(ă1) | �R�(I) P I(ă2)}. By Theorem 2 in [4], a function
f : I(ă1) → I(ă2) is computable iff f “ �R� for some c.e. binary relation R.

For the case ă1, ă2 P I of domains, the above representation may be simpli-
fied using the effective version of results in Sect. 2.2.6 of [1] (see Definition 2.2.27
and Theorem 2.2.28). Namely, the computable functions f : I(ă1) → I(ă2)
coincide with the functions �R� where R is a binary c.e. relation on ω satisfying
the following conditions: if aRb and a ă1 a′ then a′Rb; if aRb and b′ ă2 b then
aRb′; for any a there is b with aRb; for all a, b, b′ with aRb, aRb′ there is b′′ with
b ă2 b′′, b′ ă2 b′′, and aRb′′; if aRb then a′Rb for some a′ ă1 a. Conjunction of
these conditions is denoted as mor(R, ă1, ă2) (meaning “R is a morphism from
ă1 to ă2”). We note that �R� “ idI(ă1) iff aRb Ø b ă1 a.

Theorem 1.

(1) Let ν P {α, β, γ, δ, ε}. Then the relations ν(m) »e ν(n) and ν(m) » ν(n)
are Σ0

3 -complete and Σ1
1 -complete sets, respectively. Moreover, they are resp.

Σ0
3 - and Σ1

1 -complete equivalence relations under the computable reducibility
of equivalence relations.

(2) Let ν P {ι, μ}. The relations ν(m) »e ν(n) and ν(m) » ν(n) are Π1
1 and

Σ1
2 , respectively.

Proof. 1. First we prove the upper bounds. For ν “ α, it is easy to see (cf. proof
of Theorem 2 in [22]) that α(m) »e α(n) iff (ω;Vp(m)) »e (ω;Vp(n)) iff

Dk, l∀x, y(ϕk(x) Ó ^ϕl(x) Ó ^(xVp(m)y Ø ϕk(x)Vp(n)ϕk(y)) ^ (xVp(n)y Ø
ϕl(x)Vp(m)ϕl(y)) ^ xVp(m)ϕl(ϕk(x))Vp(m)x ^ yVp(n)ϕk(ϕl(y)Vp(n)y)),

hence the relation is Σ0
3 . For the relation » we only have to add the functional

quantifier Dh in the beginning of the above formula and relativize ϕ to the oracle
h; this yields the desired estimate Σ1

1 .
1 We thank Nikolay Bazhenov for the related bibliographical hints.
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The above argument works for ν “ β if we just replace p by o. For ν “ γ,
we also replace p by c; it is easy to see that the H′′-computability of c does not
damage the estimate Σ0

3 and (trivially) the estimate Σ1
1 .

For ν “ δ, we use the representation of computable functions between ideal
spaces described before the formulation of the theorem: δ(m) »e δ(n) iff

Dk, l, x, y(x “ i(m) ^ y “ i(n) ^ mor(Vk, Vx, Vy) ^ mor(Vl, Vy, Vx) ^
∀a, b(a(Vl ◦ Vk)b Ø bVxa) ^ ∀a, b(a(Vk ◦ Vl)b Ø bVya).

Since i is H′′-computable, the first two conjuncts in the main parenthesis are
Σ0

3 . Since Vx is c.e., the same holds for the third and fourth conjuncts, while the
fifth and sixth conjuncts are Π0

2 . This concludes the estimate for »e. For the
relation » we only have to add the functional quantifier Dh in the beginning of
the above formula and replace Vk, Vl by V h

k , V h
l ; this yields the desired estimate

Σ1
1 . The above argument (with j in place of i) works for ν “ ε.

Now we prove the lower bounds. By Theorem 4.7(a) in [11], for any Σ0
3 set

A there are computable sequences {Lk}, {Mk} of computable linear orders on
ω such that k P A iff Lk »e Mk. By the definition of ideal spaces, Lk »e Mk

iff I(Lk) »e I(Mk) iff A ďm {〈k, l〉 | ν(k) »e ν(l)} for every ν P {α, β, γ, δ, ε},
concluding the proof for Σ0

3 .
By Theorem 4.4(d) in [11], for any Σ1

1 set A there are computable sequences
{Lk}, {Mk} of computable linear orders on ω such that k P A iff Lk » Mk.
Repeating the argument of the previous paragraph, we obtain the proof for Σ1

1 .
It remains to show that »e and » are also complete as equivalence relations.

As follows from Proposition 4 in [9], for any Σ0
3 equivalence relation A on ω there

is a computable sequence {Lk} of computable partial orders on ω such that kAl
iff Lk »e Ll which proves the Σ0

3 completeness for every ν P {α, β, γ, δ, ε}. By
Theorem 5 in [8], for any Σ1

1 equivalence relation A on ω there is a computable
sequence {Lk} of computable linear orders on ω such that kAl iff Lk » Ll. This
proves the Σ1

1 completeness for every ν P {α, β, γ, δ, ε}.
2. By Proposition 2, we can use ι instead of π. Denoting the relation Vt(n) in

Proposition 1 by ăn, we obtain: ι(m) »e ι(n) iff I(ăm) »e I(ăn) iff

Dk, l(�Vk� : I(ăm) → I(ăn) ^ �Vl� : I(ăn) → I(ăm) ^
�Vl� ◦ �Vk� “ idI(ăm) ^ �Vk� ◦ �Vl� “ idI(ăn)),

hence it suffices to check that the relation �Vl� ◦ �Vk� “ idI(ăm) is Π1
1 . Since it

is equivalent to ∀I P I(ăm)(�Vj�(�Vi�(I)) “ I), this follows from the definition
of �R�(I).

The second assertion is a straightforward relativization of the first one.
Indeed, ι(m) » ι(n) iff I(ăm) » I(ăn) iff

DR,S Ď N
2(�R� : I(ăm) → I(ăn) ^ �S� : I(ăn) → I(ăm) ^

�S� ◦ �R� “ idI(ăm) ^ �R� ◦ �S� “ idI(ăn)),

hence the relation is Σ1
2 . �
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We do not currently know whether the estimates in item 2 of the above
theorem are precise. From the effective Stone duality developed in [12,14] it
follows that the homeomorphism relation between computable compact Polish
spaces is Σ1

1 -complete, as it was noticed in a recent communication of the third
author with Alexander Melnikov (see Corollary 4.28 in [5]). But for computable
Polish spaces the question remains open.

As a corollary of Theorem 1 and Proposition 2, we obtain upper bounds for
ι-index sets of some natural classes of spaces.

Corollary 2. Let ν P {μ, α, β, γ, δ, ε}. Then {n | Dm(ι(n) »e ν(m))} is Π1
1 and

{n | Dm(ι(n) » ν(m))} is Σ1
2 .

In particular, the problem of deciding whether a given effective quasi-Polish
space is effectively homeomorphic to a metrizable space (a c.e. domain, c.e. alge-
braic domain, etc.) is Π1

1 . For the homeomorphism problem, it is Σ1
2 . In the next

section we show that the estimate for metrizable spaces can be improved.

5 Complexity of Separation Axioms

Here we discuss some classes of spaces related to separation axioms. Let
T1, T2,R,M be the classes of T1-, T2-, regular, and metrisable spaces, respec-
tively. Let {Dn} be the standard numbering of finite subsets of ω, then the sets
Ďn “ {A Ď ω | Dn Ď A} form the standard basis of the Scott topology on Pω.

Proposition 4. The π-index set of any of the classes T1, T2, R, M is Π1
1 .

Proof. By the definition of a T1-space, π(m) P T1 iff ∀x, y P π(m)(x ‰ y →
Dn(x P Ďn �� y)). Since π(m) P Π0

2 (Pω), we get π´1(T1) P Π1
1 .

By the definition of a T2-space, π(m) P T2 iff

∀x, y P π(m)(x ‰ y → Di, j(x P Ďi ^ y P Ďj ^ Ďi X Ďj X π(m) “ H)).

Since Ďi XĎj Xπ(m) “ H iff ∀z P π(m)(z �P Ďi∨z �P Ďj), we have π´1(T2) P Π1
1 .

Recall that X is regular iff for every x P X and every basic neighborhood U
of x there is a basic neighborhood V of x such that the closure Cl(V ) of V in
X is contained in U . For X “ π(m) this reads: π(m) P R iff ∀x P π(m)∀i(x P
Ďi → Dj(x P Ďj ^ Cl(Ďj X π(m)) Ď Ďi)). Thus, it suffices to check that the
relation ∀y(y P Cl(Ďj X π(m)) → y P Ďi) is Π1

1 , and for this it suffices to
check that the relation y P Cl(Ďj X π(m)) is Σ1

1 . The relation is equivalent to
∀k(y P Ďk X π(m) → Dz P Ďj X π(m)(z P Ďk)), hence it is indeed Σ1

1 .
By the Urysohn metrisation theorem we have M “ T1 XR, hence the estimate

Π1
1 for π´1(M) follows from the previous ones. Note that the upper bound Σ1

2 of
π´1(M) in Corollary 2 (without using the Urysohn theorem) is much worse. �

Next we show that the upper bounds of Proposition 4 are optimal. Our proofs
below demonstrate that the ideal characterisations provide useful tools for such
kind of results. Recall that the following implications hold for cb0-spaces:

metrizable ⇐⇒ regular “⇒ Hausdorff “⇒ T1 “⇒ T0.
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We start with the following Π1
1 -completeness result with respect to the num-

bering ι (i.e., the numbering of all effective quasi-Polish spaces induced from
the standard numbering of c.e. transitive relations), where recall ι ”e π from
Proposition 2.

Theorem 2. Let F Ď ω be a Π1
1 set. Then, there exists a computable function

which, given p P ω, returns an ι-index of a c.e. EQP-space X such that
{

X is metrizable if p P F,

X is not T1 if p �P F.

Proof. Recall that the set of indices of well-founded computable trees is Π1
1

complete. Hence, instead of a Π1
1 set, we consider computable trees. Let T Ď ωăω

be a computable tree. Our space X will be {Ix : x P ωω}∪{Jx : x P [T ]} equipped
with the specialization order Jx ď Ix, where [T ] is the set of all infinite paths
through T . The discussion from here on is to write down this space X as an
ideal space.

For each σ P ωăω, we prepare for a new symbol σ. Let |σ| be the length
of σ, and put |σ| “ |σ|. If σ is nonempty, i.e., |σ| ą 0, we denote by σ´ the
immediate predecessor of σ. We define a computable binary relation ă on the
set |ă| :“ {σ, σ : σ P ωăω} as follows: If σ P ωω is nonempty, enumerate σ´ ă σ,
σ´ ă σ, and σ ă σ. If σ �P T then we also enumerate σ´ ă σ. Then consider its
transitive closure and define X “ I(ă).

Note that if a ă b then either |a| ă |b| or a “ σ and b “ σ for some σ P ωăω.
If I is an ideal of ă, then for any a P I one can use directedness of I twice
to obtain b, c P I such that a ă b ă c. Then, by the property of ă mentioned
above, we have |a| ă |c|. Therefore, any ideal contains arbitrarily long strings.
Moreover, as no pair of incomparable strings has an upper bound, in order for a
set to be directed, all of its members must be comparable. This means that for
any ideal I of ă there exists an infinite string x P ωω such that I consists only
of the initial segments of x or those underlined in them. In other words, I is the
ă-downward closure of {σ : σ ⊂ x} or {σ : σ ⊂ x}, where we mean by σ ⊂ x
that σ is an initial segment of x.

If x is an infinite path through T , then the downward closure of {σ : σ ⊂ x}
is Jx “ {σ : σ ⊂ x}, and the downward closure of {σ : σ ⊂ x} is Ix “ {σ, σ : σ ⊂
x}. Both Ix and Jx are ideals, and since Jx Ď Ix, obviously Jx P [τ ]ă implies
Ix P [τ ]ă, so Jx ďX Ix, where recall that [n]ă “ {I P I(ă) : n P I} is a basic open
set, and ďX is the specialization order. Hence, if T is not well-founded, then X
is not T1. If T is well-founded, then any x P ωω has an initial segment σ �P T ,
and for any such σ we have σ´ ă σ´ ă σ ă σ ă . . . . Hence, {σ : σ ⊂ x} and
{σ : σ ⊂ x} have the same downward closure Ix “ {σ, σ : σ ⊂ x}. Therefore, any
ideal is of the form Ix for some x P ωω. Thus, we have X “ {Ix : x P ωω}, which
is homeomorphic to Baire space ωω. This is because, as |ă| “ {σ, σ : σ P ωăω} is
the underlying set of the binary relation ă, the set {[σ]ă, [σ]ă : σ P ωăω} yields
the topology on X by definition, and the above argument shows X X [σ]ă “
X X [σ]ă “ {Ix : σ ⊂ x}. In particular, X is metrizable.
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For overtness, given σ P ωăω, if x extends σ then Ix “ {σ, σ : σ ⊂ x} is
an ideal of ă as seen above, and contains both σ and σ; hence Ix P [σ]ă and
Ix P [σ]ă. This means that X X [τ ]ă �“ H for any τ P |ă|. In particular, X is
overt. �

Theorem 2 shows that, for any i P {1, 2, 3}, the ι-index set of all c.e. EQP
Ti-spaces is Π1

1 -complete, where a second countable T0 space is T3 if and only if
it is metrizable. This result can be further extended as follows.

Theorem 3. Let M Ď H Ď F Ď ω be Π1
1 sets. Then, there exists a computable

function which, given p P ω, returns an ι-index of a c.e. EQP-space X such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X is metrizable if p P M,

X is Hausdorff, butnotmetrizable if p P H\M,

X is T1, but not Hausdorff if p P F\H,

X is not T1 if p �P F.

This means that every tuple (M,H,F ) of Π1
1 -sets such that M Ď H Ď F

uniformly m-reduces to (ι´1(M), ι´1(T2), ι´1(T1)). Let us decompose the proof
of Theorem 3 into a few lemmas.

Lemma 1. Let H Ď ω be a Π1
1 set. Then, there exists a computable function

which, given p P ω, returns an ι-index of a c.e. EQP-space X such that
{

X is metrizable if p P H,

X is T1, but not Hausdorff if p �P H.

Proof. First, one specific example of a second countable T1 topology which is
not Hausdorff is called a telophase topology [23, II.73]. Here, our construction
is closer to the one in [17], which adds an inseparable pair of points at infinity
to ω than the one in [23, II.73], which adds a new point 1‹ to [0, 1] where (1, 1‹)
forms an inseparable pair. In our construction, a tree T Ď ωăω is first given.
For x P ωω, if x is an infinite path through T then we add an inseparable pair
(Ix, I‹

x) of points at infinity to the discrete space ωăω. If x is not an infinite path
through T then we add a single point Jx at infinity to ωăω.

Formally, given a tree T Ď ωăω, we consider the following specific presen-
tation ă of a telophase topology: For each σ P ωăω, we prepare for symbols
σ, [σ,∞], and [σ,∞‹]. We define a computable binary relation ă on the set
|ă| :“ {σ, [σ,∞], [σ,∞‹] : σ P ωăω}. If σ is nonempty, we denote by σ´ the
immediate predecessor of σ, and enumerate [σ´, o] ă [σ, o] ă σ ă σ for each
o P {∞,∞‹}. If σ �P T , we also enumerate [σ´,∞‹] ă [σ,∞] ă [σ,∞‹]. Then
consider its transitive closure and define X “ I(ă).

First, since σ ă σ, the ă-downward closure of {σ} forms an ideal. This is
Iσ “ {σ} ∪ {[τ,∞], [τ,∞‹] : τ Ď σ}, where we mean by τ Ď σ that τ is an initial
segment of σ. Note that the subspace Y “ {Iσ : σ P ωăω} of X is discrete since
Y X [σ]ă “ {Iσ}. For any a �P Iσ, a and σ have no common upper bound, so Iσ is
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the unique ideal containing σ. If an ideal I does not contain σ for any σ P ωăω,
then as in the proof of Theorem 2, one can see that I contains [σ,∞] or [σ,∞∗]
for an arbitrarily long string σ. Moreover, as no pair of incomparable strings has
an upper bound, in order for a set to be directed, all of its members must be
comparable. This means that for any such ideal I of ă there exists an infinite
string x P ωω such that I consists only of [σ,∞] or [σ,∞‹] for initial segments
σ of x. In other words, such an I is the ă-downward closure of {[σ,∞] : σ ⊂ x}
or {[σ,∞‹] : σ ⊂ x}.

If x is an infinite path through T , then both Ix “ {[σ,∞] : σ ⊂ x} and
I‹
x “ {[σ,∞‹] : σ ⊂ x} are downward closed. Hence, any ideal is of the form

Iσ, Ix or I‹
x. We claim that the latter two ideals as points cannot be separated

by disjoint open sets. This is because any basic open sets containing Ix and
I‹
x are of the form [[σ,∞]]ă for some σ ⊂ x and [[τ,∞‹]]ă for some τ ⊂ x

respectively. However, [[σ,∞]]ă and [[τ,∞‹]]ă always have an intersection Iρ,
where ρ is a common extension of σ and τ . Hence, X is not Hausdorff. If x is not
an infinite path through T , then as in the proof of Theorem 3, one can see that
both {[σ,∞] : σ ⊂ x} and {[σ,∞‹] : σ ⊂ x} have the same downward closure
Jx “ {[σ,∞], [σ,∞‹] : σ ⊂ x}. In any case, no two ideals are comparable by Ď,
so X is T1. Hence, if T is ill-founded, then X is T1, but not Hausdorff.

If T is well-founded, then as seen above, any ideal is of the form Iσ or Jx;
that is, X “ {Iσ : σ P ωăω} ∪ {Jx : x P ωω}. We claim that X is home-
omorphic to the Polish space ωďω :“ ωăω ∪ ωω whose topology is generated
from {σ : σ P ωăω} and [σ] “ {x P ωďω : x extends σ}. This is because, as
|ă| “ {σ, [σ,∞], [σ,∞‹] : σ P ωăω} is the underlying set of the binary relation
ă, the set {[σ]ă, [[σ,∞]]ă, [[σ,∞‹]]ă : σ P ωăω} yields the topology on X by
definition, and the above argument shows X X [[σ,∞]]ă “ X X [[σ,∞‹]]ă “ {Iτ :
τ Ď σ}∪{Jx : σ ⊂ x}. Hence, the union of the map σ �Ñ Iσ and the map x �Ñ Jx

gives a homeomorphism between ωďω and X. In particular, X is metrizable.
For overtness, given σ P ωăω, we have Iσ P [σ]ă, and if x extends σ then

Ix, Jx P [[σ,∞]]ă and I‹
x, Jx P [[σ,∞‹]]ă. This means that X X [τ ]ă �“ H for any

τ P |ă|. In particular, X is overt. �

Lemma 2. Let M Ď ω be a Π1
1 set. Then, there exists a computable function

which, given p P ω, returns an ι-index of a c.e. EQP-space X such that
{

X is metrizable if p P M,

X is Hausdorff, but not metrizable if p �P M.

Proof. First, one specific example of a second countable Hausdorff topology
which is not metrizable is called a double origin topology [23, II.74]. It is like a
Euclidean plane with two origins, which cannot be separated by closed neighbor-
hoods (that cause non-metrizability). Here, our construction is closer to the one
in [17], which is quasi-Polish, while the example in [23, II.74] is not quasi-Polish.
In our construction, a tree T Ď ωăω is first given. The base plane of our space is
the discrete space ωˆ(ωăω \ωăω). For each x P ωω, the points In,x “ (n, x) and
(∞, x) may be added. Here, if x is an infinite path through T then two points
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Jx̀ and Jx́ corresponding to (∞, x) are added, and these cannot be separated by
closed neighborhoods. Indeed, the intersection of any two closed neighborhoods
containing Jx̀ and Jx́ respectively contains In,x for an arbitrary large n. If x is
not an infinite path through T then the plane is folded in half with the abscissa
{In,x : n P ω} as the fold line, and then Jx̀ is identified with Jx́ .

Formally, given a tree T Ď ωăω, we consider the following specific presen-
tation ă of a telophase topology: For each n P ω and σ P ωăω, we prepare for
symbols (n, σ), (n, σ), (n, σ˘), [n, σ] and [n, σ]. We define a computable binary
relation ă on the set

|ă| :“ {(n, σ), (n, σ), (n, σ˘), [n, σ], [n, σ] : n P ω and σ P ωăω}.

For any m ă n, put the following:

[m,σ] ă [n, σ] ă (n, σ) ă (n, σ),
[m,σ] ă [n, σ] ă (n, σ) ă (n, σ).

If τ is a proper initial segment of σ, put the following:

(n, τ˘) ă (n, σ˘), (n, σ˘) ă (n, σ), (n, σ˘) ă (n, σ).

If m ă n and τ is a proper initial segment of σ, put the following:

[m, τ ] ă [n, σ], [m, τ ] ă [n, σ].

If σ �P T , m ă n, and τ is a proper initial segment of σ, then we also put the
following:

[m, τ ] ă [n, σ] ă [n, σ], (n, σ) ă (n, σ) ă (n, σ).

Then consider its transitive closure and define X “ I(ă). For a directed set
D, let ÓD denote the ă-downward closure of D. As in the previous proofs, one
can see that any ideal of ă is one of the following forms:

In,σ “ Ó{(n, σ)}, In,σ “ Ó{(n, σ)}, In,x “ Ó{(n, σ˘) : σ ⊂ x},

J`
x “ Ó{[n, σ] : n P ω and σ ⊂ x}, J´

x “ Ó{[n, σ] : n P ω and σ ⊂ x}

If x is not an infinite path through T , then it is easy to see that In,σ “ In,σ

and Jx̀ “ Jx́ . We claim that X is Hausdorff. First, to see In,σ and Im,τ are
separated for n �“ m or σ �“ τ where σ, τ P ωăω, note that (n, σ) and (m, τ)
have no common upper bound, so [(n, σ)]ă and [(m, τ)]ă have no intersection.
Thus, the points In,σ and Im,τ are separated by [(n, σ)]ă and [(m, τ)]ă. Similarly,
one can see that In,σ and In,τ are separated. If σ P T then In,σ and In,σ are
separated, and if σ �P T then In,σ “ In,σ. If m ą n then (n, σ˘) and [m,σ] have
no common upper bound, so [(n, σ˘)]ă and [(m,σ)]ă have no intersection. Thus,
In,x and Jx̀ are separated by them. In a similar manner, one can easily separate
pairs (In,x, Jý ), (In,σ, Jx̀ ), (In,σ, In,x), etc. If x is an infinite path through T ,
then [n, σ] and [n, σ] have no common upper bound, so [[n, σ]]ă and [[n, σ]]ă
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have no intersection. Thus, Jx̀ and Jx́ are separated by them. If x is not an
infinite path through T , then Jx̀ “ Jx́ . This concludes that X is Hausdorff.

If x is an infinite path through T , we claim that Jx̀ and Jx́ cannot be sep-
arated by closed neighborhoods. Indeed, we show that any closed neighborhood
of Jx̀ or Jx́ contains In,x for some n P ω. To see this, consider an open neighbor-
hood [[n, σ]]ă of Jx̀ . Then, for any m ě n, [(m,σ˘)]ă is an open neighborhood
of Im,x. Since m ě n, (m,σ) is a common upper bound of [n, σ] and (m,σ˘), so
we have Im,σ P [(m,σ)]ă Ď [[n, σ]]ă X [(m,σ˘)]ă. Hence, any open neighborhood
of Im,x intersects with [[n, σ]]ă, and this means that the closure of [[n, σ]]ă con-
tains Im,x for any m ě n. Similarly, the closure of [[n, σ]]ă contains Im,x for any
m ě n. This verifies the claim. In particular, if T is ill-founded, then such an x
exists, so X is not metrizable.

If T is well-founded, then In,σ “ In,σ and Jx̀ “ Jx́ . Hence,

X “ {In,σ : n P ω and σ P ωăω} ∪ {In,x : n P ω and x P ωω} ∪ {J`
x : x P ωω}.

We claim that X is embedded into the Polish space Z “ (ω ` 1) ˆ ωďω,
where ω ` 1 is the one point compactification of ω, and ωďω endowed with the
Polish topology as in the proof of Lemma 1. Indeed, the union of the maps
〈n, σ〉 �Ñ In,σ, 〈n, x〉 �Ñ In,x, and 〈ω, x〉 �Ñ Jx̀ gives a homeomorphism between
(ω ˆ ωďω) ∪ ({ω} ˆ ωω) Ď Z and X. This is because we have [(n, σ)]ă “ {In,σ},
and if T has no infinite path extending σ, then we have [(n, σ˘)]ă “ {In,τ : σ Ď
τ} ∪ {In,x : σ ⊂ x}, and [[n, σ]]ă “ {Im,τ : n ď m,σ Ď τ} ∪ {In,x : n ď m,σ ⊂
x}∪{Jx̀ : σ ⊂ x}. This means that the basic open set [(n, σ)]ă in X corresponds
to the basic open set {〈n, σ〉} in Z, the basic open set [(n, σ˘)]ă in X corresponds
to the basic open set {n}ˆ{x P ωďω : σ ⊂ x} in Z, and the basic open set [[n, σ]]ă
in X corresponds to the basic open set {m P ω ` 1 : m ě n} ˆ {x P ωďω : σ ⊂ x}
in Z. Hence, if T is well-founded, then X is metrizable. Overtness of X is obvious
as before. �

Remark 1. Our proof of Lemma 2 actually gives a metrizable space if p P M ,
and a Hausdorff but not T2.5 space if p �P M . On the other hand, an anonymous
referee suggested an alternative proof of Lemma 2, which gives a metrizable space
if p P M , and a T2.5 (indeed, submetrizable) but not metrizable space if p �P M : It
is the product space ωω ˆ [0, 1]2 with C “ [T ]ˆ{(x, y) : x “ 0 and y ą 0} added
to the topology as a closed set. Taken together, Theorem 3 is more complete:
Every tuple (M,U,H,F ) of Π1

1 -sets such that M Ď U Ď H Ď F uniformly
m-reduces to (ι´1(M), ι´1(T2.5), ι´1(T2), ι´1(T1)).

Proof of Theorem 3. Let M Ď H Ď F Ď ω be Π1
1 sets. Let XF , XH and XM

be c.e. EQP-spaces obtained by Theorem 2, Lemma 1 and Lemma 2. Then,
consider the disjoint union of these spaces, i.e., X “ ({0}ˆXF ) ∪ ({1}ˆXH) ∪
({2} ˆ XM ). If p P M then all of these spaces are metrizable, so X is metrizable.
If p P H\M , then XF and XH are metrizable, and XM is Hausdorff, but not
metrizable. Therefore, X is Hausdorff, but not metrizable. If p P F\H, then XF

is metrizable, XH is T1, but not Hausdorff, and XM is Hausdorff. Therefore, X
is T1, but not Hausdorff. If p �P F , then XF is not T1. Thus, X is not T1. �
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Abstract. In language learning in the limit, we study computable
devices (learners) learning formal languages. We consider learning tasks
paired with restrictions regarding, for example, the hypotheses made
by the learners. We compare such restrictions with each other in order
to study their impact and depict the results in overviews, the so-called
maps. In the case of explanatory learning, the literature already provides
various maps.

On the other hand, in the case of behaviourally correct learning, only
partial results are known. In this work, we complete these results and
provide full behaviourally correct maps for different types of data presen-
tation. In particular, in all studied settings, we observe that monotone
learning implies non-U-shaped learning and that cautiousness, semantic
conservativeness and weak monotonicity are equally powerful.

Keywords: Language Learning in the Limit · Behaviourally Correct
Learning · Learning Restrictions · Map

1 Introduction

Motivation. In his seminal work, Gold [10] introduced the language learning
in the limit framework. Here, a learner (a computable function) successively
receives positive information about a target language (a subset of the natural
numbers). With each new datum, the learner produces a conjecture which lan-
guage it believes to be presented. Once these guesses converge to a single, correct
explanation of the target language, we say that the learner successfully learned
the target language.

This is known as explanatory learning and denoted as1 TxtGEx. We focus on
the semantic version thereof, namely behaviourally correct learning [5,21], denoted
as TxtGBc. Here, almost all conjectures of the learner have to be correct (but
do not need to be syntactically identical). Naturally, each single language may be
learned by a learner which always suggests (a conjecture for) this language. Thus,
we focus on learning classes of languages learnable by a single learner.
1 Particularly, a text (Txt) provides positive information about the target language,

from which Gold-style (G) learners then infer their conjectures. Lastly, Ex for stands
for explanatory learning.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Berger et al. (Eds.): CiE 2022, LNCS 13359, pp. 103–114, 2022.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08740-0_9&domain=pdf
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These learning criteria are extended or altered to study the impact of cer-
tain restrictions. These may limit which hypotheses are allowed, for example
requiring them to follow a monotone behaviour or by constraining when changes
of conjectures are allowed, or the data representation, for example, by leaving
out information on the order the data is presented. An overview of the stud-
ied restrictions can be found in Sect. 2. A particular branch of study focuses on
the pairwise relation between such restrictions. The findings are then depicted
in overviews, so-called maps. The literature already provides maps of explana-
tory learners with various modes of data representation [11,15,16]. However, for
behaviourally correct learning only partial results on the pairwise interaction of
different restrictions are known so far [2,7–9,12,17].

Our Contribution. In this work, we provide the missing relations. This way,
we obtain a full picture regarding the pairwise relation of the studied restric-
tions. We provide the collected findings in Fig. 1. In particular, we observe in
all studied settings that classes of languages that can be learned by learners
which never discard correctly conjectured elements, that is, monotone learners,
can also be learned by learners which never change their mind from a correct
guess, that is, non-U-shaped learners. These results are presented in Lemma 1
and Theorems 3 and 5. Furthermore, we find that learners which base their guess
solely on the set of elements presented change their mind only when witnessing
inconsistent information, see Theorem 2. We note that analogous results hold in
the explanatory setting [14–16]. However, one difference between these settings
is that neither learners which may change their mind only when inconsistent,
nor learners which never fall back to a proper subset of a previous guess depend
on the order or amount of data presented, see Theorem 2.

Another contribution of this work pertains to normal forms of learners. Par-
ticularly interesting are strongly Bc-locking learners [15]. These learners have,
on each text for a target language, a Bc-locking sequence, that is, a sequence
which contains enough information for the learner to be correct and never change
its mind any more regardless what information from the target language it
receives [3,12]. With Theorem 4, we complete the literature by showing that
for all considered restrictions the learners may be assumed strongly Bc-locking.

Future Work. We leave studying one important restriction to future work:
decisiveness [20]. Here, a learner may never get back to a previous, rejected
hypothesis. In particular, it is open to resolve whether each class of languages
a monotone learner learns can be learned decisively. We note that Theorem 2
shows that decisiveness is no restriction for learners which base their hypotheses
solely on the set of elements, that is, set-driven learners.

The impact of the data presented during learning varies depending on the
studied restriction [6–8,17]. For example, cautious or semantically conservative
learners do not rely on the order or amount of data presented while monotone
learners do. Future work may resolve how the provided data impacts decisive
and non-U-shaped learners.
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WMon
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TxtPsdδBc

(a)
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Fig. 1. A depiction of the relation between the studied restrictions (compare Sect. 2)
for Gold-style and partially set-driven (see Fig. (a)) as well as set-driven learning (see
Fig. (b)). Solid and dashed lines imply trivial and non-trivial inclusions (both bottom-
to-top), respectively. Greyly edged areas illustrate a collapse of the enclosed learning
criteria. There are no further collapses.

Structure of the Work. This work is structured as follows. In Sect. 2, we
shortly discuss important concepts for this work. In the remaining sections, we
discuss the initial situation for the respective studied mode of data representation
and provide our results to complete the particular map. Missing proofs and the
full preliminaries can be found in the full version2 of this paper.

2 Language Learning in the Limit

In this section, we shortly introduce important concepts for language learning in
the limit. We learn languages L ⊆ N (recursively enumerable sets) using learners
(computable functions). Hereby, information about the target language is suc-
cessively provided by texts (lists containing all and only the positive information
about the target language). An interaction operator β provides the learner with
the information to make its guess. In this work, we consider the interaction oper-
ators Sd for set-driven learning [23], which provides the learner only with the
set of elements, Psd for partially set-driven learning [3,22], where the learners
additionally receive a counter of the total elements presented so far, and G for
Gold-style learning [10], where the learners also obtain information on the order
the elements are presented in.

We consider the following learning criteria. Initially, for explanatory learning
(Ex, [10]) the learner is expected to converge to a single, correct hypothesis
2 https://hpi.de/fileadmin/user upload/fachgebiete/friedrich/documents/Doskoc/

CiE DoskocKoetzing BCMaps.pdf.

https://hpi.de/fileadmin/user_upload/fachgebiete/friedrich/documents/Doskoc/CiE_DoskocKoetzing_BCMaps.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/friedrich/documents/Doskoc/CiE_DoskocKoetzing_BCMaps.pdf
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when presented a target language. In our work, we focus on a relaxation thereof:
We expect the learner to converge to a semantically correct hypothesis, while
it may change its mind syntactically. This is known as behaviourally correct
learning (Bc, [5,21]). We consider further restrictions. In non-U-shaped learning
(NU, [2]) the learner may never discard a correct guess. For consistent learning
(Cons, [1]) each hypothesis must include the information it is based on. We
also consider various monotonic restrictions [13,18,24]. For strongly monotone
learning (SMon) the learner may not discard elements present in any previous
guess, while for monotone learning (Mon) this applies only to the set of correctly
guesses elements. On the other hand, for weakly monotone learning (WMon) the
learner must not discard any elements while its hypothesis is consistent with the
information seen. Similarly, in cautious learning (Caut, [20]) the hypotheses may
never fall back to the proper subset of a previous hypothesis, and, as a relaxation
thereof, in target-cautious learning (CautTar, [15]) the hypotheses may not be
a proper superset of the target language. For semantically conservative learning
(SemConv, [17]) the learner may not change a hypothesis while it is consistent
with the data given. Lastly, in semantically witness-based learning (SemWb,
[17]) the learner must justify each mind change. We combine any two restrictions
δ and δ′ by intersecting them and denote this as δδ′. With T we denote the
absence of a learning restriction.

In this work, we denote a learning criterion as Txtβδ. Here, Txt signalizes
that we are learning from text, β indicates the interaction operator and δ is the
restriction required to hold on all texts belonging to some target language. Given
a learner h, we write Txtβδ(h) for the set of all languages h Txtβδ-learns. The
set of, for all learners h′, all Txtβδ(h′) is denoted as [Txtβδ] and referred to as
learning power of Txtβδ-learners. Note that we solely consider total learners,
as all behaviourally correct learners may be assumed total [17].

Certain sequences may contain especially valuable information for learners.
A Bc-locking sequence contains sufficient information on the target language so
that the learner does not change its mind (semantically) from a correct hypoth-
esis any more, regardless what information from the target language it wit-
nesses [3,12]. It is known that every Bc-learner has a Bc-locking sequence [3],
however, there are learners and texts where no initial sequence of the text is a
Bc-locking sequence [3]. We call a learner h strongly Bc-locking if every text
of every language it learns contains an initial sequence serving as a Bc-locking
sequence [15–17].

3 Set-Driven Map

In set-driven learning, unrestricted learners may be assumed cautious and con-
sistent at the same time [8]. Furthermore, semantically conservative and seman-
tically witness-based learners may be assumed consistent and equally power-
ful [17]. As a matter of fact, they are even as powerful as their Gold-style coun-
terpart [7]. In this section we show that all of these learners are equal regarding
their learning power. In particular, we exploit two known concepts. First, we use
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the same approach as when showing that set-driven learners may be assumed
target-cautious [8] to show that without loss of generality they are also non-U-
shaped, see Lemma 1. Using this, we can obtain semantically conservative learn-
ers (see Theorem 2) in a similar fashion as when making semantically conserva-
tive learners so everywhere [7]. In particular, we can override wrong hypotheses
of the learners using witnessing elements (as, by target-cautious learning, incor-
rect guesses cannot overgeneralize the target language) and right hypotheses are
never discarded (by non-U-shaped learning).

Lemma 1. Every TxtSdBc-learner h may be assumed to be target-cautious
(CautTar), non-U-shaped (NU) and consistent (Cons) simultaneously.

Theorem 2. We have that

[TxtSdBc] = [TxtSdCautBc] = [TxtGCautBc]
= [TxtSdSemWbBc] = [TxtGSemWbBc].

Now, the set-driven map is completed, as monotone learning is a restriction,
but strictly more powerful than strongly monotone learning [12].

4 Partially Set-Driven Map

Theorem 2 already shows that semantically conservative, semantically witness-
based, cautious and weakly monotone learning coincide in the partially set-driven
setting. However, these restrictions are known to be restrictive [12,17]. Further-
more, they are known to be incomparable to monotone learning [12], while both
are more powerful than strongly monotone learning [12]. Non-U-shaped learning
separates from the mentioned restrictions [12,17]. However, non-U-shaped learn-
ing is a restriction for Gold-style learners [2,9] and, equivalently, for partially
set-driven learners [8]. Note that for explanatory learners this is not the case [4].

We complete this map by showing that monotone learning implies non-U-
shaped learning, see Theorem 3. In particular, we create a new hypothesis by
adding all information obtainable by some future hypothesis generated from all
seen elements. If this generates a correct hypothesis, no future hypotheses may
be wrong, as otherwise the current hypothesis must contain further elements.

Theorem 3. We have that [TxtPsdMonBc] ⊆ [TxtPsdNUBc].

Proof. Let h be a TxtPsdMonBc-learner. Note that h is, without loss of gen-
erality, strongly Bc-locking [17]. Let furthermore L = TxtPsdMonBc(h). We
provide a TxtPsdNUBc-learner h′ which learns L. For all finite sets D ⊆ N,
all t < ∞ and all s ∈ N≥1, define

W 0
h′(D,t) = D,

W s
h′(D,t) =

⋃

(D′,t′) with

(D,t)�(D′,t′)�(W s−1
h′(D,t)

,t+s)

W s−1
h(D′,t′).



108 V. Doskoč and T. Kötzing

Finally, Wh′(D,t) =
⋃

s∈N
W s

h′(D,t). Intuitively, the learner h′ produces its hypoth-
esis on (D, t) iteratively. At stage s, W s

h′(D,t) enumerates all elements witnessed
by the learner h on some hypothesis extending (D, t) using elements witnessed
so far, that is, elements in W s−1

h′(D,t).
We show that h′ TxtPsdNUBc-learns L. Let L ∈ L and T ∈ Txt(L). We

provide a proof in two steps.

1. We first show that there exists an n0 such that Wh′(content(T [n0]),n0) = L.
2. Afterwards, we show that, for all n, whenever Wh′(content(T [n]),n) = L we have,

for all n′ > n, also Wh′(content(T [n′]),n′) = L.

For the first, let n0 be such that (D, t) := (content(T [n0]), n0) is a Bc-locking
information for h on L. Then, by definition of h′, we have Wh′(D,t) ⊇ Wh(D,t) =
L. For the other direction, we show that for all s ∈ N we have W s

h′(D,t) ⊆ L by
induction on s. We get the statement for s = 0 immediately. Assuming it holds
for s ∈ N, we show it for s + 1. Since W s

h′(D,t) ⊆ L, we have that (D′, t′) with
(D, t) � (D′, t′) � (W s

h′(D,t), t + s + 1) is also a Bc-locking information for h on
L. In particular, we have Wh(D′,t′) = L. This results in

W s+1
h′(D,t) =

⋃

(D′,t′) with
(D,t)�(D′,t′)�(W s

h′(D,t),t+s+1)

W s
h(D′,t′) ⊆ L.

For the second claim, let n ∈ N and (D, t) := (content(T [n]), n) be such
that Wh′(D,t) = L, let n′ ≥ n and (D′′, t′′) := (content(T [n′]), n′). Note that
D ⊆ D′′ ⊆ L and t′′ ≥ t. We show that Wh′(D′′,t′′) = L. First, note that (D′′, t′′)
will eventually be considered when enumerating Wh′(D,t), that is, there exists an
s ∈ N such that (D′′, t′′) � (W s−1

h′(D,t), t + s). Hence,

Wh′(D′′,t′′) =
⋃

s∈N

⋃

(D′,t′) with

(D′′,t′′)�(D′,t′)�(W s−1
h′(D′′,t′′),t+s)

W s−1
h(D′,t′)

⊆
⋃

s∈N

⋃

(D′,t′) with

(D,t)�(D′,t′)�(W s−1
h′(D,t)

,t+s)

W s−1
h(D′,t′) = Wh′(D,t) = L.

Secondly, we show that for each x ∈ L = Wh′(D,t) we also have x ∈ Wh′(D′′,t′′).
We show (by induction on s) that W s

h′(D,t) ⊆ Wh′(D′′,t′′). For s = 0 we have
W s

h′(D,t) = D ⊆ D′′ = W 0
h′(D′′,t′′) ⊆ Wh′(D′′,t′′). Let the statement be fulfilled

until s. At step s + 1, we distinguish the following cases.

1. Case: If W s
h′(D,t) = W s+1

h′(D,t), that is, no new element is enumerated, the
statement of the induction step is true immediately.

2. Case: If W s
h′(D,t) � W s+1

h′(D,t), let x ∈ W s+1
h′(D,t) \W s

h′(D,t). Note that x ∈ L. Let

(D̃, t̃), with (D, t) � (D̃, t̃) � (W s
h′(D,t), t + s), be the information on which x

was witnessed, that is, x ∈ Wh(D̃,t̃). By W s
h′(D,t) ⊆ Wh′(D′′,t′′) (the induction
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assumption), there exists s′′ such that (D̃, t̃) � (W s′′
h′(D′′,t′′), t

′′ + s′′). Since h
is monotone and x ∈ L we have

x ∈ Wh(W s′′
h′(D′′,t′′),t

′′+s′′)

def. of h′

⊆ Wh′(D′′,t′′).

Altogether, we get the desired result. �	

5 Gold-Style Learning Map

The overall situation for Gold-style learning is basically analogous to the initial
situation for partially set-driven learning as discussed in Sect. 4, compare the
literature [2,9,12,17] and Theorem 2. We complete the map by showing that
monotone learning implies non-U-shaped learning, see 5.

We aim to employ a similar approach as for the partially set-driven case. To
that end, we have to overcome two obstacles. Firstly, we show that monotone
Gold-style learners are strongly Bc-locking, see Theorem 4. In particular, this
shows that all restrictions studied in this paper allow for strongly Bc-locking
learning [4,17]. Secondly, Gold-style learners infer from sequences, meaning that
extensions considered at a certain step do not necessarily have to be considered
in later steps (as opposed to partially set-driven learning). We circumvent this
by also enumerating elements from previous guesses on which the learner shows
a monotone behaviour, as they are likely part of the target language.

Theorem 4. Any TxtGMonBc-learner may be assumed strongly Bc-locking.

Proof. This proof is inspired by the proof based on private communication with
Sanjay Jain where, for certain restrictions δ, [TxtPsdδBc] = [TxtGδBc] is
shown [8, Thm. 10]. Let h be a learner and let L = TxtGMonBc(h). We
provide a strongly Bc-locking TxtGMonBc-learner h′ for L as follows. For two
finite sequences σ, σ′, define the auxiliary function g as

Wg(σ′,σ) =
⋂

τ∈content(σ)
≤|σ|
#

Wh(σ′τ) ∩
⋂

σ′′≤σ′,
σ′′∈content(σ′)∗

#

⋃

τ ′′∈content(σ′)∗
#

Wh(σ′′τ ′′).

Then, define the learner h′ on finite sequences σ as

Wh′(σ) =
⋃

σ′⊆σ

Wg(σ′,σ).

The intuition is the following. With the function g, we search for minimal Bc-
locking sequences [8]. To ensure that g eventually only contains elements from
the target language, we extend the left hand intersection to be based on σ.
However, as σ contains more and more information, additional sequences are also
considered in the right hand intersection. This may lead to already enumerated
elements being discarded (even if they belong to a target language). To prevent
this, we take the union over all possible Wg(σ′,σ).
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We formally show that h′ has the desired properties. First, we show that h′

is Mon. Let L ∈ L and σ1, σ2 ∈ L∗
# with σ1 ⊆ σ2. We show that for all x ∈ N

x ∈ Wh′(σ1) ∩ L ⇒ x ∈ Wh′(σ2) ∩ L.

As x ∈ Wh′(σ1), there exists σ′
1 ⊆ σ1 such that x ∈ Wg(σ′

1,σ1), that is,

x ∈
⋂

τ∈content(σ1)
≤|σ1|
#

Wh(σ′
1τ) ∩

⋂

σ′′≤σ′
1,

σ′′∈content(σ′
1)

∗
#

⋃

τ ′′∈content(σ′
1)

∗
#

Wh(σ′′τ ′′). (1)

In particular, x ∈ Wh(σ′
1)

. We show that x ∈ Wg(σ′
1,σ2). By monotonicity of h,

we have that
x ∈

⋂

τ∈content(σ2)
≤|σ2|
#

Wh(σ′
1τ).

As the right hand intersection in Eq. (1) (of which x is an element) does not
depend on σ1, we have that

x ∈
⋂

τ∈content(σ2)
≤|σ2|
#

Wh(σ′
1τ) ∩

⋂

σ′′≤σ′
1,

σ′′∈content(σ′
1)

∗
#

⋃

τ ′′∈content(σ′
1)

∗
#

Wh(σ′′τ ′′)

= Wg(σ′
1,σ2).

By definition of h′ and since σ′
1 ⊆ σ1 ⊆ σ2, we have

Wg(σ′
1,σ2) ⊆

⋃

σ′⊆σ2

Wg(σ′,σ2) = Wh′(σ2).

Thus, x ∈ Wh′(σ2) ∩ L.
We now show that h′ is strongly Bc-locking (and thus also Bc-learns L). Let

L ∈ L and T ∈ Txt(L). Let σ0 ∈ L∗
# be the ≤-minimal Bc-locking sequence for

h on L [3]. For each σ′ < σ0 with content(σ′) ⊆ L, let τσ′ ∈ L∗
# be such that

σ′τσ′ is a Bc-locking sequence for h on L [19]. Let n0 be such that h converges
on T [n0], that is, for all n′ ≥ n0, Wh(T [n]) = L. Let n1 ≥ n0 be such that

– σ0 ≤ T [n1],
– σ0 ∈ content(T [n1])∗

#, and
– for all σ′ < σ0 such that content(σ′) ⊆ L, we have that content(σ′τσ′) ⊆

content(T [n1]) and |τσ′ | ≤ n1.

To show that σ1 := T [n1] is a Bc-locking sequence for h′ on L, we show that, for
any ρ ∈ L∗

#, σ1
�ρ =: σ1ρ is a correct guess, that is, Wh′(σ1ρ) = L. Let ρ ∈ L∗

#.
We prove each direction of Wh′(σ1ρ) = L separately.

1.C.: Wh′(σ1ρ) ⊆ L: Let x ∈ Wh′(σ1ρ). Then there exists σ′ ⊆ σ1ρ such that
x ∈ Wg(σ′,σ1ρ). In particular,

x ∈
⋂

τ∈content(σ1ρ)
≤|σ1ρ|
#

Wh(σ′τ) ∩
⋂

σ′′≤σ′,
σ′′∈content(σ′)∗

#

⋃

τ ′′∈content(σ′)∗
#

Wh(σ′′τ ′′). (2)

We distinguish based on the relation between σ′ and σ1.



Behaviourally Correct Maps 111

1.1.C.: If σ′ ⊆ σ1, then there exists τ ∈ content(σ1ρ)≤|σ1ρ|
# such that σ′τ = σ1.

As h(σ1) is a correct guess and Wh(σ1) is considered in the left hand
intersection of Eq. (2), we have that x ∈ L.

1.2.C.: If σ′
� σ1, we have σ0 ≤ σ1 ⊆ σ′ and σ0 ∈ content(σ1)∗

# ⊆
content(σ′)∗

#. Thus, σ0 is considered in the right hand intersection
of Eq. (2). Since, for any τ ∈ L∗

#, we have Wh(σ0τ) = L, we get
x ∈ Wh(σ0τ) = L.

2.C.: L ⊆ Wh′(σ1ρ): Let x ∈ L. We show that x ∈ Wg(σ1,σ1ρ). As h is monotone,
σ1 ⊆ σ1ρ and h converges on σ1, we have

x ∈
⋂

τ∈content(σ1)∗
#

Wh(σ1�τ).

Moreover, by choice of n1, we have, for all σ′′ ≤ σ1 with σ′′ ∈ content(σ1)∗
#,

that τ ′′
σ′′ ∈ content(σ1)∗

#. As σ′′τ ′′
σ′′ is a Bc-locking sequence for h on L,

we get x ∈ Wh(σ′′τ ′′
σ′′ ). Hence,

x ∈
⋂

σ′′≤σ1,
σ′′∈content(σ1)

∗
#

⋃

τ ′′∈content(σ1)∗
#

Wh(σ′′τ ′′).

Altogether, x ∈ Wg(σ1,σ1ρ) ⊆ Wh′(σ1ρ).

In the end, we have Wh′(σ1ρ) = L, which concludes the proof. �	
Theorem 5. We have that [TxtGMonBc] ⊆ [TxtGNUBc].

Proof. Let h be a TxtGMonBc-learner. Without loss of generality, h may be
assumed strongly Bc-locking, see Theorem 4. Let L = TxtGMonBc(h). We
provide a learner h′ which TxtGNUBc-learns L. To do so, we employ both a
forward enumeration strategy (via sets Fσ,s) as well as a backward search strategy
(via sets Bσ,s). For a finite sequence σ and computation step s ∈ N we define
Fσ,s (forward enumeration set) and Bσ,s (backwards search set) as follows. Let
Fσ,0 = Bσ,0 = content(σ). Furthermore, let

Fσ,s+1 = Fσ,s ∪
⋃

τ∈(Fσ,s∪Bσ,s)
≤s
#

W s
h(στ).

Intuitively, Fσ,s+1 contains all elements enumerated by some possible future
guess, that is, for τ ∈ (Fσ,s∪Bσ,s)

≤s
# , Wh(στ). Note that this is a similar approach

as in the Psd-case, see the proof of Theorem 3. However, as opposed to partially
set-driven learning, this alone does not suffice. In particular, Fσ,s may consider
σ�τ and σ�τ ′, where τ �= τ ′, in its enumeration, but, for a later hypothesis
σ′, Fσ′,s cannot consider both, as σ′ cannot extend both σ�τ and σ�τ ′. To
circumvent this, we need the backwards search set Bσ,s.

To define Bσ,s, we introduce the following auxiliary predicate and function.
Given a learner h (we omit using Gödel numbers in favour of readability), finite
sequences σ and ρ, an element x ∈ N and a counter s ∈ N, we define

MonBeh(h, ρ, x, s, σ) ⇔ ∀τ ∈ content(σ)≤s+|σ| : x ∈ Wh(ρ�τ).
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Intuitively, MonBeh(h, ρ, x, s, σ) checks whether h, starting on information ρ,
exhibits a monotonic behaviour regarding the element x. We further introduce
a function which gives us the newly enumerated element by some hypothesis.
In particular, let x̃ := nextEl(h′, σ′, σ, s) be the element enumerated next by
Fσ′,s which is not yet in Wh′(σ). Furthermore, let σ̃ := σ′�τ be the (minimal)
sequence on which x̃ has been seen for the first time inside Fσ′,s. We define the
backwards search set as, for finite sequences σ, σ′′ and s ∈ N,

Bσ,0,σ′′ = content(σ′′),

Bσ,s+1,σ′′ = Bσ,s,σ′′ ∪

⎧
⎪⎨

⎪⎩

{x̃}, for x̃ = nextEl(h′, σ′′, σ, s) via σ̃ if
MonBeh(h′, σ̃, x̃, s, σ),

∅, else.

Bσ,s+1 = Bσ,s ∪
⋃

σ′′�σ

Bσ,s,σ′′ .

Note that
⋃

s∈N
Bσ,s,σ′′ ⊆ ⋃

s∈N
Fσ′′,s. The idea behind the backwards search is

based on the following observation. Given two sequences σ′ ⊆ σ, let x be the first
element enumerated by Fσ′,s (which is not in content(σ′)). If x is an element of
the target language, it will eventually be enumerated in Fσ,s as well (as it has to
appear in Wh(σ) by monotonicity of h). However, further enumerations may not
be similar, as Fσ′,s may build its further hypotheses on σ′�x, which in general is
no subsequence of σ. With the backwards search, we check for such elements and
enumerate them in case the learner h shows a monotonic behaviour regarding
them. In the end, we define the learner h′ as

Wh′(σ) =
⋃

s∈N

Bσ,s ∪ Fσ,s.

We show that h′ TxtGNUBc-learns L. Let L ∈ L and T ∈ Txt(L). First,
we show Bc-convergence and afterwards that h′ is NU. To that end, let n0 be
such that T [n0] is a Bc-locking sequence for h on L (this exists by Theorem 4).
For each n < n0, let x̃n = nextEl(h′, T [n], T [n0], s) (via σ̃n) be the first newly
enumerated element not in L (if such exists). Then, let Let n1 ≥ n0 be such
that, for n < n0, for each σ̃n there exists a τ ∈ content(T [n1])

≤|T [n1]|
# such that

h(σ̃�
n τ) is a correct guess. In particular, MonBeh(h, σ̃, x̃, s, T [n1]) fails and,

therefore, no BT [n1],s,T [n] contains elements which are not in L.
Also, for n ≥ n0, BT [n1],s,T [n] only contains elements in L (as T [n0] is a

Bc-locking sequence). Hence, for n ≥ n1, we have
⋃

s∈N

BT [n],s ⊆ L.

In particular, as T [n] is also a Bc-locking sequence, we get
⋃

s∈N

FT [n],s = L.

Thus, Wh′(T [n]) = L.
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It remains to be shown that h′ is NU. Let n be minimal such that Wh′(T [n]) =
L. We show that, for n′ ≥ n, we have Wh′(T [n′]) = L as well. Note that by
definition of the backwards search sets, for ñ ≤ n, we have

⋃

s∈N

BT [n],s,T [ñ] ⊇
⋃

s∈N

BT [n′],s,T [ñ].

Furthermore,
⋃

s∈N

FT [n],s ⊇
⋃

s∈N

FT [n′],s ∪
⋃

ñ∈N,
n≤ñ≤n′

⋃

s∈N

BT [n′],s,T [ñ],

as, firstly, T [n′] is a candidate within, from some s onwards, FT [n],s and, secondly,
the backwards search set

⋃
s∈N

BT [n′],s,T [ñ] can only enumerate as much as the
forward enumeration set

⋃
s∈N

FT [ñ],s. Thus, Wh′(T [n′]) ⊆ Wh′(T [n]) = L. Next
we show that each element x ∈ Wh′(T [n]) will be enumerated in Wh′(T [n′]). We
show this by case distinction depending how x is enumerated in Wh′(T [n]).

1.C.: For some s′, the element x is enumerated in FT [n],s′ . Then, we get x ∈⋃
s∈N

BT [n],s,T [n′] as the MonBeh check passes for elements in L.
2.C.: For some s′ and ñ ≤ n, we have x ∈ BT [ñ],s′,T [n]. Then, x is also enumerated

in
⋃

s∈N
BT [ñ],s,T [n′] as the MonBeh check passes for elements in L.

Thus, Wh′(T [n′]) ⊇ L and, altogether, Wh′(T [n′]) = L. �	
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Abstract. Generalizing Schwichtenberg’s arguments [J. Univ. Comput.
Sci. 11(12), 2086–2095 (2005)], we show that bounded König’s lemma
with a uniqueness hypothesis is equivalent to the decidable fan theo-
rem for bounded spreads over the intuitionistic counterpart EL0 of RCA0

in classical reverse mathematics. Then it follows that bounded König’s
lemma with the uniqueness hypothesis is equivalent to weak König’s
lemma with the uniqueness hypothesis over EL0.

Keywords: Weak König’s lemma · Bounded König’s lemma ·
Uniqueness hypothesis · The decidable fan theorem · Constructive
reverse mathematics

1 Introduction

Reverse mathematics is a research program in foundations of mathematics initi-
ated by Friedman in 1970’s and developed extensively by Simpson and others in
1980’s and thereafter. In reverse mathematics, for each theorem in ordinary (non-
set-theoretic) mathematics, one seeks an equivalent axiom over some weak theory
which does not prove the theorem. As summarized in Simpson’s book [9], reverse
mathematics has been systematically developed mainly over a subsystem RCA0

of second-order arithmetic based on classical logic. The base theory for reverse
mathematical investigation, however, is not necessarily RCA0. Some construc-
tivists (who accept only “constructive” reasoning in proofs) have investigated
the interrelation between non-constructive principles over some constructive the-
ory based on intuitionistic logic. The research of this kind is called constructive
reverse mathematics (cf. [5]). In particular, constructive reverse mathematics
over the intuitionistic counterpart EL0 of RCA0 can be seen as a fine-grained
analysis of classical reverse mathematics (a la Friedman and Simpson).

Weak König’s lemma WKL, which states that every infinite binary tree has
an infinite path, plays a crucial role in classical reverse mathematics [9]. On the
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other hand, Brouwer’s fan theorem FAND(T01) from intuitionistic mathematics
is a sort of contrapositive of WKL. In the context of constructive reverse mathe-
matics, both of WKL and FAND(T01) has been studied extensively. In particular,
as shown in [6], WKL implies FAND(T01) over the intuitionistic counterpart EL0
of RCA0. In contrast, the converse direction is not the case. Then Berger and Ishi-
hara [1] showed that weak König’s lemma with a uniqueness hypothesis WKL!
is equivalent to FAND(T01) in the context of Bishop’s constructive mathematics
(which accepts the use of the full countable choice scheme and the full induction
scheme). In [1], however, the equivalence between WKL! and FAND(T01) is a
consequence from a circle of implications. Later, Schwichtenberg [8] gave a direct
proof of the equivalence (the originality is in the proof of FAND(T01) → WKL!)
and formalize the proof in the Minlog proof assistant. More recently, Moschovakis
[7] studied weak König’s lemma with another uniqueness hypothesis WKL!!.

Bounded König’s lemma BKL, which states that every infinite bounded tree
has an infinite path, is a generalization of WKL. In classical reverse mathematics,
BKL is known to be equivalent to WKL over RCA0 (see [9, Lemma I V.1.4.]),
and frequently used in showing that WKL is enough (as an axiom) to prove
a mathematical assertion on a compactness property. The equivalence between
WKL and BKL is trivial over a theory containing the countable choice scheme
(as Bishop’s constructive mathematics), but not so over RCA0 or EL0 since they
contain only a restriction of the countable choice scheme. The proof of WKL →
BKL over RCA0 in [9, Lemma I V.1.4] provides an effective translation from an
infinite bounded tree into an infinite binary tree such as an infinite path of the
binary tree entails an infinite path of the original bounded tree constructively.1

Recently, the author [4] studied several variations of König’s lemma and
the decidable fan theorem over EL0 (with some additional induction scheme for
some case). In [4], he introduced unique variants BKL! and BKL!! of bounded
König’s lemma, and showed that the uniqueness condition on BKL!! is preserved
(constructively) by the effective translation from an infinite bounded tree into
an infinite binary tree in [9, Lemma I V.1.4], and hence, it follows that WKL!!
implies BKL!! over EL0 (see [4, Lemma 4.26]). However, this seems not to be the
case for BKL!. Thus it is non-trivial whether BKL! is equivalent to WKL! over
EL0. On the other hand, since the two uniqueness hypotheses are equivalent in
the presence of Markov’s non-constructive principle MP (see [4, Lemma 4.25]),
it follows that BKL! is equivalent to WKL! over EL0 + MP.

In this article, we extend the constructive equivalence between WKL! and
FAND(T01) for binary trees [1,8] to the corresponding equivalence for arbitrary
bounded trees (see Theorem 1). For this purpose, we generalize Schwichtenberg’s
arguments for binary trees in [8] to arbitrary bounded trees. Another advantage
of our results over [1,8] is in that all of our arguments are developed inside the
weak intuitionistic theory EL0. Then it follows from our results that BKL! is
equivalent to WKL! over EL0 (see Corollary 1).

1 An analogous translation can be found already in [11, Sect. 4.7.5].
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2 Preparation

We work in the same framework as [4]. Our base theory EL0 is a subsystem of
intuitionistic analysis EL [10, Sect. 1.9.10], which has two-sorted variables (one
is for natural numbers and another is for functions over natural numbers) in
its language. Note that the subscript 0 of EL0 denotes the restriction of the
induction axiom schema to quantifier-free predicates in this context. In addition,
EL0 contains the number-number choice scheme for quantifier-free predicates

QF-AC0,0 : ∀xN∃yNAqf(x, y) → ∃fN→N∀xAqf(x, f(x))

where Aqf is quantifier-free. In fact, EL0 augmented with the law-of-excluded-
middle LEM is equivalent to the most popular base theory RCA0 of classical
reverse mathematics [9]. To explore the relation with classical reverse mathe-
matics, constructive reverse mathematics has been recently carried out over EL0
(cf. [2,4]). See [3, Sect. 2.2.1] for the description of EL0.

Notation. We use the same notation as in [4]. We indicate the types of variables
by their superscripts (N or N

N) but often suppress them when they are clear
from the context. In particular, the letters x, i, j, k,m, n range over objects of
type N (a type for natural numbers), the letters f, g, h, p, q range over objects
of type N

N, which is also denoted by N → N (a type for functions from natu-
ral numbers to natural numbers). We assume a fixed bijective coding of finite
sequences of objects of type N defined by the bijective pairing function (see e.g.
[10, Sect. 1.3.9]). The letters u, v, b range over the set N

∗ of (the codes of) finite
sequences of objects of type N. Under the fixed coding, inside EL0, we identify
an element in N

∗ with its code (an object of type N), and identify a subset of N
∗

with the characteristic function of the corresponding subset of the codes. A finite
sequence consisting of x0, . . . , xk is denoted by 〈x0, . . . , xk〉. The concatenation
of finite sequences u and v is denoted by u ∗ v. The length of a finite sequence
u is denoted by |u|, and if x < |u|, then ux denotes the x-th entry of u. We
write u � v if u is an initial segment of v. For g of type N → N, gn denotes
the initial segment of g of length n, especially, g0 = 〈 〉. If u is a finite sequence,
then û denotes the infinite sequence (of type N → N) u ∗ (λx.0), and un denotes
the initial segment of u of length n for n ≤ |u|. We use the notation Aqf for
quantifier-free predicates.

We also recall the following notions on trees: T ⊆ N
∗ is a tree if ∀u, v ∈

N
∗ (u ∗ v ∈ T → u ∈ T ). A tree T is infinite if ∀iN∃u ∈ N

∗(|u| = i ∧ u ∈ T ).
A height-wise bounding function of a tree T is a function hN→N such that
∀u ∈ T∀j < |u| (uj ≤ h(j)). A tree T is bounded if T has a height-wise
bounding function. A binary tree is a bounded tree with height-wise bounding
function h := λx.1. A path through a tree T is a function pN→N such that
∀i (pi ∈ T ). T ⊆ N

∗ is a bounded spread if T is an inhabited (i.e., 〈 〉 ∈ T )
bounded tree such that ∀u ∈ T∃xN(u ∗ 〈x〉 ∈ T ). A tree T does not have two
paths if

∀pN→N, qN→N (∃n(p(n) 
= q(n)) → ∃n (pn /∈ T ) ∨ ∃n (qn /∈ T )) . (1)
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A tree T has at most one path if

∀pN→N, qN→N (∀n (pn ∈ T ) ∧ ∀n (qn ∈ T ) → ∀n(p(n) = q(n))) . (2)

Uniqueness conditions (1) and (2) for binary trees were studied in [1,8] and
[7] respectively, and they have been generalized for arbitrary finitely-branching
trees recently in [4]. Of course, conditions (1) and (2) are equivalent over classical
logic. In contrast, over intuitionistic logic, condition (1) implies condition (2),
but not vice versa. See [4, Sect. 4.2.1] for more information about conditions (1)
and (2).

Using these notions made in EL0, our principles are defined as follows:

Definition 1. Bounded König’s lemma with a uniqueness hypothesis BKL!
states that for any infinite bounded tree T which does not have two paths, there
exists a path through T . Formally, BKL! is formalized in terms of EL0 as follows
(where we still use the informal description of the inequalities and the negations
of equality for readability):

∀fN
N

, hN
N

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∀uN(f(u) = 0 → ∀j < |u|(uj ≤ h(j)))
∧ ∀uN, vN(f(u ∗ v) = 0 → f(u) = 0)
∧ ∀iN∃uN(|u| = i ∧ f(u) = 0)

∧ ∀pN
N

, qN
N

(∃nN(p(n) 
= q(n))
→ ∃nN (f (pn) 
= 0) ∨ ∃nN (f (qn) 
= 0)

)

→ ∃pN
N∀nNf(pn) = 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3)

In particular, trees are encoded by their characteristic functions in EL0. Weak
König’s lemma with a uniqueness hypothesis WKL! is a particular instance of
BKL! for h := λx.1 in (3) (cf. [4, Sect. 4.2.1]). The bounded decidable fan the-
orem BFAND states that for any quantifier-free predicate (which is decidable in
EL0) Aqf and any bounded spread T ⊆ N

∗,

∀p ∈ T∃mNAqf (pm) → ∃nN∀p ∈ T∃m ≤ nAqf (pm) , (4)

where p ∈ T means ∀iN (pi ∈ T ). Formally, BFAND is formalized in terms of
EL0 as follows (where we still use some informal description as before):

∀gN
N

, fN
N

, hN
N

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∀uN(f(u) = 0 → ∀j < |u|(uj ≤ h(j)))
∧ ∀uN, vN(f(u ∗ v) = 0 → f(u) = 0)
∧ f (〈 〉) = 0 ∧ ∀uN

(

f(u) = 0 → ∃xN (f(u ∗ 〈x〉) = 0)
)

∧ ∀pN
N (∀iN(f (pi) = 0) → ∃mN(g (pm) = 0)

)

→ ∃nN∀pN
N (∀iN(f (pi) = 0) → ∃m ≤ n(g (pm) = 0)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (5)

The binary decidable fan theorem FAND(T01) is a particular instance of BFAND

for h := λx.1 in (5).

In this paper, we prefer the informal (or semi-formal) description for readability.
Our informal description can be translated into the formal description in EL0 in
a straightforward way. The following arguments were already established in [4]:
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Lemma 1 (cf. [4, Lemma 4.5]). EL0 + FAND(T01) � BFAND.

Lemma 2 (cf. [4, Proposition 4.12]). EL0 proves that for a bounded tree Th

with hN→N as its height-wise bounding function, Th does not have two paths if
and only if Th satisfies the following:

∀p, q ∈ {fN→N | ∀iN (f(i) ≤ h(i))}
(∃n(p(n) 
= q(n))

→ ∃n
(

pn /∈ Th
) ∨ ∃n

(

qn /∈ Th
)

)

. (6)

3 Results

Proposition 1. EL0 � WKL! ↔ FAND(T01).

Proof. Inside EL0, one can formalize the proof of the equivalence between
(an equivalent of) WKL! and FAND(T01) in [8] (cf. the proof of Theorem 1
below). ��
Lemma 3. EL0 proves that a bounded tree Th with hN→N as its height-wise
bounding function satisfies

∀u ∈ Th
(

u ≤ h (|u|)) .

Proof. Fix u ∈ Th. In EL0, one can show ∀jN
(

j ≤ |u| → uj ≤ hj
)

by induction
on j. Then, taking |u| as j, we have u = u (|u|) ≤ h (|u|). ��
Lemma 4. EL0 � BKL! → BFAND.

Proof. We recast the proof of that WKL! implies FAND(T01) in [1] (and [8]).
Let T ⊆ N

∗ be a bounded fan with hN→N as its height-wise bounding function.
For showing the decidable fan theorem for T , it suffices to show (4) for a bounded
fan N

∗
≤h := {u ∈ N

∗ | ∀i < |u| (ui ≤ h(i))} which contains T (cf. [4, Remark
4.4]). Let Aqf be a quantifier-free predicate on N

∗ such that ∀q ∈ N
∗
≤h∃jAqf (qj),

where q ∈ N
∗
≤h means ∀iN

(

qi ∈ N
∗
≤h

)

as in (4). In EL0, take (the characteristic
function of) B ⊆ N

∗ as

B = {u ∈ N
∗ | ∃j ≤ |u|Aqf (uj)} .

Then we have
∀q ∈ N

∗
≤h∃n(qn ∈ B). (7)

Now we say that nN is big for B in N
∗
≤h if u ∈ B for all u ∈ N

∗
≤h such that

|u| = n. Note that the predicate “n is big for B in N
∗
≤h” is decidable by Lemma

3. In EL0 (which contains QF-AC0,0), define a function fN→N
∗

such that

– if n is not big for B in N
∗
≤h, f(n) is the least element (as code) in {u ∈

N
∗
≤h \ B | |u| = n};
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– if n is big for B in N
∗
≤h, f(n) = f(k)∗0n−k with the greatest k < n such that

k is not big for B in N
∗
≤h, where 0n−k denotes the finite sequence 〈0, . . . , 0〉

of length n − k.

Put
Th :=

(

N
∗
≤h \ B

) ∪ {

f(n) ∈ N
∗
≤h | nN is big for B in N

∗
≤h

}

.

Note that |f(n)| = n and f(n) ∈ Th ⊆ N
∗
≤h for all nN. If u ∗ v ∈ Th, then

u ∈ Th since B is upward closed. Thus Th is an infinite tree with h as its height-
wise bounding function. To show (6) in Lemma 2, assume that q′, q′′ ∈ {fN→N |
∀iN (f(i) ≤ h(i))} satisfy q′(n) 
= q′′(n) for some nN. By (7), there exist n′ and
n′′ such that q′n′ ∈ B and q′′n′′ ∈ B. Put n0 := max{n + 1, n′, n′′}. Since B is
upward closed, we have q′n0 
= q′′n0, q′n0 ∈ B and q′′n0 ∈ B. If q′n0 ∈ Th and
q′′n0 ∈ Th, by the definition of Th, we have that n0 is big for B in N

∗
≤h and

q′n0 = f(n0) = q′′n0, which contradicts q′n0 
= q′′n0. Thus we have q′n0 /∈ Th

or q′′n0 /∈ Th. Then, by Lemma 2, it follows that Th does not have two paths.
By BKL!, there exists a path pN→N through Th. Since p ∈ Th (in the same

sense as in (4)), by (7), there exists nN
1 such that pn1 ∈ B. Since p is a path

through Th, we have that n1 is big for B in N
∗
≤h. Then, for all q ∈ N

∗
≤h, we have

qn1 ∈ B, and hence, there exists j ≤ n1 such that Aqf (qj). Thus we have shown
∀q ∈ N

∗
≤h∃j ≤ n1Aqf (qj). ��

For the converse direction of Lemma 4, we use the product type N × N.
Since there is a bijective pairing function in EL0, one can encode objects of type
N × N or (N × N)∗ (the type for the finite sequences of elements of type N × N)
into objects of type N in EL0. To make our arguments absolutely clear, we fix
a pairing function π : N × N → N with its inverses πl, πr : N → N such that
πl(x, y) = x, πr(x, y) = y and π

(

πl(z), πr(z)
)

= z for all x, y, z ∈ N (see e.g. [10,
Sect. 1.3.9]).

Notation. In what follows, we employ the following notation:

– For h ∈ N
N,

• u ∈ (N × N)∗
≤h denotes u ∈ (N×N)∗ and ∀i < |u|(πl(ui) ≤ h(i)∧πr(ui) ≤

h(i));
• f ∈ (N × N)N≤h denotes f ∈ (N × N)N and ∀i(πl(f(i)) ≤ h(i) ∧ πr(f(i)) ≤

h(i)).
– For f ∈ N → (N × N), f l and fr denote the functions λi. πl (f(i)) and

λi. πr (f(i)) respectively.
– For u ∈ (N × N)∗, ul ≡ ur ≡ 〈 〉 if u is an empty sequence, otherwise, ul and

ur denote the sequences 〈πl (u0) , πl (u1) , . . . , πl
(

u|u|−1

)〉 and
〈πr (u0) , πr (u1) , . . . , πr

(

u|u|−1

)〉 respectively.
– For u ∈ N

∗ such that |u| = 2j > 0, ueven and uodd denote the sequences
〈u0, u2, . . . , u2j−2〉 and 〈u1, u3, . . . , u2j−1〉 respectively.

– For u ∈ N
∗ such that |u| = 2j > 0, ũ denotes the finite sequence in (N × N)j

(of length j) such that (ũ)i = π
(

(ueven)i ,
(

uodd
)

i

)

for all i < j.
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– For h ∈ N
N, h̃ denotes the function in N

N such that h̃(2i) = h̃(2i + 1) = h(i)
for all i ∈ N.

Lemma 5. EL0 + BFAND proves that for all hN→N, nN and X ⊆ (N × N)∗
≤h, if

∀u ∈ (N × N)∗
≤h ∀j < |u| (uj ∈ X → u ∈ X) (8)

and
∀f ∈ (N × N)N≤h

(

f ln 
= frn → ∃mN
(

fm ∈ X
)

)

, (9)

then
∃kN∀f ∈ (N × N)N≤h

(

f ln 
= frn → fk ∈ X
)

. (10)

Proof. Fix hN→N, nN and X ⊆ (N × N)∗
≤h which satisfy (8) and (9). Without

loss of generality, assume n > 0. Consider the following decidable predicate
on N

∗:

Aqf(u) :≡ ∃j ≤ |u|
(

j ≥ n ∧ |u| = 2j ∧
(

ueven n 
= uodd n → ũ ∈ X
))

.

Note that
T h̃ :=

{

u ∈ N
∗ | ∀i < |u|

(

ui ≤ h̃(i)
)}

is a bounded fan with h̃ as its height-wise bounding function.
We claim that for any q in T h̃ (in the same sense as in (4)), there exists mN

such that Aqf(qm) holds. For given q ∈ T h̃, put q′ := λi.q(2i) and q′′ := λi.q(2i+
1). Then, by the definition of T h̃, we have that q′(i) ≤ h(i) and q′′(i) ≤ h(i) for
all iN. Now either q′ n = q′′ n or q′ n 
= q′′ n. In the former case, we trivially have
Aqf (q(2n)). In the latter case, by (9), there exists mN such that q′′′ m ∈ X where
q′′′ ∈ (N × N)N≤h is defined as q′′′(i) = π (q′(i), q′′(i)). Put m′ := max{n,m}.

Then, by (8), we have q′′′ m′ ∈ X. Since q̃(2m′) = q′′′ m′, we have Aqf (q(2m′))
in a straightforward way.

Then, by BFAND, there exists k ∈ N such that ∀q ∈ T h̃∃m ≤ kAqf (qm). In
the following, we show that this k is a desired witness of (10). Fix f ∈ (N × N)N≤h

such that f ln 
= frn. Define f ′ ∈ N → N as f ′(2i) = f l(i) and f ′(2i+1) = fr(i).
Since f ∈ (N × N)N≤h, we have that f ′(i) ≤ h̃(i) for all iN, and hence, f ′ ∈ T

˜h (in
the same sense as in (4)). Then there exists n′ ≤ k such that Aqf

(

f ′ n′), namely,
there exists j′ < n′ such that

n′ ≥ 2n ∧ n′ = 2j′ ∧
(

(

f ′ n′)even n 
= (

f ′ n′)odd n → ˜f ′ n′ ∈ X

)

. (11)

By the definitions, we have
(

f ′ n′)even n = f ln and
(

f ′ n′)odd n = frn, and

hence,
(

f ′ n′)even n 
= (

f ′ n′)odd n. By (11), we have ˜f ′ n′ ∈ X, and hence,
fj′ ∈ X. Since j′ < n′ ≤ k, by (8), we have fk ∈ X. ��



122 M. Fujiwara

Lemma 6. EL0 + BFAND proves that a bounded tree T not having two paths
satisfies the following:

∀nN∃k ≥ n∀u, v ∈ T (|u| = |v| = k → un = vn) . (12)

Proof. Let Th be a bounded tree with hN→N as its height-wise bounding function.
Fix nN. Put

X :=
{

u ∈ (N × N)∗
≤h | ¬ (

ul ∈ Th ∧ ur ∈ Th
)

}

.

In what follows, we show that (8) and (9) in Lemma 5 hold for these h, n and X.
For verifying (8), fix v ∈ (N × N)∗

≤h and j < |v| such that vj ∈ X. Since X is
decidable in EL0, it suffices to show ¬¬ (v ∈ X). Assume v /∈ X. Since our tree
Th is decidable in EL0, we have vl ∈ Th and vr ∈ Th. Then, since Th is a tree,
we have (vj)l ∈ Th and (vj)r ∈ Th, which contradicts vj ∈ X. Thus we have
shown v ∈ X.

For verifying (9), fix f ∈ (N × N)N≤h such that f ln 
= frn. Since Th does not
have two paths, there exists mN such that f lm /∈ Th or frm /∈ Th. In either
case, we have fm ∈ X in a straightforward way.

Then, by Lemma 5, there exists kN which satisfies (10). Put k′ := max{n, k}.
We show that this k′ is our desired witness. Fix u and v in Th such that |u| =
|v| = k′. Assume un 
= vn. Take û and v̂, which are trivially in (N × N)N≤h. Define
f ∈ (N × N)N as f(i) = (û(i), v̂(i)). Since f l n = û n = un 
= vn = v̂ n = fr n,
by (10) and (8), we have f k′ ∈ X. On the other hand,

(

f k′)l = û k′ = u ∈ Th

and
(

f k′)r = v̂ k′ = v ∈ Th, which is a contradiction. Thus we have shown
¬¬ (un = vn), and hence, un = vn follows. ��
Lemma 7. EL0 + BFAND � BKL!.

Proof. Let Th be an infinite bounded tree Th with hN→N as its height-wise
bounding function. By Lemma 6, we have (12) for this Th. By Lemma 3, any
u ∈ Th of length k is bounded by hk. Then, using QF-AC0,0 in EL0, we have
that there exists fN→N such that

∀nN
(

f(n) ≥ n ∧ ∀u, v ∈ Th (|u| = |v| = f(n) → un = vn)
)

. (13)

Without loss of generality, assume that f is monotone, namely,

∀iN, jN (i ≤ j → f(i) ≤ f(j)) .

Since Th is infinite, by QF-AC0,0, there exists gN→N such that

∀nN
(

g(n) ∈ Th ∧ |g(n)| = n
)

.

Put bn := g (f(n)) n, and define p ∈ N
N as p(n) := (bn+1)n. In what follows, we

show that this p is a path through Th. Since bn ∈ Th for all nN, it suffices to
show that pn = bn for all nN.
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For this purpose, we first claim that bn = bn+1 n for all nN. Fix nN. Since
both of g(f(n)) and g (f(n + 1))(f(n)) are in Th and of length f(n), by (13),
we have

bn = g (f(n)) n = g (f(n + 1)) (f(n)) n

= g (f(n + 1)) n = g (f(n + 1)) (n + 1) n = bn+1 n.

Now we show ∀nN (pn = bn) by induction on n. The base case is trivial. For
the induction step, assume that pn = bn. Then, using the above claim, we have

p(n+1) = pn∗〈p(n)〉 = bn ∗〈p(n)〉 = bn ∗〈(bn+1)n〉 = bn+1 n∗〈(bn+1)n〉 = bn+1.

��
Theorem 1. EL0 � BKL! ↔ BFAND.

Proof. By Lemma 4 and Lemma 7. ��
Corollary 1. EL0 � BKL! ↔ WKL!.

Proof. Immediate from Theorem 1, the fact that BFAND implies FAND(T01),
Lemma 1 and Proposition 1. ��
Question 1. Is there a direct proof of WKL! → BKL!? Here, a “direct” proof
means a proof with an effective translation from an infinite bounded tree into an
infinite binary tree which preserves condition (1) such as an infinite path of the
binary tree entails an infinite path of the original bounded tree constructively.

Acknowledgements. The author thanks Helmut Schwichtenberg for helpful discus-
sion. This work is supported by JSPS KAKENHI Grant Numbers JP19J01239 and
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Defining Long Words Succinctly in FO
and MSO
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Abstract. We consider the length of the longest word definable in FO
and MSO via a formula of size n. For both logics we obtain as an upper
bound for this number an exponential tower of height linear in n. We
prove this by counting types with respect to a fixed quantifier rank. As
lower bounds we obtain for both FO and MSO an exponential tower of
height in the order of a rational power of n. We show these lower bounds
by giving concrete formulas defining word representations of levels of the
cumulative hierarchy of sets. In addition, we consider the Löwenheim-
Skolem and Hanf numbers of these logics on words and obtain similar
bounds for these as well.

Keywords: Logic on words · Monadic second-order logic ·
Succinctness

1 Introduction

We consider the succinctness of defining words. More precisely, if we allow for-
mulas of size up to n in some logic, we want to know the length of the longest
word definable by such formulas.

This question is not very interesting for all formalisms. An example where this
is the case is given by regular expressions. There is no smaller regular expression
that defines a word than the word itself. This result is spelled out at least in the
survey [3]. However, the situation is completely different for monadic second-order
logic MSO over words with linear order and unary predicates for the letters. Even
though MSO has the same expressive power as regular expressions over words,
it is well-known that MSO is non-elementarily more succinct. This follows from
the results in the PhD thesis [12] of Stockmeyer. In fact, he proved that the prob-
lem whether the language defined by a given star-free generalized regular expres-
sion has non-empty complement is of non-elementary complexity with respect to
the length of the expression. Since star-free generalized expressions can be poly-
nomially translated into first-order logic FO, it follows that already FO is non-
elementarily more succinct than regular expressions. In the article [11], Reinhardt
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uses a variation of Stockmeyer’s method for proving similar non-elementary suc-
cinctness gaps between finite automata and the logics MSO and FO.

In this paper our focus is in the definability of words in MSO and FO. As far
as we know, this aspect of succinctness has not been considered previously in the
context of words. We show that these logics can define words of non-elementary
length via formulas of polynomial size.

In order to argue about definability via formulas of bounded size, we define
the size n fragments FO[n] and MSO[n] that include only formulas of size up to n.
We also define similar quantifier rank k fragments FOk and MSOk and use them
to prove our upper bounds. Both of these types of fragments are essentially finite
in the sense that they contain only a finite number of non-equivalent formulas.
We call the length of the longest word definable in a fragment the definability
number of that fragment. Using this concept, our initial question is reframed as
studying the definability numbers of FO[n] and MSO[n].

The definability number of a fragment is closely related to the Löwenheim-
Skolem and Hanf numbers of the fragment. The Löwenheim-Skolem number of
a fragment is the smallest number m such that each satisfiable formula in the
fragment has a model of size at most m. The Hanf number is the smallest number
l such that any formula with a model of size greater than l has arbitrarily large
models. These were originally defined for extensions of first-order logic in the
context of model theory of infinite structures, but they are also meaningful in
the context of finite structures. For a survey on Löwenheim-Skolem and Hanf
numbers both on infinite and finite structures see [1]. For previous research on
finite Löwenheim-Skolem type results see [4] and [5].

Aside from what we have already mentioned, related work includes the article
[9] of Pikhurko and Verbitsky, where they consider the complexity of single finite
structures. They study the minimal quantifier rank in FO of both defining a
single finite structure and separating it from other structures of the same size.
In [8] the same authors and Spencer consider quantifier rank and formula size
required to define single graphs in FO. The survey [10] by Pikhurko and Verbitsky
covers the above work and more on the logical complexity of single graphs in FO.
By logical complexity they mean minimal quantifier rank, number of variables
and length of a defining formula as functions of the size of the graph. They
give an extensive account of these measures and relate them to each other, the
Ehrenfeucht-Fräıssé game and the Weisfeiler-Lehman algorithm. An important
difference between our approach and theirs is that we take formula size as the
parameter and look for the longest definable word, whereas they do the opposite.

Our contributions are upper and lower bounds for the definability,
Löwenheim-Skolem and Hanf numbers of the size n fragments of FO and MSO
on words. The upper bounds in Sect. 3 are obtained by counting types with
respect to the quantifier rank n/2 fragment. The upper bounds for both FO and
MSO are exponential towers of height n/2 + log∗(t) + 1 where t is a polynomial
term. The lower bounds in Sects. 4 and 5 are given by concrete polynomial size
formulas that define words of non-elementary length based on the cumulative
hierarchy of sets. The lower bounds are exponential towers of height 5

√
n/c for

FO and
√

n/c for MSO, respectively.
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An anonymous referee pointed out that lower bounds similar to ours can be
obtained by adapting the method used by Reinhardt in [11], which in turn is
based on the work of Stockmeyer [12]. However, our formulas are based on the
cumulative hierarchy of sets instead of the binary counters used in Stockmeyer
and Reinhardt. Furthermore, we emphasize defining single words and relate the
bounds to Löwenheim-Skolem and Hanf numbers.

Note that our results only apply in the context of words. If finite structures
over arbitrary finite vocabularies are allowed, then there are no computable
upper bounds for the Löwenheim-Skolem or Hanf numbers of the size n fragments
of FO. For the Löwenheim-Skolem number, this follows from Trakhtenbrot’s
theorem1 (see, e.g., [7]), and for the Hanf number, this follows from a result of
Grohe in [4]. Clearly the same applies for the size n fragments of MSO as well.

2 Preliminaries

The logics we consider in this paper are first-order logic FO and monadic second-
order logic MSO and their (typically finite) fragments. The syntax and semantics
of these are standard and well-known. Due to space restrictions we will not
present them here, instead directing the reader to [2] and [7].

In terms of structures we limit our consideration to words of the two letter
alphabet Σ = {l, r}. We have chosen to use letters for readability but intuitively
the l stands for the left brace { and r for the right brace }. We use these later
to encode sets as words. The empty set would be encoded as lr, or {}.

When we say that a word satisfies a logical sentence, we mean the natural
corresponding word model does. A word model is a finite structure with linear
order and unary predicates Pl and Pr for the two symbols. Since we only consider
words over the two letter alphabet Σ, we will tacitly assume that all formulas of
MSO are in the vocabulary {<,Pl, Pr} of the corresponding word models (and
similarly for FO-formulas).

Definition 1. The size sz(ϕ) of a formula ϕ ∈ MSO is defined recursively as
follows:

– sz(ϕ) = 1 for atomic ϕ,
– sz(¬ψ) = sz(ψ) + 1,
– sz(ψ ∧ θ) = sz(ψ ∨ θ) = sz(ψ) + sz(θ) + 1,
– sz(∃xψ) = sz(∀xψ) = sz(∃Uψ) = sz(∀Uψ) = sz(ψ) + 1.

For n ∈ N the size n fragment of MSO, denoted MSO[n], consists of the formulas
of MSO with size at most n. Size as well as size n fragments are defined in the
same way for FO.

Definition 2. The quantifier rank qr(ϕ) of a formula ϕ ∈ MSO is defined recur-
sively as follows:
1 Trakhtenbrot’s theorem states that the finite satisfiability problem of FO is undecid-
able. Hence there cannot exist any computable upper bound for the size of models
that need to be checked to see whether a given formula is satisfiable.
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– qr(ϕ) = 0 for atomic ϕ,
– qr(¬ψ) = qr(ψ),
– qr(ψ ∧ θ) = qr(ψ ∨ θ) = max{qr(ψ), qr(θ)},
– qr(∃xψ) = qr(∀xψ) = qr(∃Uψ) = qr(∀Uψ) = qr(ψ) + 1.

For k ∈ N, the quantifier rank k fragment of MSO, denoted MSOk, consists of
the formulas ϕ ∈ MSO with qr(ϕ) ≤ k. The quantifier rank k fragment of FO is
defined in the same way and denoted FOk.

Note that both size n fragments and quantifier rank k fragments are essen-
tially finite in the sense that they contain only finitely many non-equivalent
formulas.

Definition 3. For each (finite) fragment L of MSO or FO, we define the rela-
tion ≡L on Σ-words as

w ≡L v, if w and v agree on all L-sentences.

Clearly ≡L is an equivalence relation. We denote the set of equivalence classes
of ≡L by Σ∗/ ≡L and define a notation for the number of these classes.

Definition 4. For each (finite) fragment L of MSO or FO, we denote the num-
ber of equivalence classes of ≡L by NL, i.e.

NL := |Σ∗/ ≡L |.

Note that each equivalence class of ≡L is uniquely determined by a subset
tpL(w) = {ϕ ∈ L | w |= ϕ} of L sentences, which we call the L-type of w. Thus,
NL is the number of L-types. In the case L = MSOk or L = FOk, we talk about
quantifier rank k types.

Definition 5. We say that a sentence ϕ ∈ MSO defines a word w ∈ Σ+ if
w � ϕ and v � ϕ for all v ∈ Σ+ \ {w}.

For a fragment L of MSO or FO, we denote by Def(L) the set of words
definable in L, i.e.

Def(L) := {w ∈ Σ+ | there is ϕ ∈ L s.t. ϕ defines w}.

In order to discuss words of non-elementary length and make our bounds
precise, we define the exponential tower function twr for the positive reals as
well as the, essentially inverse, iterated logarithm function log∗.

Definition 6. The exponential tower function tower : N → N is defined recur-
sively by setting tower(0) := 1 and tower(n + 1) := 2tower(n). We extend this
definition to a function twr : [0,∞[→ N by setting twr(x) = tower(�x�). The
iterated logarithm function log∗ : [1,∞[→ N is defined by setting log∗(x) as the
smallest m ∈ N that has tower(m) ≥ x.
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2.1 Definability, Löwenheim-Skolem and Hanf Numbers

Löwenheim-Skolem and Hanf numbers were originally introduced for studying
the behaviour of extensions of first-order logic on infinite structures. See the
article [1] of Ebbinghaus for a nice survey on the infinite case. As observed in
[4], with suitable modifications, it is possible to give meaningful definitions for
these numbers also on finite structures. We will now give such definitions for
finite fragments L of FO and MSO, and in addition, we introduce the closely
related definability number of L.

Let ϕ be a sentence in MSO over Σ-words. If it has a model, we denote by
μ(ϕ) the minimal length of a model of ϕ: μ(ϕ) = min{|w| | w ∈ Σ+, w |= ϕ}.
If ϕ has no models, we stipulate μ(ϕ) = 0. Furthermore, we denote by ν(ϕ) the
maximum length of a model of ϕ, assuming the maximum is well-defined. If the
maximum is not defined, i.e., if ϕ has no models or has arbitrarily long models,
we stipulate ν(ϕ) = 0.

Definition 7. Let L be a finite fragment of MSO or FO with Def(L) �= ∅.
(a) The definability number of L is

DN(L) = max{|w| | w ∈ Σ+, w ∈ Def(L)}.
(b) The Löwenheim-Skolem number of L is LS(L) = max{μ(ϕ) | ϕ ∈ L}.
(c) The Hanf number of L is H(L) = max{ν(ϕ) | ϕ ∈ L}.
Thus, DN(L) is the length of the longest L-definable word. Note further that

LS(L) is the smallest number m such that every ϕ ∈ L that has a model, has a
model of length at most m. Similarly H(L) is the smallest number � such that if
ϕ ∈ L has a model of length greater than �, then it has arbitrarily long models.

Since every sentence ϕ of MSO defines a regular language over Σ, and there
is an effective translation from MSO to equivalent finite automata, it is clear
that we can compute the numbers μ(ϕ) and ν(ϕ) from ϕ. Consequently, for any
finite fragment L of MSO, LS(L) and H(L) can be computed from L.

As we mentioned in the Introduction, LS(FO[n]) and H(FO[n]) are not com-
putable from n if we consider arbitrary finite models instead of words. Clearly
the same holds also for the fragments FOk, MSO[n] and MSOk.

It follows immediately from Definition 7 that the definability number of any
finite fragment of MSO is bounded above by its Löwenheim-Skolem number and
its Hanf number:

Proposition 1. If L is a finite fragment of MSO, then DN(L) ≤ LS(L),H(L).

Proof. It suffices to observe that if w ∈ Def(L), then μ(ϕ) = ν(ϕ) = |w|, where
ϕ ∈ L is the sentence that defines w.

Note that all three cases for the relationship between LS(L) and H(L) are
possible. Indeed, if L consists of existential first-order sentences, then any ϕ ∈ L
that has a model, has arbitrarily long models, whence H(L) = 0. Clearly LS(L)
can be arbitrarily large for such an L. On the other hand, if L consists of universal
first-order sentences, then any satisfiable ϕ ∈ L has a model of length 1, whence
LS(L) ≤ 1. If L contains, e.g., the sentence ∀x0 . . . ∀x�

∨
i<j≤� xi = xj for � > 1,
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then H(L) ≥ � > LS(L). Finally, combining existential and universal sentences
it is easy to construct a finite fragment L of FO such that LS(L) = H(L).

3 Upper Bounds for the Length of Definable Words

3.1 Definability and Types

It is well-known that equivalence of words up to a quantifier rank is preserved
in catenation:

Theorem 1. Let L ∈ {FOk,MSOk} for some k ∈ N. Assume that v, v′, w, w′ ∈
Σ+ are words such that v ≡L v′ and w ≡L w′. Then vw ≡L v′w′.

Proof. The claim is proved by a straightforward Ehrenfeucht-Fräıssé game argu-
ment (see Proposition 2.1.4 in [2]).

Using Theorem 1, we get the following upper bounds for the numbers μ(ϕ)
and ν(ϕ) in terms of the quantifier rank of ϕ:

Proposition 2. Let L ∈ {FOk,MSOk} for some k ∈ N. If ϕ is a sentence of
L, then μ(ϕ), ν(ϕ) ≤ NL.

Proof. If |w| ≤ NL for all words w ∈ Σ+ such that w |= ϕ, the claim is trivial.
Assume then that w |= ϕ and |w| > NL. Then there are two initial segments u
and u′ of w such that |u| < |u′| and u ≡L u′. Let v and v′ be the corresponding
end segments, i.e., w = uv = u′v′. Then by Theorem 1, uv′ ≡L u′v′ = w, and
similarly u′v ≡L uv = w, whence uv′ |= ϕ and u′v |= ϕ.

Since |uv′| < |w|, we see that w is not the shortest word satisfying ϕ. The
argument applies to any word w with |w| > NL, whence we conclude that
μ(ϕ) ≤ NL. On the other hand |u′v| > |w|, whence w is neither the longest
word satisfying ϕ. Applying this argument repeatedly, we see that ϕ is satisfied
in arbitrarily long words, whence ν(ϕ) = 0 ≤ NL.

From Propositions 1 and 2 we immediately obtain the following upper bound
for the definability numbers of quantifier rank fragments of MSO:

Corollary 1. Let k ∈ N and L ∈ {FOk,MSOk}. Then LS(L),H(L) ≤ NL, and
consequently DN(L) ≤ NL.

This NL upper bound for the definability, Löwenheim-Skolem and Hanf num-
bers shows that the quantifier rank fragments L of FO and MSO behave quite
tamely on words: Clearly every type tpL(w) is definable by a sentence of L,
whence the number of non-equivalent sentences in L is 2NL . Thus, any collection
of representatives of non-equivalent sentences of L necessarily contains sentences
of size close to NL. But in spite of this, it is not possible to define words that
are longer than NL by sentences of L.

This shows that quantifier rank is not a good starting point if we want to
prove interesting succinctness results for definability. Hence we turn our attention
to the size n fragments FO[n] and MSO[n]. Note first that for any n ∈ N, FO[n]
is trivially contained in FOn, and similarly, MSO[n] is contained in MSOn. A
simple argument shows that this can be improved by a factor of 2:
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Lemma 1. For any n ∈ N, FO[2n] ≤ FOn and MSO[2n] ≤ MSOn.

Proof. (Idea) Any sentence ϕ with quantifier rank n is equivalent to one with
smaller quantifier rank unless it contains atomic formulas of the form x < y
mentioning each quantified variable, and more than one of them at least twice.
Counting the quantifiers, the atomic formulas, and the connectives needed, we
see that sz(ϕ) ≥ 2n.

Note that we have not tried to be optimal in the formulation of Lemma 1.
We believe that with a more careful analysis, 2n could be replaced with 3n, and
possibly with an even larger number.

Corollary 2. For any n ∈ N, DN(FO[2n]),LS(FO[2n]),H(FO[2n]) ≤ NFOn and
DN(MSO[2n]),LS(MSO[2n]),H(MSO[2n]) ≤ NMSOn

.

3.2 Number of Types

As we have seen in the previous section, the numbers of FOk-types and MSOk-
types give upper bounds for the corresponding definbability, Löwenheim-Skolem
and Hanf-numbers. It is well known that on finite relational structures, for FOk

this number is bound above by an exponential tower of height k + 1 with a
polynomial, that depends on the vocabulary, on top (see, e.g., [10] for the case
of graphs). It is straightforward to generalize this type of upper bound to MSOk.
On the class of Σ-words, we can prove the following explicit upper bounds. For
the proof of this result, see the Appendix in the pre-print [6].

Theorem 2. For any k ∈ N, NFOk
≤ twr(k + log∗(k2 + k) + 1)

and NMSOk
≤ twr(k + log∗((k + 1)2) + 1).

By Corollary 1, we obtain the same upper bounds for the definability,
Löwenheim-Skolem and Hanf numbers of the quantifier rank fragments.

Corollary 3. For any k ∈ N,
DN(FOk),LS(FOk),H(FOk) ≤ twr(k + log∗(k2 + k) + 1) and
DN(MSOk),LS(MSOk),H(MSOk) ≤ twr(k + log∗((k + 1)2) + 1).

As we discussed after Corollary 1, from the point of view of succinctness it
is more interesting to consider the definability numbers of the size fragments of
FO and MSO than those of the quantifier rank fragments. Using Corollary 2, we
obtain the following upper bounds for FO[n] and MSO[n].

Corollary 4. For any n ∈ N,
DN(FO[n]),LS(FO[n]),H(FO[n]) ≤ twr(n/2 + log∗((n/2)2 + n/2) + 1) and
DN(MSO[n]),LS(MSO[n]),H(MSO[n]) ≤ twr(n/2 + log∗((n/2 + 1)2) + 1).

In the next two sections we will prove lower bounds for the definability num-
bers of FO[n] and MSO[n] by providing explicit polynomial size sentences that
define words that are of exponential tower length.
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4 Lower Bounds for FO

In order to obtain a lower bound for DN(FO[n]) we need a relatively small FO-
formula that defines a long word. The long word we define has to do with the
cumulative hierarchy of finite sets.

The finite levels Vi of the cumulative hierarchy are defined by V0 = ∅ and
Vi+1 = P(Vi). We represent finite sets as words using only braces { and } in
a straightforward fashion. For example V0 is encoded as {} and V1 as {{}}.
V2 has two possible encodings: {{}{{}}} and {{{}}{}}. It is well known that
|Vi+1| = twr(i). Thus the encodings of Vi+1 have length at least twr(i). We will
define one such word via an FO-formula of polynomial size with respect to i.

For readability, we define L(x) := Pl(x) and R(x) := Pr(x) that say x is a
left or right brace, respectively. We also define S(x, y) := x < y∧¬∃z(x < z < y)
that says y is the successor of x.

As each set in the encoding can be identified by its outermost braces, the
formula mostly operates on pairs of variables. For readability we adopt the con-
vention x := (x1, x2), and similarly for different letters, to denote these pairs. To
ensure that our formula defines a single encoding of Vi, we also define a linear
order on encoded sets and require that the elements are in that order.

We define our formula recursively in terms of many subformulas. We briefly
list the meanings and approximate sizes of each subformula involved:

– core(x, θ(s, t)): the common core formula used in the formulas seti and oseti

defined below. States that every brace y between x1 and x2 has a pair z
such that the pair satisfies θ. In practice, θ will be another step of a similar
recursion. The variables s and t are used to deal with both cases y < z and
z < y at once, making the formula smaller.

core(x, θ(s, t)) := x1 < x2 ∧ L(x1) ∧ R(x2)
∧ ∀y(x1 < y < x2 → ∃z(x1 < z < x2 ∧ y �= z

∧ ∃s∃t((y < z → (s = y ∧ t = z))
∧ (z < y → (s = z ∧ t = y)) ∧ θ(s, t))))

– seti(x): x correctly encodes a set in Vi, possibly with repetition. Size linear
in i.

set0(x) := L(x1) ∧ R(x2) ∧ S(x1, x2)
seti+1(x) := core(x, seti(s, t))

– x ∈i y: x is an element of y. Size linear in i. Assumes that x encodes a set in
Vi and y encodes a set in Vi+1. The part with z is used to ensure that x is an
element of y and not for example an element of an element.

x ∈i y := y1 < x1 < x2 < y2 ∧ ¬∃z(seti(z) ∧ y1 < z1 < x1 ∧ x2 < z2 < y2)

– x ∼i y: x and y encode the same set, possibly in a different order. Size O(i2).
Assumes x and y encode sets in Vi. The two implications on the second line
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are used to deal with the symmetry of x and y at once, making the formula
smaller.

x ∼0 y := �
x ∼i+1 y := ∀a(seti(a) → ∃b(seti(b)

∧ (a ∈i x → b ∈i y) ∧ (a ∈i y → b ∈i x) ∧ a ∼i b))

– x ≺i y: the ≺i−1-greatest element of the symmetric difference of x and y is
in y. Size O(i3). Defines a linear order for encoded sets in Vi. The set z is in
y, is not in x and is larger than any a in x.

x ≺0 y := ⊥
x ≺i+1 y := ∃z(seti(z) ∧ z ∈i y ∧ ∀a((seti(a) ∧ a ∈i x)

→(a �i z ∧ (∀b((seti(b) ∧ b ∈i y) → a �i b) → a ≺i z))))

– oseti(x): x correctly encodes a set in Vi with no repetition and with the
elements in the linear order given by the formula x ≺i y. Size O(i4). Ensures
that only a singular word satisfies our formula.

oset0(x) := L(x1) ∧ R(x2) ∧ S(x1, x2)

oseti+1(x) := core(x, oseti(s, t)) ∧ ∀a∀b((seti(a) ∧ seti(b)

∧ a ∈i x ∧ b ∈i x ∧ a1 < b1) → a ≺i b)

– addi(x, y, z): States that x = y ∪ {z}. Size O(i2). Assumes x and y encode
sets in Vi and z encodes a set in Vi−1. The first line states that y ⊆ x, the
second line states z ∈ x and the two final lines state x \ {z} ⊆ y.

addi+1(x, y, z) := ∀a((seti(a) ∧ a ∈i y) → ∃b(seti(b) ∧ b ∈i x ∧ a ∼i b))
∧ ∃c(seti(c) ∧ c ∈i x ∧ c ∼i z

∧ ∀d((seti(d) ∧ d ∈i x ∧ d1 �= c1)

→ ∃e(seti(e) ∧ e ∈i y ∧ e ∼i d)))

– Vi(x): x encodes the set Vi. Size O(i5). States that x is an ordered encoding,
∅ ∈ x, Vi−1 ∈ x and for all c ∈ x and d ∈ Vi−1, we have c ∪ {d} ∈ x.

V0(x) := set0(x)

Vi+1(x) := oseti+1(x) ∧ ∃a(V0(a) ∧ S(x1, a1)) ∧ ∃b(Vi(b) ∧ S(b2, x2)

∧ ∀c∀d((seti(c) ∧ c ∈i x ∧ seti−1(d) ∧ d ∈i−1 b)

→ ∃e(seti(e) ∧ e ∈i x ∧ addi(e, c, d))))

– ψi: the entire word is the ordered encoding of the set Vi. Size O(i5).

ψi := ∃x∃y∀z(x ≤ z ∧ z ≤ y ∧ Vi(x, y))
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The formula ψi+1 defines a word w that, as an encoding of the set Vi+1, has
length at least twr(i). The size of ψi+1 is O((i + 1)5) and thus O(i5). Let c be a
constant such that sz(ψi+1) ≤ c · i5 so w ∈ Def(FO[c · i5]). As we want to relate
the length of w to the size of ψi, we set n = c · i5 and obtain the following result:

Theorem 3. For some constant c ∈ N there are infinitely many n ∈ N satisfying

DN(FO[n]) ≥ twr( 5
√

n/c).

Proposition 1 immediately gives the same bound for the Hanf number.

Corollary 5. For some constant c ∈ N there are infinitely many n ∈ N satisfy-
ing

H(FO[n]) ≥ twr( 5
√

n/c).

By omitting the subformula oseti+1 from the above we get a formula of size
O(i3) that is no longer satisfied by only one word but still only has large models.
With this formula we obtain a lower bound for the Löwenheim-Skolem number.

Corollary 6. For some c ∈ N there are arbitrarily large n ∈ N satisfying

LS(FO[n]) ≥ twr( 3
√

n/c).

5 Lower Bounds for MSO

In this section, we define a similar formula for MSO as we did above for FO.
The formula again defines an encoding of Vi but for MSO our formula is of size
O(i2) compared to the O(i5) of FO. We achieve this by quantifying a partition
of so called levels for the braces and thus the encoded sets and using a different
method to define only a single encoding.

The level of the entire encoded set will be equal to the maximum depth of
braces inside the set. The level of an element of a set will always be one less than
the level of the parent set. This means that there will be instances of the same
set with different levels in our encoding. For example in the encoding {{}{{}}}
the outermost braces are level 2, both of the elements are level 1 and the empty
set in the second element is level 0.

We again define our formula in terms of many subformulas and briefly list
the meaning and size of each subformula:

– seti(x): x encodes a set of level i. Size constant. Here we only require that
there are no braces of the same level between x1 and x2, leaving the rest to
the formula levelsi below.

set0(x) := S(x1, x2) ∧ L(x1) ∧ R(x2) ∧ D0(x1) ∧ D0(x2)
seti(x) := x1 < x2 ∧ L(x1) ∧ R(x2) ∧ Di(x1) ∧ Di(x2)

∧ ∀y(x1 < y < x2 → ¬Di(y))
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– levelsi: The relations Dj define the levels of sets as intended and there are
no odd braces without pairs. Size O(i2). States that every brace has a level,
no brace has two different levels, every set encloses only braces of lower levels
and every brace has a pair of the same level to form a set.

levelsi := ∀x(
i∨

j=0

Dj(x) ∧
∧

j,k∈{0,...,i}
j �=k

¬(Dj(x) ∧ Dk(x))

∧ ∀x(
i∧

j=0

(setj(x) → ∀y(x1 < y < x2 →
j−1∨

k=0

Dk(y))))

∧ ∀x1(
i∧

j=0

((L(x1) ∧ Dj(x1)) → ∃x2setj(x1, x2))

∧
i∧

j=0

(R(x1) ∧ Dj(x1)) → ∃x2setj(x2, x1))

– x ∈ y: x is an element of y. Size constant. Assumes x encodes a set of level i
and y encodes a set of level i − 1.

x ∈ y := y1 < x1 ∧ x2 < y2

– x ∼i y: x and y encode the same set. Size linear in i. Assumes x and y encode
sets of level i. Similar to the FO case.

x ∼0 y := �
x ∼i+1 y := ∀a(seti(a) → ∃b(seti(b)

∧ (a ∈ x → b ∈ y) ∧ (a ∈ y → b ∈ x) ∧ a ∼i b))

– addi(x, y, z): States that x = y∪{z}. Size linear in i. Assumes x and y encode
sets of level i and z encodes a set of level i − 1. Similar to the FO case.

addi+1(x, y, z) := ∀a((seti(a) ∧ a ∈ y) → ∃b(seti(b) ∧ b ∈ x ∧ a ∼i b))
∧ ∃c(seti(c) ∧ c ∈ x ∧ c ∼i z

∧ ∀d((seti(d) ∧ d ∈ x ∧ d1 �= c1)

→ ∃e(seti(e) ∧ e ∈ y ∧ e ∼i d)))

– Vi(x): x encodes the set Vi. Size O(i2). Assumes the level partition is given.
Similar to the FO case with no ordering.

V0(x) := set0(x)
Vi+1(x) := seti+1(x) ∧ ∃a(seti(a) ∧ a ∈ x ∧ S(a1, a2))

∧ ∃b(Vi(b) ∧ b ∈ x ∧ ∀c∀d((seti(c) ∧ c ∈ x ∧ seti−1(d) ∧ d ∈ b)

→ ∃e(seti(e) ∧ e ∈ x ∧ addi(e, c, d))))
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– ϕi(x, y): Quantifies the level partition and states the subword from x to y
encodes Vi. Size O(i2).

ϕi(x, y) := ∃D0 . . . ∃Di(levelsi ∧ Vi(x, y)))

We now have a formula ϕi(x, y) that says the subword from x to y encodes
the set Vi. There are still multiple words that satisfy this formula, since different
orders of the sets and even repetition are still allowed. To pick out only one
such word, we use a lexicographic order, where a shorter word always precedes
a longer one.

Let ϕ′
i be the formula obtained from ϕi by replacing each occurrence of L(x)

with P1(x) and R(x) with P2(x). We define the final formula ψi of size O(i2)
that says the entire word model is the least word in the lexicographic order that
satisfies the property of ϕi. We check that no lexicographically smaller word
satisfies ϕi by quantifying the word under consideration on top of the same
word model using the variables P1 and P2 for the two letters. We first ensure
that P1 and P2 partition the model and then use y′ as the cut-off point for the
possibly shorter word we want to quantify. If y′ = y we check the lexicographic
order with z as the first different symbol. Finally we state that the quantified
word does not satisfy ϕi.

ψi := ∃x∃y(∀z(x ≤ z ∧ z ≤ y) ∧ ϕi(x, y)
∧ ∀P1∀P2(∀z((P1(z) ∨ P2(z)) ∧ ¬(P1(z) ∧ P2(z)))
∧ ∀y′((y′ < y ∨ ∃z(∀a(a < z → (L(a) ↔ P1(a) ∧ R(a) ↔ P2(a)))
∧ (P1(z) ∧ R(z))) → ¬ϕ′

i(x, y′))))

We have used the lexicographic order here to select only one of the possible
words that satisfy our property. Note that this can be done for any property.
The size of such a formula will depend polynomially on the size of the alphabet,
as well as linearly on the size of the formula defining the property in question.

We obtain the lower bound for the definability number as in the FO case.

Theorem 4. For some constant c ∈ N there are infinitely many n ∈ N satisfying

DN(MSO[n]) ≥ twr(
√

n/c).

We get the same bounds for LS(MSO[n]) and H(MSO[n]) via Proposition 1.

Corollary 7. For some constant c ∈ N there are infinitely many n ∈ N satisfy-
ing

LS(MSO[n]),H(MSO[n]) ≥ twr(
√

n/c).

6 Conclusion

We considered the definability number, the Löwenheim-Skolem number and the
Hanf number on words in the size n fragments of first-order logic and monadic
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second-order logic. We obtained exponential towers of various heights as upper
and lower bounds for each of these numbers.

For FO, we obtained the bounds

twr( 5
√

n/c) ≤ DN(FO[n]) ≤ twr(n/2 + log∗((n/2)2 + n/2) + 1)

for some constant c. As corollaries, we obtained the same bounds for LS(FO[n])
and H(FO[n]). In addition, by modifying the formula we used for the lower
bounds, we obtained a slightly better lower bound of twr( 3

√
n/c) for LS(FO[n]).

In the case of MSO, the bounds are similarly

twr(
√

n/c) ≤ DN(MSO[n]) ≤ twr(n/2 + log∗((n/2 + 1)2) + 1)

for a different constant c. We again immediately obtained the same bounds for
LS(MSO[n]) and H(MSO[n]).

The gaps between the lower bounds and upper bounds we have proved are
quite big. In absolute terms, they are actually huge, as each upper bound is
non-elementary with respect to the corresponding lower bound. However, it is
more fair to do the comparison in the iterated logarithmic scale, which reduces
the gap to be only polynomial. Nevertheless, a natural task for future research
is to look for tighter lower and upper bounds.

Finally, we remark that the technique for proving an exponential tower upper
bound for the number of types in the quantifier rank fragments of some logic
L is completely generic: it works in the same way irrespective of the type of
quantifiers allowed in L. Thus, it can be applied for example in the case where
L is the extension of FO with some generalized quantifier (or a finite set of
generalized quantifiers). Assuming further that the quantifier rank fragments
L of L satisfy Theorem 1, we can obtain this way an exponential tower upper
bound for the numbers DN(L), LS(L) and H(L). On the other hand, note that if
the quantifier rank fragments L satisfy Theorem 1, then each ≡L is an invariant
equivalence relation, whence L can only define regular languages. Therefore it
seems that our technique for proving upper bounds cannot be used for logics
with expressive power beyond regular languages.
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Abstract. The explanation, formal modelling and processing of lan-
guage remain a challenge. Natural language is a hard problem not only
for linguistics that has not yet provided universal accepted theories about
how language is acquired and processed, but also for computer science
that has not found a satisfactory computational model for processing
natural language. The interplay between linguistics, biology and compu-
tation can provide a new paradigm where challenges in the area of natural
language can be afforded in a different way and where new models can
be devised. In this paper, we present the challenges and opportunities of
applying computing with biomolecules to natural language processing.
We present a state-of-the-art of the interchange of methods between lin-
guistics, biology and computation and show how computer science can
provide the theoretical tools and formalisms to transfer biological con-
cepts to natural language in order to improve language processing.

Keywords: Natural language · Computing with biomolecules ·
Bio-inspired models

1 Introduction

The main goal of this paper is to highlight the benefits of the interdisciplinarity
among linguistics, biology and computation. The area of convergence between
those three disciplines is given rise to the emergence of new scientific paradigms.
This paper is placed in the confluence of these three theories, highlighting the
relevance of the biological approach with formal/computational methods for
explaining linguistic issues.

Linguistics has still the challenge to understand how natural language is
acquired, produced and processed. Up to now, linguistics has not been able to
solve these challenges, partly, because of the fail in the models adopted. Biol-
ogy has become a pilot science, so that many disciplines have formulated their
theories under models taken from biology. Computer science has become a bioin-
spired field thanks to the great development of natural computing (evolution-
ary algorithms, neural networks, molecular computing, quantum computing...).
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In the case of linguistics, despite the fact that several attempts of establishing
structural parallelisms between DNA sequences and verbal language have been
performed [24,25,31], linguists have not attempted to construct a new paradigm
taking advantage of the developments in molecular biology. In this paper, we
claim that the application of molecular computing to linguistics may provide a
new model to reconstruct language description with molecular methods; define a
formalization that can be implemented and may be able to describe and predict
the behavior of linguistic structures and offer a method of language manipulation
that can be useful for natural langauge processing.

2 The Interplay Between Linguistics, Biology
and Computation

The interplay between biology, linguistics and computation is not something
new. There has been a long tradition of interchanging methods in biology and
natural/formal language theory.

Regarding the interchange of methods from computer science to biology, by
taking into account the communicative consideration of the genetic code, molec-
ular biology has taken several models from formal language theory in order to
explain the structure and working of DNA. Such attempts have been focused in
the design of grammar-based approaches to define combinatorics in protein and
DNA sequences and the application of generativist approaches to the analysis
of the genetic code. From this interchange of methods several models have been
developed such as Pawlak dependency grammars as an approach in the study of
protein formation [37]; stochastic context-free grammars for modeling RNA [44];
definite clause grammars and cut grammars to investigate gene structure and
mutations and rearrangement [47]; and tree-adjoining grammars for predicting
RNA structure of biological data [54].

Among the influence of linguistic models in biology, we can refer to Watson’s
understanding of heredity as a form of communication [55]; Asimov’s idea that
nucleotide bases are letters and form an alphabet [2]; Jakobson’s ideas about
taking the nucleotide bases as phonemes of the genetic code or about the binary
oppositions in phonemes and in the nucleic code [23]. Moreover, some authors
have achieved quite successful results in the description of the structure of genes
by means of formal grammars [10,47]. Linguistics and molecular biology are also
related by computer science in scientific programs like NLP for biology [50].

Biological ideas have been applied in linguistics as shown in theories such as
the tree model proposed by Schleicher [45]; the wave model due to Schmidt [46];
the geometric network model proposed by Forster [16]; the naturalistic metaphor
in linguistics defended by Jakobson [23,24]; or the biological-evolutionary model
for language change [11].

Finally, the use of biological models is frequent in computation, as shown
in theories like neural networks [21], cellular automata [34], evolutionary com-
puting [20] and ant colonies [12]. Using DNA and cell biology as a support for
computation is the basic idea of molecular computing, natural computing and
DNA computing.
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3 Formal Language Theory and Linguistics

In order to understand the role of formal language theory in linguistics, we have
to go back to the origins of this field. The area of formal languages emerged as
an interdisciplinary area in the middle of the 20th century, relating mathematics
and linguistics.

In the area of mathematics, the key names are A. Thue, E. Post and A.
Turing. Thue [51,52] and Post [38] introduced the formal notion of a rewrit-
ing system, while Turing [53] introduced the general idea of finding models of
computing where the power of a model could be described by the complexity
of the language it generates/accepts. Building on the work by Thue, Turing
and Post, Noam Chomsky started in the 1950 s s the study of grammars and
the grammatical structure of a language. Chomsky’s goal was to give a precise
characterization of the structure of natural languages. He wanted to define the
syntax of languages using simple and precise mathematical rules. In order to
reach this goal, he introduced his grammar hierarchy as a tool for modelling
natural languages.

The view of natural languages as formal languages played a significant role in
the development of linguistics in the second half of the 20th century. In fact, the
view of languages as sets of strings underlay the early development of generative
grammar [35]. It was a period dominated by the interest on syntax, and the for-
malism introduced by Chomsky was considered a good mathematical approach
to solve the problem of approaching natural language from a formal point of
view.

We can say that the ‘golden period’ of the relationship between linguistics and
formal language theory was from the 60s to the 80s. At that time, there was a big
activity in the application of formal language models to natural language issues.
The debate about the context-freeness of natural language and the proposal of
new models in the area of formal language to better describe natural language
were the central core of linguistics in those decades of the 20th century. In that
period, books on mathematical and formal linguistics always reported on the
advances in the field of formal language theory by including chapters dedicated
to the hierarchy of languages and grammars introduced by Chomsky and by
introducing the new models that were proposed. An example of this can be the
classical book on mathematical linguistics by Barbara Partee, Alice ter Meulen
and Robert E. Wall [36].

Currently, the situation depicted above has drastically changed. The follow-
ing quotation by Levelt [29] summarizes the current influence of formal languages
in linguistics:

Any linguist reading an introduction to this field some 30 or 40 years ago
felt at home right away. [...] Nowadays, an interested linguist or psycholin-
guist opening any text or handbook on formal language can no longer see
the wood for the trees. Not only are linguistic applications in the small
minority, but it also by no means evident which formal, mathematical tools
are really required for natural language applications.
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From the 60s to the 80s, linguistics was the central application of formal
language theory and linguists were very much interested in applying formal lan-
guage models to the formalization of natural language. On the contrary, from the
90s, the interest of linguistics in formal languages seems to have disappeared and
formal language theorists have found innumerable applications of their theory
different from linguistics.

The reasons that explain this separation of linguistics from formal language
theory could be very different; among them we stress the following ones:

1. Problems that linguists found when trying to describe natural language by
the classical theory of formal languages. For example, the difficulty of locating
natural language in the Chomsky hierarchy and, therefore, the necessity of
defining different new formalisms.

2. The growing interest on less theoretical/formal areas of linguistics –as cogni-
tive linguistics [17]– and, therefore, the need for looking for more natural com-
putational systems to give account of natural language processing. Rewrit-
ing methods used in natural language approaches based on formal languages
seemed to be not very adequate, from a cognitive perspective, to account for
the processing of language.

3. The importance gained in the field of linguistics of subdisciplines such as
semantics [28], pragmatics [22] or sociolinguistics [3]. Formal language theory
was very useful in linguistics when the main interest of this discipline was to
describe the syntax of a natural language. When linguists tried to approach
dynamical parts of natural language that depends on the context of use,
classical models of formal languages became too rigid.

Those problems were related to the first generation of formal languages based
on rewriting systems. Models proposed from the 90s in the area of formal lan-
guage theory may solve those classic problems. However, the divorce between the
theory of formal languages and linguistics, due to initial difficulties, has led to a
lack of communication between researchers of both disciplines that has prevented
linguists to have access to new models proposed in the field of formal languages.
In fact, if we have a look at recent books on mathematical linguistics –as the
one published by Kornai [27]– we will see that they do not report on the models
defined in the field of formal language theory from the 90s. Biological-inspired
methods are quite recent and have been introduced in a period when linguistics
and formal languages were two separated disciplines.

Summing up, the current situation of the relationship between linguistics and
formal language theory is one in which there is no relation at all. Linguistics is
working on informally or seminformally theories of natural language. Natural
language processing prefers statistical methods to formal models. And formal
language theory has a wide-range of applications being linguistics out of its
interests.
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3.1 Natural Computing and Linguistics

Natural computing has become one of the most extended frameworks where new
models for formal language theory have been developed.

One of the most developed lines of research in natural computing is molecular
computing, a model based on molecular biology, which arose mainly after Adle-
man’s work [1]. An active area in molecular computing is DNA computing [41],
inspired by the way DNA perform operations to generate, replicate or change
the configuration of the strings. Splicing systems or H systems –introduced by
Tom Head [19]– represent a model for DNA computation that is part of formal
language theory. H systems can be viewed as a development in formal language
theory that provides new generative devices that allow close simulation of molec-
ular recombination processes by corresponding generative processes acting on
strings.

Systems biology and cellular biology have achieved an important develop-
ment. These advances have provided new models for computer science. One of
them is cellular computing, that emphasizes the concept of microbiological pop-
ulations as well as the equilibrium of the devices and the relationships between
the elements. P systems or membrane systems [40] can be considered an exam-
ple of this emerging paradigm. Membrane systems consist of multisets of objects
placed in the compartments defined by the membrane structure that delimits
the system from its environment.

On the other hand, natural computing has evolved from the first numeric
models –like neural networks– to symbolic models which are closer to multi-agent
systems. Networks of evolutionary processors (NEPs) [8] are inspired by both,
bio cellular models and basic structures for parallel and distributed symbolic
processing. NEPs can be defined as systems consisting of several devices whose
communication is regulated by an underlying graph. Such devices, which are
an abstract formalization of cells, are described by a set of words evolving by
mutations, according to some predefined rules. The cellular basis of the NEPs
relate them with P systems, especially with tissue P systems [32], a theory in
the area of membrane computing whose biological referent is the structure and
behaviour of multicellular organisms. In tissue P systems, cells form a multitude
of different associations performing various functions. NEPs could be linked to
systems biology as well, because the model aims to develop a holistic theory
where the behaviour of each agent can influence the environment and the other
agents.

Those bioinspired developments of formal language theory are quite recent
and have been seldom considered in the literature of formal methods in linguis-
tics, despite the fact that due to their features they may be suitable for modelling
natural language providing an integrative path for biology, computer science and
natural language processing.
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4 From Linguistics to Biology and Back Through
Computation

Formalization is a key point of the models we have to propose in pursuit of
understanding natural language. However to find the right formal model is often
very hard [27].

Looking at the bioinspired formal languages reported in the previous section,
one realizes that these models can be applied to problems different from syntax –
that is the classical area where formal models have been used. Biological inspired
frameworks can deal with key problems in the formal approach to language. Non-
standard models in formal languages may cover the whole range of linguistic
disciplines, from phonology to pragmatics. Here are some examples of those
possible applications.

DNA computing and NEPs can be good solutions for syntax. Application of
molecular computing methods to natural language syntax gives rise to molecular
syntax [4]. Molecular syntax takes as a model the two types of mechanisms
used in biology in order to modify or generate DNA sequences: mutations and
splicing. From a linguistic point of view, the main difference between mutations
and splicing is that mutations refer to changes performed in a linguistic string,
being this a phrase, sentence or text, while splicing is a process carried out
involving two or more linguistic sequences. Therefore, whereas mutations are
more suitable to explain different configurations in a simple linguistic string,
splicing can account for complexity and is a good framework for approaching
syntax. Splicing is defined as the operation which consists of splitting up two
strings in an arbitrary way and sticking the left side of the first one to the right
side of the second, and the left side of the second one to the right side of the
first one. Syntactic complexity can be generated by the technique of cutting
and pasting lineal structures. Combining elementary rules in genetic processes
–cut, paste, delete, move– most of the complex syntactic structures of natural
language can be obtained.

Three features of NEPs are crucial for their application to language pro-
cessing and, especially, to parsing technologies: NEPs are specialized, modular
communicating systems that work in parallel. Adopting these characteristics in
the modelling of a parser may improve its efficiency and decrease the complexity.
In [6], an application of NEPs for the analysis and recognition of sentences of
natural language is presented. In this NEPs parsing application, each processor
is specialized in the processing of different syntactic patterns. Modularity and
specialisation allow designing processors which only accept, recognize and label a
single type of syntactic phrases or functions. By parallelism, all lexical items are
analyzed at the same time, and afterwards, grammatical units may be packed in
different processors. The system performs two main tasks: a) to recognize correct
strings, and b) to provide an output with labelled elements that give account of
the syntactic structure of the input sentence.

Membrane systems can solve issues in semantics and pragmatics. Formalizing
semantics and pragmatics is one of the most challenging works in linguistics,
specially because the system in semantics/pragmatics is very interactive and
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constantly evolving. The most important intuition for translating membrane
systems to semantics and pragmatics is that membranes can be understood
as contexts. Contexts may be different words, persons, social groups, historical
periods, languages. They can accept, reject, or produce changes in elements
they have inside. Moreover, contexts/membranes and their rules evolve, that is,
change, appear, vanish, etc. Therefore, membranes and elements of the system
are constantly interacting. Some ideas of applications of membrane systems to
linguistic issues can be found in [5].

Besides those general applications, there are many challenges in contempo-
rary linguistics to which bioinspired formal language theory can help to find a
solution. We highlight the following ones:

1. Context formalization. Context formalization is one of the most important
areas of research that need to be improved in linguistics. Context-dependency
is a core notion in linguistics. Natural language processing depends on the
relationship between the utterances produced and the context in which they
are interpreted. In traditional linguistics, context is conceived of as compris-
ing the immediate features of a speech situation in which an expression is
uttered, such as time, location, speaker, hearer and preceding discourse [14].
However, context is a much wider notion. According to Fetzer [15], context
is conceived as a frame whose job is to frame content by delimiting that
content; context is a dynamic construct which is interactionally organized in
and through the process of communication; context is the common ground
or background information which participants take for granted in interaction.
Although most scholars would accept that the notion of context is funda-
mental for linguistics, in general, robust theories of context are lacking. In
recent years, a renewed interest in approaching the notion of context has
been observed [14,15]. Membrane theory or NEPs are good candidates to
help in the problem of context formalization in linguistics. Those frameworks
provide models in which contexts are an important element which is already
formalized and can give to linguistics the theoretical tools needed.

2. Models for dealing with interaction/interfaces among linguistic modules in a
grammar. The modular conception of language and the classical notion of
linguistic level caused the specialization of linguists in a concrete module
of natural language (syntax, morphology, phonology, semantics, etc.) forget-
ting the need to address the interaction between the various components
that make up the grammar of a language. Linguistic research in recent years
has highlighted the need to address the relationships between the different
modules of grammar. The description of the interfaces between phonetics,
phonology, morphology, syntax, semantics and pragmatics make up a new
area of research in current linguistics [42]. We need formal models to address
this interaction among language modules. Language interfaces formalization
is a problem for hierarchical and sequential language models. However, this
formalization does not pose any problem in models that formalize the ideas
of parallelism, interaction, distribution and cooperation.
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3. Formalization of the notion of evolution. An important problem in the formal-
ization of natural language is its dynamicity, its changing nature. Evolution
is a key notion in Evolutionary Linguistics, a discipline that aims to identify
when, where, and how human language originates, changes, and dies out [18].
According to Smith [48], computational simulations have been at the heart of
the field of evolutionary linguistics for the past two decades, and these are now
being extended and complemented in a number of directions, through formal
mathematical models, language-ready robotic agents, and experimental sim-
ulations in the laboratory. In this search of mathematical/formal models to
capture the dynamics of natural language, bioinspired models in formal lan-
guage can be useful. NEPs, for example, offer enough flexibility to model any
change at any moment in any part of the system, being able of formalizing
evolution in a highly pertinent way.

4. Definition of parallel models for language processing. Natural language pro-
cessing has been traditionally studied from a linear and sequential point of
view. In opposition to this view, some linguistic theories, like autolexical syn-
tax [43], are defined by their authors as parallel, indicating that natural lan-
guage expressions are organized along a number of simultaneous informa-
tional dimensions. Language production is understood as a parallel process
[33]. Moreover, the multimodal approach to communication, where not just
production, but also gestures, vision and supra-segmental features of sounds
have to be tackled, refers to a parallel way of processing. In order to define
parallel models for language processing, NEPs offer good mathematical tools.

5. Frameworks for dealing with different levels of grammaticality. Linguistics has
always presented the notion of grammaticality discretely. Despite those ideas,
it seems quite obvious that humans do not process language in discrete terms
but gradually. In fact, in recent years, some linguistic theories have arisen that
seek to account for different levels of grammaticality [7,9,13,26,30,39,49]. In
general, the models that advocate for the idea of fuzzy grammaticality do not
provide a formal definition of the concept. Therefore, we need formal models
for capturing this essential idea in natural language processing. We think that
bio-inspired formal languages can also help in this linguistic issue.

The above topics are just some of the current challenges in linguistics that
could be better solved by using bio-inspired formal language theory. The full
development of formal theories that tackle the above issues may help in the
better description and formalization of natural language and this advance will
have great importance in the field of artificial intelligence that still having the
challenge of making computers speak in a ‘natural’ way.

5 Conclusions

Language is one of the most challenging issues that remain to be explained. The
careless look at natural language approaches proposed up to now shows several
facts that somehow invite to the search of new formalisms to account in a simpler
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and more natural way for natural languages. The fact that 1) natural language
sentences cannot be placed in any of the families of the Chomsky hierarchy
in which current computational models are basically based or 2) the idea that
rewriting methods used in a large number of natural language approaches seem to
be not very adequate, from a cognitive perspective, to account for the processing
of language lead us to look for a more natural computational system to give a
formal account of natural languages.

The idea of using biocomputing models in the description of natural language
is backed up both by a long tradition of interchanging methods between biology
and natural/formal language theory and by several analogies between natural
and genetic languages.

In this paper, we have focused our attention in the role of formal language
theory in linguistics. However, the interdisciplinarity we speak about is bi-
directional, this is, we think that models in formal language theory can benefit
from linguistic theories as well. Therefore, we would like to call the attention of
researchers working in formal language theory about the possibilities that the
human processing of language offers as motivation/inspiration for new frame-
works in the field of formal languages. As the following quotation emphasizes,
formal language theory can benefit from going back to its origins and having
again natural language as a model:

Besides improving our understanding of natural language, a worthy goal
in itself, the formalization opened the door to the modern theory of com-
puter languages and their compilers. This is not to say that every advance
in formalizing linguistic theory is likely to have a similarly spectacular
payoff, but clearly the informal theory remains a treasure-house inas-
much as it captures important insights about natural language. While
not entirely comparable to biological systems in age and depth, natural
language embodies a significant amount of evolutionary optimization, and
artificial communication systems can benefit for these developments only
to the extent that the informal insights are capture by formal methods
[27].

Summing up, to promote the relationship between linguistics and formal lan-
guage theory may be fruitful to both research areas. Linguistics would find in
formal language theory the mathematical tools for presenting its theories in a
rigorous fashion contributing to better understanding natural language. Formal
language theory would find in linguistics a ‘natural’ inspiration for defining new
models that could become the theoretical basis for future computational systems
that will, for sure, improve our interaction with computers.
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4. Bel-Enguix, G., Jiménez-López, M.D.: Byosyntax. an overview. Fundam. Inform.
64, 1–12 (2005)
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Abstract. While it is not known whether each real that is Kolmogorov-
Loveland random is Martin-Löf random, i.e., whether KLR ⊆ MLR,
Kjos-Hanssen and Webb (2021) showed that MLR is truth-table
Medvedev reducible (≤s,tt) to KLR. They did this by studying a natural
class Either (MLR) and showing that MLR ≤s,tt Either (MLR) ⊇ KLR.
We show that Degtev’s stronger reducibilities (positive and linear) do
not suffice for the reduction of MLR to Either (MLR), and some related
results.

Keywords: Martin-Löf Randomness · Medvedev reducibility ·
truth-table reducibility

1 Introduction

The theory of algorithmic randomness attempts to study randomness of not just
random variables, but individual outcomes. The idea is to use computability the-
ory and declare that an outcome is random if it “looks random to any computer”.
This can be made precise in several ways (with notions such as Martin-Löf ran-
domness and Schnorr randomness), whose interrelation is for the most part well
understood [DH10,Nie09]. However, a remaining major open problem of algorith-
mic randomness asks whether each Kolmogorov–Loveland random (KL-random)
real is Martin-Löf random (ML-random).

It is known that one can compute an ML-random real from a KL-random real
[MMN+06] and even uniformly so [KHW21]. This uniform computation succeeds
in an environment of uncertainty, however: one of the two halves of the KL-
random real is already ML-random and we can uniformly stitch together a ML-
random without knowing which half. In this article we pursue this uncertainty
and are concerned with uniform reducibility when information has been hidden
in a sense. Namely, for any class of reals C ⊆ 2ω, we write
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Either(C) = {A ⊕ B : A ∈ C or B ∈ C},
where A ⊕ B is the computability-theoretic join:

A ⊕ B = {2k | k ∈ A} ∪ {2k + 1 | k ∈ B}.

For notation, we often refer to ‘even’ bits of such a real as those coming from
A, and ‘odd’ bits coming from B.

An element of Either(C) has an element of C available within it, although
in a hidden way. We are not aware of the Either operator being studied in the
literature, although Higuchi and Kihara [HK14b, Lemma 4] (see also [HK14a])
considered the somewhat more general operation f(C,D) = (2ω ⊕ C) ∪ (D ⊕ 2ω).

A real A is Martin-Löf random iff there is a positive constant c so that for
any n, the Kolmogorov complexity of the first n bits of A is at least n − c, (that
is, ∀n, K(Ai � n) ≥ n − c).

This is one of several equivalent definitions – for instance, A is Martin-Löf
random (A ∈ MLR) iff no c.e. martingale succeeds on it. In contrast, A is
Kolomogorov-Loveland random (A ∈ KLR) iff no computable nonmonotonic
betting strategy succeeds on it.

As MLR ⊆ KLR, KLR is trivially Medvedev reducible to MLR. In [KHW21],
Either is implicitly used to show the reverse, that MLR is Medvedev reducible
to KLR. For a reducibility r, such as r = tt (truth-table, Definition 1) or r = T
(Turing), let ≤s,r denote strong (Medvedev) reducibility using r-reductions, and
≤w,r the corresponding weak (Muchnik) reducibility.

Theorem 1. MLR ≤s,tt Either(MLR).

Proof. [KHW21, Theorem 2] shows that MLR ≤s,tt KLR. The proof demon-
strates that MLR ≤s,tt Either(MLR) and notes, by citation to [MMN+06], that
KLR ⊆ Either(MLR). 	

In fact, the proof shows that the two are truth-table Medvedev equivalent. A
natural question is whether they are Medvedev equivalent under any stronger
reducibility.

Let DIM1/2 be the class of all reals of effective Hausdorff dimension 1/2.
Theorem 1 is a counterpoint to Miller’s result MLR �≤w,T DIM1,2 [Mil11], since
MLR �≤s,tt DIM1,2 ⊇ Either(MLR).

Definition 1. Let {σn | n ∈ ω} be a uniformly computable list of all the
finite propositional formulas in variables v1, v2, . . . . Let the variables in σn be
vn1 , . . . , vnd

where d depends on n. We say that X |= σn if σn is true with
X(n1), . . . , X(nd) substituted for vn1 , . . . , vnd

. A reduction ΦX is a truth-table
reduction if there is a computable function f such that for each n and X, n ∈ ΦX

iff X |= σf(n).

For two classes of reals C,D, we write C ≤s,∗ D to mean that there is a ∗-reduction
Φ such that ΦD ∈ C for each D ∈ D, where ∗ is a subscript in Table 1.

As shown in Fig. 1, the next three candidates to strengthen the result (by
weakening the notion of reduction under consideration) are the positive, lin-
ear, and bounded truth-table reducibilties. Unfortunately, any proof technique



Strong Medvedev Reducibilities and the KL-Randomness Problem 153

using Either will no longer work, as for these weaker reducibilities, MLR is not
Medvedev reducible to Either (MLR).

2 The Failure of Weaker Reducibilities

When discussing the variables in a table σf(n), we say that a variable is of a
certain parity if its index is of that parity, i.e. n2 is an even variable. As our
reductions operate on 2ω, we identify the values X(ni) with truth values as
1 = � and 0 = ⊥.

Definition 2. A truth-table reduction ΦX is a positive reduction if the only
connectives in each σf (n) are ∨ and ∧.

Theorem 2. MLR �≤s,p Either(MLR).

Proof. Let ΦX be a positive reduction. By definition, for each input n, σf(n) can
be written in conjunctive normal form: σf(n) =

∧tn
k=1

∨mk

i=1 vf(n),i,k. We say that
a clause of σf(n) is a disjunct

∨mk

i=1 vf(n),i,k. There are two cases to consider:

Case 1: There is a parity such that there are infinitely many n such that every
clause of σf(n) contains a variable.

Without loss of generality, consider the even case. Let A = ω ⊕ R for R
an arbitrary random real. Each

∨mk

i=1 vn,i,k that contains an even variable is
true. So for the infinitely many n whose disjunctions all query an even variable,
σf(n) =

∧tn
k=1 � = �. As these infinitely many n can be found computably, ΦA

is not immune, and so not random.

Case 2: For either parity, for almost all inputs n, there is a clause of σf(n)

containing only variables of that parity.
Set A = R ⊕ ∅ for an arbitrary random real R. For almost all inputs, some

clause is a disjunction of ⊥, so that the entire conjunction is false. Thus ΦA is
cofinitely often 0, and hence computable, and so not random. 	

Table 1. Correspondences between reducibilities and sets in Post’s lattice. Here + is
addition mod 2 (also commonly written XOR). Note that while a btt reduction can use
any connectives, there is a bound c on how many variables each σf(n) can have, hence
if c = 1 the only connective available is ¬.

Reducibility Subscript Connectives

Truth table tt any

Bounded tt btt any

btt(1) btt(1) {¬}
Linear � {+}
Positive p {∧, ∨}
Conjunctive c {∧}
Disjunctive d {∨}
Many-one m none
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Fig. 1. [Odi99] The relationships between reducibilities in Table 1, which themselves
are between ≤1 and ≤T . Here x → y indicates that if two reals A and B enjoy A ≤x B,
then also A ≤y B.

Remark 1. The proof of Theorem 2 also applies to randomness over 3ω (and
beyond). To see this, we consider the alphabet {0, 1, 2} and let each p(j) be an
identity function and ∨,∧ be the maximum and minimum under the ordering
0 < 1 < 2.

Definition 3. A truth-table reduction ΦX is a linear reduction if each σf(n) is
of the form σf(n) =

∑tn
k=1 vf(n),k or σf(n) = 1 +

∑tn
k=1 vf(n),k where addition is

mod 2.

Theorem 3. MLR �≤s,� Either(MLR).

Proof. We may assume that Φ infinitely often queries a bit that it has not queried
before (else ΦA is always computable). Without loss of generality, suppose Φ
infinitely often queries an even bit it has not queried before. We construct A in
stages, beginning with A0 = ∅ ⊕ R for R an arbitrary random real.

For the infinitely many ni that query an unqueried even bit, let vi be the least
such bit. Then at stage s + 1, set vi = 1 if ΦAs(ni) = 0. Changing a single bit in
a linear σf(ni) changes the output of σf(ni), so that ΦA(n) = ΦAs+1(ni) = 1.

As these ni form a computable set, ΦA fails to be immune, and so cannot be
random. 	

Definition 4. A truth-table reduction ΦX is a bounded truth-table reduction
if there is a c such that there are most c variables in each σf(n) (in particular
we say it is a btt(c) reduction).

Theorem 4. MLR �≤s,btt Either(MLR).

Proof. Suppose that Φ is a btt-reduction from Either(MLR) to MLR and let c
be its bound on the number of oracle bits queried. We proceed by induction on
c, working to show that an X = X0 ⊕ X1 exists with X0 or X1 ML-random, for
which ΦX is not bi-immune.

Base for the induction ( c = 1). As btt(1) reductions are linear, it is enough to
appeal to Theorem 3. But as a warmup for what follows, we shall prove this
case directly. Let Φ be a btt(1) reduction. Here ΦX(n) = fn(X(q(n)) where
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fn : {0, 1} → {0, 1}, q : ω → ω is computable, and {fn}n∈ω is computable. (If
no bits are queried on input n, let fn be the appropriate constant function.)

If for infinitely many n, fn is the constant function 1 or 0, and the claim is
obvious.

Instead, suppose fn is only constant finitely often, i.e. fn(x) = x or fn(x) =
1−x cofinitely often. Without loss of generality, there are infinitely many n such
that q(n) is even. Let X = ∅ ⊕ R, where R is an arbitrary ML-random set.

As X(q(n)) = 0 and f(x) is either identity or 1 − x infinitely often, there is
an infinite computable subset of either ΦX or ΦX so ΦX is not bi-immune.

Induction Step. Assume the c − 1 case, and consider a btt(c) reduction Φ.
Now there are uniformly computable finite sets Q(n) = {q1(n), . . . , qdn

(n)}
and Boolean functions fn : {0, 1}dn → {0, 1} such that for all n, ΦX(n) =
fn(X(q1(n)), . . . , X(qdn

(n))) and dn ≤ c.
Consider the greedy algorithm that tries to find a collection of pairwise dis-

joint Q(ni) as follows:

– n0 = 0.
– ni+1 is the least n such that Q(n) ∩ ⋃

k<i Q(nk) = ∅.

If this algorithm cannot find an infinite sequence, let i be least such that
ni+1 is undefined, and define H =

⋃
k≤i Q(nk). It must be that for n > ni no

intersection Q(n) ∩ H is empty. Thus there are finitely many bits that are in
infinitely many of these intersections, and so are queried infinitely often. We will
“hard code” the bits of H as 0 in a new function Φ̂.

To that end, define Q̂(n) = Q(n) \H, and let f̂ be the function that outputs
the same truth tables as f , but for all n ∈ H, vn is replaced with ⊥. List the
elements of Q̂ in increasing order as {q̂1(n), . . . , q̂en

(n)}. Now if X ∩ H = ∅, any
qi(n) ∈ H have X(qi(n)) = 0, so that ΦX = Φ̂X , as for every n,

f(X(q1(n)), . . . X(qdn
(n))) = f̂n(X(q̂1(n)), . . . ,X(q̂en

(n)).

As Q and the fn are uniformly computable and H is finite, Q̂ and the f̂n are
also uniformly computable. As no intersection Q(n)∩H was empty, en < dn ≤ c.
So Q̂ and the f̂n define a btt(c−1)-reduction. By the induction hypothesis, there
is a real A ∈ Either(MLR) such that Φ̂A is not random. Either(MLR) is closed
under finite differences (as MLR is), so the set B = A \ H witnesses ΦB = Φ̂A,
and ΦB is not random as desired.

This leaves the case where the algorithm enumerates a sequence of pairwise
disjoint Q(ni).

Say that a collection of bits C(n) ⊆ Q(n) can control the computation ΦX(n)
if there is a way to assign the bits in Cn so that ΦX(n) is the same no matter what
the other bits in Q(n) are. For example, (a ∧ b) ∨ c can be controlled by {a, b},
by setting a = b = 1. Note that if the bits in C(n) are assigned appropriately,
ΦX(n) is the same regardless of what the rest of X looks like.

Suppose now that there are infinitely many ni such that some C(ni) contain-
ing only even bits controls ΦX(ni). Collect these ni into a set E. Let X1 be an
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arbitrary ML-random set. As there are infinitely many ni, and it is computable
to determine whether an assignment of bits controls ΦX(n), E is an infinite com-
putable set. For n ∈ E, we can assign the bits in Q(n) to control ΦX(n), as the
Q(n) are mutually disjoint. Now one of the sets

{n ∈ E | ΦX(n) = 0} or {n ∈ E | ΦX(n) = 1}

is infinite. Both are computable, so in either case ΦX is not bi-immune.
Now suppose that cofinitely many of the ni cannot be controlled by their

even bits. Here let X0 be an arbitrary ML-random set. For sufficiently large ni,
no matter the values of the even bits in Q(ni), there is a way to assign the odd
bits so that ΦX(ni) = 1. By pairwise disjointness, we can assign the odd bits
of

⋃
Q(ni) as needed to ensure this, and assign the rest of the odd bits of X

however we wish. Now the ni witness the failure of ΦX to be immune. 	


3 Arbitrarily Many Columns

It is worth considering direct sums with more than two summands. In this new
setting, we first prove the analog of Theorem 2 of [KHW21] for more than two
columns, before sketching the modifications necessary to prove analogues of The-
orems 2 to 4.

Recall that the infinite direct sum
⊕ω

i=0 Ai is defined as {〈i, n〉 | n ∈ Ai},
where 〈·, ·〉 : ω2 → ω is a fixed computable bijection.

Definition 5. For each C ⊆ 2ω and ordinal α ≤ ω, define

Some(C, α) =

{
α⊕

i=0

Ai ∈ 2ω

∣
∣
∣
∣
∣
∃i Ai ∈ C

}

,

Many(C) =

{
ω⊕

i=0

Ai ∈ 2ω

∣
∣
∣
∣
∣
∃∞i Ai ∈ C

}

.

These represent different ways to generalize Either(C) to the infinite setting:
we may know that some possibly finite number of columns Ai are in C, or that
infinitely many columns are in C. If α = ω, these notions are m-equivalent, so
we can restrict our attention to Some(MLR, α) without loss of generality:

Theorem 5 (due to Reviewer 2). Some(C, ω) ≡s,m Many(C).

Proof. The ≤s,m direction follows from the inclusion Many(C) ⊆ Some(C, ω).
For ≥s,m, let B ∈ Some(C, ω) and define A by:

〈〈i, j〉, n〉 ∈ A ⇐⇒ 〈i, n〉 ∈ B

Then A ≤m B and A ∈ Many(C), so that Some(C, ω) ≥s,m Many(C). 	
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3.1 Truth-Table Reducibility

Recall that a real A is Martin-Löf random iff there is a positive constant c (the
randomness deficiency) so that for any n, K(Ai � n) ≥ n − c). Let Ks(σ) be a
computable, non-increasing approximation of K(σ) at stages s ∈ ω.

Theorem 6. For all ordinals α ≤ ω, MLR ≤s,tt Some(MLR, α).

Proof. Given a set A =
⊕α

i=0 Ai, we start by outputting bits from A0, switch-
ing to the next Ai whenever we notice that the smallest possible randomness
deficiency increases. This constant c depends on s and changes at stage s + 1 if

(∃n ≤ s + 1) Ks+1(Ai � n) < n − cs. (1)

In detail, fix a map π : ω → α so that for all y, the preimage π−1({y}) is
infinite. Let n(0) = 0, and if Eq. (1) occurs at stage s, set n(s + 1) = n(s) + 1,
otherwise n(s + 1) = n(s). Finally, define A(s) = Aπ(n(s))(s).

As some Ai is in MLR, switching will only occur finitely often. So there is
an stage s such that for all larger t, A(t) = Ai(t). Thus our output will have an
infinite tail that is ML-random, and hence will itself be ML-random.

To guarantee that this is a truth-table reduction, we must check that this
procedure always halts. But this is immediate, as Eq. (1) is computable for all
s ∈ ω and Ai ∈ 2ω. 	


3.2 Positive Reducibility

We say that a variable is from a certain column if its index codes a location in
that column, i.e. nk is from Ai if k = 〈i, n〉 for some n.

Theorem 7. For all α ≤ ω, MLR �≤s,p Some(MLR, α).

Proof. Let ΦX be a positive reduction. Assume each σf(n) is written in con-
junctive normal form. We sketch the necessary changes to the proof of Theorem
2:
Case 1: There is an i such that there are infinitely many n such that every clause
of σf (n) contains a variable from Ai.

Without loss of generality, let that column be A0 = ω. The remaining Ai can
be arbitrary, as long as one of them is random.
Case 2: For all i, for almost all n, there is a clause in σf (n) that contains no
variables from Ai.

In particular this holds for i = 0, so let A0 ∈ MLR and the remaining Ai = ∅.
	


3.3 Linear Reducibility

Theorem 8. For all α ≤ ω, MLR �≤s,� Some(MLR, α).
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Proof. We may assume that Φ infinitely often queries a bit it has not queried
before (else ΦA is always computable). If there is an i such that Φ infinitely often
queries a bit of Ai it has not queried before, the stage construction from Theorem
3 can be carried out with Ai standing in for A0, and some other Aj ∈ MLR.

That case always occurs for α < ω, but may not when α = ω. That is, it
may the the case that Φ only queries finitely many bits of each Ai. Letting each
Ai be random, these bits may be set to 0 without affecting the randomness of
any given column, so we could set A0 ∈ MLR while other Ai = ∅. 	


3.4 Bounded Truth-Table Reducibility

As btt(1) reductions are linear, Theorem 8 provides the base case for induction
arguments in the vein of Theorem 4. So for each theorem, we can focus our
attention on the induction step:

Theorem 9. For all α ≤ ω, Many(MLR) �≤s,btt Some(MLR, α).

Proof. In the induction step, the case where the greedy algorithm fails is
unchanged. Instead, consider the case where the algorithm enumerates a
sequence of pairwise disjoint Q(ni). If there is a column Aj such that there
are infinitely many ni such that some C(ni) containing only bits from Aj con-
trols ΦX(n), then we proceed as in Theorem 4: start with some other Ak ∈ MLR
while the remaining columns are empty. We can then set the bits in each Q(ni)
to control ΦX(ni) to guarantee that ΦX is not bi-immune. This only changes
bits in Aj , not Ak, so the final A ∈ Some(MLR, α).

This leaves the case where for each Aj , cofinitely many of the ni cannot be
controlled by their bits in Aj . Here put A0 ∈ MLR and assign bits to the other
columns as in Theorem 4. 	


4 On the Medvedev m-reducibility of MLR to (a.e.-)KLR

Let μ denote the Lebesgue fair-coin measure on 2ω. It enjoys the familiar prob-
abilistic properties such as Lemma 1:

Lemma 1. Let C,D ⊆ 2ω. If μ(C) = 1 and μ(D) = 1 then μ(C ∩ D) = 1.

Given a randomness notion C, we say that a set A is almost everywhere
C-random1 if μ{B | A ∈ CB} = 1. The following is an easy corollary of van
Lambalgen’s theorem:

Theorem 10. a.e.-MLR = MLR.

Proof. The ⊆ direction is immediate – if A is random relative to some oracle,
it is random relative to having no oracle, so A ∈ MLR. For the reverse, let
A ∈ MLR. If B ∈ MLRA, then A ∈ MLRB by van Lambalgen’s theorem. Thus
μ{B | A ∈ MLRB} ≥ μ(MLRA) = 1, so that A ∈ a.e.-MLR.
1 This notion was previously defined for the class of computable randoms in [BDRS22].
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The corresponding theorem for a.e.-KLR and KLR is an open question, and
in fact whether KLR satisfies a version of van Lambalgen’s theorem is also open
[DGT13]. The situation can be summarized as follows:

a.e.-MLR = MLR ⊆ a.e.-KLR ⊆ KLR.

Here we investigate possible connections between MLR and a.e.-KLR.
Write f : A → B to indicate that f is a total function from A to B. No

confusion is likely if, in addition to the Lebesgue measure on 2ω, μ also denotes
the least number operator as follows: for an arithmetic predicate R(k), μk(R(k))
is the least k such that R(k) is true.

Let f : ω → ω with range f [w], and define f inv : f [ω] → ω by f inv(n) =
μm(f(m) = n). Let g : ω → ω be defined by g(0) = f(0), and

g(n + 1) = f(μk(f(k) > g(n))).

If f is unbounded then g : ω → ω is total. If in addition f is Δ0
1, then so is

g. In fact, if f is unbounded and Δ0
1 then g[ω] is infinite and Δ0

1.

f(3) f(1)
f(0)

= g(0)
f(2)

= g(1)
f(4)
= g(2)

0 1 2 3 4 5 6 7

Fig. 2. An example of the behaviors of f and g in Lemma 2.

Lemma 2. Let A ∈ 2ω and let f : ω → ω be an unbounded Δ0
1 function. Define

g by
g(n + 1) = f(μk(f(k) > g(n))).

Then we have the implication A ◦ f ∈ MLR =⇒ A ◦ g ∈ MLR.

Proof. Suppose that A ◦ g �∈ MLR. Then A is Martin-Löf null, i.e., there is some
uniformly Σ0

1 class {Un}n∈ω with μ(Un) ≤ 2−n such that A◦g ∈ ⋂
n∈ω Un. Note

that f inv ◦ g : ω → ω is total and strictly increasing. Also, f ◦ f inv is the identity
function on f [ω] ⊇ g[ω].

Thus
A ◦ g = A ◦ f ◦ f inv ◦ g

and we have
A ◦ f ∈ Vn := {B | B ◦ f inv ◦ g ∈ Un}

The sets Vn are also Σ0
1 uniformly in n, and μ(Vn) ≤ 2−n. Thus A ◦ f �∈ MLR.

Lemma 3. If C is a class of reals and MLR ≤s,m C, then there is a 1-reduction
A �→ ΨA = A ◦ g, of MLR to C, such that g is strictly increasing and has
computable range.
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Proof. Suppose ΦA(n) = A◦f(n) for all A and n, where A ∈ C =⇒ ΦA ∈ MLR
for all A and f : ω → ω is Δ0

1. Since there is no computable element of MLR, it
follows that f is unbounded.

Let ΨA(n) = A ◦ g(n) with g as in Lemma 2. Then we have

A ∈ C =⇒ ΦA ∈ MLR =⇒ ΨA ∈ MLR,

as desired.

Theorem 11. If MLR ≤s,m KLR then a.e.-KLR = MLR.

Proof. Assume that MLR ≤s,m KLR. By Lemma 3, we have in fact a 1-reduction
Φ given by ΦA(n) = A(f(n)) for an injective and strictly increasing computable
f with computable range Z.

Let A ∈ a.e.-KLR. Consider the following classes of reals:

C = {B | A ∈ KLRB}
D = {B | B ∈ KLRA}
E = {B | B ∈ MLRA}

Since A ∈ a.e.-KLR, μ(C) = 1. It is well-known that μ(E) = 1. Since D ⊇ E ,
it follows that μ(D) = 1. By Lemma 1, μ(C∩D) = 1; in particular, C∩D �= ∅. Let
B ∈ C ∩ D. Thus A ∈ KLRB and B ∈ KLRA. By [MMN+06, Proposition 11],
A ⊕Z B ∈ KLR, where A ⊕Z B is the unique real whose restrictions to Z and Z
are A and B, respectively. By definition of Z, we have ΦU⊕ZV = U for all U and
V . Since Φ is a reduction of MLR to KLR, it follows that A = ΦA⊕ZB ∈ MLR,
as desired.

Theorem 12. Let Z be an infinite computable set and let A,B,X be sets. If
A ∈ KLRB⊕X and B ∈ KLRA⊕X then A ⊕Z B ∈ KLRX .

Proof. Relativization of [MMN+06, Proposition 11].

We can relativize to obt ain the following conditional result, a strengthening
of Theorem 11:

Theorem 13. If MLR ≤s,m a.e.-KLR then MLR = a.e.-KLR.

Proof. Assume MLR ≤s,m a.e.-KLR as witnessed by a reduction Φ, and let
A ∈ a.e.-KLR. Let Z be as in the proof of Theorem 11.

By definition of a.e.-KLR, for almost all (B,X), A ∈ KLRB⊕X . Moreover,
for almost all (B,X), B ∈ MLRA⊕X ⊆ KLRA⊕X .

Therefore
μ{(B,X) | A ⊕Z B ∈ KLRX} = 1

by Theorem 12. By Fubini’s Theorem this implies

μ{B | μ{X | A ⊕ B ∈ KLRX} = 1} = 1.

Since measure-one sets are nonempty, there exists a set B such that

μ{X | A ⊕ B ∈ KLRX} = 1,

i.e., A ⊕ B ∈ a.e.-KLR. By assumption on Φ, A = ΦA⊕ZB ∈ MLR, as desired.
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We can also strengthen these results to work for btt(1)-reducibility instead
of m-reducibility.

If an analogue of Van Lambalgen’s theorem holds for KLR (as it does for
MLR), then the two theorems have the same content, as KLR = a.e.-KLR.
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Abstract. Topological models are sometimes used to prove indepen-
dence results in constructive mathematics. Here we show that some of
the topologies that have been used are necessary for those results.
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1 Introduction

The motivation behind reverse math is the foundational question whether, if a
certain method, broadly understood, is used to prove a theorem, that method
is in some sense necessary. The cleanest kind of result, when the “method” is a
hypothesis, is that the theorem implies the hypothesis. A similar kind of result
obtains when the “method” in question is the use of a certain object, and you
show that any procedure which ends in that theorem must use that object. That
is the goal of this work.

The framework we will be using is topological models for constructive mathe-
matics. (A brief introduction to topological models, with references, is given in a
sub-section at the end of this introduction.) If you want an independence result,
like φ does not imply ψ, then you could show this by developing a topological
space T such that the model built over T satisfies φ and not ψ. What we would
like to show here is that if the model built over any space U similarly satisfies
φ and not ψ then U in some sense induces T . This is familiar from forcing: if
G is P-generic, and H ∈ V [G] is Q-generic, then (the complete Boolean algebra
generated by) Q is a sub-algebra of (the cBa generated by) P (see for instance
[8], 15.42–15.45). What corresponds to a cBa P in our setting is the complete
Heyting algebra of the open sets of U . So the way T sits inside of U should be
so that the opens of T are a sub-cHa of those of U .

One way this could happen is if U is T × V. (That could be the case for
instance if φ is made true by the existence of an object generic over T . A generic
for U is a pair of generics for T and V.) Then T is a quotient space of U . Or
if U is the disjoint union T � V (which could be the case if forcing with V also
satisfies φ), in which case T is a subspace of U .

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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A limitation of the efforts here is that we consider only topological models. A
slight extension would include arbitrary Heyting-valued models, accounting for
Heyting algebras that are not spatial. More broadly than that, there are other
constructions of constructive models, such as realizability and Kripke models.
Moreover, these various methods can be mixed and matched, such as a Kripke
model built using cHa extensions of a realizability model. They are all instances
of Krivine’s classical realizability [9,10], a construction method that covers all of
those mentioned thus far, classical forcing included. That could be a setting in
which one could hope to show that any construction which has a given property
must of necessity contain a certain core. It is not clear that such will always
be possible. For instance, the two known models separating Decidable Fan from
c-Fan [1,13] are very different from each other, making it unclear that in that
case there is a common core to that separation. No doubt in other cases there is
a common core. This is all left for future work.

Regarding the meta-theory used here, if push comes to shove it is taken to
be ZFC. To illustrate why, at one point we come up with an ultrafilter, which
is known to require a certain amount of Choice. There are constructive work-
arounds to ultrafilters, so no doubt matters could be re-formulated and done
more carefully to stay within constructive set theory. That is not the purpose of
this paper.

This section continues with a brief introduction to topological models in
general, and a summary of the principles we will be analyzing. Each of the next
three sections extracts a topological consequence from a separation of those
principles. The final section suggests some possibilities for future work along
these lines, especially in connection with BD-N.

Thanks are to be given to Matt Hendtlass, who was the inspiration for this
work. He came up with the idea for this project, and proved the chronologically
first theorem, Theorem 2 here. May he come back!

1.1 Topological Models

Forcing in set theory can be described as Boolean-valued models, built over
complete Boolean algebras. The reason that Boolean algebras are used here
is that they exactly characterize classical logic. If what you want is instead
constructive logic, the appropriate structures are Heyting algebras. Heyting-
valued models, built over complete Heyting algebras (cHa’s), can be developed
just like Boolean-valued models. The open sets of a topological space form a
cHa; the Heyting-valued model built over such a cHa is called a topological
model. The opens of a topological space form what is called a spatial Heyting
algebra; not every cHa is spatial. Although there is a prior history of topological
semantics, Heyting-valued semantics for set theory were fully developed in [3]; a
more recent and perhaps more accessible account for topological models is given
in [4], which also contains most of the independence proofs referenced in this
paper. To help make this current work more self-contained, the basic definitions
of these models from the latter paper are given below.
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Topological models are Heyting valued models where the complete Heyting
algebra is the lattice of opens OT of a topological space T . Meet and join in OT
are given by intersection and union respectively, while the psuedo-complement
→ is defined by

U → V ≡ (−U ∪ V)◦,

where −U denotes the complement of U in T and W◦ denotes the interior of W.
The full topological model over T consists of the class of names or terms, defined
inductively by

Vα(T ) = P
(⋃

{Vν(T ) × OT : ν ∈ α}
)

,

V (T ) =
⋃

α∈ORD

Vα(T ).

Given σ ∈ Vα(T ), the meaning of 〈τ,U〉 ∈ σ is that U is the degree of truth,
or truth-value, of τ being in σ. (Of course, the ultimate value of τ ∈ σ might
be greater than U , depending on what else is in σ.) The idea of the full model
is to throw in absolutely everything you can. We will have occasion to look at
sub-models of the full model. An embedding ·̌ of the ground model V into V (T )
is defined inductively by

ǎ = {< b̌, T >: b ∈ a}.

The truth value of any proposition A, with parameters from V (T ), is an
open subset of T and is denoted by �A�. To say that a proposition A is true, or
satisfied, in a topological model MT over T means �A� = T , otherwise A is said
to fail in MT . Being false in MT is a stronger property: A is said to be false in
MT if MT satisfies ¬A, or equivalently �A� = ∅. We freely switch between truth
value notation �·� for topological models and forcing notation: a point x ∈ T
forces a formula A, written x � A, if and only if x ∈ �A�, and, for an open subset
U of T , U � A if and only if U ⊂ �A�.

A particularly important object, the generic, in a topological model MT is
described by the name

G = {< Ǔ ,U >: U ∈ OT }.

Strictly speaking, the generic contains as its members open sets from the
ground model, being characterised by

U � Ǔ ∈ G

for all U ∈ OT . In practice though, it is more useful to think of the generic
as a new element of the topological space over which we are forcing. A point
in a Hausdorff space is determined by its open neighborhoods, and so could be
thought of as the set consisting of all of those neighborhoods. Similarly, in the
other direction, Ǔ ∈ G can fruitfully be thought of as G ∈ U . Of course, since
G is not in the ground model, G ∈ Ǔ is just false. Instead, one may think of U
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as being given by a description, and then “G ∈ U” would mean that G satisfies
this description, as interpreted in the extension. For instance, if T is the reals,
then U might be the interval (p, q) with rational endpoints; G could be thought
of as a generic real number, and Ǔ ∈ G could be read as meaning p < G < q.

IZF, Intuitionistic ZF, is a ZF-style axiomatization of set theory using con-
structive logic, which is equivalent with ZF under classical logic.

Theorem 1. (Grayson) Topological models preserve IZF; that is, IZF proves
that the full topological model V (T ) satisfies the axioms of IZF.

1.2 Summary of Constructive Principles

– BD-N: Every countable, pseudo-bounded set of natural numbers is bounded.
– LLPO, the Lesser Limited Principle of Omniscience: Every binary sequence

with at most one 1 has either all the even slots 0 or all the odds 0.
– LPO, the Limited Principle of Omniscience: Every binary sequence is either

all 0 s or has a 1 in it.
– MP, Markov’s Principle: If it is impossible for every value in a binary sequence

to be 0, then there is one value which is 1.
– WLEM, the Weak Law of the Excluded Middle: For any proposition A, either

¬A or ¬¬A.
– WLEMω: For any countable sequence of propositions, if it is impossible that

for any distinct pair of them both are true, then one of them must be false;
¬

∨
i,j∈ω,i�=j Ai ∧ Aj →

∨
i ¬Ai.

– WMP, Weak Markov’s Principle:

∀γ [∀β (¬¬∃n (β(n) = 1) ∨ ¬¬∃n (γ(n) = 1 ∧ β(n) = 0)) → ∃n γ(n) = 1].

2 The Coarse Topology on ω+

The first example we will consider may as well be the simplest. Let ω+ be
ω ∪ {∗}. We extend the discrete topology on ω (under which every set is open)
in the coarsest possible way to ω+ by letting the entire space be the only open
neighborhood of ∗. When we refer to ω+ as a topological space, we mean this
coarse topology.

The Limited Principle of Omniscience, LPO, states that every binary
sequence is either all 0s or has a 1 in it. A weakening of the Weak Law of
the Excluded Middle, WLEMω is the assertion that, for any countable sequence
of propositions, if it is impossible that for any distinct pair of them both are
true, then one of them must be false.

It is shown in [4], Theorem 4.1, that LPO does not imply WLEMω, by show-
ing that in the topological model over ω+ LPO holds while ∗ does not force
WLEMω (meaning no neighborhood of ∗ forces as much). We show that any
topological space with a point not forcing WLEMω induces ω+.

Theorem 2. If x ∈ T and x �� WLEMω then a quotient space of T is isomor-
phic to ω+.
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Proof. By the failure of WLEMω at x, there is a neighborhood O of x and a
sequence of Ai (i ∈ ω) of propositions such that O forces that no pair Ai, Aj

(i �= j) are both true, but O does not force that one is false. Without loss of
generality we take each open set �Ai�, which is best thought of as the truth value
of Ai, to be a subset of O, since we could replace �Ai� by �Ai� ∩ O. Since O
forces no pair to be true, �Ai�∩ �Aj� = ∅. Since O does not force one to be false,
the union

⋃
i�¬Ai� is not all of O. So there is some point, let’s call it ∞, which is

in no �¬Ai�. That means that ∞ is in the closure of each �Ai�. Furthermore, ∞
is in no �Ai�, since the closure of �Aj� is the smallest closed set containing �Aj�,
and one such closed set is the complement of �Ai�. So ∞ is in the boundary of
each �Ai�. Take the quotient space that sends all of �Ai� to one point, call it i,
and everything not in any �Ai� to ∗. Notice that ∞ goes to ∗. In the quotient
topology, each i is open, because its inverse image is �Ai�. Now consider a set X
containing ∗ and missing some i. The inverse image of X contains ∞, which is in
the boundary of �Ai�, yet is disjoint from �Ai�, and so is not open. That yields
that the only possible open neighborhood of ∗ cannot miss any i. Trivially, the
inverse image of the entire quotient is all of T , and so the quotient space is open.
Hence the quotient space is ω+. ��

3 The Necessity of Ultrafilters

Theorem 5.1 of [4] is that WLEM does not imply WMP, Weak Markov’s Prin-
ciple. The topological model that is used for this is based on a non-principal
ultrafilter of ω. This is unsettling, because the existence of ultrafilters needs
some amount of Choice, but the independence of WMP from WLEM should not
depend on Choice. Are the ultrafilters just a trick which happens to work? Or
are they somehow fundamental to the questions at hand?

In the following, we will work with LLPO, which follows from WLEM, and
LPO, from which WMP follows. LLPO, the Lesser Limited Principle of Omni-
science, states that every binary sequence with at most one 1 has either all the
even slots 0 or all the odds 0. The construction that WLEM does not imply
WMP yields trivially that LLPO does not imply LPO.

Lemma 1. A point x in a topological space T does not force LPO if and only
if there exists a sequence (Cn)n∈ω of clopen subsets of T such that

x �∈
( ⋂

n∈ω

Cn

)◦

∪
⋃
n∈ω

−Cn.

Proof. Let α be a counterexample to LPO at x. (Without loss of generality,
T � α ∈ 2ω.) Let Cn be �α(n) = 0�. Then

(⋂
n∈ω Cn

)◦ � ∀n α(n) = 0, while⋃
n∈ω −Cn � ∃n α(n) = 1; whence x is in neither of these sets.

In the other direction, given such a sequence Cn, define α to be the term such
that �α(n) = 0� = Cn. ��
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We will call a topological space an ultrafilter topology on ω if (up to home-
omorphism) the underlying set is ω ∪ {∗}, the subspace ω carries the discrete
topology, and for some ultrafilter U , the neighborhoods of ∗ are of the form
{∗} ∪ u where u ∈ U .

Theorem 3. If x ∈ T forces LLPO and not LPO, then a subset of T has a
quotient space with an ultrafilter topology on ω.

Proof. Since x does not force LPO, let Cn be a sequence of clopens as in the
previous lemma. Without loss of generality we can take C0 to be T and the
sequence to be strictly decreasing: C0 � C1 � . . . . Of course,

⋂
n∈ω Cn has a

non-empty boundary, because it contains x in particular. In the following con-
struction, anything else in the boundary might be trouble (an example follows
the proof). So consider the subspace of T with those other points removed. In
other words, we want

⋂
n∈ω Cn\{x} to be open. We recycle notation, and call

this subspace T also.
Let On be Cn\Cn+1. Notice

⋃
n∈ω On = T \

⋂
n∈ω Cn. Let f send On to n and⋂

n∈ω Cn to ∗. We claim that the induced quotient topology on ω ∪ {∗} is an
ultrafilter topology.

For starters, ω carries the discrete topology, because each On is (clopen and
therefore in particular) open. As for neighborhoods of ∗, first, {∗} ∪ ω is open
because its inverse image is all of T . Also, {∗} is not open because its inverse
image is

⋂
n∈ω Cn, which contains x as a member, but x is not in the interior. As

for closure under intersection, if the inverse images of both {∗} ∪ u and {∗} ∪ v
are open, then the inverse image of {∗} ∪ (u ∩ v) is open, being the intersection
of two open sets.

Finally, suppose v = ω\u. We must show the inverse image of either {∗} ∪ u
or {∗} ∪ v is open. We can safely assume both u and v are infinite. Let g and
h enumerate u and v respectively. Let α be such that �α(2n) = 1� = Og(n) and
�α(2n + 1) = 1� = Oh(n). Since x forces LLPO, some neighborhood of x, say N ,
forces either all of α’s even entries or all of α’s odds to be 0. Say it’s the evens.
Then N is a subset of the inverse image of {∗} ∪ v. Hence the latter set is itself
open, being the union of N with the open sets Oh(n) and

(⋂
n∈ω Cn

)◦. ��

To see why we had to throw the boundary points away, consider the following
variant of the ultrafilter topology on ω. The underlying set is ω ∪ {∗,⊥}, the
neighborhoods of ∗ are as before, and the neighborhoods of ⊥ include ∗ and a
cofinite subset of ω. If ⊥ is not thrown away, the ultrafilter is obscured.

4 The Necessity of Non-ultra Filters

While the previous section focused on ultrafilters, some of the constructions of
[4], while being based on filters, pointedly do not use maximal filters. This is
clearest in the one model of Theorem 5.6 (WMP does not imply MP∨

ω) which
uses the Frèchet filter. There are, however, other models presented there, namely
in Theorems 5.2, 5.7, and 5.8, which look a bit different from each other, while all
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ultimately using non-maximal (a.k.a. non-ultra) filters, even though that latter
fact is not flagged there. Is there a commonality that binds them all together?

In the following, we will need:

– MP (Markov’s Principle): If it is impossible for all terms of α to be zero, then
there exists an n such that α(n) = 1.

We will also need:

– WMP (Weak Markov’s Principle):

∀γ [∀β (¬¬∃n (β(n) = 1) ∨ ¬¬∃n (γ(n) = 1 ∧ β(n) = 0)) → ∃n γ(n) = 1].

(The aforementioned MP∨
ω is a weakening of MP which we will not use here.)

Theorem 4. At a point ∞ in a topological space T , if ∞ � WMP and ∞ ��
MP then it is dense at ∞ that there is a quotient space which is homeomorphic
to a non-principal non-ultra filter topology on ω.

(To say that property P holds densely at point x means that every open set
containing x has an open subset satisfying P . For F a filter on ω, the induced
filter topology on ω ∪ {∗} is discrete on ω and has as neighborhoods of ∗ all sets
of the form u ∪ {∗} for u ∈ F .)

Proof. ∞ �� MP iff for all O containing ∞, O �� MP. Unpacking the definition
of �, we get that for some Ô ⊆ O and α, Ô � α is a binary sequence, Ô �
¬∀n α(n) = 0, yet Ô �� ∃n α(n) = 1. Working within Ô, let Cn be �α(n) = 0�.
Since α is forced not to be the 0 sequence,

⋂
n∈ω Cn has an empty interior. At

the same time,
⋂

n∈ω Cn is non-empty, as follows. If that intersection were empty,
then each x ∈ Ô is in the complement of some Cn. Each Cn is clopen, so this
complement is open, and forces ∃n α(n) = 1. Hence Ô is covered by open sets
each forcing ∃n α(n) = 1, and so Ô forces the same. This contradicts the choice
of Ô and α.

Let On be (Ô\Cn)\(
⋃

k<n Ok). Because each Cn is clopen, so is each On.
Notice that On is the truth-value of “n is the first place where α is 1;” as is
often the case, once we have an occurrence of 1 in α our work is done, and it’s
easier to focus on the first such occurrence. If only finitely many of the On’s were
non-empty, then their union

⋃
n On would be a union of finitely many clopen

sets, hence itself clopen. That would make the complement of
⋃

n On also clopen.
But that complement is

⋂
n Cn, which we have seen is non-empty with empty

interior, and so cannot be clopen. We conclude that infinitely many of the On’s
are non-empty. By thinning the sequence of On’s by eliminating those that are
empty, we can assume without loss of generality that each On is non-empty.

Consider the function f which sends each point in On to n and the rest of
Ô to ∗. This epimorphism induces a corresponding quotient space topology on
ω ∪ {∗}. Because each On is clopen, the quotient topology on ω is the discrete
topology. We need only concern ourselves with neighborhoods of ∗.
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Toward this end, let F be {u ⊆ ω | u∪{∗} is open in the quotient topology},
meaning that its inverse image under f is open in Ô. We will show first that F
is a non-principal filter.

For starters, ∅ �∈ F , because the inverse image of ∗ is
⋂

n Cn, which is not
open. Also, F is closed upwards: if v ⊇ u ∈ F , then the inverse image of v ∪ {∗}
is the union of the inverse image of u ∪ {∗} with some open sets. Furthermore,
F is closed under intersections, because the inverse image of an intersection is
the intersection of the inverse images, and the intersection of open sets is open.
Hence F is a filter. Because each On is clopen, F contains each co-finite set, and
so is not principal.

The construction above could be applied to any open O′ ⊆ Ô as long as O′

contains some point from
⋂

n Cn (by considering the sequence O′ ∩ On). If there
is some such O′ where the induced filter F is not an ultrafilter then we are done.
Hence assume there is no such, which we will call the ultrafilter assumption,
toward a contradiction.

Let γ be such that �γ(n) = 1� = On. Effectively, γ is α up until the first 1,
and then 0 thereafter. Because WMP was forced by O, we can apply WMP to
γ. We will show that Ô forces the hypothesis of WMP, so that Ô forces γ to
have a 1 somewhere. Then Ô will force α to have a 1 somewhere, the desired
contradiction.

So let Ō ⊆ Ô force β to be a binary sequence. Let β̄ be such that �β̄(n) =
1� = �β(n) = 1� ∩ On. The purpose of β̄ is that, if anything, it is even more
difficult to verify the hypothesis of WMP on β̄ than it is on β. After all, the
value at any n of �β̄(n) = 1� is a subset of that of �β(n) = 1�, so it is more
difficult to make the first disjunct true for β̄ than for β. Regarding the second
disjunct, the value �β(n) = 1 ∧ β̄(n) = 0� is disjoint from On, meaning �β(n) =
1 ∧ β̄(n) = 0� � γ(n) = 0, hence if the second disjunct holds for β̄ then it also
does for β. We conclude that if we can show Ō forces the hypothesis of WMP
on β̄, we will have shown the same for β.

There are two cases to consider: Ō is disjoint from
⋂

n Cn, or it’s not. In the
former case, Ō is covered by the disjoint clopens Ō ∩ On, each of which itself is
the disjoint union of the clopens Ō ∩ On ∩ �β̄(n) = 1� and Ō ∩ On ∩ �β̄(n) = 0�.
The former set forces ∃n β̄(n) = 1, and the latter ∃n γ(n) = 1∧β(n) = 0, which
suffices.

For the second case, we get to use the ultrafilter hypothesis. Work within Ō.
(That means, for instance, reference to On implicitly means On ∩ Ō.) Let N0

be {n | On � β̄(n) = 0}, N1 be {n | On � β̄(n) = 1}, and N2 be the naturals
in neither N0 nor N1. The Ni’s form a partition of the natural numbers, hence
one is in the ultrafilter. That means the inverse image Ui of some Ni ∪ {∗} is
open. Suppose first that is the case for i = 0. Notice that the inverse image of
N0 forces ∃n γ(n) = 1 ∧ β(n) = 0. Let x be any other point of U0, meaning x is
in

⋂
n Cn. If V is an open set containing x, then V ∩ U0 must contain a point in

some On with n ∈ N0, lest V ⊆
⋂

n Cn, whereas the latter set has empty interior.
Hence V ∩ U0 forces the second disjunct (in the hypothesis of WMP). Similarly
if i = 1 or 2. ��
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5 BD-N and Future Directions

The principles studied above, although about sequences, are really logical princi-
ples, because they are about binary sequences. A natural extension is to include
similar analyses for analytic principles. Examples abound: whether the Cauchy
and Dedekind reals are equal [2], the Fundamental Theorem of Algebra [2,11],
the Fan Theorem [2,13], BD-N [12]. As it turns out, this is more difficult than
the current study of logical principles. Perhaps that is only to be expected, since
principles of analysis are more complicated. Be that as it may, the following is a
summary of what is known in one case, namely BD-N. The purpose of discussing
these failed attempts is to convey to the interested reader a sense of the diffi-
culties, and to provide a springboard for future researchers. This section then
concludes with some other open questions.

By way of background, a set (of natural numbers) is pseudo-bounded
if every sequence (an) of its members is eventually bounded by the identity
sequence (i.e. for n large enough an < n). BD-N is the principle that every
countable pseudo-bounded set is bounded [5–7]. In [12], it was shown that the
model built over the space T of bounded sequences, suitably topologized, falsifies
BD-N: T � G is pseudo-bounded yet unbounded (where G is the generic). This
failure is strong in that there is one counter-example that works for the whole
space, and that this counter-example is not merely not forced to be bounded,
which would ultimately come down to a single point, but rather that it is posi-
tively forced to be unbounded, and that, again, by the whole space.

To get a model in which BD-N fails, it would seem as though some kind
of completeness is necessary, because if you take either the space of eventu-
ally constant sequences, or the space of bounded but never eventually constant
sequences, the generic is no longer pseudo-bounded. (The sequence that picks
out the next pair of identical entries, or the next change in the sequence, can
be leveraged to contradict pseudo-boundedness.) On the other hand, in the suc-
cessful space in [12], if you remove just one point, you violate completeness, but
what’s left is covered by open sets of the original space, each of which forces
¬BD-N. So the role of completeness is unclear.

It is easy to find ways to change the space so it is no longer precisely the
bounded sequences, but it may as well be, in that the bounded sequences are eas-
ily recovered from the space. For instance, take the set of always positive bounded
sequences – don’t allow 0 as a value. Trivially, by shifting everything down one,
you re-create the bounded sequences. Or the space of bounded sequences in
which every entry indexed by an odd number is equal to the entry just before
(i.e. α(2n) = α(2n + 1)). By identifying each odd entry with its predecessor,
again one re-captures the bounded sequences. Clearly one could come up with
more complicated variants of these. What’s not so clear is just how they would
be identified and how one could give a general procedure to extract exactly
the bounded sequences. Or, for that matter, since it’s not exactly the bounded
sequences we need, how to give the general property of a space which would
make it violate BD-N.
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This then leads to a general project: find a good theorem about topological
spaces violating, or for that matter satisfying, BD-N; more generally, find such
for other principles of analysis.

Even for logical principles, there is still more to be done. For instance, analyze
some principles not studied here. Even for the ones in this paper, the theorems
could be improved. For instance, the theorems proved here are implications; it
would be nice to see iff’s, perhaps of course calling for a tighter property.

Some logical principles, given about binary sequences, have real number cor-
relates. For instance, assuming for instance DC, LPO is equivalent with the
decidability of equality on the reals. Also, again under DC, LLPO is equivalent
with the linearity of the ordering of the reals. It would be interesting to compare
the requirements and restrictions on topological spaces for corresponding pairs
of principles.
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Abstract. The Minimalist Foundation MF was ideated by M.E. Mai-
etti and G. Sambin and then completed as a formal system by M.E.
Maietti in order to provide a foundation for constructive mathematics
compatible with the main classical and intuitionistic, predicative and
impredicative, foundational theories. Here we show that MF is in fact
compatible with Aczel’s constructive set theory CZF. We prove this by
extending the extensional level of MF with rules obtaining a system
which turns out to be equivalent to CZF.

1 Introduction

Classical mathematics leans on a standard foundational theory, that is Zermelo-
Fraenkel axiomatic set theory ZF. The situation in constructive mathematics is
very different: there are many foundational theories in the literature and no one
of them has already reached the privileged status of “standard”.

Moreover, the foundational tendency in constructive mathematics changed
after Bishop’s work (see A constructive Manifesto in [4]). The modern view on
constructivism is far from that of Brouwer’s intuitionism or that of Russian
computable mathematics. The notion of compatibility plays an important role
nowadays: constructive mathematics is in fact understood by most mathemati-
cians working in the field as ordinary mathematics done with intuitionistic logic
and for this reason it must lay in a common core between classical mathematics,
Brouwer’s intuitionism and Russian computable mathematics. In particular, a
foundational theory corresponding to such a notion of constructivism should be
itself a common core between the main classical and intuitionistic, predicative
and impredicative foundational theories available in the literature; intuitively,
such a foundational theory should admit interpretations in the other ones pre-
serving logic and the intended meaning of set-theoretical constructors. Maietti
and Sambin in [9] identified properties that such a common core foundation
should satisfy for meeting this requirement. Later in [8] Maietti proposed a
precise foundational theory, called Minimalist Foundation (for short MF), sat-
isfying these properties. The formal system MF consists of two levels formu-
lated as dependent type theories: the intensional level mTT and the extensional
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level emTT connected by a setoid model of the second in the first. The inten-
sional level should be an account of all the computational aspects of the theory,
while the extensional level is the one in which ordinary mathematics should
be performed. In particular, mTT is compatible (see [8]) with type theoretic
foundations like Martin-Löf type theory [10] and Coquand’s Calculus of Con-
structions [5], while emTT should be compatible with axiomatic set-theoretical
foundations. In [8] an argument for the compatibility of emTT with Aczel’s
constructive Zermelo-Fraenkel set theory CZF in [3] is sketched. In this paper
we want to make precise that statement by showing that emTT is compatible
with CZF in a strong sense. We will in fact extend emTT with some rules,
obtaining a type theory emTTCZF equivalent to CZF. The theory emTTCZF

can be seen as an envelope of CZF embodying (meta)theoretical concepts of set
theory like those of definable class, definable set and Δ0-formula.

The work done here has strict connections with Aczel’s interpretation of
constructive set theory in type theory [1] and Aczel and Gambino’s one in [2].
Indeed, in [1] the author adds a “universe of sets” type to Martin-Löf type
theory in order to provide a model of CZF in it. This idea is similar to our,
but Martin-Löf type theory is quite different from the extensional level of the
minimalist foundation. In emTT e.g. propositions-as-types does not hold. Our
framework is instead more similar to that of [2] since type theory is enriched
with logic there. This distinction is present also in emTT, although it lacks
W -types and a universe, which are used in [2] to construct an interpretation for
the universe of sets. There, indeed, the models are type theoretical renderings of
a cumulative universe of sets, and cannot be adapted to models of impredicative
set theories like IZF or ZF. On the contrary, our construction is modular in that
it works also if we remove ε-induction, or if we add other principles in order to
obtain impredicative theories equivalent, for example, to IZF or ZF. Eventually,
apart from differences and analogies between our approach and those adopted
in [2] and [1], the aim itself of this paper is very different: our goal is not the
definition of a model of set theory in emTT, but rather an extension of emTT
equivalent to CZF.

The extensional level emTT of the Minimalist Foundation in [8] is formulated
as a variant of Martin-Löf type theory in [7]. First, emTT contains four kinds of
types (small propositions, propositions, sets and collections) which allow to keep
a distinction between logical and mathematical entities and different degrees of
complexity: small propositions include the falsum constant and propositional
identities of terms in sets, and are closed under connectives and quantifiers with
respect to sets; propositions include all small propositions and propositional
identities, and are closed under connectives and quantifiers; sets include the
empty set N0, a singleton set N1, all small propositions and are closed under
constructors Σ, Π, +, List and under quotients of sets with respect to small
propositional equivalence relations. Each set and each proposition is a collection
and collections are closed under Σ and include power-collections of sets. In
particular, every type turns out to be a collection in emTT. A crucial charac-
teristic of emTT is the fact that elimination rules of propositional constructors
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act only toward propositions; for this reason the axiom of choice is not a the-
orem of emTT. Moreover, propositions are proof-irrelevant, that is every term
of a proposition is equal to a canonical term true. Propositional identities reflect
definitional equalities and extensionality of functions holds. Finally, in emTT
the construction of W -types is not available and there are no universes. For sake
of readability we will write a =A b instead of Eq(A, a, b).

2 An Alternative Presentation of CZF

Here we present Aczel’s constructive set theory CZF (see [3]) using a language
which is different from the usual one, but which is more suitable for our pur-
poses. The language of CZF consists of terms and formulas, including a subclass
of Δ0-formulas, and is defined as the following grammar, where ϕ and ψ are
metavariables for formulas, ϕ0 and ψ0 for Δ0-formulas, a, b for terms, and x for
a variable that does not appear free in a.

terms ::= x | ∅ |ω | {a, b} |
⋃

a | {x ε a |ϕ0}
formulas ::= ⊥ | a = b | a ε b |ϕ → ψ |ϕ ∧ ψ |ϕ ∨ ψ | ∀xϕ | ∃xϕ

Δ0-formulas ::= ⊥ | a = b | a ε b |ϕ0 → ψ0 |ϕ0 ∧ ψ0 |ϕ0 ∨ ψ0

| ∀x(x ε a → ϕ0) | ∃x(x ε a ∧ ϕ0)

Note that in a term of the form {x ε a|ϕ0} the variable x is bounded.
We use ¬ϕ, 	, ϕ ↔ ψ, a ⊆ b, ∃!xϕ, ∃x ε t ϕ and ∀x ε t ϕ with their

standard meaning. We will write 0 for ∅, 1 for {∅}, {a} for {a, a}, (a, b) for
{{a}, {a, b}}, a ∪ b for

⋃{a, b}, p1(a) for
⋃{x ε

⋃
a| ∀y(y ε a → x ε y)}, p2(a)

for
⋃{x ε

⋃
a|x = p1(a) → a = {{p1(a)}}}, �(a) for {x εω| ∃y ((x, y) ε a)} and

a�b for a ∪ {(�(a), b)}. The terms p1(a) and p2(a) represent the first and sec-
ond component of a when a has the form (b, c); while, when a is a list (i.e. a
function whose domain is a natural number), �(a) represents the length of a and
a�b represents the list obtained by appending b to a. We will use Fun(f) as an
abbreviation for the formula which expresses the fact that f is a function:

∀u(u ε f → ∃v∃w u = (v, w)) ∧ ∀v∀w∀w′((v, w) ε f ∧ (v, w′) ε f → w = w′)

When we think f as a function, we will write, dom(f) and im(f) to
mean, respectively, {x ε

⋃ ⋃
f | ∃y ε

⋃ ⋃
f ((x, y) ε f)} and {x ε

⋃ ⋃
f | ∃y ε⋃ ⋃

f ((y, x) ε f)}, and we will write f(a) = b as a shorthand for (a, b) ε f .
Besides the axioms and rules of intuitionistic first-order logic, the specific

axioms of CZF are the universal closures of the following formulas:

1. ∀z(z ε x ↔ z ε y) → x = y
2. ¬(x ε ∅)
3. x ε {y, z} ↔ x = y ∨ x = z
4. x ε

⋃
y ↔ ∃z(x ε z ∧ z ε y)

5. z ε {x ε y|ϕ} ↔ z ε y ∧ ϕ[z/x] for every Δ0-formula ϕ
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6. 0 ε ω ∧ ∀x εω(x ∪ {x} ε ω) ∧ ∀y(0 ε y ∧ ∀z ε y(z ∪ {z} ε y) → ω ⊆ y)
7. (∀x ε z∃yϕ) → ∃w(∀x ε z∃y εw ϕ∧∀y εw∃x ε z ϕ) for every formula ϕ in which

w is not free.
8. ∀v∀w∃z∀u(∀x ε v∃y εw ϕ → ∃z′ ε z(∀x ε v∃y ε z′ ϕ ∧ ∀y ε z′∃x ε v ϕ)) for every

formula ϕ in which z is not free.
9. ∀x(∀y ε xϕ[y/x] → ϕ) → ∀xϕ for every formula ϕ in which y is not free.

The axiom schemas 7. and 8. above are called strong collection and subset col-
lection, respectively. For further details on CZF the reader can refer to [3].

3 The Type Theory emTTCZF

We define the type theory emTTCZF by adding rules to emTT. The idea
behind this extension is that collections can be thought as definable classes of
set theory, sets (of type theory) as definable classes which can be proven to be
sets, while sets (of set theory) correspond to elements of a universal collection
V. Moreover, propositions of type theory will correspond to propositions of set
theory, while small propositions will correspond to Δ0-formulas. We will add the
rules in four steps1.

Step 1: Collections as definable classes

The first step consists in forcing the identification between collections and defin-
able classes of set theory. We first introduce a universal collection V2:

V col

a ∈ A

a ∈ V

We also need to norm the relation between definitional equality in an arbitrary
collection and in the universal collection:

a = b ∈ A

a = b ∈ V

a ∈ A b ∈ A a = b ∈ V

a = b ∈ A

a ∈ A b ∈ V a = b ∈ V

b ∈ A

We require the definitional equality with respect to V to be a small proposition:

a ∈ V b ∈ V
a =V b props

We also need to introduce atomic small propositions representing set-theoretic
membership and atomic propositions internalizing type-theoretic membership3:

a ∈ V b ∈ V
a ε b props

a ∈ V Acol

a εAprop

a ∈ A

true ∈ a εA

A col true ∈ a εA

a ∈ A

1 Following the standard type-theoretic practice, we will omit the initial part of context
common to all judgments in the premises and conclusion of each rule.

2 We recall that, in each of the following rules, we never need to declare a type to be
a collection, since in emTT any type can be proven to be a collection.

3 Although we will use the same symbol ε for these two atomic propositions, the
premises of each rule involving them will always unravel any possible ambiguity.
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These constructors must be well-behaved with respect to definitional equality:

a = a′ ∈ V b = b′ ∈ V
a ε b = a′ ε b′ props

a = a′ ∈ V A = A′ col
a εA = a′ εA′ prop

We introduce now a new constructor which allows us to form collections by com-
prehension, that is, to include definable classes among collections, together with
a rule describing the relationship between the new constructor and propositional
membership, and a rule of extensional equality for collections:

ϕprop [x ∈ V]
{x|ϕ} col

ϕ prop [x ∈ V] a ∈ V
true ∈ ϕ[a/x] ↔ a ε {x|ϕ}

true ∈ (∀x ∈ V)(x εA ↔ x εB)
A = B col

The previous rules will, in turn, force the desired identification between collec-
tions and definable classes. Indeed, from the last two rules, one can derive the
following:

Acol

A = {x|x εA} col

Finally, we add the following four rules describing bounded quantifiers in terms
of quantifiers over the universal collection V.

ϕprop [x ∈ A]
x εA ∧ ϕprop [x ∈ V]

ϕprop [x ∈ A]
true ∈ (∃x ∈ A)ϕ ↔ (∃x ∈ V)(x εA ∧ ϕ)

ϕprop [x ∈ A]
x εA → ϕprop [x ∈ V]

ϕprop [x ∈ A]
true ∈ (∀x ∈ A)ϕ ↔ (∀x ∈ V)(x εA → ϕ)

The rules on the left side could look dangerous, since one could prove in
emTTCZF that b εA → ϕ[b/x] is a proposition whenever ϕprop [x ∈ A] and
b ∈ V, without being able to prove ϕ[b/x] to be itself a proposition. However,
this is not a real problem, since one can never prove that ϕ[b/x] is true applying
the elimination rules of conjunction and implication without being able to prove
that b is in A. In the practice of mathematics such expressions are nothing new,
consider e.g. a proposition like x ∈ N

+ → x
x = 1, where the consequent x

x = 1
makes sense only if we already know that x is different from 0.

Step 2: Sets as definable sets

The next rules aim to identify type-theoretic sets with definable sets of CZF.
First, a collection extensionally equal to an element of V is a set.

Acol true ∈ (∃y ∈ V)(∀x ∈ V)(x εA ↔ x ε y)
Aset
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The converse is obtained by introducing a name in V for each definable set:

Aset

�A� ∈ V
Aset

true ∈ (∀x ∈ V)(x εA ↔ x ε �A�)
Finally, we add three rules which collapse all type definitional equalities to def-
initional equalities between collections.

A = B col A type B type

A = B type
(with type ∈ {set, prop, props})

Notice that, using names �A� in V, it can be easily shown that if two collections
are equal and one of them is a set, then the other one is a set too.

Step 3: Axiomatic set theory via the universal collection

In this step the axioms of set theory are embodied in the system via the universal
collection V. We adopt here the usual abbreviations ¬ and ↔.

a ∈ V b ∈ V
true ∈ (∀x ∈ V)(x ε a ↔ x ε b) → a =V b

∅ ∈ V
a ∈ V b ∈ V

{a, b} ∈ V
a ∈ V⋃
a ∈ V

a ∈ V
true ∈ ¬(a ε ∅)

a ∈ V b ∈ V c ∈ V
true ∈ c ε {a, b} ↔ c =V a ∨ c =V b

b ∈ V
true ∈ b ε

⋃
a ↔ (∃x ∈ V)(b ε x ∧ x ε a)

ω ∈ V true ∈ Ind(ω)
a ∈ V

true ∈ a εω → (∀y ∈ V)(Ind(y) → a ε y)

where Ind(y) is an abbreviation for ∅ ε y ∧ (∀z ∈ V)(z ε y → ⋃{z, {z, z}} ε y).

a ∈ V ϕprop [x ∈ V]
true ∈ (∀x ∈ V)((∀y ∈ V)(y ε x → ϕ[y/x]) → ϕ) → ϕ[a/x]

a ∈ V ϕprops [x ∈ V]
{x ε a|ϕ} ∈ V

a ∈ V ϕprops [x ∈ V] b ∈ V
true ∈ b ε {x ε a|ϕ} ↔ b ε a ∧ ϕ[b/x]

ϕprop [x ∈ V, y ∈ V, z ∈ V]
true ∈ SCol(ϕ)

where SCol(ϕ) is:
(∀z ∈ V)[(∀x ∈ V)(x ε z → (∃y ∈ V)ϕ) →

(∃w ∈ V)((∀x ∈ V)(x ε z → (∃y ∈ V)(y ε w ∧ ϕ)) ∧ (∀y ∈ V)(y ε w → (∃x ∈ V)(x ε z ∧ ϕ)))]

ϕprop [x ∈ V, y ∈ V, z ∈ V, v ∈ V, w ∈ V, u ∈ V, z′ ∈ V]
true ∈ SubCol(ϕ)
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where SubCol(ϕ) is:

(∀v ∈ V)(∀w ∈ V)(∃z ∈ V)(∀u ∈ V)[(∀x ∈ V)(x ε v → (∃y ∈ V)(y ε w ∧ ϕ)) →
(∃z′ ∈ V)(z′ ε z ∧ (∀x ∈ V)(x ε v →

(∃y ∈ V)(y ε z′ ∧ ϕ)) ∧ (∀y ∈ V)(y ε z′ → (∃x ∈ V)(x ε v ∧ ϕ)))]

Let us conclude this step with two remarks. First, the axiom of extensionality of
set theory which we embodied in the system as the first rule above in this step
guarantees that the newly defined term constructors relative to V (including
�A�) are well-behaved with respect to definitional equality. Indeed, each of these
constructors appears in the theory equipped with a rule which describes exactly
its elements. Moreover, we can establish a binary correspondence (up to the
respective notions of equality) between type-theoretic sets and terms of type V
by sending A to �A�, and a to {x|x ε a} in the opposite direction. Indeed we can
derive the following rules:

Aset

A = {x|x ε �A�} set

a ∈ V
a =

⌈{x|x ε a}⌉ ∈ V

Step 4: Interpretation as rules

To recover the usual interpretation of types as classes, it suffices to specify the
interpretation of the canonical elements of each type via the following rules.

� = ∅ ∈ N1

Acol B col [x ∈ A] a ∈ A b ∈ B[a/x]
〈a, b〉 = (a, b) ∈ (Σx ∈ A)B

where (t, s) means {{t}, {t, s}} and {t} means {t, t}.

Aset B set [x ∈ A] b ∈ B [x ∈ A]
λxA.b = {z ε �(Σx ∈ A)B� | (∃x ∈ A)(z =V (x, b))} ∈ (Πx ∈ A)B

where z is a fresh variable.

Aset B set a ∈ A

inl(a) = (∅, a) ∈ A + B

Aset B set b ∈ B

inr(b) = ({∅}, b) ∈ A + B

Aset

ε = ∅ ∈ List(A)
Aset a ∈ List(A) b ∈ A

cons(a, b) =
⋃{a, {(�(a), b)}} ∈ List(A)

where �(a) := ElList(a, ∅, (x, y, z)
⋃{z, {z}}) is a term of type {v| v ε ω}.

Aset R props [x ∈ A, y ∈ A] a ∈ A
true ∈ (∀x ∈ A)R[x/y]
true ∈ (∀x ∈ A)(∀y ∈ A)(R ↔ R[y/x, x/y])
true ∈ (∀x ∈ A)(∀y ∈ A)(∀z ∈ A)(R ∧ R[y/x, z/y] → R[z/y])

[a] = {x ε �A�|R[a/y]} ∈ A/R
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ϕprops

[ϕ] = {x ε {∅}|x =V ∅ ∧ ϕ} ∈ P(1)

where x is a fresh variable.

Aset b ∈ P(1) [x ∈ A]
λxA.b = �{z| (∃x ∈ A)(z =V (x, b))}� ∈ A → P(1)

where z is fresh and the rule of strong collection together with the fact that A
is a set, guarantees that the right-hand side of the conclusion is well-defined.

ϕprop true ∈ ϕ

true = ∅ ∈ ϕ

Then, thanks to extensional equality for collections and the elimination and η-
conversion rules of emTT, we can derive the following rules characterizing sets
and collections as definable classes (the variable z is always assumed to be fresh).

N0 = {z| ⊥} col

A col B col [x ∈ A]
(Σx ∈ A)B = {z| (∃x ∈ A)(∃y ∈ B)(z =V (x, y))} col

N1 = {z| z =V ∅} col

A set B set [x ∈ A]
(Πx ∈ A)B = {z|Rel(z,A,B) ∧ Svl(z) ∧ Tot(z,A)} col

where

1. Rel(z,A,B) is (∀w ∈ V)(w ε z → (∃x ∈ A)(∃y ∈ B)(w =V (x, y)))
2. Svl(z) is (∀x ∈ V)(∀y ∈ V)(∀y′ ∈ V)((x, y) ε z ∧ (x, y′) ε z → y =V y′)
3. Tot(z,A) is (∀x ∈ A)(∃y ∈ V)((x, y) ε z)

Aset B set

A + B = {z| (∃y ∈ A)(z =V (∅, y)) ∨ (∃y ∈ B)(z =V ({∅}, y))} col

A set

List(A) = {z| (∃n ∈ V)(n εω ∧ Rel(z, n,A) ∧ Svl(z) ∧ Tot(z, n))} col

where

1. Rel(z, n,A) is (∀w ∈ V)(w ε z → (∃x ∈ V)(∃y ∈ A)(w =V (x, y) ∧ x εn))
2. Tot(z, n) is (∀x ∈ V)(x εn → (∃y ∈ V)((x, y) ε z))

Aset R props [x ∈ A, y ∈ A]
true ∈ (∀x ∈ A)R[x/y] true ∈ (∀x ∈ A)(∀y ∈ A)(R ↔ R[y/x, x/y])
true ∈ (∀x ∈ A)(∀y ∈ A)(∀z ∈ A)(R ∧ R[y/x, z/y] → R[z/y])

A/R = {z| (∃x ∈ A)(∀y ∈ V)(y ε z ↔ y εA ∧ R)} col

P(1) = {z| (∀y ∈ V)(y ε z → y =V ∅)} col
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Aset

A → P(1) = {z| Rel(z,A,P(1)) ∧ Svl(z) ∧ Tot(z,A)} col

ϕ prop

ϕ = {z| z =V ∅ ∧ ϕ} col

As a byproduct of the last rule together with the fact that propositions which
are equal as collections are equal, we obtain that two propositions ϕ and ψ are
equal if and only if they are equivalent, that is true ∈ ϕ ↔ ψ. Finally, notice that
we do not need to add rules for the interpretation of the elimination terms, since
the relative computation rules in emTT suffice to uniquely determine them.

4 Translations

In this section we introduce two translations: one from the syntax of CZF to
the pre-syntax of emTTCZF, and the other one in the opposite direction4.

The pre-syntax of emTTCZF is defined as the following grammar, where A
and B are metavariables for pre-collections, a, b and c for pre-terms, ϕ and ψ for
pre-propositions, and x, y and z for variables5.

A pre-collection ::=
N0|N1| List(A)|A + B| (Σx ∈ A)B| (Πx ∈ A)B|
A/(x, y)ϕ| P(1)|A → P(1)| {x|ϕ}|ϕ|V

a pre-term ::=
x| emp0(a)| � |ElN1(a, b)| ε| cons(a, b)|ElAList(a, b, (x, y, z)c)|
inl(a)| inr(a)|El+(a, (x)b, (y)c)| 〈a, b〉|ElΣ(a, (x, y)b)|λxA.a|Ap(a, b)|
[a]A,(x,y)ϕ|ElA/(x,y)ϕ(a, (x)b)| true| [ϕ]| �A�| ∅| {a, b}| ⋃

a| {xεa|ϕ}|ω
ϕ pre-proposition ::=

⊥| a ε b| a εA| a =A b|ϕ → ψ|ϕ ∧ ψ|ϕ ∨ ψ| (∃x ∈ A)ϕ| (∀x ∈ A)ϕ

Pre-contexts of emTTCZF are finite lists of declarations of variables in pre-
collection defined by the following clauses: the empty list [ ] is a pre-context;
and if Γ is a pre-context, x is a variable not appearing in Γ and A is a pre-
collection, then [Γ, x ∈ A] is a pre-context.

The first translation is then defined as follows:

Definition 1. Every term a of CZF is translated into a pre-term ã of
emTTCZF and every formula ϕ of CZF is translated into a pre-proposition
ϕ̃ of emTTCZF according to the following clauses:

1. x̃ := x, ∅̃ := ∅ and ω̃ := ω;
2. {̃a, b} := {ã, b̃}, ⋃̃

a :=
⋃

ã and ˜{x ε a|ϕ} := {x ε ã| ϕ̃};
4 The techniques employed in the translation from emTTCZF to CZF are reminiscent

of the formulae-as-classes interpretation in [11]. However, in our case we have to deal
with a broader variety of constructors.

5 Notice that we decided to annotate some of the pre-collections and pre-terms in order
to keep track of pieces of information which are crucial for an effective translation.
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3. ⊥̃ :≡ ⊥, ã = b :≡ ã =V b̃ and ã ε b :≡ ã ε b̃;
4. ϕ̃κψ :≡ ϕ̃ κ ψ̃ for κ being ∧, ∨ or →;
5. Q̃xϕ :≡ (Qx ∈ V)ϕ̃ for Q being ∃ or ∀.
Now we define the second translation: each pre-collection of emTTCZF is trans-
lated into a formula ηA(u) depending on a fresh variable u which would deter-
mine the interpretation of A by comprehension as {u| ηA(u)}; each pre-term a
of emTTCZF is translated into a formula δa(u) of CZF, depending on a fresh
variable u, providing a well-defined interpretation of a as the unique u for which
δa(u) holds; each pre-proposition of emTTCZF is translated into a formula of
CZF having the same free variables.

Definition 2. For every pre-collection A of emTTCZF we define a (unary)
predicate ηA in CZF, for every pre-term a of emTTCZF we define a (unary)
predicate δa in CZF and we translate every pre-proposition ϕ of emTTCZF

into a formula ϕ̂ of CZF according to the following clauses, where the variables
ξ, u, v, w,w′, w1, w2, w3 and n are meant to be fresh:

1. ⊥̂ :≡ ⊥ and â ε b :≡ ∃u∃v(δa(u) ∧ δb(v) ∧ u ε v);
2. â εA :≡ ∃u(δa(u) ∧ ηA(u)) and â =A b :≡ ∃u(δa(u) ∧ δb(u) ∧ ηA(u));
3. ϕ̂ κ ψ :≡ ϕ̂ κ ψ̂ for κ being ∧, ∨ or →;
4. ̂(∀x ∈ A)ϕ :≡ ∀x(ηA(x) → ϕ̂) and ̂(∃x ∈ A)ϕ :≡ ∃x(ηA(x) ∧ ϕ̂);
5. δx(ξ) :≡ ξ = x;
6. ηϕ(ξ) :≡ ξ = 0 ∧ ϕ̂ and δtrue(ξ) :≡ ξ = 0;
7. ηN0(ξ) :≡ ⊥ and δemp0(a)(ξ) :≡ ξ = 0;
8. ηN1(ξ) :≡ ξ = 0, δ�(ξ) :≡ ξ = 0 and δElN1 (a,b)(ξ) :≡ δb(ξ);
9. η(Σx∈A)B(ξ) :≡ ∃v∃w(ηA(v) ∧ ηB(w)[v/x] ∧ ξ = (v, w)),

δ〈a,b〉(ξ) :≡ ∃v∃w(δa(v) ∧ δb(w) ∧ ξ = (v, w)) and
δElΣ(a,(x,y)b)(ξ) :≡ ∃v(δa(v) ∧ δb(ξ)[p1(v)/x, p2(v)/y]);

10. η(Πx∈A)B(ξ) :≡ Fun(ξ)∧∀u(u ∈ dom(ξ) ↔ ηA(u))∧∀x∀y(ξ(x) = y → ηB(y))
δλxA.b(ξ) :≡ ∀v(v ε ξ ↔ ∃w∃w′(ηA(w) ∧ δb(w′)[w/x] ∧ v = (w,w′))) and
δAp(a,b)(ξ) :≡ ∃v∃w(δa(v) ∧ δb(w) ∧ ξ = p2(

⋃{z ε v| p1(z) = w}));
11. ηA+B(ξ) :≡ ∃v(ηA(v) ∧ ξ = (0, v)) ∨ ∃w(ηB(w) ∧ ξ = (1, w)),

δinl(a)(ξ) :≡ ∃v(δa(v) ∧ ξ = (0, v)), δinr(a) :≡ ∃v(δa(v) ∧ ξ = (1, v)) and
δEl+(a,(x)b,(y)c)(ξ) :≡

∃v(δa(v) ∧ ((p1(v) = 0 ∧ δb(ξ)[p2(v)/x]) ∨ (p1(v) = 1 ∧ δc(ξ)[p2(v)/x])));
12. ηList(A)(ξ) :≡ ∃n(n εω ∧ Fun(ξ) ∧ dom(ξ) = n ∧ ∀u(u ε im(ξ) → ηA(u)))

δε(ξ) :≡ ξ = 0,
δcons(a,b)(ξ) :≡ ∃v∃w(δa(v) ∧ δb(w) ∧ ξ = v ∪ {(�(v), w)}) and

δElAList(a,b,(x,y,z)c)(ξ) :≡ ∃f
(
Fun(f) ∧ ∀u(u ε dom(f) → ηList(A)(u)) ∧

∃v(δb(v) ∧ f(0) = v) ∧ ∀w1∀w2∀w3∀v
(f(w1) = w3 ∧ ηA(w2) ∧ δc(v)[w1/x,w2/y, w3/z] → f(w�

1 w2) = v) ∧
∃w′(δa(w′) ∧ f(w′) = ξ)

)
;

13. ηA/(x,y)ϕ(ξ) :≡ ∃w(ηA(w) ∧ ∀v(v ε ξ ↔ ηA(v) ∧ ϕ̂[w/x, v/y])),
δ[a]A,(x,y)ϕ

(ξ) :≡ ∃w(δa(w) ∧ ∀v(v ε ξ ↔ ηA(v) ∧ ϕ̂[w/x, v/y])) and
δElQ(a,(x)b)(ξ) :≡ ∃v(δa(v) ∧ ∃w(w ε v) ∧ ∀w(w ε v → δb(ξ)[w/x])));
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14. ηP(1)(ξ) :≡ ξ ⊆ {0} and δ[ϕ](ξ) :≡ ∀v(v ε ξ ↔ v = 0 ∧ ϕ̂);
15. ηA→P(1)(ξ) :≡ η(Πx∈A)P(1)(ξ) where x is fresh;
16. ηV(ξ) :≡ ξ = ξ, δ�A	(ξ) :≡ ∀v(v ε ξ ↔ ηA(v)), δ∅(ξ) :≡ ξ = ∅,

δ{a,b}(ξ) :≡ ∃v∃w(δa(v)∧δb(w)∧ξ = {v, w}), δ⋃
a(ξ) :≡ ∃v(δa(v)∧ξ =

⋃
v),

δω(ξ) :≡ ξ = ω and δ{x ε a| ϕ}(ξ) :≡ ∃v(δa(v) ∧ ∀x(x ε ξ ↔ x ε v ∧ ϕ̂));
17. η{x| ϕ}(ξ) :≡ ϕ̂[ξ/x].

Finally, if Γ is a pre-context of emTTCZF, we define the formula Γ̂ of CZF as
follows: [̂ ] :≡ 	, while ̂[Γ, x ∈ A] :≡ Γ̂ ∧ ηA(x).

The composition of the two translations in one order results in an equivalence:

Proposition 1. Let a be a term of CZF, ψ a formula of CZF and u a fresh

variable. Then CZF � u = a ↔ δã(u) and CZF � ψ ↔ ̂̃
ψ.

Proof. By simultaneous induction on the complexity of terms and formulas.

The next lemmas can be proven by induction on the complexity of the pre-syntax.

Lemma 1. Let t be a pre-term of emTTCZF and let u, v be fresh variables.
Then CZF � δt(u) ∧ δt(v) → u = v.

Lemma 2 (Substitution Lemma). Let t and a be pre-terms of emTTCZF,
A a pre-collection of emTTCZF and ϕ a pre-proposition of emTTCZF. Then:

1. CZF � ∃v(δt(v)) ∧ δa[t/x](u) ↔ ∃v(δt(v) ∧ δa(u)[v/x]);
2. CZF � ∃v(δt(v)) ∧ ηA[t/x](u) ↔ ∃v(δt(v) ∧ ηA(u)[v/x]);

3. CZF � ∃v(δt(v)) ∧ ϕ̂[t/x] ↔ ∃v(δt(v) ∧ ϕ̂[v/x]).

where u and v are assumed to be fresh variables.

The next proposition is the counterpart of Proposition 1. It can be proven
by induction on complexity of proof-trees using the previous lemmas.

Proposition 2. Let A, a and ϕ be a pre-collection, a pre-term and a pre-
proposition of emTTCZF, respectively. Then:

1. if emTTCZF � Acol [Γ], then emTTCZF � A = {z| η̃A(z)} col [Γ];
2. if emTTCZF � a ∈ A [Γ], then emTTCZF � true ∈ (∀z ∈ V) (δ̃a(z) ↔ z =V

a) [Γ] where z is a fresh variable;
3. if emTTCZF � ϕprop [Γ], then emTTCZF � true ∈ ϕ ↔ ˜̂ϕ [Γ].
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5 The Main Result

The first theorem says that emTTCZF can be seen as an extension of CZF.

Theorem 1. Let ψ be a formula of CZF whose free variables are among
x1, ..., xn. If CZF � ψ, then emTTCZF � true ∈ ψ̃ [x1 ∈ V, ..., xn ∈ V].

Proof. This is essentially an immediate consequence of the rules in Step 3 in
Sect. 3 and the rules for propositions in emTT.

The next theorem shows how the judgements of emTTCZF are interpreted in
CZF. However, before proceeding we need to introduce the concept of Δ0-
formula relative to a formula Γ of CZF. Such formulas are nothing but Δ0-
formulas in which some variables are substituted by elements which are definable
in presence of Γ, but which can possibly lack a representation as terms. The class
of formulas Δ̃0[Γ] is the smallest one respecting the following clauses:

1. ⊥, x = y and x ε y are in Δ̃0[Γ] for every pair of variables x, y;
2. if ϕ and ψ are in Δ̃0[Γ], then ϕ ∧ ψ, ϕ ∨ ψ and ϕ → ψ are in Δ̃0[Γ];
3. if ϕ is a formula in Δ̃0[Γ], y is a variable, z is a fresh variable and δ is a

formula such that CZF � Γ → ∃!z δ, then ∃z(δ ∧ ∃y ε z ϕ), ∃z(δ ∧ ∀y ε z ϕ)
and ∃z(δ ∧ ϕ) are in Δ̃0[Γ].

Then, the class Δ0[Γ] contains those formulas ϕ in Δ̃0[Γ] such that free(ϕ) ⊆
free(Γ).

Lemma 3. If ϕ is a formula in Δ0[Γ], v, v′ are fresh variables and x is a vari-
able, then CZF � Γ → ∀v∃v′∀x(x ε v′ ↔ x ε v ∧ ϕ).

Theorem 2. The following hold if u and v are assumed to be fresh variables:

1. if emTTCZF � A = B type [Γ] (for type being col, set, prop or props), then
CZF � Γ̂ → ∀u(ηA(u) ↔ ηB(u));

2. if emTTCZF � Aset [Γ], then CZF � Γ̂ → ∃z∀u(u ε z ↔ ηA(u));
3. if emTTCZF � ϕprops [Γ], then there exists a formula ψ in Δ0[Γ̂] such that

CZF � Γ̂ → (ϕ̂ ↔ ψ);
4. if emTTCZF � a ∈ A [Γ], then CZF � Γ̂ → ∃u(δa(u) ∧ ηA(u));
5. if emTTCZF � a = b ∈ A [Γ], then CZF � Γ̂ → ∃u(δa(u) ∧ δb(u) ∧ ηA(u));

Proof. This is a long but straightforward proof made simultaneously by induc-
tion on complexity of proof-trees in emTTCZF. As an example, we show
only one case relative to item 3, namely that of a small proposition obtained
through a bounded universal quantifier with respect to a set. Assume that
the judgement (∀x ∈ A)ϕprops [Γ] is deduced in emTTCZF from the judge-
ments Aset [Γ] and ϕprops [Γ, x ∈ A]. Then, by inductive hypothesis, we know
that CZF � Γ̂ → ∃z∀u(ηA(u) ↔ u ε z) and that there exists a Δ0[ ̂[Γ, x ∈ A]]-
formula ψ such that CZF � ̂[Γ, x ∈ A] → (ϕ̂ ↔ ψ). The first one is equiva-
lent to CZF � Γ̂ → ∃zδ�A	(z) while from the second one we obtain CZF �
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Γ̂ → ∀x(ηA(x) → (ϕ̂ ↔ ψ)). Assuming Γ̂, from these it follows in CZF that
̂(∀x ∈ A)ϕ :≡ ∀x(ηA(x) → ϕ̂) is equivalent to ∀x(ηA(x) → ψ) which is equiva-

lent to ∃z(δ�A	(z) ∧ ∀x ε z ψ). Since this is a Δ0[Γ̂]-formula, we can conclude.

Corollary 1. Let ϕ be a pre-proposition of emTTCZF. If emTTCZF � true ∈
ϕ [Γ], then CZF � Γ̂ → ϕ̂.

Proof. From 4. in Theorem 1, if emTTCZF � true ∈ ϕ [Γ], then CZF � Γ̂ →
∃u(δtrue(u) ∧ ηϕ(u)) that is CZF � Γ̂ → ∃u(u = 0 ∧ ϕ̂). Thus CZF � Γ̂ → ϕ̂.

The theorems above show that emTTCZF and CZF are equivalent. Indeed:

1. every formula of CZF is equivalent to one of the form ψ̂;
2. every proposition of emTTCZF is equivalent to one of the form ϕ̃;
3. if ϕ is a theorem of CZF, then ϕ̃ is a theorem of emTTCZF;
4. if ψ is a theorem of emTTCZF, then ψ̂ is a theorem of CZF.

6 Conclusions

We have proven here that it is possible to extend the extensional level of the
Minimalist Foundation to CZF, and thus to the main intuitionistic and classical
axiomatic set theories, such as IZF, ZF and ZFC, by adding rules and preserving
the logical meaning. This provides a very strong notion of compatibility between
emTT and these theories, confirming the fact that the Minimalist Foundation is
a suitable common ground for comparison between set-theoretical foundational
theories and intuitionistic type theories.

There are at least two possible future directions of investigation. Firstly, one
could exploit the modularity of the construction of emTTCZF to study weaker
subsystems and their possible set-theoretical counterparts. Secondly, one could
apply similar techniques to prove a strong compatibility between emTT and
other predicative theories like Feferman’s Explicit Mathematics [6].
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Abstract. In many settings there is a need to reduce the spread of
something undesirable, such as a virus, through a network. Typically,
the network in which the spreading process takes place is not fixed but
is subject to discrete changes over time; a natural formalism for such
networks is that of temporal graphs. In this paper we survey three types
of modifications that have been proposed in order to reduce reachability
in temporal graphs, as well as the computational complexity of iden-
tifying optimal strategies for reducing reachability using each type of
modification. We then go on to discuss several limitations of the cur-
rent frameworks as models for intervention against real-world spreading
processes, and suggest how these might be addressed in future research.

Keywords: Reachability · Temporal graphs · Spreading processes ·
Computational complexity · Parameterized algorithms

1 Introduction

Reachability is a crucial concept in understanding the spread of all kinds of things
– good and bad – through networks. Sometimes we would like to restrict the
spread of something undesirable, be it a virus or fake news, through a network;
in other cases it is desirable to maximise the reachability subject to certain
constraints, for example when preparing an advertising campaign or designing a
transportation schedule. Here we focus on the problem of reducing reachability
in the presence of an undesirable spreading process.

Many of the networks in which we are concerned with reachability – be these
networks representing physical or virtual social contact, or transport networks –
are inherently temporal: trains depart at specified times, and people do not inter-
act continuously with all of their contacts. The relative timing of connections in
the network clearly has an important impact on the reachability of individual
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vertices, as illustrated in Fig. 1. These observations motivate the study of reach-
ability in temporal graphs, whose edge-sets are subject to discrete changes over
time.

Formally, following the foundational work of Kempe et al. [13], we define a
temporal graph to be a pair (G,λ) where G is a (static) graph, often called the
underlying graph, and λ : E(G) → 2N \{∅} maps edges of G to non-empty sets of
times. A pair (e, t) where e ∈ E(G) and t ∈ λ(e) is called a time-edge of G. We
define the lifetime of G = (G,λ) to be the maximum time assigned to any edge
by λ; throughout, we will consider only those temporal graphs whose lifetime is
finite.

Crucial to the notion of reachability in temporal graphs is the notion of
a temporal path. A temporal path in G = (G,λ) is a sequence of time-edges
(e1, t1), . . . , (ep, tp) such that the edges e1, . . . , ep form a path in G and, for
1 ≤ i ≤ p − 1, we have ti ≤ ti+1. If all inequalities are strict, we say this is a
strict temporal path.

Armed with these notions, we can define the concept of reachability sets
in temporal graphs. The (strict) temporal reachability set of the vertex v in
G is the set of all vertices u such that there exists a (strict) temporal path
from v to u in G; by convention, we assume that each vertex v also reaches
itself. For a set of vertices S, the temporal reachability set of S is the union
of the temporal reachability sets of vertices in S. The temporal reachability of
a vertex (or set of vertices) is the size of its temporal reachability set, and the
maximum (respectively minimum) temporal reachability of a temporal graph is
the maximum (respectively minimum) temporal reachability of any vertex in the
graph.

1
1

1

1
1

1

1

1
3

3

3

3
3

3

3

3

Fig. 1. Changing the relative order of edges can have an arbitrarily large impact on the
maximum temporal reachability. Assuming that all edges within the clique are active
only at time 2 in both examples (with times on the other edges as indicated), every
vertex of the clique in the right-hand example reaches the entire graph, whereas no
vertex in the left-hand example reaches any vertex outside the clique other than itself.
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While there is clear motivation for studying reachability in the temporal
setting, there are many associated challenges. Concepts that are well-understood
or even trivial in the static setting become much more complex in the temporal
world. For example, reachability is no longer symmetric: often, in the temporal
setting, we will find that vertex u is reachable from vertex v even when v is
not reachable from u. Classical graph theoretic results on connectivity, including
Menger’s Theorem, also fail to hold in the temporal setting [13] (although, in the
case of Menger’s Theorem, a more subtle temporal analogue has been developed
[14]).

Motivated by the observation above that it is often desirable to decrease the
extent to which something can spread through a network, a major recent focus
for research in the temporal reachability setting has been on identifying optimal
modifications to decrease the maximum or average temporal reachability of some
set of nodes. Unsurprisingly, these kinds of optimisation problems typically turn
out to be computationally intractable except in very specific cases.

In Sect. 2, we will introduce the three main types of modifications that have
been studied in the literature to date, and summarise the key results regarding
the computational complexity of using these modifications to minimise reacha-
bility. In Sect. 3 we then go on to discuss some limitations of the current models
and how these might be extended to better encode real-world scenarios, before
concluding in Sect. 4 with some thoughts on the main challenges for future work
in this area.

2 Modifying Temporal Graphs to Reduce Reachability

Three main types of modification to reduce reachability have so far been pro-
posed in the literature: edge deletions, reordering of edges, and delaying of edges.
In recognition of the fact that modifications are likely costly, some kind of restric-
tion is typically placed on the extent to which the graph can be modified (for
example, by limiting the number of permitted modifications), but more sophisti-
cated requirements that the modifications are not too disruptive to the network
have not been investigated (see Sect. 3.4 for a more detailed discussion of this
issue). In this section we discuss each of the types of modification in turn.

2.1 Deleting Edges

Enright, Meeks, Mertzios and Zamaraev [7] introduce the problem TR Edge

Deletion: given a temporal graph (G,λ), together with natural numbers k and
h, the goal is to determine whether it is possible to delete at most k time-edges1

so that the maximum temporal reachability of the resulting temporal graph is at
most h. This is a direct temporal analogue of earlier work by Enright and Meeks
which considered edge deletion in static graphs as a means of limiting the size of
1 The work in [7] focusses on the special case in which each |λ(e)| = 1 for every edge

e, so deletion of time-edges is equivalent to deletion of static edges in the underlying
graph.
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an epidemic in cattle trade networks [9]; “deleting” an edge in this setting might
correspond to enforcing additional checks or quarantine periods when animals
are moved a certain route, thereby reducing the risk of disease transmission
along this route to something close to zero. This static version of the problem is
already NP-complete [9], so it is unsurprising that TR Edge Deletion remains
intractable even under strong restrictions: the problem is NP-hard even when
h, the maximum degree of the underlying input graph, and the lifetime of the
input temporal graph are all bounded by constants. Moreover, assuming the
Exponential Time Hypothesis, there is no hope achieving a running time in
terms of the input size and the number k of permitted deletions that improves
significantly on a brute-force approach; from the parameterised perspective, this
also demonstrates that the problem is W[1]-hard with respect to the parameter k.

On the positive side, the authors obtain two polynomial-time algorithms
which approximate the minimum number of deletions needed: one computes
an h-approximation on arbitrary graphs, while the other computes a c-
approximation whenever the underlying input graph has cutwidth at most c.
While at first sight these approximation ratios seem to leave a lot of room for
improvement, it is also shown that the problem is unlikely to admit a polynomial-
time constant-factor approximation in general, even when restricted to temporal
graphs with lifetime two. From the parameterised perspective, the problem is also
shown to admit an exact FPT algorithm when parameterised simultaneously by
h, the maximum degree of the underlying input graph, and the treewidth of the
underlying input graph. Many of these results are also extended to a setting in
which restrictions are placed on the permitted waiting time at each vertex along
a temporal path.

2.2 Reordering Edges

A different method for reducing reachability in temporal graphs was proposed
by Enright, Meeks and Skerman [10]: given a static underlying graph as input,
the goal is to assign times to the edges so as to minimise the maximum temporal
reachability of the resulting temporal graph. Formally, they introduce the prob-
lem Min-Max Reachability Temporal Ordering, which takes as input a
static graph G = (V,E), a list E = {E1, . . . , E�} of subsets of E, and a positive
integer h, and asks whether there is a bijective function t : E → [�] such that the
maximum temporal reachability of the temporal graph in which every edge in
Ei is active at time t(Ei) is at most k. The requirement that the time-labelling
function t be bijective is to rule out trivial solutions in the case of strict reach-
ability (since, in this case, reachability can always be minimised by making all
edges active at the same time); for non-strict reachability, there is always an
optimal solution in which no two edge-sets are assigned the same time since, if
E1 and E2 are initially assigned the same time, altering the assignment so that
they are given consecutive times (in arbitrary order, and without changing the
relative order of any other sets) will not increase the reachability of any vertex.
This model was once again inspired by the spread of disease in livestock: many
livestock trades are mediated through markets, with named events (e.g. “Spring
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Bull Sale”) taking place on specific dates; thus certain sets of trades will take
place on the same day, but the relative order of this set of trades and another set
(of another class of animal, but potentially involving many of the same farms)
could be changed by an auction company.

The general version of this problem turns out to be extremely computa-
tionally challenging: Min-Max Reachability Temporal Ordering is NP-
complete even on trees and DAGs, and from the parameterised perspective is
W[1]-hard parameterised by the vertex-cover number of the input graph, even
when the input graph is required to be a tree. The only positive result in this
setting is a constant-factor approximation to the optimisation problem when the
input satisfies several strong structural restrictions.

In the quest for more positive results, the authors consider a special case –
further removed from the motivating application – in which each edge set Ei is
a singleton (so that all edges can be reordered independently). In this case the
problem is still NP-complete on general graphs, but does admit a linear-time
constant-factor approximation algorithm when restricted to graphs of bounded
maximum degree. This restriction of the problem can also be solved exactly in
polynomial time on DAGs, and on trees it admits an FPT algorithm parame-
terised by either the maximum permitted reachability h or the maximum degree.

2.3 Delaying Edges

A third family of modifications that could be used to reduce temporal reachabil-
ity was introduced by Deligkas and Potapov [6]: they consider the operations of
either merging a sequence of consecutive timesteps (so that all edges previously
active at any timestep in the sequence are now only active at the last timestep
in the sequence), or delaying individual edges by some number of timesteps.
They propose that, in some settings, these merging and delaying operations are
less disruptive to the infrastructure than the deletion or more general reordering
approaches discussed above. Again, the goal2 is to reduce the reachability of
the resulting temporal graph: in addition to considering the maximum temporal
reachability, they also consider the problems of minimising the average tempo-
ral reachability over all vertices and of minimising the temporal reachability of
some specific set of vertices given as part of the input. Determining whether
it is possible to achieve a specified bound for any of the three notions of tem-
poral reachability using merging operations turns out to be NP-complete, even
on trees of maximum degree three. In the setting of delaying operations, the
authors adapt a reduction from [7] to show that, when the number of permit-
ted delaying operations is bounded by k, all three problems are NP-complete
and W[1]-hard with respect to the parameter k. On the positive side, however,
they give a polynomial-time algorithm to optimise all three notions of temporal
reachability when an arbitrary number of delaying operations can be applied.

2 Beyond the scope of this paper, the authors in [6], and a subsequent related work
[5], also consider goals related to increasing reachability using the same operations.



Reducing Reachability in Temporal Graphs: Towards a More Realistic Model 191

Molter, Renken and Szchoche [15] recently investigated the relationship
between the complexity of minimising temporal reachability by respectively
deleting and delaying edges. In addition to showing that the maximum tem-
poral reachability of any vertex in some specified set of source vertices can, in
both cases, be minimised in polynomial time when the underlying graph is a
tree, they provide a general reduction from the delaying version to the deletion
version of the problem. However, when parameterised by the permitted number
of reachable vertices, this relationship is reversed: the delaying version is in FPT
while the deletion version remains W[1]-hard.

3 Limitations of Current Models

While all of the work described above draws on real-world applications for moti-
vation, there are a number of common features in all of these models which limit
their practical applicability. In this section we will discuss some of these, and
the ways in which future research might address the current shortcomings.

3.1 Arbitrary Waiting Times

With the exception of some results on deletion [7], the work described above
allows the most flexible notion of temporal paths, whereby there is no restric-
tion on the waiting time at a single vertex. This is not necessarily a realistic
model of many spreading processes: for example, in the setting of disease spread,
there will typically only be a limited time-window during which an individual is
infectious and can potentially pass on infection to their contacts; similarly, when
considering the spread of information it seems more likely that an individual will
share gossip they have just learnt than that received a year ago. Enright, Meeks,
Mertzios and Zamaraev [7] consider the edge-deletion problem in the setting of
so-called (α, β)-reachability as a more realistic model for disease spread, in which
the waiting time at a vertex must be at least α and at most β timesteps. How-
ever, their results implicitly assume a disease for which recovery does not confer
immunity (or a network in which vertices correspond to groups of individuals,
e.g. animals on a farm, and so multiple infections of different individuals within
the group are possible), as (α, β)-reachability is defined in terms of temporal
walks which satisfy this restriction, meaning that the same vertex may be vis-
ited multiple times: this is primarily for pragmatic computational reasons, since
the existence or otherwise of such a walk between two vertices can be deter-
mined in polynomial time [1], whereas determining the existence or otherwise of
a so-called restless temporal path, in which the waiting time at each vertex can
be at most Δ, is known to be NP-complete [4].

It would be particularly interesting to investigate the impact of restrictions
on waiting times in the two models in which times are changed: for example, a
delay could either create or destroy restless temporal paths without changing the
set of (traditional) temporal paths in the graph. However, this restriction has
not yet been considered in either the reordering or delaying model; this seems a
fruitful line for future research.
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3.2 Deterministic Spreading Only

Perhaps the most obvious limitation of all the models discussed above is that
they consider only deterministic worst-case spread, whereas in reality transmis-
sion along a single time-edge will be associated with some probability. There
are certain applications for worst-case analysis of this kind, for example if all
potential contacts of a diseased individual need to be identified and required to
isolate, but in other settings we are likely to be more interested in the expected
reachability of a vertex (or other measures associated with the random variable
denoting the size of the reachable set).

This natural generalisation has been proposed as an extension to current
work [10], but probabilistic spreading has not so far been considered within any
of the models introduced above. One reason for this is that probabilistic spread-
ing vastly changes the nature of the computation: computing the probability of
transmission between a pair of vertices is equivalent to counting the number of
weighted temporal paths between the two (where weights are multiplied along
the path, and correspond to the transmission probabilities associated with the
corresponding time-edges), and even without weights this problem is known to
be intractable in many settings [8]. Thus even the problem of verifying whether
a given intervention (based on deleting or changing the times on edges) is suffi-
cient to achieve a specified goal (in terms of the expected reachability) will be
intractable unless the input is highly restricted. However, it would nevertheless
be worthwhile to carry out further research in this direction, even if the only
realistic goal is that of obtaining approximation algorithms in restricted settings.

3.3 Only One Type of Modification Allowed

Several different kinds of modification are encapsulated in the various models
discussed above, each of which may be realistic in particular settings, but each
model considered allows only one type of modification to be applied to a single
instance. However, it is credible that, in many scenarios, it might for example be
feasible to change the timing of some edges while removing others completely.
The complexity of carrying out combinations of these modifications to achieve
a specific reachability goal is entirely unexplored.

To make hybrid models of this kind more realistic and flexible, it would be
natural to introduce a cost function that allows different kinds of modifications
to be more or less costly (for example, delaying an edge by a short time should
intuitively be less costly than removing it altogether). A cost function of this
kind could also be used to enforce restrictions on which kinds of modifications
are permitted at each edge: for example, there might be some edges that we
cannot delete but whose time we are allowed to change.

More generally, cost functions would also be a valuable extension within
any of the models that allows only a single type of modification. For example,
some edges may be more costly to delete than others. However, the notion of
cost is even more powerful in the reordering or delaying setting: here the cost
could depend not only on the edge under consideration, but also the duration
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and/or direction of the time modification (assuming that some initial default
configuration is given in the reordering model). This would reflect the intuition
that changing the time on an edge by a small amount is likely to be less disruptive
than a larger change, and also the fact that in some settings either advancing
or delaying will be easier; potentially in some settings, if the change to the time
is large enough, it is no less disruptive to delete the edge entirely. Moreover, the
relationship between time difference and cost need not be monotonic: it might
for example be easier (or indeed only possible) to reschedule a connection to
take place on the same day of the week as originally scheduled.

3.4 Independence of Modifications

With the exception of a few results in the reordering setting, the models described
here assume that edges can be modified independently from one another; how-
ever, this is not necessarily realistic. In the deletion setting, for example, there
might be some minimum connectivity requirements that must be maintained
– if we were dealing with a transport network, say, we might want to ensure
that every vertex is still able to reach some vertex corresponding to a location
providing basic essential services. The potential dependencies between different
modifications are perhaps even clearer in the delaying setting: again consider-
ing a transport network, if particular edges use the same vehicle or driver then
delaying one edge may necessarily force other related edges to be delayed; on
the other hand, we might not be allowed to increase the gap between two such
related edges by too much without violating legal requirements on working hours
for the driver.

These observations motivate the development of refined models in which the
dependencies between different edges can be captured. Once again, such gener-
alisations will only serve to increase the computational complexity of problems
that are already intractable in many cases, but it would be instructive to deter-
mine whether any of the restricted settings that admit efficient algorithms in
the independent versions of the models also give tractability when some level of
dependency is considered. Moreover, investigations in this direction would moti-
vate the development of parameters to capture the structure of the dependencies.
This could, for example, be done by considering the structure of the graph whose
vertex-set is the set of (time-)edges in the input graph, and in which there is an
edge between two (time-)edges if and only if the two cannot be modified inde-
pendently. The maximum size of a connected component in this auxiliary graph
was implicitly considered as a parameter in the reordering model [10], but other
parameters such as the maximum degree or treewidth of the auxiliary graph
would also likely be of interest.

3.5 Perfect Knowledge

All of the models discussed above assume that (where appropriate) we have
complete knowledge of the initial schedule and can carry out precise modifica-
tions (so that we specify exactly the new time assigned to an edge after delaying
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or reordering). However, in real-world scenarios, information and our control of
changes is likely to be imperfect, so we may have to operate under uncertainty.
For example, we might not know (or be able to specify) the precise time at which
a journey will be made, but instead a window in which it will occur; if this is
the case for two incident edges in the network, their relative order might not
be known. Moreover, a pre-determined schedule might be subject to unplanned
disruption, for example in a transport network where a certain number of unfore-
seen delays can be expected. It would be natural to consider both random and
adversarial models of changes to the schedule, with some bound on the number
and/or scale of changes.

These observations motivate the development of techniques to deal with
uncertainty and identify modification strategies that are in some sense robust
to small changes in the schedule, or provide a good approximation to the best
strategy regardless of when connections occur during their permitted windows.
Very recently, Füchsle, Molter, Niedermeier and Renken [11,12] made a first step
in this direction, considering the simpler goal of determining whether there is
a temporal path between two vertices that is robust against some small num-
ber of delays (as, for example, when planning a multi-leg train journey). They
already encounter intractability in several settings, indicating that optimising
reachability in such settings will certainly be challenging.

4 Discussion

In spite of much recent work in this area, we have only scratched the surface
in understanding the complexity of determining optimal sets of modifications
to minimise reachability in realistic temporal settings. There is a strong moti-
vation for generalising the models that have been studied so far to incorporate
more realistic features; however, given the extreme computational tractability
that has already been encountered in the more basic variants, this will require
new approaches to dealing with intractability. We have seen that restricting only
the structure of the underlying graph is rarely enough to give rise to efficient
algorithms, as many of the problems remain intractable even when the under-
lying graph is (for example) a tree. A promising research direction that has
emerged recently is the development of parameters that describe aspects of the
temporal structure of temporal graphs in combination with structural proper-
ties of the underlying graph. Recent parameters of this kind include the timed
feedback-vertex number [4] and the (vertex-)interval-membership-width [2,3] of
temporal graphs; vertex-interval-membership-width has already been exploited
in the reachability setting to give an FPT algorithm to minimise the number
of vertices reachable from a fixed source under deletion operations [3], but the
values of both parameters on real-world networks of interest have yet to be
investigated.
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Abstract. We introduce a first-order theory of finite full binary trees
and show that the analogue of Hilbert’s Tenth Problem is undecidable by
constructing a many-to-one reduction of Post’s Correspondence Problem.

1 Introduction

Hilbert’s Tenth Problem asks whether there exists an algorithm that given a
polynomial f ∈ Z[x1, x2, . . . , xn] decides whether f has a zero in Z

n. In 1970,
Yuri Matiyasevich proved that Hilbert’s Tenth Problem is undecidable by show-
ing that the exponential function is existentially definable in terms of addi-
tion and multiplication (see for example Davis [1]). After this, a standard tech-
nique for showing that a structure has undecidable existential theory has been
to show that it existentially interprets the first-order structure of arithmetic
(N, 0, 1,+,×) (see Sects. 5.3 and 5.4a of Hodges [2] for more details). In this
paper, we introduce a first-order structure T (LBT) of finite full binary trees (see
Sect. 2) and prove that the analogue of Hilbert’s Tenth Problem for T (LBT) is
undecidable without interpreting arithmetic, that is, without relying on the solu-
tion to Hilbert’s Tenth Problem (such a proof can also be produced by modifying
slightly the coding in Sect. 5 to translate multiplication).

2 Preliminaries

We consider the first-order language LBT = {⊥, 〈·, ·〉, ·[· �→ ·]} where ⊥ is a
constant symbol, 〈·, ·〉 is a binary function symbol and ·[· �→ ·] is a ternary
function symbol. The intended structure T (LBT) is a term model: The universe H
is the set of all variable-free terms in the language {⊥, 〈·, ·〉} (equivalently, finite
full binary trees). The constant symbol ⊥ is interpreted as itself. The function
symbol 〈·, ·〉 is interpreted as the function that maps the pair (s, t) to the term
〈s, t〉. The function symbol ·[· �→ ·] is interpreted as a term substitution operator:
t[r �→ s] is the term we obtain by replacing each occurrence of r in t with s. We
define t[r �→ s] by recursion as follows: If t = r, then t[r �→ s] = s. If r �=⊥, then
⊥ [r �→ s] =⊥. If r �= t = 〈t1, t2〉, then t[r �→ s] =

〈
t1[r �→ s] , t2[r �→ s]

〉
.

To improve readability, it will occasionally be more convenient to represent
finite binary trees using notation that is closer to their visual form: By recur-
sion, for n ≥ 2, let 〈x1, . . . , xn, xn+1〉 be shorthand for 〈〈x1, . . . , xn〉 , xn+1〉. By
recursion, let ⊥1=⊥ and ⊥n+1= 〈⊥n,⊥〉.
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We let Th∃(T (LBT)) denote the set of all existential LBT-sentences that are
true in T (LBT). We let ThH10(T (LBT)) denote the set of all LBT-sentences of the
form ∃�x [ s = t ] that are true in T (LBT). In Sect. 7, we prove that Th∃(T (LBT))
is undecidable by constructing a reduction of Post’s correspondence problem.
The coding techniques that form the basis of the encoding are developed in
Sects. 3, 4, 5, 6. In Sect. 8, we show that undecidability of Th∃(T (LBT)) implies
undecidability of ThH10(T (LBT)).

Definition 1. Let {0, 1}+ denote the set of all nonempty binary strings. The
Post Correspondence Problem (PCP) is given by

– Instance: a list of pairs 〈a1, b1〉, . . . , 〈an, bn〉 where ai, bi ∈ {0, 1}+
– Solution: a finite nonempty sequence i1, ..., im of indexes such that we have

the equality ai1ai2 . . . aim = bi1bi2 . . . bim .

To analyze further what we can and cannot effectively decide over T (LBT),
we introduce bounded quantifiers. We let x � t and x �� t be shorthand for
t[x �→ 〈x, x〉 ] �= t and t[x �→ 〈x, x〉 ] = t, respectively. Observe that � is
the subtree relation on finite binary trees. In [5], Venkataraman shows that the
existential theory of the structure we obtain by taking T (LBT) and replacing
the substitution operator with the subtree relation is decidable and the decision
problem is NP-complete. Let ∀x � t φ be shorthand for ∀x [ x � t → φ ]. Let
Σ

T (LBT)
1,0,1 denote the set of all LBT-sentences that are true in T (LBT) and are of

the form ∃x ∀y � x φ where φ is quantifier-free. In Sect. 9, we show that Σ
T (LBT)
1,0,1

is undecidable. We cannot prove this result by encoding Post’s correspondence
problem since this problem is about sequences of pairs and therefore necessitates
the use of two bounded universal quantifiers. Instead, we encode the Modulo
Problem of Kristiansen & Murwanashyaka [3].

Definition 2. Let f0(x) = x and fn+1(x) = f(fn(x)). The Modulo Problem is
given by

– Instance: a list of pairs 〈A0, B0〉, . . . , 〈AM−1, BM−1〉 where M > 1 and
Ai, Bi ∈ N for i = 0, . . . , M − 1.

– Solution: a natural number N such that fN (3) = 2 where f(x) = Ajz + Bj

if there exists j ∈ {0, 1, . . . ,M − 1} such that x = Mz + j.

3 Numbers

To encode Post’s correspondence problem, we need to associate strings over a
finite alphabet with finite binary trees. As a step towards this, we show that
certain classes of number-like objects are existentially definable in T (LBT).

Definition 3. Let α ∈ H. Let s1, . . . , sn ∈ H be such that α is not a subtree of
si for all i ≤ n and sn �= sj for all j < n. Let

1
α,�s

≡ 〈α, s1, . . . , sn〉 and
m + 1
α,�s

≡ 1
α,�s

[
α �→ m

α,�s

]
.

Let Nα
�s = { m

α,�s ∈ H : m ∈ N ∧ m ≥ 1 }.
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Lemma 1. Let α ∈ H. Let s1, . . . , sn ∈ H be such that α is not a subtree of si

for all i ≤ n and sn �= sj for all j < n. Then, for all T ∈ H

T ∈ N
α
�s ⇔ T =

1
α,�s

∨
( 2

α,�s
� T ∧ T =

1
α,�s

[
α �→ T

[ 2
α,�s

�→ 1
α,�s

] ] )
.

Proof. The left-right implication of the claim is straightforward. Let the size of
a binary tree T be the number of nodes in T . We prove by induction on the size
of T that

T =
1

α,�s
∨

( 2
α,�s

� T ∧ T =
1

α,�s

[
α �→ T

[ 2
α,�s

�→ 1
α,�s

] ] )
(*)

implies T ∈ N
α
�s .

Assume T satisfies (*). We need to show that T ∈ N
α
�s . If T = 1

α,�s , then
certainly T ∈ N

α
�s . Otherwise, by the second disjunct in (*), we have 2

α,�s � T . Let
S = T

[
2

α,�s �→ 1
α,�s

]
. Then, S is strictly smaller than T . By the second disjunct

in (*), we have T = 1
α,�s

[
α �→ S

]
. By Definition 3, 1

α,�s = 〈α, s1, . . . , sn〉. Since
α is not a subtree of any si

T =
1

α,�s

[
α �→ S

]
= 〈α, s1, . . . , sn〉

[
α �→ S

]
= 〈S, s1, . . . , sn〉 . (**)

We know that 2
α,�s � T . By Definition 3, 2

α,�s = 〈α, s1, . . . , sn, s1, . . . , sn〉. Since
sn �= sj for all 1 ≤ j < n, it follows from 2

α,�s � T and (**) that we have one of
the following cases: (i) S = 1

α,�s , (ii) occurrences of 2
α,�s in T can only be found

in S. In case of (ii), we have

S = T
[

2
α,�s �→ 1

α,�s

]
= 〈S, s1, . . . , sn〉

[
2

α,�s �→ 1
α,�s

]
=

〈
S

[
2

α,�s �→ 1
α,�s

]
, s1, . . . , sn

〉

= 〈α, s1, . . . , sn〉
[

α �→ S
[

2
α,�s �→ 1

α,�s

] ]
= 1

α,�s

[
α �→ S

[
2

α,�s �→ 1
α,�s

] ]
.

We see that in case of either (i) or (ii), S satisfies (*). Thus, by the induction
hypothesis, S ∈ N

α
�s . It then follows from (**) that T ∈ N

α
�s . ��

4 Strings

Given a finite alphabet A = {a1, . . . , am}, let ε denote the empty string and let
A∗ denote the set of all finite strings over A. Let A+ = A∗ \ {ε}. We will now
associate A∗ with an existentially definable class of finite binary trees.

Definition 4. Let A = {a1, . . . , am} be a finite alphabet. For each natural num-
ber i ≥ 1, let gi ≡ 〈⊥3+i,⊥3+i〉. Let α ∈ H be incomparable with gi with respect
to the subtree relation for all i. We define a one-to-one map τα : A∗ → H by
recursion

τα(w) =

⎧
⎪⎨

⎪⎩

α if w = ε

〈α, gi〉 if w = ai

τα(w0)
[

α �→ τα(w1)
]

if w = w0w1 and w0 ∈ A .
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Given s ∈ A∗, we write s
α for τα(s). Furthermore, we write ai for gi.

For example, a1a1a3a1a2
α = 〈α , a2 , a1 , a3 , a1 , a1 〉.

Lemma 2. Let A = {a1, . . . , am} be a finite alphabet. Then, τα(A∗) is existen-
tially definable in T (LBT).

Proof. We need the following property to prove that τα(A∗) is existentially defin-
able

(*) g1, . . . , gm are incomparable with respect to the subtree relation.

Lemma 1 tells us that the classes N
α
gi ∪ {α} are existentially definable in

T (LBT). The idea is to show that s ∈ τα(A∗) if and only if we can transform
s into an element of Nα

gi ∪ {α}. We show that τα(A∗) is defined by the formula
φ(x) ≡ x[ g2 �→ g1 ] . . . [ gm �→ g1 ] ∈ N

α
g1 ∪ {α}.

Clearly, each element in τα(A∗) has the property φ(x). To see that the con-
verse holds, assume φ(s). We need to show that s ∈ τα(A∗). Since N

α
g1 ∪ {α} ⊆

τα(A∗), it suffices to show that for each 1 ≤ i ≤ n and each finite binary tree t,
if t[ gi �→ g1 ] ∈ τα(A∗), then t ∈ τα(A∗). We prove this by induction on the size
of t.

Assume t[ gi �→ g1 ] ∈ τα(A∗). We need to show that t ∈ τα(A∗). If gi

is not a subtree of t, then t = t[ gi �→ g1 ] ∈ τα(A∗). Assume now gi is a
subtree of t. Let t = 〈t0, t1〉. We cannot have t = gi since g1 �∈ τα(A∗). Hence,
t[ gi �→ g1 ] =

〈
t0[ gi �→ g1 ] , t1[ gi �→ g1 ]

〉
. By how the elements of τα(A∗)

are defined, t0[ gi �→ g1 ] ∈ τα(A∗) and t1[ gi �→ g1 ] = gj for some 1 ≤ j ≤ n.
Since t0[ gi �→ g1 ] ∈ τα(A∗), by the induction hypothesis, t0 ∈ τα(A∗). If gi is
not a subtree of t1, then t1 = t1[ gi �→ g1 ] = gj . Assume now gi is a subtree of
t1. Then, g1 is a subtree of gj since t1[ gi �→ g1 ] = gj . By (*), g1 = gj , which
implies t1 = gi. Hence, t0 ∈ τα(A∗) and t1 = gl for some 1 ≤ l ≤ n. Then,
t = 〈t0, t1〉 ∈ τα(A∗) by how the elements of τα(A∗) are defined.

Thus, by induction, if t[ gi �→ g1 ] ∈ τα(A∗), then t ∈ τα(A∗). ��

5 Sequences of Strings I

Recall that the instance 〈a1, b1〉, . . . , 〈an, bn〉 of PCP has a solution if and only
if there exist a finite nonempty sequence i1, ..., im of indexes such that we have
ai1ai2 . . . aim = bi1bi2 . . . bim . So, given a finite sequence C = 〈c1, c2, . . . , cn〉 of
nonempty binary strings, we need to express that a sequence w1, w2, . . . , wk

of binary strings satisfies the following two properties: (A) there exists i ∈
{1, . . . , n} such that w1 = ci, (B) for all j ∈ {1, . . . , k − 1} there exists
i ∈ {1, . . . , n} such that wj+1 = wjci. In other words, we need to give an exis-
tential definition of the class P(C) of all sequences w1, w2, . . . , wk that satisfy
(A)-(B). In this section, we give a formal definition of P(C), as a class of finite
binary trees, and show that it is existentially definable.

Since we are interested in describing sequences that satisfy (A)-(B), it is
not the set {0, 1}∗ we are interested in, but rather the subset generated by
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{c1, c2, . . . , cn} under concatenation. We also need to treat the ci’s as distinct
objects since we intend to replace C with one of the sequences 〈a1, . . . , an〉,
〈b1, . . . , bn〉 where 〈a1, b1〉, . . . , 〈an, bn〉 is an instance of PCP. To capture this,
we associate elements of {c1, c2, . . . , cn}+ with strings over a larger alphabet
{0, 1, μ1, μ2, . . . , μn} where μi represents the last letter of ci. Assume for example
c1 = 110, c2 = 011 and c3 = 1010. Then, we associate the binary string c2c1c3
with the string 01μ211μ1101μ3.

Definition 5. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
We associate ci with a finite binary tree in τα({0, 1, μ1, . . . , μn}∗) as follows

ci

C,α
≡ wiμi

α
where ci = wid ∧ wi ∈ {0, 1}∗ ∧ d ∈ {0, 1} .

We let ε
C,α ≡ α. We associate the string ci1ci2 . . . cim with a finite binary tree

in τα({0, 1, μ1, . . . , μn}∗) as follows

ci1ci2 . . . cim

C,α
≡ wi1μi1wi2μi2 . . . wimμim

α
.

We are finally ready to give a formal definition of the class of those finite
binary trees that encode sequences that satisfy (A)-(B).

Definition 6. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
Let α, γ ∈ H be incomparable with respect to the subtree relation. Assume α also
satisfies the condition in Definition 4. Let P(C,α, γ) be the smallest subset of H
that satisfies

– 〈γ , ci
C,α 〉 ∈ P(C,α, γ) for all i ∈ {1, . . . , n}

– if T ∈ P(C,α, γ) where T =
〈
R ,

ci1ci2 ...cim
C,α

〉
, then

〈
T ,

ci1ci2 ...cimcj
C,α

〉
∈

P(C,α, γ) for all j ∈ {1, . . . , n}.

Lemma 3. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
Let α, γ ∈ H be incomparable with respect to the subtree relation. Assume α also
satisfies the condition in Definition 4. Let δ = 〈α, α〉. Let Fα

δ (L) = L[ α �→ δ ]
for all L ∈ H. Let T ∈ H. Then, T ∈ P(C,α, γ) if and only if

(1) δ �� T
(2) there exists m ∈ {1, . . . , n} such that

〈
γ , cm

C,α

〉
� T

(3) there exists S ∈ τα({0, 1, μ1, . . . , μn}∗) such that

T =
〈
Fα

δ (T )
[〈

γ ,
cm

C, δ

〉
�→ γ ,

c1
C, δ

�→ α , . . . ,
cn

C, δ
�→ α

]
, S

〉
.

Before we prove the lemma, we illustrate why the left-right implication
holds. First, observe that (1) holds if T ∈ P(C,α, γ). Now, assume for exam-
ple T =

〈
γ , c2

C,α , c2c3
C,α , c2c3c1

C,α

〉
. The tree Fα

δ (T ) is just the tree we obtain by
replacing each one of the three occurrences of α in T with δ. Hence, Fα

δ (T ) =
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〈
γ , c2

C,δ , c2c3
C,δ , c2c3c1

C,δ

〉
. Since there is only one occurrence of

〈
γ , c2

C,δ

〉
in Fα

δ (T ),

we have R0 := Fα
δ (T )

[ 〈
γ , c2

C,δ

〉
�→ γ

]
=

〈
γ , c2c3

C,δ , c2c3c1
C,δ

〉
. We replace the

one occurrence of c1
C,δ in R0 and obtain R1 := R0

[
c1
C,δ �→ α

]
=

〈
γ , c2c3

C,δ , c2c3
C,α

〉
.

Since c2c3
C,α does not contain a subtree of the form ci

C,δ by the choice of δ, there is
no occurrence of c2

C,δ in R1. Hence, R2 := R1

[
c2
C,δ �→ α

]
= R1. We replace the

occurrence of c3
C,δ in R2 and obtain R3 := R2

[
c3
C,δ �→ α

]
=

〈
γ , c2

C,α , c2c3
C,α

〉
.

Now, observe that R3 is the left subtree of T .

Proof (Proof of Lemma 3).
The left-right implication is obvious. We prove right-left implication by induction
on the size of T . We need the following properties:

(A) Since γ and α are incomparable with respect to the subtree relation, the
binary tree

〈
γ , cm

C,α

〉
is not a subtree of elements of τα({0, 1, μ1, . . . , μn}∗).

(B) Since γ and δ are incomparable with respect to the subtree relation, the
binary tree

〈
γ , cm

C,α

〉
is not a subtree of elements of τδ({0, 1, μ1, . . . , μn}∗).

Assume T satisfies (1)-(3). We need to show that T ∈ P(C,α, γ). By
assumption, we have a natural number m ∈ {1, . . . , n} and a string s ∈
{0, 1, μ1, . . . , μn}∗ such that the following three properties hold: (i) δ �� T , (ii)
〈
γ , cm

C,α

〉
� T , (iii) T =

〈
Fα

δ (T )
[〈

γ , cm
C,δ

〉
�→ γ , c1

C,δ �→ α , . . . , cn
C,δ �→

α
]

, s
α

〉
. Let T0 = Fα

δ (T )
[〈

γ , cm
C,δ

〉
�→ γ , c1

C,δ �→ α , . . . , cn
C,δ �→ α

]
.

Assume T0 = γ. By (ii),
〈
γ , cm

C,α

〉
� T . By (A),

〈
γ , cm

C,α

〉
�� s

α . Hence,
T =

〈
T0 , s

α

〉
=

〈
γ , cm

C,α

〉
∈ P(C,α, γ).

Assume now T0 �= γ. Since T0 � T , it follows from (i) that δ �� T0. Since〈
γ , cm

C,α

〉
� T , T �=

〈
γ , cm

C,α

〉
and

〈
γ , cm

C,α

〉
�� s

α , we have
〈
γ , cm

C,α

〉
� T0.

Finally, we have

T0 = Fα
δ (T )

[〈
γ , cm

C,δ

〉
�→ γ , c1

C,δ �→ α , . . . , cn
C,δ �→ α

]

= Fα
δ

(〈
T0 , s

α

〉)[〈
γ , cm

C,δ

〉
�→ γ , c1

C,δ �→ α , . . . , cn
C,δ �→ α

]

=
〈
Fα

δ (T0) , s
δ

〉[〈
γ , cm

C,δ

〉
�→ γ , c1

C,δ �→ α , . . . , cn
C,δ �→ α

]

=
〈
Fα

δ (T0)
[〈

γ , cm
C,δ

〉
�→ γ , c1

C,δ �→ α , . . . , cn
C,δ �→ α

]
, S0

〉

where

S0 = s
δ

[〈
γ , cm

C,δ

〉
�→ γ , c1

C,δ �→ α , . . . , cn
C,δ �→ α

]

= s
δ

[
c1
C,δ �→ α , . . . , cn

C,δ �→ α
]

(by (B) )

= s′s′′
δ

[
ck
C,δ �→ α

]
= s′

α ∈ τα({0, 1, μ1, . . . , μn}∗)
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where we have used that s = s′s′′ and s′′
δ = ck

C,δ for some k ∈ {1, . . . , n} since

we would otherwise have s
δ

[
c1
C,δ �→ α , . . . , cn

C,δ �→ α
]

= s
δ while δ �� T by

(1). Since T0 satisfies (1)-(3), T0 ∈ P(C, γ) by the induction hypothesis. It then
follows that T ∈ P(C, γ).

Thus, by induction, T ∈ P(C,α, γ) if T satisfies (1)-(3). ��

6 Sequences of Strings II

Recall that the instance 〈a1, b1〉, . . . , 〈an, bn〉 of PCP has a solution if and only
if there exist a finite nonempty sequence i1, ..., im of indexes such that we have
ai1ai2 . . . aim = bi1bi2 . . . bim . Let C = 〈c1, c2, . . . , cn〉 be one of the sequences
〈a1, . . . , an〉, 〈b1, . . . , bn〉. Each element T ∈ P(C,α, γ) represents a sequence
of the form w1, w2, . . . , wm where wk = ci1ci2 . . . cik and ij ∈ {1, . . . , n} for
all j ∈ {1, . . . , m}. We need the sequence i1, i2, . . . , im to verify the equality
ai1ai2 . . . aim = bi1bi2 . . . bim . We need an existential LBT-formula that extracts
this information from T . To achieve this, we need to encode sequences that are
more complex than those we encountered in Sect. 5.

The class P(C,α, γ) consists of finite binary trees that encode sequences of
the form w1, w2, . . . , wk where wi ∈ τα({0, 1, μ1, . . . , μn}∗) for all i ∈ {1, . . . , k}.
We need to consider the class of those binary trees that encode sequences
of the form W1,W2, . . . , Wk where Wi ∈ P(C,α, γ) for all i ∈ {1, . . . , k}.
To illustrate how this helps us identify the sequence i1, i2, . . . , im, let T =〈

γ , c2
C,α , c2c3

C,α , c2c3c1
C,α

〉
where c1 = 01, c2 = 00, c3 = 10. We need to find an

existential LBT-formula Ψ(T,X) that is true in T (LBT) if and only if X repre-
sents the string μ2μ3μ1. Instead of working with T , we work with the binary
tree W1 = Γα

n (T ) in Fig. 1. It contains the information μ2, μ3, μ1 and has the
advantage of having a simpler structure. We give a formal definition of the oper-
ator Γα

n : H → H that takes T and gives us Γα
n (T ). It is really the restriction of

Γα
n to P(C,α, γ) we are interested in. It will follow from the definition that Γα

n

is existentially definable.

Definition 7. Let α, 0, 1, μ1, . . . , μn be as in Definition 5. Let μn+1, . . . , μ2n be
distinct fresh letters. Let Γα

n : H → H be the function defined by Γα
n (T ) = T2

where

T0 = T
[

μ1
α �→ μ1

μn+1
, . . . , μn

α �→ μn

μn+n

]

T1 = T0

[
1 �→ 0 , μ1 �→ 0 , μ2 �→ 0 , . . . , μn �→ 0

]

T2 = T1

[
μn+1 �→ μ1 , μn+2 �→ μ2 , . . . , μn+n �→ μn

]
.

Recall that we are interested in specifying an existential LBT-formula Ψ(T,X)
that is true if and only if X encodes the string μ2μ3μ1. As we have just seen,
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Γα
n (T ) contains also the information μ2, μ3, μ1. So, we let Ψ(T,X) be a for-

mula of the form ∃W Φ(T,X,W ) where W is a finite binary tree that encodes a
sequence W1,W2, . . . , Wk where W1 = Γα

n (T ) and Wk = X. Before we give
a formal definition of the class P2(C,α, γ) of all W with this property, we
use the binary tree T =

〈
γ , c2

C,α , c2c3
C,α , c2c3c1

C,α

〉
to illustrate the form of

W . Let W1, . . . , W7 be the binary trees in Fig. 1. Then, W can for example
be the binary tree

〈
α , W7 , W6 , W5 , W4 , W3 , W2 , W1

〉
or the binary tree

〈
α , W7 , W7 , W6 , W5 , W4 , W3 , W2 , W1

〉
. It is not a problem that there are

many choices for W . What is important is that Γα
n (T ) is the unique right subtree

of W , and W7 encodes the information we need in a simple format and is the
unique subtree X of W which is such that 〈α , X〉 � W .

W1

γ

μ2 0

0

μ3 0

0

0

0

μ1 0

0

0

0

0

0

W2

γ

μ2 0

μ3 0

0

0

μ1 0

0

0

0

0

W3

γ μ2

μ3 0

0

μ1 0

0

0

0

W4

γ μ2 μ3 0

μ1 0

0

0

W5

γ μ2

μ3

μ1 0

0

W6

γ μ2

μ3 μ1 0

W7

γ μ2

μ3

μ1

Fig. 1. Let T =
〈

γ , c2
C,α

, c2c3
C,α

, c2c3c1
C,α

〉
. Then, W1 = Γ α

n (T ). Binary trees of the form

W =
〈

α , W7 , . . . , W7 , W6 , W5 , W4 , W3 , W2 , W1

〉
are elements of P2(C, α, γ).
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Definition 8. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
Let α, γ ∈ H be incomparable with respect to the subtree relation. Assume
α satisfies the condition in Definition 4. Assume γ is not a subtree of μi

for all i ∈ {1, . . . , n}. Let W ∈ P2(C,α, γ) if and only if there exists a
sequence W1,W2, . . . , Wk ∈ H such that there exists T ∈ P(C,α, γ) such that
W1 = Γα

n (T ), W =
〈

α , Wk,Wk−1 , . . . , W1

〉
, Wk ∈ τγ({μ1, . . . , μn}+) and

Wi+1 = Wi

[
0

μ1
�→ μ1 , 0

μ2
�→ μ2 , . . . , 0

μn
�→ μn

]
for all i ∈ {1, 2, . . . , k−1}.

We prove that P2(C,α, γ) is existentially definable.

Lemma 4. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
Let α, γ ∈ H be incomparable with respect to the subtree relation. Assume α
satisfies the condition in Definition 4. Assume γ is not a subtree of μi for all
i ∈ {1, . . . , n}. Let W ∈ H. Then, W ∈ P2(C,α, γ) if and only if

(1) there exists X ∈ τγ({μ1, . . . , μn}+) such that 〈α , X〉 � W
(2) there exists T ∈ P(C,α, γ) such that W = 〈V , Γα

n (T )〉 where

V = W
[

〈α , X〉 �→ α ,
0
μ1

�→ μ1 ,
0
μ2

�→ μ2 , . . . ,
0
μn

�→ μn

]
.

Proof. The left-right implication is a straightforward consequence of Definition
8. We focus on proving the right-left implication.

Assume W satisfies (1)-(2). We need to show that W ∈ P2(C,α, γ). By
Definition 8, we need to show that there exist W1, . . . , Wk ∈ H such that: (A)
W =

〈
α , Wk,Wk−1 , . . . , W2 , W1

〉
, (B) Wk ∈ τγ({μ1, . . . , μn}+), (C) Wi+1 =

Wi

[
0

μ1
�→ μ1 , 0

μ2
�→ μ2 , . . . , 0

μn
�→ μn

]
for all i ∈ {1, 2, . . . , k − 1}, (D)

there exists T ∈ P(C,α, γ) such that W1 = Γα
n (T ) .

Let X and T be binary trees that satisfy clauses (1)-(2). First, we prove by
(backward) induction that if 〈α , X〉 � U � W and U = 〈U0 , U1〉, then

U0 = U
[

〈α , X〉 �→ α ,
0
μ1

�→ μ1 , . . . ,
0
μn

�→ μn

]
and α �� U1 .

We let (*) refer to the equality, and we let (**) refer to α �� U1. The base case
U = W is Clause (2). So, assume U = 〈V , U1〉, V = 〈V0 , V1〉, 〈α , X〉 � V �
U � W and U satisfies (*) and (**). We need to show that V satisfies (*) and
(**). Since U satisfies (**), 〈α , X〉 �� U1. Since α is incomparable with 0 and μi

with respect to �, the binary tree 0
μi

cannot equal a binary tree that has α as
subtree. Furthermore, if α � R, then α � R[ 0

μi
�→ μi ]. Hence, by (*)

V = U
[

〈α , X〉 �→ α , 0
μ1

�→ μ1 , . . . , 0
μn

�→ μn

]

= 〈V , U1〉
[

〈α , X〉 �→ α , 0
μ1

�→ μ1 , . . . , 0
μn

�→ μn

]
=

〈
U ′ , U ′′

〉

where by (**)

U ′′ = U1

[
0

μ1
�→ μ1 , . . . , 0

μn
�→ μn

]
�� α

U ′ = V
[

〈α , X〉 �→ α , 0
μ1

�→ μ1 , . . . , 0
μn

�→ μn

]
.
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Thus, V satisfies (*) and (**). Thus, by induction, if 〈α , X〉 � U � W and
U = 〈U0 , U1〉, then U satisfies (*) and (**).

Now, to prove that (A)-(D) hold, it suffices to prove by induction on the size of
finite binary trees that if U is a subtree of W which is such that 〈α , X〉 � U , then
there exists a sequence U1, . . . , Um such that: (i) U =

〈
α,Um, Um−1, . . . , U1

〉
,

(ii) Um = X, (iii) Ui+1 = Ui

[
0

μ1
�→ μ1 , . . . , 0

μn
�→ μn

]
for all i ∈

{1, 2, . . . ,m − 1}.
So, assume 〈α , X〉 � U � W . If U = 〈α , X〉, then U satisfies (i)-(iii)

trivially. Otherwise, by (**), there exist V and U1 such that U = 〈V , U1〉 and
〈α , X〉 � V . By the induction hypothesis, there exists a sequence V1, . . . , Vm

such that the following holds: (iv) V =
〈

α, Vm, Vm−1, . . . , V1

〉
, (v) Vm = X,

(vi) Vi+1 = Vi

[
0

μ1
�→ μ1 , . . . , 0

μn
�→ μn

]
for all i ∈ {1, 2, . . . ,m − 1}.

In particular, U = 〈V , U1〉 =
〈

α , Vm , Vm−1 , . . . , V1 , U1

〉
. By (v)-(vi) and

(**), there can only be one occurrence of α in U . Hence U
[

〈α , X〉 �→ α
]

=〈
α , Vm−1 , . . . , V1 , U1

〉
. Then, by (*) and (vi)

〈
α , Vm , Vm−1 , . . . , V1

〉
= V =

U
[

〈α , X〉 �→ α ,
0
μ1

�→ μ1 , . . . ,
0
μn

�→ μn

]
=

〈
α , Vm−1 , . . . , V1 , U1

〉[ 0
μ1

�→ μ1 , . . . ,
0
μn

�→ μn

]
=

〈
α , Vm , . . . , V2 , U ′

1

〉

where U ′
1 = U1

[
0

μ1
�→ μ1 , . . . , 0

μn
�→ μn

]
. Hence

U =
〈

α , Vm , Vm−1 , . . . , V1 , U1

〉
and V1 = U1

[ 0
μ1

�→ μ1 , . . . ,
0
μn

�→ μn

]
.

Thus, U satisfies (i)-(iii).
Thus, by induction, if U is a subtree of W which is such that 〈α , X〉 � U ,

then U satisfies (i)-(iii). ��

7 Reduction of Post’s Correspondence Problem

We are ready to specify a many-to-one reduction of Post’s Correspondence Prob-
lem.

Theorem 1. The Post Correspondence Problem is many-to-one reducible to the
fragment Th∃(T (LBT)).

Proof. Consider an instance 〈a1, b1〉, . . . , 〈an, bn〉 of PCP. We need to con-
struct an existential LBT-sentence φ that is true in T (LBT) if and only if
〈a1, b1〉, . . . , 〈an, bn〉 has a solution. The instance 〈a1, b1〉, . . . , 〈an, bn〉 has a solu-
tion if and only if there exist two sequences u1, u2, . . . , uk and v1, v2, . . . , vm such
that
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(I) there exists f1 ∈ {1, . . . , n} such that u1 = af1 and for all j ∈ {1, . . . , k−1}
there exist fj+1 ∈ {1, . . . , n} such that uj+1 = ujafj+1

(II) there exists g1 ∈ {1, . . . , n} such that u1 = bg1 and for all j ∈ {1, . . . , m−1}
there exist gj+1 ∈ {1, . . . , n} such that uj+1 = ujbgj+1

(III) k = m and fj = gj for all j ∈ {1, . . . , k}
(IV) uk = vm.

Let α = 〈⊥ , ⊥2〉 and γ = 〈⊥ , ⊥3〉. Then, α and γ satisfy the con-
ditions in Definition 6 and Definition 8. Let A = 〈a1, a2, . . . , an〉 and let
B = 〈b1, b2, . . . , bn〉. Definition 6 tells us that the sequence u1, u2, . . . , uk is
encoded by a binary tree L ∈ P(A,α, γ) and the right subtree of L, denoted
U , encodes uk. Similarly, the sequence v1, v2, . . . , vm is encoded by a binary tree
R ∈ P(B,α, γ) and the right subtree of R, denoted V , encodes vm. Lemma 3
tells us that P(A,α, γ) and P(B,α, γ) are existentially definable.

Definition 8 gives us binary trees XL and WL ∈ P2(A,α, γ) such that Γα
n (L)

is the right subtree of WL, 〈α , XL〉 � WL and XL encodes the sequence
f1, f2, . . . , fk. The existentially definable operator Γα

n is defined in Definition
7. Similarly, there exist XR and WR ∈ P2(B,α, γ) such that Γα

n (R) is the right
subtree of WR, 〈α , XR〉 � WR and XR encodes the sequence g1, g2, . . . , gm.
Lemma 4 tells us that P2(A,α, γ) and P2(B,α, γ) are existentially definable.

Now, encoding (III) corresponds to requiring that XL = XR holds. To encode
(IV), we cannot simply require that U = V holds since U is the representation of
uk when viewed as an element of {0, 1, μ1, . . . , μn}+ and V is the representation
of vm when viewed as an element of {0, 1, μ1, . . . , μn}+. So, let ΘA

n (U) be the
binary tree we obtain by replacing μi with the last letter of ai and let ΘB

n (V )
be the binary tree we obtain by replacing μj with the last letter of bj . Then,
encoding (IV) corresponds to requiring that ΘA

n (U) = ΘB
n (V ) holds.

Let ΘA
n (U) = U

[
μ1 �→ d1 , . . . , μn �→ dn

]
where di is the last letter of ai.

Let ΘB
n (V ) = V

[
μ1 �→ e1 , . . . , μn �→ en

]
where ej is the last letter of bj .

Let

φ ≡ ∃L ∈ P(A,α, γ) ∃U,U ′ ∃R ∈ P(B,α, γ) ∃V, V ′

∃WL ∈ P2(A,α, γ) ∃XL, SL ∃WR ∈ P2(B,α, γ) ∃XR, SR

[

L = 〈U ′ , U〉 ∧ R = 〈V ′ , V 〉 ∧ 〈α , XL〉 � WL ∧ WL = 〈SL , Γα
n (L)〉 ∧

〈α , XR〉 � WR ∧ WR = 〈SR , Γα
n (R)〉 ∧ ΘA

n (U) = ΘB
n (V ) ∧ XL = XR

]
.

Then, φ is true in T (LBT) if and only if 〈a1, b1〉, . . . , 〈an, bn〉 has a solution. ��

8 Analogue of Hilbert’s Tenth Problem

In this section, we show that the analogue of Hilbert’s Tenth Problem for T (LBT)
is undecidable.

Theorem 2. The fragment ThH10(T (LBT)) is undecidable.
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Proof. Since Th∃(T (LBT)) is undecidable, it suffices to show that given an
existential LBT-sentence φ, we can compute a finite number of LBT-sentences
φ1, . . . , φn of the form ∃�x [ s = t ] such that T (LBT) |= φ ↔

∨n
i=1 φi. Since

T (LBT) |= ( s1 = t1 ∧ s2 = t2 ) ↔ 〈s1, s2〉 = 〈t1, t2〉, it suffices to show that given
a LBT-formula of the form s �= t, we can compute a finite number of atomic LBT-
formulas s1 = t1, . . . , sk = tk such that we have T (LBT) |= s �= t ↔

∨k
j=1 sj = tj .

This is the case since s �= t ⇔ t[ s �→ 〈s, s〉 ] = t ∨ s[ t �→ 〈t, t〉 ] = s. ��

9 Bounded Quantifiers

We end this paper by showing that Σ
T (LBT)
1,0,1 is undecidable. We prove this by

encoding the Modulo Problem.

Theorem 3. The fragment Σ
T (LBT)
1,0,1 is undecidable.

Proof. We encode natural numbers as follows: n ≡ ⊥n+2. The next step is to
associate linear polynomials in one variable with LBT-terms. We let L(z) ≡
z[0 �→ z]. If z represents the natural number q, then L(z) represents the natural
number 2q since 0 has exactly one occurrence in z. Recall that L0(z) = z and
Lk+1(z) = L(Lk(z)). Hence, if n > 0, then Ln−1(z) represents the natural
number nq. If n > 0, then the term m[0 �→ Ln−1(z)] represents the natural
number nq+m. We complete our translation of linear polynomials in one variable
as follows: For any formula φ(x) where x is a free variable, φ(nz + m) = φ(m) if
n = 0 and φ(nz + m) = φ(m[0 �→ Ln−1(z)]) if n > 0.

Given an instance 〈A0, B0〉, . . . , 〈AM−1, BM−1〉 , we need to compute a Σ1,0,1-
sentence ψ that is true in T (LBT) if and only if the instance has a solution.
Let x ∈ y be shorthand for 〈x, α〉 � y ∧ α �� x where α ≡ 〈⊥ , ⊥2〉. The
sentence ψ needs to say that there exists a finite set T such that 3 ∈ T , 2 ∈ T
and if 2 �= Mz + j ∈ T ∧ 0 ≤ j < M , then Ajz + Bj ∈ T . With this
in mind, we let ψ be the sentence ∃T ∀z � T [ 3 ∈ T ∧ ψ0 ] where ψ0 is
∧M−1

j=0

(
( Mz + j ∈ T ∧ Mz + j �= 2 ) → Ajz + Bj ∈ T

)
. ��
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Abstract. We study a first-order theory of finite full binary trees with
an axiom schema of open induction. We show that this theory is sequen-
tial by constructing a direct interpretation of Adjunctive Set Theory in
a very weak finitely axiomatized subtheory. We show that weakening the
latter theory by removal of an axiom which states that the subtree rela-
tion is transitive gives a theory that directly interprets Vaught’s weak set
theory, a non-finitely axiomatizable fragment of Adjunctive Set Theory.

1 Introduction

In this paper, we show that a very weak finitely axiomatized first-order theory of
finite full binary trees is sequential. Informally, sequential theories are theories
with a coding machinery of a certain strength. It is possible to code any finite
sequence in the domain of the theory. Furthermore, it is possible to extend any
sequence by adjoining an arbitrary element. The concept of sequential theories
was introduced by Pudlák [7] in the study of degrees of multidimensional local
interpretations. Pudlák shows that sequential theories are prime in this degree
structure. An element is prime if it is not the join of two smaller elements.

As a consequence of their expressive power, sequential theories are essentially
undecidable. A computably enumerable first-order theory is called essentially
undecidable if any consistent extension, in the same language, is undecidable
(there is no algorithm for deciding whether an arbitrary sentence is a theorem). A
computably enumerable first-order theory is called essentially incomplete if any
recursively axiomatizable consistent extension is incomplete. It can be proved
that a theory is essentially undecidable if and only if it is essentially incomplete
(see Chapter 1 of Tarski et al. [9]). Two theories that are known to be essentially
undecidable are Robinson arithmetic Q and the related theory R (see Chapter 2
of [9]).

Examples of sequential theories are Adjunctive Set Theory AS (see Fig. 1
for the axioms of AS), the theory of discretely ordered commutative semirings
with a least element PA− (see Jeřábek [4]), Robinson Arithmetic with bounded
induction IΔ0 (see Hájek & Pudlák [3] Section V3b), Peano Arithmetic PA,
Zermelo-Fraenkel Set Theory ZF. Examples of theories that are not sequential
are Robinson Arithmetic Q (see Visser [11] Example 1 or Theorem 9 of [4]) and
Gregorczyk’s theory of concatenation TC (see Visser [12] Sect. 5).
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Fig. 1. Non-logical axioms of the first-order theories AS and VS.

Formally, sequential theories are theories that directly interpret AS (see
Sect. 2). A weaker notion is the concept of theories that directly interpret the
weak set theory VS of Vaught [10], which is a non-finitely axiomatizable frag-
ment of AS (see Figure 1 for the axioms of VS). Vaught introduces VS in the
study of theories that are axiomatizable by a schema. A theory T is axiomati-
zable by a schema if there exists a formula Φ in the language of T plus a fresh
relation symbol R such that the set of universal closures of formulas obtained
by substituting formulas for R in Φ is an axiom set for T . Vaught shows that
any computably enumerable first-order theory of finite signature that directly
interprets VS is axiomatizable by a schema. For more on VS, see Sect. 3.2 of
Visser [11].

In [11] and [12], Visser shows that Q and TC are not sequential by showing
that they do not have pairing. A theory S has pairing if there exists a formula
Pair(x, y, z) in the language of S such that S proves ∀xy ∃z [ Pair(x, y, z) ] and
∀xyzuv [ ( Pair(x, y, z) ∧ Pair(u, v, z) ) → ( x = u ∧ y = v ) ]. In Kristiansen
& Murwanashyaka [5], we introduce an essentially undecidable theory T with
pairing (see Fig. 2 for the axioms of T). The language of T is LT = {⊥, 〈·, ·〉,	}
where ⊥ is a constant symbol, 〈·, ·〉 is a binary function symbol and 	 is a binary
relation symbol. The intended model of T is a term algebra extended with the
subterm relation: The universe is the set of all variable-free LT-terms (equiva-
lently, finite full binary trees). The constant symbol ⊥ is interpreted as itself.
The function symbol 〈·, ·〉 is interpreted as the function that maps the pair (s, t)
to the term 〈s, t〉. The relation symbol 	 is interpreted as the subterm relation
(equivalently, the subtree relation): s is a subterm of t iff s = t or t = 〈t1, t2〉 and
s is a subterm of t1 or t2. In [5], we show that T is essentially undecidable by
showing that it interprets Q but leave open the problem of whether the converse
holds. In [2], Damnjanovic shows that Q interprets T.

It is not clear to us whether T is sequential or even expressive enough to
directly interpret VS. It appears as if the subtree relation does not provide a
good notion of occurrence since T has models where there exist distinct elements
u, v such that u 	 v and v 	 u. In this paper, we consider the theory ΣT

open we
obtain by extending T with an axiom schema of open induction:

φ(⊥, �p ) ∧ ∀xy [ φ(x, �p ) ∧ φ(y, �p ) → φ(〈x, y〉, �p ) ] → ∀x φ(x, �p )
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Fig. 2. Non-logical axioms of the first-order theory T.

where φ is a quantifier-free LT-formula. We study two extensions of T that are
subtheories of ΣT

open. Let T(1) denote the theory we obtain by extending T with
the axiom ∀xy [ 〈x, y〉 
	 x ]. In Sect. 4, we show that T(1) directly interprets VS
(the proof shows that we can in fact do with ∀xy [ x 	 x → 〈x, y〉 
	 x ]). The
proof we give can be easily modified to show that VS is directly interpretable in
T + ∀xy [ 〈x, y〉 
	 y ]. Let T(2) denote the theory we obtain by extending T with
the axioms: ∀xyz [ x 	 y ∧ y 	 z → x 	 z ], ∀xyz [ x 	 y → 〈y, z〉 
	 x ] (we
could also have used ∀xyz [x 	 z → 〈y, z〉 
	 x ]). In Sect. 5.2, we show that T(2)

is a sequential theory by constructing a direct interpretation of AS. In Sect. 5.1,
we formulate the coding technique that is the basis of this interpretation. Since
ΣT

open is an extension of the sequential theory T(2), it is also a sequential theory.
One of the referees found a shorter and neat direct interpretation of AS in T(2).
We present their proof in Sect. 5.3.

2 Sequential Theories

Hájek & Pudlák [3, p. 151] characterize sequential theories as those theories that
interpret Robinson Arithmetic Q and for which there are formulas Seq(z, u) (z
codes a sequence of length u) and β(x, v, z) (x is the v-th element of z) with
the following two properties: (1) If z codes a sequence s of length u, then for
each number v that is strictly less than u, there is a unique x that is the v-th
element of z. (2) If z codes a sequence s of length u, then given y, there exists
z′ that codes a sequence s′ of length u + 1 obtained by extending s with y. This
definition differs slightly from the original definition of Pudlák [7]. Instead of an
interpretation of Q, Pudlák requires that there exist formulas x ≤ y, N(x) such
that ≤ is a total ordering of N and each element of N has a successor in N. In this
paper, we use the equivalent definition of sequentiality in terms of Adjunctive
Set Theory AS (see Pudlák [7, p. 274] and Visser [11] Sect. 3.3). See Fig. 1 for
the axioms of AS.

Definition 1. Let T be a first-order theory in the language of set theory {∈}.
A first-order theory S directly interprets T if there exists a formula φ(x, y) in
the language of S with only x and y free such that the extension by definitions
S + ∀xy [ x ∈ y ↔ φ(x, y) ] proves each axiom of T . A first-order theory is
sequential if it directly interprets AS.



Weak Sequential Theories of Finite Full Binary Trees 211

For a more comprehensive discussion of the notion of sequentiality, we refer
the reader to Visser [11]. In Mycielski et al. [6, Appendix III], it is shown that a
theory of sequences can be developed in any theory that directly interprets AS.
This can be used to show that AS interprets Q (see Pudlák [7] Sect. 2). See also
Damnjanovic [1] for mutual interpretability of AS and Q.

3 Open Induction

In this section, we verify that ΣT
open is an extension of T(1) and T(2). Thus,

when we show that T(2) is a sequential theory, it will also follow that ΣT
open is a

sequential theory.

Theorem 1. ΣT
open is an extension of T(1) and T(2).

Proof. It suffices to show that ΣT
open proves the following: (A) ∀x [ x 	 x ], (B)

∀xyz [ x 	 y ∧ y 	 z → x 	 z ], (C) ∀xyz [ x 	 y → 〈y, z〉 
	 x ].
We prove (A) by induction on x. The base case ⊥	⊥ holds by the axiom

T3 ≡ ∀x [ x 	⊥ ↔ x =⊥ ]. The inductive case (x 	 x ∧ y 	 y ) → 〈x, y〉 	
〈x, y〉 holds by the axiom T4 ≡ ∀xyz [x 	 〈y, z〉 ↔ ( x = 〈y, z〉∨x 	 y∨x 	 z )].
Thus, by induction, ∀x [ x 	 x ] is a theorem of ΣT

open.
We prove (B) by induction on z using x and y as parameters. The base case

x 	 y ∧ y 	⊥→ x 	⊥ holds by T3. We consider the inductive case z = 〈z0, z1〉.
Assume the following formulas hold: (I) x 	 y ∧ y 	 z0 → x 	 z0, (II)
x 	 y ∧ y 	 z1 → x 	 z1. We need to show that x 	 y ∧ y 	 z → x 	 z.
So, assume x 	 y and y 	 z. By T4, we have the following cases: (1) y = z,
(2) y 	 z0, (3) y 	 z1. Case (1) implies x 	 z. We consider (2). Since x 	 y
and y 	 z0, we have x 	 z0 by (I). Hence, x 	 〈z0, z1〉 = z by T4 . By similar
reasoning, Case (3) also implies x 	 z. Thus, x 	 y ∧ y 	 z → x 	 z. By
induction, ∀xyz [ x 	 y ∧ y 	 z → x 	 z ] is a theorem of ΣT

open.
We prove (C) by induction on x with y and z as parameters. We consider

the base case x =⊥. By T3 and T1 ≡ ∀xy [ 〈x, y〉 
=⊥ ], we have 〈y, z〉 
	⊥. We
consider the inductive case x = 〈x0, x1〉. Assume the following formulas hold:
(IV) x0 	 y → 〈y, z〉 
	 x0, (V) x1 	 y → 〈y, z〉 
	 x1. We need to show that
x 	 y → 〈y, z〉 
	 x. Assume for the sake of a contradiction x 	 y and 〈y, z〉 	 x.
By T4, we have the following cases: (i) 〈y, z〉 = x, (ii) 〈y, z〉 	 x0, (iii) 〈y, z〉 	 x1.
We consider (i). By T2 ≡ ∀xyzw [〈x, y〉 = 〈z, w〉 → ( x = z ∧ y = w ) ], we have
y = x0. Hence, by (A), we have x0 	 y. Since 〈x0, x1〉 	 y and 〈x0, x1〉 = 〈y, z〉
and x0 = y, we find 〈y, z〉 	 x0. But x0 	 y and 〈y, z〉 	 x0 contradicts (IV).

We consider (ii). By (A), we have x0 	 x0. By T4, we have x0 	 〈x0, x1〉.
Since x0 	 〈x0, x1〉 and x 	 y, we have x0 	 y by (B). Thus, we have x0 	 y
and 〈y, z〉 	 x0, which contradicts (IV). By similar reasoning, (iii) leads to a
contradiction.

Thus, by induction, ∀xyz [ x 	 y → 〈y, z〉 
	 x ] is a theorem of ΣT
open. ��
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4 Direct Interpretation of VS

Recall that T(1) is T extended with the axiom T
(1)
5 ≡ ∀xy [ 〈x, y〉 
	 x ]. In this

section, we show that VS is directly interpretable in T(1). Since in the proof T
(1)
5

is applied to cases where x is of the form x = 〈x0, x1〉, we can by T4 do with the
weaker axiom ∀xy [ x 	 x → 〈x, y〉 
	 x ].

To improve readability, we introduce the following notation: By recursion,
let () :=⊥ and (x1, . . . , xn) := 〈(x1, . . . , xn−1) , xn〉 for n ≥ 1. So, (x) := 〈⊥ , x〉,
(x, y) := 〈 〈⊥ , x〉 , y 〉, and so on.

Theorem 2. VS is directly interpretable in T(1).

Proof. We translate the membership relation as follows

x ∈ y ≡ ∃uvw
[
y = 〈u, 〈w, v〉〉 ∧ 〈w, x〉 	 y

]
.

By T1 ≡ ∀xy [ 〈x, y〉 
=⊥ ], there does not exist u, v, w such that ⊥= 〈u, 〈w, v〉〉.
Hence, T(1) � ∀u [u 
∈⊥ ]. Thus, the translation of VS0 is a theorem of T(1). We
verify that the translation of VSm is a theorem of T(1) for each 0 < m < ω.

We code a finite sequence x0, x1, . . . , xn as y =
(〈w, x0〉 , 〈w, x1〉, . . . , 〈w, xn〉)

where w =
(
x0 , x1 , . . . , xn

)
. By T1 and T4, we have w 
=⊥ and w 	 w by how

w is defined. By T2 ≡ ∀xyzw [ 〈x, y〉 = 〈z, w〉 → ( x = z ∧ y = w ) ], w
is the unique element w′ such that y = 〈u, 〈w′, v〉〉 for some u and v. By the
axiom T4 ≡ ∀xyz [ x 	 〈y, z〉 ↔ ( x = 〈y, z〉 ∨ x 	 y ∨ x 	 z ) ], we have
〈w, xi〉 	 y for all i ≤ n. Hence, xi ∈ y for all i ≤ n. We need to show that

y = {x0, x1, . . . , xn}. So, assume z ∈ y. By definition of ∈ and uniqueness of w,
this is equivalent to 〈w, z〉 	 y. We need to show that there exists i ≤ n such
that z = xi. For k ≤ n, let y0 = () and yk+1 =

( 〈w, x0〉 , 〈w, x1〉, . . . , 〈w, xk〉 )
.

Observe that yk+1 = 〈 yk , 〈w, xk〉 〉. By T3 ≡ ∀x [ x 	⊥ ↔ x =⊥ ] and T1,
we have 〈w, z〉 
	⊥= y0. Thus, it suffices to show that the following holds: If
〈w, z〉 	 yk+1, then z = xk or 〈w, z〉 	 yk.

So, assume 〈w, z〉 	 yk+1. By T4, we have one of the following cases: (i)
〈w, z〉 = yk+1, (ii) 〈w, z〉 	 〈w, xk〉, (iii) 〈w, z〉 	 yk. Thus, it suffices to show
that (i) leads to a contradiction while (ii) implies z = xk. We show that (i) leads
to a contradiction. By T2, the equality 〈w, z〉 = yk+1 implies w = yk. If k = 0,
then w = yk =⊥ which contradicts T1 by definition of w. If k > 0, then by T4

and the definition of yk, we have 〈w, x0〉 	 yk = w which contradicts T
(1)
5 .

We show (ii) implies z = xk. By T4, we have one of the following cases: (iia)
〈w, z〉 = 〈w, xk〉, (iib) 〈w, z〉 	 w, (iic) 〈w, z〉 	 xk. Case (iia) implies z = xk by
T2. Case (iib) contradicts T

(1)
5 . We consider (iic). We have 〈w, z〉 	 xk. Recall

that w =
(
x0 , x1 , . . . , xn

)
. Hence, by T4, 〈w, z〉 	 xk implies 〈w, z〉 	 w which

contradicts T
(1)
5 . Thus, z = xk. ��

It is not clear to us whether it is possible to directly interpret VS in T since
it appears as if we do not have a good notion of occurrence without the axiom
∀xy [ 〈x, y〉 
	 x ].

Open Problem 2. Is VS directly interpretable in T?
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5 A Sequential Subtheory of ΣT
open

In this section, we show that the theory T(2) is sequential by constructing a
direct interpretation of AS. The construction is given in Sect. 5.2. In Sect. 5.1, we
present the intuition behind the construction. In Sect. 5.3, we give an alternative
proof that was suggested by one of the referees.

5.1 Coding Sequences

In this section, we explain how we intend to construct a formula x ∈ y that
provably in T(2) satisfies the axioms of AS.

We reason in the standard model of T. We start by observing that there is
a one-to-one correspondence between finite binary trees and finite sequences of
finite binary trees. We introduce the following notation: By recursion, let ()α :=
α and (x1, . . . , xn)α := 〈(x1, . . . , xn−1)α , xn〉 for n ≥ 1. So, (x)α := 〈α , x〉,
(x, y)α := 〈 〈α , x〉 , y 〉, and so on. We associate the empty sequence with ⊥. We
associate a finite sequence of finite binary trees T1, T2, . . . , TN with the finite
binary tree

T =
(
T1, T2, . . . , TN

)
⊥ . (*)

Each non-empty finite binary tree T can be written uniquely on the form
(*). Now, the idea is to let the empty tree represent the empty set and to let a
finite binary tree of the form (*) represent the set {T1, . . . , TN}. We observe that
the finite binary tree

(
T1, T2, . . . , TN , TN

)
⊥ also represents the set {T1, . . . , TN}.

This is not a problem since AS does not require sets to be uniquely determined by
their elements. Axiom AS2 requires that we have an adjunction operator adj(·, ·)
that takes two finite binary trees T and u and gives a finite binary tree S that
represents the set T ∪ {u}. Clearly, adj(T, u) = 〈T, u〉 does the job.

The next step is to construct an LT-formula x ∈ T that expresses that x
is an element of T . With T as in (*), the idea is to express that there exists a
finite binary tree W that encodes a sequence V1, V2, . . . , Vk where V1 = T , for
all i ∈ {1, . . . , k − 1} there exists ui such that Vi = 〈Vi+1, ui〉 and there exist
j ∈ {1, . . . , k} and S such that Vj = 〈S, x〉 (this is respectively what clauses (C),
(D), (E) in Sect. 5.2 try to capture). We let W be of the form

W =
(

Vk , Vk−1 , . . . , V2 , V1

)
α

where α is a finite binary tree whose purpose is to allow us to recognize the
subtrees of W of the form

(
Vk , Vk−1 , . . . , Vi

)
α
. This property is essential since

the formula x ∈ T needs to say that W is of a certain form by quantifying
over subtrees of W . We require that α is not a subtree of T (this is what
Clause (A) in Sect. 5.2 tries to capture). Then, the subtrees of W of the form(
Vk , Vk−1 , . . . , Vi

)
α

are exactly those subtrees of W that have α as a subtree.
The problem with this approach is that we need to update α to find a finite

binary tree W ′ that witnesses that x is also an element of T ′ = 〈T, u〉 when u is
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such that α is a subtree of T ′. Since x ∈ T ′, we need to ensure the existence of
a finite binary tree of the form W ′ =

(
Vk , Vk−1 , V2 , . . . , V1 , T ′ )

α′ where α′

is not a subtree of T ′. Although this is not problematic when reasoning in the
standard model, it appears as if we do not have in T(2) the resources necessary
to show that we can construct W ′ from W . Our solution is to let x ∈ T be
witnessed by infinitely many finite binary trees so that any finite binary tree
that witnesses x ∈ T ′ also witnesses x ∈ T . More precisely, we let x ∈ T mean
that there exists a marker α (a finite binary tree that is not a subtree of T ) such
that for any finite binary β that has α as a subtree, there exists a finite binary
tree Wβ of the form

(
Vk , Vk−1 , . . . , V2 , V1

)
β
.

The problem of markers that grow in size is similar to the problem of grow-
ing commas that is encountered when coding finite sequences of strings. In [8],
W.V. Quine shows that first-order arithmetic is directly interpretable in the
free semigroup with two generators by devising a way of coding arbitrary finite
sequences of strings. Let a, b denote the generators of the semigroup. Let {a}∗

denote the set of all finite sequences of a’s. Quine codes a finite set of strings
{w0, . . . , wn} as a string of the form w0bubw1 . . . bubwn where u ∈ {a}∗ is such
that if v ∈ {a}∗ is a substring of some wi, then v is a proper substring of u. If
u is a substring of a string wn+1, we need to encode the set {w0, . . . , wn, wn+1}
as w0bu

′bw1 . . . bu′bwnbu′bwn+1 where u′ ∈ {a}∗ is longer than u. In [12], Albert
Visser observes that this approach has some disadvantages in the setting of weak
theories since we need to be able to update u when we wish to extend the coded
sequence. The solution he provides is to represent a finite set {w0, . . . , wn} as
a string of the form bu0bw0bu1bw1 . . . bunbwn where each ui is in {a}∗, ui is a
substring of uj when i ≤ j and if v ∈ {a}∗ is a substring of some wi, then v is a
proper substring of ui. So, the commas (the ui’s) grow in length.

5.2 Direct Interpretation of AS

In this section, we construct a formula x ∈ y that provably in T(2) satisfies
the axioms of AS. Recall that T(2) is T extended with the following axioms
T
(2)
5 ≡ ∀xyz [ ( x 	 y ∧ y 	 z ) → x 	 z ], T

(2)
6 ≡ ∀xyz [ x 	 y → 〈y, z〉 
	 x ].

We start by constructing a formula W,β � u ∈ z which states that W is a
finite binary tree using the marker β to witness that u is an element of z. Let
W,β � u ∈ z be shorthand for

(A) β 
	 z
(B) there exist z0, z1 such that z = 〈z0, z1〉
(C) there exists W0 such that β 	 W0 ∧ W = 〈W0, z〉
(D) if 〈W1, v〉 	 W ∧ β 	 W1 ∧ W1 
= β, then there exist v0, v1 such that

v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]

(E) there exist W3 and v such that 〈W3 , 〈v, u〉〉 	 W ∧ β 	 W3.

We let W,β 
� u ∈ z be shorthand for ¬(
W,β � u ∈ z

)
. We let adj(x, y) =

〈x, y〉.
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Lemma 1. T � ∀W,β, u [ W,β 
� u ∈⊥ ].

Proof. By T1, Clause (B) of W,β � u ∈⊥ does not hold. ��
Lemma 2. Let W = 〈β, adj(x, y)〉. Then

T(2) � ( β 	 β ∧ β 
	 adj(x, y) ) → W,β � y ∈ adj(x, y) .

Proof. Assume β 	 β ∧ β 
	 adj(x, y) holds. We need to show that each one of
the following clauses holds

(A) β 
	 adj(x, y)
(B) there exist z0, z1 such that adj(x, y) = 〈z0, z1〉
(C) there exists W0 such that β 	 W0 ∧ W = 〈W0, adj(x, y)〉
(D) if 〈W1, v〉 	 W ∧ β 	 W1 ∧ W1 
= β, then there exist v0, v1 such that

v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]

(E) there exist W3 and v such that 〈W3 , 〈v, u〉〉 	 W ∧ β 	 W3.

Since β 
	 adj(x, y), (A) holds. By definition, adj(x, y) = 〈x, y〉. Hence, (B)
holds. It follows from β 	 β and the definition of W that (C) holds. We verify
that (D) holds. Assume 〈W1, v〉 	 W ∧ β 	 W1. By T4, we have

〈W1, v〉 =
〈
β , adj(x, y)

〉 ∨ 〈W1, v〉 	 β ∨ β 	 〈W1, v〉 	 adj(x, y) .

By T
(2)
5 , we have 〈W1, v〉 =

〈
β , adj(x, y)

〉 ∨ 〈W1, v〉 	 β ∨ β 	 adj(x, y). Since
β 	 W1, we have 〈W1, v〉 
	 β by T

(2)
6 . By assumption, β 
	 adj(x, y). Hence,

〈W1, v〉 =
〈
β , adj(x, y)

〉
. By T2, we have W1 = β. Thus, (D) holds.

Finally, we verify that (E) holds. By assumption, β 	 β ∧ W = 〈β, adj(x, y)〉.
By T4, W 	 W . Since adj(x, y) = 〈x, y〉, (E) holds. ��
Lemma 3. T(2) proves the universal closure of

(
u 
= y ∧ 〈W, adj(x, y)〉, β � u ∈ adj(x, y)

) → W,β � u ∈ x .

Proof. Assume u 
= y and that each one of the following clauses holds

(A) β 
	 adj(x, y)
(B) there exist z0, z1 such that adj(x, y) = 〈z0, z1〉
(C) there exists W0 such that β 	 W0 ∧ 〈W, adj(x, y)〉 = 〈W0, adj(x, y)〉
(D) if 〈W1, v〉 	 〈W, adj(x, y)〉 ∧ β 	 W1 ∧ W1 
= β, then there exist v0, v1

such that

v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]

(E) there exist W3 and v such that 〈W3 , 〈v, u〉〉 	 〈W, adj(x, y)〉 ∧ β 	 W3.
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Let (A′), (B′), (C′), (D′), (E′) denote the corresponding clauses where we use
W instead of 〈W, adj(x, y)〉, and we use x instead of adj(x, y). We need to show
that (A′)−(E′) hold.

We show that (A′) holds. By (A) , we have β 
	 adj(x, y). By T4 and the
definition of adj(x, y), β 	 x implies β 	 adj(x, y). Hence, β 
	 x. Thus, (A′)
holds.

We show that (E′), (C′) and (B′) hold. By T4, T2 and (C) , we have β 	 W
and 〈W, adj(x, y)〉 	 〈W, adj(x, y)〉. We show that W 
= β. By (E), there exist
W3 and v such that 〈W3 , 〈v, u〉〉 	 〈W, adj(x, y)〉 ∧ β 	 W3. By T4, we have

〈W3 , 〈v, u〉〉 = 〈W, adj(x, y)〉 ∨ 〈W3 , 〈v, u〉〉 	 W ∨ β 	 〈W3 , 〈v, u〉〉 	 adj(x, y) .

By T2 and T
(2)
5 , we have u = y ∨ 〈W3 , 〈v, u〉〉 	 W ∨ β 	 adj(x, y). Since

u 
= y and β 
	 adj(x, y), we have 〈W3 , 〈v, u〉〉 	 W . This shows that (E′) holds.
Since β 	 W3, we have 〈W3 , 〈v, u〉〉 
	 β by T

(2)
6 . Hence, W 
= β. So

〈W, adj(x, y)〉 	 〈W, adj(x, y)〉 ∧ β 	 W ∧ W 
= β.

Then, by T2 and (D), there exists W0 such that β 	 W0 ∧ W = 〈W0, x〉. Thus,
(C′) holds. Since 〈W3 , 〈v, u〉〉 	 W = 〈W0, x〉 and β 	 W3, we have by T4 and
T2

〈v, u〉 = x ∨ 〈W3 , 〈v, u〉〉 	 W0 ∨ 〈W3 , 〈v, u〉〉 	 x .

If 〈v, u〉 = x, then (B′) holds. We have 〈W3 , 〈v, u〉〉 
	 x since β 	 W3 would
otherwise imply β 	 adj(x, y) by T4 and T

(2)
5 . Assume 〈W3 , 〈v, u〉〉 	 W0. Since

β 	 W3, we have W0 
= β by T
(2)
6 . Hence, by T4, we have

〈W0, x〉 	 〈W, adj(x, y)〉 ∧ β 	 W0 ∧ W0 
= β .

Then, by (D), there exists x0, x1 such that x = 〈x0, x1〉. Thus, (B′) holds.
We verify that (D′) holds. Assume 〈W1, v〉 	 W ∧ β 	 W1 ∧ W1 
= β. By

T4, we have 〈W1, v〉 	 〈W, adj(x, y)〉 ∧ β 	 W1 ∧ W1 
= β. It then follows from
(D) that (D′) holds. ��
Lemma 4. Let W ′ = 〈W, adj(x, y)〉. Then, T(2) proves the universal closure of

( β 
	 adj(x, y) ∧ W,β � u ∈ x ) → W ′, β � u ∈ adj(x, y) .

Proof. Assume β 
	 adj(x, y) and that each one of the following clauses holds

(A) β 
	 x
(B) there exist z0, z1 such that x = 〈z0, z1〉
(C) there exists W0 such that β 	 W0 ∧ W = 〈W0, x〉
(D) if 〈W1, v〉 	 W ∧ β 	 W1 ∧ W1 
= β, then there exist v0, v1 such that

v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]

(E) there exist W3 and v such that 〈W3 , 〈v, u〉〉 	 W ∧ β 	 W3.
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Let (A′), (B′), (C′), (D′), (E′) denote the corresponding clauses where we
use W ′ instead of W , and we use adj(x, y) instead of x. We need to show that
(A′)−(E′) hold.

By assumption, β 
	 adj(x, y). Thus, (A′) holds. Since adj(x, y) = 〈x, y〉, (B′)
holds. By (C), there exists W0 such that β 	 W0 ∧ W = 〈W0, x〉. By T4 and
the definition of W ′, we have β 	 W ∧ W ′ = 〈W, adj(x, y)〉. Thus, (C′) holds.

We verify that (E′) holds. By (E), there exist W3 and v such that β 	 W3

and 〈W3 , 〈v, u〉〉 	 W . By T4 and the definition of W ′, we have β 	 W3 and
〈W3 , 〈v, u〉〉 	 W ′. Thus, (E′) holds.

It remains to verify that (D′) holds. Assume 〈W1, v〉 	 W ′, β 	 W1 and
W1 
= β. By T4 and the definition of W ′, we have

〈W1, v〉 = 〈W, adj(x, y)〉 ∨ 〈W1, v〉 	 W ∨ 〈W1, v〉 	 adj(x, y) .

We cannot have 〈W1, v〉 	 adj(x, y) since β 	 W1 would otherwise by T4 and T
(2)
5

imply β 	 adj(x, y). Hence, 〈W1, v〉 = 〈W, adj(x, y)〉 ∨ 〈W1, v〉 	 W . Assume
〈W1, v〉 = 〈W, adj(x, y)〉. By T2 and (C), there exists W0 such that v = 〈x, y〉,
W1 = W = 〈W0, x〉 and β 	 W0. Assume now 〈W1, v〉 	 W . Then, by (D), there
exist v0, v1 such that v = 〈v0, v1〉 ∧ ∃W2 [ β 	 W2 ∧ W1 = 〈W2, v0〉 ]. Thus,
(D′) holds. ��

We now have everything we need to show that T(2) is sequential.

Theorem 3. AS is directly interpretable in T(2).

Proof. We translate the membership relation as follows

u ∈ z ≡ ∃α
[
α 	 α ∧ ∀β

[
( α 	 β ∧ β 	 β ) → ∃W [ W,β � u ∈ z ]

] ]
.

By Lemma 1, the translation of AS1 is a theorem of T(2). It remains to show
that the translation of AS2 is a theorem of T(2). It suffices to show that the
sentence ∀xyu [ u ∈ adj(x, y) ↔ ( u = y ∨ u ∈ x ) ] is a theorem of T(2).

We show that T(2) � ∀xy [ y ∈ adj(x, y) ]. Let α = 〈adj(x, y), adj(x, y)〉. By
T4, we have α 	 α. Let β be such that α 	 β and β 	 β. We need to find
W such that W,β � y ∈ adj(x, y). By T

(2)
5 , β 	 adj(x, y) implies α 	 adj(x, y),

which contradicts T
(2)
6 since adj(x, y) 	 adj(x, y) by T4. Hence, β 	 β and

β 
	 adj(x, y). Then, by Lemma 2, we have
〈
β, adj(x, y)

〉
, β � y ∈ adj(x, y).

Thus, T(2) � ∀xy [ y ∈ adj(x, y) ].
We show that T(2) � ∀xyu [ u ∈ adj(x, y) → ( u = y ∨ u ∈ x ) ]. Assume

u ∈ adj(x, y) ∧ u 
= y. We need to show that u ∈ x. Since u ∈ adj(x, y), there
exists α such that

α 	 α ∧ ∀β
[
( α 	 β ∧ β 	 β ) → ∃W [ W,β � u ∈ adj(x, y) ]

]
.

By Clause (C) of W,β � u ∈ adj(x, y), we have

α 	 α ∧ ∀β
[
( α 	 β ∧ β 	 β ) → ∃V [ 〈V, adj(x, y)〉, β � u ∈ adj(x, y) ]

]
.
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Then, by Lemma 3, we have

α 	 α ∧ ∀β
[
( α 	 β ∧ β 	 β ) → ∃V [ V, β � u ∈ x ]

]
.

Thus, T(2) � ∀xyu [ u ∈ adj(x, y) → ( u = y ∨ u ∈ x ) ].
We show that T(2) � ∀xyu [ u ∈ x → u ∈ adj(x, y) ]. Assume u ∈ x holds.

Then, there exists α′ such that

α′ 	 α′ ∧ ∀β
[
( α′ 	 β ∧ β 	 β ) → ∃V [ V, β � u ∈ x ]

]
. (*)

Let α = 〈adj(x, y), α′〉. By T4 and α′ 	 α′, we have α 	 α ∧ α′ 	 α. Hence, by
T
(2)
5 , we have α 	 α ∧ ∀β [ α 	 β → α′ 	 β ]. We have adj(x, y) 	 adj(x, y) by

T4. Hence, α 
	 adj(x, y) by T
(2)
6 . Then, by T

(2)
5 , we have α 	 β → β 
	 adj(x, y).

It then follows from (*) and Lemma 4 that

α 	 α ∧ ∀β
[
( α 	 β ∧ β 	 β ) → ∃V [ 〈V, adj(x, y)〉, β � u ∈ adj(x, y) ]

]
.

Thus, T(2) � ∀xyu [ u ∈ x → u ∈ adj(x, y) ]. ��
Corollary 1. AS is directly interpretable in ΣT

open.

Our interpretation of AS relies heavily on the transitivity of the subtree
relation and it is not clear to us whether it is possible to directly interpret AS
without using this property.

Open Problem 3. Is AS directly interpretable in T? Is AS directly interpretable
in T(1)?

5.3 An Alternative Proof

In this final section, we present an alternative direct interpretation of AS in
T(2) that was suggested by one of the referees. Let Pair(x) ≡ ∃yz [ x = 〈y, z〉 ]
and x ∈′ y ≡ ∃uv [ y = 〈u, v〉 ∧ 〈v, x〉 	 y ]. Let BSh(x) be shorthand for:
there exist u, v such that the following holds: (i) x = 〈u, v〉, (ii) Pair(v), (iii)
∀v′ [

v 	 v′ ∧ Pair(v′) → ∃u′ ∀y [ y ∈′ x ↔ y ∈′ 〈u′, v′〉 ]
]
. We translate the

membership relation as follows: x ∈ y ≡ x ∈′ y ∧ BSh(y).
It is easy to verify, using T1 and T3, that the translation of AS1 is a theorem

of T(2). We verify that the translation of AS2 is a theorem of T(2). We are given
x and y and need to find z such that (1) ∀w [ w ∈ z ↔ ( w ∈ x ∨ w = y ) ]. We
assume first x is not an empty set according to ∈. Then, there exist u, v such
that x = 〈u, v〉, Pair(v) and for any v′ � v such that Pair(v′), there exist u′ such
that x and 〈u′, v′〉 have the same ∈′-elements. To construct z we pick v′ = 〈v, y〉.
Since Pair(v), we have v 	 v′ by T4. We then pick a corresponding u′ and put
z =

〈 〈u′ , 〈v′, y〉 〉 , v′ 〉. It is easy to see that in order to verify (1) it is enough
to fix arbitrary v′′ � v′ and any u′′ such that Pair(v′′) and ∀w [ w ∈′ 〈u′, v′〉 ↔
w ∈ 〈u′′, v′′〉 ] and show that the ∈′ elements of

〈 〈u′′ , 〈v′′, y〉 〉 , v′′ 〉 precisely
are y and all w such that w ∈′ x.
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We have w ∈′ 〈 〈u′′ , 〈v′′, y〉 〉 , v′′ 〉 if and only if 〈u′′, w〉 	 〈u′′ , 〈v′′, y〉 〉.
By T4, the latter happens in exactly the following cases: (a) 〈v′′, w〉 	 u′′, (b)
〈v′′, w〉 	 y, (c) 〈v′′, w〉 	 v′′, (d) 〈v′′, w〉 = 〈v′′, y〉, (e) 〈v′′, w〉 = 〈u′′ , 〈v′′, y〉 〉.
By the choice of v′′ and u′′, (a) holds if and only if w ∈′ 〈u′, v′〉, which in
turn by the choice of v′ and u′ happens if and only if w ∈′ x. By T2, Case (d)
happens if and only if w = y. By definition, v′ = 〈v, y〉. Since Pair(v), we have
v 	 v′ 	 v′′ by T4. By T4, (b) implies 〈u′′, w〉 	 〈v, y〉 = v′ 	 v′′. By T

(2)
5 , (b)

implies 〈u′′, w〉 	 v′′, which contradicts T
(2)
6 since v′′ 	 v′′ by T4 as Pair(v′′).

Similarly, Case (c) contradicts T
(2)
6 . By T2, Case (e) holds if and only if v′′ = u′′

and w = 〈v′′, y〉. Since x is not an empty set according to ∈, there exists w′ such
that 〈v′′, w′〉 	 u′′ = v′′ (since x and 〈u′′, v′′〉 have the same ∈′ elements) which
contradicts T

(2)
6 . This concludes the verification of (1) when x is not an empty

set according to ∈.
If x is an empty set according to ∈, we replace x with 〈⊥, 〈⊥,⊥〉〉 and proceed

as above always choosing u′ =⊥ and u′′ =⊥. This concludes the verification of
AS2. This completes the proof.
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Abstract. We study the question under which assumptions the com-
position of a finite sequence of backwards-stable approximations of
potentially discontinuous functions converges to the composition of the
sequence of original functions. We give two convergence criteria with the
help of continuous envelopes.

Keywords: Computable analysis · Backward stable algorithms ·
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1 Introduction

When working over infinite data, such as real numbers, one frequently encounters
computational problems that fail to be solvable exactly (in the sense of Exact
Real Computation) for continuity reasons. A common remedy is to replace such
problems with approximate formulations where a slightly perturbed problem
instance is solved exactly. More precisely, let f : X → Y be a function between
computable metric spaces. Let Q>0 denote the space of strictly positive rational
numbers with the discrete topology. Consider the backward approximation

†f : X × Q>0 � Y, †f(x, ε) = {f(x̃) ∈ Y | x̃ ∈ B(x, ε)} . (1)

This relaxation underlies for instance the non-deterministic inequality test for
real numbers, the notion of “approximate solutions” of fixed point equations
[3,13], and backwards stable algorithms in numerical analysis [17, Chapter III].

Observe that the function †f is always continuous in the sense of being com-
putable relative to an oracle. Further, if f has a computable left inverse, then †f
is computable. The latter situation occurs frequently in practice, since discon-
tinuous functions often arise as “inverse problems”.
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Backward approximations can be useful for computing quantities that depend
continuously on the input data. For instance, the standard algorithms for com-
puting the eigenvalues of a matrix proceed by first diagonalising the matrix using
a backwards stable algorithm, and then reading the eigenvalues off the diagonal
[17, Chapter V]. This yields good approximations of the eigenvalues, despite the
base change matrices not depending continuously on the input matrix.

This leads to the general question under which assumptions it is possible to
make an “idealised” program that employs discontinuous functions as subrou-
tines into a rigorous one by replacing the subroutines in question by backward
approximations. We will study this question for the simplest types of programs:
compositions of finite sequences of functions. We will give necessary and suffi-
cient criteria with the help of continuous envelopes [9].

Let us first consider the following question: Given functions fi : Xi → Xi+1

between computable metric spaces X1, . . . , Xn+1 and x ∈ X1, when do we have
convergence

†fn(·, δ) ◦ · · · ◦ †f1(·, δ)(x) → fn ◦ · · · ◦ f1(x) as δ → 0 ? (2)

Here, †fi(·, δ) : Xi � Xi+1 is the function which is obtained by binding the
second parameter of †f to δ.

A necessary condition is that the composition fn ◦ · · · ◦ f1 be continuous.
But this condition is not sufficient. Consider for instance the function f : R → R

which sends 0 to 0 and x ∈ R \ {0} to 1/x, and let f2 = f1 = f .
For a computable metric space Y , let K(Y ) denote the space of compact

subsets of Y endowed with the upper Vietoris topology. The space K(Y ) carries
a natural lattice structure with respect to its specialisation order, which corre-
sponds to reverse inclusion of compact sets. Let K⊥(Y ) denote the same space
with a bottom element added. Any function f : X → Y has a best continuous
approximation F : X → K⊥(Y ) in the following sense: For all x ∈ X we have
f(x) ∈ F (x), and if a continuous map G : X → K⊥(Y ) satisfies f(x) ∈ G(x) for
all x ∈ X then F (x) ⊆ G(x) for all x ∈ X. For a proof of this fact see e.g. [16]
or [6]. Observe that since K⊥(Y ) carries the upper Vietoris topology, continuous
maps of type X → K⊥(Y ) correspond to compact-valued upper semicontinuous
maps with open domains. We obtain the following convergence criterion:

Theorem 1. Let X1, . . . , Xn+1 be a finite sequence of computable metric spaces.
Let fi : Xi → Xi+1, i = 1, . . . , n be a finite sequence of functions. For i =
1, . . . , n, let Fi : Xi → K⊥(Xi+1) be the best continuous approximation of fi with
values in K⊥(Xi+1). Assume that Fi(x) �= ⊥ for all x ∈ Xi. Let Q>0 denote the
space of positive rational numbers with the discrete topology. Then the following
are equivalent:

1. For all x ∈ X1 and all ε > 0 there exists a δ > 0 such that for all y ∈
†fn(·, δ) ◦ · · · ◦ †f1(·, δ)(x) we have d (y, fn ◦ · · · ◦ f1(x)) < ε.
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2. There exists a total continuous1 multi-valued function

Ω : K(X1) × Q>0 � Q>0

such that for all K ∈ K(X1), all x ∈ K, all ε > 0, all δ ∈ Ω(K, ε), and all
y ∈ †fn(·, δ) ◦ · · · ◦ †f1(·, δ)(x) we have d (y, fn ◦ · · · ◦ f1(x)) < ε.

3. We have Fn ◦ · · · ◦ F1(x) = {fn ◦ · · · ◦ f1(x)} for all x ∈ X1. Here, the
composition of the Fi’s is taken in the Kleisli category of the monad K⊥.

When the envelopes of all functions f1, . . . , fn are known, checking the equal-
ity Fn ◦ · · · ◦ F1(x) = {fn ◦ · · · ◦ f1(x)} is arguably much simpler than proving
convergence directly.

In (2) we have chosen the same δ in each fi depending only on ε and x. The
notion of convergence can be weakened by allowing a different δi for each †fi

that is allowed to depend on the value of †fi−1(xi−1, δi−1).
Convergence in this sense can be characterised with the help of primary co-

envelopes, introduced in [10, Section 5]. The definition of this concept requires
some preparation. For a represented space X, let O(X) denote the space of open
subsets of X endowed with the Scott topology, which in this case coincides with
the ω-Scott topology, cf. [15, Proposition 2.2]. A continuous map j : X → Y
between represented spaces is called a Σ-split embedding if the induced map
j∗ : O(Y ) → O(X) has a continuous section s : O(X) → O(Y ). This means
that the map s must be continuous and satisfy j∗ ◦ s = idO(X). A represented
space X is called Σ-split injective if it is an injective object in the category of
represented spaces relative to the class of Σ-split embeddings. More explicitly,
a space X is Σ-split injective if and only if for all continuous maps f : A → X
and all Σ-split injective maps j : A → B there exists a – not necessarily unique
– continuous map g : B → X such that f = g ◦ j. Equivalently, a represented
space is Σ-split injective if and only if the natural inclusion ηX : X → O(O(X))
which sends a point x ∈ X to the set {U ∈ O(X) | x ∈ U} has a continuous left
inverse ρX : O(O(X)) → X [9, Proposition 3.18]. Any Σ-split injective space is
a complete lattice with respect to its specialisation order [9, Corollary 3.19].

For a function f : X → Y , let f◦ : O(Y ) → O(X) denote the function which
sends an open set U ∈ O(Y ) to the interior of the set f−1(U).

A co-envelope of a function f : X → Y consists of a Σ-split injective space A
together with two continuous maps F � : A → O(X) and π : A → O(Y ) satisfying
F �(x) ⊆ f◦ ◦ π(x) for all x ∈ A.

To each function f : X → Y one can assign a unique primary co-envelope,
consisting of a Σ-split injective space Af together with two continuous maps
E�

f : Af → O(X) and πAf
: Af → O(Y ). Intuitively speaking, the primary co-

envelope of a function f is – in a certain sense – the most efficient encoding
of all continuously obtainable information on f . We will not spell out the full
definition here. See [10, Section 5] for details.

1 Here and throughout the rest of the paper, a multi-valued function is called contin-
uous if it is computable relative to some oracle.
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The map πAf
preserves arbitrary joins and hence has an upper adjoint [7,

Corollary O-3.5]. This means that there exists a monotone, not necessarily con-
tinuous map ρ : O(Y ) → Af such that for all x ∈ Af and all U ∈ O(Y ) we
have

πAf
(x) ⊆ U ⇔ x ≤ ρ(U).

In the above equation, the ordering on Af is the specialisation order. See [7,
Chapter O-3] for more details on adjoints. The map ρ is continuous if and only
if Af is isomorphic to O(Y ). In this case, E�

f can be identified with the greatest
continuous approximation of f with values in K⊥(Y ).

We obtain the following characterisation:

Theorem 2. Let X1, . . . , Xn+1 be a finite sequence of computable metric spaces.
Let fi : Xi → Xi+1, i = 1, . . . , n be a finite sequence of functions. For i =
1, . . . , n, let the primary co-envelope of fi be given by the Σ-split injective space
Afi

and the continuous maps πAfi
: Afi

→ O(Xi+1), and E�
i : Afi

→ O(Xi). Let
ρi : O(Xi+1) → Afi

denote the upper adjoint of the map πAfi
: Afi

→ O(Xi+1).
Let Q>0 denote the space of positive rational numbers with the discrete topology.
The following are equivalent:

1. There exist continuous multi-valued functions ωi : Xi × Q>0 � Q>0, with ω1

total and

(xi, ε) ∈ dom(ωi) ∧ xi+1 ∈ †fi(xi, ε) → (xi+1, ε) ∈ dom(ωi+1),

such that for all sequences x1, . . . , xn+1, δ1 > 0, . . . , δn > 0 satisfying δi ∈
ωi(xi, ε) and xi+1 ∈ †fi(xi, δi) we have d(xn+1, fn ◦ · · · ◦ f1(x)) < ε.

2. We have

E�
1 ◦ ρ1 ◦ · · · ◦ E�

n−1 ◦ ρn−1 ◦ E�
n ◦ ρn(U) = (fn ◦ · · · ◦ f1)−1(U)

for all U ∈ O(Xn+1).

The notion of convergence guaranteed by Theorem 2 is much less uniform
than the one guaranteed by Theorem 1. Like in Theorem 1, the function ω1 in
Theorem 2 can be extended to compact subsets of X1, so that its dependency
on its first argument can be eliminated when it is restricted to compact subsets
of X1. However, the dependency of ωi on the first argument can in general not
be eliminated for i ≥ 2, as Example 1 below shows.

We assume familiarity with the standard terminology and notation from com-
putable analysis. For a concise introduction see [11]. See [1,4,12,18] for textbooks
on the subject.

2 Proof of Theorem 1

Let us now prove Theorem 1. We will first show the implication (3) ⇒ (1).
Observe that continuous maps of type X → K⊥(Y ) correspond to continuous

maps of type K⊥(X) → K⊥(Y ) which send ⊥ to ⊥ and preserve compact meets.
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For a map F : K⊥(X) → K⊥(Y ) which sends ⊥ to ⊥ and preserves compact
meets, we write

F � : O(Y ) → O(X), F �(U) = {x ∈ X | F ({x}) ∈ U} .

By convention, ⊥ ⊆ U is false for all open sets U ∈ O(Y ). Observe that if F
sends ⊥ to ⊥ and preserves compact meets then

F (K) ⊆ U ⇔ K ⊆ F �(U) (3)

for all K ∈ K⊥(X).
For a point x ∈ X we write B(x, ε) for the ball of radius ε > 0 about x. For a

set S ⊆ X we write B(S, ε) = ∪x∈SB(x, ε). For notational convenience, we will
write x for the singleton set {x}.

Lemma 1. Let X1, . . . , Xn+1 be a finite sequence of computable metric spaces.
Let Fi : K⊥(Xi) → K⊥(Xi+1), i = 1, . . . , n be a finite sequence of continuous
maps that send ⊥ to ⊥ and preserve compact meets. Let x ∈ X1. Assume that
Fn ◦ · · · ◦ F1(x) �= ⊥. Then for all ε > 0 there exist η0 > 0, . . . , ηn−1 > 0, ηn = ε,
and δ > 0, such that

B (B (Fi−1 ◦ · · · ◦ F1(x), ηi−1) , δ) ⊆ F �
i (B (Fi ◦ · · · ◦ F1(x), ηi)) .

for i = 1, . . . , n (by convention, the empty composition is the identity).

Proof. Recall that ηn = ε. We obviously have

Fn ◦ · · · ◦ F1(x) ⊆ B (Fn ◦ · · · ◦ F1(x), ηn) .

By (3) we have

Fn−1 ◦ · · · ◦ F1(x) ⊆ F �
n (B (Fn ◦ · · · ◦ F1(x), ηn)) .

Since the set Fn−1 ◦ · · · ◦ F1(x) is compact, there exists ηn−1 such that

B
(

Fn−1 ◦ · · · ◦ F1(x), ηn−1

) ⊆ F �
n (B (Fn ◦ · · · ◦ F1(x), ηn)) .

Let ηn−1 = δn−1 = ηn−1/2. Then

B (B (Fn−1 ◦ · · · ◦ F1(x), ηn−1) , δn−1) ⊆ B
(

Fn−1 ◦ · · · ◦ F1(x), ηn−1

)

⊆ F �
n (B (Fn ◦ · · · ◦ F1(x), ηn)) .

We can apply the same argument with ηn−1 playing the role of ηn to obtain the
existence of ηn−2 and δn−2 such that

B (B (Fn−2 ◦ · · · ◦ F1(x), ηn−2) , δn−2) ⊆ F �
n−1 (B (Fn−1 ◦ · · · ◦ F1(x), ηn−1)) .

By induction we obtain the existence of η0, . . . , ηn, and δ0, . . . , δn−1 such that

B (B (Fi−1 ◦ · · · ◦ F1(x), ηi−1) , δi−1) ⊆ F �
i (B (Fi ◦ · · · ◦ F1(x), ηi))

for i = 1, . . . , n. The claim now follows if we let δ = min{δ1, . . . , δn−1}.
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Lemma 2. Let X1, . . . , Xn+1 be a finite sequence of computable metric spaces.
Let Fi : K⊥(Xi) → K⊥(Xi+1), i = 1, . . . , n be a finite sequence of continuous
maps that preserve compact meets. Let fi : Xi → Xi+1, i = 1, . . . , n be a finite
sequence of functions satisfying fi(x) ⊆ Fi({x}) for all x ∈ Xi. Let x ∈ X1. Let
ε > 0. Assume that Fn ◦ · · · ◦ F1(x) ⊆ B (fn ◦ · · · ◦ f1(x), ε/2). For δ > 0, let
Pδ,1 = {x} and Pδ,i+1 = fi (B(Pδ,i, δ)) . Then there exists δ > 0 such that

Pδ,n+1 ⊆ B (fn ◦ · · · ◦ f1(x), ε) .

Proof. For a map G : K⊥(X) → K⊥(Y ) that preserves compact meets and an
arbitrary set S ⊆ X, write

G(S) =

{

⋃

x∈S G(x) ⊆ Y if G(x) �= ⊥ for all x ∈ S,

⊥ if G(x) = ⊥ for some x ∈ S.

By Lemma 1, for all ηn > 0 there exist η0 > 0, . . . , ηn−1 > 0 and δ > 0 such that

B (B (Fi−1 ◦ · · · ◦ F1(x), ηi−1) , δ) ⊆ F �
i (B (Fi ◦ · · · ◦ F1(x), ηi)) .

for i = 1, . . . , n. With the above notation, this implies

Fi (B (B (Fi−1 ◦ · · · ◦ F1(x), ηi−1) , δ)) ⊆ B (Fi ◦ · · · ◦ F1(x), ηi) . (4)

Let ηn = ε/2. We claim that we have Pδ,i+1 ⊆ B(Fi ◦ · · · ◦ F1(x), ηi) for
i = 1, . . . , n. For i = 1 we have by (4)

Pδ,2 = f1 (B(x, δ)) ⊆ F1 (B(B(x, η0), δ)) ⊆ B (F1(x), η1) .

By induction it follows that

Pδ,i+1 = fi (B (Pδ,i, δ))
⊆ fi (B (B (Fi−1 ◦ · · · ◦ F1(x), ηi−1) , δ))
⊆ Fi (B (B (Fi−1 ◦ · · · ◦ F1(x), ηi−1) , δ))
⊆ B (Fi ◦ · · · ◦ F1(x), ηi) .

The last inclusion follows again from (4).
We obtain, using the definition ηn−1 = ε/2,

Pδ,n ⊆ B (Fn ◦ · · · ◦ F1(x), ε/2)
⊆ B (B (fn ◦ · · · ◦ f1(x), ε/2) , ε/2)
⊆ B (fn ◦ · · · ◦ f1(x), ε) .

This proves the claim.

The implication (3) ⇒ (1) in Theorem 1 now follows immediately.
Let us now prove the direction (1) ⇒ (3). The proof relies on properties of

uniformly R-universal envelopes that were established in [10, Section 4].
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Lemma 3. Let X1, . . . , Xn+1 be a sequence of computable metric spaces. Let
fi : Xi → Xi+1, i = 1, . . . , n be a sequence of functions. For i = 1, . . . , n, let
Fi : Xi → K⊥(Xi+1) be the best continuous approximation of fi with values in
K⊥(Xi+1). Let x ∈ X1. Assume that Fi(x) �= ⊥ for all x ∈ Xi. Let x ∈ Xi.
Assume that for all ε > 0 there exists a δ > 0 such that for all

y ∈ †fn(·, δ) ◦ · · · ◦ †f1(·, δ)(x)

we have d (y, fn ◦ · · · ◦ f1(x)) < ε. Then Fn ◦ · · · ◦ F1(x) = {fn ◦ · · · ◦ f1(x)}.
Proof. Since Fi(y) �= ⊥ for all y ∈ Xi, it follows from [10, Theorem 30] that
the function fi is uniformly R-envelopable and Fi is an R-universal envelope of
fi. A robust property of f at y is an open set U ∈ O(Xi) such that f−1(U) is
a neighbourhood of y. See also [9, Definition 4.12]. By [10, Proposition 29] we
have the following result: For all y ∈ Xi, all robust properties U ∈ O(Xi+1) of
f at y, and all η > 0 we have Fi(y) ∈ B(U, η).

Let ε > 0. For δ > 0, let P1,δ = {x} and Pi+1,δ = fi (B(Pi,δ, δ)). By assump-
tion, there exists δ > 0 such that Pn+1,δ ⊆ B(fn ◦ · · · ◦ f1(x), ε).

We prove by induction on i ≥ 0 that Fi ◦· · ·◦F1(x) ⊆ B(Pi+1,δ, δ). The claim
then follows easily.

For i = 0 the claim is trivial.
Assume that Fi ◦ · · · ◦ F1(x) ⊆ B(Pi+1,δ, δ) for i ≥ 0. Let y ∈ Fi ◦ · · · ◦ F1(x).

Then
fi+1(y) ∈ fi+1(B(Pi+1,δ, δ)) = Pi+2,δ ⊆ B(Pi+2,δ, δ/2).

We thus have y ∈ B(Pi+1,δ, δ) ⊆ f−1
i+1 (B(Pi+2,δ, δ/2)). Hence, B(Pi+2,δ, δ/2) is

a robust property of fi+1 at y. Since Fi+1 is an R-universal envelope of fi+1, it
follows that

Fi+1(y) ⊆ B (B (Pi+2,δ, δ/2) , δ/2) ⊆ B (Pi+2,δ, δ) .

This proves the claim.

Finally, we show the equivalence of (1) and (2). Since (2) clearly implies (1)
it suffices to show the implication (1) ⇒ (2). We first show a weaker implication,
where the modulus Ω ranges over points rather than compact sets:

Lemma 4. Let X1, . . . , Xn+1 be a sequence of computable metric spaces. Let
fi : Xi → Xi+1, i = 1, . . . , n be a sequence of functions. Assume that the sentence

∀x ∈ X1.∀ε > 0.∃δ > 0.
(†fn(·, δ) ◦ · · · ◦ †f1(·, δ)(x) ⊆ B (fn ◦ · · · ◦ f1(x), ε)

)

(5)
holds true. Then there exists a total continuous multi-valued function

ω : X1 × Q>0 � Q>0

witnessing (5).
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Proof. To all rational points2 x ∈ X1 and all rational numbers ε > 0 we can
assign a sequence

0 < δ1(x, ε) ≤ δ2(x, ε) ≤ . . .

of rational numbers such that each δi(x, ε) is a witness of (5). If the set of
witnesses of (5) is bounded with supremum δ > 0 we can further ensure that
δi → δ as i → ∞. If the set of witnesses of (5) is unbounded, we can ensure that
the sequence (δi(x, ε))i∈N is unbounded.

Let (xi)i be an enumeration of all rational points in X. Let (εi)i be an
enumeration of all strictly positive rational numbers. We obtain a function
Φ : N3 → X×Q

2 which sends (i, j, k) to (xi, εj , δk(xi, εj)). The function fn◦· · ·◦f1
is necessarily continuous, so that it has a continuous modulus of continuity
μ : X1 × Q>0 → (0,+∞)<, where (0,+∞)< is the space of positive reals with
the Scott topology induced by the usual ordering. We may assume that μ is
monotonically increasing in its second argument.

We now compute a suitable function ω relative to the oracles Φ and μ. Given
x ∈ X1 and ε ∈ Q>0, search for (i, j, k) such that εj < ε, x ∈ B(xi, δk(xi, εj)),
and δk(xi, εj) < μ(x, ε − εj). Output a positive rational lower bound δ on
δk(xi, εj) − d(x, xi) > 0.

We claim that δ is a witness for (5). By assumption we have

†fn(·, δk(xi, εj)) ◦ · · · ◦ †f1(·, δk(xi, εj))(xi) ⊆ B(fn ◦ · · · ◦ f1(xi), εj). (6)

Since δk(xi, εj) < μ(x, ε − εj) and d(x, xi) < δk(xi, εj) we have

d (fn ◦ · · · ◦ f1(xi), fn ◦ · · · ◦ f1(x)) < ε − εj

which implies

B(fn ◦ · · · ◦ f1(xi), εj) ⊆ B(fn ◦ · · · ◦ f1(x), ε) (7)

.
We prove by induction on 
 that

†f�(·, δ) ◦ · · · ◦ †f1(·, δ)(x) ⊆ †f�(·, δk(xi, εj)) ◦ · · · ◦ †f1(·, δk(xi, εj))(xi).

Combining this with (6) and (7) we obtain the claim. Consider the case 
 = 1.
We have B(x, δ) ⊆ B(xi, δk(xi, εj)) by construction. This implies:

†f1(·, δ)(x) = f1(B(x, δ)) ⊆ f1(B(xi, δk(xi, εj))) = †f1(·, δk(xi, εj))(xi).

The induction step is trivial, observing that δ < δk(xi, εj).
We have shown that the algorithm outputs a witness for (5) whenever it halts.

It remains to show that the algorithm halts on all inputs. Let (x, ε) ∈ X1 ×Q≥0.

2 Recall that a computable metric space is presented by a dense sequence (xn)n and a
map N

2 → R which sends (n,m) to the distance of xn and xm. We call the elements
of the sequence (xn)n the rational points of X, in analogy to the rational numbers,
that play this role for the computable metric space of real numbers.



228 E. Neumann

By assumption, there exists δ > 0 such that
†f(·, δ) ◦ · · · ◦ †f(·, δ)(x) ⊆ B(fn ◦ · · · ◦ f1(x), ε/4).

There exists a rational point xi with

d(x, xi) < min{δ/4, 1
2μ(x, ε/4)}.

We have
B(xi, 2d(x, xi)) ⊆ B(x, δ).

This implies:
†fn(·, 2d(x, xi)) ◦ · · · ◦ †f1(·, 2d((x, xi))(xi) ⊆ †fn(·, δ) ◦ · · · ◦ †f1(·, δ)(x)

⊆ B(fn ◦ · · · ◦ f1(x), ε/4).

Now, since d(x, xi) < μ(x, ε/4), we have

B(fn ◦ · · · ◦ f1(x), ε/4) ⊆ B(fn ◦ · · · ◦ f1(xi), ε/2).

It follows that 2d(x, xi) witnesses the existential quantifier in (5) when the
variables in the universal quantifier are bound to xi and ε/2 respectively. Let
εj ∈ (ε/2, 3ε/4) be a rational number. By construction, there exists a number
δk(xi, εj) in our sequence such that d(x, xi) < δk(xi, εj) < 2d(x, xi).

By construction we have εj < ε. Again by construction, x is contained in
B(xi, δk(xi, εj)). Finally, we have ε − εj > ε/4 and thus

μ(x, ε − εj) > μ(x, ε/4) > 2d(x, xi) > δk(xi, εj).

Here we have used that μ is monotonically increasing in its second argument.
Thus, the search will terminate on input (xi, εj , δk(xi, εj)).

Finally we extend the modulus ω to a modulus Ω as in the statement of the
theorem:

Corollary 1. Let X1, . . . , Xn+1 be a sequence of computable metric spaces. Let
fi : Xi → Xi+1, i = 1, . . . , n be a sequence of functions. Assume that the sentence
(5) holds true.

Then there exists a total continuous multi-valued function

Ω : K(X1) × Q>0 � Q>0

such that for all K ∈ K(X1), all x ∈ K, all ε > 0, any δ ∈ Ω(K, ε) is a witness
for the existential quantifier in (5).

Proof. By Lemma 4 there exists ω : X1 ×Q>0 � Q>0 witnessing the existential
quantifier in (5).

The computable metric space X1 admits a computably open representation,
so that given K ∈ K(X1), ε > 0, and δ > 0 we can semi-decide the sentence

∀x ∈ K.∃η ∈ ω(x, ε). (η > δ) (8)

relative to some realiser of ω. By a straightforward compactness argument, for all
compact sets K there exists a uniform lower bound δ > 0 such that the sentence
(8) holds true. This allows us to compute Ω relative to ω by unbounded search
for a suitable δ.
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3 Proof of Theorem 2

For a function f : X → Y between represented spaces, let

f◦ : O(Y ) → O(X), f◦(U) = f−1(U)◦,

where for a set S ⊆ X, S◦ denotes the interior of S. The proof of the second
result relies on the following observation, which follows from the proof of [10,
Theorem 41]:

Lemma 5. Let f : X → Y be a function between represented spaces. Let the
primary co-envelope of f be given by the Σ-split injective space Af and the con-
tinuous maps πAf

: Af → O(Y ) and E�
f : Af → O(X). Let ρ : O(Y ) → Af denote

the upper adjoint of the map πAf
: Af → O(Y ). Then E�

f ◦ ρ = f◦.

We now turn to the proof of Theorem 2. We first prove the direction (2) ⇒
(1). Thus, assume that we have

E�
1 ◦ ρ1 ◦ · · · ◦ E�

n−1 ◦ ρn−1 ◦ E�
n ◦ ρn(U) = (fn ◦ · · · ◦ f1)−1(U)

for all U ∈ O(Xn+1). By Lemma 5 we have E�
i ◦ ρi = f◦

i for i = 1, . . . , n. Since
fn ◦ · · · ◦ f1 is continuous, the assumption hence says

f◦
n ◦ · · · ◦ f◦

1 = (fn ◦ · · · ◦ f1)◦ = (fn ◦ · · · ◦ f1)
−1

. (9)

For i = 1, . . . , n + 1, let (ai,m)m∈N be a dense sequence in Xi. Let m ∈ N.
Let ε > 0 be a positive rational number. Let ym = fn ◦ · · · ◦ f1(a1,m). We have
by (9):

(fn ◦ · · · ◦ f1)
−1 (B(ym, ε/2)) = (fn ◦ · · · ◦ f1)

◦ (B(ym, ε/2))
= f◦

1 ◦ · · · ◦ f◦
n(B(ym, ε/2)).

We obtain open sets Ui,m,ε by letting Un+1,m,ε = B(ym, ε/2) and Ui,m,ε =
f◦

i (Ui+1,m,ε). We have

U1,m,ε = (fn ◦ · · · ◦ f1)
−1 (B(ym, ε/2)) . (10)

We can make the countable collection Ui,m,ε where i = 1, . . . , n + 1, m ∈ N, and
ε > 0 is rational into an oracle, by listing for each Ui,m,ε the set of all rational
balls contained in Ui,m,ε. More precisely, there exist functions


 : {1, . . . , n + 1} × Q>0 × N
2 → N

and
η : {1, . . . , n + 1} × Q>0 × N

3 → N

such that the following holds true:
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1. For all (i, ε,m, j, k) ∈ {1, . . . , n + 1} × Q>0 × N
3 the open ball

B(ai,�(i,ε,m,j), η(i, ε,m, j, k))

is contained in Ui,m,ε

2. Whenever ai,p is a rational point in Xi and r > 0 is a positive real number
with B(ai,p, r) ⊆ Ui,m,ε for some m ∈ N and ε > 0, then there exists j ∈ N

such that p = 
(i, ε,m, j), and for all 0 < s < r there exists k ∈ N with
η(i, ε,m, j, k) > s.

We now compute ωi with help of the oracles 
 and η. Given xi ∈ Xi and a
rational number ε > 0, search for m, j, k ∈ N such that

xi ∈ B
(

ai,�(i,ε,m,j), η(i, ε,m, j, k)
)

.

Output any rational number δ satisfying 0 < δ < η(i, ε,m, j, k) −
d(xi, ai,�(i,ε,m,j)). Observe that this implies that if δ ∈ ωi(x, ε) then

B(xi, δ) ⊆ B
(

ai,�(i,ε,m,j), η(i, ε,m, j, k)
) ⊆ Ui,m,ε. (11)

Further observe that the search terminates on input xi and ε > 0 if and only if
there exists m ∈ N such that xi ∈ Ui,m,ε. In other words,

(xi, ε) ∈ dom ωi ⇔ xi ∈
⋃

m∈N

Ui,m,ε (12)

We claim that ω1 is a total function. Let x1 ∈ X1 and ε > 0. Since fn ◦· · ·◦f1
is continuous, there exists a rational point a1,m ∈ X1 such that fn ◦· · ·◦f1(x1) ∈
B(fn ◦· · ·◦f1(a1,m), ε). By definition, this implies x1 ∈ U1,m,ε. The claim follows
with (12).

Next, we show that
(

(xi, ε) ∈ dom(ωi) ∧ δ ∈ ωi(xi, ε) ∧ xi+1 ∈ †fi(xi, δ)
) → (xi+1, ε) ∈ dom(ωi+1).

Assume that (xi, ε) ∈ dom(ωi). By (12) we have xi ∈ Ui,m,ε for some m ∈ N.
Let δ ∈ ωi(xi, ε). Then by (11) we have B(xi, δ) ⊆ Ui,m,ε. Thus,

fi(B(xi, δ)) ⊆ fi(Ui,m,ε) ⊆ Ui+1,m,ε.

The last inclusion follows directly from the definition of Ui,m,ε. The claim follows.
Finally, let x1, . . . , xn+1, δ1 > 0, . . . , δn > 0 be sequences which satisfy δi ∈

ωi(xi, ε) and xi+1 ∈ †fi(xi, δi). By the preceding arguments, we have x1 ∈ U1,m,ε

for some m ∈ N and fi(B(xi, δ)) ⊆ Ui+1,m,ε for i = 1, . . . , n. Thus,

xn+1 ∈ Un+1,m,ε = B(fn ◦ · · · ◦ f1(a1,m), ε/2).

By (10) we have fn ◦ · · · ◦ f1(x1) ∈ B(fn ◦ · · · ◦ f1(a1,m), ε/2). Hence,

d(xn+1, fn ◦ · · · ◦ f1(x1)) < ε.
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This establishes the direction (2) ⇒ (1). Let us now prove the converse direc-
tion. Thus, assume the existence of continuous multi-valued maps

ωi : Xi × Q>0 � Q>0,

as in the statement of the theorem.
Let U ∈ O(Xn+1) be an open set. By Lemma 5, our aim is to show that

(fn ◦ · · · ◦ f1)
−1 (U) = f◦

1 ◦ · · · ◦ f◦
n(U).

Let x1 ∈ X1 be such that fn ◦ · · · ◦ f1(x1) ∈ U . Let ε > 0 be such that we have
B(fn ◦ · · · ◦ f1(x1), ε) ⊆ U .

Let δ1 ∈ ω1(x1, ε). Let V1 = B(x1, δ1). For 2 ≤ i ≤ n − 1, let

Vi+1 =
⋃

xi+1∈fi(Vi)

⋃

δi+1∈ωi+1(xi+1,ε)

B(xi+1, δi+1).

Essentially by definition we have Vn+1 ⊆ B(fn ◦ · · · ◦ f1(x), ε) ⊆ U .
By definition, each Vi is an open set. A straightforward induction, using the

assumption about the domains of the ωi’s, shows that (xi+1, ε) ∈ dom ωi+1

whenever xi+1 ∈ fi(Vi). Thus, the set Vi+1 contains the set fi(Vi). Thus,
f◦

i (Vi+1) ⊇ Vi. Hence,

f◦
1 ◦ · · · ◦ f◦

n(U) ⊇ f◦
1 ◦ · · · ◦ f◦

n(Vn+1) ⊇ V1 = B(x1, δ1) � x.

This proves the claim.

4 Examples

Our first example shows that the dependency of ωi on xi for i > 1 in Theorem
2 cannot be eliminated in general.

Example 1. Let

f : R → R, f(x) =

{

−x if x < 0,

1 otherwise.

One easily verifies that the best continuous approximation of f with values in
K⊥(R) is given by the map

F (x) =

⎧

⎪

⎨

⎪

⎩

{−x} if x < 0,

{0, 1} if x = 0,

{1} if x > 0.

We have f ◦ f(x) = 1 for all x ∈ R, but F ◦ F (0) = {0, 1}. Thus, Theorem 1 is
not applicable. Indeed, let 0 < ε < 1. For all δ > 0, we have

†f(·, δ) ◦ †f(0, δ) = (0, δ) ∪ {1} �⊆ B(f ◦ f(0), ε).

Theorem 2 does apply. Indeed, we can choose ω1(x, ε) = 1 and ω2(x, ε) = |x|.
Then any y ∈ †f(x, ω1(x, ε)) is a strictly positive number. Now, ω2(y, ε) is equal
to |y|, so that †f(y, ω2(y, ε)) = {1}.
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Our second example illustrates a classic scenario where Theorem 1 is appli-
cable.

Example 2. Let
PN : Symn(R) → Symn(R), A �→ AN

be the operator which sends a real symmetric matrix to its N th power.
Since diagonal matrices can be raised to the N th power very efficiently, it

makes sense to diagonalise the input matrix before applying PN . This suggests
to decompose PN into the following chain of functions:

Symn Fin(R × Γ(Rn)) Fin(R × Γ(Rn)) Symn,
diag pN mul

where:

1. Γ(Rn) denotes the space of linear subspaces of Rn, identified with a closed
subspace of F(Bn), the compact subsets of the unit ball Bn ⊆ R

n with the
Hausdorff metric.

2. Fin(X) is the space of finite subsets of X, identified with a subspace of N ×
F(X), where (n, S) ∈ Fin(X) if and only if the set S has exactly n elements.

3. pN ({(λ1, E1), . . . , (λs, Es)}) =
{

(λN
1 , E1), . . . , (λN

s , Es)
}

.
4. For a given finite set S = {(λ1, E1), . . . , (λs, Es)}, if dimE1 + · · · + dimEs �=

n, then mul(S) = 0. Otherwise, mul (S) = QDQT , where D is a diagonal
matrix with entries λ1, . . . , λs, such that each λi occurs dim Ei often and Q
is a matrix whose columns are of the form v1,1, . . . , v1,m1 , . . . , vs,1, . . . , vs,ms

,
where vi,1, . . . , vi,mi

is an orthonormal basis of Ei. Observe that mul is well-
defined.

5. diag (A) = {(λ1, E1), . . . , (λs, Es)} , where λ1, . . . , λs are the distinct eigen-
values of A and Ei is the eigenspace of λi.

The maps pN and mul are computable. Computability of mul follows for exam-
ple from the results in [19]. The map diag however, is discontinuous. Let
F : Symn(R) → K⊥(Fin (R × Γ(Rn))) denote its best continuous approxima-
tion with values in K⊥(Fin (R × Γ(Rn))). It is not difficult to see that for A ∈
Symn(R), the set F (A) is the compact set of all finite sets {(λ1, E1), . . . , (λs, Es)}
such that λ1, . . . , λs are (not necessarily distinct) eigenvalues of A, Ei is an
eigenspace for λi for all i, Ei ⊥ Ej for i �= j, and dimE1 + · · · + dim Es = n. We
have mul ◦pN ◦ F ({A}) = {PN (A)}, so that by Theorem 1,

†mul(·, δ) ◦ †pN (·, δ) ◦ †diag(·, δ) → PN

as δ → 0, uniformly on compact sets.
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Abstract. The current work includes a result announced in the year
2012 which was unproven until now. The result shows that there is a
co-r.e. tree with uncountably many infinite branches such that the non-
isolated infinite branches of the constructed tree are all nonrecursive,
generalised low, hyperimmune-free and form a perfect tree.

1 Introduction

The connections between trees and their branches are well-studied. A major
result is Jockusch and Soare’s Low Basis Theorem [8] which showed that every
infinite binary recursive (or co-r.e.) tree has an infinite branch of low Turing
degree; similarly they showed that it also has an infinite branch of hyperimmune-
free Turing degree. This shows that trees (this word denotes from now on infi-
nite binary trees) which are recursive or co-r.e. have hyperimmune-free infinite
branches. Downey [3] provided a tree where all branches are hyperimmune-free
and some are nonrecursive. Downey’s construction left open the question whether
such trees can be made to have uncountably many infinite branches.

Ng, Stephan, Yang and Yu constructed in 2011 and 2012 recursive trees
with uncountably many infinite branches such that every infinite branch is of
hyperimmune-freeTuring degree.They furthermore studied various related results
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and announced in 2012 [12, Theorem 2.4] the result that there is a recursive binary
tree with uncountably many infinite branches of Cantor-Bendixson rank 1 (thus
removing the isolated branches makes it perfect) such that all infinite branches are
hyperimmune-free and generalised low1. They gave a proof sketch and announced
the full details of the proof in the journal version which never got ready due to the
construction becomingmore and more lengthy and remaining incomplete. The rea-
sonwas thatNg, Stephan,Yang andYu tried to follow the proof-sketch of the initial
approach of their paper [12, Theorem 2.4] and intended to use the “full approxi-
mation method” which is a complicated infinite injury construction. The alterna-
tive proof in the present work uses a K-recursive guidance tree U whose infinite
branches form a perfect tree of 2-generic inversions of the double jumps of sets in
the cone above K ′. This guidance tree brought down the complexity of the con-
struction from infinite injury to finite injury in the translation of U to the final
co-r.e. tree T .

The result is from the field of classical recursion theory and it connects two
major notions of the field, namely that of hyperimmune-free Turing degrees
(which are those Turing degrees where all functions computed are majorised by
a recursive function) with that of recursive or co-r.e. trees having uncountably
many infinite branches. Recursive functions are, in easy terms, those which can
be computed by a abstract machine without any bounds on computation time
and storage space; alternatively one can also say, due to a result of Matiyasevich
[10], that a recursive function is one whose graph is Diophantine, that is, satisfies
that there is a polynomial p with integer coefficients in variables x, y, z1, . . . , zk

such that, for all x, y ∈ N, f(x) = y iff there are values for z1, . . . , zk ∈ N with
p(x, y, z1, . . . , zk) = 0. This also works with partial-recursive functions and thus
recursively enumerable sets. The classes of the infinite branches of such trees are
also called Π0

1 and subject to detailed studies. The authors want also refer to
standard text books on recursion theory and related fields for further reading of
the background [1,9,15,16,18]. The main innovation of [12] was to show that Π0

1 -
classes can be both uncountable and only have members of hyperimmune-free
Turing degree. The add-on properties are introduced below one by one together
with definitions or characterisations explaining them.

Theorem 1. There is a co-r.e. tree T without finite branches which has 2ℵ0

many infinite branches such that the nonisolated infinite branches are all hyper-
immune-free, generalised low1, Schnorr-trivial, of minimal Turing degree, jump
traceable and form a perfect tree.

Besides the above mentioned announcement [12, Theorem 2.4], the proof was
never published and is also not in the follow-up works, that is, works citing the
2012 paper [6,7,13,22]. A result proven by Hirschfeldt, Jockusch and Schupp
[7, Lemma 6.7] was also announced without proof [12] and states that every
hyperimmune-free infinite branch A on a K-recursive tree is also on a recursive
tree not containing any additional infinite branches. Here some detailed expla-
nations on the used notions.
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Co-r.e. tree: This is a downward closed infinite subset of binary strings such
that the set of strings outside it is recursively enumerable. Branches are finite or
infinite strings such that all finite prefixes of them are in the tree. Co-r.e. trees can
be made such that all branches are infinite by enumerating for each node σ into
the complement of the tree where before both σ0 and σ1 had been enumerated
into the complement. The infinite branches of a co-r.e. tree form a Π0

1 -class and
the concepts recursive tree, co-r.e. tree and Π0

1 -class are interchangeable when
talking about the class of infinite branches of a tree.

Remark 2. One can prune of the finite branches of an existing recursive tree
S and receives a co-r.e. tree T in which every node has either one or two suc-
cessors, but which does not have any deadends. The infinite branches of both
are the same. This co-r.e. tree is notationally easier to handle, due to the direct
correspondence of the branching bits of its nonrecursive infinite branches in T
and these are the union of all branching strings (branching bits used until some
level) form a K-r.e. tree whose infinite branches correspond in a one-one way
with the nonisolated infinite branches of T .

Hyperimmune-free: The easiest characterisation of a set A being hyperimmu-
ne-free is that every A-recursive function is majorised by a recursive function.
Formally, it means that no set B ≤T A is hyperimmune, that is, for every
infinite set B ≤T A there is a recursive array I0, I1, . . . of finite disjoint sets
given by canonical indices with each Ik intersecting B. Hyperimmune sets were
introduced by Post [20]. Dekker [2] showed that every nonrecursive r.e. Turing
degree contains a hyperimmune set and Miller and Martin [11] showed that on
one hand every nonrecursive Turing degree below the halting problem K contains
a hyperimmune set while on the other hand there are also nonrecursive Turing
degrees without hyperimmune sets, such degrees and the sets in them are called
hyperimmune-free. Jockusch and Soare [8] showed that every co-r.e. tree with
an infinite branch contains actually an infinite hyperimmune-free branch.

Schnorr-trivial: Franklin and Stephan [4] gave the following characterisation
which serves as a definition: A set A is Schnorr-trivial if for every f ≤tt A there
is a recursive function g such that ∀n∃m ≤ 2n [f(n) = g(n,m)].

Remark 3. Above notions have the following properties: Schnorr-trivial plus
hyperimmune-free equals to a property called recursively traceable; however, the
property Schnorr-trivial is easier to achieve in a construction, as one needs only
to consider truth-table reductions and not to worry about Turing reductions.
Furthermore, if ϕA

e is a truth-table reduction then it is assumed that there
is a recursive function g such that ϕA

e (x) needs, independently of the choice
of A, at most g(x) steps and queries only below g(x) and outputs a value y
with y < g(x). Similarly, if ϕe is a Turing reduction and ϕA

e (x) needs s steps
to converge then all places queried are below s and ϕA

e (x) < s. In particular,
terminating computations ϕσ

e (x) query σ only at values in the domain σ. Two
partial functions ϕσ

e and ϕτ
e are consistent at stage s iff for all x where both

ϕσ
e (x) and ϕτ

e (x) output values y and z within s steps, it holds that y = z.
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Jump Traceable: A set A is jump traceable if there are a recursive function
h and a partial-recursive function g such that ∀n∃m ≤ h(n) [ϕA

n (n) = g(n,m)].
Here one uses the diagonal jump function n �→ ϕA

n (n) in place of its domain
A′ and equality “=” of partial function values means that either both sides are
undefined or both sides are defined and equal.

Generalised Low: A set A is generalised low1 if A′ ≤T A ⊕ K. This property
was introduced to generalise the notion “low” in a senseful way beyond the
classes of Turing degrees below the halting problem. Note that “generalised
low1” and “high” are not disjoint properties and some sets have both properties,
for example the 1-generic set obtained by inverting the jump of K ′. Nies showed
the following proposition which allows to construct jump-traceable sets when
one actually wants generalised low ones.

Proposition 4 (Nies [14]). If A is jump traceable then A′ ≤T A ⊕ K.

Minimal Turing Degree: A set A is of minimal Turing degree iff A is not
recursive and for every B ≤T A, either B is recursive or A ≤T B. Spector [19]
constructed a minimal Turing degree which is below the jump K ′ of the halting
problem K and Sacks [17] constructed a minimal Turing degree below K. A
sufficient criterion to show that A is minimal is to show that for every Turing
reduction ϕe there is a co-r.e. tree S such that A is an infinite branch of S and
a node σ 	 A such that one of the following three conditions holds:

1. The function ϕA
e is total and every B 
 σ on S satisfies that ϕA

e = ϕB
e and

thus ϕA
e is recursive;

2. Every B 
 σ on S with B �= A satisfies that there is an x with ϕA
e (x) �= ϕB

e (x)
where both values are defined and thus A ≤T ϕA

e ;
3. There is an x with ϕA

e (x) being undefined and thus ϕA
e is partial.

A tree S is e-splitting along A if it satisfies one of the three conditions and
Spector [19] used this method to construct a minimal Turing degree.

Perfect Tree: A tree is perfect iff every infinite branch is the pointwise limit of
other infinite branches which are different to it; in particular perfect trees have
2ℵ0 many infinite branches and do not have isolated infinite branches. The tree
T constructed in the main result will satisfy that its nonisolated branches form
a perfect tree and that there is furthermore set of size ℵ0 of isolated branches
added to this tree; these additional recursive branches cannot be avoided as T
must have low branches by the Low Basis Theorem [8] and these branches are
then recursive by being both hyperimmune-free and low and thus isolated by
the construction that all infinite branches on the perfect tree are nonrecursive.

Proposition 5. If V is a K ′-recursive tree, then V is contained in a K-r.e. tree
U such that every infinite branch A of U is also one of V and vice versa.

Proof. This is a folklore result which holds relative to any oracle, not only
relative K. However, it is needed here only relative to K. By the limit lemma,
there is a K-recursive approximation Vs such that for all μ ∈ V , Vs(μ) = V (μ)



238 K. M. Ng et al.

for almost all s. Now one enumerates a node μ into U iff there is a stage s > |μ|
such that all prefixes ν of μ are in Vs. If A is an infinite branch of V then clearly
all prefixes of A are enumerated into U and A is an infinite branch of U . If A is
not an infinite branch of V there is a prefix μ of A which is not in V and so there
is a stage t such that Vs(μ) = 0 for all s ≥ t and then no prefix of A longer than
|μ| + t will ever be enumerated into U ; thus A is not an infinite branch of U . ��
Proposition 6 (Based on Friedberg Jump Inversion Theorem [5]).
There is a perfect K ′-recursive tree V such that each infinite branch of it is 2-
generic and that all Turing degrees above K ′ are double jumps of infinite branches
of V .

Proof. Given a set B ⊆ N and oracle K ′, one starts with the root σ0 = ε and
puts it into the tree. Then one checks whether there is an extension η of σn in
WK

e and if so then one lets σn+1 = ηB(n) for the first such η found else one
lets σn+1 = σnB(n). This case-distinction is clearly K ′-recursive. The resulting
tree V is the union of this construction for all oracles B and V [B] refers to the
encoded infinite branch for B. For two oracles B, B̃ first differing at position
n, the respective strings σn+1 in the construction of V [B] and V [B̃] will differ
exactly on the last bit and therefore V [B] and V [B̃] will be different infinite
branches of V . The tree V will be uniformly K ′-recursive.

The sets V [B] are always 2-generic and thus V [B]′′ ≡T B ⊕ K ′. Note that
the 2-genericity is coded explicitly into the set V [B] by using an extension η of
σn in WK

e whenever such an extension exists. Further note that V [B] ⊕ K ′ can
recover B and B ≤T V [B] ⊕ K ′. As V [B] is 2-generic, V [B]′′ ≡T V [B] ⊕ K ′

and if B ≥T K ′ then V [B]′′ ≡T B. Thus the class of infinite branches of V has
cardinality 2ℵ0 and their double jumps cover the whole cone above K ′. ��
Corollary 7. There is a K-r.e. tree U = {u(0), u(1), u(2), . . .} such that all its
infinite branches are 2-generic and that the Turing degrees of the double jumps
of these branches cover the whole cone above K ′.

2 The Main Result and Its Construction

The following theorem implies Theorem 1 and uses the above constructed trees
from Proposition 6 and Corollary 7.

Theorem 8. Given U, V as in Proposition 6 and Corollary 7, there is a co-
r.e. tree T with uncountably many infinite branches such that every noniso-
lated infinite branch of T is of hyperimmune-free Turing degree, minimal Turing
degree, generalised low1, jump traceable and Schnorr-trivial. Furthermore, for
each nonisolated infinite branch A of T there is an infinite branch B of U with
A ⊕ K ≡T B ⊕ K and B consists of the branching bits of A in T .

Construction. The construction works with markers cn which are initialised
as cn,0 = n and move at stages t from cn,t to cn,t+1; in parallel to the move-
ment of markers, a co-r.e. tree will be constructed which has branching nodes
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only on levels on which a marker sits. This tree is called T and T0 = {0, 1}∗.
Furthermore, ut(k) is the t-th approximation to u(k) for the K-recursive enu-
meration u(0), u(1), u(2), . . . of the tree U ; note that this approximation exists
by the Limit Lemma and for each k and almost all t, ut(k) = u(k).

Recall that a finite tree up to a level can be described by the leave nodes
in that level; furthermore, one can for each leaf describe the string of branching
bits which are those bits in the path to the leaf where one has to make a choice
between two possibilities in order to select the leaf to which one wants to go;
those where there is only one choice are omitted from the string.

At stage t, one first considers for each n with cn,t ≤ t + 1 the finite tree
Ln which contains all words σ ∈ Tt with dom(σ) ⊆ {0, 1, . . . , cn,t − 1}. The
branching bits of a σ ∈ Ln are the last bits a of those prefixes ηa ≺ σ where
both η0, η1 ∈ Ln and the branching string is the sequence of branching bits in
the given order from the root to the node σ. One considers an extension of Hn

of Ln and calls it admissible when it satisfies the following conditions:

1. The leaves of Hn have the domain {0, 1, . . . , t + 1} and Hn ⊆ Tt;
2. For each leaf σ of Ln there is exactly one τ ∈ Hn extending σ and having

domain {0, 1, . . . , t}; furthermore, for the branching bits μ of σ in Ln, if
μ ∈ {ut+1(0), ut+1(1), . . . , ut+1(n)} then τ0, τ1 ∈ Hn else only τ0 ∈ Hn;

3. There is progress from Ln to Hn in the way that certain enumeration, defin-
ability or splitting goals are obtained; more precisely there are σ, σ′ ∈ Ln

with the corresponding τ, τ ′ such that cn,t ≤ t + 1 and at least one of the
following conditions is satisfied:
(a) Some element m ≤ n became enumerated into K between time cn,t and

t + 1 or ut+1(m) �= us(m) for some s ∈ {cn,t, cn,t + 1, . . . , t};
(b) There is an e ≤ n for which the function ϕσ

e is not defined on all of
0, 1, . . . , n within cn,t steps while ϕτ

e is defined on all of 0, 1, . . . , n within
t + 1 steps;

(c) There is an e ≤ n for which ϕσ
e (e) is not defined within cn,t steps while

ϕτ
e (e) is defined within t + 1 steps;

(d) For some e ≤ n there is an x such that ϕσ
e and ϕσ′

e are consistent at time
cn,t while ϕτ

e (x), ϕτ ′
e (x) are defined and different for an x < t + 1 within

t + 1 steps;
(e) |σ| = |τ | and cn,t = t + 1.

For the least n where one can find Ln,Hn as above, one does the following:

1. For m < n, cm,t+1 = cm,t and cn,t+1 = t + 1 and for m > n, cm,t+1 =
t + 1 + m − n;

2. Furthermore, one lets Tt+1 consist of all the nodes which are comparable to
one of the leaves of Hn, that is, one prunes off the tree all nodes which are
extending some leaf σ of Ln but which are incomparable to all leaves of Hn.

Note that such an n is always found as the n with cn,t = t + 1 can be selected
when no smaller n qualifies.

Note that in the above, if Hn was defined at stage s, then the Ln at the next
first stage t where cn,t+1 > cn,s+1 satisfies that the leaves of that Ln at stage
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t are one bit shorter than the leaves of the Hn at stage s; this is to make sure
that when Ut+1(m) �= us+1(m) for some m ≤ n then the sprouting of the leaves
of Hn can be undone for the new Hn and is not incorporated into the new Ln.

Notation 9. In the following, the final value of Ln and Hn refer to the trees
with leaves of level cn,t − 1 and cn,t, respectively, where t is so large that cn,t

does not change at t or later.

The following proposition is true first due to the fact that when the last Hm with
m < n has been defined then Ln = Hm−1 and from then onwards, whenever Ln

and Hn change, the extension of Ln extends each leaf σ of the old Ln uniquely
to a leaf τ of the new Ln and furthermore puts two successor leaves into Hn iff
the branching bits μ form a string in {ut+1(0), ut+1(1), . . . , ut+1(n)}.

Proposition 10. Each leaf σ of Ln has two successors in Hn iff its branching
string η is in {u(0), u(1), . . . , u(n)} and each leaf of σa of Hn extends in a unique
way to a leaf τ of Ln+1.

root

Ln, right

Hn

new Ln, right

new Hnnew Hn

Ln, left

HnHn

new Ln, left

new Hn

The above picture shows how a tree Ln gets updated due to changes in
{us(0), us(1), . . . , us(n)} where the updates from the old s to the larger new
s removes 0 from the list (branching string for left) and add 1 into the list
(branching string for right). Nodes denoted with Ln and Hn denote the leaves of
these trees, where the new left leaf of Ln is above the old left leaf of Hn and the
old left right leaf of Hn is enumerated into the complement of T . The new leaves
of Hn have the branching strings 0, 10, 11. Left successors have branching bit 0
and right successors have branching bit 1 at each branching which survives.

3 Proof of the Properties of Infinite Branches

The following fact is useful. It is just based on the fact that given a K-recursive
enumeration v(0), v(1), v(2), . . . of the above tree U , one can replace it by a new
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enumeration u(〈i, j〉) which has the following approximation: If vj(i) = vs(i) for
s = j, j + 1, . . . , j + t then ut(〈i, j〉) = vj(i) else ut(〈i, j〉) is some fixed element
of U , say the root of the tree.

Fact 11. Every nonempty K-r.e. set has a K-recursive enumeration in which
the enumerating function can be approximated such that it makes at most one
mind change in the computation of each number in the enumeration.

Proposition 12. Every infinite branch A of T is jump traceable and, by Propo-
sition 4, also generalised low1.

Proof. One can see by induction that Ln has always prior to step t at most
2n leaves and that Hn (due to the branching nodes on the level of cn,t+1 being
there) can have at most 2n+1 leaves. Furthermore, if one enumerates the various
possibilities for progress in item 3, one sees that the overall number of mind
changes is bounded by 1 + (n + 1) · (2 + 2n + 2n + 4n) ≤ 8n+2. Now taking into
account that activity of smaller cm cause cn to act again, one gets that cn is
modified at most 8n+2 times between any two changes of lower markers, so in
total at most 8(n+1)(n+2) times. Now one can for each leaf τ of each version of
Ln enumerate at most one value of ϕσ

e (e) and for each infinite branch A of T
where ϕA

e (e) is defined, ϕA
e (e) = ϕσ

e (e) for one of the leaves of the final version
of Ln after the last time that the marker cn,t moved, thus every infinite branch
A is jump traceable with bound 23n2+10n+6. ��
Proposition 13. An infinite branch A of T is isolated iff there is an n such
that the leaf of A restricted to final version of Ln has branching string μ with
μ /∈ U .

Proof. The reason for this that if μ is not in U then μ /∈ {u(0), u(1), . . . , u(n)}
for all n and the final versions of Ln and Hn will have that the leaf τa 	 A in
Hn is of the form τ0 and τ1 /∈ Hn. The same will be true for all m ≥ n, as in
them the restriction of A to Lm = Hm−1 will have the same branching string η.
Thus the corresponding τ in Hm will have the unique extension and leaf τ0 in
Hm and therefore the infinite branch A is isolated and thus recursive.

Now consider the case that all branching strings of A are in U . Then, for
each Lm there is a first n ≥ m such that the branching string μ of A in Lm is
in {u(0), u(1), . . . , u(n)}. It follows that the leaf τ of Ln extended by A will also
have two extensions τ0, τ1 ∈ Hn and so there is a branching node in T which is
a leaf of Ln and a prefix of A. As this happens for infinitely many n, the infinite
branch A is not isolated. ��
Proposition 14. Every infinite branch A of T is of hyperimmune-free Turing
degree.

Proof. Let A be an infinite branch of T which is not isolated and which therefore
might be non-recursive; note that all isolated infinite branches are recursive. Now
A = U [B] for some 2-generic B, that is, the set B if viewed as an infinite sequence
defines the branching bits of A in the tree T .
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For a given Turing reduction ϕe, consider the following set: WK = {μ : ∃n ≥
e [the final Ln has a leaf σ with branching string μ and ϕσ

e (x) being undefined for
some x < n]}. This set is K-r.e. and note that when ϕA

e (x) would be defined for
some infinite branch A of T extending σ, then some progress would be possible
and the Ln would not be the final one.

If an A = T [B] satisfies that there are above every σ some infinite branch
Ã = T [B̃] of T such that Ã also extends σ and ϕÃ

e is not total, then there is
an x with ϕÃ

e (x) being undefined and any n ≥ x satisfies that some prefix σ̃ of
Ã is in Ln as a leaf and ϕσ̃

e (m) is undefined on some m ≤ n and therefore its
branching string ν is in WK . Thus B has above every node some extension in
WK and so B has a prefix itself which is in WK . This implies that ϕA

e is not
total by the definition of WK .

So one sees that there is a σ 	 A such that for all infinite branches Ã of T
which extend σ it holds that ϕÃ

e is total. Thus one can, for every x, simulate
the coenumeration of T and the pruning of the tree until a stage is found and
a level 	 such that for all τ ∈ {0, 1}� which extend σ and which are still in T
it holds that ϕτ

e (x) converges within 	 steps and then the maximum of these
values is an upper bound for ϕA

e (x); as this upper bound is computed by a
recursive function, ϕA

e has a recursive upper bound. Thus, for each e, either ϕA
e

is partial (as indicated in the preceding paragraph) or ϕA
e has a recursive upper

bound and therefore every nonisolated infinite branch of T is of hyperimmune-
free Turing degree. The isolated infinite branches are recursive and therefore of
hyperimmune-free Turing degree as well. ��
Proposition 15. Every infinite branch A of T is Schnorr-trivial.

Proof. If ϕe is a truth-table reduction with bound function g for the computa-
tion time then it will happen for almost all n that cn,t is eventually above g(n);
this is due to the fact that the time to enumerate the halting time of K up to
n is a dominating function with respect to n. Thus one can, for all sufficiently
large n, simulate the construction until the final value of the cn,t is above the use
and then enumerate the 2n values which are defined by the various branches of
the co-r.e. tree which survive. The finitely many smaller values can be patched.
Thus A is Schnorr-trivial. ��
Proposition 16. The double jumps A′′ of the infinite branches A of T form the
cone above K ′.

Proof. Assume A is a non-isolated infinite branch of T ; then A = T [B] for
some infinite branch B of U ; furthermore, the bits of B are the branching bits
of A in T . Note that the double jumps of the infinite branches B of V and thus
U cover all Turing degrees above K ′ due to the B being obtained by uniform
double jump inversion; furthermore, each B is 2-generic and B′′ ≡T B ⊕ K ′.

The halting problem K allows to reconstruct all branching nodes of T and
these allow to recover the set B from A ⊕ K. Thus B ≤T A ⊕ K. As B is 2-
generic, B′′ ≡T B⊕K ′ ≤T A⊕K ′. Furthermore, Marcus Triplett mentions in his
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bachelor thesis [21] that every hyperimmune free set A satisfies A′′ ≡T A ⊕ K ′,
thus the above infinite branch A satisfies A′′ ≡T B′′.

As the constructions of V and U included for every Turing degree above K ′

a two-generic infinite branch B of U such that the double jump B′′ is in the
given Turing degree, one has that the double jumps of the infinite branches of
T cover all Turing degrees above K ′. ��
Proposition 17. Every nonrecursive infinite branch A of T has minimal Turing
degree.

Proof. Let A be a non-recursive infinite branch of T . Consider a total function
ϕA

e . By Proposition 14 there is a σ such that all infinite branches Ã of T above
σ, ϕÃ

e is total.
If now there is such an infinite branch Ã extending σ which is different from

A but for which ϕA
e and ϕÃ

e coincide, then it follows that above the branching
node σ′ of A and Ã, all infinite branches of S produce the same function ϕA

e

and so this function is recursive; otherwise σ′0 or σ′1 would be extended into a
sufficiently long prefixes of Â and the respective of A and Ã in order to achieve
that these prefixes are mapped by ϕe on some value to different images and so
either A or Ã would be cut off.

So one has that there is a σ′′ 	 A such that, for all infinite branches Ã of S

extending σ′′, either the functions ϕÃ
e are all different or are all the same.

If they are all different, one can Turing reduce A to ϕA
e . Whenever there

are two different extensions above some σ′′′ 
 σ′′, one coenumerates T and
simulates ϕe until either an e-splitting at some x above σ′′′0 and σ′′′1 is found
so that ϕA

e (x) says which branch to follow or one of the two nodes σ′′′0 and σ′′′1
has been enumerated out of T . Thus A ≡T ϕA

e by the usual e-splitting analysis.
If the infinite branches of T above σ′′ are mapped by ϕe all the same image,

then one can for each input x coenumerate T until a level 	 > |σ′′| and a time t
are found such that all τ ∈ {0, 1}� ∩ St which extend σ′′ satisfy that ϕτ

e,t(x) is a
unique value y and equals to ϕA

e (x). Thus ϕA
e is recursive in this case. Thus the

minimality of A is verified. ��
Proposition 18. The nonisolated branches of T form a perfect tree.

Proof. Recall that every infinite branch B of U is 2-generic and that the infinite
branches of U form a perfect subtree V of U by Proposition 6 and Corollary 7.

There is a K-recursive operator which maps the infinite branch B of U to the
infinite branch A = T [B] where the “branching string” of A in T is exactly the set
B. This mapping is one-one and continuous. Furthermore, if B0, B1, . . . converge
pointwise against B and all Bk �= B then the infinite branches T [Bk] converge
pointwise to A = T [B]. Hence the nonrecursive infinite branches of U are mapped
in a bijection to the nonisolated infinite branches of T and this bijection preserves
pointwise limits; as the class of infinite branches of U and its image in T are
both closed in the sense of topology, the limits of each convergent sequence is
again an infinite branch of the corresponding tree. Thus the nonisolated infinite
branches of T form a perfect subtree of T which is recursive in K ′. ��
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4 Concluding Remarks

The presented proof shows that one can construct a co-r.e. tree such that every
branch is infinite and that every infinite branch is either isolated or has all of the
following properties: nonrecursive, hyperimmune-free, generalised low1, minimal
Turing degree, Schnorr-trivial and jump traceable. Furthermore, the nonisolated
infinite branches form a perfect tree and its double jumps cover the cone above
K ′ and each of its jumps is also the jump of a 2-generic set. The key idea was to
use the guidance tree U and to transform it into the final co-r.e. tree T so that
every non-isolated infinite branch A of T has the branching bits from an infinite
branch B of U which guides the building of the tree. The construction could be
a bit varied to get the following related results.

First, instead of taking V to be the union of all V [B̃] in Proposition 6, one
could take a K ′-recursive tree with uncountably many K ′-hyperimmune-free and
2-generic branches and then get the result that there is a tree T with uncount-
ably many infinite branches such that every infinite branch is hyperimmune-free,
hyperimmune-free relative to K ′, jump-traceable and jump-traceable relative to
K ′. It is possible to iterate this.

Second, if B ≤T K ′ is 2-generic then one can construct an K-r.e. tree U with
B being its unique infinite branch. The resulting tree T has then exactly one
nonisolated and nonrecursive branch which is A = T [B]. This gives a co-r.e. tree
of Cantor-Bendixson rank 2 with exactly one nonisolated branch A = T [B] which
is nonrecursive, hyperimmune-free, generalised low1 and satisfies A⊕K = B⊕K.

Third, note that a perfect co-r.e. tree T without deadends has always an
infinite branch which is high, thus one cannot avoid the isolated branches in the
construction of T which make the tree T to be a nonperfect enlargement of a
perfect tree. If T would not have isolated infinite branches then one can by the
finite extension method construct an infinite branch A such that each σk+1 is
the first branching node above σkK ′(k) where σ0 is the least branching node in
the tree. Now A ⊕ K allows to check which of the nodes in the infinite branch
A are branching nodes and thus K ′ ≤T A ⊕ K. Thus A is high and cannot be
hyperimmune-free. So the Cantor-Bendixson rank of the tree T constructed in
Theorem 1 must be at least 1, as was also stated without proof by Ng, Stephan,
Yang and Yu [12]. The same applies to trees with uncountably many infinite
branches where the jumps of all infinite branches avoid some upper cone.

The following questions are left open. For the first, it was claimed by Ng,
Stephan, Yang and Yu [12, Theorem 3.6] that a modification of the proof of the
main result of this paper would give the result; however, this proof is now a
new proof by other means and the authors are not aware how to incorporate the
Robinson guessing into it.

Open Problem 19. 1. Are there uncountably many hyperimmune-free sets
which are hyperimmune-free relative to every low recursively enumerable set?

2. Is every jump of a nonrecursive hyperimmune-free set also the jump of a
2-generic set? The converse is [12, Theorem 4.4].

3. Is the jump of every hyperimmune-free set also the jump of a hyperimmune-
free Schnorr-trivial set?
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Abstract. Complemented subsets were introduced by Bishop, in order
to avoid complementation in terms of negation. In his two approaches
to measure theory Bishop used two sets of operations on complemented
subsets. Here we study these two algebras and we introduce the notion of
Bishop algebra as an abstraction of their common structure. We translate
constructively the classical bijection between subsets and boolean-valued
functions by establishing a bijection between the proper classes of com-
plemented subsets and of strongly extensional, boolean-valued, partial
functions. Avoiding negatively defined concepts, most of our results are
within minimal logic.

Keywords: Bishop sets · complemented subsets · partial functions

1 Introduction

Bishop’s “official” theory of sets (oBST)1, presented in a condensed way in
Chap. 3 of [2,4], motivated Martin-Löf’s type theory (MLTT) [14,15] and most
of the formal studies of the 70’s (see [1]). In [2] Bishop introduced subsets in a
categorical manner, he treated the powerset mainly as a proper class, he defined
only the empty subset of a set, and not the empty set, and he used a fully
positive notion of an inequality, or apartness relation. However, in the practice
of Bishop-style constructive mathematics a more “naive” theory of Bishop sets
(nBST) was employed. In the work of Bridges and Richman [5,13] subsets were
defined by separation, the powerset was considered to be a set, the empty set
was used, and an almost positive notion of an inequality was studied. In [20] a

1 The type-theoretic interpretation of Bishop’s set theory into the theory of setoids [17,
18] is nowadays the standard way to understand Bishop sets. A categorical inter-
pretation of Bishop sets is Palmgren’s constructive adaptation [16] of Lawvere’s
elementary theory of the category of sets. In [9] Coquand views Bishop sets as a
natural sub-presheaf of the universe in the cubical set model.
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reconstruction (BST) of oBST is given, highlighting the use of dependent assign-
ment routines, of predicative definitions, and of set-indexed families of sets and
subsets.

In [2] Bishop defined for a set X, equipped with an equality =X and an
inequality �=X , a positive notion of disjoint subsets of X and through the latter
the concept of a complemented subset of X. Complemented subsets are easier to
handle than plain subsets, as their partial, characteristic functions are construc-
tively defined and their complement behaves a lot like the classical complement of
a subset. These two features of complemented subsets were crucial to Bishop’s
reconstruction of measure theory (BMT) in [2] and in Bishop-Cheng measure
theory (BCMT), a constructive counterpart to the classical Daniell approach to
measure theory, developed first in [3] and extended significantly in [4].

The two different measure theories of Bishop involve different operations
between complemented subsets. In BMT the, so-called here, first algebra of
complemented subsets is considered, while in BCMT the second. Here we study
these two algebras, some of the properties of which, as we explain, depend on
the underlying theory of Bishop sets. For all basic notions and results mentioned
here without further explanation or proof, we refer to [20]. In a proposition we
write (INT) to denote that its proof is within intuitionistic logic. Otherwise, all
proofs presented here are within minimal logic. Due to lack of space, some proofs
are omitted. We structure this paper as follows:

– In Sect. 2 we introduce the extensional empty subset /�X of a set X, as a
positive notion of empty subset.

– In Sect. 3 we present complemented subsets and partial functions.
– In Sect. 4 we describe the first algebra of complemented subsets and the con-

structive translation of the classical bijection between subsets and boolean-
valued functions (Proposition 8).

– In Sect. 5 we describe the second algebra of complemented subsets and its
relation to boolean-valued, partial functions.

– In Sect. 6 we introduce Bishop algebras as an abstraction of the two algebras
of complemented subsets.

2 Inequalities, and a Positive Notion of Empty Subset

In oBST a subset of a set (X,=X) is a pair (A, iXA ), where A is a set and
iXA : A ↪→ X is an embedding2 of A into X. If (A, iXA ), (B, iXB ) are subsets of X,
then (A, iXA ) ⊆ (B, iXB ), or simpler A ⊆ B, if there is (an embedding) f : A ↪→ B,
in symbols f : A ⊆ B, such that the following diagram commutes

2 If X,Y are totalities an assignment routine f from X to Y is denoted by f : X � Y .
If X,Y are sets, f : X � Y is a function, if it respects their equalities. Their set is
denoted by F(X,Y ). A function is an embedding, if it is an injection.
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A B

X.

f

iXA iXB

The totality of the subsets of X is the powerset P(X) of X, equipped with
the equality (A, iXA ) =P(X) (B, iXB ) :⇔ A ⊆ B & B ⊆ A. Since the membership
condition for P(X) requires quantification over the universe V0 of (predicative)
sets, P(X) is a proper class. A bounded formula P (x) is an extensional property
on X, if ∀x,y∈X

(
[x =X y & P (x)] ⇒ P (y)

)
. The totality XP , defined by x ∈

XP :⇔ x ∈ X & P (x) and x =XP
y :⇔ x =X y, is an extensional subset of X,

where iXP : XP � X is defined by iXP (x) := x, for every x ∈ XP . Clearly, iXP is
an embedding. As usual, we write XP := {x ∈ X | P (x)}.

Bishop never defined the empty set, only the empty subset of an inhabited
set! According to [2], p. 65, if x0 ∈ X, the totality ∅X is defined by z ∈ ∅X :⇔
x0 ∈ X & 0 =N 1. If iX∅ : ∅X � X is defined by i(z) := x0, for every z ∈ ∅X , let
z =∅X

w :⇔ i(z) =X i(w) :⇔ x0 =X x0. The pair (∅X , iX∅ ) is the empty subset
of X. As Bishop writes in [2], p. 65,

The definition of ∅X is negativistic, and we prefer to mention the void set
as seldom as possible.

In contrast to the recursion rule of the empty type in MLTT, in order to
define an assignment routine f : ∅X � A, we need an element of A. If A ⊆ X
is inhabited, one needs Ex falso to show ∅X ⊆ A. Moreover, ∅A ⊆ X, but no
connection can be established between ∅A and ∅X . Alternatively, the empty
subset can be defined as an extensional subset of X. Clearly, the definition
∅X := {x ∈ X | ¬(x =X x)} is negativistic. In [4], and also in nBST, the
following almost positive, due to (Ap1), notion of inequality is considered.

Definition 1. Let (X,=X) be a set. An inequality on X, or an apartness rela-
tion on X, is a relation x �=X y such that the following conditions are satisfied:

(Ap1) ∀x,y∈X

(
x =X y & x �=X y ⇒ 0 =N 1

)
.

(Ap2) ∀x,y∈X

(
x �=X y ⇒ y �=X x

)
.

(Ap3) ∀x,y∈X

(
x �=X y ⇒ ∀z∈X(z �=X x ∨ z �=X y)

)
.

If
(
A, iXA

) ⊆ X, the canonical inequality on A induced by �=X is defined by

a �=A a′ :⇔ iXA (a) �=X iXA (a′),

for every a, a′ ∈ A, while its �=X-complement is the extensional subset of X

A�=X :=
{
x ∈ X | ∀a∈A

(
x �=X iXA (a)

)}
.

If (Y,=Y , �=Y ) is a set with inequality, a function f : X → Y is strongly exten-
sional, if f(x) �=Y f(x′) ⇒ x �=X x′, for every x, x′ ∈ X.
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An inequality x �=X y is extensional on X × X i.e., if x, y ∈ X with x �=X y,
and if x′, y′ ∈ X with x′ =X x and y′ =X y, then x′ �=X y′. In [2] the following
completely positive notion of inequality is used.

Definition 2. Let (X,=X) be a set and F an extensional subset of the set F(X)
of real-valued functions on X. The inequality on X induced by F is defined by

x �=F
X y :⇔ ∃f∈F

(
f(x) �=R f(y)

)
,

for every x, y ∈ X, where a �=R b :⇔ |a − b| > 0, for every a, b ∈ R. We call an
inequality �=X on X an f-inequality, if there is an extensional subset F of F(X),
such that x �=X y ⇔ x �=F

X y, for every x, y ∈ X.

An f-inequality is an inequality, but no negation of some sort is used in its
definition. Moreover, the proof of its extensionality avoids negation. If F is a
Bishop topology of functions (see [19,21,22,24]), then x �=F

X y is the canonical
inequality of a Bishop space. The inequality a �=R b is an f-inequality, as a �=R

b ⇔ a �=Bic(R)
R

b, where Bic(R) is the topology of Bishop-continuous functions of
type R → R (see [19], Proposition 5.1.2.). By its extensionality, an (f−)inequality
provides a (fully) positive definition of the extensional empty subset. With its
help a positive definition of the property “a subset is empty”, defined negatively
as “it is not inhabited” in [5], p. 8, is possible. From now on, X,Y are sets with
an (f−)inequality �=X , �=Y , respectively.

Definition 3. Let /�X := {x ∈ X | x �=X x} be the extensional, empty subset of
X. If (A, iXA ) ⊆ X, we call A empty, in symbols empty(A), if A ⊆ /�X in P(X).

Proposition 1. Let A,B ∈ P(X).

(i) /�A ⊆ A in P(X), and A ∩ /�X ⊆ /�X .
(ii) If A ⊆ B, then /�A ⊆ /�B in P(X).
(iii) (INT) If A is inhabited, then /�X ∪ A =P(X) A, and hence /�X ⊆ A.

Proof. We show only (ii). By the definition of �=A on A ⊆ X we get

/�A := {a ∈ A | a �=A a} := {a ∈ A | iXA (a) �=X iXA (a)}.

If f : A ⊆ B, its restriction (denoted by f again) to /�A witnesses the
required inequality; if a ∈ /�A, then by the following left commutativity we
get iXB (f(a)) =X iXA (a) �=X iXA (a) =X iXB (f(a)) i.e., f(a) ∈ /�B

X

A B /�A

X.

/�B

iXA iXB

f

iXBiXA

f

The right commutativity above follows immediately from the left one. ��
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Proposition 2. If A ∈ P(X), the following are equivalent:

(i) empty(A).
(ii) A ⊆ /�A.
(iii) A =P(X) /�A.

Proof. (i) ⇒ (ii): Let f : A ⊆ /�X i.e., iXA (a) =X f(a) �=X f(a). The identity
proves A ⊆ /�A: if a ∈ A, then iXA (a) =X f(a) �=X f(a) =X iXA (a).

(ii) ⇒ (iii): It follows immediately from Proposition 1(i).
(iii) ⇒ (i): By Proposition 1(ii) we have that A ⊆ /�A ⊆ /�X .

��
As empty(/�A), By Proposition 2 we get /�A =P(X) /� /�A

.

3 Complemented Subsets and Partial Functions

An inequality induces a positive notion of disjoint subsets (A, iXA ), (B, iXB ) of X.

Definition 4. (A, iXA ), (B, iXB ) are �=X-disjoint, in symbols A][
X

B, or A][B, if

∀a∈A∀b∈B

(
iXA (a) �=X iXB (b)

)
,

A complemented subset of X is a pair A := (A1, A0), where (A1, iXA1), (A0, iXA0) ∈
P(X) and A1][A0. Its characteristic function χA : A1 ∪ A0 → 2 is given by

χA (x) :=
{
1, x ∈ A1

0, x ∈ A0.

Let P ][(X) be the proper class of complemented subsets of X, A ⊆ B :⇔ A1 ⊆
B1 & B0 ⊆ A0 and A =P][(X) B :⇔ A ⊆ B & B ⊆ A. We call A total, if
Dom(A) := A1∪A0 =P(X) X, and inhabited (coinhabited), if A1 (A0) is inhabited.

Proposition 3. Let A,B ∈ P ][(X) and A ∈ P(X).

(i)
(
A,A�=X

)
,
(
A�=X , A

) ∈ P ][(X), and A1 ∩ A0 ⊆ /�X .
(ii) /�X ][A, and hence (/�X , A), (A, /�X) ∈ P ][(X).

Definition 5. A partial function from X to Y is a triplet (A, iXA , fY
A ), where

(A, iXA ) ⊆ X, and fY
A ∈ F(A, Y ). Usually, we write fY

A instead of (A, iXA , fY
A ).

We call fY
A total, if A =P(X) X. Let (A, iXA , fY

A ) ≤ (B, iXB , fY
B ), or fY

A ≤ fY
B , if

there is eAB : A ↪→ B such that the following triangles commute

A B

X

Y ,

eAB

fY
A fY

B

iXA iXB
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and we write eAB : fY
A ≤ fY

B . The partial function space F(X,Y ) is a proper
class, equipped with the equality fY

A =F(X,Y ) fY
B :⇔ fY

A ≤ fY
B & fY

B ≤ fY
A . Let

Fse(X,2) be the proper class of strongly extensional elements of F(X,2).

If A ∈ P ][(X), then (A1 ∪ A0, iXA1∪A0 , χA ) ∈ F(X,2). If f, g ∈ F(X,2),
let ∼ f := 1 − f , and f ∨ g := max{f, g}, f · g := f ∧ g := min{f, g} on
dom(f) ∩ dom(g).

Proposition 4. If A ∈ P ][(X), then χA is strongly extensional.

Proof. Let z, w ∈ A1 ∪ A0 with χA (z) �=2 χA (w). Let χA (z) := 1 and χA (w) :=
0. In this case z ∈ A1, w ∈ A0. Since A1][A0, we get iXA1(z) �=X iXA0(w) ⇔:
z �=A1∪A0 w. If χA (z) := 0 and χA (w) := 1, we work similarly. ��

4 The First Algebra of Complemented Subsets

Definition 6. If A,B ∈ P ][(X), let A ∪ B := (A1 ∪ B1, A0 ∩ B0), A ∩ B :=
(A1 ∩ B1, A0 ∪ B0), −A := (A0, A1), and A − B := A ∩ (−B). More generally,
if

(
λ(i)

)
i∈I

is a family of complemented subsets of X indexed by the set3 I i.e.,
λ(i) :=

(
λ1(i), λ0(i)

) ∈ P ][(X), for every i ∈ I, let

⋃

i∈I

λ(i) :=
( ⋃

i∈I

λ1(i),
⋂

i∈I

λ0(i)
)

∈ P ][(X),

⋂

i∈I

λ(i) :=
( ⋂

i∈I

λ1(i),
⋃

i∈I

λ0(i)
)

∈ P ][(X),

Within (INT), if A is total, then (A ∪ −A) ∩ B =P][(X) B. Clearly, A ⊆ B ⇔
A ∩ B = A. Next diagram depicts A ∩ B:

A1

B1

A0

B0

Proposition 5. The first algebra B1(X) :=
(P ][(X),∩,∪,−) is a distributive

lattice such that −(−A) = A, for every A ∈ P ][(X). If I is a set and
(
λ(i)

)
i∈I

is an I-family of complemented subsets of X, the following hold:

(i) −⋃
i∈I λ(i) =P][(X)

⋂
i∈I

( − λ(i)
)
.

3 For the exact definition of this concept within BST, see [20], Sect. 4.9.
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(ii) (A ∪ −A) ∩
(

A ∪ ⋂
i∈I λ(i)

)
=P][(X) (A ∪ −A) ∩

[
⋂

i∈I

(
A ∪ λ(i)

)
]
.

The dual to condition (i) follows immediately. Condition (ii) is the construc-
tive counterpart to the following distributivity property (DI)4:

(DI) A ∪
⋂

i∈I

λ(i) =P][(X)

⋂

i∈I

(
A ∪ λ(i)

)
.

Next we show that (DN) cannot be accepted constructively, avoiding ∅R (see [2],
p. 67) and employing an N-family of inhabited and coinhabited complemented
subsets. According to LPO, a “taboo” of constructive mathematics, every
boolean-valued sequence is constant 0, or it takes the value 1 on some n ∈ N.

Proposition 6. (i) The distributivity property (DN) implies LPO.
(ii) (INT) If A ∈ P ][(X) is total, then (DI) holds for A.

Proof. (i) If α : N → 2, let the N-family of complemented subsets of R

λ(n) :=
{({n}�=R , {n})

, αn = 0({n}, {n}�=R

)
, αn = 1.

If A :=
⋃

n∈N
−λ(n) :=

(
⋃

n∈N
λ0(n),

⋂
n∈N

λ1(n)
)

, then

A ∪
⋂

n∈N

λ(n) =
(( ⋃

n∈N

λ0(n)
)

∪
( ⋂

n∈N

λ1(n)
)

,

( ⋂

n∈N

λ1(n)
)

∩
( ⋃

n∈N

λ0(n)
))

,

⋂

n∈N

(
A ∪ λ(n)

)
=

( ⋂

n∈N

( ⋃

n∈N

λ0(n) ∪ λ1(n)
)

,
⋃

n∈N

( ⋂

n∈N

λ1(n) ∩ λ0(n)
))

.

As
⋃

n∈N
λ0(n)∪λ1(n) ⊇ {n}�=R , we get

⋂
n∈N

(
⋃

n∈N
λ0(n)∪λ1(n)

)
⊇ N

�=R . By

(DN) 1
2 ∈

(
⋃

n∈N
λ0(n)

)
∪

(
⋂

n∈N
λ1(n)

)
. If 1

2 ∈ ⋃
n∈N

λ0(n), then 1
2 ∈ λ0(n)

and αn = 1, for some n. If 1
2 ∈ ⋂

n∈N
λ1(n), then αn = 0, for every n ∈ N. (ii) It

follows immediately by Proposition 3(iii) and Proposition 5(ii). ��
The final argument in the proof of Proposition 6(i) also shows that the

hypothesis of the totality of A employed in that proof implies LPO.

4 The dual to condition (ii), which is equivalent to it, is the equality

(A ∩ −A) ∪
(

A ∩
⋃
i∈I

λ(i)

)
=P][(X) (A ∩ −A) ∪

[ ⋃
i∈I

(
A ∩ λ(i)

)]
,

and it is the constructive counterpart to A ∩ ⋃
i∈I λ(i) =P][(X)

⋃
i∈I

(
A ∩ λ(i)

)
.
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Proposition 7 (INT). Let A ∈ P ][(X).

(i) If A is coinhabited, then A ⊆ (X, /�X).
(ii) If A is inhabited, then (/�X ,X) ⊆ A.
(iii) If A is inhabited and coinhabited, then (/�X ,X) ⊆ A ⊆ (X, /�X).

Within nBST 0X := (∅,X) and 1X := (X, ∅) are the bottom and top elements of
B1(X), respectively5. However, even within nBST, B1(X) is neither a Boolean
algebra, as A∩(−A) :=

(
A1∩A0, A1∪A0

)
=

(∅, Dom(A)
)
, nor a Heyting algebra

(if −A = A ⇒ 0X , the adjunction property for any definition of the exponential
B ⇒ A fails). Next we translate constructively the classical bijection between
P(X) and 2X . As the only operation involved is that of complementation, Propo-
sition 8 pertains to both algebras of complemented subsets.

Proposition 8. Let consider the proper class-assignment routines

χ : P ][(X) � Fse(X,2) & δ : Fse(X,2) � P ][(X),

A �→ χ(A) =: χA :=
(
A1 ∪ A0, iXA1∪A0 , χ2

A1∪A0

)
,

fA :=
(
A, iXA , f2

A

) �→ δ(fA) :=
(
δ1(f2

A), δ
0(f2

A)
)
,

δ1(f2
A) :=

{
a ∈ A | f2

A(a) =2 1
}
=: [f2

A =2 1],

δ0(f2
A) :=

{
a ∈ A | f2

A(a) =2 0
}
=: [f2

A =2 0],

for every A := (A1, iXA1 , A0, iXA0) ∈ P ][(X) and fA :=
(
A, iXA , f2

A

) ∈ Fse(X,2).

(i) χ is a well-defined, proper class-function.
(ii) δ is a well-defined, proper class-function.
(iii) χ and δ are inverse to each other.
(iv) δ(∼ f) =P][(X) −δ(f) and χ−A =F(X,2)∼ χA , for every f ∈ Fse(X,2) and

A ∈ P ][(X), respectively.

Proof. We show only (i) and (ii). Let A,B ∈ P ][(X). By Proposition 4 χ is a
well-defined routine. If (e1, j1) : A1 =P(X) B1 and (e0, j0) : A0 =P(X) B0

A1 B1

X

A0 B0

X,

e1

j1

iXA1 iXB1

e0

j0

iXA0 iXB0

it is straightforward to show that (e, j) : χA =Fse(X,2) χB

5 These definitions are also used in [8], in order to show that the second algebra of
complemented subsets is a Boolean semiring with unit.
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A1 ∪ A0 B1 ∪ B0

X

2

e

j

χ2
A1∪A0 χ2

B1∪B0

iX
A1∪A0 iX

B1∪B0

where e : A1 ∪ A0 → B1 ∪ B0 and j : B1 ∪ B0 → A1 ∪ A0 are defined by

e(z) :=
{

e1(z) , z ∈ A1

e0(z) , z ∈ A0 , j(w) :=
{

j1(w) , w ∈ B1

j0(w) , w ∈ B0.

(ii) First we show that δ(fA) ∈ P ][(X). Let a ∈ δ1(f2
A) and b ∈ δ0(f2

A). As
f2

A(a) =2 1 �=2 0 =2 f2
A(b), by the strong extensionality of f2

A, and according to
the definition of the canonical inequality of the subset (A, iXA ), we get a �=A b :⇔
iXA (a) �=X iXA (b). If

(
A, iXA , f2

A

)
=Fse(X,2)

(
B, iXB , f2

B

)
, then the commutativities

(#1) and (#2) of the following outer diagrams

A B

X

2

eAB

#1

eBA

#2

#3, #4f2
A f2

B

iX
A iX

B

imply that (eAB)|δ1(f2
A) : δ1(f2

A) → δ1(f2
B) and (eBA)|δ1(f2

B) : δ0(f2
A) → δ0(f2

B)
are well-defined, and the commutativities (#3), (#4) of the above inner diagrams
(A,B,X) imply the commutativity of the following diagrams

δ1(f2
A) δ1(f2

B)

X

δ0(f2
A) δ0(f2

B)

X. �

(eAB)|δ1(f2
A

)

(eBA)|δ1(f2
B

)

(iX
A )|δ1(f2

A
) (iX

B )|δ1(f2
B

)

(eAB)|δ0(f2
A

)

(eBA)|δ0(f2
B

)

(iX
A )|δ0(f2

A
) (iX

B )|δ0(f2
B

)

The use of Fse(X,2), and not of F(X,2), is crucial to the well-definability of
δ. In general the operations ∪,∩ of B1(X) are not preserved by χ and δ.

Proposition 9. Let A,B ∈ P ][(X) and f, g ∈ Fse(X,2).
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(i) If A (f) is total, then χA (δ(f)) is total.
(ii) If A,B are total, then A∪B,A∩B are total, and χA∪B =F(X,2) χA ∨χB ,

χA∩B =F(X,2) χA ∧ χB .
(iii) If fA, fB are total, then fA ∨ fB, fA ∧ fB are total, and δ(fA) ∪ δ(fB) =

δ(fA ∨ fB), δ(fA) ∩ δ(fB) = δ(fA ∧ fB).

5 The Second Algebra of Complemented Subsets

Definition 7. If A,B ∈ P ][(X), let

A ∨ B :=
(
[A1 ∩ B1] ∪ [A1 ∩ B0] ∪ [A0 ∩ B1], A0 ∩ B0

)
,

A ∧ B :=
(
A1 ∩ B1, [A1 ∩ B0] ∪ [A0 ∩ B1] ∪ [A0 ∩ B0]

)
,

and A�B := A∧(−B). More generally, if
(
λ(i)

)
i∈I

is a family of complemented
subsets of X indexed by the set I, let

∨

i∈I

λ(i) :=
([ ⋂

i∈I

(
λ1(i) ∪ λ0(i)

)
]

∩
[ ⋃

i∈I

λ1(i)
]
,

⋂

i∈I

λ0(i)
)

,

∧

i∈I

λ(i) :=
( ⋂

i∈I

λ1(i),
[ ⋂

i∈I

(
λ1(i) ∪ λ0(i)

)
]

∩
[ ⋃

i∈I

λ0(i)
])

.

In contrast to B1(X), A ∧ B �⊆ A. Next diagram depicts A ∧ B:

A1

B1

A0

B0

Proposition 10. The second algebra B2(X) :=
(P ][(X),∧,∨,−) satisfies all

properties of B1(X) except the absorption equalities6.

Using a similar argument, the corresponding distributivity (DN) for B2(X)
implies LPO. Although B2(X) is not a lattice, its crucial advantage over B1(X),
and the main reason for its introduction by Bishop and Cheng, is that ∨ and ∧
are preserved by the proper class-functions χ and δ.

Proposition 11. Let A,B ∈ P ][(X) and f, g ∈ Fse(X,2).

6 In [4], p. 74, Bishop and Bridges mention that B2(X) satisfies “all the usual finite
algebraic laws that do not involve the operation of set complementation”. In [8],
p. 695, Coquand and Palmgren rightly notice that B2(X) does not satisfy the absorp-
tion equalities (A ∧ B) ∨ A = A and (A ∨ B) ∧ A = A.
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(i) χA∨B =F(X,2) χA ∨ χB and χA∧B =F(X,2) χA ∧ χB .
(ii) δ(fA) ∨ δ(fB) = δ(fA ∨ fB) and δ(fA) ∧ δ(fB) = δ(fA ∧ fB).

Proof. We show only χA∧B =F(X,2) χA ∧ χB . By definition

χA ∧ χB :=
(
Dom(A) ∩ Dom(B), iXDom(A)∩Dom(B ), (χA ∧ χB )2Dom(A)∩Dom(B )

)
,

(χA ∧ χB )2Dom(A)∩Dom(B )(u,w) := χA (u) ∧ χB (w),

for every (u,w) ∈ Dom(A) ∩ Dom(B). The partial function χA∧B is the triplet

χA∧B :=
(
Dom(A ∧ B), iXDom(A∧B ), (χA∧B )2Dom(A∧B )

)
.

As Dom(A ∧ B) =P(X) Dom(A) ∩ Dom(B), if (f, g) : Dom(A ∧ B) =P(X) Dom(A)∩
Dom(B), the following outer diagram also commutes

Dom(A ∧ B) Dom(A) ∩ Dom(B)

X

2

f

g

(χA∧B )2Dom(A∧B ) (χA ∧ χB )2Dom(A)∩Dom(B )

iXDom(A∧B ) iXDom(A)∩Dom(B )

and hence the two partial functions are equal in F(X,2). ��

6 Bishop Algebras, and Future Work

Mathematics becomes computationally more informative, if, instead of classical
logic, intuitionistic logic is used. Pioneers, such as Brouwer, realised early on
that negation does not suit well to constructive reasoning and replaced negatively
defined concepts by positive ones. Intuitionists, such as Griss [10], even suggested
to avoid negation completely in mathematics. Bishop, motivated by Brouwer’s
inequalities, defined, the so-called here, f-inequalities in a fully positive manner.
Moreover, by extending the idea of positive separation from points to subsets,
Bishop introduced the notion of complemented subset.

As we saw, the complement −A of A behaves a lot like the classical com-
plement X \ A, where A⊆X. Moreover, a characteristic function χA is defined
through A. However, χA is partial. The correspondence between complemented
subsets and strongly extensional, boolean-valued, partial functions, described
here in Propositions 8 and 11, is behind the successful reconstruction of the
Daniell approach to measure theory within Bishop-style constructive mathe-
matics BISH. Moreover, the fruitfulness of Bishop-Cheng measure theory turned
complemented subsets and partial functions into “first-class citizens” in BISH.

Here, after introducing a positive definition of the empty subset, we presented
the basic properties of the two algebras of complemented subsets. From the



Algebras of Complemented Subsets 257

point of view of abstract lattice theory, Bishop’s first algebra of complemented
subsets is an instance of a widely used construction of Kleene lattices, commonly
ascribed to Kalman [11]. Using intuitionistic logic, this is to say that B1(X) is a
distributive lattice with contravariant involution − such that, A∩−A ⊆ B∪−B,
for every inhabited (or coinhabited) A,B ∈ P ][(X).

As opposed to B1(X), Bishop’s second algebra B2(X) is not a lattice by
lack of the absorption identities, of which any abstract generalisation must take
account. Pinning down common properties of B1(X) and B2(X), we thus define
a Bishop algebra A, or better an I-Bishop algebra in order to avoid impredicativ-
ity, to be an algebra A = (A,∧,∨,−) where both reducts (A,∧) and (A,∨) are
I-complete semilattices such that ∧ distributes over ∨, along with an involutive
homomorphism − of semilattices such that the following I-distributive law holds

(x ∨ −x) ∧
(

x ∨
∧

i∈I

xi

)
=A (x ∨ −x) ∧

[ ∧

i∈I

(
x ∨ xi

)
]
.

Note that − is subject to both De Morgan laws, which moreover implies that ∨ in
turn distributes over ∧. Hence, every Bishop algebra is a distributive De Morgan
bisemilattice [12], on top of which we further require the above I-distributivity.
Several questions naturally arise, among which those of a suitable representation
theorem for Bishop algebras, as well as of categorical aspects7. It might be
interesting to relate Bishop algebras to overlap algebras [6,7]. While the latter
provide a constructive view of complete Boolean algebras, and thus of powerset
lattices, the former should serve towards an analogous and point-free treatment
of algebras of complemented subsets.
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On the Weihrauch Degree of the Additive
Ramsey Theorem over the Rationals
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Abstract. We characterize the strength, in terms of Weihrauch degrees,
of certain problems related to Ramsey-like theorems concerning colour-
ings of the rationals. The theorems we are chiefly interested in assert the
existence of almost-homogeneous sets for colourings of pairs of rationals
satisfying properties determined by some additional algebraic structure
on the set of colours.

In the context of reverse mathematics, most of the principles we study
are equivalent to Σ0

2 -induction over RCA0. The associated problems in
the Weihrauch lattice are related to TC∗

N, (LPO′)∗ or their product,
depending on their precise formalizations.

Keywords: Weihrauch reducibility · Reverse mathematics · Additive
ramsey · Σ0

2 -induction

1 Introduction

The infinite Ramsey theorem is a central object of study in the field of com-
putability theory. It says that for any colouring c of n-uples of a given arity of an
infinite set X, there exists a infinite subset H ⊆ X such that the set of n-tuples
[H]n of elements of H is homogeneous. This statement is non-constructive: even
if the colouring c is given by a computable function, it is not the case that we can
find a computable homogeneous subset of X. Various attempts have been made
to quantify how non-computable this problem and some of its natural restric-
tions are. This is in turn linked to the axiomatic strength of the corresponding
theorems, as investigated in reverse mathematics [12] where Ramsey’s theorem
is a privileged object of study [7].

This paper is devoted to a variant of Ramsey’s theorem with the following
restrictions: we colour pairs of rational numbers and we require some additional
structure on the colouring, namely that it is additive. A similar statement first
appeared in [11, Theorem 1.3] to give a self-contained proof of decidablity of the
Monadic Second-order logic of (Q, <). We will also analyse a simpler statement
we call the shuffle principle, a related tool appearing in more modern decidability
proofs [4, Lemma 16]. The shuffle principle states that every Q-indexed word

The second author was supported by an LMS Early Career Fellowship.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Berger et al. (Eds.): CiE 2022, LNCS 13359, pp. 259–271, 2022.
https://doi.org/10.1007/978-3-031-08740-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08740-0_22&domain=pdf
https://doi.org/10.1007/978-3-031-08740-0_22


260 P. Pradic and G. Soldà

(with letters in a finite alphabet) contains a convex subword in which every letter
appears densely or not at all. Much like the additive restriction of the Ramsey
theorem for pairs over N, studied from the point of view of reverse mathematics
in [8], we obtain a neat correspondence with Σ0

2 -induction (Σ0
2 -IND).

Theorem 1. In the weak second-order arithmetic RCA0, Σ0
2 -IND is equivalent

to both the shuffle principle and the additive Ramsey theorem for Q.

We take this analysis one step further in the framework of Weihrauch
reducibility that allows to measure the uniform strength of general multi-valued
functions (also called problems) over Baire space. Let Shuffle and ARTQ be the
most obvious problems corresponding to the shuffle principle and additive Ram-
sey theorem over Q respectively. We relate them, as well as various weakenings
cShuffle, cARTQ, iShuffle and iARTQ that only output sets of colours or intervals,
to the standard (incomparable) problems TCN and LPO′.

Theorem 2. We have the following equivalences

– Shuffle ≡W ARTQ ≡W TC∗
N

× (LPO′)∗

– cShuffle ≡W cARTQ ≡W (LPO′)∗

– iShuffle ≡W iARTQ ≡W TC∗
N

2 Background

In this section, we will introduce the necessary background for the rest of the
paper, and fix most of the notation that we will use, except for formal definitions
related to weak subsystems of second-order arithmetic, in particular RCA0 (which
consists of Σ0

1 -induction and recursive comprehension) and RCA0 + Σ0
2 -IND. A

standard reference for that material and, more generally, systems of interest in
reverse mathematics, is [12].

2.1 Generic Notations

We identify k ∈ N with the finite set {0, . . . , k − 1}. For every linear order
(X,<X), we write [X]2 for the set of pairs (x, y) with x <X y. In this paper, by
an interval I we always mean a pair (u, v) ∈ [Q]2, regarded as the set ]u, v[ of
rationals; we never use interval with irrational extrema.

2.2 Additive and Ordered Colourings

For the following definition, fix a linear order (X,<X). For every poset (P,≺P ),
we call a colouring c : [X]2 → P ordered if we have c(x, y) �P c(x′, y′) when
x′ ≤X x <X y ≤X y′. A colouring c : [X]2 → S is called additive with respect
to a semigroup structure (S, ·) if we have c(x, z) = c(x, y) · c(y, z) whenever
x <X y <X z.

A subset A ⊆ X is dense in X if for every x, y ∈ A with x <X y there
is z ∈ A such that x <X z <X y. Given a colouring c : [X]n → k and some
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interval Y ⊆ X, we say that Y is c-densely homogeneous if there exists a finite
partition of Y into dense subsets Di such that each [Di]n is monochromatic (that
is, |c([Di]n)| ≤ 1). We will call those c-shuffles if c happens to be a colouring of
Q (i.e. X = Q and n = 1). Finally, given a colouring c : Q → k, and given an
interval I ⊆ Q, we say that a colour i < k occurs densely in I if the set of x ∈ Q

such that c(x) = i is dense in I.

Definition 1. The following are statements of second-order arithmetic:

– ORTQ: for every finite poset (P,≺P ) and ordered colouring c : [Q]2 → P ,
there exists a c-homogeneous interval ]u, v[ ⊂ Q.

– Shuffle: for every k ∈ N and colouring c : Q → k, there exists an interval
I = ]x, y[ such that I is a c-shuffle.

– ARTQ: for every finite semigroup (S, ·) and additive colouring c : [Q]2 → S,
there exists an interval I = ]x, y[ such that I is c-densely homogeneous.

As mentioned before, a result similar to ARTQ was originally proved by Shelah
in [11, Theorem 1.3 & Conclusion 1.4] and Shuffle is a central lemma when
analysing labellings of Q (see e.g. [4]). We will establish that ARTQ and Shuffle
are equivalent to Σ0

2 -induction over RCA0 while ORTQ is provable in RCA0.
We introduce some more terminology that will come in handy later on. Given

a colouring c : [Q]n → k, a set C ⊆ k and an interval I = ]u, v[ that is a c-
shuffle, we say that I is a c-shuffle for the colours in C, or equivalently that I is
c-homogeneous for the colours of C, if we additionally have c(I) = C.

2.3 Preliminaries on Weihrauch Reducibility

We now give a brief introduction to the Weihrauch degrees of problems and the
operations on them that we will use in the rest of the paper. We stress that here
we are able to offer but a glimpse of this vast area of research, and we refer to
[2] for more details on the topic.

We deal with partial multifunctions f : ⊆N
N ⇒ N

N, which we call problems,
for short. We will most often define problems in terms of their inputs and of the
outputs corresponding to those inputs.

We stress that, differently from [2], we do not define problems for arbitrary
represented spaces (domains and codomains of the problems we consider admit
a straightforward coding as subspaces of NN).

A partial function F : ⊆ N
N → N

N is called a realizer for f , which we denote
by F 
 f , if, for every x ∈ dom(f), F (x) ∈ f(x). Given two problems f and
g, we say that g is Weihrauch reducible to f , and we write g ≤W f , if there
are two computable functionals H and K such that K〈FH, id〉 is a realizer for g
whenever F is a realizer for f . We define strong Weihrauch reducibility similarly:
for every two problems f and g, we say that g strongly Weihrauch reduces to
f , written g ≤sW f , if there are computable functionals H and K such that
KFH 
 g whenever F 
 f . We say that two problems f and g are (strongly)
Weihrauch equivalent if both f ≤W g and g ≤W f (respectively f ≤sW g and
g ≤sW f). We write this ≡W (respectively ≡sW).
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There are a number of useful structural operations on problems, which
respect the quotient to Weihrauch degrees, that we need to introduce. The first
one is the parallel product f × g, which has the power to solve an instance of
f and instance of g at the same time. The finite parallelization of a problem
f , denoted f∗, has the power to solve an arbitrary number of instances of f ,
provided that number is given as part of the input. Finally, the compositional
product of two problems f and g, denoted f ∗ g, corresponds basically to the
most complicated problem that can be obtained as a composition of f paired
with the identity, a recursive function and g paired with identity (that last bit
allows us to keep track of the initial input when applying f).

Now let us list some of the most important1 problems that we are going to
use in the rest of the paper.

– CN : ⊆ N
N ⇒ N (closed choice on N) is the problem that takes as input

an enumeration e of a (strict) subset of N and such that, for every n ∈ N,
n ∈ CN(e) if and only if n �∈ ran(e) (where ran(e) is the range of e).

– TCN : ⊆ N
N ⇒ N (totalization of closed choice on N) is the problem that

takes as input an enumeration e of any subset of N (hence now we allow the
possibility that ran(e) = N) and such that, for every n ∈ N, n ∈ TCN(e) if
and only if n �∈ ran(e) or ran(e) = N.

– LPO : 2N → {0, 1} (limited principle of omniscience) takes as input any infi-
nite binary string p and outputs 0 if and only if p = 0N.

– LPO′ : ⊆ 2N → {0, 1}: takes as input (a code for) an infinite sequence
〈p0, p1, . . . 〉 of binary strings such that the function p(i) = lims→∞ pi(s) is
defined for every i ∈ N, and outputs LPO(p).

The definition of LPO′ could have been obtained by composing the one of LPO
and the definition of jump as given in [2]: we include it for convenience. Intu-
itively, LPO′ corresponds to the power of answering a single binary Σ0

2 -question.
In particular, LPO′ is easily seen to be (strongly) Weihrauch equivalent to both
IsFinite and IsCofinite, the problems accepting as input an infinite binary string
p and outputting 1 if p contains finitely (respectively, cofinitely) many 1s, and 0
otherwise.

We will use this fact throughout the paper.
Another problem of combinatorial nature, introduced in [5], will prove to be

very useful for the rest of the paper.

Definition 2. ECT is the problem whose instances are pairs (n, f) ∈ N × N
N

such that f : N → n is a colouring of the natural numbers with n colours, and
such that, for every instance (n, f) and b ∈ N, b ∈ ECT(n, f) if and only if

∀x > b ∃y > x (f(x) = f(y)).

1 Whereas LPO and CN have been widely studied, TCN is somewhat less known (and
does not appear in [2]): we refer to [9] for an account of its properties, and to [1] for
a deeper study of some principles close to it.
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Namely, ECT is the problems that, upon being given a function f of the integers
with finite range, outputs a b such that, after that b, the palette of colours used
is constant (hence its name, which stands for eventually constant palette tail).
We will refer to suitable bs as bounds for the function f .

A very important result concerning ECT and that we will use throughout the
paper is its equivalence with TC∗

N
.

Lemma 1 ([5, Theorem 9]). ECT ≡W TC∗
N

Another interesting result concerning ECT is the following: if we see it as a
statement of second-order arithmetic (ECT can be seen as the principle asserting
that for every colouring of the integers with finitely many colours there is a
bound), then ECT and Σ0

2 -IND are equivalent over RCA0 (actually, over RCA∗
0).

Lemma 2 ([5, Theorem 7]). Over RCA0, ECT and Σ0
2 -IND are equivalent.

Hence, thanks to the results above, it is clear why TC∗
N

appears as a natural
candidate to be a “translation” of Σ0

2 -IND in the Weihrauch degrees.
We end this section with two technical results about Weihrauch degrees. The

first one asserts that the two main problems that we use as benchmarks in the
sequel, namely (LPO′)∗ and TC∗

N
, are incomparable in the Weihrauch lattice.

Lemma 3. (LPO′)∗ and TC∗
N

are Weihrauch incomparable. Hence, we have that
(LPO′)∗,TC∗

N
<W (LPO′)∗ × TC∗

N
.

The second result asserts that the sequential composition of LPO′×TCN after
CN can actually be computed by the parallel product of LPO′, TCn

N
and CN. As

customary, for every problem P we write Pn to mean P × · · · × P
︸ ︷︷ ︸

n times

.

Lemma 4. For every integers a and b and every problem P ≤W CN, it holds
that ((LPO′)a × TCb

N
) ∗ P ≤W (LPO′)a × TCb

N
× P.

2.4 Green Theory

Green theory is concerned with analysing the structure of ideals of finite semi-
groups, be they one-sided on the left or right or even two-sided. This gives rise
to a rich structure to otherwise rather inscrutable algebraic properties of finite
semigroups. We will need only a few related results, all of them relying on the
definition of the Green preorders and of idempotents (recall that an element s
of a semigroup is idempotent when ss = s).

Definition 3. For a semigroup (S, ·), define the Green preorders as follows:

• s ≤R t if and only if s = t or s ∈ tS = {ta : a ∈ S} (suffix order)

• s ≤L t if and only if s = t or s ∈ St = {at : a ∈ S} (prefix order)

• s ≤H t if and only if s ≤R t and s ≤L t
• s ≤J t if and only if s ≤R t or s ≤L t or s ∈ StS = {atb : (a, b) ∈ S2}

(infix order)
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The associated equivalence relations are written R, L, H, J ; their equivalence
classes are called respectively R, L, H, and J -classes.

We conclude this section reporting, without proof, the two technical lemmas
that will be needed in Sect. 4. Although not proved in second-order arithmetic
originally, it is clear that their proofs goes through in RCA0: besides straight-
forward algebraic manipulations, they only rely on the existence, for each finite
semigroup (S, ·), of an index n ∈ N such that sn is idempotent for any s ∈ S.

Lemma 5 ([10, Proposition A.2.4]). If (S, ·) is a finite semigroup, H ⊆ S an
H-class, and some a, b ∈ H satisfy a · b ∈ H then for some e ∈ H we know that
(H, ·, e) is a group.

Lemma 6 ([10, Corollary A.2.6]). For any pair of elements x, y ∈ S of a finite
semigroup, if we have x ≤R y and x, y J -equivalent, then x and y are also
R-equivalent.

3 The Shuffle Principle and Related Problems

3.1 The Shuffle Principle in Reverse Mathematics

We start by giving a proof2 of the shuffle principle in RCA0 + Σ0
2 -IND, since, in

a way, it gives a clearer picture of some properties of shuffles that we use in the
rest of the paper.

Lemma 7. RCA0 + Σ0
2 -IND 
 Shuffle

Proof. Let c : Q → n be a colouring of the rationals with n colours. For any
natural number k, consider the following Σ0

2 formula ϕ(k): “there exists a finite
set L ⊆ n of cardinality k and there exist u, v ∈ Q with u < v such that c(w) ∈ L
for every w ∈ ]u, v[”. Since ϕ(n) is true, it follows from the Σ0

2 minimization
principle that there exists a minimal k such that ϕ(k) holds. Consider u, v ∈ Q

and the set of colours L corresponding to this minimal k. We now only need to
show that ]u, v[ is a c-shuffle to conclude.

Let a = c(x) for some x ∈ ]u, v[. We need to prove that a occurs densely in
]u, v[. Consider arbitrary x, y ∈ ]u, v[ with x < y. We are done if we show that
there exists some w ∈ ]x, y[ with c(w) = a. So, suppose that there is no such
w. By bounded Σ0

1 -comprehension, there exists a finite set L′ ⊂ n consisting
of exactly those b ∈ n which occur as values of c

∣

∣

]x,y[
. Clearly, ϕ(|L′|) holds.

However, L′ ⊆ L, and by assumption a /∈ L′, so |L′| < k, contradicting the
choice of k as the minimal number such that ϕ(k) holds. ��

The proof above shows an important feature of shuffles: given a certain inter-
val ]u, v[, any of its subintervals having the fewest colours is a shuffle.

Interestingly, the above implication reverses, so we have the following equiv-
alence.
2 From Leszek A. Ko�lodziejczyk, personal communication.
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Theorem 3. Over RCA0, Shuffle is equivalent to Σ0
2 -IND.

We do not offer a proof of the reversal here; such a proof can easily be done by
taking inspiration from the argument we give for Lemma 11. With this equiva-
lence in mind, we now introduce Weihrauch problems corresponding to Shuffle,
beginning with the stronger one.

Definition 4. We regard Shuffle as the problem with instances (k, c) ∈ N × N
N

such that c : Q → k is a colouring of the rationals with k colours, and such
that, for every instance (k, c), for every pair (u, v) ∈ [Q]2 and for every C ⊆ k,
(u, v, C) ∈ Shuffle(k, c) if and only if ]u, v[ is a c-shuffle for the colours in C.

Note that the output of Shuffle contains two components that cannot be
easily computed from one another. It is thus natural to define two weakenings
that we also study here.

Definition 5. iShuffle (“i” for “interval”) is the same problem as Shuffle save
for the fact that a valid output only contains the interval ]u, v[ which is a c-
shuffle. Complementarily, cShuffle (“c” for “colour”) is the problem that only
outputs a possible set of colours taken by a c-shuffle.

We will first start analysing the weaker problems cShuffle and iShuffle and
show they are respectively equivalent to (LPO′)∗ and TC∗

N
. This will also imply

that Shuffle is stronger than (LPO′)∗ × TC∗
N
, but the converse will require an

entirely distinct proof.

3.2 Weihrauch Complexity of the Weaker Shuffle Problems

We first start by discussing cShuffle briefly. Showing that it is stronger than
(LPO′)∗ is relatively straightforward.

Lemma 8. (LPO′)∗ ≤W cShuffle

Proof Idea. By noting that cShuffle2 ≤W cShuffle by considering pairing of dis-
tinct colourings, it suffices to show LPO′ ≤W cShuffle.

The reduction is then obtained by computing, from the input of LPO′, a map
f : Q → N such that infinite sets are taken to dense sets by f−1. ��

The reversal is more difficult; in this case, it is helpful to be more precise,
and give a better estimate of the number of instances of LPO′ necessary to solve
an instance (n, c) of cShuffle.

Lemma 9. Let cShufflen be the restriction of cShuffle to the instances of the
form (n, c). Then, cShufflen ≤W (LPO′)2

n−1

Proof Idea. We use one instance of LPO′ for each non-empty subset C of n, to
decide if there is an interval in which only colours from C appear. The ⊆-minimal
C for which it happens are guaranteed to correspond to a c-shuffle. ��
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Putting the two previous results together, we have the following.

Theorem 4. (LPO′)∗ ≡W cShuffle

Now we move to iShuffle.

Lemma 10. Let iShufflen be the restriction of iShuffle to the instances of the
form (n, c). For every n ∈ N with n ≥ 2, iShufflen ≤sW TCn−1

N
.

Proof Idea. Fix an enumeration of the intervals of Q and let (n, c) be an instance
of iShufflen. The idea of the reduction is the following. With the first instance
en−1 of TCN, we look for an interval I on which c takes only n − 1 colours: if no
such interval exists, then this means that every colour is dense in every interval,
and so every inverval would be a valid solution to c. Hence, we can suppose that
such an interval is eventually found: we will then use the second instance en−2

of TCN to look for a subinterval of Ij where c takes only n − 2 values. Again,
we can suppose that such an interval is found. We proceed like this for n − 1
steps, so that in the end the last instance e1 of TCN is used to find an interval I ′

inside an interval I on which we know that at most two colours appear. Again,
we look for c-monochromatic intervals: if we do not find any, then I ′ is already
a c-shuffle, whereas if we do find one, then that interval is a solution.

Although not apparent in the sketch given above, an important part of the
proof is that the n − 1 searches we described can be performed in parallel : the
fact that this can be accomplished relies on the fact that any subinterval of a
shuffle is a shuffle. ��
Lemma 11. Let ECTn be the restriction of ECT to the instances of the form
(n, f). For every n ∈ N with n ≥ 2, ECTn ≤sW iShufflen.

Proof. Let (n, f) be an instance of ECTn. We will slightly abuse notation, in the
following sense: we will define a colouring c : D → n of the dyadics, instead of
directly defining a colouring of the rationals. We will then exploit the fact that
there is a computable order-preserving bijection between the dyadic numbers D

and Q, and we will apply iShufflen to (n, c).
We define c : D → n as follows: let d = m

2h be a dyadic number, then we let
c(d) = f(h). Hence, all the points of the same denominator have the same colour
according to c. Let ( u

2k , v
2� ) ∈ iShufflen(n, c). Let b be such that 1

2b < v
2� − u

2k .
We claim that b is a bound for f . Suppose not, then there is a colour i < n and
a number x ∈ N such that x > b and f(x) = i, but for no y > x it holds that
f(y) = i. Hence, all the dyadics of the form w

2x are given colour i, but i does not
appear densely often in any interval of D. But by definition of b, there is a z ∈ N

such that z
2x ∈ ]

u
2k , v

2�

[

, which is a contradiction. Hence b is a bound for f . ��
We can then relate this to TCN; the next lemma follows directly by inspecting

the second half of [5, Theorem 9].

Lemma 12. For every n ∈ N with n ≥ 2, TCn−1
N

≤W ECTn (and this cannot
be improved to a strong Weihrauch reduction).
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Putting things together, we finally have a characterization of iShuffle.

Theorem 5. For every n ≥ 2, we have the Weihrauch equivalence

ECTn ≡W iShufflen ≡W TCn−1
N

whence ECT ≡W iShuffle ≡W TC∗
N

3.3 The Full Shuffle Problem

The main result of this section is that Shuffle ≡W TC∗
N

× (LPO′)∗, which will
be proved in Theorem 6. In order to do that, it is convenient to observe that,
similarly to cShuffle and iShuffle, Shuffle is closed under finite parallelization.

Lemma 13. Shuffle × Shuffle ≤W Shuffle. Therefore, Shuffle∗ ≡W Shuffle.

This enables one to easily prove the following lemma.

Lemma 14. TC∗
N

× (LPO′)∗ ≤W Shuffle

Proof. From Theorem 4 and Theorem 5, we have that TC∗
N

× (LPO′)∗ ≤W

iShuffle × cShuffle, and since clearly iShuffle � cShuffle ≤W Shuffle, by Lemma
13 we have that TC∗

N
× (LPO′)∗ ≤W Shuffle. ��

For the other direction, again, we want to be precise as to the number of
instances of TCN × (LPO′) needed to solve an instance of Shuffle.

Lemma 15. Let Shufflen be the restriction of Shuffle to the instances of the form
(n, c). Then, Shufflen ≤W (TCN × LPO′)2

n−1

Proof Idea. Let (n, c) be an instance of Shuffle. Essentially, the main idea for the
proof of Shufflen ≤W (TCN × LPO′)2

n−1 is to combine the proofs of Lemma 10
and of Theorem 4: we want to use TCN to find a candidate interval for a certain
subset C of n, and on the side we use LPO′ (or equivalently, IsFinite) to check
for every such set C whether a c-shuffle for the colours of C actually exists. The
main difficulty with the idea described above is that the two proofs must be
intertwined, in order to be able to find both a c-shuffle and the set of colours
that appear on it. ��

Putting the previous results together, we obtain the following.

Theorem 6. Shuffle ≡W TC∗
N

× (LPO′)∗

4 ARTQ and Related Problems

We now analyse the logical strength of the principle ARTQ. As in the case of
Shuffle, we start with a proof of ARTQ in RCA0+Σ0

2 -IND. This will give us enough
insights to assess the strength of the corresponding Weihrauch problems.
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4.1 Additive Ramsey over Q in Reverse Mathematics

As a preliminary step, we figure out the strength of ORTQ, the ordered Ramsey
theorem over Q. It is readily provable from RCA0 and is thus much weaker than
most other principles we analyse. We can be a bit more precise by considering
RCA∗

0 which is basically the weakening of RCA0 where induction is restricted to
Δ0

1 formulas (see [12, Definition X.4.1] for a nice formal definition).

Lemma 16. RCA∗
0 
 RCA0 ⇔ ORTQ

We now show that the shuffle principle is equivalent to ARTQ. So overall,
much like the Ramsey-like theorems of [8], they are equivalent to Σ0

2 -induction.

Lemma 17. RCA0 + Shuffle 
 ARTQ. Hence, RCA0 + Σ0
2 -IND 
 ARTQ.

Proof. Fix a finite semigroup (S, ·) and an additive colouring c : [Q]2 → S. Say a
colour s ∈ S occurs in X ⊆ Q if there exists (x, y) ∈ [X]2 such that c(x, y) = s.

We proceed in two stages: first, we find an interval ]u, v[ such that all colours
occurring in ]u, v[ are J -equivalent to one another. Then we find a subinterval of
]u, v[ partitioned into finitely many dense homogeneous sets. For the first step,
we apply the following lemma to obtain a subinterval I1 = ]u, v[ of Q where all
colours lie in a single J -class.

Lemma 18. For every additive colouring c, there exists (u, v) ∈ [Q]2 such that
all colours of c

∣

∣

]u,v[
are J -equivalent to one another.

Proof. If we post-compose c with a map taking a semigroup element to its J -
class, we get an ordered colouring. Applying ORTQ yields a suitable interval. ��

Moving on to stage two of the proof, we want to look for a subinterval of
I1 partitioned into finitely many dense homogeneous sets. To this end, define a
colouring γ : I1 → S2 by setting γ(z) = (c(u, z), c(z, v)).

By Shuffle, there exist x, y ∈ I1 with x < y such that
]x, y[ is a γ-shuffle. For l, r ∈ S, define Hl,r : = γ−1({(l, r)}) ⊆ ]x, y[; note

that this is a set by bounded recursive comprehension. Clearly, all Hl,r are either
empty or dense in ]x, y[, and moreover ]x, y[ =

⋃

l,r Hl,r. Since there are finitely
many pairs (l, r), all we have to prove is that each non-empty Hl,r is homogeneous
for c.

Let s = c(w, z) such that w, z ∈ Hl,r with w < z. By additivity of c and the
definition of Hl,r,

s · r = c(w, z) · c(z, v) = c(w, v) = r. (1)

In particular r ≤R s. But we also have r J s, which gives r R s by Lemma 6. This
shows that all the colours occurring in Hl,r are R-equivalent to one another. A
dual argument shows that they are all L-equivalent, so they are all H-equivalent.
The assumptions of Lemma 5 are satisfied, so their H-class is actually a group.

All that remains to be proved is that any colour s occurring in Hl,r is actually
the (necessarily unique) idempotent of this H-class. Since r R s, there exists a
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such that s = r · a. But then by (1), s · s = s · r · a = r · a = s, so s is necessarily
the idempotent. Thus, all sets Hl,r are homogeneous and we are done. ��

We conclude this section by showing that the implication proved in the
Lemma above reverses., thus giving the precise strength of ARTQ over RCA0.

Theorem 7. RCA0 + ARTQ 
 Shuffle. Hence, RCA0 
 ARTQ ↔ Σ0
2 -IND.

Proof. Let f : Q → n be a colouring of the rationals. Let (Sn, ·) be the finite
semigroup defined by Sn = n and a · b = a for every a, b ∈ Sn. Define the
colouring c : [Q]2 → Sn by setting c(x, y) = f(x) for every x, y ∈ Q. Since
for every x < y < z, c(x, z) = f(x) = c(x, y) · c(y, z), c is additive. By additive
Ramsey, there exists ]u, v[ which is c-densely homogeneous and thus a f -shuffle. ��

4.2 Weihrauch Complexity of Additive Ramsey

We now start the analysis of ARTQ in the context of Weihrauch reducibility. We
will mostly summarize results, relying on the intuitions we built up so far. First
off, we determine the Weihrauch degree of the ordered Ramsey theorem over Q.

Theorem 8. Let ORTQ be the problem whose instances are ordered colourings
c : [Q]2 → P , for some finite poset (P,≺), and whose possible outputs on input
c are intervals on which c is constant. We have that ORTQ ≡W LPO∗.

Proof Idea. LPO∗ ≤sW ORTQ: given n sequences p0, . . . , pn−1 ∈ 2N, build a
coloring c : [Q]2 → 2n such that, for every (x, y) ∈ [Q]2 and l ∈ N such that
2−l−1 ≤ y − x < 2−l, i ∈ c(x, y) if and only if there is k < l such that pi(k) = 1.
This is an ordered coloring, and the color associated to any homogeneous set
gives answer to LPO(pi).

ORTQ ≤W LPO∗: without loss of generality, assume that the input is a col-
oring c : [Q]2 → k where k is ordered as usual. There is a straightforward
procedure that, taking an interval I and a color i ∈ k, checks if there exists a
pair of (x, y) ∈ [I]2 such that c(x, y) < i, and returns that pair if it exists (and
otherwise does not terminate). Now run that procedure for i = k − 1 and some
arbitrary interval Ik−1, and if it returns some (x, y), run it for i = k − 2 and
the interval ]x, y[, and so forth (note that we cannot drop below i = 0 since the
coloring is ordered). Calling (xs, ys)s∈N the sequence of pairs that are tested,
define the sequences pi for every i < k by pi(s) = 1 ⇔ c(xs, ys) < i. The largest
i such that LPO(pi) = 0 will be the color of some monochromatic interval that
can be determined by the first s such that pi+1(s) = 1 (or is Ik−1 if i = k −1). ��

Now let us discuss Weihrauch problems corresponding to ARTQ.

Definition 6. Regard ARTQ as the following Weihrauch problem: the instances
are pairs (S, c) where S is a finite semigroup and c : [Q]2 → S is an additive
colouring of [Q]2, and such that, for every C ⊆ S and every interval I of Q,
(I, C) ∈ ARTQ if and only if I is c-densely homogeneous for the colours of C.

Similarly to what we did in Definition 5, we also introduce the problems
cARTQ and iARTQ that only return the set of colours and the interval respectively.
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We start by noticing that the proof of Theorem 7 can be readily adapted to
show the following.

Lemma 19. – cShuffle ≤sW cARTQ, hence (LPO′)∗ ≤W cARTQ.
– iShuffle ≤sW iARTQ, hence TC∗

N
≤W iARTQ.

– Shuffle ≤sW ARTQ, hence (LPO′)∗ × TC∗
N

≤W ARTQ.

The rest of the section is devoted to find upper bounds for cARTQ, iARTQ

and ARTQ. The first step to take is a careful analysis of the proof of Lemma 17.
For an additive colouring c : [Q]2 → S, the proof can be summarized as follows:

– we start with an application of ORTQ to find an interval ]u, v[ such that all
the colours of c

∣

∣

]u,v[
are all J -equivalent (Lemma 18).

– define the colouring γ : Q → S2 and apply Shuffle to it, thus obtaining the
interval ]x, y[.

– the rest of the proof consists simply in showing that ]x, y[ is a c-densely
homogeneous interval.

Hence, from the uniform point of view, this shows that ARTQ can be computed
via a composition of Shuffle and ORTQ. Whence the next theorem.

Theorem 9. – cARTQ ≤W (LPO′)∗ × LPO∗, therefore cARTQ ≡W (LPO′)∗.
– iARTQ ≤W TC∗

N
× LPO∗, therefore iARTQ ≡W TC∗

N
.

– ARTQ ≤W (LPO′)∗ × TC∗
N

× LPO∗, therefore ARTQ ≡W (LPO′)∗ × TC∗
N
.

5 Conclusion and Future Work

We have analysed the strength of an additive Ramseyan theorem over the ratio-
nals from the point of view of reverse mathematics and found it to be equivalent
to Σ0

2 -induction, and then refined that analysis to a Weihrauch equivalence with
TC∗

N
× (LPO′)∗. We have also shown that the problem decomposes nicely: we

get the distinct complexities (LPO′)∗ or TC∗
N

if we only require either the set of
colours or the location of the homogeneous set respectively. The same holds true
for another equally and arguably more fundamental shuffle principle.

For further work, we believe it should be straightforward to carry out a
similar analysis for Ramsey theorem over N (known to be equivalent to Σ0

2 -
induction in the context of reverse mathematics [8]). Related to Q, there are
also weaker combinatorial principles of interest to look at like (η)1<∞ from [6].
More generally, it would be interesting to study standard mathematical theorems
that are known to be equivalent to Σ0

2 -IND in reverse mathematics: this can be
considered to contribute to the larger endevour of studying principles already
analyzed in reverse mathematics in the framework of the Weihrauch degrees.
In the particular case of Σ0

2 -IND, it can be interesting to see which degrees are
necessary for such an analysis. We refer to [3] for more on this topic, and for a
more comprehensive study of Ramsey’s theorem in the Weihrauch degrees.
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Abstract. In his first set theory paper (1874), Cantor establishes the
uncountability of R. We study the latter in Kohlenbach’s higher-order
Reverse Mathematics, motivated by the observation that one cannot
study concepts like ‘arbitrary mappings from R to N’ in second-order
Reverse Mathematics. Now, it was recently shown that the statement

NIN : there is no injection from [0, 1] to N

is hard to prove in terms of conventional comprehension. In this paper,
we show that NIN is robust by establishing equivalences between NIN and
NIN restricted to mainstream function classes, like: bounded variation,
semi-continuity, and Borel. Thus, the aforementioned hardness of NIN is
not due to the quantification over arbitrary R → N-functions in NIN.
Finally, we also study NBI, the restriction of NIN to bijections, and the
connection to Cousin’s lemma and Jordan’s decomposition theorem.

1 Introduction and Preliminaries

1.1 Aim and Motivation

In a nutshell, we study the the uncountability of R from the point of view of
Reverse Mathematics. We now explain the aforementioned italicised notions.

First of all, Reverse Mathematics (RM hereafter) is a program in the founda-
tions of mathematics initiated by Friedman [11,12] and developed extensively by
Simpson and others [34,35]; an introduction to RM for the ‘mathematician in the
street’ is in [36]. In a nutshell, RM seeks to identify the minimum axioms needed
to prove theorems of ordinary, i.e. non-set theoretic, mathematics. We assume
basic familiarity with RM, including Kohlenbach’s higher-order RM introduced
in [18], with more recent results -including our own- in [26–29,31,32].

Now, the biggest difference between ‘classical’ RM and higher-order RM is
that the former makes use of L2, the language of second-order arithmetic, while
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the latter uses Lω, the language of higher-order arithmetic. Thus, higher-order
objects are only indirectly available via so-called codes or representations in
classical RM. In particular, L2 cannot talk about ‘arbitrary mappings from R to
N’. Thus, Simpson (only) proves that the real numbers R cannot be enumerated
as a sequence in classical RM (see [35, II.4.9]). Hence, the higher-order RM of
the uncountability of R, discussed next, is a natural (wide-open) topic of study.

Secondly, the uncountability of R was established in 1874 by Cantor in his
first set theory paper [6], which even has its own Wikipedia page, namely [39].
We will study the uncountability of R in the guise of the following principles:

– NIN: there is no injection from [0, 1] to N,
– NBI: there is no bijection from [0, 1] to N.

It was established in [29] that NIN and NBI are hard to prove in terms of (conven-
tional) comprehension, as explained in detail in Remark 1. One obvious way of
downplaying these results is to simply attribute the hardness of NIN to the fact
that one quantifies over arbitrary third-order objects, namely R → N-functions.

In this paper, we establish RM-equivalences involving NIN and NBI, where
some are straightforward (Sect. 2.1) and others advanced or surprising (Sect. 2.2).
We also study the connection between NIN and Cousin’s lemma and Jordan’s
decomposition theorem (Sect. 2.3). In particular, we show that NIN is equivalent
to the statement that there is no injection from [0, 1] to Q that enjoys ‘nice’ main-
stream properties like bounded variation, semi-continuity, and related notions.
Hence, the aforementioned hardness of NIN and NBI is not due to the latter
quantifying over arbitrary third-order functions as exactly the same hardness is
observed for mathematically natural subclasses. A recent FOM-discussion initi-
ated by Friedman via [13], brought about this insight, while our results establish
that NIN is robust in the sense of Montalbán, as follows.

[. . . ] gaining a greater understanding of [the big five] phenomenon is cur-
rently one of the driving questions behind reverse mathematics. To study
the big five phenomenon, one distinction that I think is worth making
is the one between robust systems and non-robust systems. A system is
robust if it is equivalent to small perturbations of itself. This is not a pre-
cise notion yet, but we can still recognize some robust systems. All the big
five systems are very robust. [...] Apart from those systems, weak weak
König’s Lemma (WWKL0) is also robust, and we know no more than one
or two other systems that may be robust. ([23, p. 432])

Thirdly, as to the structure of this paper, we introduce some essential axioms
and definitions in Sect. 1.2 while our main results may be found in Sect. 2. We
note that some of our results are proved using IND0, a non-trivial fragment of the
induction axiom from Sect. 1.2.1. It is a natural RM-question, posed previously
by Hirschfeldt (see [23, §6.1]), whether these extra axioms are needed for the
reversal. Neeman provides an example of the necessary use of extra induction in
a reversal in [24]. We finish this introductory section with a conceptual remark.
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Remark 1 (Conventional comprehension). First of all, the goal of RM is
to find the minimal axioms that prove a given theorem. In second-order RM,
these minimal axioms are fragments of the comprehension axiom (and related
notions), i.e. the statement that the set {n ∈ N : ϕ(n)} exists for a certain
class of L2-formulas. Higher-order RM similarly makes use of ‘comprehension
functionals’, i.e. third-order objects that decide formulas in a certain sub-class
of L2. Examples include Kleene’s quantifier ∃2 and the Suslin functional S2, to
be found in Sect. 1.2.1. We are dealing with conventional comprehension here,
i.e. only first- and second-order objects are allowed as parameters.

Secondly, second-order arithmetic Z2 has two natural higher-order formu-
lations Zω

2 and ZΩ
2 based on comprehension functionals, both to be found in

Sect. 1.2.1. The systems Z2, Zω
2 , and ZΩ

2 prove the same second-order sentences
by [15, Cor. 2.6]. Nonetheless, the system Zω

2 cannot prove NIN or NBI, while
ZΩ
2 proves both. Here, Zω

2 and NIN can be formulated in the language of third-
order arithmetic, i.e. there is no ‘type mismatch’. The previous negative result
is why we (feel obliged/warranted to) say that the principle NIN is hard to prove
in terms of conventional comprehension. Finally, NIN and NBI seem to be the
weakest natural third-order principles with this hardness property.

1.2 Preliminaries

We introduce axioms and definitions from RM needed below. We refer to [18, §2]
or [26, §2] for Kohlenbach’s base theory RCAω

0 , and basic definitions like the real
numbers R in RCAω

0 . As in second-order RM (see [35, II.4.4]), real numbers are
represented by fast-converging Cauchy sequences. To avoid the details of coding
real numbers and sets, we often assume the axiom (∃2) from Sect. 1.2.1, which
can however sometimes be avoided, as discussed in Remark 10.

1.2.1 Some Axioms of Higher-Order Arithmetic
First of all, the functional ϕ in (∃2) is clearly discontinuous at f = 11 . . . ; in
fact, (∃2) is equivalent to the existence of F : R → R such that F (x) = 1 if
x >R 0, and 0 otherwise ([18, §3]).

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

Related to (∃2), the functional μ2 in (μ2) is also called Feferman’s μ ([18]).

(∃μ2)(∀f1)
[(

(∃n)(f(n) = 0) → [f(μ(f)) = 0 ∧ (∀i < μ(f))(f(i) 	= 0)]
)

(μ2)

∧ [(∀n)(f(n) 	= 0) → μ(f) = 0]
]
.

Intuitively, μ2 is the least-number-operator, i.e. μ(f) provides the least n ∈ N

such that f(n) = 0, if such number exists. We have (∃2) ↔ (μ2) over RCAω
0 and

ACAω
0 ≡ RCAω

0 +(∃2) proves the same L2-sentences as ACA0 by [15, Theorem 2.5].
Working in ACAω

0 , one readily defines a functional η : [0, 1] → 2N that converts
real numbers to their1 binary representation.
1 In case there are two binary representations, we choose the one with a tail of zeros.
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Secondly, we sometimes need more induction than is available in RCAω
0 . The

connection between ‘finite comprehension’ and induction is well-known from
second-order RM (see [35, X.4.4]).

Principle 2 (IND0). Let Y 2 satisfy (∀n ∈ N)(∃ at most one f ∈ 2N)(Y (f, n) =
0). For k ∈ N, there is w1∗

such that for any m ≤ k, we have

(∃i < |w|)((w(i) ∈ 2N ∧ Y (w(i),m) = 0)) ↔ (∃f ∈ 2N)(Y (f,m) = 0).

Thirdly, the Suslin functional S2 is defined in [18] as follows:

(∃S2 ≤2 1)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0) ↔ S(f) = 0

]
. (S2)

The system Π1
1 -CAω

0 ≡ RCAω
0 +(S2) proves the same Π1

3 -sentences as Π1
1 -CA0 by

[32, Theorem 2.2]. By definition, the Suslin functional S2 can decide whether a
Σ1

1 -formula as in the left-hand side of (S2) is true or false. We similarly define the
functional S2k which decides the truth or falsity of Σ1

k-formulas from L2; we also
define the system Π1

k -CAω
0 as RCAω

0 + (S2k), where (S2k) expresses that S2k exists.
We note that the operators νn from [5, p. 129] are essentially S2n strengthened
to return a witness (if existant) to the Σ1

n-formula at hand.
Finally, second-order arithmetic Z2 readily follows from ∪kΠ1

k -CAω
0 , or from:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ E(Y ) = 0

]
, (∃3)

and we therefore define ZΩ
2 ≡ RCAω

0 + (∃3) and Zω
2 ≡ ∪kΠ1

k -CAω
0 , which are

conservative over Z2 by [15, Cor. 2.6]. Despite this close connection, Zω
2 and ZΩ

2

can behave quite differently, as discussed in Remark 1. The functional from (∃3)
is also called ‘∃3’, and we use the same convention for other functionals.

1.2.2 Some Basic Definitions
We introduce the higher-order definitions of ‘set’ and ‘countable’, as can be found
in e.g. [27,29,31].

First of all, open sets are represented in second-order RM as countable unions
of basic open sets ([35, II.5.6]), and we refer to such sets as ‘RM-open’. By [35,
II.7.1], one can effectively convert between RM-open sets and (RM-codes for)
continuous characteristic functions. Thus, a natural extension of the notion of
‘open set’ is to allow arbitrary (possibly discontinuous) characteristic functions,
as is done in e.g. [27,31]. To make sure (basic) RM-open sets have characteristic
functions, we shall always assume ACAω

0 when necessary.

Definition 3 [Subsets of R]. We let Y : R → {0, 1} represent subsets of R as
follows: we write ‘x ∈ Y ’ for ‘Y (x) = 1’.

The notion of ‘subset of 2N or N
N’ now has an obvious definition. Having intro-

duced our notion of set, we now turn to countable sets.

Definition 4 [Enumerable sets of reals]. A set A ⊂ R is enumerable if there
exists a sequence (xn)n∈N such that (∀x ∈ R)(x ∈ A ↔ (∃n ∈ N)(x =R xn)).
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This definition reflects the RM-notion of ‘countable set’ from [35, V.4.2]. Note
that given Feferman’s μ2, we can remove all elements from a sequence of reals
(xn)n∈N that are not in a given set A ⊂ R.

The definition of ‘countable set of reals’ is now as follows in RCAω
0 , while the

associated definitions for Baire space are obvious.

Definition 5 [Countable subset of R]. A set A ⊂ R is countable if there exists
Y : R → N such that (∀x, y ∈ A)(Y (x) =0 Y (y) → x =R y). The functional Y is
called injective on A or an injection on A. If Y : R → N is also surjective, i.e.
(∀n ∈ N)(∃x ∈ A)(Y (x) = n), we call A strongly countable. The functional Y is
then called bijective on A or a bijection on A.

The first part of Definition 5 is from Kunen’s set theory textbook ([20, p. 63]) and
the second part is taken from Hrbacek-Jech’s set theory textbook [14] (where the
term ‘countable’ is used instead of ‘strongly countable’). According to Veldman
([38, p. 292]), Brouwer studied set theory based on injections. Hereafter, ‘strongly
countable’ and ‘countable’ shall exclusively refer to Definition 5.

Finally, note that the principles NIN and NBI from Sect. 1 have now been
defined. We have previously studied the RM of cocodei for i = 0, 1 in [29,31],
where the index i = 0 expresses that a countable set in the unit interval can be
enumerated (for i = 1, we restrict to strongly countable sets).

2 Main Results

We establish the results sketched in Sect. 1.1. We generally assume (∃2) from
Sect. 1.2.1 to avoid the technical details involved in the representation of sets
and real numbers. Given that NIN cannot be proved in Zω

2 by Remark 1, this
seems like a weak assumption.

2.1 Basic Robustness Results

In this section, we show that NIN, NBI, and related principles are relatively
robust when it comes to the domain of the mappings therein.

First of all, let NINX express that there is no injection Y : X → N, for X equal
to either the reals R, Cantor space 2N (also denoted as C), or Baire space N

N.

Theorem 6. The system ACAω
0 proves NIN ↔ NINC ↔ NINN

N ↔ NINR.

Proof. First of all, NIN → NINR and NINC → NINN
N

are trivial, while NINR →
NIN follows by considering the injection 1

2 (1 + x
1+|x| ) from R to (0, 1).

Secondly, assume NIN and use the usual interval-halving technique (using ∃2)
to obtain η : [0, 1] → 2N such that η(x) is the binary representation of x ∈ [0, 1],
choosing a tail of zeros in the non-unique case. Fix Y : 2N → N and define
Z : [0, 1] → N as Z(x) := Y (η(x)), which satisfies the axiom of extensionality2

2 Functions F : R → R are represented by Φ : NN → N
N mapping equal reals to equal

reals, i.e. extensionality as in (∀x, y ∈ R)(x =R y → Φ(x) =R Φ(y)) (see [18, p. 289]).
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on R by definition. By NIN, there are x, y ∈ [0, 1] with x 	=R y and Z(x) = Z(y).
Clearly, η(x) 	=1 η(y) and Y (η(x)) = Y (η(y)), and NINC follows.

Thirdly, assume NINC , fix Z : [0, 1] → N and let (qn)n∈N be a list of all
rational numbers with non-unique binary representation. Define Y : 2N → N

as follows: Y (f) := 3Z(r(f)) in case r(f) :=
∑∞

n=0
f(n)
2n+1 has a unique binary

representation, Y (f) := 3n + 1 in case r(f) = qn and f has a tail of zeros, and
Y (f) = 3n + 2 in case r(f) = qn and f has a tail of ones. By NINC , there are
f, g ∈ 2N such that f 	=1 g and Y (f) = Y (g). Clearly, this is only possible in the
first case of the definition of Z, i.e. we have Y (f) = 3Z(r(f)) = 3Z(r(g)) = Y (g).
Since also r(f) 	=R r(g), NIN follows and we obtain NIN ↔ NINC .

Finally, let Y : 2N → N be an injection. For f ∈ N
N, define its graph Xf :=

{(n, f(n)) : n ∈ N} in N
2 and code the latter as a binary sequence X̃f . Note that

f(n) := (μm)[(n,m) ∈ Xf ] recovers the function f from its graph Xf . Modulo
this coding, define Z : NN → N as Z(f) := Y (X̃f ). By the assumption on Y ,
Z(f) =0 Z(g) for f, g ∈ N

N implies X̃f =1 X̃g, which implies f =1 g, by the
definition of Xf . Hence, ¬NINC → ¬NINN

N

, and we are done. 
�

Similarly, cocodeX0 is the statement that any countable subset of X can be enu-
merated, while cocodeX1 is the restriction to strongly countable sets.

Theorem 7 (ACAω
0 ). For i = 0, 1, we have cocodei ↔ cocodeRi ↔ cocodeC

i .

Proof. The implication cocodeRi → cocodei is trivial while the (rescaled) arctan-
gent function is a bijection from R to (0, 1), which readily yields the reversal.

Now assume cocodeC
0 and let Z : [0, 1] → N be injective on A ⊂ [0, 1].

The functional Y : 2N → N defined by Y (f) := Z(r(f)) is clearly injective on
B := {η(x) : x ∈ A} where η is as in the proof of Theorem 6. Let (fn)n∈N be a
list of all elements in B and note that (r(fn))n∈N is a list of all elements in A,
i.e. cocode0 follows. Note that if Z is bijective on A, then Y is bijective on B by
definition, i.e. cocodeC

1 → cocode1.
Next, assume cocode0, let Y : 2N → N be injective on A ⊂ 2N, and define

Z(x) := Y (η(x)). Then Z : [0, 1] → N witnesses that B = {r(f) : f ∈ A} is
countable, and let (xn)n∈N be an enumeration of B. This list is readily converted
to a list of all elements in A via η and by noting that μ2 can list all f ∈ A such
that r(f) has a non-unique binary representation; we thus have cocodeC

0 .
We now prove cocodeR1 → cocodeC

1 . Let Y : 2N → N be bijective on A ⊂ 2N

and let (fn)n∈N be the list of all f ∈ A such that r(f) has a non-unique binary
representation. Now define D ⊂ R as: x ∈ D if either of the following holds:

– x ∈ [0, 1], x has a unique binary representation, and η(x) ∈ A,
– there is n ∈ N with x ∈ (n,+1, n + 2] and x − (n + 1) =R r(fn).

Define W : R → N as W (x) := Y (η(x)) if x ∈ [0, 1] and W (x) := Y (fn) in case
|x| ∈ (n + 1, n + 2] as in the second case of the definition of D. Then W is a
bijection on D since Y is a bijection on A. The list provided by cocodeR1 for D
now readily yields the list required for A as in cocodeC

1 . 
�
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Finally, NBIX is the statement that there is no bijection from X to N, where X
is e.g. R or N

N. We have the following theorem.

Theorem 8. The system ACAω
0 proves NBI ↔ NBIR and NBI → NBIN

N

.

Proof. The implication NBI → NBIR is immediate as the (rescaled) tangent
function provides a bijection from (0, 1) to R. The inverse of tangent, called
arctangent, yields a bijection in the other direction (also with rescaling), i.e.
the first equivalence is immediate, as well as NBI ↔ NBIR≥0 . We now define a
(continuous) bijection from N

N to R≥0 based on continued fractions. Intuitively,
a sequence (an)n∈N of natural numbers is mapped to the real x ∈ R≥0 via the
following (generalised) continued fraction:

x = a0 +
1

1 +
1

a1 +
1

1 +
1

a2 +
.. .

(CF)

The real x ∈ R≥0 in (CF) exists in ACAω
0 in the sense that there is an explicit

function F : (NN×n) → Q such that x =R limn→∞ F (f)(n), where F (f)(n) ∈ Q

is essentially the continued fraction in (CF) ‘broken off’ after encountering an.
The definition of F can be be found in e.g. [22, Ch.1, p. 7-9]. One readily shows
that the mapping defined by (CF) is a bijection from N

N to R≥0 in ACAω
0 . 
�

We could prove similar results for a countable set in the unit interval has mea-
sure3 zero, which is intermediate between cocode0 and NIN, which is shown in
[31] as an illustration how weak NIN is. Nonetheless, we have the following result.

Theorem 9 (ACAω
0 ). A countable set A ⊂ [0, 1] has weak4 measure zero.

Proof. Fix A ⊂ [0, 1] and Y : [0, 1] → N injective on A. For ε > 0, define εn :=
ε

2n+1 , B := {(a, b) ∈ R
2 : a+b

2 ∈ A∧|b−a| = 2−Y ( a+b
2 )}, and Z((a, b)) := Y (a+b

2 ).
Clearly, this shows that A has weak measure zero, as required. 
�
We say that a property holds weakly almost everywhere (wae) in case it holds
outside a set of weak measure zero as in Footnote 4.

We finish this section with a conceptual remark regarding our base theory.

3 For A ⊂ R, let ‘A has measure zero’ mean that for any ε > 0, there is a sequence of
closed intervals

(
In

)
n∈N

covering A and such that ε >
∑∞

n=0 |Jn| for J0 := I0 and
Ji+1 := Ii+1 \∪j≤iIj . This follows from the usual definition as used in mathematics.

4 For A ⊂ R, let ‘A has weak measure zero’ mean that for any ε > 0, there is a
sequence (εn)n∈N, a set B of closed intervals, and Z : R2 → N injective on B, such
that (∀a ∈ A)(∃(b, c) ∈ B)(a ∈ (b, c)) and (∀(b, c) ∈ B, ∀n ∈ N)(Z((b, c)) = n →
|b − c| ≤ εn) and ε ≥ ∑∞

n=0 εn. Given cocode0, this is the same as ‘measure zero’.
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Remark 10. We have used ACAω
0 as the base theory for the above results,

since our notion of ‘set-as-characteristic function’ as in Definition 3 is poorly
behaved in the absence of (∃2). One can obtain equivalences over RCAω

0 , and let
us establish NINN

N → NINC over RCAω
0 as an example via the following steps.

– Fix any Y : 2N → N, which may or may not be continuous.
– In case Y is continuous, it is immediate that Y (00 . . . ) = Y (00 . . . 00 ∗ 11 . . . )

for enough instances of 0 on the right.
– In case Y is discontinuous, use the results in [18, §3] to derive (∃2) over RCAω

0 .
We can now use the proof of Theorem 6 in ACAω

0 .

The above proof of course heavily relies on the law of excluded middle.

2.2 Advanced Robustness Results

In this section, we show that NIN is equivalent to various restrictions involv-
ing notions from mainstream mathematics, like semi-continuity and bounded
variation; we first introduce the latter.

First of all, an important weak continuity notion is semi-continuity, intro-
duced by Baire in [2] around 1899. By [2, §84, pp. 94–95], the notion of quasi-
continuity goes back to Volterra; any cliquish function is the sum of two quasi-
continuous functions. Moreover, while the limits in the following definition may
not exist in RCAω

0 , the associated inequalities always make sense.

Definition 11. [Weak continuity]

– f : R → R is upper semi-continuous if for all x0 ∈ R, f(x0) ≥R

lim supx→x0
f(x).

– f : R → R is lower semi-continuous if for all x0 ∈ R, f(x0) ≤R

lim infx→x0 f(x).
– f : X → R is quasi-continuous (resp. cliquish) at x ∈ X if for any ε > 0 and

any open neighbourhood U of x, there is a non-empty open ball G ⊂ U with
(∀y ∈ G)(|f(x) − f(y)| < ε) (resp. (∀y, z ∈ G)(|f(z) − f(y)| < ε)).

Secondly, Jordan introduces the notion of bounded variation in [16] around 1881,
also studied in second-order RM [19,25]. Moreover, Jordan proves in [17, §105]
that functions of bounded variation are exactly those for which the notion of
‘length of the graph’ makes sense; the latter boast5 an even ‘earlier’ history.
What is more, Lakatos in [21, p. 148] claims that Jordan did not invent or
introduce the notion of bounded variation in [16], but rather discovered it in
Dirichlet’s 1829 paper [8].

5 The notion of arc length was studied for discontinuous regulated functions in 1884
([33, §1–2]), where it is also claimed to be essentially equivalent to Duhamel’s 1866
approach from [10, Ch. VI]. Around 1833, Dirksen, the PhD supervisor of Jacobi
and Heine, provides a definition of arc length that is (very) similar to the modern
one (see [9, §2, p. 128]), but with some conceptual problems as discussed in [7, §3].
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Definition 12 [Bounded variation]. Any f : [a, b] → R has bounded variation
on [a, b] if there is k0 ∈ N such that k0 ≥ ∑n

i=0 |f(xi)−f(xi+1)| for any partition
x0 = a < x1 < · · · < xn−1 < xn = b.

Functions of bounded variation have only got countably many points of discon-
tinuity (see e.g. [1, Ch. 1]); Dag Normann and the author study this property in
higher-order computability theory in [30]. In the latter, we also study regulated
functions (called ‘regular’ in [1]), defined as follows (say in ACAω

0 ).

Definition 13 [Regulated function]. A function f : [0, 1] → R is regulated if
for every x0 ∈ [0, 1], the ‘left’ and ‘right’ limit f(x0−) = limx→x0− f(x) and
f(x0+) = limx→x0+ f(x) exist.

Thirdly, Borel functions are defined in Definition 14; the usual definition of Borel
set makes sense in ACAω

0 , where (∃2) is used to define countable unions.

Definition 14 [Borel function]. Any f : [0, 1] → R is a Borel function in case
f−1((a,+∞)) := {x ∈ [0, 1] : f(x) > a} is a Borel set for any a ∈ R.

Fourth, recall the induction axiom IND0 from Sect. 1.2.2. Let Y be any property
such that ‘f : [0, 1] → R satisfies Y’ follows from ‘f has bounded variation on
[0, 1]’ and where this implication can be established over (say) ACAω

0 .

Theorem 15 (ACAω
0 + IND0). The following are equivalent to NIN:

– NINbv: there is no injection from [0, 1] to Q that has bounded variation,
– NINY: there is no injection from [0, 1] to Q that has property Y,
– NINRiemann: there is no injection from [0, 1] to Q that is Riemann integrable,
– NINBorel: there is no Borel function that is an injection from [0, 1] to Q,
– NINreg: there is no injection from [0, 1] to Q that is regulated,
– NINcliq: there is no injection from [0, 1] to Q that is cliquish,
– NINsemi: there is no upper semi-continuous injection from [0, 1] to Q,
– NIN′

semi: there is no lower semi-continuous injection from [0, 1] to Q.

Only the implications involving the final five items require the use of IND0.

Proof. As there is an injection from Q to N in RCA0, we only need to prove that
NINbv → NIN over ACAω

0 for the first equivalence. To this end, let Y : [0, 1] → N

be an injection and define W : [0, 1] → Q by W (x) := 1
2Y (x)+1 . Then W has

bounded variation with upper bound 2. Indeed, since Y is an injection on [0, 1],
any sum

∑n
i=0 |W (xn) − W (xn+1)| is at most

∑n
i=0

1
2i+1 . By NINbv, there are

x, y ∈ [0, 1] with x 	=R y and W (x) =Q W (y). This implies the contradiction
Y (x) =0 Y (y), and NIN ↔ NINbv follows. For NINRiemann → NIN, the function W
is Riemann integrable following the ε-δ-definition. Indeed, fix ε0 > 0 and find
k0 ∈ N such that 1

2k0
< ε0. Since Y is an injection, if P is a partition of [0, 1]

consisting of |P |-many points and with mesh ‖P‖ ≤ 1
2k0

, it is immediate that
the Riemann sum S(W,P ) is smaller than 1

2k0

∑|P |
n=0

1
2i+1 , which is at most 1

2k0
.

For the implication NINsemi → NIN, consider the same W : [0, 1] → R and
note that [lim supx→x0

W (x)] =R 0 <R W (x0) for any x0 ∈ [0, 1] in case Y :
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[0, 1] → N is an injection. Hence, W (x) is upper semi-continuous and Z(x) :=
1 − W (x) is similarly lower semi-continuous, since [lim infx→x0 Z(x)] =R 1 >R

Z(x0) for any x0 ∈ [0, 1]. The finite sequences provided by IND0 seem essential
to establish these semi-continuity claims. One proves NINcliq → NIN in the same
way, namely using IND0 to exclude the finitely many ‘too large’ function values.
For the implication NINBorel → NIN, note that for an injection Y : [0, 1] → N

the above function W (x) is Borel as W−1
(
(a,+∞)

)
for any a ∈ R is either

finite or [0, 1], and that these are Borel sets is immediate in ACAω
0 + IND0. For

the implication NINreg → NIN, consider the same W : [0, 1] → R and note that
W (0+) = W (1−) = W (x+) = W (x−) = 0 for x ∈ (0, 1) in the same way as for
the semi-continuity of W . Thus, W is regulated and we are done. 
�
As noted above, a function has bounded variation iff it has finite arc length. The
proof of this equivalence ([1, Prop. 3.28]) goes through in RCAω

0 , i.e. we may
replace ‘bounded variation’ by ‘finite arc length’ in the previous theorem.

Fifth, we say that a function has total variation equal to a ∈ R in case the
supremum over all partitions of

∑n
i=0 |f(xi)−f(xi+1)| in Definition 12 equals a.

Corollary 16 (ACAω
0 + IND0). The following are equivalent to NBI:

– NBIRiemann: there is no bijection from [0, 1] to Q that is Riemann integrable,
– NBIbv: there is no injection from [0, 1] to Q that has total variation 1,
– NBIBorel: there is no Borel function that is a bijection from [0, 1] to Q,
– NBIcliq: there is no bijection from [0, 1] to Q that is cliquish,
– NBIsemi: there is no upper semi-continuous bijection from [0, 1] to Q,
– NBI′semi: there is no lower semi-continuous bijection from [0, 1] to Q.

Only the implications involving the final four items require the use of IND0.

Proof. For the first equivalence, W : [0, 1] → R from the proof has total variation
exactly 1 in case Y is also surjective. The other equivalences are now immediate
by the proof of the theorem. 
�
As an intermediate conclusion, one readily proves that there are no continuous
injections from R to Q (say over ACAω

0 ). However, Theorem 15 and Corollary 16
show that admitting countably many points of discontinuity, one obtains prin-
ciples that are extremely hard to prove following Remark 1.

Finally, one can greatly generalise Theorem 15 based on Remark 17. Indeed,
there are many spaces intermediate between bounded variation and regulated,
each of which yields a natural and equivalent restriction of NIN.

Remark 17 (Intermediate spaces). The following spaces are intermediate
between bounded variation and regulated; all details may be found in [1]. Wiener
spaces from mathematical physics are based on p-variation, which amounts to
replacing ‘|f(xi)− f(xi+1)|’ by ‘|f(xi)− f(xi+1)|p’ in the definition of variation.
Young generalises this to φ-variation which instead involves φ(|f(xi)−f(xi+1)|)
for so-called Young functions φ, yielding the Wiener-Young spaces. Perhaps a
simpler construct is the Waterman variation, which involves λi|f(xi) − f(xi+1)|



282 S. Sanders

and where (λn)n∈N is a sequence of reals with nice properties; in contrast
to bounded variation, any continuous function is included in the Waterman
space ([1, Prop. 2.23]). Combining ideas from the above, the Schramm variation
involves φi(|f(xi) − f(xi+1)|) for a sequence (φn)n∈N of well-behaved ‘gauge’
functions. As to generality, the union (resp. intersection) of all Schramm spaces
yields the space of regulated (resp. bounded variation) functions, while all other
aforementioned spaces are Schramm spaces ([1, Prop. 2.43 and 2.46]). In contrast
to bounded variation and the Jordan decomposition theorem, these generalised
notions of variation have no known ‘nice’ decomposition theorem. The notion of
Korenblum variation does have such a theorem (see [1, Prop. 2.68]) and involves
a distortion function acting on the partition, not on the function values.

2.3 Connections to Mainstream Mathematics

We establish the connection between NIN and two theorems from mainstream
mathematics, namely Cousin’s lemma and Jordan’s decomposition theorem.

First of all, our results have significant implications for the RM of Cousin’s
lemma. Indeed, as shown in [26], Zω

2 cannot prove Cousin’s lemma as follows:

(∀Ψ : R → R
+)(∃y0, . . . , yk ∈ [0, 1])([0, 1] ⊂ ∪i≤kB(yi, Ψ(yi))), (HBU)

which expresses that the canonical covering ∪x∈[0,1]B(x, Ψ(x)) has a finite sub-
covering, namely given by y0, . . . , yk ∈ [0, 1]. In [4], it is shown that HBU formu-
lated using second-order codes for Borel functions is provable in ATR0 plus some
induction. We now show that this result from [4] is entirely due to the presence
of second-order codes. Indeed, by Theorem 18, the restriction of HBU to Borel
functions still implies NIN, which is not provable in Zω

2 by Remark 1. To this
end, let HBUsemi (resp. HBUBorel) be HBU restricted to Ψ : [0, 1] → R

+ that are
upper semi-continuous (resp. Borel) as in Definition 11 (resp. Definition 14).

Theorem 18 (ACAω
0 + IND0). NIN follows from HBUsemi and from HBUBorel;

extra induction is only needed in the first case.

Proof. Let Y : [0, 1] → N be an injection and consider Ψ(x) := 1
2Y (x)+3 , which is

upper semi-continuous and Borel by the proof of Theorem 15. Now consider the
uncountable covering ∪x∈[0,1]B(x, 1

2Y (x)+3 ) of [0, 1]. Since Y is an injection, we
have

∑
i≤k |B(xi,

1
2Y (xi)+3 )| ≤ ∑

i≤k
1

2i+2 ≤ 1
2 for any finite sequence x0, . . . , xk

of distinct reals in [0, 1]. In this light, HBUsemi and HBUBorel are false. We note
that the required basic measure theory (for finite sequences of intervals) can be
developed in RCA0 ([35, X.1]). 
�
We now show that we can replace ‘Borel’ by ‘Baire class 2’ in Theorem 18,
assuming the right (equivalent) definition. Now, Baire classes go back to Baire’s
1899 dissertation ([2]) and a function is ‘Baire class 0’ if it is continuous and
‘Baire class n + 1’ if it is the pointwise limit of Baire class n functions. Baire’s
characterisation theorem ([3, p. 127]) expresses that a function is Baire class 1
iff there is a point of continuity of the induced function on each perfect set.
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Now let B2 be the class of all g : [0, 1] → R such that g = limn→∞ gn on [0, 1]
and where for all n ∈ N and perfect P ⊂ [0, 1], the restriction gn�P has a point
of continuity on P . We have the following corollary.

Corollary 19 (ACAω
0 + IND0). We have HBUB2 → NIN where the former is

the restriction of HBU to Ψ : [0, 1] → R
+ in B2.

Proof. Fix A ⊂ [0, 1] and Y : [0, 1] → N with Y is injective on A. Define Ψ :
[0, 1] → R

+ as follows: Ψ(x) is 1
2Y (x)+5 in case x ∈ A, and 1/8 otherwise. Define

Ψn as Ψ with the condition ‘Y (x) ≤ n+5’ in the first case. Clearly Ψ = limn→∞ Ψ
and Ψ ∈ B2, as Ψn only has at most n + 5 points of discontinuity (the set of
which is not perfect in ACAω

0 + IND0). For a finite sub-covering x0, . . . , xk ∈ [0, 1]
of ∪x∈[0,1]B(x, Ψ(x)), there must be j ≤ k, with xj 	∈ A. Indeed, the measure
of ∪i≤kB(xi, Ψ(xi)) is otherwise below

∑k
n=0

1
2i+5 < 1, a contradiction as the

required basic measure theory can be developed in RCA0 ([35, X.1]). 
�
Secondly, Jordan proves the following fundamental theorem about functions of
bounded variation around 1881 in [16].

Theorem 20 (Jordan decomposition theorem). Any f : [0, 1] → R of bou-
nded variation is the difference of two non-decreasing functions g, h : [0, 1] → R.

Formulated using second-order codes, Theorem 20 is provable in ACA0 (see [19,
25]); we now show that the third-order version is hard to prove as in Remark 1.

Theorem 21 (ACAω
0 ). Each item implies the one below it.

– The Jordan decomposition theorem for the unit interval.
– HBUbv, i.e. HBU restricted to Ψ : [0, 1] → R

+ of bounded variation.
– NIN: there is no injection from [0, 1] to N.

Assuming IND0, we may replace the principle HBUbv by the following one:

– For f : [0, 1] → R of bounded variation, there is x ∈ [0, 1] such that f is
continuous (or: quasi-continuous) at x.

Proof. The points of discontinuity of a non-decreasing function can be enumer-
ated in ACAω

0 by [30, Lemma 3.3]. Now assume the Jordan decomposition the-
orem and fix some Ψ : [0, 1] → R

+ of bounded variation. If (xn)n∈N enumerates
all the points of discontinuity of Ψ , then the following also covers [0, 1].

∪q∈Q∩[0,1]B(q, Ψ(q))
⋃

∪n∈NB(xn, Ψ(xn)).

The second-order Heine-Borel theorem (provable in WKL0 by [35, IV.1]) now
yields a finite sub-covering, and HBUbv follows. Now assume the latter and sup-
pose Y : [0, 1] → N is an injection. Define Ψ : [0, 1] → N as Ψ(x) := 1

2Y (x)+3 . As
in the proof of Corollary 19, any finite sub-covering of ∪x∈[0,1]B(x, Ψ(x)) must
have measure at most 1/2, a contradiction; NIN follows and the first part is done.
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For the second part of the theorem, we use the first part of the proof, namely
that for f : [0, 1] → R of bounded variation, the points of discontinuity can be
enumerated, say by (xn)n∈N. By [35, II.4.9], the unit interval cannot be enu-
merated, i.e. there is y ∈ [0, 1] such that (∀n ∈ N)(xn 	= y). By definition, f
is continuous at y. For the final implication, consider Ψ : [0, 1] → R

+ from the
first part of the proof. The function Ψ is everywhere discontinuous in case Y is
an injection; one seems to need IND0 to prove this. Similarly, Ψ is not quasi-
continuous at any x ∈ [0, 1], and we are done. 
�

In conclusion, basic third-order theorems like Cousin’s lemma and Jordan’s
decomposition theorem are ‘hard to prove’ in terms of conventional comprehen-
sion following Remark 1. Rather than measuring logical strength in terms of the
one-dimensional scale provided by conventional comprehension, we propose an
alternative two-dimensional scale, where the first dimension is based on conven-
tional comprehension and the second dimension is based on the neighbourhood
function principle NFP (see e.g. [37]). Thus, higher-order RM should seek out
the minimal axioms needed to prove a given theorem of third-order arithmetic
and these minimal axioms are in general a pair, namely a fragment of con-
ventional comprehension and a fragment of NFP. This two-dimensional picture
already exists in set theory where one studies which fragment of ZF and which
fragments of AC are needed for proving a given theorem of ZFC. Note that ZF
proves NFP as the choice functions in the latter are continuous.
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Abstract. We systematically compare ω-Boolean classes and Wadge
classes, e.g. we complement the result of W. Wadge that the collection
of non-self-dual levels of his hierarchy coincides with the collection of
classes generated by Borel ω-ary Boolean operations from the open sets in
the Baire space. Namely, we characterize the operations, which generate
any given level in this way, in terms of the Wadge hierarchy in the Scott
domain. As a corollary we deduce the non-collapse of the latter hierarchy.
Also, the effective version of this topic is developed.
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1 Introduction

Set operations were central tools of classical descriptive set theory from its very
beginning at the end of 19th century (E. Borel, H. Lebesgue, N.N. Luzin, M.Y.
Suslin, A.N. Kolmogorov, F. Hausdorff, L.V. Kantorovich, E.M. Livenson, and
many others). The set operations, now better known as ω-ary Boolean opera-
tions, gave rise to many important hierarchies in Polish and then quasi-Polish
(QP-) spaces, including the Borel, Luzin, and Hausdorff hierarchies [1,3].

Only in the 1970s new basic tools of DST, namely the Wadge reducibility and
Gale-Stewart games, were introduced giving rise to the Wadge hierarchy (WH) of
Borel sets [21] in the Baire space. Under suitable set-theoretic assumptions, the
WH was extended to arbitrary subsets of the Baire space [19] which subsumes
the mentioned classical hierarchies, as well as many others. This approach to WH
maybe developed without using the ω-ary Boolean operations at all.

Nevertheless, both approaches are closely related, as was demonstrated in [21]
by showing that the collection of non-self-dual levels of the Borel WH coincides
with the collection of classes (called ω-Boolean classes in the sequel), obtained
by applying Borel ω-ary Boolean operations to the class of open sets in the
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Baire space; below we refer to this fact as the Wadge theorem. Again, this may
be extended to arbitrary subsets of the Baire space under suitable set-theoretic
assumptions [19]. For simplicity, we avoid foundational discussions and use the
standard ZFC axioms, so some of our results are proved only for the Borel sets.

Outside zero-dimensional spaces, the relation between ω-Boolean classes and
WH (which was recently extended to all QP-spaces [15]) is quite intricate, and
some principal questions remained open even for the Baire space (e.g., the prob-
lem of characterizing the ω-ary Boolean operations which yield a given level of
the WH as explained in the previous paragraph); below we sometimes refer to
this question as the main problem of this paper. A systematic study of such
questions was initiated in [9] and continued in [11,12] where some particular
cases of the main problem were established.

In this paper we continue this investigation, in particular give a complete solu-
tion of the main problem. The corresponding characterization is based on the rela-
tion of this problem to the WH in Scott domain discovered in [11] when this WH
was not yet defined. Thus, the complete answer would not be possible without the
extension of the WH in [15]. Modulo this extension, our proofs here are easy. We
also establish some basic facts on the WH in the Scott domain and some other
quasi-Polish spaces (including the fundamental non-collapse property). This is
interesting on its own because the WH in non-zero-dimensional spaces was not
seriously studied before [15] where the corresponding questions were raised.

After recalling some basic notions and facts (including some new observa-
tions) in the next section, we provide relevant information about the ω-Boolean
classes in Sect. 3. In Sect. 4 we prove our main results. In the last two sections we
shortly outline the extension of this topic from sets to k-partitions and its effec-
tive version relevant to the fast evolving effective descriptive set theory; more
detailed exposition should appear in the journal version of this paper.

2 Preliminaries

We use standard set-theoretic notation and terminology, in particular XY

denotes the set of functions from Y to X. We often identify (using the char-
acteristic functions) P (X) = {Y | Y ⊆ X} with 2X where 2 = {0, 1}.

We recall the definition of ω-ary Boolean operations introduced in [4]. Asso-
ciate with any A ⊆ 2ω an infinitary Boolean term dA (in the signature {∪,∩, }̄)
with variables v0, v1, . . . as follows:

dA = dA(v0, v1, . . .) =
⋃

a∈A

ca(v0, v1, . . .)

where
ca(v0, v1, . . .) = (

⋂

a(i)=1

vi) ∩ (
⋂

a(i)=0

vi).

Note that ca is an infinitary analog of “elementary conjunctions” and dA—of
“disjunctive normal forms” in propositional logic.
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The term dA induces in the obvious way an ω-ary Boolean operation dA :
P (X)ω → P (X) on P (X) for every set X (actually on every complete Boolean
algebra). Namely, for any Xi ⊆ X, let dA(X0, . . .) is the value of dA under
substitution vi = Xi. We call two infinitary Boolean terms equivalent if they
define the same infinitary operation in any complete Boolean algebra.

Let us formulate some known properties of the introduced notions. Let 〈·, ·〉
be the standard computable bijection between ω × ω and ω.

Lemma 1. 1. The sets ca(X0, . . .) = {x ∈ X | ∀i(x ∈ Xi ↔ i ∈ a)}, a ⊆ ω, are
pairwise disjoint.

2. dA(X0, . . .) = g−1(A) where the function g = g(X0,...) : X → P (ω) is defined
by g(x) = {i ∈ ω | x ∈ Xi}.

3. A �→ dA(X0, . . .) is a homomorphism between complete Boolean algebras
(P (P (ω));∪,∩,̄ , ∅, P (ω)) and (P (X);∪,∩,̄ , ∅,X).

4. d↑a(X0, . . .) =
⋂

i∈a Xi, where ↑ a = {b ⊆ ω | a ⊆ b} for every a ⊆ ω.
5. f−1(dA(X0, . . .)) = dA(f−1(X0), f−1(X1), . . .) for every f : Y → X.
6. Any countable Boolean term is equivalent to the term dA for some Borel set

A ⊆ 2ω, and vice versa.
7. For any subsets A,B0, B1, . . . of 2ω there is a unique C ⊆ 2ω such that

dC(X0, . . .) = dA(dB0(X〈0,0〉,X〈0,1〉, . . .), dB1(X〈1,0〉,X〈1,1〉, . . .), . . .)

uniformly on X,X0, . . ..

Proof Hints. Items (1–5) are well known and straightforward. Item (6) was
observed in Theorem 6.4 of [9] where countable Boolean terms are also called
ω1-Boolean terms. For item (7) see e.g. Section 1.4 of [7]. 
�

In this paper we apply Boolean operations only to subsets of (topological)
spaces, so we assume acquaintance with basic notions of topology. By a cb0-space
we mean a countably based T0-space. Most often, we work with QP-spaces intro-
duced in [1] which include Polish spaces, ω-continuous domains, and countably
based spectral spaces.

A basic example of a QP-space is the Baire space N = ωω. There are two natu-
ral topologies on P (ω) = 2ω: the Cantor topology on 2ω which gives rise to the Can-
tor space C, and the Scott topology on P (ω) which gives rise to the Scott domain
Pω. Recall that a basis of the Cantor topology is given by the cones [σ] = σ · C,
σ ∈ 2<ω, which are clopen sets in C. A subbasis of the Scott topology is given by
the sets ↑ i =↑ {i} = {A ⊆ ω | i ∈ A}. The precise relation between Cantor and
Scott topologies are described in Theorem 5.3 of [11]; in particular, the Borel sets
in both topologies are the same. Both spaces C, Pω are QP.

The next lemma relates some properties of the operation dA : P (Xω) →
P (X) to topological properties of A w.r.t. the Cantor and Scott topologies.

Lemma 2. 1. For any open sets X0,X1, . . . in X, the function g(X0,...) : X →
Pω is continuous.

2. For any Xi ⊆ X and σ ∈ 2<ω we have g−1
(X0,...)([σ]) = cσ(X0, . . . , X|σ|−1),

where cσ(v0, . . . , v|σ|−1) = (
⋂

σ(i)=1 vi)∩ (
⋂

σ(i)=0 vi) is the finitary version of
the term ca in Sect. 2.
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3. Let X = P (ω). Then g−1
(↑0,↑1,...) is the identity function on P (ω), and A =

dA(↑ 0, ↑ 1, . . .).
4. For any Borel subsets A,B0, B1, . . . of C, the set C ⊆ 2ω from Lemma 1(7)

is also Borel.

Proof. (1) It suffices to show that g−1
(X0,...)(↑ i) is open in X for every i ∈ ω. This

holds because g−1
(X0,...)(↑ i) = Xi by Lemma 1(4).

(2) Straightforward by the definitions.
(3) The first assertion holds by Lemma 1(2), and it immediately implies the

second one.
(4) Follows from Theorem 6.4 of [9]. 
�

Next we recall the technical notion of a family of pointclasses from [13]. A
pointclass Γ(X) in a space X is a subset of P (X). A family of pointclasses is a
family Γ = {Γ(X)} parametrized by arbitrary spaces (or by spaces in a natural
class, say by the QP-spaces) such that Γ(X) ⊆ P (X) for any space X, and
f−1(A) ∈ Γ(X) for any A ∈ Γ(Y ) and any continuous function f : X → Y . In
particular, any pointclass ΓX) in such a family is downward closed under the
Wadge reducibility in X. Recall that B ⊆ X is Wadge reducible to A ⊆ X (in
symbols B ≤X

W A) if B = f−1(A) for some continuous function f on X. A basic
example of a family of pointclasses is O = {O(X)} where O(X) is the class of
open sets in X. Another example is the family B of Borel pointclasses.

Let A ⊆ 2ω. With any pointclass Γ(X) we associate the pointclass Γ(X)A =
{dA(X0, . . .) | X0, . . . ∈ Γ(X)}. We also associate with A the operator Γ �→ ΓA

on families of pointclasses defined by ΓA(X) = Γ(X)A.
Such operators Γ �→ ΓA subsume many useful concrete operators including

the operator Γ �→ Γσ where Γσ(X) is the set of all countable unions of sets in
Γ(X), the operator Γ �→ Γc where Γc(X) is the set of all complements of sets in
Γ(X), the operator Γ �→ Γd where Γd(X) is the set of all differences of sets in
Γ(X), and the operator Γ �→ Γp defined by Γp(X) = {prX(B) | B ∈ Γ(N ×X)}
where prX(B) is the projection to the second coordinate.

Iterating the operators from the previous paragraph in a familiar way (see e.g.
[13] for details), we obtain the classical Borel {Σ0

α}α<ω1 , Luzin {Σ1
α}α<ω1 , and

Hausdorff {Σ−1
α }α<ω1 hierarchies treated as families of pointclasses. We use the

standard Σ,Π,Δ-notation for the related levels of these and other hierarchies.
We will freely use nice properties of these hierarchies in Polish spaces [3] which
were extended to the QP-spaces in [1].

Many natural properties of families of pointclasses are preserved by the oper-
ators Γ �→ ΓA. E.g., a family of pointclasses Γ is reasonable if for any numbering
ν : ω → Γ(X) its universal set Uν = {(n, x) | x ∈ ν(n)} is in Γ(ω × X); note
that the family O is reasonable. Similarly, a representation ν : N → Γ(X) is a
Γ-total representation (TR) if Uν = {(a, x) | x ∈ ν(a)} is in Γ(N × X), and ν is
a principal Γ-TR if it is a Γ-TR and any Γ-TR is reducible to ν.

Lemma 3. 1. If Γ is a family of pointclasses then so is also ΓA.
2. If Γ is reasonable then so is also ΓA.
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3. If X be a cb0-space and Γ(X) has a principal Γ-TR then so does ΓA(X).
4. Let X be a countably based space and let Γ(X) be an arbitrary non-self-dual

level of the above-mentioned classical hierarchies. Then Γ(X) has a principal
Γ-TR.

5. There is a binary operation ∗ on P (2ω) such that Γ(X)A∗B = (Γ(X)A)B for
every pointclass Γ(X). The class B(C) is closed under ∗.

Proof Hints. Item (1) follows from Lemma 1(5). Proofs of (2–4) may be found
in [13]. Item (5) follows from Lemma 1(7) and Lemma 2(4) where Bi = B for
i < ω, see Sect. 1.7 of [7] for details. 
�

We conclude this section with recalling some notation and facts about the
WH. The quotient-poset of the preorder (P (N );≤W ) under the induced equiv-
alence relation ≡W is called the structure of Wadge degrees in N . W. Wadge
[21] has characterised the structure of Wadge degrees of Borel sets (i.e., the
quotient-poset of (B(N );≤W )) up to isomorphism. Namely, it is well founded
and for every Borel sets A,B we have A ≤W B or N \ B ≤W A; in particular
it has no 3 pairwise incomparable elements. He has also computed the rank υ
of this structure and has shown that if a Borel set A is self-dual, i.e. A ≤W A,
(resp. non-self-dual) then any Borel set of the next Wadge rank is non-self-dual
(resp. self-dual), any Borel set of Wadge rank of countable cofinality is self-dual,
and any Borel set of Wadge rank of uncountable cofinality is non-self-dual.

In [18] the following separation theorem was established: For any non-self-
dual Borel set A exactly one of the principal ideals {X | X ≤W A}, {X | X ≤W

A} has the separation property. The mentioned results give rise to the WH
which is, by definition, the sequence {Σα(N )}α<υ of all non-self-dual principal
ideals of (B(N );≤W ) that do not have the separation property and satisfy for
all α < β < υ the strict inclusion Σα(N ) ⊂ Δβ(N ) where, as usual, Δα(N ) =
Σα(N ) ∩ Πα(N ). The Σ,Π, and Δ-levels of WH are known as Wadge classes.
The collection of Wadge classes is semi-well-ordered (SWO) by inclusion, i.e., it
is well founded and for any Wadge classes A,B we have: A ⊆ B or Bc ⊆ A.

The WH was originally defined only for the Baire space, though the SWO-
property is easily extended to all zero-dimensional Polish spaces. Since for many
natural non-zero-dimensional spaces the structure of Wadge degrees was shown
to be far from being SWO (this is e.g. the case for Pω, see below), the extension
of the WH to such spaces (say, to Polish or QP-spaces) is not obvious. To obtain
an extension of WH to the QP-spaces that preserves the SWO-property, one can
use the characterization of non-empty QP-spaces as precisely the cb0-spaces X
such that there is a continuous open surjection ξ from N onto X [1].

As suggested independently in [8,14], one can define the WH {Σα(X)}α<υ

in X by Σα(X) = {A ⊆ X | ξ−1(A) ∈ Σα(N )}. One easily checks that the
definition of Σα(X) does not depend on the choice of ξ,

⋃
α<υ Σα(X) = B(X),

Σα(X) ⊆ Δβ(X) for all α < β < υ, and any Σα(X) is downward closed under
the Wadge reducibility in X. Using modified versions of set operations in [21],
relatively simple set-theoretic descriptions of levels of the WH in X was suggested
in [15]. The description was used to prove some basic properties of the WH in
X; it will also be used to deduce main results of this paper.
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3 ω-Boolean Classes Under Inclusion

By ω-Boolean classes we mean classes of the form Γ(X)A, for some pointclass
Γ(X) in a space X and A ⊆ C. Let Γ(X)+ = {Γ(X)A | A ∈ B(C)} (resp.
Γ(X)∗ = {Γ(X)A | A ⊆ C}) be the collections of ω-Boolean classes generated
from Γ(X) by the Borel (resp. by arbitrary) ω-ary Boolean operations. Since
the aim of this paper is to compare such collections with the corresponding
collections of Wadge classes in X, it is natural to ask when the collections of
ω-Boolean classes are SWO by inclusion.

As mentioned in the introduction, most often the collections of ω-Boolean
classes were considered over the family Γ = Σ0

1 which is of course very natural.
This case is also principal for our paper but other cases (e.g., other levels of the
Borel hierarchy) are also natural. The next result, attributed in [20] to A. Miller,
solves the analogue of the main problem of this paper forΔ0

1(C) as generating class.

Proposition 1. For any A ⊆ C we have dA(Δ0
1(C)) = {B | B ≤C

W A}, hence
Δ0

1(C)∗ coincides with the collection of all Wadge classes in C.

Corollary 1. The map A �→ dA(Δ0
1(C)) induces an isomorphism between the

structure of all Wadge degrees in C and the poset (Δ0
1(C)∗;⊆). Therefore, the

poset (Δ0
1(C)+;⊆) is SWO.

The next broad extension of one direction of this corollary was obtained in
Theorem 6.5 of [9] (we adjust the notation of [9] to this paper). It applies e.g.
to all Δ-levels of Borel hierarchies as generator sets.

Proposition 2. [9] Let Γ(X) be a subalgebra of the Boolean algebra P (X). Then
A ≤C

W B implies Γ(X)A ⊆ Γ(X)B. Therefore, (Γ(X)+;⊆) is SWO.

This proposition implies that (Γ(X)+;⊆) is SWO for many natural families
of pointclasses Γ.

Corollary 2. 1. Let X be an arbitrary space and Γ = Δ0
1+α for some α < ω1.

Then (Γ(X)+;⊆) is SWO.
2. Let X be a cb0-space and Γ = Σ0

2+α for some α < ω1, or X be a zero-
dimensional cb0-space and Γ = Σ0

1. Then (Γ(X)+;⊆) is SWO.

Proof. Item (1) is immediate by Proposition 2, so consider item (2). Let
A = P (ω) \ {∅}, then EA = Eσ for every family of pointclasses E. Then
Γ(X) = Δ(X)A, where Δ = Γ ∩ Γc. For every set B ∈ B(C) we then have
Γ(X)B = Δ(X)A∗B and A ∗ B ∈ B(C) by Lemma 3(5), so Γ(X)+ ⊆ Δ(X)+.
Since (Δ(X)+;⊆) is SWO by Proposition 2, so is also (Γ(X)+;⊆). 
�

Next we discuss the collection of ω-Boolean classes generated by the open
sets in Pω. The next result, which is a slight improvement of Theorem 6.3 in
[10], is similar to Proposition 1 where Cantor space is replaced by Scott domain
and clopen sets by open sets.

Proposition 3. For any A ⊆ Pω, dA(Σ0
1(Pω)) = {B | B ≤Pω

W A}.
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Proof. By Lemma 2(3), A = dA(↑ 0, ↑ 1, . . .) ∈ dA(Σ0
1(Pω)). Let now B ≤Pω

W A,
so B = f−1(A) for some continuous function f on Pω. By Lemma 1(5), B =
dA(f−1(↑ 0), f−1(↑ 1), . . .), hence B ∈ dA(Σ0

1(Pω)). This proves the inclusion
from right to left.

For the converse inclusion, let B ∈ dA(Σ0
1(Pω)). Then, by Lemma 1(2),

B = g−1
(X0,...)(A) for some open set Xi in Pω. Since g(X0,...) is a continuous

function on Pω by Lemma 2(1), B ≤Pω
W A. 
�

Corollary 3. The map A �→ dA(Σ0
1(Pω)) induces an isomorphism between the

structure of all Wadge degrees in Pω and (Σ0
1(Pω)∗;⊆).

In contrast with Corollary 1, the structure (Σ0
1(Pω)+;⊆) is far from being

SWO, as it follows from the results in [2,10] about the structure of Wadge degrees
in Pω. In fact, as shown in [2], this structure (and even its small substructure
of Δ0

2(Pω)-degrees) has infinite antichains and infinite descending chains. Since
the Borel Wadge classes in every QP-space is SWO, there is no hope to obtain
a wide extension of the Wadge theorem beyond zero-dimensional spaces.

4 ω-Boolean Classes vs Wadge Classes

In this section we establish our main results, in particular we characterize the
Borel ω-ary Boolean operations which generate any given non-self-dual level of
the WH from the open sets in N . This characterization is closely related to the
WH in Pω, as discovered in [11]; our main result is a broad extension of some
partial results of that paper. The extension became possible after extending the
WH to arbitrary spaces and establishing its useful properties in QP-spaces [15].
We also establish some new properties of these hierarchies which are interesting
on their own. In particular, we prove the non-collapse of the WH in Pω.

We start with a general fact about the WH in QP-spaces. The proof does not
immediately follow from the definition of WH in QP-spaces at the end of Sect. 2.
Instead, we use the equivalent set-theoretic definition of level Σα(X) of the WH
in X and its properties described in [15]. Since these are rather technical, we
give only a proof sketch. We think that reading the sketch with the paper [15]
at hand should suffice for verification of the proof. We very briefly recall the
corresponding terminology.

The definition is in terms of iterated {0, 1}-labeled well founded trees T .
In non-trivial cases (which hold in the proof) T is a well founded tree in 2<ω

labeled by similar iterated trees T (τ) = {σ ∈ 2<ω | τσ ∈ T}, τ ∈ T of lesser
rank. With any such tree T we associate iterated T -families F of sets over L =
{Σ1+γ(X)}γ<ω1 . Such a family F has the form ({Uτ}, {Fτ} where {Uτ}τ∈T is
a T -family of open sets and, for each τ ∈ T , Fτ is an iterated T (τ)-family of
sets over L = {Σ2+γ(X)}γ<ω1 of lesser rank. Intuitively, F represents a complex
mind-change procedure (uniformly on the levels Σ1+γ(X)) that defines a subset
of X.

Let L(X,T ) be the pointclass of sets defined by the T -families over L. Then
we can associate with any α < υ an iterated {0, 1}-labeled tree Tα in such a way
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that Σα(X) = L(X,T ). By the results in [15], the collection of all such L(N , T )
coincides with the collection of non-self-dual Borel Wadge classes in N .

Recall that any T0-space X has a partial order ≤X (the specialization order)
defined as follows: x ≤X y, if x ∈ U implies y ∈ U , for any open set U .

Theorem 1. Let X be a quasi-Polish space which has a smallest element ⊥
w.r.t. the specialization order. Then the Wadge hierarchy in X is discrete, i.e.,
Δα(X) =

⋃
β<α(Σβ(X) ∪ Πβ(X)) for every α < υ.

Proof Sketch. We argue by cases. The case α = 0 is trivial since Δ0 = ∅. Let
now α be a limit ordinal of uncountable cofinality. By the properties of WH in
N , we have Δα(N ) =

⋃
β<α Σβ(N ). By the preservation property of the WH in

X (see Theorem 4.6 in [15]), we obtain Δα(X) =
⋃

β<α Σβ(X). Note that the
existence of the smallest element is not in fact needed in this case.

Let now α be a limit ordinal of countable cofinality (note that in this case
the equality Δα(N ) =

⋃
β<α(Σβ(N ) ∪ Πβ(N )) fails, hence the argument of

the previous paragraph does not work). By the inclusions of levels of the WH
X, it suffices to show the inclusion Δα(X) ⊆ ⋃

β<α(Σβ(X) ∪ Πβ(X)). Let
S ∈ Δα(X), then both S, S are in Σα(X), hence S (resp. S) is defined by a
Tα-family F = ({Uτ}, {Fτ} (resp. G = ({Vτ}, {Gτ}).

From Definition 3.1 in [15], the countable cofinality of α, and the structure
of WH [21] it is not hard to deduce that the root label of Tα is 0 and, since
S ∪ S = X, X = (U0 ∪ U1 ∪ · · · ) ∪ (V0 ∪ V1 ∪ · · · ). Therefore, ⊥ is in one of these
sets Ui, Vi, let e.g. ⊥ ∈ Ui. Since Ui is open and ⊥ is smallest w.r.t. ≤X , we
get X = Ui. By Lemma 3.34(3) in [15] we get S ∈ L(X,Tα(i)), hence ξ−1(S) ∈
L(N , Tα(i)) where ξ : N → X is a continuous open surjectiion. But Tα(i) 
 Tα,
hence ξ−1(S) is in Σβ(N )∪Πβ(N ) for some β < α. By the preservation property,
S ∈ Σβ(X) ∪ Πβ(X).

Finally, let α = β + 1 be a successor ordinal, then we have to prove that
Δα(X) = Σβ(X) ∪ Πβ(X) (note that the equality Δα(N ) = Σβ(N ) ∪ Πβ(N )
fails, hence again the result again does not follow directly from the preservation
property). The argument used for ordinals of countable cofinality, also works in
this case, and shows that Δα(X) ⊆ Σβ(X) ∪ Πβ(X). 
�

By Wadge theorem, {dA(Σ0
1(N ) | A ∈ B(Pω)} = {Σα(N ),Πα(N ) | α < υ}.

A natural question is to characterize, for any given α < υ, the Borel sets A ⊆ Pω
for which dA(Σ0

1(N )) = Σα(N ). The answer is given in the next theorem that
extends several particular cases obtained in [11,12].

Theorem 2. Let A ∈ B(Pω) and α < υ. Then dA(Σ0
1(N )) = Σα(N ) iff A ∈

Σα(Pω) \ Πα(Pω).

Proof. Let first A ∈ Σα(Pω) \ Πα(Pω). By Lemma 2(1), the function g(X0,...) :
N → Pω is continuous for all Xi ∈ Σ0

1(N ). As A ∈ Σα(Pω), by Proposition
4.2 in [15] we obtain g−1

(X0,...)(A) ∈ Σα(N ), for all Xi ∈ Σ0
1(N ). Therefore,

dA(Σ0
1(N )) ⊆ Σα(N ) by Lemma 1(2).
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For the converse inclusion, consider the open continuous surjection ρ : N →
Pω where ρ(x) = {n | ∃i(x(i) = n + 1)}. Then ρ−1(A) ∈ Σα(N ) \ Πα(N )
by the preservation property, hence ρ−1(A) is Wadge complete in Σα(N ). As
dA(Σ0

1(N )) is downward closed under ≤N
W by Lemma 3(1), it suffices to show

that ρ−1(A) ∈ dA(Σ0
1(N )). But A = dA(↑ 0, ↑ 1, . . .) by Lemma 2(3), hence

ρ−1(A) = dA(ρ−1(↑ 0), ρ−1(↑ 1), . . .) by Lemma 1(5), and ρ−1(↑ 0), ρ−1(↑ 1), . . .
are open in N .

For the opposite implication, let dA(Σ0
1(N )) = Σα(N ). Let β be the least

ordinal such that A ∈ Σβ ∪ Πβ . Since Pω is a QP-space and ∅ is the smallest
element w.r.t. ≤Pω, by Theorem 1 we get that either A ∈ Σβ\Πβ or A ∈ Πβ\Σβ .
By the proof above, either dA(Σ0

1(N )) = Σβ(N ) or dA(Σ0
1(N )) = Πβ(N ). By

the properties of WH in N , the first alternative holds and β = α. 
�
We conclude this section with some corollaries of the above results concerning

the non-collapse property of the WH in some natural QP-spaces. We say that the
WH in X does not collapse, if Σα(X) �⊆ Πα(X) for all α < υ. The non-collapse
property was investigated in [17] where its close relation to the preorder ≤co on
spaces was established, where X ≤co Y iff there is a continuous open surjection
from Y onto X.

Theorem 3. Let X be a quasi-Polish space such that Pω ≤co X. Then the WH
in X does not collapse, and Theorem 2 holds for X in place of Pω.

Proof. As noticed in the proof of Theorem 2, the WH in Pω is discrete. We show
that it also does not collapse, i.e., Σα(Pω) �⊆ Πα(Pω) for every α < υ. By the
Wadge theorem, dA(Σ0

1(N )) = Σα(N ) for some Borel A ⊆ Pω. By Theorem 2,
A ∈ Σα(Pω)\Πα(Pω), so the WH in Pω does not collapse. Since Pω ≤co X, the
FH in X does not collapse as well by Proposition 3(1) in [17]. Let f : X → Pω
be a continuous open surjection. Repeating the proof of Theorem 2 with X in
place of N and f in place of ρ, we get the proof of the remaining statement. 
�

The above theorems apply to several natural spaces. We illustrate this by
only one example. Let ωω

⊥ be the Kleene domain considered in [10,11], i.e., the
set of partial functions on ω with the Scott topology. It is well known and easy
to see that ωω

⊥ is an ω-algebraic domain.

Corollary 4. The Wadge hierarchy in ωω
⊥ is discrete, and Theorem 3 holds for

X = ωω
⊥.

Proof. Since ωω
⊥ is an ω-algebraic domain, it is also a QP-space [1]. Since the

empty function ⊥ is the smallest element w.r.t. the specialization order ⊆ in ωω
⊥,

the WH in ωω
⊥ is discrete by Theorem 1. Since rng : ωω

⊥ → Pω is a continuous
open surjection, the remaining assertion follows by Theorem 3. 
�

5 Extension to k-partitions

The Wadge theory has an interesting extension from sets to k-partitions, and
even to Q-partitions, for any better quasiorder (BQO) Q [5,15]. Here we very
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briefly and informally discuss the extension of above results to this context,
focusing on k-partitions.

Instead of the sets A ⊆ 2ω used to define the ω-ary Boolean operations, we
now use k-partitions A : 2ω → k̄, where 2 ≤ k < ω and k̄ = {0, . . . , k − 1}
is an antichain with k elements; sets correspond to 2-partitions. The operation
dA : P (X)ω → P (X) from Sect. 2 now becomes the operation dA : P (X)ω → k̄X

defined by dA(X0, . . .) = A◦g(X0,...). It is easy to check that all items in Lemmas
1 and 2 which make sense under this extension, remain true.

The extension of results about pointclasses requires a straightforward exten-
sion of the notion of a family of pointclasses to that of a family of partition-
classes described in [13]; in particular, the Wadge reducibility ≤X

W is extended
to k-partitions as follows: for A,B ∈ k̄X , A ≤X

W B iff A = B ◦ f for some con-
tinuous function f on X. With this at hand, we associate with any A ⊆ 2ω the
operator Γ �→ ΓA sending families of pointclasses to families of partitionclasses
by ΓA(X) = Γ(X)A where Γ(X)A = {A ◦ g(X0,...) | Xi ∈ Γ(X)}. The analogue
of Lemma 3 is now straightforward. As already mentioned, the extension of WH
in N to k-partition was made in [5], and to all spaces in [15]. Note that the
collections of levels of these hierarchies are BQOs under inclusion.

The versions of the collections Γ(X)+ = {Γ(X)A | A ∈ B(C)} and Γ(X)∗ =
{Γ(X)A | A ⊆ C} from Sect. 3 are defined in the same way, only now A range
over the Borel k-partitions of C in the first case and over all k-partitions of C
in the second case. With these modifications, analogues of the results in Sect. 3
hold with almost the same proofs, only in the formulations which mention the
SWO-property it should be replaced by the BQO-property.

The main results in the previous section also extend to k-partitions but the
proof of the extension of Theorem 2 requires some additional efforts because it
essentially depends on the Wadge theorem. Its extension to k-partitions may be
proven with a heavy use on notions and techniques from [15]; full details cannot
be included in this conference paper.

6 Effectivization

The effective version of descriptive set theory was first developed in computabil-
ity theory for concrete popular zero-dimensional spaces. More recently, it was
extended to broader classes of effective spaces interesting to computer science.
Here we briefly and informally discuss effective aspects of the topic developed in
this paper.

Instead of abstract spaces, we now have to deal with effective spaces, and
several classes of such spaces (say, the effective cb0-spaces) are now commonly
known. In such spaces one always has a numbering of a base which induces
effective versions of basic topological notions, including those of effectively open
sets, computable functions, effectively open functions, and so on. A more recent
notion is that of a computable QP-space; this is an effective cb0-space X such
that there exists a computable effectively open surjection ξ : N → X onto X
(see e.g. [16] for details). A lot of important spaces are computable QP. Also,
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the classical hierarchies are readily effectivized; levels of the effective versions
are denoted in the same manner as levels of the corresponding classical ones,
but using the lightface letters Σ,Π,Δ instead of the boldface Σ,Π,Δ used for
the classical hierarchies.

An effective family of pointclasses is a family Γ = {Γ (X)} parametrized by
effective cb0-spaces (or, say the computable QP-spaces) such that Γ (X) ⊆ P (X)
and f−1(A) ∈ Γ (X) for any A ∈ Γ (Y ) and any computable function f : X →
Y . In particular, any effective pointclass Γ (X) is downward closed under the
effective Wadge reducibility ≤X

eW in X, where B ≤X
eW A iff B = f−1(A) for

some computable function f on X. Natural examples are the family O = {O(X)}
where O(X) is the class of effectively open sets in X, the family B = {B(X)}
of the effectively Borel pointclasses, and any level of the effective versions of the
classical hierarchies. An effective family Γ is numbered if there are numberings
γX : ω → Γ (X) such that UγX

∈ Γ (ω × X) for all X; all mentioned examples
of effective families are numbered. As above, we associate with any A ⊆ 2ω

and any numbered effective family Γ the family ΓA by ΓA(X) = Γ (X)A, where
Γ (X)A = {g−1

(X0,...)(A) | {Xi} is computable w.r.t. γX}. With these notions at
hand, many effective analogues of facts in Sect. 2 hold. In particular, Γ �→ ΓA is
an operator on the effective families of pointclasses.

The effective versions

Γ (X)+ = {Γ (X)A | A ∈ B(C)}, Γ (X)∗ = {Γ (X)A | A ⊆ C}

of the collections

Γ(X)+ = {Γ(X)A | A ∈ B(C)}, Γ(X)∗ = {Γ(X)A | A ⊆ C}

from Sect. 3 are defined in the same way, only now A range over the effectively
Borel subsets of C in the first case. With these modifications at hand, analogues of
the results in Sect. 3 hold with almost the same proofs, with only important dif-
ference that now the SWO- and BQO-properties fail because the effective Wadge
reducibility induces very rich structures (e.g., in the space ω this reducibility is
just the many-one reducibility).

There are at least two natural ways to obtain modifications leading to results
resembling the results in the previous sections, also with the SWO- and BQO-
properties. The first one is to restrict considerations to finite-ary Boolean oper-
ations instead of the ω-ary ones. This approach was explored already in [9] and
led to a nice theory for the case of sets; this approach may also be straightfor-
wardly extended to the case of k-partitions if we apply the finitary effective WH
developed in [16].

Another approach is to develop the effective infinitary version of the WH
from [6]. We guess that the effective version WH in QP-spaces from [15] based
on the ideas and results of [6] will lead to a satisfactory effective analogues of
the main results, including Theorem 2. We hope to do this in the journal version
of this paper.
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Abstract. This paper provides a brief survey of recent achievements in
characterizing computational complexity of partial differential equations
(PDEs), as well as computing solutions with guaranteed precision within
the exact real computation approach. The emphasis is on classical solu-
tions and linear PDE systems, since these are the cases where most of
the progress has been achieved so far. Complexity, as it turns out, heav-
ily depends on the smoothness of the initial data, which has similarities
with the situation for ordinary differential equations (ODEs).

1 Introduction

Differential equations model various processes in physics, engineering and many
other areas, which requires solving them exactly or approximately. Especially
for safety critical and small scale applications it is important to compute the
solutions with arbitrary guaranteed prescribed precision. While explicit solutions
formulas can be derived for some particular cases, most problems are solved
numerically which often leads to computational instabilities.

The computable analysis paradigm [2,25,34] provides a rigorous framework
for computation over continuous structures, which gives rise to the exact real
computation approach, see [22] and references therein. This approach is different
from symbolic computation in computer algebra, as well as being different from
traditional reliable numerical methods. In particular, real numbers are treated
as exact entities (as opposed to intervals, see, e.g., [23]), and the solutions to
various continuous problems are computed by approximation up to guaranteed
absolute error 1/2n, where n is the desirable number of the output digits (as
opposed to intermediate precision propagation).

In order to assess the efficiency of such computations, it is important to char-
acterize the bit-cost of the considered algorithms, and also potentially find the
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optimal complexity class corresponding to the original problem, as well as the
optimal algorithm. In [3,8,14,15,35] the real bit-complexity approach is devel-
oped (see also the survey [13] and references therein); bit-cost is measured w.r.t.
the output precision parameter n. In particular, the real-valued counterparts of
the classical “discrete” complexity classes can be defined:

NC ⊆ P1 ⊆ P ⊆ NP ⊆ #P1 ⊆ #P ⊆ PSPACE = PAR ⊆ EXP. (1)

For simplicity of notation, we identify decision and functional complexity classes,
e.g., write P instead of FP.

There has been significant progress in relating broad classes of ordinary dif-
ferential equations (ODEs) to these complexity classes: [1,7,9,10,12,24], see also
the recent survey [6] and references therein. The survey [6] extensively covers the
current achievements in computability of ODEs and of partial differential equa-
tions (PDEs); as mentioned therein, most computability results are for particular
cases of practically important PDEs, some of them nonlinear, e.g. Korteweg de
Vries [5] and Navier-Stokes [33] equations.

However, there is hope to relate broad classes of PDEs to the complexity
classes (1) in a similar way as being pursued for ODEs, as well as for other
problems on continuous structures. This is a natural program of investigations
that should be highly rewarding for both classical analysis/numerical methods
and computability/complexity theories.

One of the main goals of the present survey is to highlight the current progress
and possible directions of future research in computational complexity and exact
real computation of PDEs systematically, in order to potentially achieve as clear
and full picture as there is for ODEs. See a brief summary of ODE/PDE complex-
ity results in Table 1 below and detailed formulations for PDEs in Sects. 2, 3. For
ODEs (2) (below), it has been proved that computing the solution �u = �u(t) is in
general PSPACE-complete [7,9], and there is a polynomial time algorithm, if the
right-hand side function is analytic and polynomial time computable (see [10] for
a uniform result, and [24] for the case of unbounded domains). For PDEs, which
also involve spatial derivatives of the unknown function �u = �u(t, x1, . . . , xd),
there are more possibilities to consider:

• Linear (w.r.t. the derivatives of �u; the coefficients may nonlinearly depend on
�x), quasilinear (the coefficients may also depend on �u) and nonlinear;

• With coefficients, initial and/or boundary conditions belonging to different
functional classes, such as analytic, finitely continuously differentiable or
Sobolev spaces;

• Hyperbolic, parabolic or elliptic types in the 2-dimensional case; in the general
case there is no full classification, but there are other important subclasses,
e.g., subelliptic, subparabolic, etc.

Currently only the classical (analytic and finitely continuously differentiable)
solutions of PDEs have been considered from the real complexity viewpoint,
since the real complexity approach is based on evaluating the function, while
integrable/Sobolev functions cannot be evaluated at a given point. Therefore
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the definitions of bit-complexity of such generalized functions still need to be
fully worked out; such work is started in [19,32]. Most of the progress has been
by now achieved for linear (systems of) PDEs, and the complexity classification
for them is close to clear, while for quasilinear systems there are only upper
bounds such as 2-EXP.

Table 1. Brief summary of ODE/PDE complexity results; see the cited papers for
detailed assumptions.

ODEs Evolutionary PDEs (including
Hyperbolic and Parabolic)

Other Types of PDEs
(including Elliptic)

{
d
dt

�u = f(t, �u),

�u(0) = �v
(2)

� f ∈ P analytic =⇒ �u ∈ P ([10]
uniform parametrized complex-
ity result; [24] for unbounded
domains and polynomial f)

� f ∈ P linear =⇒ �u ∈ Log2-
SPACE [18]

� f ∈ P Lipschitz or C1 =⇒ �u
PSPACE-“complete” [7,9]

{
�ut =

∑
|�j| B�j(�x) · ∂�j�u,

�u(0, �x) = ϕ(�x)

� ϕ, Bj ∈ P analytic =⇒ �u ∈ P
([18]; [29] uniform version; [27,
30] analysis of dependence on
constant matrix coefficients Bj =
B∗

j over various real closed fields)
� ϕ, Bj ∈ P: Ck, k ≥ 1 (well posed)

=⇒ [16,17]
• �u ∈ PSPACE-“complete”

(general case)
• �u ∈ #P (constant periodic

case)
• �u#P1-“hard” (heat equa-

tion)
• �u ∈ P for constant mutually

commuting matrices

� for the quasilinear case Bj =
Bj(�x, �u) upper bound 2-EXP
[18].

⎧⎪⎨
⎪⎩

d∑
j=1

∂2

∂x2
j
u = f in Bd

u |∂Bd= g(�x)

� f, g ∈ P =⇒ u ∈#P;
#P1-“hard” [11]

Thus far it has been productive to study bit-complexity of classical numer-
ical and analytic approaches adapted to the computable analysis framework,
and try to optimize them; as well as prove hardness results, demonstrating the
best potentially possible lower bound. Most of the results are currently obtained
for linear systems of PDEs; some of the methods can be extended to nonlinear
PDEs as well (by now with “bad” upper bounds only). The evolutionary PDEs
(4), discussed below, include such practically important examples as the heat,
wave and Schroedinger equations, as well as acoustics, elasticity and Maxwell
systems. Similarly to the ODE case, analytic initial data yield polynomial time
computable solutions in many important cases, while finitely continuously dif-
ferentiable ones yield PSPACE or #P.

Section 2 is essentially based on the papers [11,16,18] and overviews the
recent results on characterizing complexity of computing the solution from the
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fixed polynomial time computable initial data. Section 3 is based on [27,29,30]
and focuses on complexity of solution operators. Section 4 contains concluding
remarks and possible future research directions.

2 Complexity of the Solutions with Fixed Initial Data

The real complexity classes are defined in [15]; the equivalent formulations below
are from [13,16,17]; see also the more subtle definitions of #P and #P1 therein.

Definition 1. For a partial real function f ⊆ R
d → R

d′
, computing f means

converting, for every x ∈ dom(f), any sequence (�am) ⊆ Z
d with ||�x − �am

2m || ≤
1/2m into some sequence (�bn) ⊆ Z

d′
with ||f(�x) − �bn

2n || ≤ 1/2n.
Such a computation is said to run in polynomial (exponential) time if �bn

appears within a number of steps at most polynomial (exponential) in n; similarly
for polynomial space. The (real counterparts of the) complexity classes P, EXP,
PSPACE are defined accordingly.

The papers [11,16] analyze bit-complexity of linear PDEs with finitely contin-
uously differentiable initial data. In [11], the Dirichlet problem for the (elliptic)
Poisson’s equation on an open Euclidean unit ball Bd = {�x ∈ R

d : |�x| < 1} is
studied:

d∑

j=1

∂2

∂x2
j

u = f in Bd, u |∂Bd= g(�x). (3)

Theorem 1. [11, Theorem 2.1]

a) If P = #P, then for every choice of polynomial time computable functions
f : Bd → R and g : ∂Bd → R, the solution u : Bd → R to (3) is again
computable in polynomial time.

b) There exist polynomial time computable functions f, g such that the solution
u is not polynomial time computable unless P1 = #P1.

Theorem 1a can be strengthened to “u is computable in #P”; see also a comment
in [16, Conclusion] regarding Theorem 1b and the inaccuracy (“P = #P” instead
of “P1 = #P1”) in the original formulation in [11]. Note that P, #P, P1, #P1 in
Theorem 1 are the corresponding “discrete” complexity classes.

In [16,18] the main focus is on the linear evolutionary systems of PDEs with
initial conditions

{
�ut =

∑
|�j| B�j(�x) · ∂�j�u, 0 ≤ t ≤ 1, �x ∈ Ω,

�u |t=0= ϕ(�x), �x ∈ Ω,
(4)
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and, possibly, boundary conditions

L�u(t, �x) |∂Ω= 0, (t, �x) ∈ [0, 1] × ∂Ω, (5)

where Ω = [0, 1]d is the unit cube (for technical simplicity); ∂Ω is its boundary;
the solution �u = (u1, . . . , ud′) = �u(t, �x) is an unknown function on Ω with
values in R

d; L in the boundary condition is a linear differential operator of
order strictly less than the order of the differential operator

∑
|�j| B�j(�x) · ∂�j.

The coefficients are d′ × d′ matrices B�j that may depend on �x, but not on t

(autonomous case); �j = (j1, . . . , jd) denotes a multi-index of order |�j| = j1 +
j2 + . . . + jd, ∂�j = ∂j1

1 · · · ∂jd
d denotes the corresponding differential operator,

where ∂jk
k = ∂jk

∂x
jk
k

; and ϕ(�x) is the initial condition. Note that the equations

(4) are linear in the derivatives, but the matrix coefficients B�j can depend on �x
non-linearly.

The following results (Theorem 3 below) study the bit-cost of the difference
scheme approach adapted to the computable analysis/exact real computation
paradigms. Recall that for a linear differential operator A, the matrix A(h)

(constructed using a uniform grid on Ω with the grid step h = h(n)) defines
the corresponding difference scheme

u(h,(l+1)τ) = Ahu(h,lτ), u(h,0) = ϕ(h). (6)

Its entries are denoted (A(h))I,J , 1 ≤ I, J ≤ K. Here K ∼ 2O(n) is the dimension
of the vectors �u(h,mτ) approximating the solution �u(mτ, �x, ) at time mτ ≤ 1, i.e.,
for 1 ≤ m ≤ M := 1/τ ∼ 2n. τ, h ∼ 1/2n denote the temporal and spatial grid
widths, respectively.

Items (i), (ii) of the following hypotheses, necessary for the bit-complexity
results, are very natural and easy to check. Item (iii) assumes the difference
scheme converging to the solution w.r.t. the maximum norm, which is not always
considered in numerical analysis, but such schemes can be constructed in par-
ticular cases, usually under stronger smoothness assumptions (see Example 1
below). The L2-norm convergence is more standard; however, as mentioned in
the introduction, the current bit-complexity notions are based on the evalua-
tion of the function and the sup-norm while an L2 function cannot be evaluated
pointwise; development of coding theory for integrable functions is in progress.

Hypotheses 2. (i) The problem (4), (5) is well-posed (Hadamard) in that the
classical solution �u(t, �x) to (4) exists, is unique and depends continuously on
the initial data in the following sense:

ϕ(�x) ∈ Cl(Ω̄), u(t, �x) ∈ C2([0, 1] × Ω̄), ‖u‖C2([0,1]×Ω̄) ≤ C0‖ϕ‖Cl(Ω), (7)

for some fixed C0, l ≥ 2.
(ii) The initial functions ϕ(�x) and matrix coefficients Bj(�x) as well as their

partial derivatives up to order l are polynomial time computable.
(iii) The system (4) admits a difference scheme Ah(n) (see (6) above) which is

polynomial time computable, and its solution u(n) converges to the solution
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�u of (4) w.r.t. the maximum norm on the uniform grid Gh(n) with the step
h = h(n):

max
x∈Gh(n)

∣∣�u|Gh(n) − u(n)
∣∣ < C · h(n), C does not depend on n.

Note that technically a difference scheme is a family Ah(n) of matrices of
dimension growing exponentially in n → ∞ such as to approximate the operator
A =

∑
|�j| B�j(�x) · ∂�j with increasing precision; the approximating solution u(n) is

a sequence of vectors of dimension growing exponentially in n. See [16, Definition
5] for adjustment of the complexity classes to this case.

Theorem 3. [16, Theorem 2a,b]

a) The solution �u of (4) under Hypotheses 2 is computable in PSPACE.
b) If additionally the difference scheme Ah from (iii) is a sum of tensor products

of circulant block matrices of constant bandwidth, then evaluating the solution
(t, �x) 
→ �u(t, �x) of (4) is computable in #P.

Remark 1. (i) Difference scheme matrices of Theorem 3b correspond to the case
of constant matrix coefficients B�j in (4) and periodic boundary conditions,
see (10) below.

(ii) An important tool for proving Theorem 3 is recursive matrix powering
(instead of step-by-step iterations (6)), and its reduction to multinomial
powering for Theorem 3b.

(iii) In [17], Theorem 3a is strengthened to proving PSPACE, in general, optimal
for the class (4), via a reduction to (characteristic) ODE systems, solutions
of which are proved PSPACE-hard in [7].

An important and rich class of PDEs of the form (4) are the first-order
systems

�ut =
∑d

j=1
Bj(�x) · ∂xj

�u, �u(0, �x) = ϕ(�x). (8)

The discrete solutions of (8) are proved to be in polynomial parallel time in
[21] by means of multigrids.

Example 1. [16, Example 2] Many linear evolutionary PDEs admit difference
schemes that satisfy the Hypotheses 2 and thus can be computed in PSPACE or
#P according to Theorem 3, including:

a) The heat equation

ut = a2
∑d

j=1
∂2

xj
u, �u(0, �x) = ϕ(�x) (9)

with periodic boundary conditions

u(t, x1, . . . , xj−1, 0, xj+1, . . . , xd) = u(t, x1, . . . , xj−1, 1, xj+1, . . . , xd) (10)

(same equalities hold also for ux, uy), and a polynomial time computable
initial function, provided that u(t, �x) ∈ C(1,4)([0, T ] × Ω̄).
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b) The Wave Equation

utt = a2
∑d

j=1
∂2

xj
u

with periodic boundary conditions and polynomial time computable initial
functions, provided that u(t, x, y) ∈ C(4,5)([0, T ] × Ω̄).

c) The two-dimensional acoustics system
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ0
∂u

∂t
+

∂p

∂x
= 0,

ρ0
∂v

∂t
+

∂p

∂y
= 0,

∂p

∂t
+ ρ0c

2
0

(
∂u

∂x
+

∂v

∂y

)
= 0

can be equivalently reduced to the two-dimensional wave equation; as well
as some other symmetric hyperbolic systems ((8) with constant coefficients
Bj = B∗

j ), which are equivalent to higher-order wave equations.

For the heat equation, the hardness result is similar to Theorem 1b for the
Poisson equation:

Theorem 4. [16, Theorem 2d] For the heat equation (9), (10) there exists a
polynomial time computable initial condition ϕ such that the solution u is clas-
sical but cannot be computed in polynomial time unless P1=#P1.

For a particular case (basically reducible to a 1-dimensional system) polyno-
mial time complexity is established via the characteristics method:

Theorem 5. [16, Theorem 2c] Evaluating the solution �u of (8) is polynomial
time computable if the matrices Bj are constant and mutually commute for j =
1, . . . d.

Evaluating the solution �u of (8) is also polynomial time computable for the
case of analytic variable coefficients and initial functions, i.e., the Cauchy-
Kovalevskaya case: see [18, Theorem 3] and the uniform version in Theorem 10 in
Subsect. 3.2 below. Note that for quasilinear equations, when Bj = Bj(�x, �u) the
situation is more complicated, and, even in the analytic Cauchy-Kovalevskaya
setting, the best known upper bound is by now 2-EXP.

To summarize, for fixed polynomial time computable initial and matrix coef-
ficient functions, there is a pretty clear picture for complexity of linear PDEs.
Computing solutions of linear evolutionary PDE systems with variable coef-
ficients (4) (which include hyperbolic and parabolic systems) is, in general,
PSPACE-complete (Theorem 3a and Remark 1(iii)), which is similar to the gen-
eral ODE case. For the case of constant coefficients and periodic boundary con-
ditions, the complexity bound can be improved to #P (Theorem 3a and Remark
1(i)), which is same as for the (elliptic) Poisson equation (Theorem 1a); both
Poisson and heat equations are #P1-hard (Theorem 1b, Theorem 4). For the
analytic case, solutions of both ODEs and linear evolutionary PDEs are poly-
nomial time computable, which makes them feasible to compute in exact real
computation packages (see further comments at end of Subsect. 3.2).
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3 Complexity of Solution Operators

This section summarizes results on complexity of solution operators of several
important subclasses of PDEs (4).

3.1 Restricting to Computable Real Closed Fields

In [27,30,31], computability and complexity of solution operators of symmet-
ric hyperbolic systems (a particular and practically important subclass of the
systems (8))

A�ut +
∑d

j=1
Bj · ∂xj

�u = f(t, �x), �u(0, �x) = ϕ(�x), (11)

where A = A∗ > 0, Bj = B∗
j are constant matrices, were investigated based on

the difference scheme approach.
It is important to emphasize that the situation here is rather subtle, since

the schemes behave well only if spectral decompositions of the involved matrices
and matrix pencils are known. But the spectral decomposition even for a sym-
metric 2 × 2-matrix is known to be non-computable [36]. As observed in [26],
the problem becomes computable (even for d′ × d′-matrices uniformly on d′) if
matrix coefficients range over any fixed computable ordered field of reals. This
observation led to some new facts on computable, primitive recursive (PR), and
polynomial time computable real closed fields of reals and their applications to
the computability and complexity issues for solution operators in [27,30], shortly
discussed below. For basics of computable structure theory see e.g. [4].

The domain H of existence and uniqueness of the Cauchy problem is the
intersection of semi-spaces t ≥ 0, xi − μ

(i)
maxt ≥ 0, xi − 1 − μ

(i)
mint ≤ 0, (i =

1, . . . , d) of Rd+1 where μ
(i)
min, μ

(i)
max are respectively the minimum and maximum

of the eigenvalues of the matrix A−1Bi. Therefore, the computation of H reduces
to the computation of the eigenvalues of the matrices A−1Bi, and can be done
in polynomial time [30, Theorem 4].

By computing the solution �u ∈ C2(Ω) of (11), in the paper [30] we mean to
output the following: (codes of) a rational T > 0 with H ⊆ [0, T ] × Q, a spatial
rational grid step h dividing 1, a time grid step τ dividing T and a rational
h, τ -grid function v : Gτ

N → Q such that

||�u − υ̃ |H ||sL2 <
1
a
. (12)

Denote

M1(A, B, f) = max
i

{
||Bi||2, ||(A−1

Bi)
2||2,max

k
{|μk| : det(μkA − Bi) = 0}, sup

t,x
|| ∂2f

∂xi∂t
(t, �x)||2

}
,

M2(A, B, f, ϕ) = max
i,j

{
||A−1

BiA
−1

Bj − A
−1

BjA
−1

Bi||2, sup
t,x

|| ∂2f

∂xi∂xj

(t, �x)||2, sup
x

|| ∂2ϕ

∂xi∂xj

(�x)||2
}

.
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Theorem 6. [30, Theorem 5] Let the dimension d be fixed; A,B1, . . . , Bd ∈
Md′(Ralg) where Ralg is the field of algebraic real numbers, ϕ1 . . . , ϕd′ ∈
Q[x1 . . . , xd] and f1 . . . , fd′ ∈ Q[t, x1 . . . , xd]. Then

a) The solution u is computable from A,B1, . . . , Bd, f, ϕ, a, d′ in EXP.
b) If additionally d′, a and M are fixed and such that

max{|M1(A,B, f)|, |M2(A,B, f, ϕ)|} ≤ M,

then u is computable from A,B1, . . . , Bd, f, ϕ in polynomial time.

The proof of this theorem is based on the following difference scheme app-
roach modification, which can be used for guaranteed precision computations:

1. Computation of steps (for technical simplicity, for the 2-dimensional case):

h ≤ 1

2aP(A, B1, B2, ϕ)
, where P(A, B1, B2, ϕ) =

λmax(A)

λmin(A)
· max{|| ∂2ϕ

∂xi∂xj
||s}·

·max{||A||2, ||B1||2, ||B2||2, ||(A−1B1)2||2, ||(A−1B2)2||2,
||A−1B1A

−1B2 − A−1B2A
−1B1||2};

τ ≤ h ·
(

1

maxi{|μi| : det(μiA − B1) = 0} +
1

maxi{|μi| : det(μiA − B2) = 0}
)−1

.

Both h and τ can be computed in polynomial time, since all the expressions in
P(A,B1, B2, ϕ) (eigenvalues, matrix multiplication, taking an inverse matrix,
differentiating rational polynomials) are polynomial time computable.

2. Applying the difference scheme based on standard algorithms.

The modification consists in (i) explicitly computing the grid steps and
domain of existence and uniqueness, via polynomial time algorithms; and (ii)
computing the arising on Step 2 eigenvectors of the matrix pencils (μA−Bj) via
symbolic computations; see [30] for all details and encodings, as well as comments
in the beginning of this subsection.

In [27] primitive recursive (PR) computability of the solution operator for
(11) is proved (the natural precise notion of PR-computability in PR-metric
spaces may be found in the arXiv version [28] of [27]). By a PRAS-field we mean
a PR-presentable ordered subfield A of the reals such that given b ∈ A, one can
primitive recursively find k ∈ N with b < k, and given a polynomial in A[x],
one can primitive recursively find its factorization to irreducible polynomials; Â
denotes the real closure of A.

Theorem 7. [27, Theorem 14] Let M,p ≥ 2 be integers. Then the operator
(A,B1, . . . , Bd, ϕ) 
→ u for (11) is a PR-computable function from the space
S+ × Sd × Cp+1

s (Q,Rd′
) to Cp

sL2
(H,Rd′

) where S and S+ are respectively the
sets of all symmetric and symmetric positively definite matrices from Md′(Â),
|| ∂ϕ

∂xi
||s ≤ M and || ∂2ϕ

∂xi∂xj
||s ≤ M for i, j = 1, 2, . . . , d.
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Theorem 8. [27, Theorem 15] Let M,p ≥ 2 be integers and A,B1, . . . , Bd ∈
Md′(Rp) be fixed matrices, where Rp is the field of PR real numbers. Then the
solution operator ϕ 
→ u for (11) is a PR-computable function (uniformly on
d, d′) from Cp+1

s (Q,Rd′
) to Cp

sL2
(H,Rd′

), || ∂ϕ
∂xi

||s ≤ M and || ∂2ϕ
∂xi∂xj

||s ≤ M for
i, j = 1, 2, . . . , d.

We conclude with the following PR-version of results of [30] (Theorem 6
above). The formulation of Theorem 9 is broader than of Theorem 6, because now
the algorithm is uniform on d, d′, a and works not only with algebraic numbers;
all computations are precise and performed within the real closure Â of any
PRAS-field A.

Theorem 9. [27, Theorem 16] Given integers d, d′, a ≥ 1, matrices A,B1 . . . ,

Bd ∈ Md′(Â), and rational functions ϕ1 . . . , ϕd′ ∈ Â(x1 . . . , xd), f1 . . . , fd′ ∈
Â(t, x1 . . . , xd) as in (11), one can primitive-recursively compute a rational
T > 0 with H ⊆ [0, T ] × Q, a spatial rational grid step h dividing 1, a
time grid step τ dividing T and an h, τ -grid function v : Gτ

N → Â such that
||�u − υ̃ |H ||sL2 < a−1.

In this way, informally speaking, the class of PR functions is closed under
solution operators of (11), while the class of polynomial-time computable func-
tions is not. In Theorem 6b, stating polynomial-time computability of the solu-
tion, the output precision parameter is fixed (in all other results it is not).

3.2 Uniform Complexity for Analytic Inputs

In [29] we prove a uniform polynomial time computable version of the Cauchy-
Kovalevskaya theorem (first formulated nonuniformly in [18]), as well as uni-
form polynomial time computability of the heat and Schroedinger equations for
the case of analytic initial data. The following definition introduces coefficient
bounds used in Theorems 10, 11 below.

Definition 2. [29, Definition 2] Fix d ∈ N.

a) Consider a multi-index α ∈ N
d and �x ∈ R

d. Abbreviate �xα := xα1
1 · · · xαd

d and
∂α := ∂α1

1 · · · ∂αd

d and α! = α1! · · · αd! and |α| = α1 + · · · + αd.
b) Consider a complex multi-sequence (aα ) : Nd → C. A pair (M,L) with M,L ∈

N is called a coefficient bound for (aα ) if it satisfies

|aα | ≤ M · L|α | for all α ∈ N
d. (13)

c) Consider a complex function f analytic in some neighborhood of [−1; 1]d.
A pair (M,L) with M,L ∈ N is called a coefficient bound for f if it is a
coefficient bound for the multi-sequence ∂αf(�x)/α! for every �x ∈ [−1; 1]d.
Same for a complex function f analytic on the hyper-torus

Ω =
(
[0; 1) mod 1

)d
.



Computational Complexity of PDEs 309

The latter means that, for some L and for every �x ∈ Ω,
( − 1/L,+1/L

)d � �y 
→ f(�x + �y mod �1) =
∑

α
fα�yα

is a converging power series, with complex Taylor coefficient sequence
(
fα

)

depending on �x. Here 1/L is a radius of convergence of f .

Theorem 10. [29, Theorem 3] Fix d ∈ N and consider the solution operator
that maps any analytic right-hand sides B1, . . . , Bd : [−1; 1]d → C

d′×d′
and

initial condition ϕ : [−1; 1]d → C
d′

and ‘small’ enough t ∈ C to the solution
u = u(t, ·) of (8).

This operator is computable in parameterized time polynomial in n + L +
log M , where ϕ,B1, . . . , Bd are given via their (componentwise) Taylor expan-
sions around �0 as well as integers (M,L) as coefficient bounds to ϕ,B1, . . . , Bd

componentwise.

The heat and Schrödinger’s equations are not covered by the Cauchy-
Kovalevskaya Theorem.

Theorem 11. [29, Theorem 4] Fix d ∈ N and consider the following linear par-
tial differential equations on the d-dimensional hypercube with periodic boundary
conditions Ω =

(
[0; 1) mod 1

)d, that is, analytic initial data ϕ : [0; 1]d → C

satisfying

∂α ϕ(x1, . . . , xj−1, 0, xj+1, . . . , xd) = ∂α ϕ(x1, . . . , xj−1, 1, xj+1, . . . , xd) (14)

for all α ∈ N
d, all j = 1, 2 . . . , d and all �x ∈ Ω; similarly for the solution

u(t, ·) : [0; 1]d → C for all t > 0. Recall that Δ = ∂2
1 + ∂2

2 + · · · + ∂2
d denotes the

Laplace operator.

a) Consider the heat equation

ut = Δu, u(0, ·) = v. (15)

b) Consider the Schrödinger equation of a free particle

ut = iΔu, u(0, ·) = v. (16)

For any t > 0 and for any initial data ϕ given by coefficient bounds (M,L) and
ϕ’s power series expansion at each �x = (2�� + �1)/(2L) ∈ Ω, � ∈ {0, 1, . . . , L −
1}d, the unique analytic solution u(t, ·) : Ω → C to each of the above PDEs is
computable in parameterized time polynomial in n + log t + L + log M .

The uniform complexity notions for the case of analytic functions, extending
Definition 1, as well as details of the exact real computation approach applied to
the considered setting, are collected in [29, Section 2]. The algorithms developed
in proofs of Theorems 10, 11 have been used to create exact real computation
solvers (implemented in iRRAM [20]) for the corresponding classes of analytic
PDEs [29].
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4 Conclusion

The existing rich theories of PDEs, as well as of analytic and numerical methods
of their solutions do not directly yield a bit-complexity classification of PDEs.
Apart from being a natural general program of study, such a classification would
be very helpful in developing reliable and efficient algorithms within the exact
real computation approach based on the computable analysis framework.

This survey shows the current status and outlines possible future directions
of obtaining such a classification, in particular emphasizing the impact of:

� Adding or removing input parameters: it can increase or decrease bit-cost, as
well as allow obtaining uniform results;

� Smoothness of the solutions: similarly to the ODE case, linear analytic sys-
tems of PDEs allow polynomial time algorithms, while computation of finitely
and infinitely continuously differentiable solutions is possible only in PSPACE
or #P (and proved #P1-hard for the Poisson and heat equations);

� Type of PDEs under consideration: linear systems have predictably better
computational properties compared to the quasilinear ones; while hyperbolic,
parabolic and elliptic types (within the linear type) show similar behaviour
in terms of computational complexity.

The following are natural directions of future investigations:

� Finalizing the complexity classification for the case of linear systems of PDEs
and extending it to quasilinear and general nonlinear PDEs;

� Developing a sound complexity theory for generalized solutions and extending
the classification to this case;

� Extending the currently existing exact real computation PDE solvers from
linear analytic to more general PDE systems.

In this way, bridging classical differential equations and numerical methods
theories with computability and complexity theories, via computable analysis
and exact real computation, gives hope to achieve deep insight into algorithmic
complexity of PDEs (and ODEs), as well as provide optimal and reliable methods
of computing their solutions with guaranteed arbitrary precision.
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Abstract. The goal of the paper is to make a start on the following
problem: to define a function f taking simply typed combinator terms
to natural numbers and prove that, when b is such a term formed by
contracting a strong redex within another term a, then f(b) < f(a). An
exact definition of strong reduction, in the axiomatic style introduced by
J. R. Hindley, is presented in Sect. 2 to make the paper self-contained.
A function f is then defined which has the property that f(b) < f(a)
when b is formed from a by contracting either a weak redex or a strong
redex of the shape [x].Sabc, where the variable x occurs in all three
terms a, b, c. Reasons are given for thinking that the most challenging
part of the problem as a whole will be the treatment of redexes of the
shape [x1, x2, . . . , xm].Sabc. In view of the connection between strong
reduction and λη-reduction, a comprehensive solution to the problem
described here will bring with it the solution to a long-standing open
problem concerning the simply typed λ-calculus.

Keywords: Simply typed combinatory logic · Strong normalization ·
Gödel’s Koan

1 Introduction

Let Λ→ be the set of simply typed λ-terms and CL→ the set of simply typed
combinator terms. Let R be a reduction relation defined over either of these
sets and let a function f which takes Λ→ or CL→ into the natural numbers be
called R-reducing iff, whenever a single R-reduction step takes X to Y , we have
f(Y ) < f(X).

Let WR be combinatory weak reduction (defined by Definition 1 below) and
let SR be combinatory strong reduction (defined in Sect. 2 below). For each
well-known reduction relation R, a proof that some function f is R-reducing
will be all the more interesting if f is computationally undemanding enough to
be acceptable as a proof-theoretic ordinal assignment. What this requirement
amounts to is not easy to state exactly, but a minimal requirement is that f
should be feasible. Study of examples like [3] suggests that calculating the ordinal
number assigned to a finitary proof or term should take not much more work
than writing down the proof or term itself.
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An exhibition of an SR-reducing function, which meets the standards
required by ordinal-theoretic proof theory, would be of the greatest interest,
not least because it would bring with it the solution to a long-standing problem
(see [1]) concerning λβ-reduction over Λ→. It is not being claimed that this is
the best way to tackle the problem posed in [1]. Strictly speaking, there are
infinitely many shapes of strong redex [4] but even disregarding the number of
variables abstracted, which can be equal to any finite number, the number of
shapes a strong redex can have is still quite large and a proof that a function is
SR-reducing may well require a great many case-distinctions.

On the other hand, investigating a subrelation of SR that is comparatively
weak (but still stronger than WR) can be heuristically illuminating. Work is
currently in progress on an attempt to prove that a certain function from Λ→
into the natural numbers is λβ-reducing. If the attempt succeeds, the treatment
of SR and the treatment of λβ-reduction will each throw some light upon the
other. In general, the definitions come out simpler when working on CL→, but
when working on Λ→ far fewer case-distinctions are needed in the proofs.

The goal of the present paper is to exhibit (in Definition 7) a function from
CL→ into the natural numbers and prove that it is SR0-reducing, where SR0

is a relatively simple subrelation of SR, which includes WR. It is hoped that
the proof presented here will illustrate both the difficulties that arise when one
advances from weak to strong reduction and the sort of tricks that are needed
to overcome them.

2 Definitions of Weak and Strong Reduction

The set CL→ is defined as in [5] (p. 115f.). That is, the following are taken as
atomic terms: typed versions of S, K, I and typed variables. Throughout this
paper, “term” will mean a term of CL→.

Weak reduction (WR) is the relation on CL→ defined by:

Definition 1. 1. For any a, b, c such that SABCabc is a term of CL→, the pair
〈SABCabc, ac(bc)〉 is in WR;

2. For any a, b such that KABab is a term of CL→, 〈KABab, a〉 is in WR;
3. For any a of type A 〈IAa, a〉 is in WR;
4. If 〈b, c〉 ∈ WR and ab, bd are terms of CL→, then 〈ab, ac〉 and 〈bd, cd〉 are in

WR;
5. If 〈a, b〉 and 〈b, c〉 are in WR, so is 〈a, c〉.
This definition is standard: see, for example, [5] (p. 24). If 〈a, b〉 ∈ WR in virtue
of clause (i), (ii) or (iii), then a is a weak redex and b its contractum.

The notion of abstracting a variable from a term of CL→ has been defined
in various ways; but the authors of [2] (p. 88) have argued that, for the purpose
of considering strong reduction, only the following definition will work.

Definition 2. For any term a of type C and any variable xA, there is a term
[xA]a of type A→C, defined by:
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1. If xA is not in a, [xA]a is KCAa;
2. If xA is a, [xA]a is IA;
3. If A is a0x

A for some a0 in which xA does not occur, [xA]a is a0;
5. If the antecedents of the foregoing clauses are all false and a is a0a1 for some

a0 of type B→C, then [xA]a is SABC [xA]a0 [xA]a1.

If other combinators like the typed instances of B had been included among the
primitive terms of CL→, it would have been possible to incorporate other clauses
into Definition 2 and this would make [xA]a simpler in some cases. Specifically:

4. If a is a0a1 for some a0 of type B→C in which xA does not occur and some
a1 of which xA is a proper subterm, then [xA]a is BABC a0 [xA]a1.

When (as in the present paper) the combinators BABC are not taken as primitive,
clause 4 is derivable provided BABC a0 be identified with SABC (K(B→C)Aa0).
The authors of [2] (p. 40) have introduced the notation BABC : a0 with the
stipulation that BABC : a0 is BABC a0 in a system in which BABC is taken as
primitive and is SABC (K(B→C)Aa0) when BABC is not taken as primitive but
typed instances of S and K are. This notation will be used in Sect. 4 below.

Just as the relation WR can be defined by first defining a set of redex-
contractum pairs, as is done in clauses 1−3 of Definition 1, and then closing this
set under the operations mentioned in clauses 4 and 5, so SR can be defined1

by first defining a set of (strong) redex-contractum pairs RC and then closing
RC under the operations mentioned in clauses 4 and 5 of Definition 1.

Definition 3. 1. If a is a weak redex and b its contractum, then 〈a, b〉 ∈ RC;
2. For any a of type A→C, 〈SAAC (K(A→C)Aa)IA, a〉 ∈ RC;
3. For any a of type B→C and b of type B, 〈SABC (K(B→C)Aa)(KBAb),

KCA(ab)〉 ∈ RC;
4. For any A, 〈S(A→A)(A→A)(A→A) (K((A→A)→A→A)(A→A)IA→A), IA→A〉 ∈ RC;
5. If 〈a, b〉 is in RC, so is 〈[xD]a, [xD]b〉 for every variable xD.2

This paper will not prove anything about SR as a whole but only its subrelation
SR0, defined by:

Definition 4. 1. If 〈d, e〉 is either a weak redex-contractum pair or
〈[xD]SABCabc, [xD]ac(bc)〉 for some terms a, b, c, each of which contains xD,
then 〈d, e〉 is in SR0;

2. SR0 is closed under the operations mentioned in clauses 4 and 5 of Defini-
tion 1.

1 That it can be so defined was a discovery of Hindley [4]. The original definition was
different. See [2] (Sect. 11E).

2 That RC can be defined in this way is the content of theorem 11(ii) on p. 118 of [2].
An alternative possibility is to define RC as the set of pairs that can be formed
by making substitutions for variables in certain schemata. See [2] (p. 117) or [4] (p.
233).
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3 A Mapping of CL→ into the Natural Numbers

Proposition 1. Every term is Xa1a2...an for some atom X and some (possibly
empty) sequence a1, . . . , an of terms.

Definition 5. 1. The rank of a type is the number of arrows in it.
2. The rank of a term is the rank of its type.
3. For any type A or term a, the rank of A resp. a shall be ρ(A) resp. ρ(a).

Definition 6. The multiset of associated terms of Xa1a2...an of rank i
(henceforth: A(Xa1a2...an, i)) is defined by:

1. For any j ∈ [1, n], if ρ(aj) = i, aj is in A(Xa1a2...an, i).
2. For any j ∈ [1, n], if i < ρ(aj) and b is in A(aj , i), b is in A(Xa1a2...an, i).
3. No other terms are in A(Xa1a2...an, i).

The next definition defines the measure of Xa1a2...an at rank i– in symbols,
[Xa1a2...an]i– by course-of-values recursion on lengths of terms not larger than
Xa1a2...an and, within that, on ρ(X)−i. For any i < ρ(X), let the terms of
A(Xa1a2...an, i) be f i

1, f
i
2, . . . , f

i
�(i) and let the sum [f i

1]i + [f i
2]i + · · ·+ [f i

�(i)]i be
abbreviated to [f i]i.

Definition 7. 1. [Xa1a2...an]i = 0 if ρ(X) < i.
2. [Xa1a2...an]ρ(X) = 0 if X is a variable and = 1 if X is a combinator.
3. [Xa1a2...an]i for i < ρ(X) is 2[Xa1a2...an]i+1 · (max{1, [f i]i}).
Stipulation: to avoid notational clutter, simply 2[Xa1a2...an]i+1 · [f i]i will be
written in place of 2[Xa1a2...an]i+1 · (max{1, [f i]i}).
Proposition 2. If ρ(an+1) < i, then [Xa1a2...anan+1]i = [Xa1a2...an]i

Theorem 1. The function a �→ [a]0 is WR-reducing.

Proof. See the Appendix at the end of this paper.

Discussion: let the level of a type be defined in the usual way, that is, the level
of an atomic type is 0 and the level of A→B is the largest number in the set
{level of A plus 1, level of B}. For any term a, the level of a (henceforth: δ(a))
shall be the level of the type of a. Then a �→ [a]0 would be WR-reducing even if
the variable “i” in Definition 7 ranged over levels rather than ranks and, indeed,
most normalizability proofs make reference to level but not rank.

Schütte ([6], p. 106f.) defined a function a, i �→ |a|i by a definition equivalent
to:

1. |Xa1a2...an|i = 0 if δ(X) < i.
2. For every i ≤ δ(X), |X|i = 0 if X is a variable and = 1 if X is a combinator.
3. |Xa1a2...an|i = |Xa1a2...an−1|i if δ(an) < i ≤ δ(X).
4. Otherwise |Xa1a2...an|i = 2|Xa1a2...an|i+1 · (|Xa1a2...an−1|i + |an|i).
and proved that a �→ |a|0 is WR-reducing ([6], pp. 107–112).
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The proof of Theorem 1 has been relegated to an appendix because it will
be easy enough to reconstruct for anyone who is familiar with Schütte’s proof or
who has mastered the proof of Theorem 2 below. The main point to be stressed
here is that, if we were concerned with weak reduction only, it might be natural
to let “i” in Definition 7 range over levels, but in order to tackle strong reduction
it has to range over ranks.

It would be possible to modify Schütte’s definition by replacing δ with ρ.
Whether the function so defined would have any useful applications which a, i �→
[a]i does not have, or conversely, is not yet known.

4 Strong Reduction

As the weak redexes that present the greatest difficulty when proving Theorem 1
are of the shape SABCabc, it seems reasonable to conjecture that the most dif-
ficult class of strong redexes will be those of the shape [x1, x2, . . . , xm]SABCabc
and that, if the case m = 1 can be treated, the general case probably can. This
paper will concentrate on the class of strong redexes that are formed by abstract-
ing a single variable xD from a weak redex SABCabc. Unfortunately there are
nine different shapes such a redex can have, depending on exactly where the
variable xD occurs within a, b, c. I will assume xD occurs in all three subterms.

Let the terms [xD]a, [xD]b, [xD]c be called a′, b′, c′ for short.
When Definition 2 together with the colon notation is used to write

[xD]SABCabc without square brackets, the result is:

SDAC (SD(A→B)(A→C)(BD(A→B→C)((A→B)→A→C) : SABC a′)b′)c′ (1)

and when the same is done to its contractum [xD]ac(bc) the result is:

SDBC(SDA(B→C)a
′c′)(SDABb′c′) (2)

To save space, BD(A→B→C)((A→B)→A→C) will be written without its subscript.

Proposition 3. [SDA(B→C)a
′]i < [B : SABC a′]i for all

i ≤ ρ(S
D(A→B→C)((A→B)→A→C)).

Proof. The term mentioned on the right side of the inequality, written without
the colon, is SD(A→B→C)((A→B)→A→C)(K((A→B→C)→(A→B)→A→C)DSABC) a′.
The head combinator of this term has a higher rank3 than SDA(B→C) on the
left. From this the proposition follows using Definition 7.

Proposition 4. [SDABb′]i < [SD(A→B)(A→C)v
D→(A→B)→A→Cb′]i for every i ≤

ρ(SD(A→B)(A→C)).

3 Readers who are curious as to why the variable “i” in Definition 7 ranges over ranks,
not levels, should note that if “i” ranged over levels the measure of SDA(B→C)a

′ at
levels above the level of K((A→B→C)→(A→B)→A→C)DSABC could be the same as the
measure of B : SABC a′.
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Proof. This follows from the fact4 that ρ(SDAB) < ρ(SD(A→B)(A→C)).

Definition 8. φ(b, i) shall be 1 if ρ(b) = i and 0 otherwise.

In the following proofs, the variable vD→(A→B)→A→C will be written without
its superscript. A sequence comprising the terms belonging to A(a′, i) resp.
A(b′, i) resp. A(c′, i) shall be called f i, gi,hi for short. If the terms of f i be
f i
1, f

i
2, . . . , f

i
�(i), then the sum [f i

1]i + [f i
2]i + · · · + [f i

�(i)]i shall be called [f i]i for
short. Likewise for gi and hi.

Proposition 5. If ρ(b′) ≤ i < ρ(a′) then

[SDA(B→C)a
′]i + [SDABb′]i + [SD(A→B)(A→C)]i < [SD(A→B)(A→C)(B : SABC a′)b′]i

Proof. If ρ(b′) ≤ i < ρ(a′), the following equalities and inequalities hold:

[SDA(B→C)a
′]i + [SDABb′]i + [SD(A→B)(A→C)]i

< [B : SABC a′]i + [SD(A→B)(A→C)vb′]i + [SD(A→B)(A→C)]i

by Propositions 3 and 4, as i < ρ(a′) < ρ(SD(A→B)(A→C)) <
ρ(S

D(A→B→C)((A→B)→A→C))

= [B : SABC a′]i + 2[SD(A→B)(A→C)]i+1 · ([b′]i · φ(b′, i)) + [SD(A→B)(A→C)]i

< 2[SD(A→B)(A→C)]i+1 · ([B : SABC a′]i + [b′]i · φ(b′, i))

because [SD(A→B)(A→C)]i < [B : SABC a′]i

< 2[SD(A→B)(A→C)]i+1 · (2[B:SABCa′]i+1 · ([SABC ]i · φ(SABC , i) + [f i]i) + [b′]i · φ(b′, i))

≤ 2[SD(A→B)(A→C)]i+1+[B:SABCa′]i+1 · ([SABC ]i · φ(SABC , i) + [f i]i + [b′]i · φ(b′, i))

< 2[SD(A→B)(A→C)(B:SABC a′)]i+1 · ([SABC ]i · φ(SABC , i) + [f i]i + [b′]i · φ(b′, i))

because i+1 ≤ ρ(a′) < ρ(B : SABC a′)

= [SD(A→B)(A→C)(B : SABC a′)b′]i

In comparing the measures of respective redexes and contractums, a critical part
is played by the type of [xD]c, which is D→A. Let the rank of this type be j
and let ρ(D→B→C) be l.

Proposition 6. If j < i < ρ(b′) then

[SDA(B→C)a
′]i + [SDABb′]i + [SD(A→B)(A→C)]i < [SD(A→B)(A→C)(B : SABC a′)b′]i

4 See footnote 3.
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Hint of proof : very similar to Proposition 5, except that in place of [b]i the
sum [gi]i is used.

Proposition 7. If i ≤ j and if 2 < [SDAC ]i, then

[SDA(B→C)a
′c′]i + [SDABb′c′]i + [SDAC ]i < [SDAC (SD(A→B)(A→C)(B : SABC a′)b′) c′]i

Proof. By induction on j−i. When i = j, we have:

[SDA(B→C)a
′c′]j + [SDABb′c′]j + [SDAC ]j

= 2[SDA(B→C)a
′]j+1 · ([f j ]j + [c′]j) + 2[SDABb′]j+1 · ([gj ]j + [c′]j) + [SDAC ]j

≤ 2[SDA(B→C)a
′]j+1+[SDABb′]j+1+1 · ([f j ]j + [gj ]j + [c′]j) + [SDAC ]j

< 2[SD(A→B)(A→C)(B:SABC a′)b′]j+1 · ([f j ]j + [gj ]j + [c′]j) + [SDAC ]j

by Proposition 65, as 1 < [SD(A→B)(A→C)]j+1

< 2[SD(A→B)(A→C)(B:SABC a′)b′]j+1+[SDAC ]j+1 · ([f j ]j + [gj ]j + [c′]j)

< 2[SDAC (SD(A→B)(A→C)(B:SABC a′)b′)]j+1 · ([f j ]j + [gj ]j + [c′]j)

because j+1 ≤ ρ(SD(A→B)(A→C)(B : SABC a′)b′)

= [SDAC (SD(A→B)(A→C)(B : SABC a′)b′) c′]j

The proof of the induction step is similar but uses [hi]i in place of [c′]i and the
I.H. in place of Proposition 6.

Proposition 8. When ρ(D→B) < i ≤ l ≤ j, then

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]i + [SDABb′c′]i + 2

< [SDAC (SD(A→B)(A→C)(B : SABC a′)b′)c′]i

Proof. By induction on l−i. Let q(i) be [c′]i if i = j and [hi]i if i < j. When
i = l, we have:

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]l + [SDABb′c′]l + 2

= 2[SDBC ]l+1 · [SDA(B→C)a
′c′]l + [SDABb′c′]l + 2

5 This is another place where it is crucial that we are working with ranks rather
than levels. If “i” in Definition 7 ranged over levels, it would be possible that
[SDA(B→C)a

′]j+1 + [SDABb′]j+1+1 should be equal to 3 while [SD(A→B)(A→C)(B :
SABC a′)b′]j+1 would be equal to 1, and the last inequality would be false.
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because ρ(SDABb′c′) = ρ(D→B) < l

= 2[SDBC ]l+1+[SDA(B→C)a
′c′]l+1 · ([f l]l + q(l)) + 2[SDABb′c′]l+1 · ([gl]l + q(l)) + 2

≤ 2[SDBC ]l+1+[SDA(B→C)a
′c′]l+1+[SDABb′c′]l+1+2 · ([f l]l + [gl]l + q(l))

< 2[SDAC (SD(A→B)(A→C)(B:SABC a′)b′)c′]l+1 · ([f l]l + [gl]l + q(l))

by Proposition 76, using the fact that [SDBC ]l+1 + 2 ≤ [SDAC ]l+1 when l ≤ j

= [SDAC (SD(A→B)(A→C)(B : SABC a′)b′)c′]l

The proof of the induction step is again fairly similar.

Proposition 9. If l ≤ j and ρ(D→B) = m, then

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]m < [SDAC (SD(A→B)(A→C)(B : SABC a′)b′)c′]m

Proof.

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]m

= 2[SDBC(SDA(B→C)a
′c′)]m+1 · ([fm]m + [hm]m + [SDABb′c′]m)

= 2[SDBC(SDA(B→C)a
′c′)]m+1 · ([fm]m + [hm]m + 2[SDABb′c′]m+1 · ([gm]m + [hm]m))

≤ 2[SDBC(SDA(B→C)a
′c′)]m+1+[SDABb′c′]m+1+1 · ([fm]m + [gm]m + [hm]m)

< 2[SDAC (SD(A→B)(A→C)(B:SABC a′)b′)c′]m+1 · ([fm]m + [gm]m + [hm]m)

by Proposition 8

= [SDAC (SD(A→B)(A→C)(B : SABC a′)b′)c′]m

Propositions 8 and 9 rested on the assumption l ≤ j. It is time now to investigate
what happens when j < l.

Definition 9. For any b and l, ψ(b, l) =df. 1 if l < ρ(b) and =df. 0 otherwise.

Proposition 10. If max{m, j} < i ≤ l, then

[SDBC(SDA(B→C)ac′)]i + [SDABb′c′]i + 2 < [SD(A→B)(A→C)(B : SABC a′)b′]i

6 A similar remark to that made in footnote 5 applies here. If “i” in Definition 7 ranged
over levels, the exponent of the l.h.s. of the last inequality could have the numerical
value 5 while the exponent of the r.h.s. had the numerical value 1.
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Proof. By induction on l−i. If i = l, then

[SDBC(SDA(B→C)ac′)]l + [SDABb′c′]l + 2

= 2[SDBC ]l+1 · [SDA(B→C)a
′]l + [SDABb′]l + 2

because by hypothesis, ρ(c′) = j < l

< 2[SDBC ]l+1+[SDA(B→C)a
′]l+1+[SDABb′]l+1+1 · ([f l]l + [b′]l · φ(b′, l) + [gl]l · ψ(b′, l))

< 2[SD(A→B)(A→C)(B:SABC a′)b′]l+1+1 · ([f l]l + [b′]l · φ(b′, l) + [gl]l · ψ(b′, l))

by Proposition 6, seeing as [SDBC ]l+1 + 1 < [SD(A→B)(A→C)]l+1

= [SD(A→B)(A→C)(B : SABC a′)b′]l

The induction step can be proven by a fairly similar argument, using the I.H. in
place of Proposition 6.

Proposition 11. If j < i ≤ m, then

[SDBC(SDA(B→C)ac′)(SDABb′c′)]i + 2 < [SD(A→B)(A→C)(B : SABC a′)b′]i

Proof. By induction on m−i. If i = m, then

[SDBC(SDA(B→C)ac′)(SDABb′c′)]m + 2

= 2[SDBC(SDA(B→C)ac′)]m+1 · ([fm]m + [SDABb′]m) + 2

= 2[SDBC(SDA(B→C)ac′)]m+1 · ([fm]m + 2[SDABb′]m+1 · [gm]m) + 2

≤ 2[SDBC(SDA(B→C)ac′)]m+1+[SDABb′]m+1+1 · ([fm]m + [gm]m)

< 2[SD(A→B)(A→C)(B:SABC a′)b′]m+1 · ([fm]m + [gm]m)

by Proposition 10

= [SD(A→B)(A→C)(B : SABC a′)b′]m

Again, the induction step is straightforward and fairly similar.

For the remainder of this paper, let h be ρ(D→A→C).

Proposition 12. If j < i ≤ h and j < l, then

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]i+2 < [SDAC(SD(A→B)(A→C)(B : SABC a′)b′)c′]i
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Proof. By induction on h−i. If l < h, the basis of the induction follows by
Definition 7, from

[SDBC ]h + 2 < [SDAC(SD(A→B)(A→C)(B : SABC a′)b′)c′]h

which is obvious given Definition 7. If h ≤ l, then, as j < h, the inequality

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]h < [SD(A→B)(A→C)(B : SABC a′)b′]h (3)

holds by Propositions 10 and 11. From (3), the inequality

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]h+2 < [SDAC(SD(A→B)(A→C)(B : SABC a′)b′)c′]h (4)

can be proven using the fact that the term on the r.h.s. of (3) is a rank h associ-
ated term of the term on the r.h.s. of (4). The induction step is straightforward.

Proposition 13. If j < l, then

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]j + 2 < [SDAC(SD(A→B)(A→C)(B : SABC a′)b′)c′]j

Proof. Either m ≤ j or j < m. If m ≤ j, then

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]j + 2

= 2[SDBC(SDA(B→C)a
′c′)]j+1 · ([f j ]j + [c′]j + [SDABb′c′]j · φ(SDABb′c′, j)) + 2

≤ 2[SDBC(SDA(B→C)a
′c′)]j+1+[SDABb′]j+1+2·([f j ]j+[gj ]j+[c′]j)

< 2[SD(A→B)(A→C)(B:SABC a′)b′]j+1 ·([f j ]j+[gj ]j+[c′]j)

by Proposition 10

< 2[SDAC(SD(A→B)(A→C)(B:SABC a′)b′)]j+1 ·([f j ]j+[gj ]j+[c′]j)

because j+1 < ρ(SD(A→B)(A→C)(B : SABC a′)b′)

= [SDAC(SD(A→B)(A→C)(B : SABC a′)b′)c′]j

If, on the other hand, j < m, then

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]j + 2

≤ 2[SDBC(SDA(B→C)a
′c′)(SDABb′)]j+1+2 · ([f j ]j + [gj ]j + [c′]j)

from which the conclusion follows by Proposition 12.

Proposition 14. If i ≤ ρ(D→C), then

[SDBC(SDA(B→C)a
′c′)(SDABb′c′)]i + 2 < [SDAC(SD(A→B)(A→C)(B : SABC a′)b′)c′]i
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Proof. When l ≤ j, an inequality of the form shown has been established for
i ∈ [m, j] by Propositions 8 and 9, so all that is necessary is to prove it for
i ∈ [0,m) by induction on m−i, which is straightforward. Moreover, when l ≤ j
we also have ρ(D→C) < j, so the inequality holds a fortiori for i ≤ ρ(D→C).

When j < l, an inequality of the form shown has been proven for i ∈ [j, h]
by Propositions 12 and 13. By induction on j−i, a similar inequality can be
easily proven for i < j. Moreover, ρ(D→C) < h, so the needed inequality holds
a fortiori for i ≤ ρ(D→C). This completes the proof of Proposition 14.

The main goal of this paper was to prove that the reduction relation SR0,
which was defined by Definition 4, has the following property:

Theorem 2. The function a �→ [a]0 is SR0-reducing.

Proof. Let d reduce to e by a single SR0-reduction step. The case where the redex
contracted is weak is covered by Theorem 1. The case where d is [xD].SABCabc
and the variable xD occurs in all the terms a, b, c is covered by Proposition 14,
given that d then is (1) and e is (2). The only other possibility is that the redex
contracted has that shape and is a proper subterm of d. The crucial fact for the
treatment of this last case is that the rank ρ(D→C), at which the inequality
shown in Proposition 14 holds, is precisely the rank of [xD].SABCabc and its
contractum. That this suffices is a consequence of Definition 7 (see Proposition 22
below for more detail).
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anonymous reviewers whose comments on an earlier version have, he hopes, enabled
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Appendix: Proof of Theorem 1

Throughout this appendix, let a, b, c, t be such that SABCabct ∈ CL→. Likewise
for KABabt and IAat. Let the sequences of terms belonging to A(a, i), A(b, i),
A(c, i) be f i, gi,hi respectively. Let the sequence ti comprise both those of the
t that have rank i and the rank i associated terms of those of the t that have
ranks > i.

Proposition 15. For any i such that ρ(b) < i ≤ ρ(a),

[ac(bc)t]i + 1 < [SABCabct]i

Proof. By induction on ρ(a)−i. If i = ρ(a), then [ac(bc)t]i + 1 = [a]i + 1 <
[SABCa]i. The induction step is straightforward.

Proposition 16. For any i such that max{ρ(c), ρ(bc)} < i ≤ ρ(b),

[ac(bc)t]i + [b]i + 2 < [SABCabct]i
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Proof. By induction on ρ(b)−i. If i = ρ(b), then

[ac(bc)t]i + [b]i + 2 ≤ 2[ac(bc)t]i+1 · ([f i]i + [ti]i) + [b]i + 2

by Definition 7, as max{ρ(c), ρ(bc)} < ρ(b)

≤ 2[ac(bc)t]i+1+1 · ([f i]i + [b]i + [ti]i) + 1

by the stipulation following Definition 7, which entails that the measure
2[ac(bc)t]i+1 · ([f i]i + [b]i + [ti]i) is not less than 1

< 2[SABCa]i+1 · ([fi ]i + [b]i + [ti]i)

by Proposition 15

= [SABCabct]i

as ρ(c) < i. The induction step is again straightforward.

Proposition 17. If ρ(c) ≤ ρ(bc), then for any i such that i ≤ ρ(bc),

[ac(bc)t]i + [bc]i + 2 < [SABCabct]i

Proof. By induction on ρ(bc)−i. If i = ρ(bc), then

[ac(bc)t]i + [bc]i + 2 = 2[ac(bc)t ]i+1 · ([f i]i + [bc]i + [c]i · φ(c, i) + [ti]i) + [bc]i + 2

≤ 2[ac(bc)t]i+1+1 · ([f i]i + [bc]i + [c]i · φ(c, i) + [ti]i) + 2

≤ 2[ac(bc)t]i+1+[b]i+1+2 · ([f i]i + [gi]i + [c]i · φ(c, i) + [ti]i) + 2

< 2[SABCabct ]i+1 · ([f i]i + [gi]i + [c]i · φ(c, i) + [ti]i)

because 2 ≤ [ac(bc)t]i+1 + [b]i+1 + 2 < [SABCabct]i+1 by Proposition 16

= [SABCabct]i

The induction step is again straightforward.

Proposition 18. If ρ(bc) < i ≤ ρ(c), then

[ac(bc)t]i + [bc]i + 2 < [SABCabct]i

Proof. By induction on ρ(c)−i. If i = ρ(c), then

[ac(bc)t]i + [bc]i + 2 = 2[ac(bc)t]i+1 · ([f i]i + [c]i + [ti]i) + [bc]i + 2

≤ 2[ac(bc)t]i+1 · ([f i]i + [bc]i + [c]i + [ti]i) + 2

≤ 2[ac(bc)t]i+1+[b]i+1+1 · ([f i]i + [gi]i + [c]i + [ti]i) + 2

< 2[SABCabct ]i+1 · ([f i]i + [gi]i + [c]i + [ti]i)

because 2 ≤ [ac(bc)t]i+1 + [b]i+1 + 2 < [SABCabct]i+1 by Proposition 16

= [SABCabct]i

The induction step is again straightforward.
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Proposition 19. If ρ(bc) < ρ(c), then for any i such that i ≤ ρ(bc),

[ac(bc)t]i + [bc]i + 2 < [SABCabct]i

Proof. By induction on ρ(c)−i. The proof is like the proof of Proposition 17, but
uses Proposition 18 in place of Proposition 16.

Proposition 20. If i ≤ ρ(a), then

[at]i < [KABabt]i and [at]i < [IAat]i

Definition 10. An a-chain is a sequence of terms so constituted that each term
other than the first is an associated term of the preceding one.

Proposition 21. For every redex R in a, one of the following possibilities holds:

(i) R is at the head of a; or
(ii) R is at the head of one of the associated terms of a; or
(iii) R is at the head of a term which is the last term of an a-chain starting with

a and of length > 2.

Proof. By induction on the length of a. Let a be Xa1a2...an. If a redex R in a
is not at the head of a, it must be inside one of a1, a2, . . . , an. Taking the three
possibilities, of which by the I.H. one must hold, in turn:

1. If R is at the head of one of a1, a2, . . . , an, it is at the head of an associated
term of a.

2. If R is at the head of an associated term b of aj (1 ≤ j ≤ n) then if ρ(b) <
ρ(aj), b is an associated term of a by Definition 6. Otherwise, R is connected
to a by an a-chain of length 3.

3. If R is merely at the head of a term d to which aj is connected by an a-chain,
R is also connected to a by an a-chain.

Proposition 22. If the following condition holds:

For every term b which has a weak redex S in head position, contraction
of S yields a term b′ such that [b′]i < [b]i for every i ≤ ρ(S)

then, for any c, c′ such that c′ is the result of contracting an arbitrary weak redex
R within c, [c′]i < [c]i for every i not exceeding ρ(R) (if R is at the head of c)
or (otherwise) the rank of the second term of the unique a-chain connecting c to
a term which has R at its head.

Proof. The three possibilities concerning R are distinguished by Proposition 21.
When (1) holds, the succedent of the proposition is identical to its antecedent.
When (2) holds, the succedent follows from the antecedent by Definition 7. When
(3) holds, the proposition is proven by induction on the length of the (unique)
a-chain connecting c to some term with R at its head.

Theorem 1 can now be seen to hold in virtue of the fact that the condition
mentioned in Proposition 22 holds by Propositions 15–20.



326 W. Stirton

References

1. Barendregt, H.P.: Problem #26 in a list of open problems maintained by the uni-
versità di torino. http://tlca.di.unito.it/opltlca/opltlcasu33.html. Accessed 20 Apr
2022

2. Curry, H.B., Hindley, J.R., Seldin, J.P.: Combinatory Logic, vol. 2. North-Holland,
Amsterdam (1972)

3. Gentzen, G.: Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlen-
theorie. Hirzel, Leipzig (1938)

4. Hindley, J.R.: Axioms for strong reduction in combinatory logic. J. Symb. Log.
32(2), 224–236 (1967)

5. Hindley, J.R., Seldin, J.P.: Lambda Calculus and Combinators: An Introduction.
Cambridge University Press, Cambridge (2008)

6. Schütte, K.: Proof Theory. Springer, Heidelberg (1977)

http://tlca.di.unito.it/opltlca/opltlcasu33.html


Author Index

Bazhenov, Nikolay 1, 13
Blechschmidt, Ingo 24
Bournez, Olivier 39
Bruyère, Véronique 52

Carl, Merlin 64
Cipriani, Vittorio 1

Das, Anupam 74
de Brecht, Matthew 88
Delkos, Avgerinos 74
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